WorldWideScience

Sample records for voc-laden air stream

  1. Membrane Biotreatment of VOC-Laden Air

    National Research Council Canada - National Science Library

    Peretti, Stephen

    2000-01-01

    ...%, depending primarily on air contact time. Octanol was used as the stripping fluid because of its low vapor pressure and water solubility, its high partitioning of VOCs from air, and its compatibility...

  2. MEMBRANE BIOTREATMENT OF VOC-LADEN AIR

    Science.gov (United States)

    The paper discusses membrane biotreatment of air laden with volatile organic compounds (VOCs). Microporous flat-sheet and hollow-fiber membrane contactors were used to support air-liquid mass transfer interfaces. These modules were used in a two-step process to transfer VOCs fr...

  3. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    Science.gov (United States)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  4. Control of aromatic-waste air streams by soil bioreactors

    International Nuclear Information System (INIS)

    Miller, D.E.; Canter, L.W.

    1991-01-01

    Contamination of groundwater resources is a serious environmental problem which is continuing to increase in occurrence in the United States. It has been reported that leaking underground gasoline storage tanks may pose the most serious threat of all sources of groundwater contamination. Gasolines are comprised of a variety of aliphatic and aromatic hydrocarbons. The aromatic portion consists primarily of benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). BTEX compounds are also among the most frequency identified substances at Superfund sites. Pump and treat well systems are the most common and frequently used technique for aquifer restoration. Treatment is often in the form of air stripping to remove the volatile components from the contaminated water. Additionally, soil ventilation processes have been used to remove volatile components from the vadose zone. Both air stripping and soil ventilation produce a waste gas stream containing volatile compounds which is normally treated by carbon adsorption or incineration. Both treatment processes require a substantial capital investment and continual operation and maintenance expenditures. The objective of the study was to examine the potential of using soil bioreactors to treat a waste gas stream produced by air stripping or soil ventilation process. Previous studies have shown that various hydrocarbons can be successfully treated with soils. The study examined the removal of BTEX compounds within soil columns and the influence of soil type, inlet concentration, and inlet flow rate on the removal efficiency

  5. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  6. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Ivan Arismendi; Mohammad Safeeq; Jason B Dunham; Sherri L Johnson

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To...

  7. Technique for producing a continuous interference-free stream of Argon-41 in air

    International Nuclear Information System (INIS)

    Tseng, T.-T.; Jester, W.A.

    1984-01-01

    A monitoring system was developed for the detection of 131 I in the presence of orders of magnitude higher concentrations of radioactive noble gas. During the course of this work, a technique was developed for producing a continuous air stream of 41 Ar required for testing this concept. The 41 Ar stream is produced by the neutron activation of air using a research reactor. The 41 Ar content of the air stream can be varied by many orders of magnitude by varying the reactor power level and the rate at which the air is pumped through a vertically positioned tube in or in front of the reactor. It was found that the neutrons also activate other air constituents, producing undesirable interference radionuclides. Selective filtering techniques have therefore been developed to remove these interference radionuclides from the 41 Ar air stream

  8. Can air temperature be used to project influences of climate change on stream temperature?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  9. Removal of Cyclohexane from a Contaminated Air Stream Using a Dense Phase Membrane Bioreactor

    National Research Council Canada - National Science Library

    Roberts, Michael G

    2005-01-01

    The purpose of this research was to determine the ability of a dense phase membrane bioreactor to remove cyclohexane, a volatile organic compound in JP-8 jet fuel, from a contaminated air stream using...

  10. Filter system for purifying gas or air streams

    International Nuclear Information System (INIS)

    Ohlmeyer, M.; Wilhelm, J.

    1981-01-01

    A filter system is provided for purifying a gas stream by means of flowable or tricklable contact filter material, wherein the stream flows through the filter material and the filter material forms a movable bed. The system contains a filter chamber through which the filter material can flow and which is provided with an inlet opening and an outlet opening for the filter material between which the filter material is conveyed by gravity. The filter system includes deflection means for deflecting the stream , after a first passage of the stream through the filter bed to charge the filter bed for a first time, to a position above where the stream first passed through the filter bed and for conducting the stream at least once again transversely through the filter bed above the first charge so that the filter bed is charged a second time. The filter chamber contains a first opening where the stream enters the filter bed for the first time and is aligned with the deflection means, and a second opening aligned with the deflection means and above the first opening. The second opening is located where the stream leaves the filter bed for the second time, with a partial quantity of the gas stream being able to pass directly through the filter bed from the first opening to the second opening without going through the deflection means. The distance between the upper edge of the first opening and the lower edge of the second opening is at least twice the thickness of the filter chamber

  11. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  12. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  13. How an Air Stream Can Support a Cupcake

    Science.gov (United States)

    Jones, Evan

    2015-01-01

    Variations of a demonstration in which a sheet of paper or a bead is levitated in a grazing stream as from one's breath have been published in several sources. Even a massive ball can be deflected into the robust flow from a leaf blower. The attraction is surprising because it is often quite stable and seems to conflict with the familiar transient…

  14. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  15. An experimental study of solar desalination using free jets and an auxiliary hot air stream

    Science.gov (United States)

    Eid, Eldesouki I.; Khalaf-Allah, Reda A.; Dahab, Mohamed A.

    2018-04-01

    An experimental study for a solar desalination system based on jet-humidification with an auxiliary perpendicular hot air stream was carried out at Suez city, Egypt 29.9668°N, 32.5498°E. The tests were done from May to October 2016. The effects of nozzles situations and nozzle diameter with and without hot air stream on fresh water productivity were monitored. The results show that; the lateral and downward jets from narrow nozzles have more productivities than other situations. The hot air stream has to be adapted at a certain flow rate to get high values of productivity. The system productivity is (5.6 L/m 2 ), the estimated cost is (0.030063 / L) and the efficiency is 32.8%.

  16. Penetration of Liquid Jets into a High-velocity Air Stream

    Science.gov (United States)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  17. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  18. Electro-scrubbing volatile organic carbons in the air stream with a gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Kaichen; Jia Jinping; Cao Limei [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    It is demonstrated that exposing the VOC air streams to the electro-scrubbing reactor with a gas diffusion electrode leads to an efficient removal of organics. The importance order of the influence factors on the electro-scrubbing reactor performance is: conductivity, voltage and air stream flow-rate. The effective conductivity and high voltages generally are beneficial to the removal process and the air flow-rate is not a significant factor compared with the other two, indicating that the reactor might have a consistently satisfying performance within a wide range of gas volumetric load. The mass transfer of both organics and oxygen in the reactor is estimated by mathematical model, and the calculation determines the concentration boundary conditions for the 2-ethoxyethyl acetate removal: if the 2-ethoxyethyl acetate concentration in the inflow air stream holds C{sub G,i} {<=} 0.7198 % , the removal in the electro-scrubbing reactor is electrochemical reaction controlled; if C{sub G,i} > 0.7198 % , the controlling step will be the oxygen mass transfer from the air to the liquid in the electro-scrubbing reactor. The Apparent Current Efficiency of the electro-scrubbing reactor was also determined using COD data, which is significantly higher than some commercial metal oxide electrodes, showing that the reactor is energy efficient and has the promise for the future scale-up.

  19. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  20. Studies on molecular sieves for the removal of moisture from air stream

    International Nuclear Information System (INIS)

    Kalra, S.; Ramarathinam, K.; Khan, A.A.

    1975-01-01

    Studies on molecular sieves were taken up with a view to provide sufficient experimental data for the design of an adsorbent bed for the removal of moisture to very low level from air stream containing traces of radioactive xenon and krypton, so that delay of xenon and krypton on activated charcoal columns can take place with a higher dynamic adsorption coefficient. Experimental studies included the evaluation of molecular sieves for their moisture removal efficiencies at different face velocities and different bed thicknesses. Adsorption capacity at removal efficiency of 98.5% was determined for molecular sieves type 4A of local and foreign origin. For local molecular sieves type 4A, adsorption capacity at 95% removal efficiency was found out at lower moisture contents of air streams. Regeneration characteristics of a saturated bed were also studied on local molecular sieves type 4A. (author)

  1. Parameters of the Two-Phase Sand-Air Stream in the Blowing Process

    Directory of Open Access Journals (Sweden)

    Danko J.

    2012-12-01

    Full Text Available Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process by blowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on the cores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.

  2. Parameters of the Two-Phase Sand-Air Stream in the Blowing Process

    Directory of Open Access Journals (Sweden)

    J. Danko

    2012-12-01

    Full Text Available Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process byblowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on thecores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.

  3. STREAM

    DEFF Research Database (Denmark)

    Godsk, Mikkel

    This paper presents a flexible model, ‘STREAM’, for transforming higher science education into blended and online learning. The model is inspired by ideas of active and collaborative learning and builds on feedback strategies well-known from Just-in-Time Teaching, Flipped Classroom, and Peer...... Instruction. The aim of the model is to provide both a concrete and comprehensible design toolkit for adopting and implementing educational technologies in higher science teaching practice and at the same time comply with diverse ambitions. As opposed to the above-mentioned feedback strategies, the STREAM...... model supports a relatively diverse use of educational technologies and may also be used to transform teaching into completely online learning. So far both teachers and educational developers have positively received the model and the initial design experiences show promise....

  4. Equipment to separate liquid droplets from the cooling air stream of a liquid cooling tower

    International Nuclear Information System (INIS)

    Thompson, S.E.; Schwinn, J.M.

    1977-01-01

    In order to separate off liquid droplets from the air stream of a cooling tower, one uses separator blades that are secured to the supporting construction. An improvement on this is proposed to make the repairs easier. According to the invention, the separator blades should be fabricated from springy material with self-supporting strength and can be fitted onto the supporting construction by means of slits and notches. (RW) [de

  5. Fixed bed adsorption of hexavalent chromium onto natural zeolite from air stream

    OpenAIRE

    F. Golbabaei; E. Rahmanzadeh; G. R. Moussavi; A. Faghihi zarandi; M. R. Baneshi

    2014-01-01

    Introduction: Chromium (VI) is a known human carcinogenic agent which is used in numerous industrial processes such as electroplating, welding, textile, cement and steel fabrication. The aim of this study was to determine the effectiveness of natural zeolite on the fixed bed adsorption of Cr (VI) from air stream. . Material and Method: In this experimental study, chromium mists were generated by a nebulizer (3A model, Italy). Performance of natural zeolite in the Cr (VI) adsorption and ...

  6. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  7. Evaluation of an adsorption system to concentrate VOC in air streams prior to catalytic incineration.

    Science.gov (United States)

    Campesi, María A; Luzi, Carlos D; Barreto, Guillermo F; Martínez, Osvaldo M

    2015-05-01

    Catalytic combustion is a well-developed process for the removal of volatile organic compounds (VOCs). In order to reduce both the amount of catalyst needed for incineration and the surface area of recuperative heat exchangers, an evaluation of the use of thermal swing adsorption as a previous step for VOC concentration is made. An air stream containing ethyl acetate and ethanol (employed as solvents in printing processes) has been taken as a case study. Based on the characteristics of the adsorption/desorption system and the properties of the stream to be treated, a monolithic rotor concentrator with activated carbon as adsorbent material is adopted. Once the temperature of the inlet desorption stream TD is chosen, the minimum possible desorption flow rate, WD,min, and the amount of adsorbent material can be properly defined according to the extent of the Mass Transfer Zone (MTZ) at the end of the adsorption stage. An approximate procedure to speed up the calculations needed for sizing the bed and predicting the operating variables is also presented. In the case studied here, the concentration of the VOC stream can reach 6 times that of the primary effluent when TD = 200 °C is chosen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mitigation of trichloroethylene contaminated air streams through biofiltration: a pilot-scale study

    International Nuclear Information System (INIS)

    Lackey, L.W.; Gamble, J.R.; Boles, J.L.

    2002-01-01

    As a result of abundant usage and improper disposal practices, trichloroethylene (TCE) is one of the most prevalent groundwater contaminants. Traditional cleanup methods of aquifers contaminated with TCE include pumping the water to the surface and treating with stripper technology, soil vapor extraction, and air sparging. As a result of each of these mitigation schemes, TCE is transferred from the aqueous to the gas phase. As regulations associated with air emission tighten, development of technologies both technically feasible and cost effective for remediating TCE laden gas streams becomes imperative. This project demonstrated the use of biofiltration technology to mitigate TCE contaminated air streams. A pilot-scale biofilter system was designed, constructed, and subsequently installed at the Anniston Army Depot (ANAD), Anniston, AL. The system was inoculated with a propane-oxidizing microbial consortium that had previously been shown to degrade TCE as well as other short-chained chlorinated aliphatics and a variety of one-and two-ring aromatic compounds. Critical process variables were identified and their effects on system performance analyzed. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. The inlet contaminant concentration as well as the loading rate also had an impact on observed TCE degradation rates. Results suggest that biofilter performance and economics are generally improved by manipulating a specific waste stream so as to increase the TCE concentration and decrease the volumetric flow rate of the contaminated air fed to the biofilter. Through manipulation of process variables, including the empty bed contact time, TCE degradation efficiencies greater than 99.9 percent were sustained. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis (ppmv). (author)

  9. Effects of ashes in solid fuels on fuel particle charging during combustion in an air stream

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Fialkov, B.S.; Mel' nichuk, A.Yu.; Khvan, L.A.

    1982-09-01

    Black coal from the Karaganda basin is mixed with sodium chloride and graphite. Coal characteristics are given in a table (density, ashes, content of silica, aluminium oxides, iron oxides, calcium oxides, potassium oxides and magnesium oxides). Effects of ash fluctuations on electric potential of fuel particles during combustion are analyzed. Analyses show that with increasing ash content electric potential of fuel particles decreases and reaches the minimum when ash content ranges from 70 to 80 %. Particles with electric potential are generated during chemical processes between carbon and oxygen when coal is burned in an air stream. (5 refs.) (In Russian)

  10. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  11. Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream

    Science.gov (United States)

    Liu, L.; Bi, Q. C.; Terekhov, Victor I.; Shishkin, Nikolay E.

    2010-03-01

    The objective of this study is to develop experimental method to study the evaporation process of liquid mixture droplets during depressurization and into air stream. During the experiment, a droplet was suspended on a thermocouple; an infrared thermal imager was used to measure the droplet surface temperature transition. Saltwater droplets were used to investigate the evaporation process during depressurization, and volatile liquid mixtures of ethanol, methanol and acetone in water were applied to experimentally research the evaporation into air stream. According to the results, the composition and concentration has a complex influence on the evaporation rate and the temperature transition. With an increase in the share of more volatile component, the evaporation rate increases. While, a higher salt concentration in water results in a lower evaporation rate. The shape variation of saltwater droplet also depends on the mass concentration in solution, whether it is higher or lower than the eutectic point (22.4%). The results provide important insight into the complex heat and mass transfer of liquid mixture during evaporation.

  12. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  13. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    Science.gov (United States)

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  14. Real-time dissemination of air quality information using data streams and Web technologies: linking air quality to health risks in urban areas.

    Science.gov (United States)

    Davila, Silvije; Ilić, Jadranka Pečar; Bešlić, Ivan

    2015-06-01

    This article presents a new, original application of modern information and communication technology to provide effective real-time dissemination of air quality information and related health risks to the general public. Our on-line subsystem for urban real-time air quality monitoring is a crucial component of a more comprehensive integrated information system, which has been developed by the Institute for Medical Research and Occupational Health. It relies on a StreamInsight data stream management system and service-oriented architecture to process data streamed from seven monitoring stations across Zagreb. Parameters that are monitored include gases (NO, NO2, CO, O3, H2S, SO2, benzene, NH3), particulate matter (PM10 and PM2.5), and meteorological data (wind speed and direction, temperature and pressure). Streamed data are processed in real-time using complex continuous queries. They first go through automated validation, then hourly air quality index is calculated for every station, and a report sent to the Croatian Environment Agency. If the parameter values exceed the corresponding regulation limits for three consecutive hours, the web service generates an alert for population groups at risk. Coupled with the Common Air Quality Index model, our web application brings air pollution information closer to the general population and raises awareness about environmental and health issues. Soon we intend to expand the service to a mobile application that is being developed.

  15. A hierarchical model of daily stream temperature using air-water temperature synchronization, autocorrelation, and time lags

    Directory of Open Access Journals (Sweden)

    Benjamin H. Letcher

    2016-02-01

    Full Text Available Water temperature is a primary driver of stream ecosystems and commonly forms the basis of stream classifications. Robust models of stream temperature are critical as the climate changes, but estimating daily stream temperature poses several important challenges. We developed a statistical model that accounts for many challenges that can make stream temperature estimation difficult. Our model identifies the yearly period when air and water temperature are synchronized, accommodates hysteresis, incorporates time lags, deals with missing data and autocorrelation and can include external drivers. In a small stream network, the model performed well (RMSE = 0.59°C, identified a clear warming trend (0.63 °C decade−1 and a widening of the synchronized period (29 d decade−1. We also carefully evaluated how missing data influenced predictions. Missing data within a year had a small effect on performance (∼0.05% average drop in RMSE with 10% fewer days with data. Missing all data for a year decreased performance (∼0.6 °C jump in RMSE, but this decrease was moderated when data were available from other streams in the network.

  16. Vapour permeation for the recovery of organic solvents from waste air streams: separation capacities and process optimization

    NARCIS (Netherlands)

    Leemann, M.; Leemann, M.; Eigenberger, G.; Strathmann, H.

    1996-01-01

    Vapour permeation is a potentially suitable technology for the recovery of organic solvents from waste air streams. New solvent stable capillary membrane modules that are currently emerging on the market provide large membrane areas for an acceptable price and enhance the competitiveness of this

  17. NUMERICAL ANALYSIS OF INFLUENCE OF EXOGENOUS FIRE IN DOG HEADING ON PARAMETERS OF THE AIR STREAM FLOWING THROUGH THIS HEADING

    Directory of Open Access Journals (Sweden)

    Magdalena TUTAK

    2014-04-01

    Full Text Available Flow of ventilation air stream through the dog heading with a fire centre is the flow with complex character, during which as a result of emission of fire gases into the mining atmosphere, there occur to disturbances of its flow. In the paper there is presented a numerical analysis of an influence of exogenous fire in a dog heading, on the parameters of the ventilation air stream flowing through this heading. Modeling tests were carried out with a use of ANSYS software, basing on the Finite Volume Method. For the made assumptions, there were determined physical parameters of air stream flowing through the heading with a fire centre, and also changes in mass fraction of gases in this stream during its flow through the analyzed heading: oxygen, carbon monoxide and carbon dioxide. As a result of performed analysis over the fire centre, the local increase of velocity and temperature and violent decrease of static pressure were recorded. Model of heading presented in the paper gives possibilities for development, and then the analysis of more complicated problems in a range of ventilation of mining headings.

  18. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  19. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Park, Jong Min; Shin, Kyung Hwan; Wu, Hong-Gyun; Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho; Jeon, Seung Hyuck; Choi, Noorie

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [de

  20. Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

    Directory of Open Access Journals (Sweden)

    Paolo Viotti

    2015-11-01

    Full Text Available The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP. The two-stage air process combines a water scrubber and a biotrickling filter (BTF in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively. Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

  1. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan

    2011-06-01

    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  2. Air-electron stream interactions during magnetic resonance IGRT : Skin irradiation outside the treatment field during accelerated partial breast irradiation.

    Science.gov (United States)

    Park, Jong Min; Shin, Kyung Hwan; Kim, Jung-In; Park, So-Yeon; Jeon, Seung Hyuck; Choi, Noorie; Kim, Jin Ho; Wu, Hong-Gyun

    2018-01-01

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm 2 , respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field.

  3. Role of amine structure on carbon dioxide adsorption from ultradilute gas streams such as ambient air.

    Science.gov (United States)

    Didas, Stephanie A; Kulkarni, Ambarish R; Sholl, David S; Jones, Christopher W

    2012-10-01

    A fundamental study on the adsorption properties of primary, secondary, and tertiary amine materials is used to evaluate what amine type(s) are best suited for ultradilute CO(2) capture applications. A series of comparable materials comprised of primary, secondary, or tertiary amines ligated to a mesoporous silica support via a propyl linker are used to systematically assess the role of amine type. Both CO(2) and water adsorption isotherms are presented for these materials in the range relevant to CO(2) capture from ambient air and it is demonstrated that primary amines are the best candidates for CO(2) capture from air. Primary amines possess both the highest amine efficiency for CO(2) adsorption as well as enhanced water affinity compared to other amine types or the bare silica support. The results suggest that the rational design of amine adsorbents for the extraction of CO(2) from ambient air should focus on adsorbents rich in primary amines. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bonding to dentin as a function of air-stream temperatures for solvent evaporation

    Directory of Open Access Journals (Sweden)

    Andréia Aquino Marsiglio

    2012-06-01

    Full Text Available This study evaluated the influence of solvent evaporation conditions of acid-etching adhesives. The medium dentin of thirty extracted human third molars was exposed and bonded to different types of etch-and-rinse adhesives: 1 Scotchbond Multi-Purpose (SBMP ; water-based; 2 Adper Single Bond 2 (SB ; ethanol/water-based, and 3 Prime & Bond 2.1 (PB ; acetone-based. Solvents were evaporated at air-drying temperatures of 21ºC or 38ºC. Composite buildups were incrementally constructed. After storage in water for 24 h at 37ºC, the specimens were prepared for bond strength testing. Data were analyzed by two-way ANOVA and Tukey's test (5%. SBMP performed better when the solvents were evaporated at a higher temperature (p < 0.05. Higher temperatures did not affect the performance of SB or PB. Bond strength at room temperature was material-dependent, and air-drying temperatures affected bonding of the water-based, acid-etching adhesive.

  5. Air and water trade winds, hurricanes, gulf stream, tsunamis and other striking phenomena

    CERN Document Server

    Moreau, René

    2017-01-01

    Air and water are so familiar that we all think we know them. Yet how difficult it remains to predict their behavior, with so many questions butting against the limits of our knowledge. How are cyclones, tornadoes, thunderstorms, tsunamis or floods generated — sometimes causing devastation and death? What will the weather be tomorrow, next week, next summer? This book brings some answers to these questions with a strategy of describing before explaining. Starting by considering air and water in equilibrium (i.e., at rest), it progresses to discuss dynamic phenomena first focusing on large scale structures, such as El Niño or trade winds, then on ever smaller structures, such as low-pressure zones in the atmosphere, clouds, rain, as well as tides and waves. It finishes by describing man-mad e constructions (dams, ports, power plants, etc.) that serve to domesticate our water resources and put them to work for us.  Including over one hundred illustrations and very few equations, most of the�...

  6. Convective heat transfer from rotating disks subjected to streams of air

    CERN Document Server

    aus der Wiesche, Stefan

    2016-01-01

    This Brief describes systematically results of research studies on a series of convective heat transfer phenomena from rotating disks in air crossflow. Phenomena described in this volume were investigated experimentally using an electrically heated disk placed in the test section of a wind tunnel. The authors describe findings in which transitions between different heat transfer regimes can occur in dependency on the involved Reynolds numbers and the angle of incidence, and that these transitions could be related to phenomenological Landau and Landau-de Gennes models. The concise volume closes a substantial gap in the scientific literature with respect to flow and heat transfer in rotating disk systems and provides a comprehensive presentation of new and recent results not previously published in book form.

  7. Tailored synthesis of nanostructures by laser irradiation of a precursor microdroplet stream in open-air

    Science.gov (United States)

    Palanco, S.; Marino, S.; Gabás, M.; Ayala, L.; Ramos-Barrado, J. R.

    2014-12-01

    A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the difficulties associated with pulsed-laser deposition (PLD), the use of a liquid precursor whose composition can be tailored on a droplet-to-droplet basis opens a number of possibilities.A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the

  8. Air-electron stream interactions during magnetic resonance IGRT. Skin irradiation outside the treatment field during accelerated partial breast irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Min [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Advanced Institutes of Convergence Technology, Robotics Research Laboratory for Extreme Environments, Suwon (Korea, Republic of); Shin, Kyung Hwan; Wu, Hong-Gyun [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of); Kim, Jung-in; Park, So-Yeon; Kim, Jin Ho [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Seoul National University Hospital, Biomedical Research Institute, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Jeon, Seung Hyuck [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of); Choi, Noorie [Seoul National University College of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2018-01-15

    To investigate and to prevent irradiation outside the treatment field caused by an electron stream in the air generated by the magnetic field during magnetic resonance image-guided accelerated partial breast irradiation (APBI). In all, 20 patients who received APBI with a magnetic resonance image-guided radiation therapy (MR-IGRT) system were prospectively studied. The prescription dose was 38.5 Gy in 10 fractions of 3.85 Gy and delivered with a tri-cobalt system (the ViewRay system). For each patient, primary plans were delivered for the first five fractions and modified plans with different gantry angles from those of the primary plan (in-treatment plans) were delivered for the remaining five fractions to reduce the skin dose. A 1 cm thick bolus was placed in front of the patient's jaw, ipsilateral shoulder, and arm to shield them from the electron stream. Radiochromic EBT3 films were attached to the front (towards the breast) and back (towards the head) of the bolus during treatment. Correlations between the measured values and the tumor locations, treatment times, and tumor sizes were investigated. For a single fraction delivery, the average areas of the measured isodoses of 14% (0.54 Gy), 12% (0.46 Gy), and 10% (0.39 Gy) at the front of the boluses were as large as 3, 10.4, and 21.4 cm{sup 2}, respectively, whereas no significant dose could be measured at the back of the boluses. Statistically significant but weak correlations were observed between the measured values and the treatment times. During radiotherapy for breast cancer with an MR-IGRT system, the patient must be shielded from electron streams in the air generated by the interaction of the magnetic field with the beams of the three-cobalt treatment unit to avoid unwanted irradiation of the skin outside the treatment field. (orig.) [German] Beim Einsatz eines Magnetresonanztomographie(MRT)-gefuehrten Bestrahlungsgeraets kann durch die Wechselwirkung von Magnetfeld und Strahlenquelle unerwuenscht

  9. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  10. Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina).

    Science.gov (United States)

    Mugni, H; Ronco, A; Bonetto, C

    2011-03-01

    Toxicity to the locally dominant amphipod Hyalella curvispina was assessed in a first-order stream running through a cultivated farm. Cypermethrin, chlorpyrifos, endosulfan and glyphosate were sprayed throughout the studied period. Toxicity was assayed under controlled laboratory conditions with runoff and stream water samples taken from the field under steady state and flood conditions. Ephemeral toxicity pulses were observed as a consequence of farm pesticide applications. After pesticide application, runoff water showed 100% mortality to H. curvispina for 1 month, but no mortality thereafter. Toxicity persistence was shortest in stream water, intermediate in stream sediments and longest in soil samples. Runoff had a more important toxicity effect than the exposure to direct aerial fumigation. The regional environmental features determining fast toxicity dissipation are discussed. Copyright © 2010. Published by Elsevier Inc.

  11. HASIL AIR PENGGUNAAN LAHAN HUTAN DALAM MENYUMBANG ALIRAN SUNGAI Water yield of Forest Land Use contributing in river stream

    Directory of Open Access Journals (Sweden)

    Edy Junaidi

    2016-09-01

    Full Text Available Pemahaman tentang neraca air suatu penggunaan lahan berkaitan dengan hasil air total yang berkontribusi terhadap aliran sungai. Penelitian ini bertujuan mengkaji peranan hidrologi hutan (hutan alam dan hutan tanaman terhadap aliran sungai  ditinjau dari neraca air dengan membandingkan penggunaan lahan hutan dan penggunaan lahan lain. Penelitian yang mengkaji penggunaan lahan hutan dan penggunaan lahan lain (pertanian, pemukiman, kebun campuran dan semak belukar di DAS Cisadane menggunakan model hidrologi Soil and Water Assessment Toll (SWAT dalam mengkaji neraca air penggunaan lahan. Hasil neraca air tahunan untuk penggunaan lahan hutan berupa nilai yang lebih besar untuk evapotranspirasi dan lebih kecil untuk aliran permukaan dibandingkan pengunaan lahan yang lain. Hal ini berpengaruh terhadap kontribusi aliran permukaan lahan hutan pada aliran sungai. Sedangkan nilai perkolasi dan simpanan air tanah berdasarkan perhitungan neraca air yang lebih besar untuk penggunaan lahan hutan. Hal ini juga berpengaruh terhadap kontribusi aliran lateral dan aliran dasar lahan hutan pada aliran sungai. Kata kunci : Neraca air, aliran sungai dan hutan

  12. Seasonal and spatial variations of glyphosate residues in surface waters of El Crespo stream, Buenos Aires province, Argentina.

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Aparicio, Virginia; Menone, Mirta; Costa, Jose Luis

    2017-04-01

    El Crespo stream is located inside a small watershed (52,000 Ha) which is only influenced by farming activities without urban or industrial impact. The watershed can be divided in two areas, the southern area (upstream), mainly composed of intensive crops and the northern area (downstream) used only for extensive livestock. In this sense, "El Crespo" stream in an optimal site for monitoring screening of pesticide residues. The objective of this work was to determine the seasonal and spatial variations of glyphosate (GLY), in surface waters of "El Crespo" stream. We hypothesized that in surface waters of "El Crespo" stream the levels of GLY vary depending of the season and rainfall events. The water sampling was carried out from October to June (2014-2015) in two sites: upstream (US) and downstream (DS), before and after rain events. The water samples were collected by triplicate in 1 L polypropylene bottles and stored at -20°C until analysis. GLY was extracted from unfiltered water samples with a buffer solution (100 mM Na2B4O7•10H2O/100 mM K3PO4, pH=9) and derivatized with 9-fluorenylmethylchloroformate (1 mg/mL in acetonitrile). Afterwards samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The detection limit (LD) was 0.1 μg/L and the quantification limit (QL) was 0.5 μg/L. The rainfall regime was obtained from the database of INTA Balcarce. GLY was detected in 92.3% of the analyzed samples. In the US site, were GLY is regularly applied, the highest GLY concentration was registered in October (2.15 ± 0.16 μg/L); from November to June, the GLY levels decreased from 1.97 ± 0.17 μg/L to rain falls. On the rest of the months, the rainfall events were scarce and the GLY concentrations decreased in both. These results indicated that in the El Crespo stream the GLY residues vary according the applications in the field and the rainfall regime and the DS site is probably a sump of GLY residues applied upstream in

  13. Streams with Strahler Stream Order

    Data.gov (United States)

    Minnesota Department of Natural Resources — Stream segments with Strahler stream order values assigned. As of 01/08/08 the linework is from the DNR24K stream coverages and will not match the updated...

  14. The Application of a Jet Fan for the Control of Air and Methane Streams Mixing at the Excavations Cross - The Results of Numerical Simulation

    Science.gov (United States)

    Wrona, Paweł; Różański, Zenon; Pach, Grzegorz; Domagała, Lech

    2016-09-01

    The paper presents the results of numerical simulations into the distribution of methane concentration at the intersection of two excavations with a fan (turned on) giving the air stream to the area of the crossing. Assumed case represents emergency situation related to the unexpected flow of methane from an excavation and its mixing with fresh air. It is possible when sudden gas outburst takes place, methane leaks from methane drainage system or gas leaks out the pipelines of underground coal gasification devices. Three options were considered - corresponding to three different speeds of the jet fan. They represent three stages of fan work. First - low air speed is forced by a pneumatic fan, when electricity is cut off after high methane concentration detection. Medium speed can be forced by pneumatic-electric device when methane concentration allows to turn on the electricity. Third, the highest speed is for electric fans. Simulations were carried out in the Fire Dynamics Simulator (FDS) belongs to the group of programs Computational Fluid Dynamics (CFD). The governing equations are being solved in a numerical way. It was shown that proposed solution allows partial dilution of methane in every variant of speed what should allow escape of the miners from hazardous area.

  15. Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream

    Directory of Open Access Journals (Sweden)

    R. Mazón-Hernández

    2013-01-01

    Full Text Available The main priority in photovoltaic (PV panels is the production of electricity. The transformation of solar energy into electricity depends on the operating temperature in such a way that the performance increases with the decreasing temperatures. In the existing literature, different cooling techniques can be found. The purpose of most of them is to use air or water as thermal energy carriers. This work is focused on the use of air as a working fluid whose movement is either induced by natural convection or forced by means of a fan. The aim of this study is to characterise the electrical behaviour of the solar panels in order to improve the design of photovoltaic installations placed in roof applications ensuring low operating temperatures which will correct and reverse the effects produced on efficiency by high temperature. To do this, a test installation has been constructed at the Universidad Politécnica de Cartagena in Spain. In this paper, the results of the tests carried out on two identical solar panels are included. One of them has been modified and mounted on different channels through which air flows. The different studies conducted show the effects of the air channel cross-section, the air velocity, and the panel temperature on the electrical parameters of the solar panels, such as the voltage, current, power, and performance. The results conclude that the air space between the photovoltaic panels and a steel roof must be high enough to allow the panel to be cooled and consequently to achieve higher efficiency.

  16. Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells.

    Science.gov (United States)

    Torretta, Vincenzo; Collivignarelli, Maria Cristina; Raboni, Massimo; Viotti, Paolo

    2015-01-01

    The paper presents the results of a two-stage pilot plant for the removal of benzene, toluene, ethylbenzene and xylene (BTEX) from a waste air stream of a refinery wastewater treatment plant (WWTP). The pilot plant consisted of a water scrubber followed by a biotrickling filter (BTF). The exhausted air was drawn from the main works of the WWTP in order to prevent the free migration to the atmosphere of these volatile hazardous contaminants. Concentrations were detected at average values of 12.4 mg Nm(-3) for benzene, 11.1 mg Nm(-3) for toluene, 2.7 mg Nm(-3) for ethylbenzene and 9.5 mg Nm(-3) for xylene, with considerable fluctuation mainly for benzene and toluene (peak concentrations of 56.8 and 55.0 mg Nm(-3), respectively). The two treatment stages proved to play an effective complementary task: the water scrubber demonstrated the ability to remove the concentration peaks, whereas the BTF was effective as a polishing stage. The overall average removal efficiency achieved was 94.8% while the scrubber and BTF elimination capacity were 37.8 and 15.6 g BTEX d(-1) m(-3), respectively. This result has led to outlet average concentrations of 1.02, 0.25, 0.32 and 0.26 mg Nm(-3) for benzene, toluene, ethylbenzene and xylene, respectively. The paper also compares these final concentrations with toxic and odour threshold concentrations.

  17. Stream Crossings

    Data.gov (United States)

    Vermont Center for Geographic Information — Physical measurements and attributes of stream crossing structures and adjacent stream reaches which are used to provide a relative rating of aquatic organism...

  18. Akamai Streaming

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Akamai offers world-class streaming media services that enable Internet content providers and enterprises to succeed in today's Web-centric marketplace. They deliver live event Webcasts (complete with video production, encoding, and signal acquisition services), streaming media on demand, 24/7 Webcasts and a variety of streaming application services based upon their EdgeAdvantage.

  19. Evaluation of the impact of adjusting the angle of the axis of a wind turbine rotor relative to the flow of air stream on operating parameters of a wind turbine model

    Directory of Open Access Journals (Sweden)

    Gumuła Stanisław

    2017-01-01

    Full Text Available The aim of this study was to determine the effect of regulation of an axis of a wind turbine rotor to the direction of wind on the volume of energy produced by wind turbines. A role of an optimal setting of the blades of the wind turbine rotor was specified, as well. According to the measurements, changes in the tilt angle of the axis of the wind turbine rotor in relation to the air stream flow direction cause changes in the use of wind energy. The publication explores the effects of the operating conditions of wind turbines on the possibility of using wind energy. A range of factors affect the operation of the wind turbine, and thus the volume of energy produced by the plant. The impact of design parameters of wind power plant, climatic factors or associated with the location seismic challenges can be shown from among them. One of the parameters has proved to be change settings of the rotor axis in relation to direction of flow of the air stream. Studies have shown that the accurate determination of the optimum angle of the axis of the rotor with respect to flow of air stream strongly influences the characteristics of the wind turbine.

  20. Stream systems.

    Science.gov (United States)

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  1. Stream Evaluation

    Data.gov (United States)

    Kansas Data Access and Support Center — Digital representation of the map accompanying the "Kansas stream and river fishery resource evaluation" (R.E. Moss and K. Brunson, 1981.U.S. Fish and Wildlife...

  2. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  3. Comment on “Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: Release mechanisms, partitioning and persistence in air, water, soil and sediments”

    Energy Technology Data Exchange (ETDEWEB)

    Buser, Andreas M., E-mail: andreas.buser@alumni.ethz.ch; Bogdal, Christian; Scheringer, Martin

    2015-02-01

    The review article “Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: Release mechanisms, partitioning and persistence in air, water, soil and sediments” by Surita and Tansel covers a relevant topic, but there are several serious issues with this paper. The inappropriate handling of data gathered from various sources has resulted in a flawed dataset. In addition, the authors performed several erroneous or meaningless calculations with the data. Their dataset leads to incorrect and misleading interpretations and should not be used.

  4. Dieta y ecomorfología de la ictiofauna del arroyo Manantiales, provincia de Buenos Aires, Argentina Diet and ecomorphology of the ichthyofauna of Manantiales stream, Buenos Aires province, Argentina

    Directory of Open Access Journals (Sweden)

    Eduardo M Fernández

    2012-06-01

    Full Text Available Se estudio la correlación entre dieta y morfología de 19 especies de peces del arroyo Manantiales, cabecera del río samborombón, provincia de Buenos Aires, Argentina. Las especies fueron clasificadas en cuatro grupos tróficos: carnívoros, omnívoros, insectívoros y detritívoros- alguívoros. Se analizaron 12 atributos ecomor-fológicos relacionados con el uso del hábitat y la alimentación con el fin de distinguir patrones ecomorfológicos de las especies y de las especies con el alimento consumido. Se utilizaron técnicas de análisis univariado y multivariado para determinar agrupamientos de especies utilizando los atributos ecomorfológicos y la dieta como descriptores. Los carnívoros se relacionaron con un buen desarrollo de cabeza, boca, aletas caudal y pectoral; y en general con cuerpos comprimidos. Los omnívoros constituyeron un grupo más heterogéneo. Las formas nectónicas de este grupo se relacionaron con un cuerpo comprimido, ojos laterales y tamaño relativamente pequeño de las aletas pectorales y aleta caudal; las formas nectobentónicas se relacionaron con boca pequeña, cuerpo fusiforme y pedúnculo caudal largo; y las formas bentónicas, con cuerpo deprimido, ojos de posición dorsal, boca ínfera y tubo digestivo largo. La única especie nectónica consumidora de insectos sobre la superficie se caracterizó por un cuerpo fuertemente comprimido, ojos laterales, aleta caudal grande y boca grande orientada hacia arriba. Los detritívoros-alguívoros presentaron un tubo digestivo largo, boca ínfera o terminal y aletas caudales largas. La relación significativa dieta-ecomorfología permite sostener que peces de dieta similar convergen hacia atributos ecomorfológicos comunes.The present study addresses the correlation between diet and morphology of 19 fish species that inhabit the Manantiales stream at the headwaters of the samborombón river, Buenos Aires province, Argentina. The species were classified into four

  5. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...

  6. Separation of special toxic substances from the air and incinerator of offgas streams, especially of radioactive iodine and polycyclic carbon hydrogens

    International Nuclear Information System (INIS)

    Nikoopour-Deylami, A.H.

    1981-11-01

    In the first part of the thesis, the adsorption of radioiodine and methyliodide on different kinds of active charcoal was studied. It was observed that untreated charcoal retains radioiodine sufficiently, while organic compounds as methyliodid could be adsorbed after pretreating with triethylenediamine even at high air velocities. In the presence of moisture in the air the efficiency dropped down to 30% of the original value. In the second part of the work an apparatus using sandfilter columns for the separation of toxic substances and thermochrome column for marking the temperature intervals was developed and posted at different places in athe filtering system of an incineration plant. After extraction of the polycyclic aromates with benzene from the column and chemical separation, the neutral fraction was split by a silicagel column and 14 toxic aromates identified by gas chromatography. It could be proven that 97 +- 2% of the polycyclic aromates were retained by the existing ceramic filter systems. (Author)

  7. A Statistical Method to Predict Flow Permanence in Dryland Streams from Time Series of Stream Temperature

    Directory of Open Access Journals (Sweden)

    Ivan Arismendi

    2017-12-01

    Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  8. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    Science.gov (United States)

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  9. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.

    Science.gov (United States)

    Surita, Sharon C; Tansel, Berrin

    2014-01-15

    Siloxane use in consumer products (i.e., fabrics, paper, concrete, wood, adhesive surfaces) has significantly increased in recent years due to their excellent water repelling and antimicrobial characteristics. The objectives of this study were to evaluate the release mechanisms of two siloxane compounds, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), which have been detected both at landfills and wastewater treatment plants, estimate persistence times in different media, and project release quantities over time in relation to their increasing use. Analyses were conducted based on fate and transport mechanisms after siloxanes enter waste streams. Due to their high volatility, the majority of D4 and D5 end up in the biogas during decomposition. D5 is about ten times more likely to partition into the solid phase (i.e., soil, biosolids). D5 concentrations in the wastewater influent and biogas are about 16 times and 18 times higher respectively, in comparison to the detected levels of D4. © 2013 Elsevier B.V. All rights reserved.

  10. Chironomid-based reconstructions of summer air temperature from lake deposits in Lyndon Stream, New Zealand spanning the MIS 3/2 transition

    Science.gov (United States)

    Woodward, C. A.; Shulmeister, J.

    2007-01-01

    We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 °C cooler, with a maximum inferred cooling of 3.7 °C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000-18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (<20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (<5 °C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.

  11. Identify the dominant variables to predict stream water temperature

    Science.gov (United States)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  12. Process and apparatus for decontaminating air

    International Nuclear Information System (INIS)

    Reynolds, W.D.

    1993-01-01

    An apparatus for irradiating a contaminated air stream emanating from contaminated sources which contain mixtures of one or more volatile toxic and hazardous organic solvents or petroleum product vapors with ultraviolet wave energy below 200 nm is described comprising: a first means for passing the contaminated air stream via a tube into an enclosed empty air flow duct to allow free flow of said contaminated air stream; a second means for introducing a secondary fresh air stream into an inlet of said first means to dilute and maintain the contaminated air stream at a predetermined concentration level; a means for measuring a flow rate of said contaminated air stream; said air duct containing at least a first and second residence chambers separated by a wall divider; said divider containing at least one opening in which is mounted at least one centrally located ultraviolet wave energy source extending into said air stream to allow said contaminated air stream to pass around and in close contact with said wave energy source, wherein said contaminated air stream is irradiated by said wave energy source; an analyzer means for conducting on-line real time analysis of said diluted contaminated air stream in said first residence chamber, said analyzer means being capable of analyzing any residual contaminated mixtures in an effluent air stream from said second residence chamber; whereby said ultraviolet wave energy source functions to generate oxygen atom free radicals, other free radicals, ions, and ozone to react with the contaminated air strewn to produce unwanted acid gases, and wherein said effluent air stream containing the unwanted acid gases, being passed from said second residence chamber, can be disposed of in any manner known to the art

  13. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  14. StreamCat

    Data.gov (United States)

    U.S. Environmental Protection Agency — The StreamCat Dataset provides summaries of natural and anthropogenic landscape features for ~2.65 million streams, and their associated catchments, within the...

  15. Prioritized Contact Transport Stream

    Science.gov (United States)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  16. Productivity of Stream Definitions

    NARCIS (Netherlands)

    Endrullis, Jörg; Grabmayer, Clemens; Hendriks, Dimitri; Isihara, Ariya; Klop, Jan

    2007-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continuously in such a way that a uniquely determined stream is obtained as the limit. Whereas productivity is undecidable

  17. Productivity of stream definitions

    NARCIS (Netherlands)

    Endrullis, J.; Grabmayer, C.A.; Hendriks, D.; Isihara, A.; Klop, J.W.

    2008-01-01

    We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions. A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely determined stream in constructor normal form is obtained as the limit. Whereas

  18. Hydraulic Properties related to Stream Reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E. C.; Wallace, J. R. [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  19. Hydraulic properties related to stream reaeration

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoglou, E C; Wallace, J R [School of Civil Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    1970-09-15

    The paper reports the results of recent and current field tracer experiments designed to investigate the relationships between the reaeration capacity of a flowing stream and the stream's hydraulic properties. The purpose of the studies is to develop models for the accurate prediction of stream reaeration capacity on the basis of observation of the associated hydraulic properties. The ability of a flowing stream to absorb oxygen from the overlying atmosphere is the principal process by which the stream is able to recover its dissolved oxygen resources once they have been depleted by bacterial degradation of organic wastes. Accurate knowledge of stream reaeration capacity is therefore a necessity in determining the required degree of waste treatment, and the associated costs, in any specific case. Oxygen absorption can only occur at the air-water interface, hence reaeration is a direct function of the rate of surface water replacement due to turbulent mixing. The latter is not directly observable, and so reaeration capacity has not been observable before the quite recent development of a gaseous radiotracer technique for field measurement of reaeration. This procedure involves the simultaneous use of three tracers, namely a fluorescent dye for time of flow, tritiated water for accurate dispersion measurement, and dissolved krypton-85 for measurement of gas transfer. Field results obtained by this technique are highly reproducible. Field tracer studies of the reaeration capacities of three medium-sized streams have been conducted over a total of about fifty river miles. Associated hydraulic properties such as stream flow, cross-sectional area, depth, velocity, hydraulic gradient and dispersion have also been measured. Features such as waterfalls, rapids and pools are included, and more than eighty observations of the reaeration capacities of individual stream reaches have been made. The paper reports the observed relationships between stream reaeration capacity and

  20. HUTAN DAN PERILAKU ALIRAN AIR: KLARIFIKASI KEBERADAAN HUTAN DAN PENGARUHNYA TERHADAP BANJIR DAN KEKURANGAN AIR (Forest and Stream Flow Behaviour: Clarification on Forest Relation With Flood and Drought Issues

    Directory of Open Access Journals (Sweden)

    Chay Asdak

    2002-03-01

    Full Text Available ABSTRAK Banjir bandang di wilayah hilir Daerah Aliran Sungai (DAS seringkali dihubungkan dengan penebangan hutan di wilayah hulu DAS. Hal ini terkait dengan dua hal: (1 perhatian masyarakat terhadap tingginya laju degradasi sumberdaya hutan di banyak tempat di Indonesia, dan (2 adanya kesenjangan pemahaman tentang keterkaitan antara vegetasi, air, dan tanah. kedua hal ini mendorong terbentuknya pemahaman bersama (masyarakat luas termasuk akademisi yang cenderung bersifat simplistik bahwa banjir bandang tersebut terjadi karena mengingkatnya penebangan hutan. Apakah pemahaman tersebut di atas didukung oleh bukti-bukti ilmiah? Atau karena didorong oleh emosi bahwa kerusakan hutan makin meningkat. Tulisan ini mencoba untuk menunjukkan hasil penelitian bahwa, pada banyak kasus, banjir bandang lebih disebabkan oleh tingginya intensitas curah hujan.   ABSTRACT Big floods found in downstream areas that occurred in the wettest months of rainy season are often said to be associated with forest cutting in the upper parts of a watershed. This is partly caused by an increasing strong concerned from many people on high rate of forest destruction in many parts of Indonesia. Partly by false perception on forest-water-soil interaction. In the mean time, there is a common perception among the people including some scientific communities that large floods with severe economic impact are closely linked with the increasing forest cutting. Does this allegation have scientific justification? Or is it just a public emotion driven by the fact that many forest stands are becoming degraded overtime. This article is trying to bring up some scientific findings that, in many cases, big floods were often associated with extreme rainfall. Some illustrations used in this article are mainly from research findings in the temperate climates, with small protions from tropical regions.

  1. Stream Response to an Extreme Defoliation Event

    Science.gov (United States)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net

  2. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  3. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  4. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Air conditioning system

    Science.gov (United States)

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  6. Inventory of miscellaneous streams

    International Nuclear Information System (INIS)

    Lueck, K.J.

    1995-09-01

    On December 23, 1991, the US Department of Energy, Richland Operations Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order. The Consent Order lists the regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code. The RL provided the US Congress a Plan and Schedule to discontinue disposal of contaminated liquid effluent into the soil column on the Hanford Site. The plan and schedule document contained a strategy for the implementation of alternative treatment and disposal systems. This strategy included prioritizing the streams into two phases. The Phase 1 streams were considered to be higher priority than the Phase 2 streams. The actions recommended for the Phase 1 and 2 streams in the two reports were incorporated in the Hanford Federal Facility Agreement and Consent Order. Miscellaneous Streams are those liquid effluents streams identified within the Consent Order that are discharged to the ground but are not categorized as Phase 1 or Phase 2 Streams. This document consists of an inventory of the liquid effluent streams being discharged into the Hanford soil column

  7. Hydrography - Streams and Shorelines

    Data.gov (United States)

    California Natural Resource Agency — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  8. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Science.gov (United States)

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  9. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Science.gov (United States)

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  10. LHCb trigger streams optimization

    Science.gov (United States)

    Derkach, D.; Kazeev, N.; Neychev, R.; Panin, A.; Trofimov, I.; Ustyuzhanin, A.; Vesterinen, M.

    2017-10-01

    The LHCb experiment stores around 1011 collision events per year. A typical physics analysis deals with a final sample of up to 107 events. Event preselection algorithms (lines) are used for data reduction. Since the data are stored in a format that requires sequential access, the lines are grouped into several output file streams, in order to increase the efficiency of user analysis jobs that read these data. The scheme efficiency heavily depends on the stream composition. By putting similar lines together and balancing the stream sizes it is possible to reduce the overhead. We present a method for finding an optimal stream composition. The method is applied to a part of the LHCb data (Turbo stream) on the stage where it is prepared for user physics analysis. This results in an expected improvement of 15% in the speed of user analysis jobs, and will be applied on data to be recorded in 2017.

  11. Asteroid/meteorite streams

    Science.gov (United States)

    Drummond, J.

    The independent discovery of the same three streams (named alpha, beta, and gamma) among 139 Earth approaching asteroids and among 89 meteorite producing fireballs presents the possibility of matching specific meteorites to specific asteroids, or at least to asteroids in the same stream and, therefore, presumably of the same composition. Although perhaps of limited practical value, the three meteorites with known orbits are all ordinary chondrites. To identify, in general, the taxonomic type of the parent asteroid, however, would be of great scientific interest since these most abundant meteorite types cannot be unambiguously spectrally matched to an asteroid type. The H5 Pribram meteorite and asteroid 4486 (unclassified) are not part of a stream, but travel in fairly similar orbits. The LL5 Innisfree meteorite is orbitally similar to asteroid 1989DA (unclassified), and both are members of a fourth stream (delta) defined by five meteorite-dropping fireballs and this one asteroid. The H5 Lost City meteorite is orbitally similar to 1980AA (S type), which is a member of stream gamma defined by four asteroids and four fireballs. Another asteroid in this stream is classified as an S type, another is QU, and the fourth is unclassified. This stream suggests that ordinary chondrites should be associated with S (and/or Q) asteroids. Two of the known four V type asteroids belong to another stream, beta, defined by five asteroids and four meteorite-dropping (but unrecovered) fireballs, making it the most probable source of the eucrites. The final stream, alpha, defined by five asteroids and three fireballs is of unknown composition since no meteorites have been recovered and only one asteroid has an ambiguous classification of QRS. If this stream, or any other as yet undiscovered ones, were found to be composed of a more practical material (e.g., water or metalrich), then recovery of the associated meteorites would provide an opportunity for in-hand analysis of a potential

  12. Percent Forest Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  13. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  14. Base flow-driven shifts in tropical stream temperature regimes across a mean annual rainfall gradient

    Science.gov (United States)

    Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley

    2017-01-01

    Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...

  15. Wadeable Streams Assessment Data

    Science.gov (United States)

    The Wadeable Streams Assessment (WSA) is a first-ever statistically-valid survey of the biological condition of small streams throughout the U.S. The U.S. Environmental Protection Agency (EPA) worked with the states to conduct the assessment in 2004-2005. Data for each parameter sampled in the Wadeable Streams Assessment (WSA) are available for downloading in a series of files as comma separated values (*.csv). Each *.csv data file has a companion text file (*.txt) that lists a dataset label and individual descriptions for each variable. Users should view the *.txt files first to help guide their understanding and use of the data.

  16. Future Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into...

  17. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  18. Stochastic ice stream dynamics.

    Science.gov (United States)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  19. Roads Near Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — Roads are a source of auto related pollutants (e.g. gasoline, oil and other engine fluids). When roads are near streams, rain can wash these pollutants directly into...

  20. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  1. DNR 24K Streams

    Data.gov (United States)

    Minnesota Department of Natural Resources — 1:24,000 scale streams captured from USGS seven and one-half minute quadrangle maps, with perennial vs. intermittent classification, and connectivity through lakes,...

  2. Trout Stream Special Regulations

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer shows Minnesota trout streams that have a special regulation as described in the 2006 Minnesota Fishing Regulations. Road crossings were determined using...

  3. Scientific stream pollution analysis

    National Research Council Canada - National Science Library

    Nemerow, Nelson Leonard

    1974-01-01

    A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...

  4. Collaborative Media Streaming

    OpenAIRE

    Kahmann, Verena

    2008-01-01

    Mit Hilfe der IP-Technologie erbrachte Multimedia-Dienste wie IPTV oder Video-on-Demand sind zur Zeit ein gefragtes Thema. Technisch werden solche Dienste unter dem Begriff "Streaming" eingeordnet. Ein Server sendet Mediendaten kontinuierlich an Empfänger, welche die Daten sofort weiterverarbeiten und anzeigen. Über einen Rückkanal hat der Kunde die Möglichkeit der Einflussnahme auf die Wiedergabe. Eine Weiterentwicklung dieser Streaming-Dienste ist die Möglichkeit, gemeinsam mit anderen dens...

  5. Streaming Pool: reuse, combine and create reactive streams with pleasure

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    When connecting together heterogeneous and complex systems, it is not easy to exchange data between components. Streams of data are successfully used in industry in order to overcome this problem, especially in the case of "live" data. Streams are a specialization of the Observer design pattern and they provide asynchronous and non-blocking data flow. The ongoing effort of the ReactiveX initiative is one example that demonstrates how demanding this technology is even for big companies. Bridging the discrepancies of different technologies with common interfaces is already done by the Reactive Streams initiative and, in the JVM world, via reactive-streams-jvm interfaces. Streaming Pool is a framework for providing and discovering reactive streams. Through the mechanism of dependency injection provided by the Spring Framework, Streaming Pool provides a so called Discovery Service. This object can discover and chain streams of data that are technologically agnostic, through the use of Stream IDs. The stream to ...

  6. Streams and their future inhabitants

    DEFF Research Database (Denmark)

    Sand-Jensen, K.; Friberg, Nikolai

    2006-01-01

    In this fi nal chapter we look ahead and address four questions: How do we improve stream management? What are the likely developments in the biological quality of streams? In which areas is knowledge on stream ecology insuffi cient? What can streams offer children of today and adults of tomorrow?...

  7. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  8. Solution and scope of utilization of the cross-stream cooling towers

    International Nuclear Information System (INIS)

    Zembaty, W.

    1995-01-01

    Technical solutions and operational properties of the cross-stream cooling towers as well as the scope of their utilization are presented. The differences within thermodynamic calculations of the cross-stream and counter-stream cooling towers due to the direction of the air flow as well as water flow in sprinkling system are discussed. The assessment of the capital and operational costs of the cross-stream cooling towers is given and compared with the cost of counter-stream cooling towers (utilizing as an example a calculation conducted for the cooling towers of the 720, 1100 and 1400 MW units). (author). 6 refs, 9 figs

  9. The Rabbit Stream Cipher

    DEFF Research Database (Denmark)

    Boesgaard, Martin; Vesterager, Mette; Zenner, Erik

    2008-01-01

    The stream cipher Rabbit was first presented at FSE 2003, and no attacks against it have been published until now. With a measured encryption/decryption speed of 3.7 clock cycles per byte on a Pentium III processor, Rabbit does also provide very high performance. This paper gives a concise...... description of the Rabbit design and some of the cryptanalytic results available....

  10. Music Streaming in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Rex

    This report analyses how a ’per user’ settlement model differs from the ‘pro rata’ model currently used. The analysis is based on data for all streams by WiMP users in Denmark during August 2013. The analysis has been conducted in collaboration with Christian Schlelein from Koda on the basis of d...

  11. Academic streaming in Europe

    DEFF Research Database (Denmark)

    Falaschi, Alessandro; Mønster, Dan; Doležal, Ivan

    2004-01-01

    The TF-NETCAST task force was active from March 2003 to March 2004, and during this time the mem- bers worked on various aspects of streaming media related to the ultimate goal of setting up common services and infrastructures to enable netcasting of high quality content to the academic community...

  12. Stream Width Dynamics in a Small Headwater Catchment

    Science.gov (United States)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  13. innovation in radioactive waste water-stream management

    International Nuclear Information System (INIS)

    Shaaban, D.A.E.F.

    2010-01-01

    treatment of radioactive waste dtreams is receiving considereble attention in most countries. the present work is for the radioactive wastewater stream management, by volume reduction by a mutual heating and humidificaction of a compressed dry air introduced through the wastewater. in the present work, a mathematical model describing the volume reduction by at the optimum operating condition is determined. a set of coupled first order differential equations, obtained through the mass and energy conservations laws, are used to obtain the humidity ratio, water diffused to the air stream, water temperature, and humid air stream temperature distributions through the bubbling column. these coupled differential equations are simulataneously solved numerically by the developed computer program using fourth order rung-kutta method. the results obtained, according to the present mathematical model, revealed that the air bubble state variables such as mass transfer coefficient (K G ) and interfacial area (a) have a strong effect on the process. therefore, the behavior of the air bubble state variables with coulmn height can be predicted and optimized. moreover, the design curves of the volumetric reduction of the wastewater streams are obtained and assessed at the different operating conditions. an experimental setup was constructed to verify the suggested model. comperhensive comparison between suggested model results, recent experimental measurements and the results of previous work was carried out

  14. Flow of a stream through a reservoir

    International Nuclear Information System (INIS)

    Sauerwein, K.

    1967-01-01

    If a reservoir is fed from a single source, which may not always be pure, the extent to which the inflowing stream mixes with the water in the reservoir is important for the quality of the water supplied by the reservoir. This question was investigated at the Lingese Reservoir, containing between one and two million cubic metres of water, in the Bergisches Land (North Rhine-Westphalia). The investigation was carried out at four different seasons so that the varying effects of the stream-water temperatures could be studied in relation to the temperature of the reservoir water. The stream was radioactively labelled at the point of inflow into the reservoir, and its flow through the reservoir was measured in length and depth from boats, by means of 1-m-long Geiger counters. In two cases the radioactivity of the outflowing water was also measured at fixed points. A considerable variety of intermixing phenomena were observed; these were mainly of limnological interest. The results of four experiments corresponding to the four different seasons are described in detail. They were as follows: (1) The mid-October experiment where the stream, with a temperature of 8.0 deg. C, was a good 5 deg. C colder than the water of the reservoir, whose temperature was almost uniform, ranging from 13.2 deg. C at the bed to 13.6 deg. C at the surface. (2) The spring experiment (second half of March), when the stream temperature was only 0.3 deg. C below that of the reservoir surface (7.8 deg. C), while the temperature of the bed was 5.8 deg. C. (3) The winter experiment (early December) where at first the temperature of the stream was approximately the same as that of the surface so that, once again, the stream at first flowed 1/2 - 1 m below the surface. During the almost wind-free night a sudden fall in temperature occurred, and the air temperature dropped from 0 deg. C to -12 deg. C. (4) The summer experiment (end of July to mid-August) when the stream was nearly 1 deg. C colder than

  15. Analysis of hydraulic characteristics for stream diversion in small stream

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jin; Jun, Kye-Won [Chungbuk National University, Cheongju(Korea)

    2001-10-31

    This study is the analysis of hydraulic characteristics for stream diversion reach by numerical model test. Through it we can provide the basis data in flood, and in grasping stream flow characteristics. Analysis of hydraulic characteristics in Seoknam stream were implemented by using computer model HEC-RAS(one-dimensional model) and RMA2(two-dimensional finite element model). As a result we became to know that RMA2 to simulate left, main channel, right in stream is more effective method in analysing flow in channel bends, steep slope, complex bed form effect stream flow characteristics, than HEC-RAS. (author). 13 refs., 3 tabs., 5 figs.

  16. 21 CFR 874.1800 - Air or water caloric stimulator.

    Science.gov (United States)

    2010-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...

  17. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  18. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  19. The LHCb Turbo stream

    Energy Technology Data Exchange (ETDEWEB)

    Puig, A., E-mail: albert.puig@cern.ch

    2016-07-11

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 with a selection of physics analyses. It is anticipated that the turbo stream will be adopted by an increasing number of analyses during the remainder of LHC Run II (2015–2018) and ultimately in Run III (starting in 2020) with the upgraded LHCb detector.

  20. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinver...

  1. Stream processing health card application.

    Science.gov (United States)

    Polat, Seda; Gündem, Taflan Imre

    2012-10-01

    In this paper, we propose a data stream management system embedded to a smart card for handling and storing user specific summaries of streaming data coming from medical sensor measurements and/or other medical measurements. The data stream management system that we propose for a health card can handle the stream data rates of commonly known medical devices and sensors. It incorporates a type of context awareness feature that acts according to user specific information. The proposed system is cheap and provides security for private data by enhancing the capabilities of smart health cards. The stream data management system is tested on a real smart card using both synthetic and real data.

  2. Sour streams in appalachia: mapping nature’s buffer against sulfur deposition

    Science.gov (United States)

    Natasha Vizcarra; Nicholas Povak; Paul Hessburg; Keith Reynolds

    2015-01-01

    Even while emissions are in decline, sulfur released into the air primarily by coal- and oil-burning power plants continues to acidify streams in the eastern United States, stressing vegetation and harming aquatic life. Watersheds rich in base cations—nutrients that attract and bind acidic molecules—naturally buffer streams against acidification. These watersheds can...

  3. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  4. STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Geoffrey [Indiana Univ., Bloomington, IN (United States); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Ramakrishnan, Lavanya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-10-01

    The Department of Energy (DOE) Office of Science (SC) facilities including accelerators, light sources and neutron sources and sensors that study, the environment, and the atmosphere, are producing streaming data that needs to be analyzed for next-generation scientific discoveries. There has been an explosion of new research and technologies for stream analytics arising from the academic and private sectors. However, there has been no corresponding effort in either documenting the critical research opportunities or building a community that can create and foster productive collaborations. The two-part workshop series, STREAM: Streaming Requirements, Experience, Applications and Middleware Workshop (STREAM2015 and STREAM2016), were conducted to bring the community together and identify gaps and future efforts needed by both NSF and DOE. This report describes the discussions, outcomes and conclusions from STREAM2016: Streaming Requirements, Experience, Applications and Middleware Workshop, the second of these workshops held on March 22-23, 2016 in Tysons, VA. STREAM2016 focused on the Department of Energy (DOE) applications, computational and experimental facilities, as well software systems. Thus, the role of “streaming and steering” as a critical mode of connecting the experimental and computing facilities was pervasive through the workshop. Given the overlap in interests and challenges with industry, the workshop had significant presence from several innovative companies and major contributors. The requirements that drive the proposed research directions, identified in this report, show an important opportunity for building competitive research and development program around streaming data. These findings and recommendations are consistent with vision outlined in NRC Frontiers of Data and National Strategic Computing Initiative (NCSI) [1, 2]. The discussions from the workshop are captured as topic areas covered in this report's sections. The report

  5. Galaxies with jet streams

    International Nuclear Information System (INIS)

    Breuer, R.

    1981-01-01

    Describes recent research work on supersonic gas flow. Notable examples have been observed in cosmic radio sources, where jet streams of galactic dimensions sometimes occur, apparently as the result of interaction between neighbouring galaxies. The current theory of jet behaviour has been convincingly demonstrated using computer simulation. The surprisingly long-term stability is related to the supersonic velocity, and is analagous to the way in which an Appollo spacecraft re-entering the atmosphere supersonically is protected by the gas from the burning shield. (G.F.F.)

  6. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  7. The metaphors we stream by: Making sense of music streaming

    OpenAIRE

    Hagen, Anja Nylund

    2016-01-01

    In Norway music-streaming services have become mainstream in everyday music listening. This paper examines how 12 heavy streaming users make sense of their experiences with Spotify and WiMP Music (now Tidal). The analysis relies on a mixed-method qualitative study, combining music-diary self-reports, online observation of streaming accounts, Facebook and last.fm scrobble-logs, and in-depth interviews. By drawing on existing metaphors of Internet experiences we demonstrate that music-streaming...

  8. Climate and land cover effects on the temperature of Puget Sound streams: Assessment of Climate and Land Use Impacts on Stream Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qian [Department of Geography, University of California, Los Angeles, Los Angeles CA USA; Sun, Ning [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Nijssen, Bart [Civil and Environmental Engineering, University of Washington, Seattle WA USA; Lettenmaier, Dennis P. [Department of Geography, University of California, Los Angeles, Los Angeles CA USA

    2016-03-06

    We apply an integrated hydrology-stream temperature modeling system, DHSVM-RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt-dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub-basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization

  9. Tracking Gendered Streams

    Directory of Open Access Journals (Sweden)

    Maria Eriksson

    2017-10-01

    Full Text Available One of the most prominent features of digital music services is the provision of personalized music recommendations that come about through the profiling of users and audiences. Based on a range of "bot experiments," this article investigates if, and how, gendered patterns in music recommendations are provided by the streaming service Spotify. While our experiments did not give any strong indications that Spotify assigns different taste profiles to male and female users, the study showed that male artists were highly overrepresented in Spotify's music recommendations; an issue which we argue prompts users to cite hegemonic masculine norms within the music industries. Although the results should be approached as historically and contextually contingent, we argue that they point to how gender and gendered tastes may be constituted through the interplay between users and algorithmic knowledge-making processes, and how digital content delivery may maintain and challenge gender relations and gendered power differentials within the music industries. Seen through the lens of critical research on software, music and gender performativity, the experiments thus provide insights into how gender is shaped and attributed meaning as it materializes in contemporary music streams.

  10. The LHCb Turbo stream

    CERN Document Server

    AUTHOR|(CDS)2070171

    2016-01-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the Turbo stream the trigger will write out a compact summary of physics objects containing all information necessary for analyses. This will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during 2015 wi...

  11. Stream Lifetimes Against Planetary Encounters

    Science.gov (United States)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  12. Estabilidad estructural y P en fracciones de agregados en la cuenca del Aº El Divisorio (Coronel Pringles, BA Structural stability and phosphorus in soil aggregate fractions in El Divisorio stream catchment area (Coronel Pringles, Buenos Aires province

    Directory of Open Access Journals (Sweden)

    Josefina Cacchiarelli

    2008-07-01

    Full Text Available En los últimos años la calidad del agua en el embalse Paso de las Piedras se ha visto afectada por la eutrofización, perjudicando la provisión para la población de Bahía Blanca y alrededores. Se ha señalado a la actividad agropecuaria como originaria del aumento de la concentración de fósforo (P en el arroyo El Divisorio, que desemboca en el embalse. El objetivo de este estudio fue cuantificar las relaciones entre algunas propiedades relacionadas con el potencial de contaminación de estos suelos: la estabilidad estructural, la distribución de tamaños de agregados y las concentraciones de las formas de P en los diferentes agregados. Se seleccionaron 16 transectas en lotes de productores a lo largo del curso del arroyo. Se tomaron muestras de suelo (0-5 cm en las posiciones loma (L, media loma (M y bajo (B. Se determinaron los diámetros medios ponderado en seco (DMPs y en húmedo (DMPh, calculándose el cambio en el diámetro medio ponderado (CDMP. Se determinaron los contenidos de P orgánico (Po e inorgánico (Pi en cada una de las posiciones y tamaños de agregados. Si bien los suelos de la cuenca mostraron buenos valores de estabilidad estructural, las fuerzas físicas provenientes de la actividad agrícola favorecieron la destrucción de los agregados menos estables encontrándose gran cantidad de material fino (In the last years, water quality in the Paso de las Piedras reservoir has been affected by eutrophication, leading to problems in the provision of potable water to the population of Bahía Blanca city and surrounding areas. Agricultural activity has been pointed out as the possible non-point source of P contaminating the El Divisorio stream, which flows directly into the reservoir. The objective of this work was to assess some selected edaphic properties associated with the contamination potential of soils such as structural stability, aggregate distribution and concentration of organic (Po and inorganic (Pi P in the

  13. Morphology of a Wetland Stream

    Science.gov (United States)

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  14. Analyzing indicators of stream health for Minnesota streams

    Science.gov (United States)

    Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.

    2005-01-01

    Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.

  15. ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    I Made Oka Widyantara

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG-DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  16. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  17. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  18. Deployable Engine Air Brake

    Science.gov (United States)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  19. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  20. Reactor cavity streaming: the problem and engineered solutions

    International Nuclear Information System (INIS)

    Iotti, R.C.; Yang, T.L.; Rogers, W.H.

    1979-01-01

    Experience at operating pressurized water reactors has revealed that air gaps between the reactor vessel and the biological shield wall can provide paths for radiation streaming, which may prohibitively limit the accessibility required to areas in the containment during power operation, increase personnel exposure during shutdown, and cause radiation damage to equipment and cables located above the vessel. Several concepts of shield are discussed together with their predicted effectiveness. The analytical methods employed to determine the streaming magnitude and the shield effectiveness are also discussed and their accuracy is measured by comparison with actual measurement at an operating plant

  1. The introduction of radial streaming into Galanin's method

    International Nuclear Information System (INIS)

    Leslie, D.C.

    1963-08-01

    In his original formulation of small-source theory, Galanin allowed only simple source/sinks at the lattice points. The effect of streaming across air gaps can be allowed for by including dipoles as well as simple sources at these points. The calculation is carried through and a formula is deduced for the radial streaming factor. This study was carried out during 1960, and was not published because it was to some extent superseded by other work. Galanin and Kuchorov have now published an analysis of this problem by a different method, and it seems that an account of the earlier study might now be of some interest. (author)

  2. THE USE OF RADIOISOTOPES IN ON-STREAM ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, James W.

    1963-09-15

    A wide variety of radioisotope techniques is presently in use for on- stream measurements. Among these are gages to measure thickness, density, viscosity, dilution, volume, velocity, and level. A few unique combinations of the above techniques are also detailed--a mass-flow gage, a beryllium-in-air monitor, and a double thickness/double density gage. Several available on-stream techniques utilizing neutrons, which have not been fully exploited, are discussed, including neutron inelastic scattering, neutron thermalization, neutron capture, and neutron activation. (auth)

  3. Industrial-Strength Streaming Video.

    Science.gov (United States)

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  4. Data streams: algorithms and applications

    National Research Council Canada - National Science Library

    Muthukrishnan, S

    2005-01-01

    ... massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175]. S. Muthukrishnan Rutgers University, New Brunswick, NJ, USA, muthu@cs...

  5. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    Much effort has been put into building data streams management systems for querying data streams. Here, data streams have been viewed as a flow of low-level data items, e.g., sensor readings or IP packet data. Stream query languages have mostly been SQL-based, with the STREAM and TelegraphCQ lang...

  6. Stream Deniable-Encryption Algorithms

    Directory of Open Access Journals (Sweden)

    N.A. Moldovyan

    2016-04-01

    Full Text Available A method for stream deniable encryption of secret message is proposed, which is computationally indistinguishable from the probabilistic encryption of some fake message. The method uses generation of two key streams with some secure block cipher. One of the key streams is generated depending on the secret key and the other one is generated depending on the fake key. The key streams are mixed with the secret and fake data streams so that the output ciphertext looks like the ciphertext produced by some probabilistic encryption algorithm applied to the fake message, while using the fake key. When the receiver or/and sender of the ciphertext are coerced to open the encryption key and the source message, they open the fake key and the fake message. To disclose their lie the coercer should demonstrate possibility of the alternative decryption of the ciphertext, however this is a computationally hard problem.

  7. Stream Clustering of Growing Objects

    Science.gov (United States)

    Siddiqui, Zaigham Faraz; Spiliopoulou, Myra

    We study incremental clustering of objects that grow and accumulate over time. The objects come from a multi-table stream e.g. streams of Customer and Transaction. As the Transactions stream accumulates, the Customers’ profiles grow. First, we use an incremental propositionalisation to convert the multi-table stream into a single-table stream upon which we apply clustering. For this purpose, we develop an online version of K-Means algorithm that can handle these swelling objects and any new objects that arrive. The algorithm also monitors the quality of the model and performs re-clustering when it deteriorates. We evaluate our method on the PKDD Challenge 1999 dataset.

  8. Logistic advantages of an air curtain in a cold store; Heiploeg ervaart logistieke voordelen van vrieshuis-luchtgordijn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Fog and ice are problems in cold storage warehouses. A manufacturer of air conditioning equipment (Biddle in Kootstertille, Netherlands) claims to have found the solution in the so-called Multi Air stream Technology, an air curtain for cold stores.

  9. Pilot-Streaming: Design Considerations for a Stream Processing Framework for High-Performance Computing

    OpenAIRE

    Andre Luckow; Peter Kasson; Shantenu Jha

    2016-01-01

    This White Paper (submitted to STREAM 2016) identifies an approach to integrate streaming data with HPC resources. The paper outlines the design of Pilot-Streaming, which extends the concept of Pilot-abstraction to streaming real-time data.

  10. Synthesis cathode material LiNi0.80Co0.15Al0.05O2 with two step solid-state method under air stream

    Science.gov (United States)

    Xia, Shubiao; Zhang, Yingjie; Dong, Peng; Zhang, Yannan

    2014-01-01

    A facile generic strategy of solid-state reaction under air atmosphere is employed to prepare LiNi0.8Co0.15Al0.05O2 layer structure micro-sphere as cathodes for Li-ion batteries. The impurity phase has been eliminated wholly without changing the R-3m space group of LiNi0.8Co0.15Al0.05O2. The electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathodes depend on the sintering step, temperature, particle size and uniformity. The sample pre-sintered at 540 °C for 12 h and then sintered at 720 °C for 28 h exhibits the best electrochemical performance, which delivers a reversible capacity of 180.4, 165.8, 154.7 and 135.6 mAhg-1 at 0.2 C, 1 C, 2 C and 5 C, respectively. The capacity retention keeps over 87% after 76 cycles at 1 C. This method is simple, cheap and mass-productive, and thus suitable to large scale production of NCA cathodes directly used for lithium ion batteries.

  11. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  12. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  13. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  14. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  15. Stream Habitat Reach Summary - NCWAP [ds158

    Data.gov (United States)

    California Natural Resource Agency — The Stream Habitat - NCWAP - Reach Summary [ds158] shapefile contains in-stream habitat survey data summarized to the stream reach level. It is a derivative of the...

  16. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  17. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  18. Ooishi's Observation: Viewed in the Context of Jet Stream Discovery.

    Science.gov (United States)

    Lewis, John M.

    2003-03-01

    Although aircraft encounters with strong westerly winds during World War II provided the stimulus for postwar research on the jet stream, Wasaburo Ooishi observed these winds in the 1920s. Ooishi's work is reviewed in the context of earlier work in upperair observation and postwar work on the jet stream. An effort is made to reconstruct Ooishi's path to the directorship of Japan's first upper-air observatory by reliance on historical studies and memoirs from the Central Meteorological Observatory.Archival records from Japan's Aerological Observatory have been used to document Ooishi's upperair observations. The first official report from the observatory (written in 1926 and in the auxiliary language of Esperanto) assumes a central role in the study. In this report, data are stratified by season and used to produce the mean seasonal wind profiles. The profile for winter gives the first known evidence of the persistent strong westerlies over Japan that would later become known as the jet stream.

  19. Knowledge discovery from data streams

    CERN Document Server

    Gama, Joao

    2010-01-01

    Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents a coherent overview of state-of-the-art research in learning from data streams.The book covers the fundamentals that are imperative to understanding data streams and describes important applications, such as TCP/IP traffic, GPS data, sensor networks,

  20. Waste streams from reprocessing operations

    International Nuclear Information System (INIS)

    Andersson, B.; Ericsson, A.-M.

    1978-03-01

    The three main products from reprocessing operations are uranium, plutonium and vitrified high-level-waste. The purpose of this report is to identify and quantify additional waste streams containing radioactive isotops. Special emphasis is laid on Sr, Cs and the actinides. The main part, more than 99 % of both the fission-products and the transuranic elements are contained in the HLW-stream. Small quantities sometimes contaminate the U- and Pu-streams and the rest is found in the medium-level-waste

  1. Innovation in radioactive wastewater-stream management: Part one

    International Nuclear Information System (INIS)

    Karameldin, A.

    2005-01-01

    Treatment of radioactive wastewater streams is receiving considerable attention in most countries that have nuclear reactors. The first Egyptian research reactor ETRR-1 has been operating for 40 years, resulting in accumulation of large quantities of wastewater collected in special drainage tanks called SDTs. Previous attempts were aimed at the volumetric reduction of streams present in SDTs, by reverse osmosis systems, which previously succeeded in reducing the water volume present in SDTs from 450 m 3 to 50 m 3 (during the period 1998-2000). The main drawbacks of the RO system are the additional amount of secondary wastes (turbidity and emulsion filters media replacement, and the excessive amounts of chemicals for the membrane cleaning, flushing and storing), and a limited contaminant release in the SDTs area, resulting in the decommissioning of the RO system. Meanwhile, the SDTs waste contents recently reached 500 m 3 . Recently, the invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilises the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs. From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs has indicated that the proposed optimal evaporating temperature is around 75 deg. C. The design curve of the daily volumetric reduction of the wastewater streams vs. the necessary volumetric airflow rates at different operating temperatures has been achieved. Recently, an experimental facility is being constructed to obtain the optimal operating parameters of the system, regarding the probable emissions of the radioactive nuclides within the permissible release limits. (author)

  2. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  3. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  4. Removal of radioiodine species from gaseous stream on inorganic absorbents

    International Nuclear Information System (INIS)

    Vujisic, L.

    1978-11-01

    As a contribution to the development of an impregnated absorbent for the removal of airborne iodine species in the off-gas streams of nuclear facilities the adsorption of 131 l-labelled methyl iodide on impregnated alumina was investigated. Alcoa alumina H-151 was impregnated with metal nitrates (Ag, Ag+Cd, Ag+Pb) and with triethylenediamine (TEDA). The removal efficiency of CH 3 l was experimentally evaluated, as functions of relative humidity of air-stream, its temperature and flow rate and of the amount of impregnated materials. Under constant temperature, relative humidity and face velocity, the retention of CH 3 l increases as the total amount of Ag impregnation increases. In a wet air-stream the only efficient impregnation was found to be with silver nitrate. At constant temperature the CH 3 l retention decreases with increasing relative humidity or face velocity of the stream. An increase of temperature favours the CH 3 l retention. Very low retention of CH 3 l was found on TEDA impregnated alumina

  5. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  6. ATLAS Live: Collaborative Information Streams

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, Steven [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Collaboration: ATLAS Collaboration

    2011-12-23

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  7. ATLAS Live: Collaborative Information Streams

    International Nuclear Information System (INIS)

    Goldfarb, Steven

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  8. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2011-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at th...

  9. STREAMS - Technology Programme. Yearbook 2003

    International Nuclear Information System (INIS)

    2003-01-01

    The STREAMS Technology Programme addresses municipal waste. Municipal waste is composed of waste from households and small businesses. The programme focuses on five areas Waste prevention, Collection, transportation, and management of waste streams, Waste treatment technologies, Waste recycling into raw materials and new products, Landfill technologies. The development projects of the STREAMS Programme utilize a number of different technologies, such as biotechnology, information technology, materials technology, measurement and analysis, and automation technology. Finnish expertise in materials recycling technologies and related electronics and information technology is extremely high on a worldwide scale even though the companies represent SMEs. Started in 2001, the STREAMS programme has a total volume of 27 million euros, half of which is funded by Tekes. The programme runs through the end of 2004. (author)

  10. Cellular Subcompartments through Cytoplasmic Streaming.

    Science.gov (United States)

    Pieuchot, Laurent; Lai, Julian; Loh, Rachel Ann; Leong, Fong Yew; Chiam, Keng-Hwee; Stajich, Jason; Jedd, Gregory

    2015-08-24

    Cytoplasmic streaming occurs in diverse cell types, where it generally serves a transport function. Here, we examine streaming in multicellular fungal hyphae and identify an additional function wherein regimented streaming forms distinct cytoplasmic subcompartments. In the hypha, cytoplasm flows directionally from cell to cell through septal pores. Using live-cell imaging and computer simulations, we identify a flow pattern that produces vortices (eddies) on the upstream side of the septum. Nuclei can be immobilized in these microfluidic eddies, where they form multinucleate aggregates and accumulate foci of the HDA-2 histone deacetylase-associated factor, SPA-19. Pores experiencing flow degenerate in the absence of SPA-19, suggesting that eddy-trapped nuclei function to reinforce the septum. Together, our data show that eddies comprise a subcellular niche favoring nuclear differentiation and that subcompartments can be self-organized as a consequence of regimented cytoplasmic streaming. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. On-stream analysis systems

    International Nuclear Information System (INIS)

    Howarth, W.J.; Watt, J.S.

    1982-01-01

    An outline of some commercially available on-stream analysis systems in given. Systems based on x-ray tube/crystal spectrometers, scintillation detectors, proportional detectors and solid-state detectors are discussed

  12. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  13. The Northeast Stream Quality Assessment

    Science.gov (United States)

    Van Metre, Peter C.; Riva-Murray, Karen; Coles, James F.

    2016-04-22

    In 2016, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) is assessing stream quality in the northeastern United States. The goal of the Northeast Stream Quality Assessment (NESQA) is to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and evaluating the relation between these stressors and biological communities. The focus of NESQA in 2016 will be on the effects of urbanization and agriculture on stream quality in all or parts of eight states: Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.Findings will provide the public and policymakers with information about the most critical factors affecting stream quality, thus providing insights about possible approaches to protect the health of streams in the region. The NESQA study will be the fourth regional study conducted as part of NAWQA and will be of similar design and scope to the first three, in the Midwest in 2013, the Southeast in 2014, and the Pacific Northwest in 2015 (http://txpub.usgs.gov/RSQA/).

  14. Relative effects of climate change and wildfires on stream temperatures: A simulation modeling approach in a Rocky Mountain watershed

    Science.gov (United States)

    Lisa Holsinger; Robert E. Keane; Daniel J. Isaak; Lisa Eby; Michael K. Young

    2014-01-01

    Freshwater ecosystems are warming globally from the direct effects of climate change on air temperature and hydrology and the indirect effects on near-stream vegetation. In fire-prone landscapes, vegetative change may be especially rapid and cause significant local stream temperature increases but the importance of these increases relative to broader changes associated...

  15. 75 FR 2107 - Notice of Availability of the Draft Environmental Assessment (Draft EA) for the Urban Stream...

    Science.gov (United States)

    2010-01-14

    ... proposed project. The construction of the Urban Stream Research Center is one component ecological... localized construction-related impacts to air quality and increases in noise from the use of construction...

  16. Estimates of interhemispheric transport of radioactive debris by the east African low-level jet stream

    International Nuclear Information System (INIS)

    Rangarajan, C.; Eapen, C.D.

    1981-01-01

    The movement of air masses across the equator by way of the east African low-level jet stream has been studied using fission products from the French nuclear tests of the South Pacific as tracers. The studies show that the transit time of air masses from Malagasy to India is 3--6 days and about 75% of the air mass on the west coast of India is from the southern hemisphere

  17. Suggestions for removing operational faults in air filter plants

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, H J

    1980-11-01

    Air filters are expected to achieve certain performances within their duty, viz. to precipitate air-alien matter in the air stream, the results of which will have to be checked. As a number of external influences affect the function of the air filter and, therefore, may alter the pre-defined data, checking should not only cover the air filter but also the other parts of the ventilating plant, to assure a faultless continuous operation.

  18. Innovation in radioactive wastewater-stream management. Pt. 1

    International Nuclear Information System (INIS)

    Karameldin, A.

    2002-01-01

    Recently an invention of a system for volume reduction of the wastewater streams present in SDTs has been achieved. This system substantially utilized the air conditioning and ventilation techniques in water transfer from the wastewater to air. This process is promoted by a mutual heating and humidification of a compressed dry air introduced through SDTs (or in another tank). From the probable release of radioactive nuclides point of view, the analysis of the evaporation of waste streams present in SDTs have been indicated that the proposed optimal evaporating temperature is round 75 C. The design curve of the daily volumetric reduction of the wastewater streams versus the necessary volumetric airflow rates at different operating temperature has been achieved. The evaporating temperature varied from 40 C to 95 C with a step of 5 C. The obtained curve illustrates that the required volumetric airflow rate utilized to evaporate one m 3 /day (when maintaining SDTs at the temperature 75 C) is less than 90 m 3 /h. The assessments of the obtained curve have been indicated that this system is feasible and viable, economic and has no secondary waste residuals. Recently, an experimental facility proposed to be constructed to obtain the optimal operating parameters of the system, regarding to the probable emissions of the radioactive nuclides within the permissible release limits. (authors)

  19. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  20. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    Science.gov (United States)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it

  1. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    Science.gov (United States)

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource

  2. Fish populations in Plynlimon streams

    Directory of Open Access Journals (Sweden)

    D. T. Crisp

    1997-01-01

    Full Text Available In Plynlimon streams, brown trout (Salmo trutta L. are widespread in the upper Wye at population densities of 0.03 to 0.32 fish m-2 and show evidence of successful recruitment in most years. In the upper Severn, brown trout are found only in an area of c. 1670 -2 downstream of Blaenhafren Falls at densities of 0.03 to 0.24 fish -2 and the evidence suggests very variable year to year success in recruitment (Crisp & Beaumont, 1996. Analyses of the data show that temperature differences between afforested and unafforested streams may affect the rates of trout incubation and growth but are not likely to influence species survival. Simple analyses of stream discharge data suggest, but do not prove, that good years for recruitment in the Hafren population were years of low stream discharge. This may be linked to groundwater inputs detected in other studies in this stream. More research is needed to explain the survival of the apparently isolated trout population in the Hafren.

  3. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  4. ATLAS Live: Collaborative Information Streams

    CERN Document Server

    Goldfarb, S; The ATLAS collaboration

    2010-01-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using the SCALA digital signage software system. The system is robust and flexible, allowing for the usage of scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intrascreen divisibility. The video is made available to the collaboration or public through the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video t...

  5. Stream ciphers and number theory

    CERN Document Server

    Cusick, Thomas W; Renvall, Ari R

    2004-01-01

    This is the unique book on cross-fertilisations between stream ciphers and number theory. It systematically and comprehensively covers known connections between the two areas that are available only in research papers. Some parts of this book consist of new research results that are not available elsewhere. In addition to exercises, over thirty research problems are presented in this book. In this revised edition almost every chapter was updated, and some chapters were completely rewritten. It is useful as a textbook for a graduate course on the subject, as well as a reference book for researchers in related fields. · Unique book on interactions of stream ciphers and number theory. · Research monograph with many results not available elsewhere. · A revised edition with the most recent advances in this subject. · Over thirty research problems for stimulating interactions between the two areas. · Written by leading researchers in stream ciphers and number theory.

  6. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  7. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  8. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  9. Pollutant transport in natural streams

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.

    1975-01-01

    A mathematical model has been developed to estimate the downstream effect of chemical and radioactive pollutant releases to tributary streams and rivers. The one-dimensional dispersion model was employed along with a dead zone model to describe stream transport behavior. Options are provided for sorption/desorption, ion exchange, and particle deposition in the river. The model equations are solved numerically by the LODIPS computer code. The solution method was verified by application to actual and simulated releases of radionuclides and other chemical pollutants. (U.S.)

  10. Temperature of the Gulf Stream

    Science.gov (United States)

    2002-01-01

    The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using

  11. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  12. Stream-processing pipelines: processing of streams on multiprocessor architecture

    NARCIS (Netherlands)

    Kavaldjiev, N.K.; Smit, Gerardus Johannes Maria; Jansen, P.G.

    In this paper we study the timing aspects of the operation of stream-processing applications that run on a multiprocessor architecture. Dependencies are derived for the processing and communication times of the processors in such a system. Three cases of real-time constrained operation and four

  13. CAMS: OLAPing Multidimensional Data Streams Efficiently

    Science.gov (United States)

    Cuzzocrea, Alfredo

    In the context of data stream research, taming the multidimensionality of real-life data streams in order to efficiently support OLAP analysis/mining tasks is a critical challenge. Inspired by this fundamental motivation, in this paper we introduce CAMS (C ube-based A cquisition model for M ultidimensional S treams), a model for efficiently OLAPing multidimensional data streams. CAMS combines a set of data stream processing methodologies, namely (i) the OLAP dimension flattening process, which allows us to obtain dimensionality reduction of multidimensional data streams, and (ii) the OLAP stream aggregation scheme, which aggregates data stream readings according to an OLAP-hierarchy-based membership approach. We complete our analytical contribution by means of experimental assessment and analysis of both the efficiency and the scalability of OLAPing capabilities of CAMS on synthetic multidimensional data streams. Both analytical and experimental results clearly connote CAMS as an enabling component for next-generation Data Stream Management Systems.

  14. Salamander occupancy in headwater stream networks

    Science.gov (United States)

    Grant, E.H.C.; Green, L.E.; Lowe, W.H.

    2009-01-01

    1. Stream ecosystems exhibit a highly consistent dendritic geometry in which linear habitat units intersect to create a hierarchical network of connected branches. 2. Ecological and life history traits of species living in streams, such as the potential for overland movement, may interact with this architecture to shape patterns of occupancy and response to disturbance. Specifically, large-scale habitat alteration that fragments stream networks and reduces connectivity may reduce the probability a stream is occupied by sensitive species, such as stream salamanders. 3. We collected habitat occupancy data on four species of stream salamanders in first-order (i.e. headwater) streams in undeveloped and urbanised regions of the eastern U.S.A. We then used an information-theoretic approach to test alternative models of salamander occupancy based on a priori predictions of the effects of network configuration, region and salamander life history. 4. Across all four species, we found that streams connected to other first-order streams had higher occupancy than those flowing directly into larger streams and rivers. For three of the four species, occupancy was lower in the urbanised region than in the undeveloped region. 5. These results demonstrate that the spatial configuration of stream networks within protected areas affects the occurrences of stream salamander species. We strongly encourage preservation of network connections between first-order streams in conservation planning and management decisions that may affect stream species.

  15. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  16. Jet Streams as Power Generating Electrical Energy in Libya

    International Nuclear Information System (INIS)

    Shibani, Abdelfatah H.

    2014-01-01

    The supreme wind sources are extremely huge, and according to estimations, these winds can supply Libya with great quantity of electrical energy. Among the examples of contemporary engineering technologies in this field, is to create a new generation of Airborne Wind Turbines. Scientists realized that winds near the Earth's surface are too weak to provide a regular source of energy due to the presence of aerobic swirls and obstacles, which represent a source of ground friction being the cause of weakening wind power. Some consider that the Earth's surface is a totally inappropriate place for investing wind energy. As an alternative solution, we start to think about the establishment of wind farms in another place away from the Earth's surface by developing a new type that can run within the upper-air layers, precisely at jet streams areas. In comparison with fluctuating winds blowing gently near the Earth's surface, scientists estimate that the energy of jet streams increases a thousand times than that can be gathered from the most powerful winds on high hills. To be able to provide a clear picture of the possibility of energy investment of jet streams, we shall present, across the pages of this paper, an explanation of the topic through the following aspects: How do Airborne Wind Turbines' trip start, their advantages and difficulties faced, benefits and economic feasibility, General Atmospheric Circulation and jet streams. Since Libya is among the fortunate countries in the world, through which subtropical jet streams pass, we made an analysis and follow-up of daily synoptic charts, which show jet winds' speed, direction and their altitudes for a period of 60 consecutive months starting from January 1, 2003 until December 31, 2007. Also, an analysis was made of daily observational data of jet winds recorded by Tripoli Upper-air Station during the period from the beginning of March 1987 until the end of February 1989. The paper's results summarized that jet

  17. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  18. Analysis of streaming media systems

    NARCIS (Netherlands)

    Lu, Y.

    2010-01-01

    Multimedia services have been popping up at tremendous speed in recent years. A large number of these multimedia streaming systems are introduced to the consumer market. Internet Service Providers, Telecommunications Operators, Service/Content Providers, and end users are interested in the

  19. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael; Kosinka, Jin; Calo, Victor M.

    2015-01-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these 'stretch-free' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  20. ALIENS IN WESTERN STREAM ECOSYSTEMS

    Science.gov (United States)

    The USEPA's Environmental Monitoring and Assessment Program conducted a five year probability sample of permanent mapped streams in 12 western US states. The study design enables us to determine the extent of selected riparian invasive plants, alien aquatic vertebrates, and some ...

  1. Stretch-minimising stream surfaces

    KAUST Repository

    Barton, Michael

    2015-05-01

    We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.

  2. Nuclear reactor cavity streaming shield

    International Nuclear Information System (INIS)

    Klotz, R.J.; Stephen, D.W.

    1978-01-01

    The upper portion of a nuclear reactor vessel supported in a concrete reactor cavity has a structure mounted below the top of the vessel between the outer vessel wall and the reactor cavity wall which contains hydrogenous material which will attenuate radiation streaming upward between vessel and the reactor cavity wall while preventing pressure buildup during a loss of coolant accident

  3. Video Streaming in Online Learning

    Science.gov (United States)

    Hartsell, Taralynn; Yuen, Steve Chi-Yin

    2006-01-01

    The use of video in teaching and learning is a common practice in education today. As learning online becomes more of a common practice in education, streaming video and audio will play a bigger role in delivering course materials to online learners. This form of technology brings courses alive by allowing online learners to use their visual and…

  4. Continuous sampling from distributed streams

    DEFF Research Database (Denmark)

    Graham, Cormode; Muthukrishnan, S.; Yi, Ke

    2012-01-01

    A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple distribu......A fundamental problem in data management is to draw and maintain a sample of a large data set, for approximate query answering, selectivity estimation, and query planning. With large, streaming data sets, this problem becomes particularly difficult when the data is shared across multiple...... distributed sites. The main challenge is to ensure that a sample is drawn uniformly across the union of the data while minimizing the communication needed to run the protocol on the evolving data. At the same time, it is also necessary to make the protocol lightweight, by keeping the space and time costs low...... for each participant. In this article, we present communication-efficient protocols for continuously maintaining a sample (both with and without replacement) from k distributed streams. These apply to the case when we want a sample from the full streams, and to the sliding window cases of only the W most...

  5. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010.

    Science.gov (United States)

    Mast, M Alisa

    2013-11-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970-2010 and 1990-2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO₂ emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  6. Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 1970-2010

    Science.gov (United States)

    Mast, M. Alisa

    2013-01-01

    The Hydrologic Benchmark Network (HBN) is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970–2010 and 1990–2010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have enhanced oxidation of organic matter in wetlands or pyrite in mineralized bedrock thereby increasing sulfate export in surface water. Increasing sulfate and nitrate at a station in the western USA were attributed to release of soluble salts and nutrients from soils following a large wildfire in the watershed.

  7. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  8. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  9. Iodine Pathways and Off-Gas Stream Characteristics for Aqueous Reprocessing Plants – A Literature Survey and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Jubin; D. M. Strachan; N. R. Soelberg

    2013-09-01

    Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. This report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.

  10. Streaming Visual Analytics Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Kristin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burtner, Edwin R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kritzstein, Brian P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brisbois, Brooke R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mitson, Anna E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis and understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.

  11. Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences

    Science.gov (United States)

    Xin, Zhuohang; Kinouchi, Tsuyoshi

    2013-05-01

    Stream temperature variations of the Tama River, which runs through highly urbanized areas of Tokyo, were studied in relation to anthropogenic impacts, including wastewater effluents, dam release and water withdrawal. Both long-term and longitudinal changes in stream temperature were identified and the influences of stream flow rate, temperature and volume of wastewater effluents and air temperature were investigated. Water and heat budget analyses were also conducted for several segments of the mainstream to clarify the relative impacts from natural and anthropogenic factors. Stream temperatures in the winter season significantly increased over the past 20 years at sites affected by intensive and warm effluents from wastewater treatment plants (WWTPs) located along the mainstream. In the summer season, a larger stream temperature increase was identified in the upstream reaches, which was attributable to the decreased flow rate due to water withdrawal. The relationship between air and stream temperatures indicated that stream temperatures at the upstream site were likely to be affected by a dam release, while temperatures in the downstream reaches have deviated more from air temperatures in recent years, probably due to the increased impacts of effluents from WWTPs. Results of the water and heat budget analyses indicated that the largest contributions to water and heat gains were attributable to wastewater effluents, while other factors such as groundwater recharge and water withdrawal were found to behave as energy sinks, especially in summer. The inflow from tributaries worked to reduce the impacts of dam release and the heat exchanges at the air-water interface contributed less to heat budgets in both winter and summer seasons for all river segments.

  12. A recirculating stream aquarium for ecological studies.

    Science.gov (United States)

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  13. Comparison of active and passive stream restoration

    DEFF Research Database (Denmark)

    Kristensen, Esben Astrup; Thodsen, Hans; Dehli, Bjarke

    2013-01-01

    Modification and channelization of streams and rivers have been conducted extensively throughout the world during the past century. Subsequently, much effort has been directed at re-creating the lost habitats and thereby improving living conditions for aquatic organisms. However, as restoration...... methods are plentiful, it is difficult to determine which one to use to get the anticipated result. The aim of this study was to compare two commonly used methods in small Danish streams to improve the physical condition: re-meandering and passive restoration through cease of maintenance. Our...... investigation included measurement of the physical conditions in 29 stream reaches covering four different groups: (1) re-meandered streams, (2) LDC streams (the least disturbed streams available), (3) passively restored streams (>10 years stop of aintenance) and (4) channelized and non-restored streams. The in...

  14. A survey on Big Data Stream Mining

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... huge amount of stream like telecommunication systems. So, there ... streams have many challenges for data mining algorithm design like using of ..... A. Bifet and R. Gavalda, "Learning from Time-Changing Data with. Adaptive ...

  15. Cytoplasmic Streaming in the Drosophila Oocyte.

    Science.gov (United States)

    Quinlan, Margot E

    2016-10-06

    Objects are commonly moved within the cell by either passive diffusion or active directed transport. A third possibility is advection, in which objects within the cytoplasm are moved with the flow of the cytoplasm. Bulk movement of the cytoplasm, or streaming, as required for advection, is more common in large cells than in small cells. For example, streaming is observed in elongated plant cells and the oocytes of several species. In the Drosophila oocyte, two stages of streaming are observed: relatively slow streaming during mid-oogenesis and streaming that is approximately ten times faster during late oogenesis. These flows are implicated in two processes: polarity establishment and mixing. In this review, I discuss the underlying mechanism of streaming, how slow and fast streaming are differentiated, and what we know about the physiological roles of the two types of streaming.

  16. Stream Tables and Watershed Geomorphology Education.

    Science.gov (United States)

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  17. Reconfigurable Multicore Architectures for Streaming Applications

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Rauwerda, G.K.; Jacobs, J.W.M.; Nicolescu, G.; Mosterman, P.J.

    2009-01-01

    This chapter addresses reconfigurable heterogenous and homogeneous multicore system-on-chip (SoC) platforms for streaming digital signal processing applications, also called DSP applications. In streaming DSP applications, computations can be specified as a data flow graph with streams of data items

  18. Stream dynamics: An overview for land managers

    Science.gov (United States)

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  19. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  20. Maximizing Resource Utilization in Video Streaming Systems

    Science.gov (United States)

    Alsmirat, Mohammad Abdullah

    2013-01-01

    Video streaming has recently grown dramatically in popularity over the Internet, Cable TV, and wire-less networks. Because of the resource demanding nature of video streaming applications, maximizing resource utilization in any video streaming system is a key factor to increase the scalability and decrease the cost of the system. Resources to…

  1. Olefin Recovery from Chemical Industry Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  2. Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers

    Science.gov (United States)

    Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.

    2015-01-01

    The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…

  3. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Science.gov (United States)

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  4. Experimental Research of Influence of a Relative Particles Positioning in a Gas Stream on Characteristics of their Aerodynamic Traces

    Directory of Open Access Journals (Sweden)

    Volkov Roman S.

    2016-01-01

    Full Text Available The cycle of experimental studies on determination of length of aerodynamic traces of the particles which are flowed round by an air stream is executed. When carrying out researches, panoramic optical methods for diagnostics of multiphase flows of PIV and PTV were used. Velocities of an air flow were varied in the range of 1-3 m/s. The sizes of particles changed from 1mm to 5 mm. The defining influence of the sizes of particles and velocities of an air stream on length of aerodynamic traces is established. Influence of a relative positioning of particles on features of formation of an aerodynamic trace is shown.

  5. STREAM: A First Programming Process

    DEFF Research Database (Denmark)

    Caspersen, Michael Edelgaard; Kölling, Michael

    2009-01-01

    to derive a programming process, STREAM, designed specifically for novices. STREAM is a carefully down-scaled version of a full and rich agile software engineering process particularly suited for novices learning object-oriented programming. In using it we hope to achieve two things: to help novice......Programming is recognized as one of seven grand challenges in computing education. Decades of research have shown that the major problems novices experience are composition-based—they may know what the individual programming language constructs are, but they do not know how to put them together....... Despite this fact, textbooks, educational practice, and programming education research hardly address the issue of teaching the skills needed for systematic development of programs. We provide a conceptual framework for incremental program development, called Stepwise Improvement, which unifies best...

  6. The significance of small streams

    Science.gov (United States)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  7. Simulation of future stream alkalinity under changing deposition and climate scenarios

    International Nuclear Information System (INIS)

    Welsch, Daniel L.; Jack Cosby, B.; Hornberger, George M.

    2006-01-01

    Models of soil and stream water acidification have typically been applied under scenarios of changing acidic deposition, however, climate change is usually ignored. Soil air CO 2 concentrations have potential to increase as climate warms and becomes wetter, thus affecting soil and stream water chemistry by initially increasing stream alkalinity at the expense of reducing base saturation levels on soil exchange sites. We simulate this change by applying a series of physically based coupled models capable of predicting soil air CO 2 and stream water chemistry. We predict daily stream water alkalinity for a small catchment in the Virginia Blue Ridge for 60 years into the future given stochastically generated daily climate values. This is done for nine different combinations of climate and deposition. The scenarios for both climate and deposition include a static scenario, a scenario of gradual change, and a scenario of abrupt change. We find that stream water alkalinity continues to decline for all scenarios (average decrease of 14.4 μeq L - 1 ) except where climate is gradually warming and becoming more moist (average increase of 13 μeq L - 1 ). In all other scenarios, base cation removal from catchment soils is responsible for limited alkalinity increase resulting from climate change. This has implications given the extent that acidification models are used to establish policy and legislation concerning deposition and emissions

  8. A model for evaluating stream temperature response to climate change in Wisconsin

    Science.gov (United States)

    Stewart, Jana S.; Westenbroek, Stephen M.; Mitro, Matthew G.; Lyons, John D.; Kammel, Leah E.; Buchwald, Cheryl A.

    2015-01-01

    Expected climatic changes in air temperature and precipitation patterns across the State of Wisconsin may alter future stream temperature and flow regimes. As a consequence of flow and temperature changes, the composition and distribution of fish species assemblages are expected to change. In an effort to gain a better understanding of how climatic changes may affect stream temperature, an approach was developed to predict and project daily summertime stream temperature under current and future climate conditions for 94,341 stream kilometers across Wisconsin. The approach uses a combination of static landscape characteristics and dynamic time-series climatic variables as input for an Artificial Neural Network (ANN) Model integrated with a Soil-Water-Balance (SWB) Model. Future climate scenarios are based on output from downscaled General Circulation Models (GCMs). The SWB model provided a means to estimate the temporal variability in groundwater recharge and provided a mechanism to evaluate the effect of changing air temperature and precipitation on groundwater recharge and soil moisture. The Integrated Soil-Water-Balance and Artificial Neural Network version 1 (SWB-ANNv1) Model was used to simulate daily summertime stream temperature under current (1990–2008) climate and explained 76 percent of the variation in the daily mean based on validation at 67 independent sites. Results were summarized as July mean water temperature, and individual stream segments were classified by thermal class (cold, cold transition, warm transition, and warm) for comparison of current (1990–2008) with future climate conditions.

  9. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    International Nuclear Information System (INIS)

    Wijmans, J.G.

    2003-01-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  10. Interplanetary stream magnetism: Kinematic effects

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Barouch, E.

    1976-01-01

    The particle density, and the magnetic field intensity and direction, are calculated for volume elements of the solar wind as a function of the initial magnetic field direction, Phi 0 , and the initial speed gradient, (deltaV/deltaR) 0 . It is assumed that the velocity is constant and radial. These assumptions are approximately valid between approx.0.1 and 1.0 AU for many streams. Time profiles of n, B, and V are calculated for corotating streams, neglecting effects of pressure gradients. The compression and rarefaction of B depend sensitively on Phi 0 . By averaging over a typical stream, it is found that approx.r -2 , whereas does not vary in a simple way, consistent with deep space observations. Changes of field direction may be very large, depending on the initial angle; but when the initial angle at 0.1 Au is such that the base of the field line corotates with the Sun, the spiral angle is the preferred direction at 1 AU. The theory is also applicable to nonstationary flows

  11. StreamStats, version 4

    Science.gov (United States)

    Ries, Kernell G.; Newson, Jeremy K.; Smith, Martyn J.; Guthrie, John D.; Steeves, Peter A.; Haluska, Tana L.; Kolb, Katharine R.; Thompson, Ryan F.; Santoro, Richard D.; Vraga, Hans W.

    2017-10-30

    IntroductionStreamStats version 4, available at https://streamstats.usgs.gov, is a map-based web application that provides an assortment of analytical tools that are useful for water-resources planning and management, and engineering purposes. Developed by the U.S. Geological Survey (USGS), the primary purpose of StreamStats is to provide estimates of streamflow statistics for user-selected ungaged sites on streams and for USGS streamgages, which are locations where streamflow data are collected.Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (which is exceeded, on average, once in 100 years and has a 1-percent chance of exceedance in any year) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; permitting of water withdrawals and wastewater and industrial discharges; hydropower facility design and regulation; and setting of minimum allowed streamflows to protect freshwater ecosystems. Streamflow statistics can be computed from available data at USGS streamgages depending on the type of data collected at the stations. Most often, however, streamflow statistics are needed at ungaged sites, where no streamflow data are available to determine the statistics.

  12. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  13. Air-cleaning apparatus

    International Nuclear Information System (INIS)

    Howard, A.G.

    1981-01-01

    An air-cleaning, heat-exchange apparatus includes a main housing portion connected by means of an air inlet fan to the kitchen exhaust stack of a restaurant. The apparatus includes a plurality of heat exchangers through which a heat-absorptive fluid is circulated, simultaneously, by means of a suitable fluid pump. These heat exchangers absorb heat from the hot exhaust gas, out of the exhaust stack of the restaurant, which flows over and through these heat exchangers and transfers this heat to the circulating fluid which communicates with remote heat exchangers. These remote heat exchangers further transfer this heat to a stream of air, such as that from a cold-air return duct for supplementing the conventional heating system of the restaurant. Due to the fact that such hot exhaust gas is heavily grease laden , grease will be deposited on virtually all internal surfaces of the apparatus which this exhaust gas contacts. Consequently, means are provided for spraying these contacted internal surfaces , as well as the hot exhaust gas itself, with a detergent solution in which the grease is soluble, thereby removing grease buildup from these internal surfaces

  14. Global perspectives on the urban stream syndrome

    Science.gov (United States)

    Roy, Allison; Booth, Derek B.; Capps, Krista A.; Smith, Benjamin

    2016-01-01

    Urban streams commonly express degraded physical, chemical, and biological conditions that have been collectively termed the “urban stream syndrome”. The description of the syndrome highlights the broad similarities among these streams relative to their less-impaired counterparts. Awareness of these commonalities has fostered rapid improvements in the management of urban stormwater for the protection of downstream watercourses, but the focus on the similarities among urban streams has obscured meaningful differences among them. Key drivers of stream responses to urbanization can vary greatly among climatological and physiographic regions of the globe, and the differences can be manifested in individual stream channels even through the homogenizing veneer of urban development. We provide examples of differences in natural hydrologic and geologic settings (within similar regions) that can result in different mechanisms of stream ecosystem response to urbanization and, as such, should lead to different management approaches. The idea that all urban streams can be cured using the same treatment is simplistic, but overemphasizing the tremendous differences among natural (or human-altered) systems also can paralyze management. Thoughtful integration of work that recognizes the commonalities of the urban stream syndrome across the globe has benefitted urban stream management. Now we call for a more nuanced understanding of the regional, subregional, and local attributes of any given urban stream and its watershed to advance the physical, chemical, and ecological recovery of these systems.

  15. The role of groundwater in the effect of climatic warming on stream habitat of brook trout

    International Nuclear Information System (INIS)

    Meisner, J.D.

    1990-01-01

    Freshwater fisheries are linked to climate through the variables of water temperature, water quality and water quantity. These three ecosystem linkages provide a basis for assessments of potential impacts of climate change on fisheries resources. A characteristic of fisheries resources, whether it be the size or distribution of fish populations, or a measure of yield, which can be related to climate through one or more of these linkages, is a useful tool with which to forecast the effects of climate change. A stream population of brook trout is a coldwater fisheries resource that is linked to climate by groundwater. Stream dwelling brook trout at low altitudes rely heavily on groundwater discharge in summer to maintain low stream temperature. Groundwater temperature tracks mean annual air temperature due to the insulative effect of the lower troposphere on the surface of the earth. The effect of elevated groundwater temperature on the stream habitat of brook trout was investigated in two brook trout streams north of Toronto, Ontario, with an energy balance stream temperature model, calibrated to both streams to simulate maximum water temperature observed in the brook trout zones. Simulated maximum summer temperatures from the Goddard Institute for Space Studies scenario reduced the brook trout zones by up to 42%. 17 refs., 2 figs

  16. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  17. Shotgun metagenomic data streams: surfing without fear

    Energy Technology Data Exchange (ETDEWEB)

    Berendzen, Joel R [Los Alamos National Laboratory

    2010-12-06

    Timely information about bio-threat prevalence, consequence, propagation, attribution, and mitigation is needed to support decision-making, both routinely and in a crisis. One DNA sequencer can stream 25 Gbp of information per day, but sampling strategies and analysis techniques are needed to turn raw sequencing power into actionable knowledge. Shotgun metagenomics can enable biosurveillance at the level of a single city, hospital, or airplane. Metagenomics characterizes viruses and bacteria from complex environments such as soil, air filters, or sewage. Unlike targeted-primer-based sequencing, shotgun methods are not blind to sequences that are truly novel, and they can measure absolute prevalence. Shotgun metagenomic sampling can be non-invasive, efficient, and inexpensive while being informative. We have developed analysis techniques for shotgun metagenomic sequencing that rely upon phylogenetic signature patterns. They work by indexing local sequence patterns in a manner similar to web search engines. Our methods are laptop-fast and favorable scaling properties ensure they will be sustainable as sequencing methods grow. We show examples of application to soil metagenomic samples.

  18. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model

    Science.gov (United States)

    Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye

    2018-04-01

    Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models

  19. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    International Nuclear Information System (INIS)

    De Bruin, D.

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab

  20. The distribution of copper in stream sediments in an anomalous stream near Steinkopf, Namaqualand

    Energy Technology Data Exchange (ETDEWEB)

    De Bruin, D

    1987-01-01

    Anomalous copper concentrations detected by the regional stream-sediment programme of the Geological Survey was investigated in a stream near Steinkopf, Namaqualand. A follow-up disclosed the presence of malachite mineralization. However, additional stream-sediment samples collected from the 'anomalous' stream revealed an erratic distribution of copper and also that the malachite mineralization had no direct effect on the copper distribution in the stream sediments. Low partial-extraction yields, together with X-ray diffraction analyses, indicated that dispersion is mainly mechanical and that the copper occurs as cations in the lattice of the biotite fraction of the stream sediments. (author). 8 refs., 5 figs., 1 tab.

  1. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  2. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  3. Organic carbon spiralling in stream ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Mulholland, P J; Elwood, J W; O' Neill, R V

    1982-01-01

    The term spiralling has been used to describe the combined processes of cycling and longitudinal transport in streams. As a measure or organic carbon spiralling, we introduced organic carbon turnover length, S, defined as the average or expected downstream distance travelled by a carbon atom between its entry or fixation in the stream and its oxidation. Using a simple model for organic carbon dynamics in a stream, we show that S is closely related to fisher and Likens' ecosystem efficiency. Unlike efficiency, however, S is independent of the length of the study reach, and values of S determined in streams of differing lengths can be compared. Using data from three different streams, we found the relationship between S and efficiency to agree closely with the model prediction. Hypotheses of stream functioning are discussed in the context of organic carbeon spiralling theory.

  4. The Pacific northwest stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Morace, Jennifer L.; Sheibley, Rich W.

    2015-01-01

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program is assessing stream quality in the Pacific Northwest. The goals of the Pacific Northwest Stream Quality Assessment (Pacific Northwest study) are to assess the quality of streams in the region by characterizing multiple water-quality factors that are stressors to aquatic life and to evaluate the relation between these stressors and biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowlands and Willamette Valley are the focus of this regional study. Findings will provide the public and policymakers with information regarding which human and environmental factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect or improve the health of streams in the region.

  5. LHCb : The LHCb Turbo stream

    CERN Multimedia

    Puig Navarro, Albert

    2015-01-01

    The LHCb experiment will record an unprecedented dataset of beauty and charm hadron decays during Run II of the LHC, set to take place between 2015 and 2018. A key computing challenge is to store and process this data, which limits the maximum output rate of the LHCb trigger. So far, LHCb has written out a few kHz of events containing the full raw sub-detector data, which are passed through a full offline event reconstruction before being considered for physics analysis. Charm physics in particular is limited by trigger output rate constraints. A new streaming strategy includes the possibility to perform the physics analysis with candidates reconstructed in the trigger, thus bypassing the offline reconstruction. In the "turbo stream" the trigger will write out a compact summary of "physics" objects containing all information necessary for analyses, and this will allow an increased output rate and thus higher average efficiencies and smaller selection biases. This idea will be commissioned and developed during...

  6. Streaming potential measurements of biosurfaces

    Science.gov (United States)

    Van Wagenen, R. A.; Andrade, J. D.; Hibbs, J. B., Jr.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the electrokinetic region of the cell periphery. This approach is feasible for cell lines propagated in in-vitro cell cultures in monolayer form. The advantage of this system is that cells may be evaluated in the living state atttached to a substrate; it is not necessary to subject the cells to enzymatic, chemical, or mechanical trauma required to obtain monodisperse suspensions which are then normally evaluated by microelectrophoresis. In this manner, it should be possible to study the influence of substrate and environmental factors on the charge density and potential at the cell periphery. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of borosilicate capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming-potential measurements is discussed. The electrokinetic potential of BALB/c 3T12 fibroblasts has been quantified as a function of pH, ionic strength, glutaraldehyde fixation, and Giemsa staining.

  7. On-stream chemical element monitor

    International Nuclear Information System (INIS)

    Averitt, O.R.; Dorsch, R.R.

    1979-01-01

    An apparatus and method for on-stream chemical element monitoring are described wherein a multiplicity of sample streams are flowed continuously through individual analytical cells and fluorescence analyses are performed on the sample streams in sequence, together with a method of controlling the time duration of each analysis as a function of the concomitant radiation exposure of a preselected perforate reference material interposed in the sample-radiation source path

  8. Smart Streaming for Online Video Services

    OpenAIRE

    Chen, Liang; Zhou, Yipeng; Chiu, Dah Ming

    2013-01-01

    Bandwidth consumption is a significant concern for online video service providers. Practical video streaming systems usually use some form of HTTP streaming (progressive download) to let users download the video at a faster rate than the video bitrate. Since users may quit before viewing the complete video, however, much of the downloaded video will be "wasted". To the extent that users' departure behavior can be predicted, we develop smart streaming that can be used to improve user QoE with ...

  9. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  10. Structured multi-stream command language

    International Nuclear Information System (INIS)

    Glad, A.S.

    1982-12-01

    A multi-stream command language was implemented to provide the sequential and decision-making operations necessary to run the neutral-beam ion sources connected to the Doublet III tokamak fusion device. A multi-stream command language was implemented in Pascal on a Classic 7870 running under MAX IV. The purpose of this paper is threefold. First, to provide a brief description of the programs comprising the command language including the operating system interaction. Second, to give a description of the language syntax and commands necessary to develop a procedure stream. Third, to provide a description of the normal operating procedures for executing either the sequential or interactive streams

  11. About the theory of congested transport streams

    OpenAIRE

    Valeriy GUK

    2009-01-01

    Talked about a theory, based on integrity of continuous motion of a transport stream. Placing of car and its speed is in a stream - second. Principle of application of the generalized methods of design and new descriptions of the states of transport streams opens up. Travelling and transport potentials are set, and also external capacity of the system a «transport stream» is an exergy, that allows to make differential equation and decide the applied tasks of organization of travelling motion....

  12. The Overview and Appliance of some Streaming Video software solutions

    OpenAIRE

    Qin , Yan

    2010-01-01

    This paper introduces the basic streaming media technology, the streaming media system structure, principles of streaming media technology; streaming media file formats and so on. After that, it discusses the use streaming media in distance education, broadband video on demand, Internet broadcasting, video conferences and a more detailed exposition in streaming media. As the existing technology has been unable to satisfy the increasing needs of the Internet users, the streaming media technol...

  13. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  14. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  15. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  16. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    Science.gov (United States)

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  17. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  18. An ecohydrological stream type cassification of intermittent and ephemeral streams in the Southwestern United States 2397

    Science.gov (United States)

    Ephemeral and intermittent streams are the predominant fluvial forms in arid and semi-arid environments. Various studies have shown biological and habitat diversity in these lands to be considerably higher along stream corridors in comparison to adjacent uplands, yet knowledge of how these streams f...

  19. InSTREAM: the individual-based stream trout research and environmental assessment model

    Science.gov (United States)

    Steven F. Railsback; Bret C. Harvey; Stephen K. Jackson; Roland H. Lamberson

    2009-01-01

    This report documents Version 4.2 of InSTREAM, including its formulation, software, and application to research and management problems. InSTREAM is a simulation model designed to understand how stream and river salmonid populations respond to habitat alteration, including altered flow, temperature, and turbidity regimes and changes in channel morphology. The model...

  20. The ventral stream offers more affordance and the dorsal stream more memory than believed

    NARCIS (Netherlands)

    Postma, Albert; van der Lubbe, Robert Henricus Johannes; Zuidhoek, Sander

    2002-01-01

    Opposed to Norman's proposal, processing of affordance is likely to occur not solely in the dorsal stream but also in the ventral stream. Moreover, the dorsal stream might do more than just serve an important role in motor actions. It supports egocentric location coding as well. As such, it would

  1. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data

    Science.gov (United States)

    J. Bruce Wallace; Susan L Eggert; Judy L. Meyer; Jackson R. Webster

    2015-01-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance,...

  2. Evaluation of the streaming-matrix method for discrete-ordinates duct-streaming calculations

    International Nuclear Information System (INIS)

    Clark, B.A.; Urban, W.T.; Dudziak, D.J.

    1983-01-01

    A new deterministic streaming technique called the Streaming Matrix Hybrid Method (SMHM) is applied to two realistic duct-shielding problems. The results are compared to standard discrete-ordinates and Monte Carlo calculations. The SMHM shows promise as an alternative deterministic streaming method to standard discrete-ordinates

  3. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Science.gov (United States)

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  4. Robust Watermarking of Video Streams

    Directory of Open Access Journals (Sweden)

    T. Polyák

    2006-01-01

    Full Text Available In the past few years there has been an explosion in the use of digital video data. Many people have personal computers at home, and with the help of the Internet users can easily share video files on their computer. This makes possible the unauthorized use of digital media, and without adequate protection systems the authors and distributors have no means to prevent it.Digital watermarking techniques can help these systems to be more effective by embedding secret data right into the video stream. This makes minor changes in the frames of the video, but these changes are almost imperceptible to the human visual system. The embedded information can involve copyright data, access control etc. A robust watermark is resistant to various distortions of the video, so it cannot be removed without affecting the quality of the host medium. In this paper I propose a video watermarking scheme that fulfills the requirements of a robust watermark. 

  5. Streaming Multiframe Deconvolutions on GPUs

    Science.gov (United States)

    Lee, M. A.; Budavári, T.

    2015-09-01

    Atmospheric turbulence distorts all ground-based observations, which is especially detrimental to faint detections. The point spread function (PSF) defining this blur is unknown for each exposure and varies significantly over time, making image analysis difficult. Lucky imaging and traditional co-adding throws away lots of information. We developed blind deconvolution algorithms that can simultaneously obtain robust solutions for the background image and all the PSFs. It is done in a streaming setting, which makes it practical for large number of big images. We implemented a new tool that runs of GPUs and achieves exceptional running times that can scale to the new time-domain surveys. Our code can quickly and effectively recover high-resolution images exceeding the quality of traditional co-adds. We demonstrate the power of the method on the repeated exposures in the Sloan Digital Sky Survey's Stripe 82.

  6. Streaming Algorithms for Line Simplification

    DEFF Research Database (Denmark)

    Abam, Mohammad; de Berg, Mark; Hachenberger, Peter

    2010-01-01

    this problem in a streaming setting, where we only have a limited amount of storage, so that we cannot store all the points. We analyze the competitive ratio of our algorithms, allowing resource augmentation: we let our algorithm maintain a simplification with 2k (internal) points and compare the error of our...... simplification to the error of the optimal simplification with k points. We obtain the algorithms with O(1) competitive ratio for three cases: convex paths, where the error is measured using the Hausdorff distance (or Fréchet distance), xy-monotone paths, where the error is measured using the Hausdorff distance...... (or Fréchet distance), and general paths, where the error is measured using the Fréchet distance. In the first case the algorithm needs O(k) additional storage, and in the latter two cases the algorithm needs O(k 2) additional storage....

  7. DEMONSTRATION BULLETIN: ADSORPTION-INTEGRATED-REACTION (AIR2000) PROCESS, KSE, INC.

    Science.gov (United States)

    This Bulletin is a brief description of the AIR2000 technology developed by KSE, Inc., of Amherst, MA. The AIR2000 unit treats air streams containing volatile organic compounds (VOCs). The demonstration occurred at the Stamina Mills superfund site in North Smithfield, RI from Aug...

  8. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    Atmospheric deposition of air pollutants has been a severe threat to terrestrial and forest ecosystems for several decades. In Sweden sulphur deposition has caused acidification of soils and runoff, while nitrogen deposition only had a minor or local impact on runoff quality so far. During the last three decades, emission control has caused a decline in sulphur deposition, whereas nitrogen deposition on the other hand, has continued to increase to a rate several times above the natural background level. Long term changes in runoff acidity and nitrogen chemistry after these changes in deposition are of great concern. Monitoring of small, well-defined catchments including hydrochemistry of precipitation, soil and runoff, is a valuable tool for addressing this concern. When interpreting runoff data from such sites, the near-stream zone has been identified to be of crucial importance. The main objective for this thesis was to explain how catchment processes were related to short-term variation and long-term trends in the hydrochemistry of forest stream water. The field work was conducted on the strongly acidified and nitrogen limited Kindla catchment, with a special emphasis on the relationship between the near-stream zone and both stream acidity and nitrogen leaching. Furthermore, time series of hydrochemistry in forest stream water from 13 catchments were analysed for changes in acidity and nitrogen leaching. In three of these sites, soil water from E- and B-horizons was also analysed with regards to these questions. The investigations revealed that the near-stream zone was a net source of acidity in runoff at Kindla due to leaching of organic acids, although this contribution was overshadowed by sulphate from upland soils and deposition. The near-stream zone was also the main source for both organic nitrogen and nitrate to the stream, but the leaching rate was low, especially for inorganic nitrogen. In the 13 reference streams, sulphate concentrations declined in

  9. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed

    Science.gov (United States)

    Deirmendjian, Loris; Abril, Gwenaël

    2018-03-01

    Streams and rivers emit significant amounts of CO2 and constitute a preferential pathway of carbon transport from terrestrial ecosystems to the atmosphere. However, the estimation of CO2 degassing based on the water-air CO2 gradient, gas transfer velocity and stream surface area is subject to large uncertainties. Furthermore, the stable isotope signature of dissolved inorganic carbon (δ13C-DIC) in streams is strongly impacted by gas exchange, which makes it a useful tracer of CO2 degassing under specific conditions. For this study, we characterized the annual transfers of dissolved inorganic carbon (DIC) along the groundwater-stream-river continuum based on DIC concentrations, stable isotope composition and measurements of stream discharges. We selected a homogeneous, forested and sandy lowland watershed as a study site, where the hydrology occurs almost exclusively through drainage of shallow groundwater (no surface runoff). We observed the first general spatial pattern of decreases in pCO2 and DIC and an increase in δ13C-DIC from groundwater to stream orders 1 and 2, which was due to the experimentally verified faster degassing of groundwater 12C-DIC compared to 13C-DIC. This downstream enrichment in 13C-DIC could be modelled by simply considering the isotopic equilibration of groundwater-derived DIC with the atmosphere during CO2 degassing. A second spatial pattern occurred between stream orders 2 and 4, consisting of an increase in the proportion of carbonate alkalinity to the DIC accompanied by the enrichment of 13C in the stream DIC, which was due to the occurrence of carbonate rock weathering downstream. We could separate the contribution of these two processes (gas exchange and carbonate weathering) in the stable isotope budget of the river network. Thereafter, we built a hydrological mass balance based on drainages and the relative contribution of groundwater in streams of increasing order. After combining with the dissolved CO2 concentrations, we

  10. Cryptanalysis of the full Spritz stream cipher

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Isobe, Takanori

    2016-01-01

    Spritz is a stream cipher proposed by Rivest and Schuldt at the rump session of CRYPTO 2014. It is intended to be a replacement of the popular RC4 stream cipher. In this paper we propose distinguishing attacks on the full Spritz, based on a short-term bias in the first two bytes of a keystream an...

  11. Predicting quality of experience in multimedia streaming

    NARCIS (Netherlands)

    Menkovski, V.; Oredope, A.; Liotta, A.; Cuadra Sánchez, A.

    2009-01-01

    Measuring and predicting the user’s Quality of Experience (QoE) of a multimedia stream is the first step towards improving and optimizing the provision of mobile streaming services. This enables us to better understand how Quality of Service (QoS) parameters affect service quality, as it is actually

  12. Flooding in ephemeral streams: incorporating transmission losses

    Science.gov (United States)

    Stream flow in semiarid lands commonly occurs as a form of flash floods in dry ephemeral stream beds. The goal of this research is to couple hydrological and hydraulic models treats channel transmission losses and test the methodology in the USDA-ARS Walnut Gulch Experimental Watershed (WGEW). For h...

  13. Organism-substrate relationships in lowland streams

    NARCIS (Netherlands)

    Tolkamp, H.H.

    1980-01-01

    A field and laboratory study on the microdistribution of bottom dwelling macroinvertebrates to investigate the role of the stream substrate In the development and preservation of the macroinvertebrate communities in natural, undisturbed lowland streams is described. Field data on bottom substrates

  14. What Can Hierarchies Do for Data Streams?

    DEFF Research Database (Denmark)

    Yin, Xuepeng; Pedersen, Torben Bach

    2007-01-01

    Abstract. Much effort has been put into building data streams management systems for querying data streams. However, the query languages have mostly been SQL-based and aimed for low-level analysis of base data; therefore, there has been little work on supporting OLAP-like queries that provide rea...

  15. Coldwater fish in wadeable streams [Chapter 8

    Science.gov (United States)

    Jason B. Dunham; Amanda E. Rosenberger; Russell F. Thurow; C. Andrew Dolloff; Philip J. Howell

    2009-01-01

    Small, wadeable streams comprise the majority of habitats available to fishes in fluvial networks. Wadeable streams are generally less than 1 m deep, and fish can be sampled without the use of water craft. Cold waters are defined as having mean 7-d summer maximum water temperatures of less than 20°C and providing habitat for coldwater fishes.

  16. Round-Robin Streaming with Generations

    DEFF Research Database (Denmark)

    Li, Yao; Vingelmann, Peter; Pedersen, Morten Videbæk

    2012-01-01

    We consider three types of application layer coding for streaming over lossy links: random linear coding, systematic random linear coding, and structured coding. The file being streamed is divided into sub-blocks (generations). Code symbols are formed by combining data belonging to the same...

  17. Streaming for Mathematics in Victorian Secondary Schools

    Science.gov (United States)

    Forgasz, Helen

    2010-01-01

    Streaming (or ability grouping) for mathematics learning is a contentious issue. It can also be considered an issue of equity or social justice as some students may be adversely affected by the practice. Currently, the Victorian Department of Education and Early Childhood Development (DEECD) does not appear to have clear guidelines on streaming.…

  18. Salmon carcass movements in forest streams

    Science.gov (United States)

    Burke Strobel; Daniel R. Shivley; Brett B. Roper

    2009-01-01

    The movements of salmon carcasses over time were studied in two forest streams in the context of a large-scale salmon carcass supplementation program. The objectives were to assess both the level of treatment after stream flows had displaced carcasses and to evaluate whether the magnitude of carcass movements outside of a given reach could be predicted. The movements...

  19. THE PAL 5 STAR STREAM GAPS

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Hetherington, Nathan; Grillmair, C. J.

    2012-01-01

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s –1 within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  20. Storm Sewage Dilution in Smaller Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1987-01-01

    A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow.......A numerical model has been used to show how dilution in smaller streams can be effected by unsteady hydraulic conditions caused by a storm sewage overflow....

  1. Neotropical Amphibian Declines Affect Stream Ecosystem Properties

    Science.gov (United States)

    Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.

    2005-05-01

    Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.

  2. Shifting stream planform state decreases stream productivity yet increases riparian animal production

    Science.gov (United States)

    Venarsky, Michael P.; Walters, David M.; Hall, Robert O.; Livers, Bridget; Wohl, Ellen

    2018-01-01

    In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m−2), but values were 2 ×–21 × higher in undisturbed reaches per unit of stream valley (m−1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream–riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).

  3. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  4. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  5. The composition of corotating energetic particle streams

    International Nuclear Information System (INIS)

    McGuire, R.E.; von Rosenvinge, T.T.; McDonald, F.B.

    1978-01-01

    The relative abundances of 1.5--23 MeV per nucleon ions in corotating nucleon streams are compared with ion abundances in particle events associated with solar flares and with solar and solar wind abundances. He/O and C/O ratios are found to be a factor of the order 2--3 greater in corotating streams than in flare-associated events. The distribution of H/He ratios in corotating streams is found to be much narrower and of lower average value than in flare-associated events. H/He in corotating energetic particle streams compares favorably in both lack of variability and numerical value with H/He in high-speed solar wind plasma streams. The lack of variability suggests that the source population for the corotating energetic particles is the solar wind, a suggestion consistent with acceleration of the corotating particles in interplanetary space

  6. The ecology and biogeochemistry of stream biofilms.

    Science.gov (United States)

    Battin, Tom J; Besemer, Katharina; Bengtsson, Mia M; Romani, Anna M; Packmann, Aaron I

    2016-04-01

    Streams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life. In this Review, we describe the ecology and biogeochemistry of stream biofilms and highlight the influence of physical and ecological processes on their structure and function. Recent advances in the study of biofilm ecology may pave the way towards a mechanistic understanding of the effects of climate and environmental change on stream biofilms and the biogeochemistry of stream ecosystems.

  7. StreamExplorer: A Multi-Stage System for Visually Exploring Events in Social Streams.

    Science.gov (United States)

    Wu, Yingcai; Chen, Zhutian; Sun, Guodao; Xie, Xiao; Cao, Nan; Liu, Shixia; Cui, Weiwei

    2017-10-18

    Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present StreamExplorer to facilitate the visual analysis, tracking, and comparison of a social stream at three levels. At a macroscopic level, StreamExplorer uses a new glyph-based timeline visualization, which presents a quick multi-faceted overview of the ebb and flow of a social stream. At a mesoscopic level, a map visualization is employed to visually summarize the social stream from either a topical or geographical aspect. At a microscopic level, users can employ interactive lenses to visually examine and explore the social stream from different perspectives. Two case studies and a task-based evaluation are used to demonstrate the effectiveness and usefulness of StreamExplorer.Analyzing social streams is important for many applications, such as crisis management. However, the considerable diversity, increasing volume, and high dynamics of social streams of large events continue to be significant challenges that must be overcome to ensure effective exploration. We propose a novel framework by which to handle complex social streams on a budget PC. This framework features two components: 1) an online method to detect important time periods (i.e., subevents), and 2) a tailored GPU-assisted Self-Organizing Map (SOM) method, which clusters the tweets of subevents stably and efficiently. Based on the framework, we present Stream

  8. Air lock

    International Nuclear Information System (INIS)

    Palkovich, P.; Gruber, J.; Madlener, W.

    1974-01-01

    The patent refers to an air lock system preferably for nuclear stations for the transport of heavy loads by means of a trolley on rails. For opening and closing of the air lock parts of the rails are removed, e.g. by a second rail system perpendicular to the main rails. (P.K.)

  9. Effects of Forecasted Climate Change on Stream Temperatures in the Nooksack River Basin

    Science.gov (United States)

    Truitt, S. E.; Mitchell, R. J.; Yearsley, J. R.; Grah, O. J.

    2017-12-01

    The Nooksack River in northwest Washington State provides valuable habitat for endangered salmon species, as such it is critical to understand how stream temperatures will be affected by forecasted climate change. The Middle and North Forks basins of the Nooksack are high-relief and glaciated, whereas the South Fork is a lower relief rain and snow dominated basin. Due to a moderate Pacific maritime climate, snowpack in the basins is sensitive to temperature increases. Previous modeling studies in the upper Nooksack basins indicate a reduction in snowpack and spring runoff, and a recession of glaciers into the 21st century. How stream temperatures will respond to these changes is unknown. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) coupled with a glacier dynamics model and the River Basin Model (RBM) to simulate hydrology and stream temperature from present to the year 2100. We calibrate the DHSVM and RBM to the three forks in the upper 1550 km2 of the Nooksack basin, which contain an estimated 3400 hectares of glacial ice. We employ observed stream-temperature data collected over the past decade and hydrologic data from the four USGS streamflow monitoring sites within the basin and observed gridded climate data developed by Linveh et al. (2013). Field work was conducted in the summer of 2016 to determine stream morphology, discharge, and stream temperatures at a number of stream segments for the RBM calibration. We simulate forecast climate change impacts, using gridded daily downscaled data from global climate models of the CMIP5 with RCP4.5 and RCP8.5 forcing scenarios developed using the multivariate adaptive constructed analogs method (MACA; Abatzoglou and Brown, 2011). Simulation results project a trending increase in stream temperature as a result of lower snowmelt and higher air temperatures into the 21st century, especially in the lower relief, unglaciated South Fork basin.

  10. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  11. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  12. StreamMap: Smooth Dynamic Visualization of High-Density Streaming Points.

    Science.gov (United States)

    Li, Chenhui; Baciu, George; Han, Yu

    2018-03-01

    Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on streaming points are required.

  13. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  14. Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R

    Directory of Open Access Journals (Sweden)

    Michael Hahsler

    2017-02-01

    Full Text Available In recent years, data streams have become an increasingly important area of research for the computer science, database and statistics communities. Data streams are ordered and potentially unbounded sequences of data points created by a typically non-stationary data generating process. Common data mining tasks associated with data streams include clustering, classification and frequent pattern mining. New algorithms for these types of data are proposed regularly and it is important to evaluate them thoroughly under standardized conditions. In this paper we introduce stream, a research tool that includes modeling and simulating data streams as well as an extensible framework for implementing, interfacing and experimenting with algorithms for various data stream mining tasks. The main advantage of stream is that it seamlessly integrates with the large existing infrastructure provided by R. In addition to data handling, plotting and easy scripting capabilities, R also provides many existing algorithms and enables users to interface code written in many programming languages popular among data mining researchers (e.g., C/C++, Java and Python. In this paper we describe the architecture of stream and focus on its use for data stream clustering research. stream was implemented with extensibility in mind and will be extended in the future to cover additional data stream mining tasks like classification and frequent pattern mining.

  15. The Midwest Stream Quality Assessment—Influences of human activities on streams

    Science.gov (United States)

    Van Metre, Peter C.; Mahler, Barbara J.; Carlisle, Daren M.; Coles, James F.

    2018-04-16

    Healthy streams and the fish and other organisms that live in them contribute to our quality of life. Extensive modification of the landscape in the Midwestern United States, however, has profoundly affected the condition of streams. Row crops and pavement have replaced grasslands and woodlands, streams have been straightened, and wetlands and fields have been drained. Runoff from agricultural and urban land brings sediment and chemicals to streams. What is the chemical, physical, and biological condition of Midwestern streams? Which physical and chemical stressors are adversely affecting biological communities, what are their origins, and how might we lessen or avoid their adverse effects?In 2013, the U.S. Geological Survey (USGS) conducted the Midwest Stream Quality Assessment to evaluate how human activities affect the biological condition of Midwestern streams. In collaboration with the U.S. Environmental Protection Agency National Rivers and Streams Assessment, the USGS sampled 100 streams, chosen to be representative of the different types of watersheds in the region. Biological condition was evaluated based on the number and diversity of fish, algae, and invertebrates in the streams. Changes to the physical habitat and chemical characteristics of the streams—“stressors”—were assessed, and their relation to landscape factors and biological condition was explored by using mathematical models. The data and models help us to better understand how the human activities on the landscape are affecting streams in the region.

  16. Ecoregions and stream morphology in eastern Oklahoma

    Science.gov (United States)

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the

  17. Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System

    Directory of Open Access Journals (Sweden)

    Adam Dassey

    2011-12-01

    Full Text Available Due to the various parameters that influence air solubility and microbubble production in dissolved air flotation (DAF, a multitude of values that cover a large range for these parameters are suggested for field systems. An unpacked saturator and an air quantification unit were designed to specify the effects of power, pressure, temperature, hydraulic retention time, and air flow on the DAF performance. It was determined that a pressure of 621 kPa, hydraulic retention time of 18.2 min, and air flow of 8.5 L/h would be the best controlled parameters for maximum efficiency in this unit. A temperature of 7 °C showed the greatest microbubble production, but temperature control would not be expected in actual application. The maximum microbubble flow from the designed system produced 30 mL of air (±1.5 per L of water under these conditions with immediate startup. The maximum theoretical dissolved air volume of 107 mL (±6 was achieved at a retention time of 2 h and a pressure of 621 kPa. To isolate and have better control over the various DAF operational parameters, the DAF unit was operated without the unsaturated flow stream. This mode of operation led to the formation of large bubbles at peak bubble production rates. In a real-world application, the large bubble formation will be avoided by mixing with raw unsaturated stream and by altering the location of dissolved air output flow.

  18. Stream Habitat Reach Summary - North Coast [ds63

    Data.gov (United States)

    California Natural Resource Agency — The shapefile is based on habitat unit level data summarized at the stream reach level. The database represents salmonid stream habitat surveys from 645 streams of...

  19. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    Determination of water quality index and portability of Iguedo stream in Edo ... has been found functional in assessing the water quality of this stream based on the ... Key words: Water quality index, physicochemical parameters, Iguedo Stream.

  20. Ecological health in the Nation's streams

    Science.gov (United States)

    Carlisle, Daren M.; Woodside, Michael D.

    2013-01-01

    Aquatic biological communities, which are collections of organisms, are a direct measure of stream health because they indicate the ability of a stream to support life. This fact sheet highlights selected findings of a national assessment of stream health by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). The assessment was unique in that it integrated the condition of three biological communities—algae, macroinvertebrates, and fish—as well as measures of streamflow modification, pesticides, nutrients, and other factors. At least one biological community was altered at 83 percent of assessed streams, and the occurrence of altered communities was highest in urban streams. Streamflows were modified at 86 percent of assessed streams, and increasing severity of streamflow modification was associated with increased occurrence of altered biological communities. Agricultural and urban land use in watersheds may contribute pesticides and nutrients to stream waters, and increasing concentrations of these chemicals were associated with increased occurrence of altered biological communities.

  1. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit

    2016-11-02

    Programmable switches make it easier to perform flexible network monitoring queries at line rate, and scalable stream processors make it possible to fuse data streams to answer more sophisticated queries about the network in real-time. Unfortunately, processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have network monitoring in the context of streaming; yet, previous work has not closed the loop in a way that allows network operators to perform streaming analytics for network monitoring applications at scale. To achieve this objective, Sonata allows operators to express a network monitoring query by considering each packet as a tuple and efficiently partitioning each query between the switches and the stream processor through iterative refinement. Sonata extracts only the traffic that pertains to each query, ensuring that the stream processor can scale traffic rates of several terabits per second. We show with a simple example query involving DNS reflection attacks and traffic traces from one of the world\\'s largest IXPs that Sonata can capture 95% of all traffic pertaining to the query, while reducing the overall data rate by a factor of about 400 and the number of required counters by four orders of magnitude. Copyright 2016 ACM.

  2. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  3. Quality models for audiovisual streaming

    Science.gov (United States)

    Thang, Truong Cong; Kim, Young Suk; Kim, Cheon Seog; Ro, Yong Man

    2006-01-01

    Quality is an essential factor in multimedia communication, especially in compression and adaptation. Quality metrics can be divided into three categories: within-modality quality, cross-modality quality, and multi-modality quality. Most research has so far focused on within-modality quality. Moreover, quality is normally just considered from the perceptual perspective. In practice, content may be drastically adapted, even converted to another modality. In this case, we should consider the quality from semantic perspective as well. In this work, we investigate the multi-modality quality from the semantic perspective. To model the semantic quality, we apply the concept of "conceptual graph", which consists of semantic nodes and relations between the nodes. As an typical of multi-modality example, we focus on audiovisual streaming service. Specifically, we evaluate the amount of information conveyed by a audiovisual content where both video and audio channels may be strongly degraded, even audio are converted to text. In the experiments, we also consider the perceptual quality model of audiovisual content, so as to see the difference with semantic quality model.

  4. High Definition Video Streaming Using H.264 Video Compression

    OpenAIRE

    Bechqito, Yassine

    2009-01-01

    This thesis presents high definition video streaming using H.264 codec implementation. The experiment carried out in this study was done for an offline streaming video but a model for live high definition streaming is introduced, as well. Prior to the actual experiment, this study describes digital media streaming. Also, the different technologies involved in video streaming are covered. These include streaming architecture and a brief overview on H.264 codec as well as high definition t...

  5. Fast algorithm for automatically computing Strahler stream order

    Science.gov (United States)

    Lanfear, Kenneth J.

    1990-01-01

    An efficient algorithm was developed to determine Strahler stream order for segments of stream networks represented in a Geographic Information System (GIS). The algorithm correctly assigns Strahler stream order in topologically complex situations such as braided streams and multiple drainage outlets. Execution time varies nearly linearly with the number of stream segments in the network. This technique is expected to be particularly useful for studying the topology of dense stream networks derived from digital elevation model data.

  6. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  7. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    Science.gov (United States)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.

  8. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  9. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    Science.gov (United States)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  10. Experiments to study the erosive effect of oxide casting streams on structures

    International Nuclear Information System (INIS)

    Stuka, B.; Knauss, H.; Kammerer, B.; Perinic, D.

    1992-04-01

    The experiments performed under an activity of the Nuclear Safety Project (PSF) make a contribution to the study of the erosive effect of oxide casting streams on structures. As aluminothermically generated oxide casting stream, 20 mm in diameter, was applied from 1.0 m dropping height to 40 mm thick horizontal stainless steel plates in free air atmosphere. The test parameters were different temperatures of preheating of the plates (900 and 1200deg C). By means of thermocouples offset in depth in the plates it was possible to record and represent the temperature distribution in the plate correlated with time. Regarding the direct erosive effect of an oxide casting stream as a function of the temperature of plate preheating it appeared that a high initial temperature of the stainless steel plate (1200deg C) causes an increased erosion area at the surface only, but does not exert a macroscopically visible influence on erosion depth. (orig.) [de

  11. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    Science.gov (United States)

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

  12. Time-Based Data Streams: Fundamental Concepts for a Data Resource for Streams

    Energy Technology Data Exchange (ETDEWEB)

    Beth A. Plale

    2009-10-10

    Real time data, which we call data streams, are readings from instruments, environmental, bodily or building sensors that are generated at regular intervals and often, due to their volume, need to be processed in real time. Often a single pass is all that can be made on the data, and a decision to discard or keep the instance is made on the spot. Too, the stream is for all practical purposes indefinite, so decisions must be made on incomplete knowledge. This notion of data streams has a different set of issues from a file, for instance, that is byte streamed to a reader. The file is finite, so the byte stream is becomes a processing convenience more than a fundamentally different kind of data. Through the duration of the project we examined three aspects of streaming data: the first, techniques to handle streaming data in a distributed system organized as a collection of web services, the second, the notion of the dashboard and real time controllable analysis constructs in the context of the Fermi Tevatron Beam Position Monitor, and third and finally, we examined provenance collection of stream processing such as might occur as raw observational data flows from the source and undergoes correction, cleaning, and quality control. The impact of this work is severalfold. We were one of the first to advocate that streams had little value unless aggregated, and that notion is now gaining general acceptance. We were one of the first groups to grapple with the notion of provenance of stream data also.

  13. Air lasing

    CERN Document Server

    Cheng, Ya

    2018-01-01

    This book presents the first comprehensive, interdisciplinary review of the rapidly developing field of air lasing. In most applications of lasers, such as cutting and engraving, the laser source is brought to the point of service where the laser beam is needed to perform its function. However, in some important applications such as remote atmospheric sensing, placing the laser at a convenient location is not an option. Current sensing schemes rely on the detection of weak backscattering of ground-based, forward-propagating optical probes, and possess limited sensitivity. The concept of air lasing (or atmospheric lasing) relies on the idea that the constituents of the air itself can be used as an active laser medium, creating a backward-propagating, impulsive, laser-like radiation emanating from a remote location in the atmosphere. This book provides important insights into the current state of development of air lasing and its applications.

  14. Removal of Oil and Grease as Emerging Pollutants of Concern (EPC in Wastewater Stream

    Directory of Open Access Journals (Sweden)

    Alade Abass O

    2011-12-01

    Full Text Available Wastewater characteristics, which depend on wastewater source, are increasingly becoming more toxic in recent times. The concentrations of oil and grease in wastewater streams have been observed to increase in wastewater stream with increasing adverse effects on the ecology. This results from the increasing use of oil and grease in high-demanded oil-processed foods, establishment and expansion of oil mills and refineries worldwide, as well as indiscriminate discharge of oil and grease into the water drains, domestically and industrially. This study reports the applications, efficiencies and challenges of the wastewater treatment techniques currently employed in the removal of oil and grease from the industrial wastewater and municipal water stream. The results shows that the concentrations of oil and grease injected into the ecosystem are of higher environmental impact and this needs to be given the desired attention. The desired development for effective removal of oil and grease as emerging pollutants of concern (EPC in wastewater stream are thus proposed. ABSTRAK: Ciri-ciri air sisa, bergantung kepada punca air sisa tersebut, menjadi semakin toksik akhir-akhir ini. Kepekatan minyak dan gris dalam air sisa anak sungai dilihat makin bertambah dalam air sisa anak sungai dengan bertambahnya kesan negatif ke atas ekologi. Ini disebabkan oleh peningkatan penggunaan minyak dan gris dalam makanan berproses yang tinggi permintaannya, penubuhan dan perkembangan kilang pertroleum dan loji penapisan di seluruh dunia. Minyak dan gris juga dibuang sewenang-wenangnya ke dalam parit air, dari kalangan domestik dan industry. Kajian ini membentangkan tentang aplikasi, keberkesanan dan teknik cabaran rawatan air buangan yang kini digunakan dalam pembuangan minyak dan gris dari air sisa industry dan air sungai perbandaran. Keputusan menunjukkan kepekatan minyak dan gris yang wujud dibuang ke dalam ekosistem mempunyai impak yang lebih tinggi terhadap persekitaran

  15. Air Warfare

    Science.gov (United States)

    2002-03-01

    genus as its predecessor of pre-war days. It would, however, be erroneous to conclude from this that the military value of each new development was...the paucity of communications, its conduct, when acting alone, has of necessity to be somewhat stereotyped in nature, and to con- form to a pre...the air, the attack commander, provided his command be equipped with defensive air power, has a rôle to perform which is simple and stereotyped in

  16. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    Science.gov (United States)

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  17. Air conditioner

    International Nuclear Information System (INIS)

    Sato, Masaaki

    1993-01-01

    The present invention provides an air conditioner which can prevent an undesirable effects on a human body due to radon daughter nuclides in a closed space. That is, the concentration of the radon daughter nuclides in the air in the closed space is continuously measured. A necessary amount of ventilation air is determined based on the measured concentration to generate control signals. External air is introduced into the closed space by the generated control signals. With such procedures, necessary amount of external air is taken from the atmospheric air which can be regarded to have the radon daughter nuclide concentration substantially at zero, thereby enabling to reduce the concentration of the radon daughter nuclides in the closed space. As a result, undesired effects on the human body due to the radon daughter nuclides staying in the closed space can be prevented. According to simulation, the radon daughter nuclides are rapidly decreased only by ventilation only for three times or so in one hour. Accordingly, ventilation is extremely effective and convenient means as a countermeasure for the radon daughter nuclides. (I.S.)

  18. Trends in concentrations and export of nitrogen in boreal forest streams

    Energy Technology Data Exchange (ETDEWEB)

    Sarkkola, S.; Nieminen, M. [Finnish Forest Research Inst., Vantaa (Finland); Koivusalo, H. [Aalto University School of Science and Technology, Espoo (Finland), Dept. of Civil and Environmental Engineering] [and others

    2012-11-01

    Temporal trends in inorganic and organic nitrogen (N) export in the stream water between 1979 and 2006 were studied in eight forested headwater catchments in eastern Finland, where an increasing air-temperature trend and a decreasing N-deposition trend has been observed since the 1980s. The Seasonal Kendall test was conducted to study if the stream water N concentrations have changed concurrently and a mixed model regression analysis was used to study which catchment characteristics and hydrometeorological variables were related to the variation in stream water N. The annual concentrations of total organic N (TON) increased at two catchments and the concentrations of nitrate (NO{sub 3}-N) and ammonium (NH{sub 4}-N) decreased at three and four catchments, respectively. The main factor explaining variation in concentrations and export of N was percentage of peatlands in a catchment. The NH{sub 4}-N concentrations were also related to the N deposition, and the exports of NO{sub 3}, NH{sub 4}, and TON to precipitation. Quantitative changes in both the N concentrations and exports were small. The results suggested relatively small changes in the N concentrations and exports between 1979 and 2006, most probably because the effects of increased air and stream water temperatures largely have been concealed behind the concurrent decrease in N deposition. (orig.)

  19. Stream Processing Using Grammars and Regular Expressions

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Terp

    disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...

  20. Authentication for Propulsion Test Streaming Video

    Data.gov (United States)

    National Aeronautics and Space Administration — A streaming video system was developed and implemented at SSC to support various propulsion projects at SSC. These projects included J-2X and AJ-26 rocket engine...

  1. Web Audio/Video Streaming Tool

    Science.gov (United States)

    Guruvadoo, Eranna K.

    2003-01-01

    In order to promote NASA-wide educational outreach program to educate and inform the public of space exploration, NASA, at Kennedy Space Center, is seeking efficient ways to add more contents to the web by streaming audio/video files. This project proposes a high level overview of a framework for the creation, management, and scheduling of audio/video assets over the web. To support short-term goals, the prototype of a web-based tool is designed and demonstrated to automate the process of streaming audio/video files. The tool provides web-enabled users interfaces to manage video assets, create publishable schedules of video assets for streaming, and schedule the streaming events. These operations are performed on user-defined and system-derived metadata of audio/video assets stored in a relational database while the assets reside on separate repository. The prototype tool is designed using ColdFusion 5.0.

  2. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  3. Watershed impervious cover relative to stream location

    Data.gov (United States)

    U.S. Environmental Protection Agency — Estimates of watershed (12-digit huc) impervious cover and impervious cover near streams and water body shorelines for three dates (2001, 2006, 2011) using NLCD...

  4. Radiation streaming with SAM-CE

    International Nuclear Information System (INIS)

    De Gangi, N.; Cohen, M.O.; Waluschka, E.; Steinberg, H.A.

    1980-01-01

    The SAM-CE Monte Carlo code has been employed to calculate doses, due to neutron streaming, on the operating floor and other locations of the Millstone Unit II Nuclear Power Facility. Calculated results were compared against measured doses

  5. Stream biomonitoring using macroinvertebrates around the globe

    NARCIS (Netherlands)

    Buss, Daniel F.; Carlisle, Daren M.; Chon, Tae Soo; Culp, Joseph; Harding, Jon S.; Keizer-Vlek, H.E.; Robinson, Wayne A.; Strachan, Stephanie; Thirion, Christa; Hughes, Robert M.

    2015-01-01

    Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the

  6. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  7. Side Stream Filtration for Cooling Towers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  8. Stream sediment sampling and analysis. Final report

    International Nuclear Information System (INIS)

    Means, J.L.; Voris, P.V.; Headington, G.L.

    1986-04-01

    The objectives were to sample and analyze sediments from upstream and downstream locations (relative to the Goodyear Atomic plant site) of three streams for selected pollutants. The three streams sampled were the Scioto River, Big Beaver Creek, and Big Run Creek. Sediment samples were analyzed for EPA's 129 priority pollutants (Clean Water Act) as well as isotopic uranium ( 234 U, 235 U, and 238 U) and technetium-99

  9. Landscaping Considerations for Urban Stream Restoration Projects

    National Research Council Canada - National Science Library

    Bailey, Pam

    2004-01-01

    ... after restoration and its functionality for public use. The landscaping component of such stream and riparian restoration projects must be emphasized given its importance of visual success and public perception. The purpose of this technical note is to address landscaping considerations associated with urban stream and riparian restoration projects, and provide ideas to managers for enhancing the visual appeal and aesthetic qualities of urban projects.

  10. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  11. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  12. Three-dimensional features on oscillating microbubbles streaming flows

    Science.gov (United States)

    Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2013-11-01

    Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.

  13. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  14. Information Behavior on Social Live Streaming Services

    Directory of Open Access Journals (Sweden)

    Scheibe, Katrin

    2016-06-01

    Full Text Available In the last few years, a new type of synchronous social networking services (SNSs has emerged—social live streaming services (SLSSs. Studying SLSSs is a new and exciting research field in information science. What information behaviors do users of live streaming platforms exhibit? In our empirical study we analyzed information production behavior (i.e., broadcasting as well as information reception behavior (watching streams and commenting on them. We conducted two quantitative investigations, namely an online survey with YouNow users (N = 123 and observations of live streams on YouNow (N = 434. YouNow is a service with video streams mostly made by adolescents for adolescents. YouNow users like to watch streams, to chat while watching, and to reward performers by using emoticons. While broadcasting, there is no anonymity (as in nearly all other WWW services. Synchronous SNSs remind us of the film The Truman Show, as anyone has the chance to consciously broadcast his or her own life real-time.

  15. STREAMS - Supporting Underrepresented Groups in Earth Sciences

    Science.gov (United States)

    Carvalho-Knighton, K.; Johnson, A.

    2009-12-01

    In Fall 2008, STREAMS (Supporting Talented and Remarkable Environmental And Marine Science students) Scholarship initiative began at the University of South Florida St. Petersburg, the only public university in Pinellas County. STREAMS is a partnership between the University of South Florida St. Petersburg’s (USFSP) Environmental Science and Policy Program and University of South Florida’s (USF) College of Marine Science. The STREAMS Student Scholarship Program has facilitated increased recruitment, retention, and graduation of USFSP environmental science and USF marine science majors. The STREAMS program has increased opportunities for minorities and women to obtain undergraduate and graduate degrees, gain valuable research experience and engage in professional development activities. STREAMS scholars have benefited from being mentored by USFSP and USF faculty and as well as MSPhDs students and NSF Florida-Georgia LSAMP Bridge to Doctorate graduate fellows. In addition, STREAMS has facilitated activities designed to prepare student participants for successful Earth system science-related careers. We will elucidate the need for this initiative and vision for the collaboration.

  16. REVISED STREAM CODE AND WASP5 BENCHMARK

    International Nuclear Information System (INIS)

    Chen, K

    2005-01-01

    STREAM is an emergency response code that predicts downstream pollutant concentrations for releases from the SRS area to the Savannah River. The STREAM code uses an algebraic equation to approximate the solution of the one dimensional advective transport differential equation. This approach generates spurious oscillations in the concentration profile when modeling long duration releases. To improve the capability of the STREAM code to model long-term releases, its calculation module was replaced by the WASP5 code. WASP5 is a US EPA water quality analysis program that simulates one-dimensional pollutant transport through surface water. Test cases were performed to compare the revised version of STREAM with the existing version. For continuous releases, results predicted by the revised STREAM code agree with physical expectations. The WASP5 code was benchmarked with the US EPA 1990 and 1991 dye tracer studies, in which the transport of the dye was measured from its release at the New Savannah Bluff Lock and Dam downstream to Savannah. The peak concentrations predicted by the WASP5 agreed with the measurements within ±20.0%. The transport times of the dye concentration peak predicted by the WASP5 agreed with the measurements within ±3.6%. These benchmarking results demonstrate that STREAM should be capable of accurately modeling releases from SRS outfalls

  17. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. South Stream Project and the Ukrainian Factor

    Directory of Open Access Journals (Sweden)

    Roxana Ioana Banciu

    2015-03-01

    Full Text Available The paper seeks to develop an analysis of the South Stream project in view of the Ukrainian crisis. We cannot put aside the internal factor as Ukraine is facing serious internal issues such as corruption and instability, therefore Russia’s invasion of Ukraine can not be simply ignored in this pipeline project. The article uses mostly facts that happened throughout last years, as well as for and against declarations in the case of the South Stream project and its mother Russia. When we hear about South Stream, we think of Russia and since 2007, this pipeline has encouraged Putin’s faith in energy superpower. A good point to start with was to gather all declarations since then and cover all actions that regard the South Stream game. In Russian foreign policy for the South Stream race, Soft Power was used more than enough and it has recently made room for Hard Power, which is the Ukraine never ending episode. Insights of the South Stream story have been lately related both softly and hardly, this is the reason why I have chosen to analyse both sides in order to complete the energy landscape.

  19. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  20. Impact of stream restoration on flood waves

    Science.gov (United States)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  1. Revisiting diesel fuel formulation from Petroleum light and middle refinery streams based on optimized engine behavior

    OpenAIRE

    Ben Amara , Arij; Dauphin , Roland; Babiker , Hassan; Viollet , Yoann; Chang , Junseok; Jeuland , Nicolas; Amer , Amer

    2016-01-01

    International audience; The share of diesel fuel in European transport sector, which currently represents over 50% of total 11 demand, is increasing, requiring massive imports of this product, while at the same time, gasoline fuels are 12 today in surplus. In terms of air pollutant emissions, gasoline and kerosene streams have shown potential 13 in achieving lower emissions in Compression Ignition (CI) engines, particularly nitrogen oxides (NOx) 14 and particulates. A new fuel formulation app...

  2. The Stream-Catchment (StreamCat) and Lake-Catchment ...

    Science.gov (United States)

    Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate

  3. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  4. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    OpenAIRE

    Costa, Maria Angélica Martins; Ribeiro, Ana Paula Rodrigues Alves; Tognetti, Érica Rodrigues; Aguiar, Mônica Lopes; Gonçalves, José Antônio Silveira; Coury, José Renato

    2005-01-01

    Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency var...

  5. Performance of a Venturi scrubber in the removal of fine powder from a confined gas stream

    Directory of Open Access Journals (Sweden)

    Maria Angélica Martins Costa

    2005-06-01

    Full Text Available Experimental results on the performance of a laboratory scale rectangular Venturi scrubber in the removal of fine mineral particles from a confined air stream are presented, and a new correlation is proposed and evaluated. The scrubber was operated with air velocities in the throat varying from 58 m/s to 75 m/s and liquid flow rates varying from 280 ml/min to 900 ml/min. Liquid was injected as a jet emerging from a 1.0 mm orifice at the throat. Results for dust collection grade efficiency varied from 87% to 98% for particles from 0.1 µm to 2.0 µm.

  6. MODELING OF CONVECTIVE STREAMS IN PNEUMOBASIC OBJECTS (Part 2

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available The article presents modeling for investigation of aerodynamic processes on area sections (including a group of complex constructional works for different regimes of drop and wind streams  and  temperature  conditions  and  in  complex  constructional  works  (for  different regimes of heating and ventilation. There were developed different programs for innovation problems solution in the field of heat and mass exchange in three-dimensional space of pres- sures-speeds-temperatures of оbjects.The field of uses of pneumobasic objects: construction and roof of tennis courts, hockey pitches, swimming pools , and also exhibitions’ buildings, circus buildings, cafes, aqua parks, studios, mobile objects of medical purposes, hangars, garages, construction sites, service sta- tions and etc. Advantages of such objects are the possibility and simplicity of multiple instal- lation and demolition works. Their large-scale implementation is determined by temperature- moisture conditions under the shells.Analytical and calculating researches, real researches of thermodynamic parameters of heat and mass exchange, multifactorial processes of air in pneumobasic objects, their shells in a wide range of climatic parameters of air (January – December in the Republic of Belarus, in many geographical latitudes of many countries have shown that the limit of the possibility of optimizing wind loads, heat flow, acoustic effects is infinite (sports, residential, industrial, warehouse, the military-technical units (tanks, airplanes, etc.. In modeling of convective flows in pneumobasic objects (part 1 there are processes with higher dynamic parameters of the air flow for the characteristic pneumobasic object, carried out the calculation of the velocity field, temperature, pressure at the speed of access of air through the inflow holes up to 5 m/sec at the moments of times (20, 100, 200, 400 sec. The calculation was performed using the developed mathematical

  7. Resource synergy in stream periphyton communities

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Walter [University of Illinois, Urbana-Champaign; Fanta, S.E. [University of Illinois; Roberts, Brian J [ORNL; Francoeur, Steven N. [Eastern Michigan University, Ypsilanti, MI

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  8. THE ORBIT OF THE ORPHAN STREAM

    International Nuclear Information System (INIS)

    Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian; Xu Yan

    2010-01-01

    We use recent Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopy and the Sloan Digital Sky Survey (SDSS) and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream'. We fit orbital parameters to the data and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc, and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud has velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253 0 , 49 0 ), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g - r) 0 = 0.22. The BHB stars have a low metallicity of [Fe/H] WBG = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10 11 M sun , integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v halo = 73 ± 24 km s -1 , a disk+bulge mass of M(R 11 M sun , and a halo mass of M(R 11 M sun . However, we can find similar fits to the data that use a Navarro-Frenk-White halo profile or that have smaller disk masses and correspondingly larger

  9. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  10. Compressed-air flow control system.

    Science.gov (United States)

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  11. Air surveillance

    International Nuclear Information System (INIS)

    Patton, G.W.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995)

  12. Air surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  13. RStorm: Developing and Testing Streaming Algorithms in R

    NARCIS (Netherlands)

    Kaptein, M.C.

    2014-01-01

    Streaming data, consisting of indefinitely evolving sequences, are becoming ubiquitous in many branches of science and in various applications. Computer scientists have developed streaming applications such as Storm and the S4 distributed stream computing platform1 to deal with data streams.

  14. RStorm : Developing and testing streaming algorithms in R

    NARCIS (Netherlands)

    Kaptein, M.C.

    2014-01-01

    Streaming data, consisting of indefinitely evolving sequences, are becoming ubiquitous in many branches of science and in various applications. Computer scientists have developed streaming applications such as Storm and the S4 distributed stream computing platform1 to deal with data streams.

  15. Sampling, Splitting and Merging in Coinductive Stream Calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan); C. Bolduc; J. Desharnais; B. Ktari

    2010-01-01

    textabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of \\emph{stream calculus} and \\emph{stream circuits} for defining and

  16. Sampling, splitting and merging in coinductive stream calculus

    NARCIS (Netherlands)

    M. Niqui (Milad); J.J.M.M. Rutten (Jan)

    2009-01-01

    htmlabstractWe study various operations for partitioning, projecting and merging streams of data. These operations are motivated by their use in dataflow programming and the stream processing languages. We use the framework of stream calculus and stream circuits for defining and proving properties

  17. Slope failure as an upslope source of stream wood

    Science.gov (United States)

    Daniel. Miller

    2013-01-01

    Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...

  18. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  19. POLA RASIO KEUANGAN PADA SAAT UP STREAM DAN DOWN STREAM DI INDUSTRI REALESTAT YANG GO PUBLIC

    Directory of Open Access Journals (Sweden)

    David Sukardi Kodrat

    2006-01-01

    Full Text Available This research has purpose to explain differences on indicator financial ratio in up and down stream condition. This research uses real estate industries listed on Jakarta Stock Exchange as a sample. Sample selection is performed based on purposive sampling method with object to gain sample according to the research aim. Based on those criteria, there are 18 companies, which have fulfilling the conditions needed, starting from 1994 until 2002. The classification of business cycle on up and down stream conditions to used stock pricing indexes of property and real estate which calculated by arithmatic mean method. Based on those criteria, the classifications from 1994 until 1997 are represented by up stream condition and from 1998 until 2002 are represented by down stream condition. The result shows indicators: profitability ratios, gross margin ratios, capital turnover ratios, asset to equity ratios, growth ratios, liquidity ratios, leverage ratios, and cash flow ratios are different in up and down stream conditions, both simultaneously and partially. Simultaneously, there is a significant difference between up and down stream condition with wilks lambda of 0,346 and p value of 0,000. This research shows financial ratio indicator has differences on business cycle. Abstract in Bahasa Indonesia : Penelitan ini mempunyai tujuan untuk mengetahui perbedaan indikator rasio keuangan pada kondisi up stream dan down stream. Penelitian ini menggunakan sampel pada industri di sektor properti yang terdaftar di Bursa Efek Jakarta. Pemilihan sampel dalam penelitian ini menggunakan Purposive Sampling yaitu sampel diambil berdasarkan kriteria-kriteria tertentu yang sesuai dengan tujuan penelitian ini. Berdasarkan kriteria tersebut, terdapat 18 perusahaan yang dapat dijadikan sampel mulai tahun 1994 sampai dengan 2002. Untuk menentukan perubahan business cycle pada kondisi up stream dan down stream dilakukan dengan menggunakan indeks harga saham di sektor properti

  20. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  1. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  2. Stream temperature responses to timber harvest and best management practices—findings from the ODF RipStream project

    Science.gov (United States)

    Jeremy D. Groom

    2013-01-01

    Studies over the past 40 years have established that riparian buff er retention along streams protects against stream temperature increase. Th is protection is neither universal nor complete; some buff ered streams still warm, while other streams’ temperatures remain stable. Oregon Department of Forestry developed riparian rules in the Forest Practices Act (FPA) to...

  3. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  4. Self-focusing relativistic electron streams in plasmas

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1975-01-01

    A relativistic electron stream propagating through a dense plasma induces current and charge densities which determine how the stream can self-focus. Magnetic self-focusing is possible because stream-current neutralization, although extensive, is not complete. Electric self-focusing can occur because the stream charge becomes overneutralized when the net current is smaller than a critical value. Under some circumstances, the latter process can cause the stream to focus into a series of electron bunches

  5. A survey of systems for massive stream analytics

    OpenAIRE

    Singh, Maninder Pal; Hoque, Mohammad A.; Tarkoma, Sasu

    2016-01-01

    The immense growth of data demands switching from traditional data processing solutions to systems, which can process a continuous stream of real time data. Various applications employ stream processing systems to provide solutions to emerging Big Data problems. Open-source solutions such as Storm, Spark Streaming, and S4 are the attempts to answer key stream processing questions. The recent introduction of real time stream processing commercial solutions such as Amazon Kinesis, IBM Infospher...

  6. Emergency response capability for pollutant releases to streams and rivers

    International Nuclear Information System (INIS)

    Buckner, M.R.; Hayes, D.W.; Watts, J.R.

    1975-01-01

    Stream-river models have been developed which provide an accurate prediction of normal and accidental pollutant releases to streams and rivers. Stream parameters are being developed for the Savannah River Plant streams and the Savannah River to allow quick response in case of an accidental release of radioactive material. These data are stored on permanent disk storage for quick access via the JOSHUA operating system. This system provides an efficient and flexible emergency response capability for pollutant releases to streams and rivers

  7. Streaming Media Seminar--Effective Development and Distribution of Streaming Multimedia in Education

    Science.gov (United States)

    Mainhart, Robert; Gerraughty, James; Anderson, Kristine M.

    2004-01-01

    Concisely defined, "streaming media" is moving video and/or audio transmitted over the Internet for immediate viewing/listening by an end user. However, at Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA), streaming media is approached from a broader perspective. The working definition includes…

  8. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    NARCIS (Netherlands)

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  9. MEKANISME SEGMENTASI LAJU BIT PADA DYNAMIC ADAPTIVE STREAMING OVER HTTP (DASH UNTUK APLIKASI VIDEO STREAMING

    Directory of Open Access Journals (Sweden)

    Muhammad Audy Bazly

    2015-12-01

    Full Text Available This paper aims to analyze Internet-based streaming video service in the communication media with variable bit rates. The proposed scheme on Dynamic Adaptive Streaming over HTTP (DASH using the internet network that adapts to the protocol Hyper Text Transfer Protocol (HTTP. DASH technology allows a video in the video segmentation into several packages that will distreamingkan. DASH initial stage is to compress the video source to lower the bit rate video codec uses H.26. Video compressed further in the segmentation using MP4Box generates streaming packets with the specified duration. These packages are assembled into packets in a streaming media format Presentation Description (MPD or known as MPEG-DASH. Streaming video format MPEG-DASH run on a platform with the player bitdash teritegrasi bitcoin. With this scheme, the video will have several variants of the bit rates that gave rise to the concept of scalability of streaming video services on the client side. The main target of the mechanism is smooth the MPEG-DASH streaming video display on the client. The simulation results show that the scheme based scalable video streaming MPEG- DASH able to improve the quality of image display on the client side, where the procedure bufering videos can be made constant and fine for the duration of video views

  10. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  12. Air quality

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter of the 'Assessment of the state of the environment in Lebanon' describes the air quality and identifies the most important air quality issues. Baseline information about the factors affecting dispersion and the climate of Lebanon presents as well and overall estimation of total emissions in Lebanon. Emissions from vehicles, electricity and power plants generation are described. Industrial emitters of air pollutants are described for each kind of industry i.e.cement plants, Selaata fertilizer factory, sugar-beet factory, refineries and for those derived from the use of leaded fuel . Impact of economic and human activities on air quality in Lebanon (especially in Beirut and Tripoli) are quantified by quantities of CO 2 , SO 2 , NO x , total suspended particulates(TSP), deposition and their environmental effects on health. In abscence of emissions monitoring, data available are expressed in terms of fuel use, output and appropriate empirical factors, national output and workfores sizes. Finally key issues and some potential mitigation /management approaches are presented

  13. 7Q10 flows for SRS streams

    International Nuclear Information System (INIS)

    Chen, K.F.

    1996-01-01

    The Environmental Transport Group of the Environmental Technology Section was requested to predict the seven-day ten-year low flow (7Q10 flow) for the SRS streams based on historical stream flow records. Most of the historical flow records for the SRS streams include reactor coolant water discharged from the reactors and process water released from the process facilities. The most straight forward way to estimate the stream daily natural flow is to subtract the measured upstream reactor and/or facility daily effluents from the measured downstream daily flow. Unfortunately, this method does not always work, as indicated by the fact that sometimes the measured downstream volumetric flow rates are lower than the reactor effluent volumetric flow rates. For those cases that cannot be analyzed with the simple subtracting method, an alternative method was used to estimate the stream natural flows by statistically separating reactor coolant and process water flow data. The correlation between the calculated 7Q10 flows and the watershed areas for Four Mile Branch and Pen Branch agrees with that calculated by the USGS for Upper Three Runs and Lower Three Runs Creeks. The agreement between these two independent calculations lends confidence to the 7Q10 flow calculations presented in this report

  14. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  15. Are Urban Stream Restoration Plans Worth Implementing?

    Science.gov (United States)

    Sarvilinna, Auri; Lehtoranta, Virpi; Hjerppe, Turo

    2017-01-01

    To manage and conserve ecosystems in a more sustainable way, it is important to identify the importance of the ecosystem services they provide and understand the connection between natural and socio-economic systems. Historically, streams have been an underrated part of the urban environment. Many of them have been straightened and often channelized under pressure of urbanization. However, little knowledge exists concerning the economic value of stream restoration or the value of the improved ecosystem services. We used the contingent valuation method to assess the social acceptability of a policy-level water management plan in the city of Helsinki, Finland, and the values placed on improvements in a set of ecosystem services, accounting for preference uncertainty. According to our study, the action plan would provide high returns on restoration investments, since the benefit-cost ratio was 15-37. Moreover, seventy-two percent of the respondents willing to pay for stream restoration chose "I want to conserve streams as a part of urban nature for future generations" as the most motivating reason. Our study indicates that the water management plan for urban streams in Helsinki has strong public support. If better marketed to the population within the watershed, the future projects could be partly funded by the local residents, making the projects easier to accomplish. The results of this study can be used in planning, management and decision making related to small urban watercourses.

  16. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  17. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  18. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    Science.gov (United States)

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale.

  19. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  20. Cloud Formation, Sea-Air-Land Interaction, Mozambique, Africa

    Science.gov (United States)

    1991-01-01

    This rare depiction of the physical interactions of air land and sea in cloud formation was seen over Mozambique (12.0S, 40.5E). Moist low air, heated as it moves over land, rises and forms clouds. Even the coastal islands have enough heat to initiate the process. Once begun, the circulation is dynamic and the descending motion suppresses cloud formation on either side of the cloud stream. As clouds move inland, they rise to follow the land upslope.

  1. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  2. Java parallel secure stream for grid computing

    International Nuclear Information System (INIS)

    Chen, J.; Akers, W.; Chen, Y.; Watson, W.

    2001-01-01

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. The authors present a pure Java package called JPARSS (Java Parallel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addition X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed

  3. Activity Based Costing in Value Stream Mapping

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2010-12-01

    Full Text Available This paper attempts to integrate Value Stream Map (VSM with the cost aspects. A value stream map provides a blueprint for implementing lean manufacturing concepts by illustrating information and materials flow in a value stream. The objective of the present work is to integrate the various cost aspects. The idea is to introduce a cost line, which enhances the clarity in decision making. The redesigned map proves to be effective in highlighting the improvement areas, in terms of quantitative data. TAKT time calculation is carried out to set the pace of production. Target cost is set as a bench mark for product cost. The results of the study indicates that implementing VSM led to reduction in the following areas: processing lead time by 34%, processing cycle time was reduced by 35%, Inventory level by 66% and product cost from Rs 137 to Rs 125. It was found that adopting VSM in a small scale industry can make significant improvements.

  4. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang; Furtlehner, Cyril; Germain-Renaud, Cecile; Sebag, Michele

    2014-01-01

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  5. Cytoplasmic Streaming - Skylab Student Experiment ED-63

    Science.gov (United States)

    1973-01-01

    This chart describes the Skylab student experiment (ED-63), Cytoplasmic Streaming, proposed by Cheryl A. Peitz of Arapahoe High School, Littleton, Colorado. Experiment ED-63 was to observe the effect of zero-gravity on cytoplasmic streaming in the aquatic plant named Elodea, commonly called water weed or water thyme. The phenomenon of cytoplasmic streaming is not well understood, but it is recognized as the circulation mechanism of the internal materials or cytoplasm of a cell. Cytoplasm is a gelatinous substance that has the ability to change its viscosity and flow, carrying various cell materials with it. The activity can be stimulated by sunlight or heat. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  6. Data Stream Clustering With Affinity Propagation

    KAUST Repository

    Zhang, Xiangliang

    2014-07-09

    Data stream clustering provides insights into the underlying patterns of data flows. This paper focuses on selecting the best representatives from clusters of streaming data. There are two main challenges: how to cluster with the best representatives and how to handle the evolving patterns that are important characteristics of streaming data with dynamic distributions. We employ the Affinity Propagation (AP) algorithm presented in 2007 by Frey and Dueck for the first challenge, as it offers good guarantees of clustering optimality for selecting exemplars. The second challenging problem is solved by change detection. The presented StrAP algorithm combines AP with a statistical change point detection test; the clustering model is rebuilt whenever the test detects a change in the underlying data distribution. Besides the validation on two benchmark data sets, the presented algorithm is validated on a real-world application, monitoring the data flow of jobs submitted to the EGEE grid.

  7. Electrogravitational stability of oscillating streaming fluid cylinder

    International Nuclear Information System (INIS)

    Hasan, Alfaisal A.

    2011-01-01

    The electrogravitational instability of on oscillating streaming fluid cylinder under the action of the selfgravitating, capillary and electrodynamic forces has been discussed. The model is governed by the Mathieu second order integro-differential equation. Some limiting cases are recovering from the present general one. The capillary force is destabilizing in a small axisymmetric domain 0< x<1 and stabilizing otherwise. In the absence of electric fields, we found that the model is unstable in a small domain while it is selfgravitating stable in all other domains. The presence of the electric field led to the presence of a great number of stable waves. The electric field has a strong stabilizing influence on the selfgravitating instability of the model. The capillary force has a strong destabilizing influence on the selfgravitating instability of the model. Generally, the uniform stream supports the unstable waves, while the oscillating streaming has stability tendency.

  8. Programmable stream prefetch with resource optimization

    Science.gov (United States)

    Boyle, Peter; Christ, Norman; Gara, Alan; Mawhinney, Robert; Ohmacht, Martin; Sugavanam, Krishnan

    2013-01-08

    A stream prefetch engine performs data retrieval in a parallel computing system. The engine receives a load request from at least one processor. The engine evaluates whether a first memory address requested in the load request is present and valid in a table. The engine checks whether there exists valid data corresponding to the first memory address in an array if the first memory address is present and valid in the table. The engine increments a prefetching depth of a first stream that the first memory address belongs to and fetching a cache line associated with the first memory address from the at least one cache memory device if there is not yet valid data corresponding to the first memory address in the array. The engine determines whether prefetching of additional data is needed for the first stream within its prefetching depth. The engine prefetches the additional data if the prefetching is needed.

  9. Mining Building Metadata by Data Stream Comparison

    DEFF Research Database (Denmark)

    Holmegaard, Emil; Kjærgaard, Mikkel Baun

    2016-01-01

    to handle data streams with only slightly similar patterns. We have evaluated Metafier with points and data from one building located in Denmark. We have evaluated Metafier with 903 points, and the overall accuracy, with only 3 known examples, was 94.71%. Furthermore we found that using DTW for mining...... ways to annotate sensor and actuation points. This makes it difficult to create intuitive queries for retrieving data streams from points. Another problem is the amount of insufficient or missing metadata. We introduce Metafier, a tool for extracting metadata from comparing data streams. Metafier...... enables a semi-automatic labeling of metadata to building instrumentation. Metafier annotates points with metadata by comparing the data from a set of validated points with unvalidated points. Metafier has three different algorithms to compare points with based on their data. The three algorithms...

  10. Advanced content delivery, streaming, and cloud services

    CERN Document Server

    Sitaraman, Ramesh Kumar; Robinson, Dom

    2014-01-01

    While other books on the market provide limited coverage of advanced CDNs and streaming technologies, concentrating solely on the fundamentals, this book provides an up-to-date comprehensive coverage of the state-of-the-art advancements in CDNs, with a special focus on Cloud-based CDNs. The book includes CDN and media streaming basics, performance models, practical applications, and business analysis. It features industry case studies, CDN applications, and open research issues to aid practitioners and researchers, and a market analysis to provide a reference point for commercial entities. The book covers Adaptive Bitrate Streaming (ABR), Content Delivery Cloud (CDC), Web Acceleration, Front End Optimization (FEO), Transparent Caching, Next Generation CDNs, CDN Business Intelligence and more.

  11. Temporal Segmentation of MPEG Video Streams

    Directory of Open Access Journals (Sweden)

    Janko Calic

    2002-06-01

    Full Text Available Many algorithms for temporal video partitioning rely on the analysis of uncompressed video features. Since the information relevant to the partitioning process can be extracted directly from the MPEG compressed stream, higher efficiency can be achieved utilizing information from the MPEG compressed domain. This paper introduces a real-time algorithm for scene change detection that analyses the statistics of the macroblock features extracted directly from the MPEG stream. A method for extraction of the continuous frame difference that transforms the 3D video stream into a 1D curve is presented. This transform is then further employed to extract temporal units within the analysed video sequence. Results of computer simulations are reported.

  12. Lower Red River Meadow Stream Restoration Project

    International Nuclear Information System (INIS)

    1996-05-01

    As part of a continuing effort to restore anadromous fish populations in the South Fork Clearwater River basin of Idaho, Bonneville Power Administration (BPA) proposes to fund the Lower Red River Meadow Restoration Project (Project). The Project is a cooperative effort with the Idaho Soil and Water Conservation District, Nez Perce National Forest, Idaho Department of Fish and Game (IDFG), and the Nez Perce Tribe of Idaho. The proposed action would allow the sponsors to perform stream bank stabilization, aquatic and riparian habitat improvement activities on IDFG's Red River Management Area and to secure long-term conservation contracts or agreements for conducting streambank and habitat improvement activities with participating private landowners located in the Idaho County, Idaho, study area. This preliminary Environmental Assessment (EA) examines the potential environmental effects of stabilizing the stream channel, restoring juvenile fish rearing habitat and reestablishing a riparian shrub community along the stream

  13. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    Science.gov (United States)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value

  14. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  15. Identifying hidden voice and video streams

    Science.gov (United States)

    Fan, Jieyan; Wu, Dapeng; Nucci, Antonio; Keralapura, Ram; Gao, Lixin

    2009-04-01

    Given the rising popularity of voice and video services over the Internet, accurately identifying voice and video traffic that traverse their networks has become a critical task for Internet service providers (ISPs). As the number of proprietary applications that deliver voice and video services to end users increases over time, the search for the one methodology that can accurately detect such services while being application independent still remains open. This problem becomes even more complicated when voice and video service providers like Skype, Microsoft, and Google bundle their voice and video services with other services like file transfer and chat. For example, a bundled Skype session can contain both voice stream and file transfer stream in the same layer-3/layer-4 flow. In this context, traditional techniques to identify voice and video streams do not work. In this paper, we propose a novel self-learning classifier, called VVS-I , that detects the presence of voice and video streams in flows with minimum manual intervention. Our classifier works in two phases: training phase and detection phase. In the training phase, VVS-I first extracts the relevant features, and subsequently constructs a fingerprint of a flow using the power spectral density (PSD) analysis. In the detection phase, it compares the fingerprint of a flow to the existing fingerprints learned during the training phase, and subsequently classifies the flow. Our classifier is not only capable of detecting voice and video streams that are hidden in different flows, but is also capable of detecting different applications (like Skype, MSN, etc.) that generate these voice/video streams. We show that our classifier can achieve close to 100% detection rate while keeping the false positive rate to less that 1%.

  16. Methanotrophy in surface sediments of streams

    Science.gov (United States)

    Bagnoud, Alexandre; Pramateftaki, Paraskevi; Peter, Hannes; Battin, Tom

    2017-04-01

    Because streams are often found to be supersaturated in methane (CH4), they are considered as atmospheric sources of this greenhouse gas. However, little is known about the processes driving CH4 cycling in these environments, i.e. production, consumption and fluxes. CH4 is thought to be produced in deeper anoxic sediments, before it migrates up to reach the oxic stream water, where it can be oxidized by methanotrophs. In order to gain insights into this process, we investigated 14 different streams across Switzerland. We characterized the chemistry of surface and sediment waters by measuring dissolved chemical profiles. We also sampled surface sediments and determined methanotrophic rates with laboratory incubations and Michaelis-Menten modeling. Interestingly, rates were strongly correlated with the CH4 concentrations in stream waters, rather than in sediment waters. This indicates that methantrophic populations feed on CH4 from the surface streamwater, even though CH4 concentrations are higher in the sediment waters. Methanotrophy rates were also correlated with Crenothrix counts (based on 16S rRNA sequencing), a strict methanotroph, while this latter was correlated with pmoA counts (based on quantitative PCR), a gene involved in methanotrophy. These results show that Crenothrix genera are the most active methanotrophs in surface sediments of streams, and can represent more than 2% of microbial communities. Remarkably, the dominating Crenothrix species was detected in all 14 samples. This work allows the assessment of in situ methanotrophic rates, of the environmental parameters driving this process, and of the microbial populations carrying it out, and thus brings useful insights about carbon cycling in streams.

  17. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  18. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  19. Benchmark experiments on neutron streaming through JET Torus Hall penetrations

    Science.gov (United States)

    Batistoni, P.; Conroy, S.; Lilley, S.; Naish, J.; Obryk, B.; Popovichev, S.; Stamatelatos, I.; Syme, B.; Vasilopoulou, T.; contributors, JET

    2015-05-01

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in 6LiF/7LiF, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40 m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% 7Li were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with natLi and 7Li crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the

  20. STRIP: stream learning of influence probabilities

    DEFF Research Database (Denmark)

    Kutzkov, Konstantin

    2013-01-01

    cascades, and developing applications such as viral marketing. Motivated by modern microblogging platforms, such as twitter, in this paper we study the problem of learning influence probabilities in a data-stream scenario, in which the network topology is relatively stable and the challenge of a learning...... algorithm is to keep up with a continuous stream of tweets using a small amount of time and memory. Our contribution is a number of randomized approximation algorithms, categorized according to the available space (superlinear, linear, and sublinear in the number of nodes n) and according to dierent models...

  1. Neutron streaming studies along JET shielding penetrations

    Science.gov (United States)

    Stamatelatos, Ion E.; Vasilopoulou, Theodora; Batistoni, Paola; Obryk, Barbara; Popovichev, Sergey; Naish, Jonathan

    2017-09-01

    Neutronic benchmark experiments are carried out at JET aiming to assess the neutronic codes and data used in ITER analysis. Among other activities, experiments are performed in order to validate neutron streaming simulations along long penetrations in the JET shielding configuration. In this work, neutron streaming calculations along the JET personnel entrance maze are presented. Simulations were performed using the MCNP code for Deuterium-Deuterium and Deuterium- Tritium plasma sources. The results of the simulations were compared against experimental data obtained using thermoluminescence detectors and activation foils.

  2. Investigating methods of stream planform identification

    Science.gov (United States)

    Lohberg, M. M.; Lusk, K.; Miller, D.; Stonedahl, F.; Stonedahl, S. H.

    2013-12-01

    Stream planforms are used to map scientific measurements, estimate volumetric discharge, and model stream flow. Changes in these planforms can be used to quantify erosion and water level fluctuations. This research investigated five cost-effective methods of identifying stream planforms: (1) consumer-grade digital camera GPS (2) multi-view stereo 3D scene reconstruction (using Microsoft Photosynth (TM)) (3) a cross-sectional measurement approach (4) a triangulation-based measurement approach and (5) the 'square method' - a novel photogrammetric procedure which involved floating a large wooden square in the stream, photographing the square and banks from numerous angles and then using the square to correct for perspective and extract the outline (using custom post-processing software). Data for each of the five methods was collected at Blackhawk Creek in Davenport, Iowa. Additionally we placed 30 control points near the banks of the stream and measured 88 lengths between these control points. We measured or calculated the locations of these control points with each of our five methods and calculated the average percent error associated with each method using the predicted control point locations. The effectiveness of each method was evaluated in terms of accuracy, affordability, environmental intrusiveness, and ease of use. The camera equipped with GPS proved to be a very ineffective method due to an extremely high level of error, 289%. The 3D point cloud extracted from Photosynth was missing markers for many of the control points, so the error calculation (which yielded 11.7%) could only be based on five of the 88 lengths and is thus highly uncertain. The two non-camera methods (cross-sectional and triangulation measurements) resulted in low percent error (2.04% and 1.31% respectively) relative to the control point lengths, but these methods were very time consuming, exhausting, and only provided low resolution outlines. High resolution data collection would

  3. Air quality

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The anthropic pollution sources are essentially industrial or bound to transport. A phenomenon of these last twenty years is the decreasing of the industrial pollution and the increasing of pollution coming from automobiles. Emissions of furans and dioxines coming from municipal wastes are measured. A special attention is mentioned for polycyclic aromatic hydrocarbons coming from incomplete combustions. A last aspect of air pollution is studied with the effect on man, ecosystems and materials, by modeling or direct measurements. (N.C.)

  4. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  5. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  6. StreamQRE: Modular Specification and Efficient Evaluation of Quantitative Queries over Streaming Data.

    Science.gov (United States)

    Mamouras, Konstantinos; Raghothaman, Mukund; Alur, Rajeev; Ives, Zachary G; Khanna, Sanjeev

    2017-06-01

    Real-time decision making in emerging IoT applications typically relies on computing quantitative summaries of large data streams in an efficient and incremental manner. To simplify the task of programming the desired logic, we propose StreamQRE, which provides natural and high-level constructs for processing streaming data. Our language has a novel integration of linguistic constructs from two distinct programming paradigms: streaming extensions of relational query languages and quantitative extensions of regular expressions. The former allows the programmer to employ relational constructs to partition the input data by keys and to integrate data streams from different sources, while the latter can be used to exploit the logical hierarchy in the input stream for modular specifications. We first present the core language with a small set of combinators, formal semantics, and a decidable type system. We then show how to express a number of common patterns with illustrative examples. Our compilation algorithm translates the high-level query into a streaming algorithm with precise complexity bounds on per-item processing time and total memory footprint. We also show how to integrate approximation algorithms into our framework. We report on an implementation in Java, and evaluate it with respect to existing high-performance engines for processing streaming data. Our experimental evaluation shows that (1) StreamQRE allows more natural and succinct specification of queries compared to existing frameworks, (2) the throughput of our implementation is higher than comparable systems (for example, two-to-four times greater than RxJava), and (3) the approximation algorithms supported by our implementation can lead to substantial memory savings.

  7. Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data.

    Science.gov (United States)

    Wallace, J Bruce; Eggert, Susan L; Meyer, Judy L; Webster, Jackson R

    2015-05-01

    Riparian habitats provide detrital subsidies of varying quantities and qualities to recipient ecosystems. We used long-term data from three reference streams (covering 24 stream-years) and 13-year whole-stream organic matter manipulations to investigate the influence of terrestrial detrital quantity and quality on benthic invertebrate community structure, abundance, biomass, and secondary production in rockface (RF) and mixed substrates (MS) of forested headwater streams. Using a mesh canopy covering the entire treatment stream, we examined effects of litter ex'clusion, small- and large-wood removal, and addition of artificial wood (PVC) and leaves of varying quality on organic matter standing crops and invertebrate community structure and function. We assessed differences in functional feeding group distribution between substrate types as influenced by organic matter manipulations and long-term patterns of predator and prey production in manipulated vs. reference years. Particulate organic matter standing crops in MS of the treatment stream declined drastically with each successive year of litter exclusion, approaching zero after three years. Monthly invertebrate biomass and annual secondary production was positively related to benthic organic matter in the MS habitats. Rockface habitats exhibited fewer changes than MS habitats across all organic matter manipulations. With leaf addition, the patterns of functional group distribution among MS and RF habitats returned to patterns seen in reference streams. Secondary production per unit organic matter standing crop was greatest for the leaf addition period, followed by the reference streams, and significantly less for the litter exclusion and wood removal periods. These data indicate that the limited organic matter remaining in the stream following litter exclusion and wood removal was more refractory than that in the reference streams, whereas the added leaf material was more labile and readily converted into

  8. Stream remediation following a gasoline spill

    International Nuclear Information System (INIS)

    Owens, E.H.; Reiter, G.A.; Challenger, G.

    2000-01-01

    On June 10, 1999, a pipe ruptured on the Olympic Pipe Line causing the release, explosion and fire of up to one million litres of gasoline in Bellingham, Washington. It affected approximately 5 km of the Whatcom Creek ecosystem. Following the incident, several concurrent activities in the source area and downstream occurred. This paper discussed the remediation of the affected stream bed sections. During the period July 6 - August 16, an interagency project was implemented. It involved mechanical, manual, and hydraulic in-situ treatment techniques to remove the gasoline from the stream bed and the banks. In addition, a series of controlled, hydraulic flushes were conducted. The sluice or control gates at the head of the Whatcom Creek were opened each night, and bigger flushes took place before and after the treatments. Simultaneously, water and sediment were sampled and analysed. The data obtained provided information on the state of the initial stream water and stream sediment and on the effects that the remediation had had. The residual gasoline was successfully removed from the sediments and river banks in six weeks. No downstream movement of the released gasoline towards Bellingham was detected. 3 refs., 2 tabs., 11 figs

  9. Stream-crossing structure for deer fence

    Science.gov (United States)

    Robert M. Blair; James A. Hays; Louis Brunett

    1963-01-01

    Stream crossings are the most vulnerable points in a deer-proof fence. When an inadequately constructed crossing washes out, enclosed deer may escape and unwanted animals enter. Structures of the type described here have withstood 2 years of frequent, severe flooding in the pine-hardwood hills of central Louisiana.

  10. Streaming Media for Web Based Training.

    Science.gov (United States)

    Childers, Chad; Rizzo, Frank; Bangert, Linda

    This paper discusses streaming media for World Wide Web-based training (WBT). The first section addresses WBT in the 21st century, including the Synchronized Multimedia Integration Language (SMIL) standard that allows multimedia content such as text, pictures, sound, and video to be synchronized for a coherent learning experience. The second…

  11. The Chameleon Architecture for Streaming DSP Applications

    NARCIS (Netherlands)

    Bergmann, N.; Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Platzner, M.; Wolkotte, P.T.; Teich, J.; Holzenspies, P.K.F.; van de Burgwal, M.D.; Heysters, P.M.

    2007-01-01

    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a

  12. Quality of experience models for multimedia streaming

    NARCIS (Netherlands)

    Menkovski, V.; Exarchakos, G.; Liotta, A.; Cuadra Sánchez, A.

    2010-01-01

    Understanding how quality is perceived by viewers of multimedia streaming services is essential for efficient management of those services. Quality of Experience (QoE) is a subjective metric that quantifies the perceived quality, which is crucial in the process of optimizing tradeoff between quality

  13. Stream temperature investigations: field and analytic methods

    Science.gov (United States)

    Bartholow, J.M.

    1989-01-01

    This document provides guidance to the user of the U.S. Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP). Planning a temperature study is discussed in terms of understanding the management objectives and ensuring that the questions will be accurately answered with the modeling approach being used. A sensitivity analysis of SNTEMP is presented to illustrate which input variables are most important in predicting stream temperatures. This information helps prioritize data collection activities, highlights the need for quality control, focuses on which parameters can be estimated rather than measured, and offers a broader perspective on management options in terms of knowing where the biggest temperature response will be felt. All of the major input variables for stream geometry, meteorology, and hydrology are discussed in detail. Each variable is defined, with guidance given on how to measure it, what kind of equipment to use, where to obtain it from another agency, and how to calculate it if the data are in a form other than that required by SNTEMP. Examples are presented for the various forms in which water temperature, discharge, and meteorological data are commonly found. Ranges of values for certain input variables that are difficult to measure of estimate are given. Particular attention is given to those variables not commonly understood by field biologists likely to be involved in a stream temperature study. Pertinent literature is cited for each variable, with emphasis on how other people have treated particular problems and on results they have found.

  14. Microbial incorporation of nitrogen in stream detritus

    Science.gov (United States)

    Diane M. Sanzone; Jennifer L. Tank; Judy L. Meyer; Patrick J. Mulholland; Stuart E.G. Findlay

    2001-01-01

    We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15 content of samples collected during a 6-week15N-NH...

  15. Network Monitoring as a Streaming Analytics Problem

    KAUST Repository

    Gupta, Arpit; Birkner, Rü diger; Canini, Marco; Feamster, Nick; Mac-Stoker, Chris; Willinger, Walter

    2016-01-01

    , processing such network monitoring queries at high traffic rates requires both the switches and the stream processors to filter the traffic iteratively and adaptively so as to extract only that traffic that is of interest to the query at hand. Others have

  16. Event Streams Clustering Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Hanen Bouali

    2015-10-01

    Full Text Available Data streams are usually of unbounded lengths which push users to consider only recent observations by focusing on a time window, and ignore past data. However, in many real world applications, past data must be taken in consideration to guarantee the efficiency, the performance of decision making and to handle data streams evolution over time. In order to build a selectively history to track the underlying event streams changes, we opt for the continuously data of the sliding window which increases the time window based on changes over historical data. In this paper, to have the ability to access to historical data without requiring any significant storage or multiple passes over the data. In this paper, we propose a new algorithm for clustering multiple data streams using incremental support vector machine and data representative points’ technique. The algorithm uses a sliding window model for the most recent clustering results and data representative points to model the old data clustering results. Our experimental results on electromyography signal show a better clustering than other present in the literature

  17. Asynchronous stream processing with S-Net

    NARCIS (Netherlands)

    Grelck, C.; Scholz, S.-B.; Shafarenko, A.

    2010-01-01

    We present the rationale and design of S-Net, a coordination language for asynchronous stream processing. The language achieves a near-complete separation between the application code, written in any conventional programming language, and the coordination/communication code written in S-Net. Our

  18. Climate change and alpine stream biology

    DEFF Research Database (Denmark)

    Hotaling, Scott; Finn, Debra S.; Joseph Giersch, J.

    2017-01-01

    micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call...

  19. Learning from medical data streams: an introduction

    NARCIS (Netherlands)

    Pereira Rodrigues, P.; Pechenizkiy, M.; Gaber, M.M.; Gama, J.

    2011-01-01

    Clinical practice and research are facing a new challenge created by the rapid growth of health information science and technology, and the complexity and volume of biomedical data. Machine learning from medical data streams is a recent area of research that aims to provide better knowledge

  20. Evolving Coronal Holes and Interplanetary Erupting Stream ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of ...

  1. Staying in "the stream of life"

    DEFF Research Database (Denmark)

    Rasmussen, Birgitte; Delmar, Charlotte; Dolmer, Ilone

    2009-01-01

    Staying in the stream of life is about being the author of one's own meaningful life. It takes into account life phenomena embodied in the maintenance aspect of health care; dignity in relation to identity and integrity; and an understanding of the dialectical relation between frailty and strength....

  2. Zips : mining compressing sequential patterns in streams

    NARCIS (Netherlands)

    Hoang, T.L.; Calders, T.G.K.; Yang, J.; Mörchen, F.; Fradkin, D.; Chau, D.H.; Vreeken, J.; Leeuwen, van M.; Faloutsos, C.

    2013-01-01

    We propose a streaming algorithm, based on the minimal description length (MDL) principle, for extracting non-redundant sequential patterns. For static databases, the MDL-based approach that selects patterns based on their capacity to compress data rather than their frequency, was shown to be

  3. Operational Waste Stream Assumption for TSLCC Estimates

    International Nuclear Information System (INIS)

    Gillespie, S.

    2000-01-01

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS MandO 2000a), and AP-3.11Q, ''Technical Reports''

  4. Applications of on-stream analysis systems

    International Nuclear Information System (INIS)

    Howarth, W.J.

    1982-01-01

    Benefits of on-stream analysis include increased metal recovery, reduced consumption of reagents, increases in concentrate grade and savings in labour. A poorly designed analysis zone can give rise to incorrect assays as a result of segregation or excessive or variable aeration

  5. On the dynamics of stream piracy

    Science.gov (United States)

    Goren, L.; Willett, S. D.

    2012-04-01

    Drainage network reorganization by stream piracy is invoked repeatedly to explain the morphology of unique drainage patterns and as a possible mechanism inducing abrupt variations of sediment accumulation rates. However, direct evidence of stream piracy is usually rare, and is highly interpretation dependent. As a first step in assessing how probable capture events are and establishing the conditions that favor stream piracy versus the those that favor stable landscapes, we formulate analytically the physics of divide migration and capture events and study this formulation from a dynamical system point of view. The formulation is based on a one-dimensional topographic cross section between two channels that share a water divide. Two hillslope profiles diverge from the divide and drain into two fluvial bedrock tributaries, whose erosion rate is controlled by a stream power law. The rate of erosion at the bounding channels is thus a function of the upstream drainage area and local slope. A tectonically induced downward perturbation of the elevation of one of the bounding channels lowers the channel slope but at the same time increases the drainage area due to outward migration of the water divide. The changes in slope and area have opposing effect on the erosion rate at the bounding channels, so that the perturbation may either grow or be damped. We define the geomorphic and tectonic parameters that control the behavior of the system and find the regimes that lead to stable landscapes and to capture events.

  6. Monitoring of plutonium contaminated solid waste streams

    International Nuclear Information System (INIS)

    Birkhoff, G.; Notea, A.

    1977-01-01

    The planning of a system for monitoring Pu contaminated solid waste streams, from the nuclear fuel cycle, is considered on the basis of given facility waste management program. The inter relations between the monitoring system and the waste management objectives are stressed. Selection criteria with pertinent data of available waste monitors are given. Example of monitoring systems planning are presented and discussed

  7. Live Streaming | Events | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Live Streaming. Watch Academy events live here! There are no live events currently happening. Watch out this space for updates or suscribe to our YouTube channel by clicking here. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. 29th Mid-year meeting. Posted on 19 January 2018. The 29th Mid-year ...

  8. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  9. Air Quality System (AQS)

    Science.gov (United States)

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  10. AirData

    Data.gov (United States)

    U.S. Environmental Protection Agency — The AirData site provides access to yearly summaries of United States air pollution data, taken from EPA's air pollution databases. AirData has information about...

  11. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  12. Seiler Pollution Control Systems vitrification process for the treatment of hazardous waste streams

    International Nuclear Information System (INIS)

    Nuesch, P.C.; Sarko, A.B.

    1995-01-01

    Seiler Pollution Control Systems, Inc. (Seiler) applies an economical, transportable, compact high temperature vitrification process to recycle and/or stabilize mixed organic/inorganic waste streams. Organic components are gasified by the system and are used as an auxiliary energy source. The inorganic components are melted and bound up molecularly in a glass/ceramic matrix. These glass/ceramics are extremely stable and durable and will pass typical regulatory leachate tests. Waste types that can be processed through the Seiler vitrification system include incinerator flyash, paint sludges, plating wastes, metal hydroxide sludges, low level and mixed radioactive wastes, contaminated soils and sludges, asbestos, and various mixed organic/inorganic residues. For nonradioactive waste streams, a variety of commercially saleable glass/ceramic products can be produced. These materials are marketed either as architectural materials, abrasives, or insulating refractories. The glass/ceramics generated from radioactive waste streams can be formed in a shape that is easily handled, stored, and retrieved. The system, itself is modular and can either be used as a stand alone system or hooked-up in line to existing manufacturing and production facilities. It consists of four sections: feed preparation; preheater; vitrifier/converter, and air pollution control. The vitrification system can use oxygen enriched natural gas or fuel oil for both cost efficiency and to reduce air pollution emissions

  13. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  14. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  15. Supersonic Combustion of Hydrogen Jets System in Hypersonic Stream

    International Nuclear Information System (INIS)

    Zhapbasbaev, U.K.; Makashev, E.P.

    2003-01-01

    The data of calculated theoretical investigations of diffusive combustion of plane supersonic hydrogen jets in hypersonic stream received with Navier-Stokes parabola equations closed by one-para metrical (k-l) model of turbulence and multiply staged mechanism of hydrogen oxidation are given. Combustion mechanisms depending on the operating parameters are discussing. The influences of air stream composition and ways off fuel feed to the length of ignition delay and level quantity of hydrogen bum-out have been defined. The calculated theoretical results of investigations permit to make the next conclusions: 1. The diffusive combustion of the system of plane supersonic hydrogen jets in hypersonic flow happens in the cellular structures with alternation zones of intensive running of chemical reactions with their inhibition zones. 2. Gas dynamic and heat Mach waves cause a large - scale viscous formation intensifying mixing of fuel with oxidizer. 3. The system ignition of plane supersonic hydrogen jets in hypersonic airy co-flow happens with the formation of normal flame front of hydrogen airy mixture with transition to the diffusive combustion. 4. The presence of active particles in the flow composition initiates the ignition of hydrogen - airy mixture, provides the intensive running of chemical reactions and shortens the length of ignition delay. 5. The supersonic combustion of hydrogel-airy mixture is characterized by two zones: the intensive chemical reactions with an active energy heat release is occurring in the first zone and in the second - a slow hydrogen combustion limited by the mixing of fuel with oxidizer. (author)

  16. National Aquatic Resource Surveys (NARS) N/P Values for Streams - Wadeable Streams Assessment

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Aquatic Resource Survey (NARS) findings for nutrients in streams and lakes highlight that nutrient pollution is widespread across the United States and...

  17. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  18. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  19. A Function-Based Framework for Stream Assessment & Restoration Projects

    Science.gov (United States)

    This report lays out a framework for approaching stream assessment and restoration projects that focuses on understanding the suite of stream functions at a site in the context of what is happening in the watershed.

  20. Arrest of cytoplasmic streaming induces algal proliferation in green paramecia.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Takahashi

    Full Text Available A green ciliate Paramecium bursaria, bearing several hundreds of endosymbiotic algae, demonstrates rotational microtubule-based cytoplasmic streaming, in which cytoplasmic granules and endosymbiotic algae flow in a constant direction. However, its physiological significance is still unknown. We investigated physiological roles of cytoplasmic streaming in P. bursaria through host cell cycle using video-microscopy. Here, we found that cytoplasmic streaming was arrested in dividing green paramecia and the endosymbiotic algae proliferated only during the arrest of cytoplasmic streaming. Interestingly, arrest of cytoplasmic streaming with pressure or a microtubule drug also induced proliferation of endosymbiotic algae independently of host cell cycle. Thus, cytoplasmic streaming may control the algal proliferation in P. bursaria. Furthermore, confocal microscopic observation revealed that a division septum was formed in the constricted area of a dividing paramecium, producing arrest of cytoplasmic streaming. This is a first report to suggest that cytoplasmic streaming controls proliferation of eukaryotic cells.

  1. EFFECTS OF STREAM RESTORATION ON DENITRIFICATION In AN URBANIZING WATERSHED

    Science.gov (United States)

    Increased delivery of nitrogen due to urbanization and stream ecosystem degradation is contributing to eutrophication in coastal regions of the eastern United States. We tested whether geomorphic restoration involving hydrologic “reconnection” of a stream to its floodplain could ...

  2. Best Management Practices Monitoring Guide for Stream Systems

    OpenAIRE

    Mesner, Nancy

    2011-01-01

    Best Management Practices Monitoring Guide for Stream Systems provides guidance on establishing a water quality monitoring program that will demonstrate the effectiveness of Best Management Practices (BMPs) to reduce nonpoint source pollution in stream systems.

  3. Factoring stream turbulence into global assessments of nitrogen pollution.

    Science.gov (United States)

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Nord-Stream-Antrag stösst auf Ablehnung

    Index Scriptorium Estoniae

    2012-01-01

    Nord Stream küsib Eestilt taas uuringuluba. 2007 ei rahuldanud vabariigi valitsus Nord Stream AG uurimisloa taotlust. Andrus Ansip ja Mart Laar on seisukohal, et tuleks jääda kord tehtud otsuse juurde

  5. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  6. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.; Maunder, Elizabeth

    2013-01-01

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 ± 2.0 kpc near the celestial equator and our kinematic signature peaks at V GSR = 82.1 ± 1.4 km s –1 . The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least along this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = –1.63 ± 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, σ([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.

  7. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  8. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    Science.gov (United States)

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  9. Adaptive Media Streaming to Mobile Devices: Challenges, Enhancements, and Recommendations

    OpenAIRE

    Evensen, Kristian; Kupka, Tomas; Riiser, Haakon; Ni, Pengpeng; Eg, Ragnhild; Griwodz, Carsten; Halvorsen, Pål

    2014-01-01

    Video streaming is predicted to become the dominating traffic in mobile broadband networks. At the same time, adaptive HTTP streaming is developing into the preferred way of streaming media over the Internet. In this paper, we evaluate how different components of a streaming system can be optimized when serving content to mobile devices in particular. We first analyze the media traffic from a Norwegian network and media provider. Based on our findings, we outline benefits and chal...

  10. A chaotic stream cipher and the usage in video protection

    International Nuclear Information System (INIS)

    Lian Shiguo; Sun Jinsheng; Wang Jinwei; Wang Zhiquan

    2007-01-01

    In this paper, a chaotic stream cipher is constructed and used to encrypt video data selectively. The stream cipher based on a discrete piecewise linear chaotic map satisfies the security requirement of cipher design. The video encryption scheme based on the stream cipher is secure in perception, efficient and format compliant, which is suitable for practical video protection. The video encryption scheme's performances prove the stream cipher's practicability

  11. Is the Stream Always Bluer on the Other Side?

    Science.gov (United States)

    Jenkins, T.; Chase, Z.

    2017-12-01

    Examining water quality, fish species present, habitat quality, and sources of pollution are important to better understanding the health of a stream. In Florida, the Fish and Wildlife Conservation Commission (FWC) works to monitor the health of its streams, and partnerships with . By collecting, analyzing, and comparing fish abundance data from a couple of streams in Escambia County, Florida, we can help FWC determine how to best support and protect stream habitats and fish-species in our Florida community.

  12. Double streams of protons in the distant geomagnetic tail

    Science.gov (United States)

    Villante, U.; Lazarus, A. J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  13. Effect of harmonic rank on the streaming of complex tones

    DEFF Research Database (Denmark)

    Madsen, Sara Miay Kim; Dau, Torsten; Moore, Brian C.J.

    2015-01-01

    The effect of the rank of the harmonics on sequential stream segregation of complex tones was investigated for normal-hearing participants with no musical training. It was hypothesized that stream segregation would be greater for tones with high pitch salience, as assessed by fundamental frequency....... There was a significant trend for less stream segregation with increasing harmonic rank. The amount of stream segregation was inversely correlated with the f0 difference limens, consistent with the hypothesis....

  14. Checking for Circular Dependencies in Distributed Stream Programs

    Science.gov (United States)

    2011-08-29

    extensions to express new complexities more conve- nient. Teleport messaging ( TMG ) in the StreamIt language [30] is an example. 1.1 StreamIt Language...dynamicities to an FIR computation Thies et al. in [30] give a TMG model for distributed stream pro- grams. TMG is a mechanism that implements control...messages for stream graphs. The TMG mechanism is designed not to interfere with original dataflow graphs’ structures and scheduling, therefore a key

  15. A Novel Image Stream Cipher Based On Dynamic Substitution

    OpenAIRE

    Elsharkawi, A.; El-Sagheer, R. M.; Akah, H.; Taha, H.

    2016-01-01

    Recently, many chaos-based stream cipher algorithms have been developed. Traditional chaos stream cipher is based on XORing a generated secure random number sequence based on chaotic maps (e.g. logistic map, Bernoulli Map, Tent Map etc.) with the original image to get the encrypted image, This type of stream cipher seems to be vulnerable to chosen plaintext attacks. This paper introduces a new stream cipher algorithm based on dynamic substitution box. The new algorithm uses one substitution b...

  16. Double streams of protons in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Villante, U.; Lazarus, A.J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region

  17. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per

    2018-01-01

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...

  18. Formal testing and utilization of streaming media to improve flight crew safety knowledge.

    Science.gov (United States)

    Bellazzini, Marc A; Rankin, Peter M; Quisling, Jason; Gangnon, Ronald; Kohrs, Mike

    2008-01-01

    Increased concerns over the safety of air medical transport have prompted development of novel ways to increase safety. The objective of our study was to determine if an Internet streaming media safety video increased crew safety knowledge. 23 out of 40 crew members took an online safety pre-test, watched a safety video specific to our program and completed immediate and long-term post-testing 6 months later. Mean pre-test, post-test and 6 month follow up test scores were 84.9%, 92.3% and 88.4% respectively. There was a statistically significant difference in all scores (p Streaming media proved to be an accessible and effective supplement to safety training in our study.

  19. STREAMTO: Streaming Content using a Tamper-Resistant Token

    NARCIS (Netherlands)

    Cheng, Jieyin; Chong, C.N.; Doumen, J.M.; Etalle, Sandro; Hartel, Pieter H.; Nikolaus, Stefan

    2004-01-01

    StreamTo uses tamper resistant hardware tokens to generate the key stream needed to decrypt encrypted streaming music. The combination of a hardware token and steaming media effectively brings tried and tested PayTV technology to the Internet. We provide a security analysis and present two prototype

  20. Creating a streaming video collection for your library

    CERN Document Server

    Duncan, Cheryl J

    2014-01-01

    Creating a Streaming Video Collection for Your Library covers the main processes associated with streaming video, from licensing to access and evaluation, and will serve as a key reference and source of best practices for libraries adding streaming video titles to their collections.

  1. Neutron streaming analysis for shield design of FMIT Facility

    International Nuclear Information System (INIS)

    Carter, L.L.

    1980-12-01

    Applications of the Monte Carlo method have been summarized relevant to neutron streaming problems of interest in the shield design for the FMIT Facility. An improved angular biasing method has been implemented to further optimize the calculation of streaming and this method has been applied to calculate streaming within a double bend pipe

  2. Recovery of krypton-85 from dissolver off-gas streams

    International Nuclear Information System (INIS)

    Law, J.P.; Lamb, K.M.

    1988-01-01

    The Rare Gas Plant at the Idaho Chemical Processing Plant Recovers fission product krypton and xenon from dissolver off gas streams. Recently the system was upgraded to allow processing of hydrogen rich dissolver off-gas streams. A trickle bed hydrogen recombiner was installed and tested. The Rare Gas Plant can now safely process gas streams containing up to 80% hydrogen

  3. Periodic-drop-take calculus for stream transformers

    NARCIS (Netherlands)

    Mak, R.H.

    2005-01-01

    Stream transformers are a formalism to specify and reason about stream processing systems. Many application specific circuits, e.g. in the area of signal processing, classify as such systems. This paper presents a two- operator calculus to reason about a specific class of stream operators, viz. the

  4. Prediction and explanation over DL-Lite data streams

    CSIR Research Space (South Africa)

    Klarman, S

    2013-12-01

    Full Text Available the popular DL-Lite family, and study the logic foundations of prediction and explanation over DL-Lite data streams, i.e., reasoning from finite segments of streaming data to conjectures about the content of the streams in the future or in the past. We propose...

  5. Modelling of a vanishing Hawaiin stream with DHSVM

    NARCIS (Netherlands)

    Verger, R.P.; Augustijn, Dionysius C.M.; Booij, Martijn J.; Fares, A.; Erdbrink, C.D.; van Os, A.G.

    2008-01-01

    Several Hawaiian streams show downward trends in stream flow. In this study Makaha Stream is investigated as an example. Three possible reasons are commonly mentioned for the discharge reduction: groundwater pumping, decreasing rainfall, and changes in vegetation. The effect of these factors on

  6. The role of the hyporheic zone across stream networks

    Science.gov (United States)

    Steven M. Wondzell

    2011-01-01

    Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly...

  7. 75 FR 22723 - Stream Protection Rule; Environmental Impact Statement

    Science.gov (United States)

    2010-04-30

    ..., 784, 816, and 817 RIN 1029-AC63 Stream Protection Rule; Environmental Impact Statement AGENCY: Office... streams from the adverse impacts of surface coal mining operations. We are requesting comments for the... mining activities may be conducted in or near perennial or intermittent streams. That rule, which this...

  8. Potential stream density in Mid-Atlantic US watersheds.

    Science.gov (United States)

    Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  9. Applications of spatial statistical network models to stream data

    Science.gov (United States)

    Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal. Monestiez

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...

  10. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph (a)(1...

  11. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  12. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    International Nuclear Information System (INIS)

    Haydock, David; Yeomans, J M

    2003-01-01

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  13. Exploiting the Power of Relational Databases for Efficient Stream Processing

    NARCIS (Netherlands)

    E. Liarou (Erietta); R.A. Goncalves (Romulo); S. Idreos (Stratos)

    2009-01-01

    textabstractStream applications gained significant popularity over the last years that lead to the development of specialized stream engines. These systems are designed from scratch with a different philosophy than nowadays database engines in order to cope with the stream applications

  14. DEVELOPMENT OF A STREAM BENTHIC MACROINVERTEBRATE INTEGRITY INDEX (SBMII) FOR WADEABLE STREAMS IN THE MID-ATLANTIC HIGHLANDS REGION

    Science.gov (United States)

    The Stream Benthic Macroinvertebrate Integrity Index (SBMII), a multimetric biotic index for assessing biological conditions of wadeable streams, was developed using seven macroinvertebrate metrics (Ephemeroptera richness, Plecoptera richness, Trichoptera richness, Collector-Filt...

  15. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  16. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  17. Distillation and Air Stripping Designs for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Air stripping and distillation are two different gravity-based methods, which may be applied to the purification of wastewater on the lunar base. These gravity-based solutions to water processing are robust physical separation techniques, which may be advantageous to many other techniques for their simplicity in design and operation. The two techniques can be used in conjunction with each other to obtain high purity water. The components and feed compositions for modeling waste water streams are presented in conjunction with the Aspen property system for traditional stage distillation models and air stripping models. While the individual components for each of the waste streams will vary naturally within certain bounds, an analog model for waste water processing is suggested based on typical concentration ranges for these components. Target purity levels for the for recycled water are determined for each individual component based on NASA s required maximum contaminant levels for potable water Distillation processes are modeled separately and in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Optimum parameters such as reflux ratio, feed stage location, and processing rates are determined with respect to the power consumption of the process. Multistage distillation is evaluated for components in wastewater to determine the minimum number of stages necessary for each of 65 components in humidity condensate and urine wastewater mixed streams. Components of the wastewater streams are ranked by Henry s Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support

  18. How wide is a stream? Spatial extent of the potential "stream signature" in terrestrial food webs using meta-analysis.

    Science.gov (United States)

    Muehlbauer, Jeffrey D; Collins, Scott F; Doyle, Martin W; Tockner, Klement

    2014-01-01

    The magnitude of cross-ecosystem resource subsidies is increasingly well recognized; however, less is known about the distance these subsidies travel into the recipient landscape. In streams and rivers, this distance can delimit the "biological stream width," complementary to hydro-geomorphic measures (e.g., channel banks) that have typically defined stream ecosystem boundaries. In this study we used meta-analysis to define a "stream signature" on land that relates the stream-to-land subsidy to distance. The 50% stream signature, for example, identifies the point on the landscape where subsidy resources are still at half of their maximum (in- or near-stream) level. The decay curve for these data was best fit by a negative power function in which the 50% stream signature was concentrated near stream banks (1.5 m), but a non-trivial (10%) portion of the maximum subsidy level was still found > 0.5 km from the water's edge. The meta-analysis also identified explanatory variables that affect the stream signature. This improves our understanding of ecosystem conditions that permit spatially extensive subsidy transmission, such as in highly productive, middle-order streams and rivers. Resultant multivariate models from this analysis may be useful to managers implementing buffer rules and conservation strategies for stream and riparian function, as they facilitate prediction of the extent of subsidies. Our results stress that much of the subsidy remains near the stream, but also that subsidies (and aquatic organisms) are capable of long-distance dispersal into adjacent environments, and that the effective "biological stream width" of stream and river ecosystems is often much larger than has been defined by hydro-geomorphic metrics alone. Limited data available from marine and lake sources overlap well with the stream signature data, indicating that the "signature" approach may also be applicable to subsidy spatial dynamics across other ecosystems.

  19. Sediment transport simulation in an armoured stream

    Science.gov (United States)

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  20. VALUE STREAM MAPPINGIN THE ROMANIAN FOOTWEAR INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sorin BRICIU

    2015-04-01

    Full Text Available Cost reduction, productivity increase and creating value for the client are just a few of the arguments that managers use when they adopt Lean philosophy. Businesses’ concern is to create products that have value in the eyes of the client, continuously analyzing the existing value stream in order to improve it. Value stream mapping (VSM is a technique used to visually present the chain of processes, within the company, necessary to obtain the product. Due to the many advantages and to the ease of use experienced by Toyota since the ’80, VSM use has constantly increased as this activity improvement technique was discovered by managers. The article presents a case study of the application of VSM in footwear industry.

  1. Streaming for Functional Data-Parallel Languages

    DEFF Research Database (Denmark)

    Madsen, Frederik Meisner

    In this thesis, we investigate streaming as a general solution to the space inefficiency commonly found in functional data-parallel programming languages. The data-parallel paradigm maps well to parallel SIMD-style hardware. However, the traditional fully materializing execution strategy...... by extending two existing data-parallel languages: NESL and Accelerate. In the extensions we map bulk operations to data-parallel streams that can evaluate fully sequential, fully parallel or anything in between. By a dataflow, piecewise parallel execution strategy, the runtime system can adjust to any target...... flattening necessitates all sub-computations to materialize at the same time. For example, naive n by n matrix multiplication requires n^3 space in NESL because the algorithm contains n^3 independent scalar multiplications. For large values of n, this is completely unacceptable. We address the problem...

  2. Time-dependent 2-stream particle transport

    International Nuclear Information System (INIS)

    Corngold, Noel

    2015-01-01

    Highlights: • We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. • After reviewing some classical problems in homogeneous media we discuss transport in materials with whose density may vary. • There we achieve a significant contraction of the underlying Telegrapher’s equation. • We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.” - Abstract: We consider time-dependent transport in the 2-stream or “rod” model via an attractive matrix formalism. After reviewing some classical problems in homogeneous media we discuss transport in materials whose density may vary. There we achieve a significant contraction of the underlying Telegrapher’s equation. We conclude with a discussion of stochastics, treated by the “first-order smoothing approximation.”

  3. Nord Stream, Sweden and Baltic Sea Security

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Robert L

    2007-03-15

    In June 2006, FOI published the report: Sweden and the NEGP: a Pilot Study of the North European Gas Pipeline and Sweden's Dependence on Russian Energy, a base data report on a topic that FOI considered to be of rising importance. Much has happened since then and the NEGP has changed its name to Nord Stream and submitted an official notification on the intention of realising the project of constructing a gas pipeline from Russia to Germany via the Baltic Sea. The primary aim of this report is to discuss and analyse some of the core aspects of Nord Stream and the pipeline project with regard to the security situation for the Baltic Sea region. The report constitutes an updated version of the previous report. Most of the old report still stands valid, especially concerning the historical survey of Russia's energy policy, but the new report has additional chapters and is broader in scope concerning the consequences of the project

  4. History of Rocky Flats waste streams

    International Nuclear Information System (INIS)

    Luckett, L.L.; Dickman, A.A.; Wells, C.R.; Vickery, D.J.

    1982-01-01

    An analysis of the waste streams at Rocky Flats was done to provide information for the Waste Certification program. This program has involved studying the types and amounts of retrievable transuranic (TRU) waste from Rocky Flats that is stored at the Idaho National Engineering Laboratory (INEL). The information can be used to estimate the types and amounts of waste that will need to be permanently stored in the Waste Isolation Pilot Plant (WIPP). The study covered mostly the eight-year period from June 1971 to June 1979. The types, amounts, and plutonium content of TRU waste and the areas or operations responsible for generating the waste are summarized in this waste stream history report. From the period studied, a total of 24,546,153 lbs of waste containing 211,148 g of plutonium currently occupies 709,497 cu ft of storage space at INEL

  5. Two-stream instability in pulsar magnetospheres

    International Nuclear Information System (INIS)

    Usov, V.V.

    1987-01-01

    If the electron-positron plasma flow from the pulsar environment is stationary, the two-stream instability does not have enough time to develop in the pulsar magnetosphere. In that case the outflowing electron-positron plasma gathers into separate clouds. The clouds move along magnetic field lines and disperse as they go farther from the pulsar. At a distance of about 10 to the 8th cm from the pulsar surface, the high-energy particles of a given cloud catch up with the low-energy particles that belong to the cloud going ahead of it. In this region of a pulsar magnetosphere, the energy distribution of plasma particles is two-humped, and a two-stream instability may develop. The growth rate of the instability is quite sufficient for its development. 17 references

  6. Comparison of animated jet stream visualizations

    Science.gov (United States)

    Nocke, Thomas; Hoffmann, Peter

    2016-04-01

    The visualization of 3D atmospheric phenomena in space and time is still a challenging problem. In particular, multiple solutions of animated jet stream visualizations have been produced in recent years, which were designed to visually analyze and communicate the jet and related impacts on weather circulation patterns and extreme weather events. This PICO integrates popular and new jet animation solutions and inter-compares them. The applied techniques (e.g. stream lines or line integral convolution) and parametrizations (color mapping, line lengths) are discussed with respect to visualization quality criteria and their suitability for certain visualization tasks (e.g. jet patterns and jet anomaly analysis, communicating its relevance for climate change).

  7. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  8. Value Streams in Microgrids: A literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Center for Energy and Innovative Technologies (CET) (Austria); Cardoso, Gonçalo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mashayekh, Salman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Forget, Thibault [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); MINES Paris Tech. (France); DeForest, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Agarwal, Ankit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Schönbein, Anna [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Freiburg (Germany)

    2015-10-01

    Microgrids are an increasingly common component of the evolving electricity grids with the potential to improve local reliability, reduce costs, and increase penetration rates for distributed renewable generation. The additional complexity of microgrids often leads to increased investment costs, creating a barrier for widespread adoption. These costs may result directly from specific needs for islanding detection, protection systems and power quality assurance that would otherwise be avoided in simpler system configurations. However, microgrids also facilitate additional value streams that may make up for their increased costs and improve the economic viability of microgrid deployment. This paper analyses the literature currently available on research relevant to value streams occurring in microgrids that may contribute to offset the increased investment costs. A review on research related to specific microgrid requirements is also presented.

  9. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  10. Removing sulphur oxides from a fluid stream

    Science.gov (United States)

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  11. Nord Stream, Sweden and Baltic Sea Security

    International Nuclear Information System (INIS)

    Larsson, Robert L.

    2007-03-01

    In June 2006, FOI published the report: Sweden and the NEGP: a Pilot Study of the North European Gas Pipeline and Sweden's Dependence on Russian Energy, a base data report on a topic that FOI considered to be of rising importance. Much has happened since then and the NEGP has changed its name to Nord Stream and submitted an official notification on the intention of realising the project of constructing a gas pipeline from Russia to Germany via the Baltic Sea. The primary aim of this report is to discuss and analyse some of the core aspects of Nord Stream and the pipeline project with regard to the security situation for the Baltic Sea region. The report constitutes an updated version of the previous report. Most of the old report still stands valid, especially concerning the historical survey of Russia's energy policy, but the new report has additional chapters and is broader in scope concerning the consequences of the project

  12. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal; Escorcia, Victor; Shen, Chuanqi; Ghanem, Bernard; Niebles, Juan Carlos

    2017-01-01

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  13. Dispersal of plant fragments in small streams

    DEFF Research Database (Denmark)

    Riis, T.; Sand-Jensen, K.

    2006-01-01

    1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re-establishing vegetation cover. We measured...... with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02-0.12 m-1) in shallow reaches with a narrow, vegetation-free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention...... coefficients were lowest (0.0005-0.0135 m-1) in deeper reaches with wider vegetation-free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing...

  14. SST: Single-Stream Temporal Action Proposals

    KAUST Repository

    Buch, Shyamal

    2017-11-09

    Our paper presents a new approach for temporal detection of human actions in long, untrimmed video sequences. We introduce Single-Stream Temporal Action Proposals (SST), a new effective and efficient deep architecture for the generation of temporal action proposals. Our network can run continuously in a single stream over very long input video sequences, without the need to divide input into short overlapping clips or temporal windows for batch processing. We demonstrate empirically that our model outperforms the state-of-the-art on the task of temporal action proposal generation, while achieving some of the fastest processing speeds in the literature. Finally, we demonstrate that using SST proposals in conjunction with existing action classifiers results in improved state-of-the-art temporal action detection performance.

  15. Velocity profiles of acoustic streaming in resulting stokes layer by acoustic standing wave in a duct; Kannai kichi shindo ni okeru stokes sonai onkyoryu ryusoku bunpu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, M; Kawahashi, M [Saitama University, Saitama (Japan). Faculty of Engineering

    1995-07-25

    Acoustic streaming is generated by Reynolds stress in the sense of mean acoustic momentum flux in a sound field. In the case of an acoustic standing wave produced by an air column oscillation in a closed duct, the friction and the Reynolds stress in the resulting Stokes layer are the essentials of acoustic streaming generation in the vicinity of the duct wall. The thickness of the Stokes layer decreases with the oscillatory Reynolds number. The plane wave propagation in the duct is assumed for the case of high Reynolds number except for the thin Stokes layer adjacent to the duct wall. The velocity profiles of the streaming are estimated theoretically from the steady component of the second-order term of a perturbation expansion in which the first-order approximation is a sinusoidal oscillation of the air column with plane waves. The present paper describes theoretical analysis of the velocity profiles of the acoustic streaming in the Stokes layer by means of the matched asymptotic expansion method. The results obtained show the existence of reverse streaming in a very thin layer adjacent to the wall and the effects of thermal boundary conditions at the wall on the velocity profiles of acoustic streaming in the Stokes layer. 9 refs., 8 figs.

  16. Infrared Signature Masking by Air Plasma Radiation

    Science.gov (United States)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  17. Air Land Sea Bulletin

    Science.gov (United States)

    2014-11-01

    Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based at Royal Air Force Honington, Suffolk (United...heavy as an actual weapon.4 Ideally, this practice imbued a soldier with more energy and stamina during real combat, given the feel of the genuine but...through tactical forces, to individual training. Unidentified Royal Air Force Regiment forward air controllers from the Air Land Integration Cell , Based

  18. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    Science.gov (United States)

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and

  19. Biofiltration of air contaminated with methanol and toluene

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2005-12-01

    Full Text Available Biofiltration of air contaminated with VOCs is inexpensive compared with the conventional techniques and very effective for treating large volumes of moist air streams with low concentrations of VOCs. In this study, biofiltration for the purification of polluted air from methanol, a hydrophilic VOC, and toluene, a hydrophobic VOC, was investigated. The experiments were operated using three separated stainless steel biofilters, for methanol, toluene, and a mixture of methanol and toluene, respectively. Biofilter consisted of a mixture of palm shells and activated sludge as a filter-bed material. Only the indigenous microorganisms of the bed medium without any addition of extra inoculum were used throughout the whole process. The polluted air inlet concentration was varied from 0.3-4.7 g/m3 with flow rates ranging from 0.06-0.45 m3/h, equivalent to the empty bed residence times of 9-71 sec. Polluted air was successfully treated by biofiltration, 100% removal efficiencies would be obtained when the air flow rate was lower than 0.45 m3/h. The presence of toluene did not affect the removal rate of methanol while the removal rate of toluene was decreased with the presence of methanol in air stream according to the competition phenomenon.

  20. Lifelong Augmentation of Multimodal Streaming Autobiographical Memories

    OpenAIRE

    Petit, Maxime; Fischer, Tobias; Demiris, Yiannis

    2016-01-01

    Robot systems that interact with humans over extended periods of time will benefit from storing and recalling large amounts of accumulated sensorimotor and interaction data. We provide a principled framework for the cumulative organisation of streaming autobiographical data so that data can be continuously processed and augmented as the processing and reasoning abilities of the agent develop and further interactions with humans take place. As an example, we show how a kinematic structure lear...