WorldWideScience

Sample records for voc vapor flux

  1. Bubble-Facilitated VOC Transport from LNAPL Smear Zones and Its Potential Effect on Vapor Intrusion.

    Science.gov (United States)

    Soucy, Nicole C; Mumford, Kevin G

    2017-02-10

    Most conceptual and mathematical models of soil vapor intrusion assume that the transport of volatile organic compounds (VOCs) from a source toward a building is limited by diffusion through the soil gas. Under conditions where advection occurs, transport rates are higher and can lead to higher indoor air concentrations. Advection-dominated conditions can be created by gas bubble flow in the saturated zone. A series of laboratory column experiments were conducted to measure mass flux due to bubble-facilitated VOC transport from light nonaqueous phase liquid (LNAPL) smear zones. Smear zones that contained both LNAPL residual and trapped gas, as well as those that contained only LNAPL residual, were investigated. Results showed that the VOC mass flux due to bubble-facilitated transport was orders-of-magnitude higher than under diffusion-limited conditions. Results also showed that the mass flux due to bubble-facilitated transport was intermittent, and increased with an increased supply of dissolved gases.

  2. Volatile Organic Compound (VOC Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-03-01

    Full Text Available Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs (toluene-propylene-butadiene from air was performed using a poly dimethyl siloxane (PDMS/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID. The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  3. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up.

    Science.gov (United States)

    Rebollar-Perez, Georgette; Carretier, Emilie; Lesage, Nicolas; Moulin, Philippe

    2011-03-03

    Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10-4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  4. Bubble-facilitated VOC transport from LNAPL smear zones and its potential effect on vapor intrusion: Laboratory experiments

    Science.gov (United States)

    Soucy, N. C.; Mumford, K. G.

    2016-12-01

    Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through the volatilization of hydrocarbons from the source and the subsequent transport of vapor through the soil. If subjected to the rise and fall of a water table, an LNAPL source can become a smear zone that consists of trapped discontinuous LNAPL blobs (residual) and has a higher aqueous permeability and higher surface area-to-volume ratio than pool sources. The rise and fall of a water table can also trap atmospheric air bubbles alongside the LNAPL. If these bubbles expand and become mobile, either through partitioning of volatile organic compounds (VOCs) or the production of biogenic gases, bubble-facilitated vertical vapor transport can occur. It is important to understand the bubble-facilitated transport of VOCs as it is a mechanism that could lead to faster transport. The transport of VOCs from smear zones was investigated using laboratory column and visualization experiments. In the column experiments, pentane LNAPL was emplaced in a 5 cm sand-packed source zone and the water level was raised and lowered to trap residual LNAPL and air bubbles. Each column also contained a 10 cm-high zone of clean saturated sand, and a 10 cm vadose zone of 4 mm-diameter glass beads. Water was pumped through the source and occlusion zones, and air flowed across the top of the column, where vapor samples were collected and analyzed immediately by gas chromatography. In the visualization experiments, pentane LNAPL was emplaced in a two-dimensional cell designed to allow visualization of mobilized LNAPL and gas through glass walls. Results of the column experiments showed VOC mass fluxes in test columns were 1-2 orders of magnitude greater than in the control columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport. The results from the visualization experiments showed gas fingers growing and mobilizing over time, and supports

  5. Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC

    Science.gov (United States)

    2013-12-01

    ER-201119) Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC December 2013 This document...SUBTITLE Use of On-Site GC/MS Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...ANALYSIS TO EVALUATE VAPOR INTRUSION ........................ 21 6.3.1 Site-by-Site Analysis of Results: Building VI Classifications ................. 21

  6. Concentrations and flux measurements of volatile organic compounds (VOC) in boreal forest soil

    Science.gov (United States)

    Mäki, Mari; Aaltonen, Hermanni; Heinonsalo, Jussi; Hellén, Heidi; Pumpanen, Jukka; Bäck, Jaana

    2017-04-01

    Volatile organic compounds (VOC) impact soil processes as VOCs transmit signals between roots and rhizosphere (Ditengou et al., 2015), VOCs can regulate microbial activity (Asensio et al., 2012), and VOCs can also promote root growth (Hung et al., 2012). Belowground concentrations of VOCs have not been measured in situ and for this reason, knowledge of how different soil organisms such as roots, rhizosphere and decomposers contribute to VOC production is limited. The aim of this study was to determine and quantify VOC fluxes and concentrations of different horizons from boreal forest soil. The VOC concentrations and fluxes were measured from Scots pine (Pinus sylvestris) forest soil at the SMEAR II station in southern Finland from 21th of April to 2nd of December in 2016. VOC fluxes were measured using dynamic (flow-through) chambers from five soil collars placed on five different locations. VOC concentrations were also measured in each location from four different soil horizons with the measurement depth 1-107 cm. VOCs were collected from underground gas collectors into the Tenax-Carbopack-B adsorbent tubes using portable pumps ( 100 ml min-1). The VOC concentrations and fluxes of isoprene, 11 monoterpenes, 13 sesquiterpenes and different oxygenated VOCs were measured. Sample tubes were analyzed using thermal desorption-gas chromatograph-mass spectrometry (TD-GC-MS). Soil temperature and soil water content were continuously monitored for each soil horizon. Our preliminary results show that the primary source of VOCs is organic soil layer and the contribution of mineral soil to the VOC formation is minor. VOC fluxes and concentrations were dominated by monoterpenes such as α-pinene, camphene, β-pinene, and Δ3-carene. Monoterpene concentration is almost 10-fold in organic soil compared to the deeper soil layers. However, the highest VOC fluxes on the soil surface were measured in October, whereas the monoterpene concentrations in organic soil were highest in July

  7. Methanol and other VOC fluxes from a Danish beech forest during late springtime

    DEFF Research Database (Denmark)

    Schade, Gunnar W.; Solomon, Sheena J.; Dellwik, Ebba;

    2011-01-01

    In-canopy mixing ratio gradients and above-canopy fluxes of several volatile organic compounds (VOCs) were measured using a commercial proton transfer reaction mass spectrometer (PTR-MS) in a European beech (Fagus sylvatica) forest in Denmark. Fluxes of methanol were bidirectional: Emission...

  8. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2010-09-01

    Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.

    The smallest reliable fluxes we determined were less than 0.1 nmol m−2 s−1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m−2 s−1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  9. Indium Corporation Introduces New Pb-Free VOC-Free Wave Solder Flux

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Indium Corporation of America has introduced WF-7742 Wave Solder Flux specifically designed to meet the process demands of Pb-Free manufacturing. WF-7742 is a VOC-Free material formulated for Pb-Free wave soldering of surface-mount, mixed-technology and through-holeelectronics assemblies.

  10. Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest

    Directory of Open Access Journals (Sweden)

    C. Kalogridis

    2014-01-01

    Full Text Available The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOC in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the Oak Observatory of the Observatoire de Haute Provence (O3HP located in the southeast of France. The field site presents one dominant tree species, Quercus pubescens L., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK and methacrolein (MACR and several other oxygenated VOC (OxVOC were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS, and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2–8 mg m−2 h1. Net isoprene normalised flux (at 30 °C, 1000 μmol m−2 s−1 was estimated at 6.6 mg m−2 h−1. The (MVK+MACR-to-isoprene ratio was used to assess the degree of isoprene oxidation. In-canopy chemical oxidation of isoprene was found to be weak, as indicated by the low (MVK+MACR-to-isoprene ratio (~ 0.13 and low MVK+MACR fluxes, and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy. Evidence of direct emission of methanol was also found exhibiting

  11. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    NARCIS (Netherlands)

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, Matthias; Baker, R.W.

    1997-01-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined wi

  12. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    Science.gov (United States)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  13. Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation.

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Terenzio, Zenone; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan A; Ceulemans, Reinhart

    2016-03-01

    Leaves of fast-growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a 'coppiced' poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo-oxidation products (Methyl Vinyl Ketone and Methacrolein, iox ), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI. © 2015 John Wiley & Sons Ltd.

  14. Evaluation of an on-line methodology for measuring volatile organic compounds (VOC) fluxes by eddy-covariance with a PTR-TOF-Qi-MS

    Science.gov (United States)

    Loubet, Benjamin; Buysse, Pauline; Lafouge, Florence; Ciuraru, Raluca; Decuq, Céline; Zurfluh, Olivier

    2017-04-01

    Field scale flux measurements of volatile organic compounds (VOC) are essential for improving our knowledge of VOC emissions from ecosystems. Many VOCs are emitted from and deposited to ecosystems. Especially less known, are crops which represent more than 50% of French terrestrial surfaces. In this study, we evaluate a new on-line methodology for measuring VOC fluxes by Eddy Covariance with a PTR-Qi-TOF-MS. Measurements were performed at the ICOS FR-GRI site over a crop using a 30 m long high flow rate sampling line and an ultrasonic anemometer. A Labview program was specially designed for acquisition and on-line covariance calculation: Whole mass spectra ( 240000 channels) were acquired on-line at 10 Hz and stored in a temporary memory. Every 5 minutes, the spectra were mass-calibrated and normalized by the primary ion peak integral at 10 Hz. The mass spectra peaks were then retrieved from the 5-min averaged spectra by withdrawing the baseline, determining the resolution and using a multiple-peak detection algorithm. In order to optimize the peak detection algorithm for the covariance, we determined the covariances as the integrals of the peaks of the vertical-air-velocity-fluctuation weighed-averaged-spectra. In other terms, we calculate , were w is the vertical component of the air velocity, Sp is the spectra, t is time, lag is the decorrelation lag time and denotes an average. The lag time was determined as the decorrelation time between w and the primary ion (at mass 21.022) which integrates the contribution of all reactions of VOC and water with the primary ion. Our algorithm was evaluated by comparing the exchange velocity of water vapor measured by an open path absorption spectroscopy instrument and the water cluster measured with the PTRQi-TOF-MS. The influence of the algorithm parameters and lag determination is discussed. This study was supported by the ADEME-CORTEA COV3ER project (http://www6.inra.fr/cov3er).

  15. Estimation of sensible heat, water vapor, and CO2 fluxes using the flux-variance method.

    Science.gov (United States)

    Hsieh, Cheng-I; Lai, Mei-Chun; Hsia, Yue-Joe; Chang, Tsang-Jung

    2008-07-01

    This study investigated the flux-variance relationships of temperature, humidity, and CO(2), and examined the performance of using this method for predicting sensible heat (H), water vapor (LE), and CO(2) fluxes (F(CO2)) with eddy-covariance measured flux data at three different ecosystems: grassland, paddy rice field, and forest. The H and LE estimations were found to be in good agreement with the measurements over the three fields. The prediction accuracy of LE could be improved by around 15% if the predictions were obtained by the flux-variance method in conjunction with measured sensible heat fluxes. Moreover, the paddy rice field was found to be a special case where water vapor follows flux-variance relation better than heat does. However, the CO(2) flux predictions were found to vary from poor to fair among the three sites. This is attributed to the complicated CO(2) sources and sinks distribution. Our results also showed that heat and water vapor were transported with the same efficiency above the grassland and rice paddy. For the forest, heat was transported 20% more efficiently than evapotranspiration.

  16. [Volatile organic compounds (VOCs) emitted from wood furniture--estimation of emission rate by passive flux sampler].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Nishimura, Tetsuji

    2011-01-01

    The aim of this study was to evaluate aldehydes and other volatile organic compounds (VOCs) emission from furniture, which may cause hazardous influence on human being such as sick building/sick house syndrome. In this study, VOCs emitted from six kinds of wood furniture, including three set of dining tables and three beds, were analyzed by large chamber test method (JIS A 1911). Based on the emission rates of total VOCs (TVOC), the impacts on the indoor TVOC was estimated by the simulation model with volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table and one bed. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in two sets of dining tables and two beds. These results revealed that VOC emissions from wood furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative five areas of furniture unit were evaluated by passive sampling method using flux sampler and emission rate from full-sized furniture was predicted. Emission rates predicted by flux passive sampler were 10-106% (formaldehyde) and 8-141% (TVOC) of the data measured using large chamber test, respectively.

  17. VOC flux measurements using a novel Relaxed Eddy Accumulation GC-FID system in urban Houston, Texas

    Science.gov (United States)

    Park, C.; Schade, G.; Boedeker, I.

    2008-12-01

    Houston experiences higher ozone production rates than most other major cities in the US, which is related to high anthropogenic VOC emissions from both area/mobile sources (car traffic) and a large number of petrochemical facilities. The EPA forecasts that Houston is likely to still violate the new 8-h NAAQS in 2020. To monitor neighborhood scale pollutant fluxes, we established a tall flux tower installation a few kilometers north of downtown Houston. We measure energy and trace gas fluxes, including VOCs from both anthropogenic and biogenic emission sources in the urban surface layer using eddy covariance and related techniques. Here, we describe a Relaxed Eddy Accumulation (REA) system combined with a dual-channel GC-FID used for VOC flux measurements, including first results. Ambient air is sampled at approximately 15 L min-1 through a 9.5 mm OD PFA line from 60 m above ground next to a sonic anemometer. Subsamples of this air stream are extracted through an ozone scrubber and pushed into two Teflon bag reservoirs, from which they are transferred to the GC pre-concentration units consisting of carbon-based adsorption traps encapsulated in heater blocks for thermal desorption. We discuss the performance of our system and selected measurement results from the 2008 spring and summer seasons in Houston. We present diurnal variations of the fluxes of the traffic tracers benzene, toluene, ethylbenzene, and xylenes (BTEX) during different study periods. Typical BTEX fluxes ranged from -0.36 to 3.10 mg m-2 h-1 for benzene, and -0.47 to 5.04 mg m-2 h-1 for toluene, and exhibited diurnal cycles with two dominant peaks related to rush-hour traffic. A footprint analysis overlaid onto a geographic information system (GIS) will be presented to reveal the dominant emission sources and patterns in the study area.

  18. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion.

    Science.gov (United States)

    Fair, Justin D; Bailey, William F; Felty, Robert A; Gifford, Amy E; Shultes, Benjamin; Volles, Leslie H

    2010-01-01

    Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern.

  19. Quantitation by Portable Gas Chromatography: Mass Spectrometry of VOCs Associated with Vapor Intrusion

    Directory of Open Access Journals (Sweden)

    Justin D. Fair

    2010-01-01

    Full Text Available Development of a robust reliable technique that permits for the rapid quantitation of volatile organic chemicals is an important first step to remediation associated with vapor intrusion. This paper describes the development of an analytical method that allows for the rapid and precise identification and quantitation of halogenated and nonhalogenated contaminants commonly found within the ppbv level at sites where vapor intrusion is a concern.

  20. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  1. QCM gas phase detection with ceramic materials - VOCs and oil vapors

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A.; Dickert, Franz L. [University of Vienna, Department of Analytical Chemistry, Vienna (Austria)

    2011-06-15

    Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed. (orig.)

  2. Quantification of natural vapor fluxes of trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey

    Science.gov (United States)

    Smith, James A.; Tisdale, Amy K.; Cho, H. Jean

    1996-01-01

    The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.

  3. Carbon and Water Vapor Fluxes of Different Ecosystems in Oklahoma

    Science.gov (United States)

    Wagle, P.; Gowda, P. H.; Northup, B. K.

    2016-12-01

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspiration (ET) models, and to better understand the potential of terrestrial ecosystems to mitigate rising atmospheric CO2 concentration and climate change. A network (GRL-FLUXNET) of nine eddy flux towers has been established over a diverse range of terrestrial ecosystems, including native and improved perennial grasslands [unburned and grazed tallgrass prairie, burned and grazed tallgrass prairie, and burned Bermuda grass (Cynodon dactylon L.)], grazed and non-grazed winter wheat (Triticum aestivum L.), till and no-till winter wheat and canola (Brassica napus L.), alfalfa (Medicago sativa L.), and soybean (Glycine max L.), at the USDA-ARS, Grazinglands Research Laboratory, El Reno, OK. In this presentation, we quantify and compare net ecosystem CO2 exchange (NEE) and ET between recently burned and grazed tallgrass prairie and burned and non-grazed Bermuda grass pastures, alfalfa, and soybean. Preliminary results show monthly ensembles average NEE reached seasonal peak values of -29, -35, -25, and -20 µmol m-2 s-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Similarly, monthly ensembles average ET reached seasonal peak values of 0.22, 0.27, 0.25, 0.28 mm 30-min-1 in burned tallgrass prairie pasture, burned Bermuda grass pasture, alfalfa, and soybean, respectively. Seasonal patterns and daily magnitudes of NEE and ET and their responses to the similar climatic conditions will be further investigated.

  4. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  5. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  6. On-site passive flux sampler measurement of emission rates of carbonyls and VOCs from multiple indoor sources

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Naohide [Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba City, Ibaraki 305-8569 (Japan); Kai, Yuya; Mizukoshi, Atsushi; Kumagai, Kazukiyo; Okuizumi, Yumiko; Jona, Miki; Yanagisawa, Yukio [Department of Environment Systems, Institute of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8563 (Japan); Fujii, Minoru [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City, Ibaraki 305-8506 (Japan)

    2009-05-15

    In indoor environments with high levels of air pollution, it is desirable to remove major sources of emissions to improve air quality. In order to identify the emission sources that contribute most to the concentrations of indoor air pollutants, we used passive flux samplers (PFSs) to measure emission rates of carbonyl compounds and volatile organic compounds (VOCs) from many of the building materials and furnishings present in a room in a reinforced concrete building in Tokyo, Japan. The emission flux of formaldehyde from a desk was high (125 {mu}g/m{sup 2}/h), whereas fluxes from a door and flooring were low (21.5 and 16.5 {mu}g/m{sup 2}/h, respectively). The emission fluxes of toluene from the ceiling and the carpet were high (80.0 and 72.3 {mu}g/m{sup 2}/h, respectively), whereas that from the flooring was low (9.09 {mu}g/m{sup 2}/h). The indoor and outdoor concentrations of formaldehyde were 61.5 and 8.64 {mu}g/m{sup 3}, respectively, and those of toluene were 43.2 and 17.5 {mu}g/m{sup 3}, respectively. The air exchange rate of the room as measured by the perfluorocarbon tracer (PFT) method was 1.84/h. Taking into consideration the area of the emission sources, the carpet, ceiling, and walls were identified as the principal emission sources, contributing 24%, 20%, and 22% of the formaldehyde, respectively, and 22%, 27%, and 14% of the toluene, respectively, assuming that the emission rate from every major emission sources could be measured. In contrast, the door, the flooring, and the desk contributed little to the indoor levels of formaldehyde (1.0%, 0.54%, and 4.1%, respectively) and toluene (2.2%, 0.31%, and 0.85%, respectively). (author)

  7. Measurements of VOC fluxes by Eddy-covariance with a PTR-Qi-TOF-MS over a mature wheat crop near Paris: Evaluation of data quality and uncertainties.

    Science.gov (United States)

    Buysse, Pauline; Loubet, Benjamin; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Gonzaga-Gomez, Lais; Fanucci, Olivier; Gueudet, Jean-Christophe; Decuq, Céline; Gros, Valérie; Sarda, Roland; Zannoni, Nora

    2017-04-01

    The quantification of volatile organic compounds (VOC) fluxes exchanged by terrestrial ecosystems is of large interest because of their influence on the chemistry and composition of the atmosphere including aerosols and oxidants. Latest developments in the techniques for detecting, identifying and measuring VOC fluxes have considerably improved the abilities to get reliable estimates. Among these, the eddy-covariance (EC) methodology constitutes the most direct approach, and relies on both well-established principles (Aubinet et al. 2000) and a sound continuously worldwide improving experience. The combination of the EC methodology with the latest proton-transfer-reaction mass spectrometer (PTR-MS) device, the PTR-Qi-TOF-MS, which allows the identification and quantification of more than 500 VOC at high frequency, now provides a very powerful and precise tool for an accurate quantification of VOC fluxes on various types of terrestrial ecosystems. The complexity of the whole methodology however demands that several data quality requirements are fulfilled. VOC fluxes were measured by EC with a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) for one month and a half over a mature wheat crop near Paris (FR-GRI ICOS site). Most important emissions (by descending order) were observed from detected compounds with mass-over-charge (m/z) ratios of 33.033 (methanol), 45.033 (acetaldehyde), 93.033 (not identified yet), 59.049 (acetone), and 63.026 (dimethyl sulfide or DMS). Emissions from higher-mass compounds, which might be due to pesticide applications at the beginning of our observation period, were also detected. Some compounds were also seen to deposit (e.g. m/z 47.013, 71.085, 75.044, 83.05) while others exhibited bidirectional fluxes (e.g. m/z 57.07, 69.07). Before analyzing VOC flux responses to meteorological and crop development drivers, a data quality check was performed which included (i) uncertainty analysis of mass and concentration

  8. Ultraviolet and radical oxidation of airborne VOC`s. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Heinsohn, R.J.; Spaeder, T.A.; Albano, M.T.; Schmelzle, J.P.; Fetter, R.O.

    1994-03-18

    Airborne VOC`s reactions initiated by UV radiation at selected wavelengths from 185 to 308 nm have been studied. A simplified chemical kinetic mechanism is proposed incorporating photolysis and radical reactions. The concentration of HCHO and CH{sub 3}OH were predicted as a function of time, radiation wavelength, actinic flux and initial ozone concentration. The gas velocity and HCHO concentration were predicted in a gas stream flowing over a UV bulb. Experiments were conducted in which ethanol vapor and air were irradiated by low-pressure mercury bulbs. Ethanol disappeared in an overall first-order manner and an intermediate species, believed to be acetaldehyde, appeared and then disappeared.

  9. Carbon and water vapor fluxes of different ecosystems in Oklahoma

    Science.gov (United States)

    Information on exchange of energy, carbon dioxide (CO2), and water vapor (H2O) for major terrestrial ecosystems is vital to quantify carbon and water balances on a large-scale. It is also necessary to develop, test, and improve crop models and satellite-based production efficiency and evapotranspira...

  10. Explosive disintegration of the vapor film under influence of high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Sinkevich, O.A.; Glazkov, V.V. [Moscow Power Engineering Institute (Technical University), Moscow (Russian Federation); Ziegarnik, Yu.A.; Ivochkin, Yu.P. [Institute for High Temperatures RAS, Moscow (Russian Federation)

    2009-07-01

    The problem was formulated and solved on the stability of steady-state interface between a thin vapor film and a layer of liquid in the presence of a heat flux. Boundary conditions were derived for disturbances of the vapor-liquid interface, which generalize the known correlations on the free surface of liquid in the gravity field. These boundary conditions allow for the variation of the saturation pressure, for overheating of a liquid, its transition in the metastable area and explosive boiling, for the variation of the thickness of steady-state vapor film, and for generation of the mass flux on the vapor- liquid interface. the mode of explosive instability may arise in the nonlinear stage of development of instability because of a weak variation of the thickness of steady-state vapor film or due to overheating of a liquid and its transition in the metastable area. Due to nonlinear effects, specific solitons and the specific turbulence may arise on the vapor-liquid interface in the absence of gravity force. In the mode of explosive instability, the initially low wave amplitude rises to infinity during a finite period of time. Conditions were found in which the heat flux through the vapor-liquid interface leads to explosive instability: the initially low plane wave amplitude exhibits an explosive rise. (author)

  11. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modeling approach.

    Science.gov (United States)

    Milcu, Alexandru; Eugster, Werner; Bachmann, Dörte; Guderle, Marcus; Roscher, Christiane; Gockele, Annette; Landais, Damien; Ravel, Olivier; Gessler, Arthur; Lange, Markus; Ebeling, Anne; Weisser, Wolfgang W; Roy, Jacques; Hildebrandt, Anke; Buchmann, Nina

    2016-08-01

    The impact of species richness and functional diversity of plants on ecosystem water vapor fluxes has been little investigated. To address this knowledge gap, we combined a lysimeter setup in a controlled environment facility (Ecotron) with large ecosystem samples/monoliths originating from a long-term biodiversity experiment (The Jena Experiment) and a modeling approach. Our goals were (1) quantifying the impact of plant species richness (four vs. 16 species) on day- and nighttime ecosystem water vapor fluxes; (2) partitioning ecosystem evapotranspiration into evaporation and plant transpiration using the Shuttleworth and Wallace (SW) energy partitioning model; and (3) identifying the most parsimonious predictors of water vapor fluxes using plant functional-trait-based metrics such as functional diversity and community weighted means. Daytime measured and modeled evapotranspiration were significantly higher in the higher plant diversity treatment, suggesting increased water acquisition. The SW model suggests that, at low plant species richness, a higher proportion of the available energy was diverted to evaporation (a non-productive flux), while, at higher species richness, the proportion of ecosystem transpiration (a productivity-related water flux) increased. While it is well established that LAI controls ecosystem transpiration, here we also identified that the diversity of leaf nitrogen concentration among species in a community is a consistent predictor of ecosystem water vapor fluxes during daytime. The results provide evidence that, at the peak of the growing season, higher leaf area index (LAI) and lower percentage of bare ground at high plant diversity diverts more of the available water to transpiration, a flux closely coupled with photosynthesis and productivity. Higher rates of transpiration presumably contribute to the positive effect of diversity on productivity.

  12. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  13. Adsorption of vapor-phase VOCs (benzene and toluene) on modified clays and its relation with surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, C.; Gallardo-Velazquez, T.; Arellano-Cardenas, S. [National School of Biological Sciences (Mexico). Biophysics Dept.; Osorio-Revilla, G. [National School of Biological Sciences (Mexico). Biochemical Engineering Dept.

    2008-04-15

    A study was conducted to investigate the potential use of modified clays for the adsorption of volatile organic compounds (VOCs) present in air. These VOCs which include toluene and benzene, are among the main air pollutants that represent a human health risk at high concentrations, mostly in indoor environments. In this study, a Mexican bentonite was used to prepare 3 modified clays, notably an organoclay (OC-CPC) by intercalating cetylpyridinium chloride (CPC); an aluminum-pillared clay (Al-PILC); and an inorganic-organic clay (IOC-CPC) prepared from Al-PILC intercalating CPC. Their structures were differentiated by infrared and thermogravimetric analyses, and the interlayer distance was assessed through X-ray diffraction. Toluene and benzene adsorption on OC-CPC was higher than in IOC-CPC and Al-PILC. Natural clay showed no adsorption capacity for these compounds. Comparison of the gas chromatography retention times for non polar and low-polarity compounds (octyne and benzene) in columns packed with OC-CPC and a commercial non polar column (squalene) showed that the OC-CPC possessed a higher organophilic (non polar) nature than squalene. This explains the higher benzene and toluene adsorption capacity of the OC-CPC compared with the other modified clays. It was concluded that organoclays represent a potential alternative for the adsorption of volatile organic compounds such as benzene and toluene present in indoor environments. Since the OC-CPC is hydrophobic by nature, the relative humidity of water vapour in the environment would not affects its adsorption capacity. 27 refs., 5 tabs., 5 figs.

  14. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    S. Liu

    2010-11-01

    Full Text Available We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK, alpine meadow (A'rou, AR, and spruce forest (Guantan, GT. The energy and water vapor fluxes were measured using eddy covariance systems (EC and a large aperture scintillometer (LAS in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed the differences between the sensible heat fluxes measured by EC and LAS. The results show that the main EC source areas were within a radius of 250 m at all sites. The main source area for the LAS (with a path length of 2390 m stretched along a path line approximately 2000 m long and 700 m wide. The surface characteristics in the source areas changed according to season and site, and there were characteristic seasonal variations in the energy and water vapor fluxes at all sites. The sensible heat flux was the main term of the energy budget during the dormant season. During the growing season, however, the latent heat flux dominated the energy budget, and an obvious "oasis effect" was observed at YK. The evapotranspiration (ET at YK was larger than those at the other two sites. The monthly ET reached its peak in July at YK and in June at GT in both 2008 and 2009, while it reached its peak in August at AR in 2008 and in June in 2009. The sensible heat fluxes measured by LAS at AR were larger than those measured by EC at the same site. This difference seems to be caused by the energy imbalance of EC, the heterogeneity of the underlying surfaces, and the difference between the source areas of the LAS and EC measurements.

  15. Performance of a Cross-Flow Humidifier with a High Flux Water Vapor Transport Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R. K.; Wang, X.; Johnson, W. B.; Berg, F.; Kadylak, D.

    2015-09-30

    Water vapor transport (WVT) flux across a composite membrane that consists of a very thin perfluorosulfonic acid (PFSA) ionomer layer sandwiched between two expanded polytetrafluoroethylene (PTFE) microporous layers is investigated. Static and dynamic tests are conducted to measure WVT flux for different composite structures; a transport model shows that the underlying individual resistances for water diffusion in the gas phase and microporous and ionomer layers and for interfacial kinetics of water uptake at the ionomer surface are equally important under different conditions. A finite-difference model is formulated to determine water transport in a full-scale (2-m2 active membrane area) planar cross-flow humidifier module assembled using pleats of the optimized composite membrane. In agreement with the experimental data, the modeled WVT flux in the module increases at higher inlet relative humidity (RH) of the wet stream and at lower pressures, but the mass transfer effectiveness is higher at higher pressures. The model indicates that the WVT flux is highest under conditions that maintain the wet stream at close to 100% RH while preventing the dry stream from becoming saturated. The overall water transport is determined by the gradient in RH of the wet and dry streams but is also affected by vapor diffusion in the gas layer and the microporous layer.

  16. Incorporation of water vapor transfer in the JULES land surface model: Implications for key soil variables and land surface fluxes

    Science.gov (United States)

    Garcia Gonzalez, Raquel; Verhoef, Anne; Luigi Vidale, Pier; Braud, Isabelle

    2012-05-01

    This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapor transfer. The model was tested for three sites representative of semiarid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia), and Audubon site (Arizona, USA). Water vapor flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapor diffusion; thermal vapor flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapor flux had an effect on the diurnal evolution of evaporation, soil moisture content, and surface temperature. The incorporation of additional processes, such as water vapor flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.

  17. Measurement of Turbulent Water Vapor Fluxes from Lightweight Unmanned Aircraft Systems

    Science.gov (United States)

    Thomas, R. M.; Ramanathan, V.; Nguyen, H.; Lehmann*, K.

    2010-12-01

    Scientists at the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography have successfully used Unmanned Aircraft Systems (UASs) for measurements of radiation fluxes, aerosol concentrations and cloud microphysical properties. Building on this success, a payload to measure water vapor fluxes using the eddy covariance (EC) technique has been recently developed and tested. To our knowledge this is the first UAS turbulent flux system to incorporate high-frequency water vapor measurements. The driving aim of the water vapor flux system’s development is to investigate ‘atmospheric rivers’ in the north-western Pacific Ocean, these can lead to sporadic yet extreme rainfall and flooding events upon landfall in California. Such a flux system may also be used to investigate other weather events (e.g. the formation of hurricanes) and offers a powerful aerosol-cloud-radiative forcing investigative tool when combined with the existing aerosol/radiation and cloud microphysics UAS payloads. The atmospheric vertical wind component (w) is derived by this system at up to 100Hz using data from a GPS/Inertial Measurement Unit (GPS/IMU) combined with a fast-response gust probe mounted on the UAV. Measurements of w are then combined with equally high frequency water vapor data (collected using a Campbell Scientific Krypton Hygrometer) to calculate latent heat fluxes (λE). Two test flights were conducted at the NASA Dryden test facility on 27th May 2010, located in the Mojave Desert. Horizontal flight legs were recorded at four altitudes between 1000-2500 masl within the convective boundary layer. Preliminary data analysis indicates averaged spectral data follow the theoretical -5/3 slope , and extrapolation of the flux profile to the surface resulted in λE of 1.6 W m-2; in good agreement with 1.0 W m-2 λE measured by NOAA from a surface tower using standard flux techniques. The system performance during the Dryden test, as well as subsequent

  18. Measurement of turbulent water vapor fluxes using a lightweight unmanned aerial vehicle system

    Directory of Open Access Journals (Sweden)

    R. M. Thomas

    2012-01-01

    Full Text Available We present here the first application of a lightweight unmanned aerial vehicle (UAV system designed to measure turbulent properties and vertical latent heat fluxesE. Such measurements are crucial to improve our understanding of linkages between surface moisture supply and boundary layer clouds and phenomena such as atmospheric rivers. The application of UAVs allows for measurements on spatial scales complimentary to satellite, aircraft, and tower derived fluxes. Key system components are: a turbulent gust probe; a fast response water vapor sensor; an inertial navigation system (INS coupled to global positioning system (GPS; and a 100 Hz data logging system. We present measurements made in the continental boundary layer at the National Aeronautics and Space Administration (NASA Dryden Research Flight Facility located in the Mojave Desert. Two flights consisting of several horizontal straight flux run legs up to ten kilometers in length and between 330 and 930 m above ground level (m a.g.l. are compared to measurement from a surface tower. Surface measured λE ranged from −53 W m−2 to 41 W m−2, and the application of a Butterworth High Pass Filter (HPF to the datasets improved agreement to within +/−12 W m−2 for 86% of flux runs, by removing improperly sampled low frequency flux contributions. This result, along with power and co-spectral comparisons and consideration of the differing spatial scales indicates the system is able to resolve vertical fluxes for the measurement conditions encountered. Challenges remain, and the outcome of these measurements will be used to inform future sampling strategies and further system development.

  19. Flux induced growth of sub-Kelvin nano-particles by organic vapor

    Science.gov (United States)

    Wang, J.; McGraw, R. L.; Kuang, C.

    2011-12-01

    New particle formation (NPF) in the atmosphere strongly influences the concentration of atmospheric aerosol, and therefore its impact on climate. New particle formation is a two-stage process consisting of homogeneous nucleation of thermodynamically stable clusters followed by growth of these clusters to a detectable size (> 3 nm). Due to the large coagulation rate of clusters smaller than 3 nm with the pre-existing aerosol population, for new particle formation to take place, these clusters need to grow sufficiently fast before being removed by coagulation. While some previous modeling and field studies have indicated that condensation of low-volatility organic vapor may play an important role in the initial growth of the clusters, it is suggested that due to the small size of the clusters, the strong Kelvin effect may prevent typical ambient organics from condensing on these clusters. Here we show that the particle number flux induced by the heterogeneous nucleation of organics vapor can effectively grow clusters substantially smaller than the Kelvin diameter, traditionally considered as the minimum size of particles that can be grown through condensation. Including this flux can lead to a factor of 10 or higher increases in the predicted rates of new particle formation and the production of cloud condensation nuclei.

  20. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  1. Flux correction for closed-path laser spectrometers without internal water vapor measurements

    Directory of Open Access Journals (Sweden)

    R. V. Hiller

    2012-01-01

    Full Text Available Recently, instruments became available on the market that provide the possibility to perform eddy covariance flux measurements of CH4 and many other trace gases, including the traditional CO2 and H2O. Most of these instruments employ laser spectroscopy, where a cross-sensitivity to H2O is frequently observed leading to an increased dilution effect. Additionally, sorption processes at the intake tube walls modify and delay the observed H2O signal in closed-path systems more strongly than the signal of the sampled trace gas. Thereby, a phase shift between the trace gas and H2O fluctuations is introduced that dampens the H2O flux observed in the sampling cell. For instruments that do not provide direct H2O measurement in the sampling cell, transfer functions from externally measured H2O fluxes are needed to estimate the effect of H2O on trace gas flux measurements. The effects of cross-sensitivity and the damping are shown for an eddy covariance setup with the Fast Greenhouse Gas Analyzer (FGGA, Los Gatos Research Inc. that measures CO2, CH4, and H2O fluxes. This instrument is technically identical with the Fast Methane Analyzer (FMA, Los Gatos Research Inc. that does not measure H2O concentrations. Hence, we used measurements from a FGGA to derive a modified correction for the FMA accounting for dilution as well as phase shift effects in our instrumental setup. With our specific setup for eddy covariance flux measurements, the cross-sensitivity counteracts the damping effects, which compensate each other. Hence, the new correction only deviates very slightly from the traditional Webb, Pearman, and Leuning density correction, which is calculated from separate measurements of the atmospheric water vapor flux.

  2. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M. [Troitsk Inst. for Innovation and Fusion Research, TRINITI, Kostromskaya, 12A, 79, RU-142092 Troitsk, Moscow Region (Russian Federation); Landman, I. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Postfach 3640, D-7602l Karlsruhe (Germany)

    2007-07-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m{sup 2} on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m{sup 2}. Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  3. Measuring Total Flux of Organic Vapors From the Unsaturated Zone Under Natural Conditions: Design, Laboratory and Field Testing of a Flux Chamber Device

    Science.gov (United States)

    Tillman, F. D.; Choi, J.; Smith, J. A.

    2002-05-01

    A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed and tested both in a controlled laboratory environment and in a natural field setting. The chamber consists of a stainless-steel right circular cylinder open on one end with a flexible, impermeable membrane allowing for chamber expansion and contraction. Air is pumped from inside the chamber through activated carbon traps and returned to the chamber maintaining a net zero pressure gradient from the inside to the outside of the chamber. The traps are analyzed using thermal desorption/GC-FID and the mass of contaminant is divided by the product of the sampled area and sample time to give VOC flux measured by the chamber. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under step, sinusoidal and transport-model simulation flux inputs. Laboratory testing of the flux chamber under both diffusion and advection dominated conditions was performed in a device constructed to simulate unsaturated zone transport. Aqueous trichloroethene (TCE) solution was pumped through the bottom of a steel drum inside which 50-cm of fine sand was suspended. For diffusion-dominated transport experiments, the chamber was installed in the sand at the top of the simulator and operated in the same manner as would occur in the field. The flux measurement of the chamber was then compared to flux prediction based on measured linear concentration data from the simulator and Fick's law. Advective transport is initiated in the vadose zone simulator by flowing humidified, pressurized air into an input port in the bottom of the simulator below the suspended porous media. Soil-gas velocity is calculated by dividing the airflow input by the surface area of the simulator. Flux was measured with the chamber and compared to flux predicted using airflow and concentration data from the simulator. Results from both the diffusion-only and

  4. Carbon and Water Vapor Fluxes of Dedicated Bioenergy Feedstocks: Switchgrass and High Biomass Sorghum

    Science.gov (United States)

    Wagle, P.; Kakani, V. G.; Huhnke, R.

    2015-12-01

    We compared eddy covariance measurements of carbon and water vapor fluxes from co-located two major dedicated lignocellulosic feedstocks, Switchgrass (Panicum virgatum L.) and high biomass sorghum (Sorghum bicolor L. Moench), in Oklahoma during the 2012 and 2013 growing seasons. Monthly ensemble averaged net ecosystem CO2 exchange (NEE) reached seasonal peak values of 36-37 μmol m-2 s-1 in both ecosystems. Similar magnitudes (weekly average of daily integrated values) of NEE (10-11 g C m-2 d-1), gross primary production (GPP, 19-20 g C m-2 d-1), ecosystem respiration (ER, 10-12 g C m-2 d-1), and evapotranspiration (ET, 6.2-6.7 mm d-1) were observed in both ecosystems. Carbon and water vapor fluxes of both ecosystems had similar response to air temperature (Ta) and vapor pressure deficit (VPD). An optimum Ta was slightly over 30 °C for NEE and approximately 35 °C for ET, and an optimum VPD was approximately 3 kPa for NEE and ET in both ecosystems. The switchgrass field was a larger carbon sink, with a cumulative seasonal carbon uptake of 406-490 g C m-2 compared to 261-330 g C m-2 by the sorghum field. Despite similar water use patterns during the active growing period, seasonal cumulative ET was higher in switchgrass than in sorghum. The ratio of seasonal sums of GPP to ET yielded ecosystem water use efficiency (EWUE) of 9.41-11.32 and 8.98-9.17 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The ratio of seasonal sums of net ecosystem production (NEP) to ET was 2.75-2.81 and 2.06-2.18 g CO2 mm-1 ET in switchgrass and sorghum, respectively. The switchgrass stand was a net carbon sink for four to five months (April/May-August), while sorghum was a net carbon sink only for three months (June-August). Our results imply that the difference in carbon sink strength and water use between two ecosystems was driven mainly by the length of the growing season.

  5. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Science.gov (United States)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  6. Differential responses of carbon and water vapor fluxes to climate among evergreen needleleaf forests in the USA

    Science.gov (United States)

    Understanding of differences in carbon and water vapor fluxes of spatially distributed evergreen needle leaf forests (ENFs) is crucial to accurately estimating regional carbon and water budgets and when predicting the responses of ENFs to future climate. We investigated cross-site variability in car...

  7. Comparative measurements of water vapor fluxes over a tall forest using open- and closed-path eddy covariance system

    Directory of Open Access Journals (Sweden)

    J. B. Wu

    2015-05-01

    Full Text Available Eddy covariance using infrared gas analyses has been a useful tool for gas exchange measurements between soil, vegetation and atmosphere. So far, comparisons between the open- and closed-path eddy covariance (CP system have been extensively made on CO2 flux estimations, while lacking in the comparison of water vapor flux estimations. In this study, the specific performance of water vapor flux measurements of an open-path eddy covariance (OP system was compared against a CP system over a tall temperate forest in Northeast China. The results show that the fluxes from the OP system (LEop were generally greater than the (LEcp though the two systems shared one sonic anemometer. The tube delay of closed-path analyser depended on relative humidity, and the fixed median time lag contributed to a significant underestimation of (LEcp between the forest and atmosphere, while slight systematic overestimation was also found for covariance maximization method with single broad time lag search window. After the optimized time lag compensation was made, the average difference between the 30 min (LEop and (LEcp was generally within 6%. Integrated over the annual cycle, the CP system yielded a 5.1% underestimation of forest evapotranspiration as compared to the OP system measurements (493 vs. 469 mm yr−1. This study indicates the importance to estimate the sampling tube delay accurately for water vapor flux calculations with closed-path analysers, and it also suggests that when discuss the energy balance closure problem in flux sites with closed-path eddy covariance systems, it has to be aware that some of the imbalance is possibly caused by the systematic underestimation of water vapor fluxes.

  8. Remove volatile organic compounds (VOCs) with membrane separation techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  9. Flux induced growth of atmospheric nano-particles by organic vapors

    Directory of Open Access Journals (Sweden)

    J. Wang

    2012-09-01

    Full Text Available Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation followed by growth of these clusters to a detectable size (~3 nm. Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.

  10. Flux induced growth of atmospheric nano-particles by organic vapors

    Science.gov (United States)

    Wang, J.; McGraw, R. L.; Kuang, C.

    2012-09-01

    Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosol is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here the initial condensational growth of freshly nucleated clusters is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size lead to positive cluster number flux, and therefore driving the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered as the minimum particle size that can be grown through condensation. The conventional approach neglects this contribution from the cluster concentration gradient, and underestimates the rate of new particle formation by a factor of up to 60.

  11. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.; Kolb, Thomas E.; Cook, David R.; Brunsell, Nathaniel; Baldocchi, Dennis D.; Basara, Jeffrey; Matamala, Roser; Zhou, Yuting; Bajgain, Rajen

    2015-12-01

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associated with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.

  12. Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong; YU Qiang; LI Jun; WU Zhi-yi; HU Bing-min

    2005-01-01

    Least squares support vector machines (LS-SVMs), a nonlinear kemel based machine was introduced to investigate the prospects of application of this approach in modelling water vapor and carbon dioxide fluxes above a summer maize field using the dataset obtained in the North China Plain with eddy covariance technique. The performances of the LS-SVMs were compared to the corresponding models obtained with radial basis function (RBF) neural networks. The results indicated the trained LS-SVMs with a radial basis function kernel had satisfactory performance in modelling surface fluxes; its excellent approximation and generalization property shed new light on the study on complex processes in ecosystem.

  13. 用修正的Polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡%MODIFIED POLANYI-DUBININ EQUATION TO ORRELATE ADSORPTION EQUILIBRIUM OF VOC-WATER VAPOR MIXTURES ON ACTIVATED CARBON

    Institute of Scientific and Technical Information of China (English)

    高华生; 汪大翚; 叶芸春; 谭天恩

    2001-01-01

    Long-column method was used to determine the adsorption isotherms of 4 VOCs (benzene, toluene, chloroform and acetone) in concentration range of 250~5000?mg*m-3 on a commercial activated-carbon under different humidity levels at 30?℃.A modified Polanyi-Dubinin equation was proposed to correlate the adsorption equilibrium of different VOC-water vapor systems. Among 3 methods of calculating the Relative Affinity Coefficient β used,the Molar Volume method and the Molecular Parachor method proved to be suitable for the calculation with better precision than the Electronic Polarization method. Calculation results were satisfactory for the benzene-, toluene-, and chloroform-water vapor/activated carbon systems, but poor for acetone possibly because of its strong polarity.The equation could be used to estimate the detaining effect of atmospheric humidity on the adsorption equilibrium of VOCs on activated carbon.

  14. SIERRA-Flux: Measuring Regional Surface Fluxes of Carbon Dioxide, Methane, and Water Vapor from an Unmanned Aircraft System

    Science.gov (United States)

    Fladeland; Yates, Emma Louise; Bui, Thaopaul Van; Dean-Day, Jonathan; Kolyer, Richard

    2011-01-01

    The Eddy-Covariance Method for quantifying surface-atmosphere fluxes is a foundational technique for measuring net ecosystem exchange and validating regional-to-global carbon cycle models. While towers or ships are the most frequent platform for measuring surface-atmosphere exchange, experiments using aircraft for flux measurements have yielded contributions to several large-scale studies including BOREAS, SMACEX, RECAB by providing local-to-regional coverage beyond towers. The low-altitude flight requirements make airborne flux measurements particularly dangerous and well suited for unmanned aircraft.

  15. A correlation to predict the heat flux on the air-side of a vapor chamber with overturn-U flattened tubes

    Science.gov (United States)

    Srimuang, Wasan; Limkaisang, Viroj

    2016-08-01

    The heat transfer characteristics of a conventional vapor chamber (CVC) and a loop vapor chamber (LVC) are compared. The vapor chambers consisted of a stainless steel box with different covers. The results indicated that the heat flux and convective heat transfer coefficient of the air-side of LVC is higher than CVC. An empirical correlation was developed to predict the convective heat transfer coefficient of the air-side of the LVC.

  16. Aircraft measurements of CO{sub 2}, O{sub 3}, water vapor, aerosol fluxes and, turbulence over Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Alkezweeny, A. J. [Geophysical Institute, University of Alaska, Fairbanks (United States)

    1996-04-01

    Using an instrumented aircraft we made a constant altitude flight over lake Michigan near the Chicago Shoreline and about 50 km downwind of it. The flight was made on June 18, 1992 between about 1:30 and 3:30 pm. The wind was southwesterly averaged about 12 m s{sup -}1. Employing the eddy correlation method we calculated the fluxes of CO{sub 2}, O{sub 3}, water vapor and aerosols in the diameter range of 0.1 to 3.0 {mu}m. The fluxes near the shoreline were found to be significantly higher than those in the middle of the lake. The fluxes near the shoreline for O{sub 3} and aerosols were directed toward the surface and corresponding to transfer (deposition) velocities of 0.15 cm s{sup -}1 and 0.86 cm s{sup -}1, respectively. For CO{sub 2}, and water vapor, the fluxes were directed upward and corresponding to transfer velocities of 0.04 cm s{sup -}1 and 0.54 cm s{sup -}1, respectively. At mid-lake the fluxes of O{sub 3} and water vapor were directed upward and corresponding to transfer velocity of 0.045 cm s{sup -}1 and 0.003 cm s{sup -}1. For CO{sub 2} and aerosols the fluxes were directed downward and corresponding to transfer (deposition) velocities of 0.006 cm s{sup -}1 and 0.226 cm s{sup -}1. [Spanish] Con un a vion dotado de instrumentos hicimos un vuelo a altura constante sobre el lago Michigan cerca de la linea de costa y 50 km, aproximadamente, viento abajo de ella. El vuelo fue hecho en junio 18 de 1992 entre las 1:30 y las 3:30 p.m. El viento era del suroeste 12 ms{sup -}1 en promedio. Empleando el metodo de correlacion torbellinaria calculamos los fluidos de CO{sub 2} y O{sub 3}, vapor de agua y aerosoles en una gama de diametros de 0.1 a 3.0 {mu}m. Se encontro que los flujos cerca de la costa eran significativamente mas altos que en medio del lago. Los flujos del O{sub 3} y aerosoles cerca de la costa estaban dirigidos hacia la superficie y correspondian a las velocidades de transporte (depositacion) de 0.15 cm s{sup -}1 y 0.45 cm s{sup -}1

  17. Three Dimensional Vapor Intrusion Modeling: Model Validation and Uncertainty Analysis

    Science.gov (United States)

    Akbariyeh, S.; Patterson, B.; Rakoczy, A.; Li, Y.

    2013-12-01

    Volatile organic chemicals (VOCs), such as chlorinated solvents and petroleum hydrocarbons, are prevalent groundwater contaminants due to their improper disposal and accidental spillage. In addition to contaminating groundwater, VOCs may partition into the overlying vadose zone and enter buildings through gaps and cracks in foundation slabs or basement walls, a process termed vapor intrusion. Vapor intrusion of VOCs has been recognized as a detrimental source for human exposures to potential carcinogenic or toxic compounds. The simulation of vapor intrusion from a subsurface source has been the focus of many studies to better understand the process and guide field investigation. While multiple analytical and numerical models were developed to simulate the vapor intrusion process, detailed validation of these models against well controlled experiments is still lacking, due to the complexity and uncertainties associated with site characterization and soil gas flux and indoor air concentration measurement. In this work, we present an effort to validate a three-dimensional vapor intrusion model based on a well-controlled experimental quantification of the vapor intrusion pathways into a slab-on-ground building under varying environmental conditions. Finally, a probabilistic approach based on Monte Carlo simulations is implemented to determine the probability distribution of indoor air concentration based on the most uncertain input parameters.

  18. TO PURGE OR NOT TO PURGE? VOC CONCENTRATION ...

    Science.gov (United States)

    Soil vapor surveys are commonly used as a screening technique to delineate volatile organic compound (VOC) contaminant plumes and provide information for soil sampling plans. Traditionally, three purge volumes of vapor are removed before a sample is collected. One facet of this study was to evaluate the VOC concentrations lost during purging and explore the potential implications of those losses. The vapor data was compared to collocated soil data to determine if any correlation existed between the VOC concentrations. Two different methods for soil vapor collection were compared: 1) active/micro-volume; and 2) active/macro-volume. The active/micro-volume vapor sample had total line purge volume of 1.25 mL and the active/macro-volume vapor sample had a total line purge volume of 15 mL. Six line purge volumes were collected for each vapor sampling technique, with the fourth purge volume representing the traditional sample used for site screening data. Each sample was collected by gas tight syringe and transferred to a thermal de sorption tube for sorption, transport, and analysis. Following the removal of the soil vapor samples, collocated soil samples were taken. For both active vapor sampling techniques, the VOC concentrations in the first three purge volumes exceeded the VOC concentrations in the last three purge volumes. This implies that the general rule of removal of three purge volumes prior to taking a sample for analysis could lead to underestimating the

  19. Adsorption calorimetry during metal vapor deposition on single crystal surfaces: Increased flux, reduced optical radiation, and real-time flux and reflectivity measurements

    Science.gov (United States)

    Sellers, Jason R. V.; James, Trevor E.; Hemmingson, Stephanie L.; Farmer, Jason A.; Campbell, Charles T.

    2013-12-01

    Thin films of metals and other materials are often grown by physical vapor deposition. To understand such processes, it is desirable to measure the adsorption energy of the deposited species as the film grows, especially when grown on single crystal substrates where the structure of the adsorbed species, evolving interface, and thin film are more homogeneous and well-defined in structure. Our group previously described in this journal an adsorption calorimeter capable of such measurements on single-crystal surfaces under the clean conditions of ultrahigh vacuum [J. T. Stuckless, N. A. Frei, and C. T. Campbell, Rev. Sci. Instrum. 69, 2427 (1998)]. Here we describe several improvements to that original design that allow for heat measurements with ˜18-fold smaller standard deviation, greater absolute accuracy in energy calibration, and, most importantly, measurements of the adsorption of lower vapor-pressure materials which would have previously been impossible. These improvements are accomplished by: (1) using an electron beam evaporator instead of a Knudsen cell to generate the metal vapor at the source of the pulsed atomic beam, (2) changing the atomic beam design to decrease the relative amount of optical radiation that accompanies evaporation, (3) adding an off-axis quartz crystal microbalance for real-time measurement of the flux of the atomic beam during calorimetry experiments, and (4) adding capabilities for in situ relative diffuse optical reflectivity determinations (necessary for heat signal calibration). These improvements are not limited to adsorption calorimetry during metal deposition, but also could be applied to better study film growth of other elements and even molecular adsorbates.

  20. Study of water vapor, carbon dioxide and methane fluxes in mid-latitude prairie wetlands

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is for a research/management study that will provide urgently needed information on carbon dioxide, methane and energy fluxes from mid-latitude...

  1. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs).

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-08-31

    Bi-layer (Au-Si₃N₄) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  2. Estimation of spatially distributed latent energy flux over complex terrain using a scanning water-vapor Raman lidar

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, D.I.; Eichinger, W.; Archuleta, J.; Cottingame, W.; Osborne, M.; Tellier, L.

    1995-09-01

    Evapotranspiration is one of the critical variables in both water and energy balance models of the hydrological system. The hydrologic system is driven by the soil-plant-atmosphere continuum, and as such is a spatially distributed process. Traditional techniques rely on point sensors to collect information that is then averaged over a region. The assumptions involved in spatially average point data is of limited value (1) because of limited sensors in the arrays, (2) the inability to extend and interpret the Measured scalars and estimated fluxes at a point over large areas in complex terrain, and (3) the limited understanding of the relationship between point measurements of spatial processes. Remote sensing technology offers the ability to collect detailed spatially distributed data. However, the Los Alamos National Laboratory`s volume-imaging, scanning water-vapor Raman lidar has been shown to be able to estimate the latent energy flux at a point. The extension of this capability to larger scales over complex terrain represents a step forward. This abstract Outlines the techniques used to estimate the spatially resolved latent energy flux. The following sections describe the site, model, data acquired, and lidar estimated latent energy ``map``.

  3. Using remotely sensed data from AIRS to estimate the vapor flux on the Greenland ice sheet: Comparisons with observations and a regional climate model

    Science.gov (United States)

    Boisvert, Linette N.; Lee, Jae N.; Lenaerts, Jan T. M.; Noël, Brice; Broeke, Michiel R.; Nolin, Anne W.

    2017-01-01

    Mass loss from the Greenland ice sheet (GrIS) in recent years has been dominated by runoff from surface melt. It is currently being studied extensively, while little interest has been given to the smallest component of surface mass balance (SMB): the vapor flux. Although poorly understood, it is not negligible and could potentially play a larger role in SMB in a warming climate where temperature, relative humidity, and precipitation changes remain uncertain. Here we present an innovative approach to estimate the vapor flux using the Atmospheric Infrared Sounder (AIRS) version 6 data and a modified vapor flux model (BMF13) over the GrIS between 2003 and 2014. One modification to the BMF13 model includes a new Multiangle Imaging SpectroRadiometer surface aerodynamic roughness product, which likely produces more accurate estimates of the drag coefficient on the ice sheet. When comparing AIRS data with GC-Net and Programme for Monitoring of the Greenland Ice Sheet automatic weather station observations of skin temperature, near-surface air temperature, and humidity, they agree within 2 K, 2.68 K, and 0.34 g kg-1. Largest differences occur in the ablation zone where there is significant subgrid heterogeneity. Overall, the average vapor flux from the GrIS between 2003 and 2014 was found to be 14.6 ± 3.6 Gt yr-1. No statistically significant trends were found during the data record. This data set is compared to the Regional Atmospheric Climate Model (RACMO2.3) vapor flux, and BMF13 produced smaller vapor fluxes in the summer ( 0.05 Gt d-1) and slightly more deposition in the winter ( 9.4 × 10-3 Gt d-1). Annually, differences between BMF13 and RACMO2.3 were only 30 ± 15%.

  4. Carbon, Water Vapor, and Energy Fluxes of Grazed and Ungrazed Tallgrass Prairie

    Science.gov (United States)

    Owensby, C. E.; Ham, J. M.; Auen, L. M.

    2004-12-01

    To determine the impact of seasonal steer grazing on annual CO2 fluxes of annually-burned native tallgrass prairie, we used conditional sampling (relaxed eddy accumulation) on adjacent pastures of grazed (GR) and ungrazed (UG) tallgrass prairie from 1998 to 2001 and eddy correlation from 2002 to 2004. Fluxes of CO2 were measured almost continuously (24 hr) from immediately following burning through the burn date the following year (365 d). Aboveground biomass and leaf area were determined by clipping biweekly during the growing season. Carbon lost due to burning was estimated by clipping immediately prior to burning and collecting residual surface carbon after the burn. Soil CO2 flux was measured biweekly at midday each year using portable chambers from 1998 to 2002 and diurnally by large autochambers from 2002 to 2004. Steers were stocked at twice the normal season-long stocking rate (0.81 ha steer-1) for the first half of the grazing season (~May 1 to July 15) and the area left ungrazed the remainder of the year. That system of grazing is termed "intensive early stocking" and is commonly used throughout the Kansas Flint Hills. During the early growing season, grazing reduced net carbon exchange relative to the reduction in green leaf area, but as the growing season progressed on the grazed area, regrowth produced younger leaves that had an apparent higher photosynthetic efficiency. Despite a substantially greater green leaf area on the ungrazed area, greater positive net carbon flux occurred on the grazed area during the late season. Nighttime carbon losses were greater on the ungrazed area in the early season, but were greater on the grazed area late in the season. During the peak growth period, an amount equivalent to ~80% of the carbon fixed on a clear day was lost each day through soil CO2 flux and plant respiration. Soil CO2 flux followed a definite diurnal pattern during the growing season with daytime fluxes twice that of nighttime. During the dormant

  5. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    Kang, Seok-Won; Fragala, Joe; Banerjee, Debjyoti

    2015-01-01

    Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current. PMID:26334276

  6. Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Seok-Won Kang

    2015-08-01

    Full Text Available Bi-layer (Au-Si3N4 microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.

  7. High flux diode packaging using passive microscale liquid-vapor phase change

    Energy Technology Data Exchange (ETDEWEB)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  8. Modeling of a heat sink and high heat flux vapor chamber

    Science.gov (United States)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  9. Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves

    Directory of Open Access Journals (Sweden)

    Suraj Reddy Rodda

    2016-02-01

    Full Text Available We present annual estimates of the net ecosystem exchange (NEE of carbon dioxide (CO2 accumulated over one annual cycle (April 2012 to March 2013 in the world’s largest mangrove ecosystem, Sundarbans (India, using the eddy covariance method. An eddy covariance flux tower was established in April 2012 to study the seasonal variations of carbon dioxide fluxes due to soil and vegetation-atmosphere interactions. The half-hourly maximum of the net ecosystem exchange (NEE varied from −6 µmol·m−2·s−1 during the summer (April to June 2012 to −10 µmol·m−2·s−1 during the winter (October to December 2012, whereas the half-hourly maximum of H2O flux varied from 5.5 to 2.5 mmol·m−2·s−1 during October 2013 and July 2013, respectively. During the study period, the study area was a carbon dioxide sink with an annual net ecosystem productivity (NEP = −NEE of 249 ± 20 g·C m−2·year−1. The mean annual evapotranspiration (ET was estimated to be 1.96 ± 0.33 mm·day−1. The gap-filled NEE was also partitioned into Gross Primary Productivity (GPP and Ecosystem Respiration (Re. The total GPP and Re over the study area for the annual cycle were estimated to be1271 g C m−2·year−1 and 1022 g C m−2·year−1, respectively. The closure of the surface energy balance accounted for of about 78% of the available energy during the study period. Our findings suggest that the Sundarbans mangroves are currently a substantial carbon sink, indicating that the protection and management of these forests would lead as a strategy towards reduction in carbon dioxide emissions.

  10. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    FLUXNET is a global network of micrometeorological flux measurement site's that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes tempe...

  11. VOCs in Arid soils: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The Volatile Organic Compounds In Arid Soils Integrated Demonstration (VOC-Arid ID) focuses on technologies to clean up volatile organic compounds and associated contaminants in soil and groundwater at arid sites. The initial host site is the 200 West Area at DOE`s Hanford site in southeastern Washington state. The primary VOC contaminant is carbon tetrachloride, in association with heavy metals and radionuclides. An estimated 580--920 metric tons of carbon tetrachloride were disposed of between 1955 and 1973, resulting in extensive soil and groundwater contamination. The VOC-Arid ID schedule has been divided into three phases of implementation. The phased approach provides for: rapid transfer of technologies to the Environmental Restoration (EM-40) programs once demonstrated; logical progression in the complexity of demonstrations based on improved understanding of the VOC problem; and leveraging of the host site EM-40 activities to reduce the overall cost of the demonstrations. During FY92 and FY93, the primary technology demonstrations within the ID were leveraged with an ongoing expedited response action at the Hanford 200 West Area, which is directed at vapor extraction of VOCs from the vadose (unsaturated) zone. Demonstration efforts are underway in the areas of subsurface characterization including: drilling and access improvements, off-gas and borehole monitoring of vadose zone VOC concentrations to aid in soil vapor extraction performance evaluation, and treatment of VOC-contaminated off-gas. These current demonstration efforts constitute Phase 1 of the ID and, because of the ongoing vadose zone ERA, can result in immediate transfer of successful technologies to EM-40.

  12. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  13. Measurements of VOC fluxes by dynamic plant and soil chambers in wheat and maize crop near Paris with a PTR-Qi-TOF-MS: Quantification and response to environmental and physiological drivers.

    Science.gov (United States)

    Gonzaga-Gomez, Lais; Boissard, Christophe; Ciuraru, Raluca; Lafouge, Florence; Zurfluh, Olivier; Buysse, Pauline; Decuq, Céline; Fanucci, Olivier; Gueudet, Jean-Christophe; Gros, Valérie; Sarda, Roland; Zannoni, Nora; Loubet, Benjamin

    2017-04-01

    Volatile organic compounds (VOC) play an important role in the chemistry of the atmosphere as precursors of secondary pollutants such as ozone and organic aerosols. A large variety of VOC are exchanged between plants (BVOC) and the atmosphere. Their fluxes are strongly dependent on environmental factors (temperature, light, biotic and abiotic stress) and vary greatly among plant species. Only few studies focused on BVOC emissions by agricultural plants and were mostly carried in North America. However, agricultural lands occupy 51% of the total country area in France, with wheat being one of the most important crop. We used a PTR-Qi-TOF-MS (national instrument within the ANAEE-France framework) and dynamic chambers to measure BVOC emissions from plant and soil compartments of a wheat and a maize crop near Paris (FR-GRI ICOS site). More than 700 masses were detected thanks to the resolution and sensitivity of this new instrument. We analyze the emission response to light, temperature and stomatal aperture in order to explain the mechanisms of BVOC exchanges by wheat plants. We investigate the emission differences between soil and plant compartment, and between wheat and maize crops. Acetone (m/z 59.049) was the predominant volatile compound in the emissions from wheat. Both methanol (m/z 33.033) and acetaldehyde (m/z 45.033) were also quite abundantly emitted but were less than half the acetone emissions. Other masses detected in relative importance in this study were m/z 63.026 (possible DMS), m/z 93.033 (not identified), m/z 69.069 (isoprene), m/z 57.069 (not identified), m/z 83.085 (possible green leaf volatiles), m/z 73.064 (methyl ethyl ketone). Their emissions were around 7 times smaller than the emissions of acetone. On the other hand we observed a deposition for, mainly, m/z 75.044 (hydroxyacetone) and m/z 61.028 (acetic acid). Methanol presented both positive and negative fluxes witch could indicate either emission or absorption of this compound by the

  14. Near surface soil vapor clusters for monitoring emissions of volatile organic compounds from soils.

    Science.gov (United States)

    Ergas, S J; Hinlein, E S; Reyes, P O; Ostendorf, D W; Tehrany, J P

    2000-01-01

    The overall objective of this research was to develop and test a method of determining emission rates of volatile organic compounds (VOCs) and other gases from soil surfaces. Soil vapor clusters (SVCs) were designed as a low dead volume, robust sampling system to obtain vertically resolved profiles of soil gas contaminant concentrations in the near surface zone. The concentration profiles, when combined with a mathematical model of porous media mass transport, were used to calculate the contaminant flux from the soil surface. Initial experiments were conducted using a mesoscale soil remediation system under a range of experimental conditions. Helium was used as a tracer and trichloroethene was used as a model VOC. Flux estimations using the SVCs were within 25% of independent surface flux estimates and were comparable to measurements made using a surface isolation flux chamber (SIFC). In addition, method detection limits for the SVC were an order of magnitude lower than detection limits with the SIFC. Field trials, conducted with the SVCs at a bioventing site, indicated that the SVC method could be easily used in the field to estimate fugitive VOC emission rates. Major advantages of the SVC method were its low detection limits, lack of required auxiliary equipment, and ability to obtain real-time estimates of fugitive VOC emission rates.

  15. A Review of Vapor Intrusion Models

    OpenAIRE

    Yao, Yijun; Suuberg, Eric M.

    2013-01-01

    A complete vapor intrusion (VI) model, describing vapor entry of volatile organic chemicals (VOCs) into buildings located on contaminated sites, generally consists of two main parts-one describing vapor transport in the soil and the other its entry into the building. Modeling the soil vapor transport part involves either analytically or numerically solving the equations of vapor advection and diffusion in the subsurface. Contaminant biodegradation must often also be included in this simulatio...

  16. Variation of fluxes of water vapor, sensible heat and carbon dioxide above winter wheat and maize canopies

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diumal variation of surface energy fluxes and CO2 flux for maize showed the inverse "U "type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mgm-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided by Rn stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the average G/Rn from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function. EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.

  17. Determining Adequate Averaging Periods and Reference Coordinates for Eddy Covariance Measurements of Surface Heat and Water Vapor Fluxes over Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Yi-Ying Chen Ming-Hsu Li

    2012-01-01

    Full Text Available Two coordinate rotation approaches (double and planar-fit rotations and no rotation, in association with averaging periods of 15 - 480 min, were applied to compute surface heat and water vapor fluxes using the eddy covariance approach. Measurements were conducted in an experimental watershed, the Lien-Hua-Chih (LHC watershed, located in central Taiwan. For no rotation and double rotation approaches, an adequate averaging period of 15 or 30 min was suggested for better energy closure and small variations on energy closure fractions. For the planar-fit rotation approach, an adequate averaging period of 60 or 120 min was recommended, and a typical averaging period of 30 min is not superior to that of 60 or 120 min in terms of better energy closure and small variations on energy closure fractions. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours at LHC site. Seasonal variations of daily energy closure fractions, high in dry season and low in wet season, were found to be associated with the surface dryness and strength of turbulent development. The mismatching of flux footprint areas among flux sensors was suggested as the cause of larger CF variations during the dry seasons as that indicated by the footprint analysis showing scattered source areas. During the wet season, the underestimation of turbulent fluxes by EC observations at the LHC site was attributed to weak turbulence developments as the source area identified by the footprint analysis was closer to the flux tower than those scattered in dry season.

  18. Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Directory of Open Access Journals (Sweden)

    B. R. Pinzer

    2012-10-01

    Full Text Available Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.

  19. [Study on control and management for industrial volatile organic compounds (VOCs) in China].

    Science.gov (United States)

    Wang, Hai-Lin; Zhang, Guo-Ning; Nei, Lei; Wang, Yu-Fei; Hao, Zheng-Ping

    2011-12-01

    Volatile organic compounds (VOCs) emitted from industrial sources account for a large percent of total anthropogenic VOCs. In this paper, VOCs emission characterization, control technologies and management were discussed. VOCs from industrial emissions were characterized by high intensity, wide range and uneven distribution, which focused on Bejing-Tianjin Joint Belt, Shangdong Peninsula, Yangtze River Delta and the Pearl River Delta. The current technologies for VOCs treatment include adsorption, catalytic combustion, bio-degradation and others, which were applied in petrochemical, oil vapor recovery, shipbuilding, printing, pharmaceutical, feather manufacturing and so on. The scarcity of related regulations/standards plus ineffective supervision make the VOCs management difficult. Therefore, it is suggested that VOCs treatment be firstly performed from key areas and industries, and then carried out step by step. By establishing of actual reducing amount control system and more detailed VOCs emission standards and regulations, applying practical technologies together with demonstration projects, and setting up VOCs emission registration and classification-related-charge system, VOCs could be reduced effectively.

  20. Dejima VOC dan rangaku

    Directory of Open Access Journals (Sweden)

    Bambang Wibawarta

    2008-10-01

    Full Text Available Japan and the Netherlands have maintained a special relationship for about 300years since the adoption of the National Seclusion policy, the so-called sakoku bythe Tokugawa shogunate (1603-1867. The Dutch began trading with Japan andengaging with Japanese society in 1600, when a Dutch ship, De Liefde, arrived inKyushu. The Tokugawa government measures regarding foreign policy includedregulations on foreign access to Japan and a prohibition on Japanese goingabroad. Between the middle of the seventeenth to the early nineteenth century,Japan was characterized by a stable political pattern in which representativesof the VOC (Dutch East India Company, were the only Europeans with a rightto trade in Japan. In the course of this period, the Japanese evaluation of theDutch changed from regarding them as commercial agents to seeing them asimporters of European knowledge. This paper is especially concerned with theinfluence of the so-called ‘Dutch Studies’ (rangaku on the early modernizationof Japan, especially with regard to medicine and the natural sciences. Thisresearch examines the development of rangaku and the trading between Japanand VOC at Dejima.

  1. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    Science.gov (United States)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  2. TURBULENT FILM CONDENSATION OF PURE VAPORS FLOWING NORMAL TO A HORIZONTAL CONDENSER TUBE - CONSTANT HEAT FLUX AT THE TUBE WALL

    Directory of Open Access Journals (Sweden)

    K.V. Sharma

    2011-12-01

    Full Text Available A mathematical model was developed for the study of external turbulent film condensation of pure vapours flowing downward and normal to the axis of the condenser tube with constant heat flux conditions maintained at the tube wall. The magnitude of interfacial shear was estimated for a given external flow condition of the vapour with the help of Colburn’s analogy. The average condensation heat transfer coefficients for different system conditions were evaluated. The present theory was compared with the available experimental and theoretical data in the literature and was found to be satisfactory.

  3. On speciation of VOC localization

    Science.gov (United States)

    Chen, S.; Chang, J.; Wang, J.

    2011-12-01

    Most of the gas-phase chemical mechanisms successfully used in gas-phase atmospheric chemical processes, such as CBM-Z, RADM2 or SAPRC-07, treat hundreds of VOC as lumped organic species by their chemical characteristics. Most of the model results are compared with total VOC observations, and it is not appropriate to compare lumped VOC simulations to observations even if there are separate VOC observations like Photochemical Assessment Monitoring Stations (PAMS). While the PAMS Air Quality Model (PAMS-AQM) is developed, separate organic species observed by PAMS without a doubt can be directly compared with model simulations. From the past case study (Chen et al., 2010), it shows a major and very significant finding in that detailed emissions of VOC in the existing emissions database are often in error in Taiwan or other countries due to the fact that the annual VOC emissions are classified into hundreds of species-specific emissions by using the speciation factors following the protocol of the U.S. EPA (AP-42). Based on all PAMS observations from 2006-2007, four base cases with well comparable meteorological simulations were selected for the unified correction for all sources in Taiwan. After the PAMS species emissions are modified, the diurnal patterns and simulation-observation correlation for most of the PAMS species are improved, and the concentration levels are more comparable with those of observations. More expanded case studies also revealed necessary corrections for the PAMS species emissions. Sensitivity analyses for lumped organic species with modified PAMS species emissions are also conducted. After modified PAMS emissions are added into lumped VOC emissions, there is an increase of only 10% of totally VOC emissions. While the sources of the lumped VOC emissions are changed, ozone formation shows no significant change with modified lumped VOC emissions. This helps to support the argument that for ozone simulation, the lumped VOC processes balance out

  4. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    Science.gov (United States)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Krasnorutskaya, K.; Kurbatova, J.

    2009-10-01

    Effects of possible climatic and vegetation changes on H2O and CO2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 °C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  5. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    In this paper, we report multiplex SERS based VOCs detection with a leaning nano-pillar substrate. The VOCs analyte molecules adsorbed at the tips of the nano-pillars produced SERS signal due to the field enhancement occurring at the localized surface plasmon hot spots between adjacent leaning nano...... chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... of acetone and ethanol vapor was also successfully demonstrated. The vibrational fingerprints of molecular structures provide specific Raman peaks for different VOCs contents. To the best of our knowledge, this is the first multiplex VOCs detection using SERS. We believe that this work may lead to a portable...

  6. Microbial growth with vapor-phase substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, Joanna; Thullner, Martin; Harms, Hauke [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany); Wick, Lukas Y., E-mail: lukas.wick@ufz.de [UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig (Germany)

    2011-04-15

    Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil. - Research highlights: > Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene. > Bacteria influence NAPH vapor-phase concentration gradients at centimeter-scale. > Microbial growth on vapor-phase naphthalene is inversely correlated to its source. > Bacteria are good biofilters for gas-phase NAPH emanating from contaminated sites. - Suspended bacteria have a high efficiency to degrade vapor-phase naphthalene and effectively influence vapor-phase naphthalene concentration gradients at the centimeter scale.

  7. HYDROGEN AND VOC RETENTION IN WASTE BOXES

    Energy Technology Data Exchange (ETDEWEB)

    PACE ME; MARUSICH RM

    2008-11-21

    The Hanford Waste Management Project Master Documented Safety Analysis (MDSA) (HNF-14741, 2003) identifies derived safety controls to prevent or mitigate the risks of a single-container deflagration during operations requiring moving, venting or opening transuranic (TRU)-waste containers. The issue is whether these safety controls are necessary for operations involving TRU-waste boxes that are being retrieved from burial at the Hanford Site. This paper investigates the potential for a deflagration hazard within these boxes and whether safety controls identified for drum deflagration hazards should be applied to operations involving these boxes. The study evaluates the accumulation of hydrogen and VOCs within the waste box and the transport of these gases and vapors out of the waste box. To perform the analysis, there were numerous and major assumptions made regarding the generation rate and the transport pathway dimensions and their number. Since there is little actual data with regards to these assumptions, analyses of three potential configurations were performed to obtain some indication of the bounds of the issue (the concentration of hydrogen or flammable VOCs within a waste box). A brief description of each of the three cases along with the results of the analysis is summarized.

  8. Distributions of personal VOC exposures: a population-based analysis.

    Science.gov (United States)

    Jia, Chunrong; D'Souza, Jennifer; Batterman, Stuart

    2008-10-01

    Information regarding the distribution of volatile organic compound (VOC) concentrations and exposures is scarce, and there have been few, if any, studies using population-based samples from which representative estimates can be derived. This study characterizes distributions of personal exposures to ten different VOCs in the U.S. measured in the 1999--2000 National Health and Nutrition Examination Survey (NHANES). Personal VOC exposures were collected for 669 individuals over 2-3 days, and measurements were weighted to derive national-level statistics. Four common exposure sources were identified using factor analyses: gasoline vapor and vehicle exhaust, methyl tert-butyl ether (MBTE) as a gasoline additive, tap water disinfection products, and household cleaning products. Benzene, toluene, ethyl benzene, xylenes chloroform, and tetrachloroethene were fit to log-normal distributions with reasonably good agreement to observations. 1,4-Dichlorobenzene and trichloroethene were fit to Pareto distributions, and MTBE to Weibull distribution, but agreement was poor. However, distributions that attempt to match all of the VOC exposure data can lead to incorrect conclusions regarding the level and frequency of the higher exposures. Maximum Gumbel distributions gave generally good fits to extrema, however, they could not fully represent the highest exposures of the NHANES measurements. The analysis suggests that complete models for the distribution of VOC exposures require an approach that combines standard and extreme value distributions, and that carefully identifies outliers. This is the first study to provide national-level and representative statistics regarding the VOC exposures, and its results have important implications for risk assessment and probabilistic analyses.

  9. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  10. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China

    Science.gov (United States)

    Wang, P.; Zhao, W.

    2008-08-01

    Volatile organic compounds (VOCs) are a major component of atmospheric pollutants in Nanjing, a large city in the east of China. Accordingly, 12-h diurnal monitoring for ten consecutive days was performed adjacent to major roads in five districts, ca.1.5 m above ground level, in April, July and October 2006, and January 2007. The most numerous species of VOCs (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, tetrachloromethane, trichloroethane and tetrachloroethane) were selected as the target pollutants for this field study of atmospheric distribution. The eleven VOCs were mostly found in gas phase due to their high vapor pressures. Gas-phase concentrations ranged between 0.6 and 67.9 μg m - 3 . Simultaneously, the levels of those VOCs measured near major roads were associated slightly with their regional background level. For all these areas, as expected, the high traffic area was the highest in terms of concentration. A positive correlation was also found between the VOC levels and traffic density. Our studies also provided VOC distribution, and vertical/horizontal profiles. The results show that traffic-related exposure to VOCs in major road microenvironments is higher than elsewhere and poses a potential threat to pedestrians, commuters, and traffic-exposed workers.

  11. Biodegradation of mixture of VOC's in a biofilter

    Institute of Scientific and Technical Information of China (English)

    D. Arulneyam; T. Swaminathan

    2004-01-01

    Volatile organic compounds(VOC' s) in air have become major concem in recent years. Biodegradation of a mixture of ethanol and methanol vapor was evaluated in a laboratory biofilter with a bed of compost and polystyrene particles using an acclimated mixed culture. The continuous performance of the biofilter was studied with different proportion of ethanol and methanol at different initial concentration and flow rates. The result showed significant removal for both ethanol and methanol, which were composition dependent.The presence of either compound in the mixture inhibited the biodegradation of the other.

  12. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  13. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  14. Vapor intrusion from entrapped NAPL sources and groundwater plumes

    Science.gov (United States)

    Illangasekare, Tissa H.; Sakaki, Toshihiro; Christ, John; Petri, Bejamin; Sauck, Carolyn; Cihan, Abdullah

    2010-05-01

    Volatile organic compounds (VOC) are commonly found entrapped as non-aqueous phase liquids (NAPLs) in the soil pores or dissolved in groundwater at industrial waste sites and refineries. Vapors emitted from these contaminant sources readily disperse into the atmosphere, into air-filled void spaces within the soil, and migrate below surface structures, leading to the intrusion of contaminant vapors into indoor air through basements and other underground structures. This process referred to as vapor intrusion (VI) represents a potential threat to human health, and is a possible exposure pathway of concern to regulatory agencies. To assess whether this exposure pathway is present, remediation project managers often rely in part on highly simplified screening level models that do not take into consideration the complex flow dynamics controlled by subsurface heterogeneities and soil moisture conditions affected by the mass and heat flux boundary conditions at the land/atmospheric interface. A research study is under way to obtain an improved understanding of the processes and mechanisms controlling vapor generation from entrapped NAPL sources and groundwater plumes, their subsequent migration through the subsurface, and their attenuation in naturally heterogeneous vadose zones under various natural physical, climatic, and geochemical conditions. Experiments conducted at multiple scales will be integrated with analytical and numerical modeling and field data to test and validate existing VI theories and models. A set of preliminary experiments where the fundamental process of vapor generation from entrapped NAPL sources and dissolved plumes under fluctuating water were investigated in small cells and two-dimensional test tanks. In another task, intermediate scale experiments were conducted to generate quantitative data on how the heat and mass flux boundary conditions control the development of dynamic VI pathways. The data from the small cell and tank experiments were

  15. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  16. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    Science.gov (United States)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  17. 塔式太阳能电站集热管非均匀受热特性研究%Heat transfer performance of water-vapor receiver with uneven heat flux in solar power tower plant

    Institute of Scientific and Technical Information of China (English)

    曹传钊; 韩临武; 徐海卫; 刘明义; 裴杰

    2015-01-01

    塔式太阳能电站吸热器中的集热管是光热转换的核心组件。集热管面向镜场的半圆周受热,且热流密度沿圆周和轴向不断变化,背向镜场的半圆周绝热,同时集热管内水-蒸汽工质的沸腾流动换热尤为复杂,研究其受热特性有助于深入了解塔式电站吸热器集热管的整体性能。为此,建立了轴向和周向不均匀热流边界条件下水-蒸汽集热管内的数值模型。基于 Fluent平台,计算三维、非稳态的汽液两相流动,通过模拟分析呈现了管内的汽液两相流动特性,同时揭示了在这种极不均匀热流条件下,集热管的温度分布规律及其传热特性。%Heat collector pipe in receiver of solar thermal power tower plants is a kernel unit to convert solar energy into thermal energy.Only the semi-circumference facing the heliostat field receives heat flux,while the other semi-circumference depart from the heliostat field is adiabatic.What's more,the heat transfer of boiling flow in the pipe with the water-vapor as the working fluid is especially complex.So the understand-ing of the heat transfer characteristics in it is significant and important.Through Fluent software,numeri-cal model of the water-vapor tube under uneven heat flux boundary with semi-circumference heated and the other semi-circumference adiabatic was established.The three-dimensional and unsteady water-vapor two-phase flow was numerically simulated.So,flow characteristics of the two-phase flow were obtained,and temperature distribution and heat transfer characteristics of the tube under uneven heat flux were revealed.

  18. 688 AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS ...

    African Journals Online (AJOL)

    Osondu

    The VOCs were classified thus: aromatics 41%, halogenated 42%, esters 3%, ketones 8%, ... and Industrial emission were identified as sources of VOCs in the studied industrial area with ... canisters, or by dynamic or diffusive adsorption .... The GC/FID was standardized and ... with CS2 was prepared from stock standard in.

  19. DEVELOPING A NO-VOC WOOD TOPCOAT

    Science.gov (United States)

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  20. T2VOC user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Falta, R.W. [Clemson Univ., Clemson, SC (United States). Dept. of Earth Sciences; Pruess, K.; Finsterle, S. [Lawrence Berkeley Lab., CA (United States); Battistelli, A. [AQUATER S.p.A., San Lorenzo in Campo, (Italy)

    1995-03-01

    T2VOC is a numerical simulator for three-phase, three-component, non-isothermal flow of water, air, and a volatile organic compound (VOC) in multidimensional heterogeneous porous media. Developed at the Lawrence Berkeley Laboratory, T2VOC is an extension of the TOUGH2 general-purpose simulation program. This report is a self-contained guide to application of T2VOC to subsurface contamination problems involving nonaqueous phase liquids (NAPLs). It gives a technical description of the T2VOC code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Detailed instructions for preparing input data are presented along with several illustrative sample problems.

  1. 干旱内陆区玉米田水热通量多层模型研究%Multi-layer model of water vapor and heat fluxes over maize field in an arid inland region

    Institute of Scientific and Technical Information of China (English)

    丁日升; 康绍忠; 张彦群; 杜太生

    2014-01-01

    The accurate modeling of water vapor and energy exchanges in cropland is needed to improve our ability to use limited water resources efficiently. Based on the multi-layer model of mass and energy ex-changes, ACASA, a multi-layer model of water vapor and heat fluxes over maize field, ACASA-M,has been developed. The new four modules were added including photosynthesis of C4 crop, the stomatal re-sponse to water stress, morphological changes of maize, heterogeneous uptake of root. Other two modules were modified including resistance of soil evaporation (Es) and the characteristic parameters of soil water. The model was parameterized by actual measurements and validated by eddy covariance measurements. The results show that ACASA-M could better simulate water and heat fluxes and variations of Es. The model could also simulate spatial and temporal distributions of fluxes within canopy. Model sensitivity tests re-vealed that variations in leaf area index and photosynthetic capacity interacted curvedly to increase rates of latent heat flux (λET). Simulations indicated that the enhanced CO2 concentration would decrease λET and canopy conductance, and increase sensible heat flux. In general, the model can be used to simulate and predict water vapor and heat fluxes, and a powerful tool for evaluating the effect of environmental changes on water consumption in cropland.%准确模拟农田水热通量对于干旱内陆区高效利用有限水资源具有重要意义。本文基于物质和能量交换多层模型(ACASA),增加C4作物光合、气孔导度对水分胁迫响应、玉米形态变化和根系非均匀吸水模块,修改土壤蒸发阻力和土壤水分运动参数计算模块,构建玉米田水热通量多层模型ACASA-M。根据实测值对模型关键过程进行参数率定,应用涡度相关系统实测水热通量进行模型验证。结果表明,ACASA-M能较好地模拟玉米田水热通量和土壤蒸发动态,也能模拟冠层内水

  2. TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DOUGLAS, J.G.

    2006-07-06

    This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected

  3. Photoelectron Imaging of OXIDE.VOC Clusters

    Science.gov (United States)

    Patros, Kellyn M.; Mann, Jennifer; Chick Jarrold, Caroline

    2016-06-01

    Perturbations of the bare O2- and O4- electronic structure arising from VOC (VOC = hexane, isoprene, benzene and benzene.D6) interactions are investigated using anion photoelectron imaging at 2.33 and 3.49 eV photon energies. Trends observed from comparing features in the spectra include VOC-identity-dependent electron affinities of the VOC complexes relative to the bare oxide clusters, due to enhance stability in the anion complex relative to the neutral. Autodetachment is observed in all O4-.VOC spectra and only isoprene with O2-. In addition, the intensities of transitions to states correlated with the singlet states of O2 neutral via detachment from the O2-.VOC anion complexes show dramatic VOC-identity variations. Most notably, benzene as a complex partner significantly enhances these transitions relative to O2- and O2-.hexane. A less significant enhancement is also observed in the O2-.isoprene complex. This enhancement may be due to the presence of low-lying triplet states in the complex partners.

  4. Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak-hornbeam forest

    Science.gov (United States)

    Schallhart, Simon; Rantala, Pekka; Nemitz, Eiko; Taipale, Ditte; Tillmann, Ralf; Mentel, Thomas F.; Loubet, Benjamin; Gerosa, Giacomo; Finco, Angelo; Rinne, Janne; Ruuskanen, Taina M.

    2016-06-01

    Recently, the number and amount of biogenically emitted volatile organic compounds (VOCs) has been discussed in great detail. Depending on the ecosystem, the published number varies between a dozen and several hundred compounds. We present ecosystem exchange fluxes from a mixed oak-hornbeam forest in the Po Valley, Italy. The fluxes were measured by a proton transfer reaction-time-of-flight (PTR-ToF) mass spectrometer and calculated using the eddy covariance (EC) method. Detectable fluxes were observed for up to 29 compounds, dominated by isoprene, which comprised over 60 % of the total upward flux (on a molar basis). The daily average of the total VOC upward flux was 10.4 nmol m-2 s-1. Methanol had the highest concentration and accounted for the largest downward flux. Methanol seemed to be deposited to dew, as the downward flux happened in the early morning, right after the calculated surface temperature came closest to the calculated dew point temperature.We estimated that up to 30 % of the upward flux of methyl vinyl ketone (MVK) and methacrolein (MACR) originated from atmospheric oxidation of isoprene. A comparison between two methods for the flux detection (manual and automated) was made. Their respective advantages and disadvantages were discussed and the differences in their results shown. Both provide comparable results.

  5. Detection of new VOC compounds with iCRDS

    Science.gov (United States)

    Huang, H.; Leen, J. B.; Gardner, A.; Gupta, M.; Baer, D. S.

    2015-12-01

    The instrument at Los Gatos Research (a member of ABB Inc.) which is based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) is capable of detecting a broad range of VOCs, in situ, continuously and autonomously, for example, BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. Previously, we have demonstrated the measurement of trichloroethylene (TCE) in zero air with a precision of 0.17 ppb (1σ in 4 minutes), and the measurement of tetrachloroethylene (PCE) with a precision of 0.15 ppb (1σ in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 µg/m3) and for PCE is 0.29 ppb (2 µg/m3). This ability has been fully demonstrated by the deployment of the instrument to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air, in excellent agreement with previous TO-15 data. In this poster, we present laboratory performance data targeting new toxic molecules with the same instrument. We have demonstrated the measurement of trichlorofluolomethane (Freon 11) in zero air with a precision of 1 ppb (3σ at 1075cm-1), and hexafluoropropene in zero air with a precision of about 0.3 ppb (3σ per spectrum). The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the lab/field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

  6. EVALUATION OF LOW-VOC LATEX PAINTS

    Science.gov (United States)

    The paper gives results of an evaluation of four commercially available low-VOC (volatile organic compound) latex paints as substitutes for conventional latex paints by assessing both their emission characteristics and their performance as coatings. Bulk analysis indicated that ...

  7. Locating industrial VOC sources with aircraft observations.

    Science.gov (United States)

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.

  8. Low VOC Barrier Coating for Industrial Maintenance

    Science.gov (United States)

    2012-09-01

    Technology Certification Program HAP Hazardous Air Pollutant HW hazardous waste LVBC low VOC barrier coating MEK methyl ethyl ketone MIL-DTL...peeling, blistering , tape adhesion, pull-off adhesion, film thickness, and LVBC/ZVT patch test adhesion testing in an acceptable or better manner...significant reductions in the amount of hazardous waste generated by the Navy. The ZVT technology contains less than 5 g/l of VOC and the resulting

  9. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  10. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hassanizadeh, S.M.; Hartog, Niels; Raoof, A.

    2014-01-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxi

  11. POCP for individual VOC under European conditions

    Energy Technology Data Exchange (ETDEWEB)

    Altenstedt, J.; Pleijel, K.

    1998-09-01

    Ground level ozone has been recognised as one of the most important environmental threats on the regional scale in Europe. Ozone is today considered to be harmful to human health already at the relatively low concentrations present in southern Scandinavia. The fact that ozone has the potential to damage vegetation at these concentrations is already well known. Ozone also gives rise to degradation of materials and is one of the gases which adds to the greenhouse effect. Ground level ozone is formed from nitrogen oxides (NO{sub x}) and volatile organic compounds (VOC) in the presence of sunlight. The only way to reduce ozone is therefore to reduce the emissions of the precursors. Ranking individual VOC by their ozone formation potential can make emission reductions more environmentally efficient and save time and money. POCP values give a ranking of the ozone formation ability of an individual VOC relative to other VOC. A critical analysis of the POCP concept has been performed which shows that the background emissions of NO{sub x} and VOC affect the POCP values to a large extent. Based on the critical analysis, five scenarios with different background emissions of NO{sub x} and VOC were selected for calculation of POCP values. These scenarios were chosen because they reflect the variation in POCP values which arise in different environments within Europe. The range thus indicates POCP values which are intended to be applicable within Europe. POCP values for 83 different VOC are presented in the form of ranges in this report. 42 refs, 13 figs, 3 tabs

  12. Locating industrial VOC sources with aircraft observations

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, P., E-mail: p.toscano@ibimet.cnr.it [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Gioli, B. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Dugheri, S. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Salvini, A. [Department of Organic Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence (Italy); Matese, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Bonacchi, A. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Zaldei, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Cupelli, V. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Miglietta, F. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Fondazione Edmund Mach, Via Mach 1, San Michele all' Adige, Trento (Italy)

    2011-05-15

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: > Flight plan aimed at sampling industrial area at various altitudes and locations. > SPME sampling strategy was based on plume detection by means of CO{sub 2}. > Concentrations obtained were lower than the limit values or below the detection limit. > Scan mode highlighted presence of {gamma}-butyrolactone (GBL) compound. > Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  13. Oxygenated VOC and monoterpene emissions from a boreal coniferous forest

    Science.gov (United States)

    Taipale, R.; Rantala, P.; Kajos, M. K.; Patokoski, J.; Ruuskanen, T. M.; Aalto, J.; Kolari, P.; Bäck, J.; Hari, P.; Kulmala, M.; Rinne, J.

    2012-04-01

    Compared with terpenoids, emissions of oxygenated volatile organic compounds (VOCs) from boreal ecosystems have been poorly characterized. We measured ecosystem scale emissions of three oxygenated compounds (methanol, acetaldehyde, and acetone) and monoterpenes from a Scots pine dominated forest in southern Finland during the summers 2006-2008. The measurements were conducted using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The contribution of the three oxygenated compounds to the measured total emissions was 40-60 %. The highest oxygenated VOC emissions were those of methanol, comprising 20-30 % of the total, followed by acetone with a share of 10-20 %. The acetaldehyde emissions were 5-10 % of the total. This emission composition will be compared with that obtained from shoot enclosure measurements. Methanol showed deposition during some periods although its overall flux was towards the atmosphere. The monoterpene emissions had a light dependent component, suggesting that part of the emissions originated directly from monoterpene biosynthesis. Diurnal, seasonal, and inter-annual variations in the emissions, along with temperature and light dependencies, will be discussed.

  14. Voc Degradation in TF-VLS Grown InP Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve; Sutter-Fella, Carolin M.; Hettick, Mark; Javey, Ali; Bermel, Peter

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the whole sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.

  15. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  16. Emission characteristics of VOCs from three fixed-roof p-xylene liquid storage tanks.

    Science.gov (United States)

    Lu, Chungsying; Huang, Hsiaoyun; Chang, Shenteng; Hsu, Shihchieh

    2013-08-01

    This study evaluates emission characteristics of volatile organic compounds (VOCs) caused by standing loss (L S) and working loss (L W) of three vertical fixed-roof p-xylene (p-X) liquid tanks during 1-year storage and filling operation. The annual net throughput of the tanks reached 70,446 t, resulting in 9,425 kg of p-X vapor emission including 5,046 kg of L S (53.54 %) and 4,379 kg of L W (46.46 %). The estimated L W of AP-42 displayed better agreement with the measured values of a VOC detector than the estimated L S of AP-42. The L S was best correlated with the liquid height of the tanks, while the L W was best correlated with the net throughput of the tanks. As a result, decreasing vapor space volume of the tanks and avoiding high net throughput of the tanks in a high ambient temperature period were considered as effective means to lessen VOC emission from the fixed-roof organic liquid storage tank.

  17. Reducing VOC Press Emission from OSB Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  18. Assessment of Mitigation Systems on Vapor Intrusion: Temporal Trends, Attenuation Factors, and Contaminant Migration Routes under Mitigated and Non-mitigated Conditions

    Science.gov (United States)

    Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...

  19. VOC methods and levels in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Bomboi, M.T. [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Majadahonda (Spain)

    2004-07-01

    Ozone precursors began to be studied in the eighties in Spain, in order to know their levels and composition in areas, which had high concentrations of other atmospheric polluting agents. At the end of the eighties, VOC were incorporated into the air quality networks in urban areas in order to anticipate at the derived amendments of the entrance into force on the Directive 92/72/CEE of 1992 on air pollution by ozone. At the same time, field campaigns for VOC toxics were started in specific industrial areas and the zones with high traffic. More recently, the air quality networks have been orientated to non-urban areas, to cover the knowledge of VOC in semi-urban and rural areas. On the other hand, the role of the biogenic emissions and the role that their chemical and photochemical products play in atmospheric chemistry was becoming important in the nineties. Therefore some research projects, e.g. 'Biogenic Emissions in the Mediterranean Area (BEMA)', were developed in order to understand the vegetation emissions in the Mediterranean area in relation to anthropogenic compounds and to get information on their participation in tropospheric ozone formation. VOC have been sampled at European Monitoring and Evaluation Programme (EMEP) sites since 1999, based on recommendations from the EMEP Workshop on Measurements of Hydrocarbons/VOC in Lindau 1989. Collection of light hydrocarbons started in 1999, whereas measurements of carbonyls have just started in 2003. In this work, the most important sampling and analysis techniques to determine ozone precursors and to control VOC are shown, as well as the main results obtained in projects, networks and measurement campaigns performed with these methods.

  20. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)

    1998-01-15

    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  1. Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs

    Directory of Open Access Journals (Sweden)

    Nobuaki Negishi

    2014-10-01

    Full Text Available We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

  2. Photocatalytic solar tower reactor for the elimination of a low concentration of VOCs.

    Science.gov (United States)

    Negishi, Nobuaki; Sano, Taizo

    2014-01-01

    We developed a photocatalytic solar tower reactor for the elimination of low concentrations of volatile organic compounds (VOCs) typically emitted from small industrial establishments. The photocatalytic system can be installed in a narrow space, as the reactor is cylindrical-shaped. The photocatalytic reactor was placed vertically in the center of a cylindrical scattering mirror, and this vertical reactor was irradiated with scattered sunlight generated by the scattering mirror. About 5 ppm toluene vapor, used as representative VOC, was continuously photodegraded and converted to CO2 almost stoichiometrically under sunny conditions. Toluene removal depended only on the intensity of sunlight. The performance of the solar tower reactor did not decrease with half a year of operation, and the average toluene removal was 36% within this period.

  3. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa{sub 2}Cu{sub 3}O{sub 3+{delta} }films : correlation of structure and chemistry with flux pinning performance.

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M. (Materials Science Division); ( CSE); (ORNL)

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (J{sub c}) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field J{sub c} or applied-field J{sub c} performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in J{sub c} for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in

  4. VOC transport in vented drums containing simulated waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

    1994-02-01

    A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

  5. World Calibration Center for VOC (WCC-VOC), a new Facility for the WMO-GAW-Programme

    Science.gov (United States)

    Rappenglueck, B.-

    2002-12-01

    Volatile organic compounds (VOC) are recognized to be important precursors of tropospheric ozone as well as other oxidants and organic aerosols. In order to design effective control measures for the reduction of photooxidants, photochemical processes have to be understood and the sources of the precursors known. Reliable and representative measurements of VOCs are necessary to describe the anthropogenic and biogenic sources, to follow the photochemical degradation of VOCs in the troposphere. Measurement of VOCs is of key importance for the understanding of tropospheric chemistry. Tropospheric VOCs have been one of the recommended measurements to be made within the GAW programme. The purpose will be to monitor their atmospheric abundance, to characterize the various compounds with regard to anthropogenic and biogenic sources and to evaluate their role in the tropospheric ozone formation process. An international WMO/GAW panel of experts for VOC measurements developed the rational and objectives for this GAW activity and recommended the configuration and required activities of the WCC-VOC. In reflection of the complexity of VOC measurements and the current status of measurement technology, a "staged" approach was adopted. Stage 1 measurements: C2-C9 hydrocarbons, including alkanes, alkenes, alkynes, dienes and monocyclics. (The WCC-VOC operates currently under this mode). Stage 2 measurements: C10-C14 hydrocarbons, including higher homologs of the Stage 1 set as well as biogenic hydrocarbon compounds. Stage 3 measurements: Oxygenated VOCs, including alcohols, carbonyls, carboxylic acids. The Quality Assurance/Science Activity Centre (QA/SAC) Germany currently has established the World Calibration Centre for VOC (WCC-VOC). The WCC-VOC has operated in the research mode und has become operational recently. From now on, the WCC-VOC conducts one round-robin calibration audit per year at all global stations that measure VOCs and assists other stations in setting up VOC

  6. GEIGER BRICKEL BENEFITS FROM LOW -VOC COATINGS

    Science.gov (United States)

    Midwest Research Institute, under a cooperative agreement with the U.S. Environmental Protection Agency (EPA), conducted a study to identify wood furniture manufacturing facilities that had converted to low-volatile organic compound (VOC)/hazardous air pollutant (HAP) wood furnit...

  7. Do time-averaged, whole-building, effective volatile organic compound (VOC) emissions depend on the air exchange rate? A statistical analysis of trends for 46 VOCs in U.S. offices.

    Science.gov (United States)

    Rackes, A; Waring, M S

    2016-08-01

    We used existing data to develop distributions of time-averaged air exchange rates (AER), whole-building 'effective' emission rates of volatile organic compounds (VOC), and other variables for use in Monte Carlo analyses of U.S. offices. With these, we explored whether long-term VOC emission rates were related to the AER over the sector, as has been observed in the short term for some VOCs in single buildings. We fit and compared two statistical models to the data. In the independent emissions model (IEM), emissions were unaffected by other variables, while in the dependent emissions model (DEM), emissions responded to the AER via coupling through a conceptual boundary layer between the air and a lumped emission source. For 20 of 46 VOCs, the DEM was preferable to the IEM and emission rates, though variable, were higher in buildings with higher AERs. Most oxygenated VOCs and some alkanes were well fit by the DEM, while nearly all aromatics and halocarbons were independent. Trends by vapor pressure suggested multiple mechanisms could be involved. The factors of temperature, relative humidity, and building age were almost never associated with effective emission rates. Our findings suggest that effective emissions in real commercial buildings will be difficult to predict from deterministic experiments or models.

  8. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Majid Hassanizadeh, S.; van Genuchten, Martinus Th.

    2017-01-01

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass cylinder filled with pure volatile organic compound (VOC). Results showed that air phase concentrations of both TCE and toluene increased relatively quickly to their maximum values and then became constant. We considered subsequent dissolution into both stirred and unstirred water reservoirs. Results of the stirred experiments showed a quick increase in the VOC concentrations with time up to their solubility limit in water. VOC vapor dissolution was found to be independent of pH. In contrast, salinity had a significant effect on the solubility of TCE and toluene vapors. VOC evaporation and vapor dissolution in the stirred water reservoirs followed first-order rate processes. Observed data could be described well using both simplified analytical solutions, which decoupled the VOC dynamics in the air and water phases, as well as using more complete coupled solutions. However, the estimated evaporation (ke) and dissolution (kd) rate constants differed by up to 70% between the coupled and uncoupled formulations. We also numerically investigated the effects of fluid withdrawal from the small water reservoir due to sampling. While decoupling the VOC air and water phase mass transfer processes produced unreliable estimates of kd, the effects of fluid withdrawal on the estimated rate constants were found to be less important. The unstirred experiments showed a much slower increase in the dissolved VOC concentrations versus time. Molecular diffusion of the VOCs within the aqueous phase became then the limiting factor for mass transfer from air to water. Fluid withdrawal during sampling likely caused some minor convection within the reservoir, which was simulated by increasing the

  9. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  10. CHARACTERIZATION OF LOW-VOC LATEX PAINTS: VOLATILE ORGANIC COMPOUND CONTENT, VOC AND ALDEHYDE EMISSIONS, AND PAINT PERFORMANCE

    Science.gov (United States)

    The report gives results of laboratory tests to evaluate commercially available latex paints advertised as "low-odor," "low-VOC (volatile organic compound)," or "no-VOC." Measurements were performed to quantify the total content of VOCs in the paints...

  11. BVOC fluxes above mountain grassland

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2010-05-01

    Full Text Available Grasslands comprise natural tropical savannah over managed temperate fields to tundra and cover one quarter of the Earth's land surface. Plant growth, maintenance and decay result in volatile organic compound (VOCs emissions to the atmosphere. Furthermore, biogenic VOCs (BVOCs are emitted as a consequence of various environmental stresses including cutting and drying during harvesting. Fluxes of BVOCs were measured with a proton-transfer-reaction-mass-spectrometer (PTR-MS over temperate mountain grassland in Stubai Valley (Tyrol, Austria over one growing season (2008. VOC fluxes were calculated from the disjunct PTR-MS data using the virtual disjunct eddy covariance method and the gap filling method. Methanol fluxes obtained with the two independent flux calculation methods were highly correlated (y = 0.95×−0.12, R2 = 0.92. Methanol showed strong daytime emissions throughout the growing season – with maximal values of 9.7 nmol m−2 s−1, methanol fluxes from the growing grassland were considerably higher at the beginning of the growing season in June compared to those measured during October (2.5 nmol m−2 s−1. Methanol was the only component that exhibited consistent fluxes during the entire growing periods of the grass. The cutting and drying of the grass increased the emissions of methanol to up to 78.4 nmol m−2 s−1. In addition, emissions of acetaldehyde (up to 11.0 nmol m−2 s−1, and hexenal (leaf aldehyde, up to 8.6 nmol m−2 s−1 were detected during/after harvesting.

  12. Performance of the JULES land surface model for UK Biogenic VOC emissions

    Science.gov (United States)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi

  13. New observations of VOC emissions and concentrations in, above, and around the Central Valley of California

    Science.gov (United States)

    Goldstein, A. H.; Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Ormeno, E.; Holzinger, R.; Misztal, P. K.; Karl, T. R.; Guenther, A. B.; Fischer, M. L.; Harley, R. A.; Karlik, J. F.

    2011-12-01

    Large portions of the Central Valley of California are out of compliance with current state and federal air quality standards for ozone and particulate matter, and the relative importance of biogenic and anthropogenic VOC emissions to their photochemical production in this region remains uncertain. In 2009-2011 multiple measurement campaigns were completed investigating the VOC emission inventory and concentration distributions. In 2009 BVOC emissions from more than 20 species of major agricultural crops in California were measured in a greenhouse using branch enclosures by both PTRMS and in-situ GC. Overall, crops were found to emit low amounts of BVOC compared to the natural forests surrounding the valley. Crops mainly emitted methanol and terpenes, with a broad array of other species emitted at lower levels, and all the measured crops showed negligible emissions of isoprene. Navel oranges were the largest crop BVOC emitters measured so a full year of flux measurements were made in an orange grove near Visalia in 2010 by eddy covariance(EC)-PTRMS with two multi-week periods of concentration measurements by hourly in-situ GC, and one month of high mass resolution flux measurements by EC-PTR-TOF-MS. The dominant BVOC emissions from the orange grove were methanol and terpenes, followed by acetone, acetaldehyde, and a low level of emissions for many other species. In 2011 aircraft eddy covariance measurements of BVOC fluxes were made by EC-PTRMS covering a large area of California as part of the California Airborne Bvoc Emission Research in Natural Ecosystem Transects (CABERNET) campaign aimed at improving BVOC emission models on regional scales, mainly profiling BVOC emissions from oak woodlands surrounding the Central Valley. In 2010, hourly in-situ VOC measurements were made via in-situ GC in Bakersfield, CA as part of the CalNex experiment. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel. Measurements by

  14. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    Science.gov (United States)

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  15. [VOCs tax policy on China's economy development].

    Science.gov (United States)

    Liu, Chang-Xin; Wang, Yu-Fei; Wang, Hai-Lin; Hao, Zheng-Ping; Wang, Zheng

    2011-12-01

    In this paper, environmental tax was designed to control volatile organic compounds (VOCs) emissions. Computable general equilibrium (CGE) model was used to explore the impacts of environmental tax (in forms of indirect tax) on the macro-economy development at both national and sector levels. Different levels of tax were simulated to find out the proper tax rate. It is found out that imposing environmental tax on high emission sectors can cause the emission decreased immediately and can lead to negative impacts on macro-economy indicators, such as GDP (gross domestic products), total investment, total product and the whole consumption etc. However, only the government income increased. In addition, the higher the tax rate is, the more pollutants can be reduced and the worse economic effects can be caused. Consequently, it is suggested that, the main controlling policies of VOCs abatement should be mandatory orders, and low environmental tax can be implemented as a supplementary.

  16. Standardization of flux chamber and wind tunnel flux measurements for quantifying emissions from area sources at animal feeding operations

    Science.gov (United States)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and inaccuracy caused by inappropriate air velocity or sweep air flow...

  17. Guidance on the use of passive-vapor-diffusion samplers to detect volatile organic compounds in ground-water-discharge areas, and example applications in New England

    Science.gov (United States)

    Church, Peter E.; Vroblesky, Don A.; Lyford, Forest P.

    2002-01-01

    Polyethylene-membrane passive-vapor-diffusion samplers, or PVD samplers, have been shown to be an effective and economical reconnaissance tool for detecting and identifying volatile organic compounds (VOCs) in bottom sediments of surface-water bodies in areas of ground-water discharge. The PVD samplers consist of an empty glass vial enclosed in two layers of polyethylene membrane tubing. When samplers are placed in contaminated sediments, the air in the vial equilibrates with VOCs in pore water. Analysis of the vapor indicates the presence or absence of VOCs and the likely magnitude of concentrations in pore water.

  18. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  19. Pulsed Corona Discharges and Their Applications in Toxic VOCs Abatement

    Institute of Scientific and Technical Information of China (English)

    MuhammadArifMalik; SalmanAkbarMalik

    1999-01-01

    plasma processes are among the emerging technologies for volatile organic compounds (VOCs) sbatoment. Both thermal plasmas and non-equil[brimn plasmas (cold plasmas) are being developed for VOCs clesnup. Particularly, pulsed corona discharges offer several edvantages over conventional VOCs abatement tochniqvee, To optimize the existing technology and to developit further, there is need to understand the mechanlsms involved in plasma chemical reacticms, Furthermore, it is strongly desirable to be able to predict the behavior of new VOCs in non-equillbrlum plasma enviromuent from the data known for a few representative oompounds, Pulsed corona discharge technique is introduced here with dtafion of refevant literature, Fundamental principfes,useful for predicting the VOCs' decomposition behavior, have been worked out from the published literature. Latest developments in the area, targeted to minimize the enersy losses, improve the VOCs destruction efficiency and reduce the generation of unwanted organic and inorganic by-products, are presented.

  20. Wearable real-time direct reading naphthalene and VOC personal exposure monitor

    Science.gov (United States)

    Hug, W. F.; Bhartia, R.; Reid, R. D.; Reid, M. R.; Oswal, P.; Lane, A. L.; Sijapati, K.; Sullivan, K.; Hulla, J. E.; Snawder, J.; Proctor, S. P.

    2012-06-01

    Naphthalene has been identified by the National Research Council as a serious health hazard for personnel working with jet fuels and oil-based sealants containing naphthalene. We are developing a family of miniature, self-contained, direct reading personal exposure monitors (PEMs) to detect, differentiate, quantify, and log naphthalene and other volatile organic compounds (VOCs) in the breathing zone of the wearer or in the hands of an industrial hygienist with limits of detection in the low parts per billion (ppb) range. The VOC Dosimeter (VOCDos) described here is a PEM that provides real-time detection and data logging of exposure as well as accumulated dose, with alarms addressing long term and immediate exposure limits. We will describe the sensor, which employs optical methods with a unique excitation source and rapidly refreshable vapor concentrator. This paper addresses the rapidly increasing awareness of the health risks of inhaling jet fuel vapors by Department of Defense (DOD) personnel engaged in or around jet fueling operations. Naphthalene is a one to three percent component of the 5 billion gallons of jet fuels used annually by DOD. Naphthalene is also a component of many other petroleum products such as asphalt and other oil-based sealants. The DOD is the single largest user of petroleum fuels in the United States (20% of all petroleum fuel used). The VOCDos wearable sensor provides real-time detection and data logging of exposure as well as accumulated dose. We will describe the sensor, which employs endogenous fluorescence from VOCs accumulated on a unique, rapidly refreshable, patent-pending concentrator, excited by a unique deep ultraviolet excitation source.

  1. Simple, Efficient, and Rapid Methods to Determine the Potential for Vapor Intrusion into the Home: Temporal Trends, Vapor Intrusion Forecasting, Sampling Strategies, and Contaminant Migration Routes

    Science.gov (United States)

    Current practice for evaluating the vapor intrusion pathway involves a multiple line of evidence approach based on direct measurements of volatile organic compound (VOC) concentrations in groundwater, external soil gas, subslab soil gas, and/or indoor air. No single line of evide...

  2. VOC removal from contaminated groundwater through membrane pervaporation. (Ⅱ): 1,1,1-trichloroethane- SDS surfactant solution system

    Institute of Scientific and Technical Information of China (English)

    PENG Ming; Sean LIU

    2003-01-01

    The conventional "pump-and-treat" technology for subsurface remediation of groundwater contaminated with volatile organic compounds(VOCs) such as 1,1,1-trichloroethane(TCA), a common chlorinated organic solvent, has limitation of prohibitively long treatment time due to extremely low water solubility of the VOCs. Surfactant-based soil remediation has emerged as the effective technology that substantially reduces the treatment time. In order to make the whole process economical, the surfactant used in soil washing has to be recovered and reused. This study examined the recovery of anionic surfactant, sodium dodecyl sulfate (SDS), from soil remediation fluids containing TCA, using a bench-scale membrane pervaporation unit. The effects of high TCA concentration, surfactant dosage, and flow rate on permeation flux and selectivity( α value) of the process were evaluated. In general, higher surfactant concentration yielded lower TCA flux and constant water flux, resulting in declining α values; higher flow rate of TCA feed stream results in higher VOC flux and selectivity, an indication of the effect of concentration polarization; higher TCA feed concentration produces higher TCA permeation across the membrane, however, the selectivity was virtually unchanged unless the total TCA concentration exceeded 2000 ppm.

  3. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    OpenAIRE

    Bennett, Joan W.; Arati A. Inamdar

    2015-01-01

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpe...

  4. Outdoor, indoor, and personal exposure to VOCs in children.

    Science.gov (United States)

    Adgate, John L; Church, Timothy R; Ryan, Andrew D; Ramachandran, Gurumurthy; Fredrickson, Ann L; Stock, Thomas H; Morandi, Maria T; Sexton, Ken

    2004-10-01

    We measured volatile organic compound (VOC) exposures in multiple locations for a diverse population of children who attended two inner-city schools in Minneapolis, Minnesota. Fifteen common VOCs were measured at four locations: outdoors (O), indoors at school (S), indoors at home (H), and in personal samples (P). Concentrations of most VOCs followed the general pattern O approximately equal to S long-term health risks from children's exposure to these compounds.

  5. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    Science.gov (United States)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  6. Use of mass spectrometric methods for field screening of VOC`s

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.

    1994-11-01

    While mass spectrometric (MS) methods of chemical analysis, particularly gas chromatography-mass spectrometry (GC/MS), have been the mainstay of environmental organic analytical techniques in the laboratory through the use of EPA and other standard methods, field implementation is relatively rare. Instrumentation and methods now exist for utilizing MS and GC/MS techniques in the field for analysis of VOC`s in gas phase, aqueous, and soil media. Examples of field investigations utilizing HP 5971A and Viking SpectraTrak systems for analysis of VOC`s in all three media will be presented. Mass spectral methods were found to offer significant advantages in terms of speed of analysis and reliability of compound identification over field gas chromatography (GC) methods while preserving adequate levels of detection sensitivity. The soil method in particular provides a method for rapid in-field analysis of methanol preserved samples thus minimizing the problem of volatiles loss which typically occurs with routine use of the EPA methods and remote analysis. The high cost of MS instrumentation remains a major obstacle to more widespread use.

  7. The Lithium Vapor Box Divertor

    Science.gov (United States)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  8. Silica-Titania Composite (STC)'s Performance in the Photocatalytic Oxidation of Polar VOCs

    Science.gov (United States)

    Levine, Lanfang H.; Coutts, Janelle; Richards, Jeffrey; Mazyck, David; Mazyck, David

    2011-01-01

    The objective of this paper is to determine the performance of a Silica-Titania Composite (STC) in the photocatalytic oxidation (PCO) of polar VOCs for potential applications in trace contaminant control within space habitats such as the ISS and CEV Orion. Tests were carried out in a bench scale STC-packed annular reactor under continuous illumination by either a UV-C germicidal lamp(lambda (sub max) = 254 nm) or UV-A fluorescent BLB (lambda(sub max) = 365 nm) for the removal of ethanol (a predominant polar VOC in the ISS cabin). The STC's performance was evaluated in terms of the ethanol mineralization rate, mineralization efficiency, and the extent of its oxidation intermediate (acetaldehyde) formation in response to the type of light source (photon energy and photon flux) and relative humidity (RH) implemented. Results demonstrated that acetaldehyde was the only quantifiable intermediate in the effluent under UV illumination, but was not found in the dark adsorption experiments. The mineralization rate increased with an increase in photon energy (UV-C greater than UV-A), even though both lamps were adjusted to emit the same incident photon flux, and also increased with increasing photon flux. However, photonic efficiency decreased as the photon flux increased. More importantly, a higher photon flux gave rise to a lower effluent acetaldehyde concentration. The effect of RH on PCO was complex and intriguing because it affected both physical adsorption and photocatalytic oxidation. In general, increasing RH caused a decrease in adsorption capacity for ethanol and reduced the mineralization efficiency with a concomitant higher acetaldehyde evolution rate. The effect of RH was less profound than that of photon flux.

  9. Analysis of Sidestream Smoke VOCs and Characterization of their Odor Profiles by VOC Preconcentrator-GC-O Techniques

    Directory of Open Access Journals (Sweden)

    Higashi N

    2014-12-01

    Full Text Available Various techniques have been employed in the analysis of volatile organic compounds (VOCs. However, these techniques are insufficient for the precise analysis of tobacco smoke VOCs because of the complexity of the operating system, system instability, or poor sensitivity. To overcome these problems, a combined system of VOC preconcentrator, gas chromatograph, and olfactometer has been developed. The performance of this new system was evaluated in the analysis of VOCs in tobacco smoke and applied to the odor profiling of sidestream smoke (SSS that has not been sufficiently investigated in the past.

  10. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  11. The experimental and numerical investigation of a grooved vapor chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Liu Zhongliang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)], E-mail: liuzhl@bjut.edu.cn; Ma Guoyuan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-02-15

    An effective thermal spreader can achieve more uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Vapor chamber is one of highly effective thermal spreaders. In this paper, a novel grooved vapor chamber was designed. The grooved structure of the vapor chamber can improve its axial and radial heat transfer and also can form the capillary loop between condensation and evaporation surfaces. The effect of heat flux, filling amount and gravity to the performance of this vapor chamber is studied by experiment. From experiment, we also obtained the best filling amount of this grooved vapor chamber. By comparing the thermal resistance of a solid copper plate with that of the vapor chamber, it is suggested that the critical heat flux condition should be maintained to use vapor chamber as efficient thermal spreaders for electronics cooling. A two-dimensional heat and mass transfer model for the grooved vapor chamber is developed. The numerical simulation results show the thickness distribution of liquid film in the grooves is not uniform. The temperature and velocity field in vapor chamber are obtained. The thickness of the liquid film in groove is mainly influenced by pressure of vapor and liquid beside liquid-vapor interface. The thin liquid film in heat source region can enhance the performance of vapor chamber, but if the starting point of liquid film is backward beyond the heat source region, the vapor chamber will dry out easily. The optimal filling ratio should maintain steady thin liquid film in heat source region of vapor chamber. The vapor condenses on whole condensation surface, so that the condensation surface achieves great uniform temperature distribution. By comparing the experimental results with numerical simulation results, the reliability of the numerical model can be verified.

  12. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations.

    Science.gov (United States)

    Pennell, Kelly G; Scammell, Madeleine Kangsen; McClean, Michael D; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M; Shen, Rui; Indeglia, Paul A; Heiger-Bernays, Wendy J

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m(3) and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an "Imminent Hazard" condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed.

  13. NEW SOIL VOC SAMPLERS: EN CORE AND ACCU CORE SAMPLING/STORAGE DEVICES FOR VOC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani Jr

    2006-06-01

    Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An ASTM International (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately 5 grams or 25 grams for volatile organic analysis and specifies sample storage in the En Core sampler at 4 {+-} 2 C for up to 48 hours; -7 to -21 C for up to 14 days; or 4 {+-} 2 C for up to 48 hours followed by storage at -7 to -21 C for up to five days. This report discusses activities performed during the past year to promote and continue acceptance of the En Core samplers based on their performance to store soil samples for VOC analysis. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis is not available. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core{trademark} sampler, is designed so that a soil sample can be collected below the surface using a dual-tube penetrometer and transported to the laboratory for analysis in the same container. Laboratory testing of the current Accu Core design shows that the device holds low-level concentrations of VOCs in soil samples during 48-hour storage at 4 {+-} 2 C and that the device is ready for field evaluation to generate additional performance data. This report discusses a field validation exercise that was attempted in Pennsylvania in 2004 and activities being performed to plan and conduct a field validation study in 2006. A draft ASTM

  14. SUBSTRATE EFFECTS ON VOC EMISSIONS FROM A LATEX PAINT

    Science.gov (United States)

    The effects of two substrates -- a stainless steel plate and a gypsum board -- on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to...

  15. FORMULATING ULTRA-LOW-VOC WOOD FURNITURE COATINGS

    Science.gov (United States)

    The article discusses the formulation of ultra-low volatile organic compound (VOC) wood furniture coatings. The annual U.S. market for wood coatings is about 240, 000 cu m (63 million gal). In this basis, between 57 and 91 million kg (125 and 200 million lb) of VOCs are emitted i...

  16. Direct measurement of VOC diffusivities in tree tissues

    DEFF Research Database (Denmark)

    Baduru, K.K.; Trapp, Stefan; Burken, Joel G.

    2008-01-01

    fundamental terminal fate processes for VOCs that have been translocated from contaminated soil or groundwater, and diffusion constitutes the mass transfer mechanism to the plant−atmosphere interface. Therefore, VOC diffusion through woody plant tissues, that is, xylem, has a direct impact on contaminant fate...

  17. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  18. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  19. Archimedes Mass Filter Vaporizer

    Science.gov (United States)

    Putvinski, S.; Agnew, A. F.; Cluggish, B. P.; Ohkawa, T.; Sevier, L.; Umstadter, K. R.; Dresvin, S. V.; Kuteev, B. V.; Feygenson, O. N.; Ivanov, D. V.; Zverev, S. G.; Miroshnikov, I. V.; Egorov, S. M.; Kiesewetter, D. V.; Maliugin, V. I.

    2001-10-01

    Archimedes Technology Group, Inc., is developing a plasma mass separator called the Archimedes Filter that separates waste oxide mixtures ion by ion into two mass groups: light and heavy. Since high-level waste at Hanford has 99.9its radioactivity associated with heavy elements, the Archimedes Filter can effectively decontaminate over three-quarters of that waste. The Filter process involves some preprocessing followed by volatilization and separation by the magnetic and electric fields of the main plasma. This presentation describes the approach to volatilization of the waste oxy-hydroxide mixture by means of a very high heat flux (q > 10 MW/m2). Such a high heat flux is required to ensure congruent evaporation of the complex oxy-hydroxide mixture and is achieved by injection of small droplets of molten waste into an inductively coupled plasma (ICP) torch. This presentation further addresses different issues related to evaporation of the waste including modeling of droplet evaporation, estimates of parameters of plasma torch, and 2D modeling of the plasma. The experimental test bed for oxide vaporization and results of the initial experiments on oxide evaporation in 60 kW ICP torch will also be described.

  20. Nieuwsgaring in Batavia tijdens de VOC

    Directory of Open Access Journals (Sweden)

    Adrienne Zuiderweg

    2010-12-01

    Full Text Available  The board members of the Dutch East India Company (1602-1795, the Heren Zeventien, promulgated various decrees in which they forbade to bring out information regarding their colonies in the Dutch East Indies and Batavia in letters, manuscripts and printed matter. But in Batavia some inventive Company servants and even staff members got around these regulations, as did some printers in Holland. They published newspapers like Bataviase Nouvelles and Vendu-Nieuws, and also the specialized journal Verhandelingen van het Bataviaasch Genootschap. The initiators of this journal joined hands with the Dutch world of learning and its journals. This article provides an overview of early journalism in the Dutch East Indies and thus contributes to the reconstruction of the literary and cultural climate in Batavia at the time of the VOC.

  1. Flux measurements of energy and trace gases in urban Houston, Texas

    Science.gov (United States)

    Boedeker, I.; Schade, G. W.; Adams, S.; Park, C.

    2008-12-01

    We describe the setup and some first year results of a new flux measurements tower in an urban area. An existing radio communications tower 4 km north of downtown Houston was equipped with micrometeorological instrumentation and trace gas sampling lines in spring 2007. Wind speed, temperature and relative humidity are recorded at five levels between 12 and 60 m above ground; 3-D wind speed measurements, solar and net radiances, and trace gas sampling are established from the 60 m level. A closed path IRGA is used for CO2 and water vapor fluxes, and independent instrumentation for criteria pollutant and VOC fluxes. Two CSI data loggers and software control the measurements, and EdiRe software is used to analyze turbulence data and compute fluxes. A project description is provided at http://atmo.tamu.edu/yellowcabtower. Surface properties as calculated from the gradient measurements show the site to be surprisingly uniform, with displacement heights between 5 and 9 m and roughness lengths between 0.4 and 0.7 m, despite urban heterogeneity. The latter is investigated through visible/near IR orthoimagery and LIDAR data, which are incorporated into a local GIS. Net radiation was also only marginally affected by surface heterogeneity. At this urban location it is balanced by roughly equal amounts of sensible heat, latent heat, and storage fluxes. Latent heat flux, however, is smaller outside the growing season, with an equivalent increase in winter storage fluxes, as expected. Significant differences are also observed with direction during summer, showing decreased Bowen ratios and lower CO2 emissions from sectors with a larger urban tree canopy cover in the footprint. The largely mature, dominantly oak urban canopy cover alleviates approximately 100 W m- 2 during typical summer days. On the other hand, anthropogenic CO2 emissions dominate over photosynthetic uptake all year round. Measured carbon fluxes peak during morning rush-hour traffic, especially when increasing

  2. Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2002-07-01

    Full Text Available A `virtual' disjunct eddy covariance (vDEC device was tested with field measurements of biogenic VOC fluxes at a subalpine forest site in the Rocky Mountains of the U.S.A. A PTR-MS instrument was used as the VOC sensor. Daily peak emission fluxes of 2-methyl-3-buten-2-ol (MBO, methanol, acetone and acetaldehyde were around 1.5, 1, 0.8 and 0.4 mg m-2 h-1, respectively. High pass filtering due to long sampling lines was investigated in laboratory experiments, and suggested that VOC losses in PTFA lines are generally governed by diffusion laws. Memory effects and surface reactions did not seem to play a dominant role. Model estimates of MBO fluxes compared well with measured fluxes. The results also suggest that latent heat and sensible heat fluxes are reasonably well correlated with VOC fluxes and could be used to predict variations in VOC emissions. The release of MBO, methanol, acetone and acetaldehyde resulted in significant change of tropospheric oxidant levels and a 10--40% increase in ozone levels, as inferred from a photochemical box model. We conclude that vDEC with a PTR-MS instrument is a versatile tool for simultaneous field analysis of multiple VOC fluxes.

  3. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  4. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-01-01

    Full Text Available Soil forms an important source for volatile organic compounds (VOCs, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail, especially wintertime fluxes, which are almost completely unstudied. In this study, we measured the VOC concentrations inside a snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from the soil surface towards the snow surface, suggesting soil as being the source for terpenoids. Forest damages resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are also active and efficient VOC sources during winter and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, basically plants, have lower activity.

  5. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  6. Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations

    Science.gov (United States)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and potential inaccuracies caused by inappropriate air velocity or sw...

  7. Characteristics of microbial volatile organic compound flux rates from soil and plant litter

    Science.gov (United States)

    Gray, C. M.; Fierer, N.

    2013-12-01

    Our knowledge of microbial production and consumption of volatile organic compounds (VOCs) from soil and litter, as well as which microorganisms are involved, is relatively limited compared to what we know about VOC emissions from terrestrial plants. With climate change expecting to alter plant community composition, nitrogen (N) deposition rates, mean annual temperatures, precipitation patterns, and atmospheric VOC concentrations, it is unknown how microbial production and consumption of VOCs from litter and soil will respond. We have spent the last 5 years quantifying VOC flux rates in decaying plant litter, mineral soils and from a subalpine field site using a proton transfer reaction mass spectrometer (PTR-MS). Microbial production, relative to abiotic sources, accounted for 78% to 99% of the total VOC emissions from decomposing litter, highlighting the importance of microbial metabolisms in these systems. Litter chemistry correlated with the types of VOCs emitted, of which, methanol was emitted at the highest rates from all studies. The net emissions of carbon as VOCs was found to be up to 88% of that emitted as CO2 suggesting that VOCs likely represent an important component of the carbon cycle in many terrestrial systems. Nitrogen additions drastically reduced VOC emissions from litter to near zero, though it is still not understood whether this was due to an increase in consumption or a decrease in production. In the field, the root system contributed to 53% of the carbon that was emitted as VOCs from the soil with increasing air temperatures correlating to an increase in VOC flux rates from the soil system. Finally, we are currently utilizing next generation sequencing techniques (Illumina MiSeq) along with varying concentrations of isoprene, the third most abundant VOC in the atmosphere behind methane and methanol, above soils in a laboratory incubation to determine consumption rates and the microorganisms (bacteria, archaea and fungi) associated with the

  8. Characterization of Water Vapor Fluxes by the Raman Lidar System Basil and the Univeristy of Cologne Wind Lidar in the Frame of the HD(CP)2 Observational Prototype Experiment - Hope

    Science.gov (United States)

    Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Schween, Jan H.

    2016-06-01

    Measurements carried out by the Raman lidar system BASIL and the University of Cologne wind lidar are reported to demonstrate the capability of these instruments to characterize water vapour fluxes within the Convective Boundary Layer (CBL). In order to determine the water vapour flux vertical profiles, high resolution water vapour and vertical wind speed measurements, with a temporal resolution of 1 sec and a vertical resolution of 15-90, are considered. Measurements of water vapour flux profiles are based on the application of covariance approach to the water vapour mixing ratio and vertical wind speed time series. The algorithms are applied to a case study (IOP 11, 04 May 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. For this case study, the water vapour flux profile is characterized by increasing values throughout the CBL with lager values (around 0.1 g/kg m/s) in the entrainment region. The noise errors are demonstrated to be small enough to allow the derivation of water vapour flux profiles with sufficient accuracy.

  9. Seasonal trends in concentrations and fluxes of volatile organic compounds above central London

    Directory of Open Access Journals (Sweden)

    A. C. Valach

    2015-03-01

    Full Text Available Concentrations and fluxes of seven volatile organic compounds (VOCs were measured between August and December 2012 at a roof-top site in central London as part of the ClearfLo project (Clean Air for London. VOC concentrations were quantified using a proton transfer reaction-mass spectrometer and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1 and mixing ratios were 7.27 ppb for methanol (m / z 33 and <1 ppb for the remaining compounds. Strong relationships were observed between most VOC fluxes and concentrations with traffic density, but also with photosynthetically active radiation (PAR and temperature for the oxygenated compounds and isoprene. An estimated 50–90 % of aromatic fluxes were attributable to traffic activity, which showed little seasonal variation, suggesting boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. PAR and temperature-dependent processes accounted for the majority of isoprene, methanol and acetaldehyde fluxes and concentrations in August and September, when fluxes and concentrations were largest. Modelled biogenic isoprene fluxes using the G95 algorithm agreed well with measured fluxes in August and September, due to urban vegetation. Comparisons of estimated annual benzene emissions from the London and National Atmospheric Emissions Inventory agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localized and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period.

  10. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions

    Science.gov (United States)

    Tillman, Fred D.; Smith, James A.

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere—including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  11. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  12. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  13. Measurement of VOCs in vehicle exhaust by extractive FTIR spectroscopy

    Science.gov (United States)

    Lechner, Bernhard; Paar, H.; Sturm, Peter J.

    2001-02-01

    12 The detection of benzene and other organic compounds in vehicle exhaust by FT-IR-spectroscopy is seriously limited by the strong interference of carbon dioxide and the rather weak absorption coefficient of the gases. Therefore, a measurement device was developed which separates the components of interest (mostly VOCs) from carbon dioxide, water and nitric oxide. In addition the VOCs have to be pre- concentrated. To avoid condensation of VOCs the measurements have to take place at higher temperatures. The vehicle exhaust was led through an activated charcoal tube where the organic compounds were adsorbed. Afterwards, the charcoal tube was heated in a furnace, the VOCs were desorbed thermically and were carried by (heated) nitrogen into a gas cell with a path-length of 10 m where the concentration of the different species was measured. With the help of this measurement device a lot of VOC- components like benzene, toluene, and xylene were detected successfully. Measurements were performed on an engine test bed and a chassis dynamometer for heavy duty vehicles. The detection limit of most of the VOCs was about 2 to 3 ppb for a sampling time of 20 min. Calibration measurements showed an accuracy of 15%.

  14. Degradation Pathways for Geogenic Volatile Organic Compounds (VOCs) in Soil Gases from the Solfatara Crater (Campi Flegrei, Southern Italy).

    Science.gov (United States)

    Tassi, F.; Venturi, S.; Cabassi, J.; Capecchiacci, F.; Nisi, B., Sr.; Vaselli, O.

    2014-12-01

    The chemical composition of volatile organic compounds (VOCs) in soil gases from the Solfatara crater (Campi Flegrei, Southern Italy) was analyzed to investigate the effects of biogeochemical processes occurring within the crater soil on gases discharged from the hydrothermal reservoir and released into the atmosphere through diffuse degassing. In this system, two fumarolic vents (namely Bocca Grande and Bocca Nuova) are the preferential pathways for hydrothermal fluid uprising. For our goal, the chemistry of VOCs discharged from these sites were compared to that of soil gases. Our results highlighted that C4-C9 alkanes, alkenes, S-bearing compounds and alkylated aromatics produced at depth were the most prone to degradation processes, such as oxidation-reduction and hydration-dehydration reactions, as well as to microbial activity. Secondary products, which were enriched in sites characterized by low soil gas fluxes, mostly consisted of aldheydes, ketons, esters, ethers, organic acids and, subordinately, alcohols. Benzene, phenol and hydrofluorocarbons (HCFCs) produced at depth were able to transit through the soil almost undisturbed, independently on the emission rate of diffuse degassing. The presence of cyclics was possibly related to an independent low-temperature VOC source, likely within sedimentary formations overlying the hydrothermal reservoir. Chlorofluorocarbons (CFCs) were possibly due to air contamination. This study demonstrated the strict control of biogeochemical processes on the behaviour of hydrothermal VOCs that, at least at a local scale, may have a significant impact on air quality. Laboratory experiments conducted at specific chemical-physical conditions and in presence of different microbial populations may provide useful information for the reconstruction of the degradation pathways controlling fate and behaviour of VOCs in the soil.

  15. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Beverly E.; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  16. Investigation Methods to Distinguish Between Vapor Intrusion and Indoor Sources of VOCS

    Science.gov (United States)

    2010-12-01

    Tomasz Kuder and Paul Philp , University of Oklahoma Kyle Gorder, Hill AFB Ignacio Rivera and Bart Chadwick, Navy SPAWAR Stephanie Fiorenza, BP America...Erica Becvar, AFCEE Erik Dettenmaier, Hill AFB Lisa Molofsky, Danny Bailey, Roberto Landazuri, GSI Env. Inc. Paul Johnson’s Research Team, Arizona State University Beacon Environmental

  17. A Novel Methodology to Evaluate Health Impacts Caused by VOC Exposures Using Real-Time VOC and Holter Monitors

    Directory of Open Access Journals (Sweden)

    Hiroaki Kumano

    2010-11-01

    Full Text Available While various volatile organic compounds (VOCs are known to show neurotoxic effects, the detailed mechanisms of the action of VOCs on the autonomic nervous system are not fully understood, partially because objective and quantitative measures to indicate neural abnormalities are still under development. Nevertheless, heart rate variability (HRV has been recently proposed as an indicative measure of the autonomic effects. In this study, we used HRV as an indicative measure of the autonomic effrects to relate their values to the personal concentrations of VOCs measured by a real-time VOC monitor. The measurements were conducted for 24 hours on seven healthy subjects under usual daily life conditions. The results showed HF powers were significantly decreased for six subjects when the changes of total volatile organic compound (TVOC concentrations were large, indicating a suppression of parasympathetic nervous activity induced by the exposure to VOCs. The present study indicated these real-time monitoring was useful to characterize the trends of VOC exposures and their effects on autonomic nervous system.

  18. Development, validation and application of a process for the generation of long-term stable VOC gas mixtures; Entwicklung, Validierung und Anwendung eines Verfahrens zur Erzeugung langzeitstabiler VOC-Gasgemische

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Matthias

    2010-07-01

    The development as well as the validation of a gas mixing system (GMS) that enables dynamic and traceable production of stable long-term VOC gas mixtures within the range between a few {mu}g/m{sup 3} and a few 100 {mu}g/m{sup 3}, is discussed. In this method pure liquid substances that are filled into stainless steel bottles are kept separately at a constant temperature, evaporated according to their vapour pressure and removed by a small inert gas flow. They are finally united in a gas mixing chamber. The carrier gas must be as small as possible so that the quasi-equilibrium between the gas space and the liquid phase in the substance bottles will not be disturbed. The carrier gas is assumed to be saturated with substance gas due to a long residence time in the bottles and a fast phase transition. Any concentration level of the gas mixture can be generated by a combination of vaporization temperature, carrier and dilution gas flows. With the GMS a mixture of 25 VOCs was prepared. For 16 compounds stable and reproducible gas concentrations were realized. Due to not completely removed leakage of some substance bottles and the tubing respectively, variation of the concentration of the remaining compounds was found. A sink effect as another reason for this variation could be expelled and the chemical stability of the vaporized substances proved with the exception of some aldehydes. The procedure was successfully applied in a round robin test and a material test. In the latter adsorption of VOCs on building products was scrutinized. In this way the applicability of the GMS could be shown. (orig.)

  19. Biodegradation of methanol vapor in a biofilter

    Institute of Scientific and Technical Information of China (English)

    Durai Arulneyam; T. Swaminathan

    2003-01-01

    Volatile organic compounds (VOCs) are a new class of air pollutants posing threat to the environment. Newer technologies are being developed for their control among which biofiltration seem to be most attractive. Biofiltration of methanol vapor from air stream was evaluated in this study. Experimental investigations were conducted on a laboratory scale biofilter, containing mixture of compost and polystyrene inert particles as the filter materials. Mixed consortium of activated sludge was used as an inoculum. The continuous performance of biofilter for methanol removal was monitored for different concentrations and flow rates. The removal efficiencies decreased at higher concentrations and higher gas flow rates. A maximum elimination capacity of 85 g/(m3.h) was achieved. The response of biofilter to upset loading operation showed that the biofilm in the biofilters was quite stable and quickly adapted to adverse operational conditions.

  20. Water vapor diffusion membrane development

    Science.gov (United States)

    Tan, M. K.

    1977-01-01

    An application of the water vapor diffusion technique is examined whereby the permeated water vapor is vented to space vacuum to alleviate on-board waste storage and provide supplemental cooling. The work reported herein deals primarily with the vapor diffusion-heat rejection (VD-HR) as it applies to the Space Shuttle. A stack configuration was selected, designed and fabricated. An asymmetric cellulose acetate membrane, used in reverse osmosis application was selected and a special spacer was designed to enhance mixing and promote mass transfer. A skid-mount unit was assembled from components used in the bench unit although no attempt was made to render it flight-suitable. The operating conditions of the VD-HR were examined and defined and a 60-day continuous test was carried out. The membranes performed very well throughout the test; no membrane rupture and no unusual flux decay was observed. In addition, a tentative design for a flight-suitable VD-HR unit was made.

  1. Water-Air Volatilization Factors to Determine Volatile Organic Compound (VOC Reference Levels in Water

    Directory of Open Access Journals (Sweden)

    Vicenç Martí

    2014-06-01

    Full Text Available The goal of this work is the modeling and calculation of volatilization factors (VFs from water to air for volatile organic compounds (VOCs in order to perform human health risk-based reference levels (RLs for the safe use of water. The VF models have been developed starting from the overall mass-transfer coefficients (Koverall concept from air to water for two interaction geometries (flat surface and spherical droplets in indoor and outdoor scenarios. For a case study with five groups of risk scenarios and thirty VOCs, theoretical VFs have been calculated by using the developed models. Results showed that Koverall values for flat and spherical surface geometries were close to the mass transfer coefficient for water (KL when Henry’s law constant (KH was high. In the case of spherical drop geometry, the fraction of volatilization (fV was asymptotical when increasing KH with fV values also limited due to Koverall. VFs for flat surfaces were calculated from the emission flux of VOCs, and results showed values close to 1000KH for the most conservative indoor scenarios and almost constant values for outdoor scenarios. VFs for spherical geometry in indoor scenarios followed also constant VFs and were far from 1000KH. The highest calculated VF values corresponded to the E2A, E2B, E3A and E5A scenarios and were compared with experimental and real results in order to check the goodness of flat and sphere geometry models. Results showed an overestimation of calculated values for the E2A and E2B scenarios and an underestimation for the E3A and E5A scenarios. In both cases, most of the calculated VFs were from 0.1- to 10-times higher than experimental/real values.

  2. Biological anoxic treatment of O{sub 2}-free VOC emissions from the petrochemical industry: A proof of concept study

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Raúl; Souza, Theo S.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Glittmann, Lina [Ostfalia University of Applied Sciences, Department of Supply Engineering, Wolfenbüttel (Germany); Pérez, Rebeca [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Quijano, Guillermo, E-mail: gquijano@iq.uva.es [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain)

    2013-09-15

    Highlights: • The treatment of O{sub 2}-free VOC emissions can be done by means of denitrifying processes. •Toluene vapors were successfully removed under anoxic denitrifying conditions. • A high bacterial diversity was observed. • Actinobacteria and Proteobacteria were the predominant phyla. • The nature and number of metabolites accumulated varied with the toluene load -- Abstract: An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O{sub 2} supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m{sup −3} h{sup −1} (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m{sup −3} h{sup −1}. However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m{sup −3} h{sup −1}, while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m{sup −3} (which entailed a loading rate increase from 3 to 6 g m{sup −3} h{sup −1}), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.

  3. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-11-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m-3) with increasing puff velocity (0.05 to 1 L min-1). A strong correlation existed between sampling volume and consumed solution mass (R2 = 0.9972 ± 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 μg mL-1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 ± 0.15 μg mL-1 (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 ± 250 μg m-3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL-1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).

  4. Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Jean-François Feller

    2014-01-01

    Full Text Available Different grades of chemically functionalized carbon nanotubes (CNT have been processed by spraying layer-by-layer (sLbL to obtain an array of chemoresistive transducers for volatile organic compound (VOC detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to vapors than filtration under vacuum (bucky papers. Shorter CNT were also found to be more sensitive due to the less entangled and more easily disconnectable conducting networks they are making. Chemical functionalization of the CNT’ surface is changing their selectivity towards VOC, which makes it possible to easily discriminate methanol, chloroform and tetrahydrofuran (THF from toluene vapors after the assembly of CNT transducers into an array to make an e-nose. Interestingly, the amplitude of the CNT transducers’ responses can be enhanced by a factor of five (methanol to 100 (chloroform by dispersing them into a polymer matrix, such as poly(styrene (PS, poly(carbonate (PC or poly(methyl methacrylate (PMMA. COOH functionalization of CNT was found to penalize their dispersion in polymers and to decrease the sensors’ sensitivity. The resulting conductive polymer nanocomposites (CPCs not only allow for a more easy tuning of the sensors’ selectivity by changing the chemical nature of the matrix, but they also allow them to adjust their sensitivity by changing the average gap between CNT (acting on quantum tunneling in the CNT network. Quantum resistive sensors (QRSs appear promising for environmental monitoring and anticipated disease diagnostics that are both based on VOC analysis.

  5. Laboratory testing of the in-well vapor-stripping system

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy`s (DOE`s) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE`s Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE`s Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase.

  6. Long term BVOC fluxes above mountain grassland

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2010-01-01

    Full Text Available Grasslands comprise natural tropical savannah over managed temperate fields to tundra and cover over a quarter of the Earth's land surface. Plant growth, maintenance and decay result in volatile organic compound (VOCs emissions to the atmosphere. Furthermore, biogenic VOCs (BVOCs are emitted due to various environmental stresses including cutting and drying during harvesting. Fluxes of BVOCs were measured with a proton-transfer-reaction – mass-spectrometer (PTR-MS over temperate mountain grassland in Stubai Valley (Tyrol, Austria over one growing season (2008. VOC fluxes were calculated from the disjunct PTR-MS data using the virtual disjunct eddy covariance method and the gap filling method. The two independent methods obtained methanol fluxes following a regression line of y=0.94x−0.06 (correlation factor: R2=0.94. Methanol showed strong daytime emissions throughout the growing season. With maximal values of 9.7 nmol m−2 s−1 the methanol fluxes from growing grassland were considerably higher at the beginning of the growing season in June compared to those measured during October (2.5 nmol m−2 s−1. During the growth only methanol emissions were observed. The cutting and drying of the grass increased the emissions of methanol, up to 30 nmol m−2 s−2. In addition, emissions of acetaldehyde, up to 10 nmol m−2 s−1, and hexenal (leaf aldehyde were detected during harvesting.

  7. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  8. The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Law, Beverly E.; Thomas, Christoph K.

    2011-09-20

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture

  9. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  10. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  11. Low VOC drying of lumber and wood panel products. Progress report No. 8

    Energy Technology Data Exchange (ETDEWEB)

    Su, W.; Yan, H.; Hooda, U.; Wild, M.P.; Banerjee, S. [Inst. of Paper Science and Technology, Atlanta, GA (United States); Shmulsky, R.; Thompson, A.; Ingram, L.; Conners, T. [Mississippi State Univ., MS (United States)

    1998-07-01

    This study was initiated by an Institute of Paper Science and Technology finding that heating softwood in a low-headspace environment removed much of the VOCs without removing the water. This offered the possibility of removing VOCs from wet wood, capturing them as a product, and then drying the VOC-depleted wood conventionally with little or no VOC controls. Two means of low-headspace heating were explored: steam and radiofrequency (RF). It was found in the previous year, that while both steam and RF were able to drive out VOCs, steam was impracticably slow for lumber. Hence the effect of RF or microwave on wood was the principal focus of the work reported here. Finally, in order to understand the mechanism of VOC release, the transport of the VOCs in wood was studied, together with the seasonal effects that influence VOC concentration in trees.

  12. VocVille - A Casual Social Game for Learning Vocabulary

    OpenAIRE

    Jensen, Michel

    2012-01-01

    The document introduces VocVille, a causal online game for learning vocabularies. This application is created for the author's diploma thesis of his career as a Computervisualist (computer vision) for the University of Koblenz-Landau, which he terminated as an exchange student at the University of Cádiz, in which he developed this diploma thesis.

  13. Assessment of Industrial VOC Gas-Scrubber Performance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  14. EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT

    Science.gov (United States)

    The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...

  15. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    Science.gov (United States)

    The report gives results of a study in which wood furniture manufacturing facilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous Air pollutant (HAP) wood furniture coatings: high-solids, water...

  16. RESEARCH AND PRODUCT DEVELOPMENT OF LOW-VOC WOOD COATINGS

    Science.gov (United States)

    The report discusses a project, cofunded by the South Coast Air Quality Management District (SCAQMD) and the U.S. EPA, to develop a new, low volatile organic compound (VOC) wood coating. Traditional wood furniture coating technologies contain organic solvents which become air pol...

  17. Solid-phase microextraction and the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Emma Dixon

    Full Text Available The diagnostic potential and health implications of volatile organic compounds (VOCs present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.

  18. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    Science.gov (United States)

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  19. Accuracy of seven vapour intrusion algorithms for VOC in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Provoost, Jeroen; Bronders, Jan; Seuntjens, Piet [Flemish Inst. for Technological Research (VITO), Mol (Belgium); Reijnders, Lucas [Dept. of Science, Open Univ. Netherlands (OU NL), Heerlen (Netherlands); Swartjes, Frank; Lijzen, Johannes [National Inst. for Public Health and the Environment (RIVM), Bilthoven (Netherlands)

    2009-02-15

    During the last decade, soil contamination with volatile organic contaminants (VOC) received special attention because of their potential to cause indoor air problems. Moreover, research has shown that people spend 64% to 94% of there time indoors; therefore, the indoor air quality is of a primary importance for exposure to VOC. Human health risks to VOC-in cases of soil contamination-are often dominated by the exposure route 'inhalation of indoor air'. Exposure is often a result of vapour transport from the soil or groundwater to the indoor air of the building. Within human health risk assessments, a variety of algorithms are available that calculate transfer of soil gas to the indoor air. These algorithms suffer from a relatively high uncertainty due to a lack of representation of spatial and temporal variability. For such an application, these algorithms need to be further verified empirically against field observations so that they can be sufficiently reliable for regulatory purposes. This paper presents the accuracy for seven algorithms by using observed and predicted soil and indoor air concentrations from three sites, where the groundwater had been contaminated with aromatic and chlorinated VOC. (orig.)

  20. DEVELOPMENT OF AEROBIC BIOFILTER DESIGN CRITERIA FOR TREATING VOCS

    Science.gov (United States)

    This paper reports preliminary results on the use of trickle bed biofilters with monolithic ceramic channelized microbial support structures for the treatment of VOCs typical of landfill leachate stripping. Toluene was used for the purpose of characterizing the trickle bed biofi...

  1. Accuracy of seven vapour intrusion algorithms for VOC in groundwater

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Swartjes, F.; Bronders, J.; Seuntjens, P.; Lijzen, J.

    2009-01-01

    Background, aim and scope: During the last decade, soil contamination with volatile organic contaminants (VOC) received special attention because of their potential to cause indoor air problems. Moreover, research has shown that people spend 64% to 94% of there time indoors; therefore, the indoor ai

  2. VOC signatures from North American oil and gas sources (Invited)

    Science.gov (United States)

    Simpson, I. J.; Marrero, J.; Blake, N. J.; Barletta, B.; Hartt, G.; Meinardi, S.; Schroeder, J.; Apel, E. C.; Hornbrook, R. S.; Blake, D. R.

    2013-12-01

    Between 2008 and 2013 UC Irvine has used its whole air sampling (WAS) technique to investigate VOC source signatures from a range of oil and gas sources in North America, including five separate field campaigns at the Alberta oil sands (1 airborne, 4 ground-based); the 2010 Deepwater Horizon oil spill (airborne and ship-based); the 2012 airborne Deep Convective Clouds and Chemistry Project (DC3) mission over oil and gas wells in Colorado, Texas and Oklahoma; and the 2013 ground-based Barnett Shale Campaign in Texas. Each campaign has characterized more than 80 individual C1-C10 VOCs including alkanes, alkenes and aromatics. For example, oil sands are an extra-heavy, unconventional crude oil that is blended with diluent in order to flow, and upgraded into synthetic crude oil. The VOC signature at the oil sands mining and upgrading facilities is alkane-rich, and the fuel gas associated with these operations has an i-butane/n-butane ratio similar to that of liquefied petroleum gas (LPG). In addition to light alkanes, enhanced levels of benzene were observed over US oil and natural gas wells during DC3, likely because of its use in hydrofracking fluid. A series of VOC emission ratios from North American petrochemical sources will be presented and compared, including oil sands, conventional oil and hydrofracking operations.

  3. Increasing competitiveness of wine producers in strategic alliances VOC

    Directory of Open Access Journals (Sweden)

    Martin Prokeš

    2012-01-01

    Full Text Available The paper describes the main reasons for the formation of new regional association of wineries, based on a different origin for wines in the wine region of Moravia in the southeast part of the Czech Republic. This research aim is to create a plan for new development of such strategic alliances on the basis of results of localization factors. There coefficient of localization is used for identification of cluster. Results are compared with already operating on associations for the appellation in Austria DAC. They were traced changes in consumer preferences in the Czech wine market. Consumers are placing more emphasis on the selection of wine on its descent from a particular area, growing community and the individual grower. This paper specifically introduces new associations for appellation system VOC. This alliance is described in the context of the establishment, operation, development and expansion, respectively the possibility of involvement of additional organizations suppliers and research institutions. The application of the results of research was a plan for the establishment of new alliance VOC Modré Hory, where are associated 30 wine producers of wine in 5 villages around the center Velké Pavlovice. Based on the experience of newly emerging VOC system of appellations was setting up a plan of formation association with the proposed methodological approach. Open cooperation between associations VOC appellation and other entities involving suppliers, customers, research institutions and universities has the possibility of creating an institutionalized wine cluster. The plan to create a wine cluster was proposed to establish cooperation between the newly emerging associations of VOC at three sub-regions of South Moravia, in order to achieve competitive advantage.

  4. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  5. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  6. Modeling unsteady-state VOC transport in simulated waste drums. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG&G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured.

  7. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  8. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent....... The measurement results are found reproducible, and the detection limit is found to be 9.5 pg (acetone molecule). The detection sensitivity is 28.7 % higher than that of the recent reported leaning silicon nanopillar substrate. With further system miniaturization, the sensing technique can work as a portable SERS...... circular patterns is 30 +/- 5 nm. Silver (30 nm) and gold (15 nm) plasmonic active layers are deposited on the nanostructures subsequently. SERS measurements on different concentrations of acetone vapor ranged from 0.7, 1.5, 3.5, 10.3, 24.5 % and control have been performed with the substrate...

  9. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  10. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  11. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  12. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  13. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E. [Envirogen, Inc., Lawrenceville, NJ (United States)] [and others

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely and efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.

  14. Anthropogenic, Biogenic and Biomass Burning VOCs in the Southeast of the United States during SENEX

    Science.gov (United States)

    Graus, M.; Warneke, C.; De Gouw, J. A.; Trainer, M.; Aikin, K.; Brown, S. S.; Gilman, J.; Hanisco, T. F.; Holloway, J.; Kaiser, J.; Keutsch, F. N.; Lee, B.; Lerner, B. M.; Lopez-Hilfiker, F.; Min, K.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Wolfe, G. M.

    2013-12-01

    The NOAA field study SENEX was designed to investigate the source strengths and spatial distribution of man-made air pollutants and natural emissions, their interaction to form secondary pollutants, and the atmospheric fate of aerosol and trace gases at the nexus of air quality and climate change. To this end the NOAA research aircraft WP-3D was equipped with instrumentation for the analysis of aerosol and trace gases and this flying atmospheric science laboratory performed 18 research flights over the Southeast of the United States in June and July 2013. VOCs such as isoprene and monoterpenes are released into the atmosphere by vegetation. Aromatics come from incomplete combustion of transportation fuels as well as from oil and natural gas production, and they are found in biomass burning plumes along with the distinct tracer acetonitrile. Oxygenated species such as alcohols, aldehydes and ketones are directly emitted from natural and anthropogenic sources and can be formed by photo oxidation of organic trace gases. At sufficiently high levels of nitrogen oxides, VOCs fuel the production of tropospheric ozone and they contribute to the formation and growth of secondary organic aerosol. Hence one key instrument onboard WP-3D was a PTR-MS for the time-resolved quantification of VOCs. The WP-3D performed plume study patterns downwind of coal- and gas-fired power plants. Isoprene concentrations were modulated in the high NOx regime as the plume evolved and the SENEX dataset will be used to constrain the chemistry in such plumes. City plumes of Atlanta (GA), Birmingham (AL), Indianapolis (IN), and St Louis (MO) showed modest concentrations of aromatics due to the decrease in hydrocarbon emissions from cars in comparison with previous studies. One flight leg targeted the plume of a large biofuel refinery, which will allow for an independent estimate of the primary emissions from this industry. A number of plumes of small fires in the study region were sampled as well as

  15. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  16. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used fo

  17. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used fo

  18. 2001-2011年青藏高原东北边坡地带云水资源分析%Analysis on Cloud and Vapor Flux in the Northeast of the Qinghai-Tibet Plateau during the Period from 2001 to 2011

    Institute of Scientific and Technical Information of China (English)

    杜亮亮; 李江萍; 陈晓燕; 尚可政; 杨德保; 王式功

    2012-01-01

    developing air resources. Based on the daily cloud cover data observed by 22 meteorological stations and the NCAR/NCEP reanalysis data in the northeast of the Qinghai-Tibet Plateau (32°-37°N, 99°-104° E ) during the period from 2001 to 2011, the development characteristics of cloud cover and the relationship between cloud cover and vapor flux in the northeast of the Qinghai - Tibet Plateau in recent 10 years were studied in terms of the statistical analysis and the HYSPLIT_4 Model. The results showed that the total cloud cover and the low cloud cover over the study area was decreased from the south to the north. There was an increase trend of total cloud cover and low cloud cover over the study area during the period from 2001 to 2011, especially in spring and summer. When rain or snow occurred, appear probability of cirrus was the highest, then that of altostratus, and that of cumulus was the lowest. Appear probability of convective cloud was higher than that of non-convective cloud over the northeast of the Qinghai - Tibet Plateau. Water vapor is one of the main factors affecting the distribution of precipitation and the change of convec-tive cloud. Water vapor flux came mainly from 700 hPa layer, and water vapor flux could reflect the low cloud cov-er well.

  19. Modeling the uncertainty of several VOC and its impact on simulated VOC and ozone in Houston, Texas

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Li, Xiangshang; Jeon, Wonbae; Souri, Amir Hossein

    2015-11-01

    A WRF-SMOKE-CMAQ modeling system was used to study Volatile Organic Compound (VOC) emissions and their impact on surface VOC and ozone concentrations in southeast Texas during September 2013. The model was evaluated against the ground-level Automated Gas Chromatograph (Auto-GC) measurement data from the Texas Commission on Environmental Quality (TCEQ). The comparisons indicated that the model over-predicted benzene, ethylene, toluene and xylene, while under-predicting isoprene and ethane. The mean biases between simulated and observed values of each VOC species showed clear daytime, nighttime, weekday and weekend variations. Adjusting the VOC emissions using simulated/observed ratios improved model performance of each VOC species, especially mitigating the mean bias substantially. Simulated monthly mean ozone showed a minor change: a 0.4 ppb or 1.2% increase; while a change of more than 5 ppb was seen in hourly ozone data on high ozone days, this change moved model predictions closer to observations. The CMAQ model run with the adjusted emissions better reproduced the variability in the National Aeronautics and Space Administration (NASA)'s Ozone Monitoring Instrument (OMI) formaldehyde (HCHO) columns. The adjusted model scenario also slightly better reproduced the aircraft HCHO concentrations from NASA's DISCOVER-AQ campaign conducted during the simulation episode period; Correlation, Mean Bias and RMSE improved from 0.34, 1.38 ppb and 2.15 ppb to 0.38, 1.33 ppb and 2.08 ppb respectively. A process analysis conducted for both industrial/urban and rural areas suggested that chemistry was the main process contributing to ozone production in both areas, while the impact of chemistry was smaller in rural areas than in industrial and urban areas. For both areas, the positive chemistry contribution increased in the sensitivity simulation largely due to the increase in emissions. Nudging VOC emissions to match the observed concentrations shifted the ozone hotspots

  20. Aromatic VOCs global influence in the ozone production

    Science.gov (United States)

    Cabrera-Perez, David; Pozzer, Andrea

    2016-04-01

    Aromatic hydrocarbons are a subgroup of Volatile Organic Compounds (VOCs) of special interest in the atmosphere of urban and semi-urban areas. Aromatics form a high fraction of VOCs, are highly reactive and upon oxidation they are an important source of ozone. These group of VOCs are released to the atmosphere by processes related to biomass burning and fossil fuel consumption, while they are removed from the atmosphere primarily by OH reaction and by dry deposition. In addition, a branch of aromatics (ortho-nitrophenols) produce HONO upon photolysis, which is responsible of certain amount of the OH recycling. Despite their importance in the atmosphere in anthropogenic polluted areas, the influence of aromatics in the ozone production remains largely unknown. This is of particular relevance, being ozone a pollutant with severe side effects on air quality, health and climate. In this work the atmospheric impacts at global scale of the most emitted aromatic VOCs in the gas phase (benzene, toluene, xylenes, ethylbenzene, styrene, phenol, benzaldehyde and trimethylbenzenes) are analysed and assessed. Specifically, the impact on ozone due to aromatic oxidation is estimated, as this is of great interest in large urban areas and can be helpful for developing air pollution control strategies. Further targets are the quantification of the NOx loss and the OH recycling due to aromatic oxidation. In order to investigate these processes, two simulations were performed with the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations compare two cases, one with ozone concentrations when aromatics are present or the second one when they are missing. Finally, model simulated ozone is compared against a global set of observations in order to better constrain the model accuracy.

  1. Ensurdecimento vocálico em Zo’é

    Directory of Open Access Journals (Sweden)

    Ana Suelly Arruda Câmara Cabral

    2012-11-01

    Full Text Available Neste trabalho apresentamos uma descrição do fenômeno deensurdecimento vocálico na língua Zo’é (Tupi-Guarani. Sãoapresentadas ainda hipóteses acerca das restrições sincrônicas ativasno condicionamento deste fenômeno, além de uma hipótese acercada origem histórica do mesmo.

  2. Determination of VOC emission rates and compositions for offset printing.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Keil, C B

    1995-07-01

    The release rates of volatile organic compounds (VOC) as fugitive emissions from offset printing are difficult to quantify, and the compositions are usually not known. Tests were conducted at three offset printing shops that varied in size and by process. In each case, the building shell served as the test "enclosure," and air flow and concentration measurements were made at each air entry and exit point. Emission rates and VOC composition were determined during production for (1) a small shop containing three sheetfed presses and two spirit duplicators (36,700 sheets, 47,240 envelopes and letterheads), (2) a medium-size industrial in-house shop with two webfed and three sheetfed presses, and one spirit duplicator (315,130 total sheets), and (3) one print room of a large commercial concern containing three webfed, heatset operations (1.16 x 10(6) ft) served by catalytic air pollution control devices. Each test consisted of 12 one-hour periods over two days. Air samples were collected simultaneously during each period at 7-14 specified locations within each space. The samples were analyzed by gas chromatography (GC) for total VOC and for 13-19 individual organics. Samples of solvents used at each shop were also analyzed by GC. Average VOC emission rates were 4.7-6.1 kg/day for the small sheetfed printing shop, 0.4-0.9 kg/day for the industrial shop, and 79-82 kg/day for the commercial print room. Emission compositions were similar and included benzene, toluene, xylenes, ethylbenzene, and hexane. Comparison of the emission rates with mass balance estimates based on solvent usage and composition were quite consistent.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Biofiltration for control of volatile organic compounds (VOCS)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  4. A demonstration of biofiltration for VOC removal in petrochemical industries.

    Science.gov (United States)

    Zhao, Lan; Huang, Shaobin; Wei, Zongmin

    2014-05-01

    A biotrickling filter demo has been set up in a petrochemical factory in Sinopec Group for about 10 months with a maximum inlet gas flow rate of 3000 m3 h(-1). The purpose of this project is to assess the ability of the biotrickling filter to remove hardly biodegradable VOCs such as benzene, toluene and xylene which are recalcitrant and poorly water soluble and commonly found in petrochemical factories. Light-weight hollow ceramic balls (Φ 5-8 cm) were used as the packing media treated with large amounts of circulating water (2.4 m3 m(-2) h(-1)) added with bacterial species. The controlled empty bed retention time (EBRT) of 240 s is a key parameter for reaching a removal efficiency of 95% for benzene, toluene, xylene, and 90% for total hydrocarbons. The demo has been successfully adopted and practically applied in waste air treatments in many petrochemical industries for about two years. The net inlet concentrations of benzene, toluene and xylene were varied from 0.5 to 3 g m(-3). The biofiltration process is highly efficient for the removal of hydrophobic and recalcitrant VOCs with various concentrations from the petrochemical factories. The SEM analysis of the bacterial community in the BTF during VOC removal showed that Pseudomonas putida and Klebsiella sp. phylum were dominant and shutdown periods could play a role in forming the community structural differences and leading to the changes of removal efficiencies.

  5. A mass transfer model for VOC emission from silage

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan

    2012-07-01

    Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.

  6. Barometric pumping with a twist: VOC containment and remediation without boreholes. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The majority of the planned remediation sites within the DOE complex are contaminated with volatile organic compounds (VOCs). In many instances the contamination has not reached the water table, does not pose an immediate threat, and is not considered a high priority problem. These sites will ultimately require remediation of some type, either by active vapor extraction, bioremediation, or excavation and ex-situ soil treatment. The cost of remediating these sites can range from $50 K to more than $150 K, depending on site characteristics, contaminants, and remediation method. Additionally, for many remediated sites, residual contamination exists which could not practically be removed by the applied remediation technology. These circumstances result in modest sites with contamination of limited risk, but by regulation they must still be controlled. A remediation solution being developed by Science and Engineering Associates, Inc. (SEA) for the Department of Energy serves as an in-situ containment and extraction methodology for sites where most or all of the contamination resides in the vadose zone soil. The approach capitalizes on the advective soil gas movement resulting from barometric pressure oscillations.

  7. Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard

    Science.gov (United States)

    Fares, S.; Park, J.-H.; Gentner, D. R.; Weber, R.; Ormeño, E.; Karlik, J.; Goldstein, A. H.

    2012-10-01

    Orange trees are widely cultivated in Mediterranean climatic regions where they are an important agricultural crop. Citrus have been characterized as emitters of volatile organic compounds (VOC) in chamber studies under controlled environmental conditions, but an extensive characterization at field scale has never been performed using modern measurement methods, and is particularly needed considering the complex interactions between the orchards and the polluted atmosphere in which Citrus is often cultivated. For one year, in a Valencia orange orchard in Exeter, California, we measured fluxes using PTRMS (Proton Transfer Reaction Mass Spectrometer) and eddy covariance for the most abundant VOC typically emitted from citrus vegetation: methanol, acetone, and isoprenoids. Concentration gradients of additional oxygenated and aromatic compounds from the ground level to above the canopy were also measured. In order to characterize concentrations of speciated biogenic VOC (BVOC) in leaves, we analyzed leaf content by GC-MS (Gas Chromatography - Mass Spectrometery) regularly throughout the year. We also characterized in more detail concentrations of speciated BVOC in the air above the orchard by in-situ GC-MS during a few weeks in spring flowering and summer periods. Here we report concentrations and fluxes of the main VOC species emitted by the orchard, discuss how fluxes measured in the field relate to previous studies made with plant enclosures, and describe how VOC content in leaves and emissions change during the year in response to phenological and environmental parameters. The orchard was a source of monoterpenes and oxygenated VOC. The highest emissions were observed during the springtime flowering period, with mid-day fluxes above 2 nmol m-2 s-1 for methanol and up to 1 nmol m-2 s-1 for acetone and monoterpenes. During hot summer days emissions were not as high as we expected considering the known dependence of biogenic emissions on temperature. We provide

  8. Estimation of Turbulent Fluxes Using the Flux-Variance Method over an Alpine Meadow Surface in the Eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    WANG Shaoying; ZHANG Yu; L(U) Shihua; LIU Heping; SHANG Lunyu

    2013-01-01

    The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces,resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method.We investigated these issues using eddycovariance measurements over an open,homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season.In unstable conditions,the temperature,water vapor,and CO2 followed the flux-variance similarity relation,but did not show in precisely the same way due to different roles (active or passive) of these scalars.Similarity constants of temperature,water vapor and CO2 were found to be 1.12,1.19 and 1.17,respectively.Heat transportation was more efficient than water vapor and CO2.Based on the estimated sensible heat flux,five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes.The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes.This approach is better for representing the averaged relative transport efficiency,and technically easier to apply,compared to other more complex ones.

  9. Experiments in the EMRP project KEY-VOCs: Adsorption/desorption effects of VOCs in different tubing materials and preparation and analysis of a zero gas

    Science.gov (United States)

    Englert, Jennifer; Claude, Anja; Kubistin, Dagmar; Tensing, Erasmus; Michl, Katja; Plass-Duelmer, Christian

    2017-04-01

    Atmospheric chemistry and composition are influenced by volatile organic compounds (VOCs) emitted from natural and anthropogenic sources. Due to their toxicity and their crucial role in ozone and aerosol formation VOCs impact air quality and climate change and high quality observations are demanded. The European Metrology Research Programme (EMRP) project KEY-VOCs has targeted the improvement of VOC measurement capabilities with the focus on VOCs relevant for indoor air as well as for air quality and climate monitoring programmes. One major uncertainty is the influence of surface effects of the measurement devices. By developing a test system the adsorption/desorption effects of certain VOCs can be systematically examined. Different tubing materials e.g. stainless steel and PFA were analysed with the oxygenated VOC methanol and results of these experiments will be presented. In air quality monitoring very low levels of VOCs have to be measured. Purified air or nitrogen is widely used as a zero gas to characterize measurement systems and procedures as well as for instrument calibration. A high quality zero gas is an important contributor to the quality of the measurements and generally achieved by using state-of-the-art purification technologies. The efficiency of several air purifiers was assessed and the results have been analysed.

  10. Primary VOC emissions from Commercial Aircraft Jet Engines

    Science.gov (United States)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  11. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  12. Volatile Organic Compound (VOC measurements in the Pearl River Delta (PRD region, China

    Directory of Open Access Journals (Sweden)

    Chih-chung Chang

    2008-03-01

    Full Text Available We measured levels of ambient volatile organic compounds (VOCs at seven sites in the Pearl River Delta (PRD region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ and Xinken (XK, were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40% in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%. Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles; those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  13. Expanding Taylor bubble under constant heat flux

    Science.gov (United States)

    Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves

    2016-09-01

    Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.

  14. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  15. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  16. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    Science.gov (United States)

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.

  17. The predictable influence of soil temperature and barometric pressure changes on vapor intrusion

    Science.gov (United States)

    Barnes, David L.; McRae, Mary F.

    2017-02-01

    Intrusion of volatile organic compounds in the gas phase has impacted many buildings in many different locations. Various building and environmental factors such as buoyancy of heated air and changes in barometric pressure can influence indoor air concentrations due to vapor intrusion in these buildings resulting in seasonal and daily variability. One environmental factor that previous research has not adequately addressed is soil temperature. In this study we present two northern region study sites where the seasonal trends in indoor air VOC concentrations positively correlate with soil temperature, and short-term (days) variations are associated with barometric pressure changes. We present simple and multivariate linear relationships of indoor air concentrations as a function of soil temperature and barometric pressure. Results from this study show that small changes in soil temperature can result in relatively large changes in indoor air VOC concentrations where the gas phase VOCs are sourced from non-aqueous phase liquids contained in the soil. We use the results from this study to show that a five degree Celsius increase in soil temperature, a variation in soil temperature that is possible in many climatic regions, results in a two-fold increase in indoor air VOC concentrations. Additionally, analysis provides insight into how building ventilation, diffusion, and the relative rate of soil-gas flow across the slab both from the subsurface into the building and from the building into the subsurface impact short term variations in concentrations. With these results we are able to provide monitoring recommendations for practitioners.

  18. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  19. Dynamics of vapor emissions at wire explosion threshold.

    Science.gov (United States)

    Belony, Paul A; Kim, Yong W

    2010-10-01

    X-pinch plasmas have been actively studied in the recent years. Numerical simulation of the ramp-up of metallic vapor emissions from wire specimens shows that under impulsive Ohmic heating the wire core invariably reaches a supercritical state before explosion. The heating rate depends sensitively on the local wire resistance, leading to highly variable vapor emission flux along the wire. To examine the vapor emission process, we have visualized nickel wire explosions by means of shock formation in air. In a single explosion as captured by shadowgraphy, there usually appear several shocks with spherical or cylindrical wave front originating from different parts of the wire. Growth of various shock fronts in time is well characterized by a power-law scaling in one form or another. Continuum emission spectra are obtained and calibrated to measure temperature near the explosion threshold. Shock front structures and vapor plume temperature are examined.

  20. Photoactive roadways: Determination of CO, NO and VOC uptake coefficients and photolabile side product yields on TiO2 treated asphalt and concrete

    Science.gov (United States)

    Toro, C.; Jobson, B. T.; Haselbach, L.; Shen, S.; Chung, S. H.

    2016-08-01

    This work reports uptake coefficients and by-product yields of ozone precursors onto two photocatalytic paving materials (asphalt and concrete) treated with a commercial TiO2 surface application product. The experimental approach used a continuously stirred tank reactor (CSTR) and allowed for testing large samples with the same surface morphology encountered with real urban surfaces. The measured uptake coefficient (γgeo) and surface resistances are useful for parametrizing dry deposition velocities in air quality model evaluation of the impact of photoactive surfaces on urban air chemistry. At 46% relative humidity, the surface resistance to NO uptake was ∼1 s cm-1 for concrete and ∼2 s cm-1 for a freshly coated older roadway asphalt sample. HONO and NO2 were detected as side products from NO uptake to asphalt, with NO2 molar yields on the order of 20% and HONO molar yields ranging between 14 and 33%. For concrete samples, the NO2 molar yields increased with the increase of water vapor, ranging from 1% to 35% and HONO was not detected as a by-product. Uptake of monoaromatic VOCs to the asphalt sample set displayed a dependence on the compound vapor pressure, and was influenced by competitive adsorption from less volatile VOCs. Formaldehyde and acetaldehyde were detected as byproducts, with molar yields ranging from 5 to 32%.

  1. Validation of adsorbents for sample preconcentration in compound-specific isotope analysis of common vapor intrusion pollutants.

    Science.gov (United States)

    Klisch, Monika; Kuder, Tomasz; Philp, R Paul; McHugh, Thomas E

    2012-12-28

    Isotope ratios of volatile organic compounds (VOCs) in the environment are often of interest in contaminant fate studies. Adsorbent preconcentration-thermal desorption of VOCs can be used to collect environmental vapor samples for compound-specific isotope analysis (CSIA). While active adsorbent samplers offer logistic benefits in handling large volumes of air, their performance in preserving VOCs isotope ratios was not previously tested under sampling conditions corresponding to typical indoor air sampling conditions. In this study, the performance of selected adsorbents was tested for preconcentration of TCE (for determination of C and Cl isotope ratios), PCE (C and Cl) and benzene (C and H). The key objective of the study was to identify the adsorbent(s) permitting preconcentration of the target VOCs present in air at low μg/m(3) concentrations, without significant alteration of their isotope ratios. Carboxen 1016 was found to perform well for the full range of tested parameters. Carboxen 1016 can be recommended for sampling of TCE, PCE and benzene, for CSIA, from air volumes up to 100 L. Variable extent of isotope ratio alteration was observed in the preconcentration of the target VOCs on Carbopack B and Carbopack X, resulting from partial analyte loss via adsorbent bed breakthrough and (possibly) via incomplete desorption. The results from testing the Carbopack B and Carbopack X highlight the need of adsorbent performance validation at conditions fully representative of actual sample collection conditions, and caution against extrapolation of performance data toward more challenging sampling conditions.

  2. Soil vapor extraction and bioventing: Applications, limitations, and future research directions

    Science.gov (United States)

    Rathfelder, K.; Lang, J. R.; Abriola, L. M.

    1995-07-01

    Soil vapor extraction (SVE) has evolved over the past decade as an attractive in situ remediation method for unsaturated soils contaminated with volatile organic compounds (VOCs). SVE involves the generation of air flow through the pores of the contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from vadose zone wells through which contaminant vapors are collected and transported above ground where they are treated, if required, and discharged to the atmosphere. The popularity of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the soil, their cost competitiveness, and their relatively simple non-intrusive implementation. Widespread field application of SVE has occurred following the success of early laboratory and field scale feasibility studies [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and Hoag, 1984; Crow et al., 1985, 1987]. As many as 18% of Superfund sites employ SVE remediation technologies [Travis and Macinnis, 1992] and numerous articles and reports have documented the application of SVE [e.g. Hutzler et al., 1989; Downey and Elliott, 1990; U.S. EPA, 1991; Sanderson et al, 1993; Gerbasi and Menoli, 1994; McCann et al., 1994;].

  3. Theoretical study of simultaneous water and VOCs adsorption and desorption in a silica gel rotor

    DEFF Research Database (Denmark)

    Zhang, G.; Zhang, Y.F.; Fang, Lei

    2008-01-01

    One-dimensional partial differential equations were used to model the simultaneous water and VOC (Volatile Organic Compound) adsorption and desorption in a silica gel rotor which was recommended for indoor air cleaning. The interaction among VOCs and moisture in the adsorption and desorption...... by the temperatures of the rotor and the air stream. The VOC transfer equations were solved by discretizing them into explicit up-wind finite differential equations. The model was validated with experimental data. The calculated results suggested that the regeneration time designed for dehumidification may...... process was neglected in the model as the concentrations of VOC pollutants in typical indoor environment were much lower than that of moisture and the adsorbed VOCs occupied only a minor portion of adsorption capacity of the rotor. Consequently VOC transfer was coupled with heat and moisture transfer only...

  4. Volatile organic compounds (VOCs) in surface coating materials: Their compositions and potential as an alternative fuel.

    Science.gov (United States)

    Dinh, Trieu-Vuong; Choi, In-Young; Son, Youn-Suk; Song, Kyu-Yong; Sunwoo, Young; Kim, Jo-Chun

    2016-03-01

    A sampling system was designed to determine the composition ratios of VOCs emitted from 31 surface coating materials (SCMs). Representative architectural, automotive, and marine SCMs in Korea were investigated. Toluene, ethylbenzene, and xylene were the predominant VOCs. The VOC levels (wt%) from automotive SCMs were significantly higher than those from architectural and marine paints. It was found that target SCMs comprised mainly VOCs with 6-10 carbon atoms in molecules, which could be adsorbed by activated carbon. The saturated activated carbon which had already adsorbed toluene, ethylbenzene, and m-xylene was combusted. The saturated activated carbon was more combustible than new activated carbon because it comprised inflammable VOCs. Therefore, it could be an alternative fuel when using in a "fuelization system". To use the activated carbon as a fuel, a control technology of VOCs from a coating process was also designed and introduced.

  5. Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.

  6. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  7. [Study on the chemical compositions of VOCs emitted by cooking oils based on GC-MS].

    Science.gov (United States)

    He, Wan-Qing; Nie, Lei; Tian, Gang; Li, Jing; Shao, Xia; Wang, Min-Yan

    2013-12-01

    Volatile organic compounds (VOCs) are key precursors of ozone and secondary organic aerosols in air, and the differences in the compositions of VOCs lead to their different contribution to atmospheric reaction. Cooking oil fume is one of the important sources of atmospheric VOCs, and its chemical compositions are distinct under different conditions of oil types, food types, cooking methods and heating temperatures etc. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the chemical compositions of VOCs. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. According to spectral library search and map analysis, using area normalized semi-quantitative method, preliminary qualitative and quantitative tests were conducted for the specific components of VOCs under different conditions.

  8. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  9. Characteristics of Ambient Volatile Organic Compounds (VOCs Measured in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Guang-Qiang Zhou

    2010-08-01

    Full Text Available To better understand the characteristics of ambient abundance of volatile organic compounds (VOCs in Shanghai, one of the biggest metropolis of China, VOCs were measured with a gas chromatography system equipped with a mass-selective detector (GC/MSD from July 2006 to February 2010. An intensive measurement campaign was conducted (eight samples per day with a 3 hour interval during May 2009. The comparison of ambient VOCs collected in different regions of Shanghai shows that the concentrations are slightly higher in the busy commercial area (28.9 ppbv at Xujiaui than in the urban administrative area (24.3 ppbv at Pudong. However, during the intensive measurement period, the concentrations in the large steel industrial area (28.7 ppbv at Baoshan were much higher than in the urban administrative area (18 ppbv at Pudong, especially for alkanes, alkenes, and toluene. The seasonal variations of ambient VOC concentrations measured at the Xujiahui sampling site indicate that the VOC concentrations are significantly affected by meteorological conditions (such as wind direction and precipitation. In addition, although alkanes are the most abundant VOCs at the Xujiahui measurement site, the most important VOCs contributing to ozone formation potential (OFP are aromatics, accounting for 57% of the total OFP. The diurnal variations of VOC concentrations show that VOC concentrations are higher on weekdays than in weekends at the Xujiahui sampling site, suggesting that traffic condition and human activities have important impacts on VOC emissions in Shanghai. The evidence also shows that the major sources of isoprene are mainly resulted from gasoline evaporation at a particular time (06:00–09:00 in the busy commercial area. The results gained from this study provide useful information for better understanding the characteristics of ambient VOCs and the sources of VOCs in Shanghai.

  10. Effects of pulsed and oscillatory flow on water vapor removal from a laboratory soil column. Final report, November 1993

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, K.E.

    1993-05-01

    Subsurface contamination by volatile organic contaminants (VOC`s) in the vadose zone and groundwater is primarily due to leaking underground storage tanks and industrial spills. Soil vapor extraction is a technique that is being used successfully to remove VOC`s from the subsurface. A flow of air is established through the soil to remove the vapor phase component of the contaminant. Soil vapor extraction will initially remove high levels of contaminant that is already present in the macropores. The concentration will start to decline as the removal from the soil matrix becomes limited by diffusion of contaminant from regions away from the air flow paths. This study examines potential methods of overcoming the diffusion limitation by adding an oscillatory component to the steady air flow and by pulsed flow, which involves turning air flow on and off at predetermined intervals. The study considered only the removal of water from the soil to try to establish general vapor behavior in the soil under the imposed conditions. Based on a statistical analysis, both the oscillatory and pulsed flow showed an improved water removal rate over the steady state flow. The effect of oscillatory flow was only examined at higher frequencies. The literature indicates that oscillations at lower frequencies may be more effective. Pulsed flow showed the most efficient removal of water compared to steady state conditions. The pulsed flow was most efficient because rather than reducing the diffusion limitation, the system would shut down and wait for diffusion to occur. This optimizes energy consumption, but does not reduce treatment time. The oscillatory flow actually reduced the diffusion limitation within the column which could result in a shorter treatment time.

  11. Time-activity relationships to VOC personal exposure factors

    Science.gov (United States)

    Edwards, Rufus D.; Schweizer, Christian; Llacqua, Vito; Lai, Hak Kan; Jantunen, Matti; Bayer-Oglesby, Lucy; Künzli, Nino

    Social and demographic factors have been found to play a significant role in differences between time-activity patterns of population subgroups. Since time-activity patterns largely influence personal exposure to compounds as individuals move across microenvironments, exposure subgroups within the population may be defined by factors that influence daily activity patterns. Socio-demographic and environmental factors that define time-activity subgroups also define quantifiable differences in VOC personal exposures to different sources and individual compounds in the Expolis study. Significant differences in exposures to traffic-related compounds ethylbenzene, m- and p-xylene and o-xylene were observed in relation to gender, number of children and living alone. Categorization of exposures further indicated time exposed to traffic at work and time in a car as important determinants. Increased exposures to decane, nonane and undecane were observed for males, housewives and self-employed. Categorization of exposures indicated exposure subgroups related to workshop use and living downtown. Higher exposures to 3-carene and α-pinene commonly found in household cleaning products and fragrances were associated with more children, while exposures to traffic compounds ethylbenzene, m- and p-xylene and o-xylene were reduced with more children. Considerable unexplained variation remained in categorization of exposures associated with home product use and fragrances, due to individual behavior and product choice. More targeted data collection methods in VOC exposure studies for these sources should be used. Living alone was associated with decreased exposures to 2-methyl-1-propanol and 1-butanol, and traffic-related compounds. Identification of these subgroups may help to reduce the large amount of unexplained variation in VOC exposure studies. Further they may help in assessing impacts of urban planning that result in changes in behavior of individuals, resulting in shifts in

  12. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    diversity was assessed by new generation sequencing (NGS) of 16S rDNA. Microbiological analyses of samples collected from selected vertical profiles in the soil, where temperatures were up to 60 °C, revealed total prokaryotic abundances ranging from 7.23×106 to 439×106 cell/g WW. The highest abundances were recorded in sites affected by the highest and the lowest CO2 (3,350 and 110 gm-2day-1, respectively) and CH4 (0.059 and 0.00021 gm-2day-1, respectively) soil fluxes, and H2S concentrations ranging from 0.05 to 1.9 mmol/mol. The composition of both archaeal and bacterial communities showed remarkable changes depending on the sampling site, the most abundant phyla being represented by Proteobacteria, Firmicutes, Actinobacteria and Euryarchaeota at the highest inputs of hydrothermal fluids, corresponding to VOCs concentrations up to 898 nmol/mol (mainly alkanes and aromatics). Conversely, Proteobacteria, Acidobacteria, Firmicutes, Chloroflexi and Thaumarchaeota dominated in those sites where low gas fluxes and VOCs contents (≤300 nmol/mol; mainly alkanes and O-bearing species) were recognized. The intimate relation between microbial distribution and hydrothermal gas concentrations and gas fluxes demonstrated the critical interplay between soil gases and microorganisms, remarking the potential biodegradation efficiency at extremely high VOCs concentrations in the soil.

  13. Low HAP/VOC Compliant Resins for Military Applications

    Science.gov (United States)

    2011-09-01

    on lauric acid FAVE-O fatty acid vinyl ester resin system based on octanoic acid FTIR Fourier transform infrared GIC Mode 1 fracture energy...temperature and could potentially produce smog-promoting ozone as well as long-term and acute health effects. VOC/HAPs are emitted during all phases of...Viscosity ា cP at 25 °C (MOct) Unreacted epoxy FTIR *, NMR* No epoxy present None detected Correct reactant ratios NMR Methacrylate to FA ratio of 1:1

  14. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  15. DESORPTION OF VOCs FROM POLYMERIC ADSORBENTS UNDER MICROWAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    LIXiang; LIZhong; 等

    2001-01-01

    Desorption of volatile organic compounds(VOCs) from polymeric adsorbents by microwave was investigated experimentally.Two kinds of organic compounds.benzene and toluene.were separately used as adsorbates in this work Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration,but also make the temperatures of the fixed beds much lower than that when using the heat regeneration the weaker the polarity of a polymericadsorbent,the easier its regeneration was.

  16. VoCS : Sistema de almacenamiento voluntario en la nube

    OpenAIRE

    Schiavón Raineri, Ignacio Nicolás

    2012-01-01

    La computación en la nube responde a las necesidades del aumento de dispositivos conectados a Internet y el creciente volumen de datos manejados, ofreciendo acceso ubicuo y transparente a la información de forma segura. Esto ha tenido como consecuencia la apertura del mercado, ofreciendo muchas aplicaciones basadas en la nube como SkyDrive, Google Drive o Dropbox. VoCS (Volunteer Cloud Storage) es un sistema de almacenamiento voluntario en la nube de código abierto y seguro, que pretende ofre...

  17. Field portable detection of VOCs using a SAW/GC system. Final report, June 21, 1994--September 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.; Staples, E.J.

    1998-06-01

    This report describes research on a fast GC vapor analysis system which uses a new type of Surface Acoustic Wave detector technology to characterize organic contamination in soil and groundwater. The project was sponsored by the Department of Energy, Morgantown Energy Technology Center, whose mission, in addition to other goals, is the development of tools and methods for characterization, remediation, and monitoring of underground environmental conditions. The research tasks were to demonstrate detectability and specificity of a Surface Acoustic Wave Gas Chromatograph (SAW/GC) to a representative number of VOC materials followed by field demonstrations of the new technology at a DOE site. All tasks of the project were successfully carried out and a fast vapor analysis system based upon a new type of Surface Acoustic Wave detector technology was developed. The prototype analyzer has the ability to characterize organic contamination in soil and groundwater at the part per billion level in less than 10 seconds. The detector is unique because it utilized an uncoated quartz crystal, contrary to current developments of using coated crystals.

  18. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi [Department of Mechanical Systems Engineering, Yamagata Univ., Yonezawa, Yamagata (Japan)

    2000-11-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  19. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  20. FEV manoeuvre induced changes in breath VOC compositions: an unconventional view on lung function tests

    Science.gov (United States)

    Sukul, Pritam; Schubert, Jochen K.; Oertel, Peter; Kamysek, Svend; Taunk, Khushman; Trefz, Phillip; Miekisch, Wolfram

    2016-06-01

    Breath volatile organic compound (VOC) analysis can open a non-invasive window onto pathological and metabolic processes in the body. Decades of clinical breath-gas analysis have revealed that changes in exhaled VOC concentrations are important rather than disease specific biomarkers. As physiological parameters, such as respiratory rate or cardiac output, have profound effects on exhaled VOCs, here we investigated VOC exhalation under respiratory manoeuvres. Breath VOCs were monitored by means of real-time mass-spectrometry during conventional FEV manoeuvres in 50 healthy humans. Simultaneously, we measured respiratory and hemodynamic parameters noninvasively. Tidal volume and minute ventilation increased by 292 and 171% during the manoeuvre. FEV manoeuvre induced substance specific changes in VOC concentrations. pET-CO2 and alveolar isoprene increased by 6 and 21% during maximum exhalation. Then they decreased by 18 and 37% at forced expiration mirroring cardiac output. Acetone concentrations rose by 4.5% despite increasing minute ventilation. Blood-borne furan and dimethyl-sulphide mimicked isoprene profile. Exogenous acetonitrile, sulphides, and most aliphatic and aromatic VOCs changed minimally. Reliable breath tests must avoid forced breathing. As isoprene exhalations mirrored FEV performances, endogenous VOCs might assure quality of lung function tests. Analysis of exhaled VOC concentrations can provide additional information on physiology of respiration and gas exchange.

  1. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    Science.gov (United States)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  2. Low VOC drying of lumber and wood panel products. Progress report No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Wild, P.; Yan, Hui; Banerjee, S. [and others

    1997-10-01

    This progress report summarizes three accomplishments in a study of low volatile organic compound (VOC) drying of lumber and wood panel products. A mathematical model for predicting moisture emissions from particle was constructed and is being extended to VOCs. VOCs emissions from drying boards show that VOCs appear to be evenly released from all surfaces. Preliminary results from monthly analyses of loblolly pines indicate that resin acids appear to decrease between March to August, and that no consistent trends are apparent for terpenes. 3 refs., 13 figs., 1 tab.

  3. Implementation of VOC source reduction practices in a manufactured house and in school classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.; Apte, M.G.; Shendell, D.G.; Beal, D.; McIlvaine, J.E.R.

    2002-01-01

    Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

  4. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  5. Ecosystem scale VOC exchange measurements at Bosco Fontana (IT) and Hyytiälä (FI)

    Science.gov (United States)

    Schallhart, S.; Rantala, P.; Taipale, R.; Nemitz, E.; Tillmann, R.; Mentel, T. F.; Ruuskanen, T.; Rinne, J.

    2013-12-01

    The ozone production and destruction mechanisms in the troposphere depend on the abundance of NOx and volatile organic compounds (VOCs). As the latter originate not only from human activities, but to a large extent from vegetation it is important to quantify these biogenic sources as well. The VOC-fluxes were measured in Bosco Fontana forest as a part of an intensive measurement campaign of the Eclaire project, which investigates how climate change alters the threat of air pollution. Measurements were carried out at the Nature Reserve 'Bosco della Fontana' in the Po valley, Italy. The area of the forest is 198 ha and the dominanting tree species are Quercus robur (English oak), Quercus cerris (Turkey oak) and Carpinus betulus (hornbeam). The fluxes were measured on at a height of 32 metres using the eddy covariance method. A PTR-TOF (Ionicon Analytik, Austria) measured volatile organic compounds up to a mass of 300 atomic mass units. The instrument is capable of recording full spectra of VOCs in real-time with a resolution of 10 Hz. In addition to the mass spectrometer a 3D Anemometer was placed next to the inlet. Results will be presented and compared with disjunct eddy covariance measurements (Taipale et al. 2011) from a Pinus sylvestris (Scots Pine) dominated forest in Hyytiälä, Finland. The two forests are characterized by a different emission profile; the Bosco Fontana forest emits large amounts of isoprene, whereas the terpenoid emissions from Hyytiälä forest are dominated by monoterpenes. The magnitude of the emissions differs as emission from Bosco Fontana is much higher. The monoterpene emission from Bosco Fontana is likely to follow different dynamics than that from Hyytiälä as it correlates well with the radiation. This leads to the conclusion, that monoterpenes are released right after they are produced (de novo). In Hyytiälä the emissions are light and temperature dependent, which is caused by de novo and storage emissions. Pines have large

  6. Effect of chemical degradation on fluxes of reactive compounds

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2011-12-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the emission at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a~major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  7. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  8. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    S. Ebersviller

    2012-03-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM.

    In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the

  9. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 2: Complex urban VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a, we demonstrated the existence of PM "effect modification" (NAS, 2004 for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA. That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM

  10. Limited recovery of soil microbial activity after transient exposure to gasoline vapors

    DEFF Research Database (Denmark)

    Modrzyński, Jakub J.; Christensen, Jan H.; Mayer, Philipp

    2016-01-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial...... functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial...... microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient...

  11. Alcohol induced alterations to the human fecal VOC metabolome.

    Directory of Open Access Journals (Sweden)

    Robin D Couch

    Full Text Available Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis. However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1 an elevation in the oxidative stress biomarker tetradecane; (2 a decrease in five fatty alcohols with anti-oxidant property; (3 a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4 a decrease in alcohol consumption natural suppressant caryophyllene; (5 a decrease in natural product and hepatic steatosis attenuator camphene; and (6 decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies.

  12. O sistema vocálico alemão

    Directory of Open Access Journals (Sweden)

    Carine Haupt

    2007-11-01

    Full Text Available 0 presente trabalho explica, de forma simplificada, o sistema vocálico alemão através dos traços de duração, abertura e recuo. Na discussão sobre o assunto, é feita uma abordagem sobre a relação de dependência entre a duração e os traços de abertura, além de discutir a relevância de manter a duração em todo o sistema. Através do modelo de Fonologia Autossegmental, é possível verificar que a estrutura silábica das vogais longas e breves é diferente, além de verificar em que contextos silábicos elas podem ocorrer (especificamente em posição tônica. Já em posição átona, ocorre o schwa, uma variante da vogal lei, que fará parte do sistema vocálico alemão, constituído, então, de 15 vogais em posição tônica e uma variante átona.

  13. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  14. Emissions of selected VOC from forests: First results on measurements needed for improvement and validation of emission models

    Science.gov (United States)

    Steigner, D.; Steinbrecher, R.; Rappenglück, B.; Gasche, R.; Hansel, A.; Graus, M.; Lindinger, Ch.

    2003-04-01

    Biogenic volatile organic compounds (BVOCs) play a crucial role in the formation of photo-oxidants and particles through the diverse BVOC degradation pathways. Yet, current estimations about temporal and spatial BVOC emissions, including the specific BVOC mix are rather vague. This project addresses this issue by: the determination of (a) BVOC net emission rates and (b) primary emissions of BVOCs from the trees and soils. Measurement campaigns were carried out at the Waldstein site in the Fichtelgebirge in 2001 and 2002. Primary emissions of isoprenoids from the soil and from twigs of Norway spruce (Picea abies [L.] Karst.) and stand fluxes of isoprenoids were quantified by means of REA-technique with in situ GC-FID analysis and GC-MS analysis in the laboratory. Moreover, REA-samples obtained by the system were analysed by a PTR-MS. A critical value when using the REA approach is the Businger-Oncley parameter b. For this canopy type a b value of 0.39 (threshold velocity w_o = 0.6) was determined. The PTR-MS data show clear diurnal variations of ambient air mixing ratios of VOC such as isoprene and monoterpenes, but also of oxygenated VOCs such as carbonyls and alcohols and methylvinylketone (MVK) and methacrolein (MAK), products from isoprene degradation. Four selected trees (Picea abies [L.] Karst.) were intensively screened for primary BVOC emission rates. Most abundant species are b-pinene/sabinene and camphene. They show typical diurnal patterns with high emissions during daytime. Soil emissions of NO reached 250 nmol N m-2 s-1 at soil temperatures (in 3 cm depth) of 13^oC and at a relative air humidity of 60%. Ambient air mixing ratios near the soil surface of NO reached values of up to 0.7 ppb. NO_2 and ozone mixing ratios varied between 0.1 to 1.5 ppb and 10 to 37 ppb, respectively. As expected nitrogen oxide emissions rates tend to increase with increasing surface temperature. Isoprenoid emission from the soil was low and in general near the detection limit

  15. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  16. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  17. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  18. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  19. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives

    Science.gov (United States)

    2007-08-01

    23 Table 4. Results from the holding- time study with...the opposite order. First Holding- Time Study for VOCs The purpose of this study was to determine whether analyte concentra- tions of samples... Study for VOCs The procedure for this study was the same as for the previous holding- time study except that that the Snap Samplers were equilibrated

  20. POLLUTION PREVENTION CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS

    Science.gov (United States)

    This article provides a brief profile of the wood furniture industry, discusses pollution prevention activities typically implemented, describes the four low-VOC/HAP coating technologies studied. and summarizes one case study for each of the low-VOC/HAP coating yechnologies inves...

  1. Low VOC drying of lumber and wood panel products. Progress report No. 4, annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, J.; Su, Wei; Yan, Hui [and others

    1997-07-01

    Heating softwood in a low-headspace environment draws out the VOCs from the wood, without removing the water. The VOCs can be collected from the headspace, and represent a valuable product. The VOC-depleted wood can then be dried conventionally with much reduced emissions. Heating can be accomplished through radiofrequency (RF) or steam. For lumber, steam is inefficient, but brief RF treatment under low-headspace conditions draws out 80% of the VOCs. The power used is quite low, since the RF energy is not used to remove water, but only to maintain the wood at a set temperature. The technology is now at the pre-pilot stage. Either steam or RF can be used for particle, OSB, and veneer, again under low-headspace conditions. Increasing steam temperature facilitates VOC removal. In order to understand the mechanism of VOC release in lumber, the transport of water and VOCs to the surface is being studied as a function of sample size and orientation. Characterization of the terpenes and resin/fatty acids from a control set of trees is underway in order to define the seasonal influence on VOCs.

  2. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.

    Science.gov (United States)

    Liu, Lei; Zhang, Diming; Zhang, Qian; Chen, Xing; Xu, Gang; Lu, Yanli; Liu, Qingjun

    2017-07-15

    Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs. The responses could be detected by a hand-held device, sent out to a smartphone by Bluetooth, and reported with concentration on an android program of the smartphone. The smartphone-based system was demonstrated to detect acetone at concentrations as low as 1.56ppm, while AC impedance spectroscopy was used to distinguish acetone from other VOCs. Finally, measurements of the exhalations from human being were carried out to obtain the concentration of acetone in exhaled breath before and after exercise. The results proved that the smartphone-based system could be applied on the detection of VOCs in real settings for healthcare diagnosis. Thus, the smartphone-based system for VOCs detection provided a convenient, portable and efficient approach to monitor VOCs in exhaled breath and possibly allowed for early diagnosis of some diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Total OH reactivity study from VOC photochemical oxidation in the SAPHIR chamber

    Science.gov (United States)

    Yu, Z.; Tillmann, R.; Hohaus, T.; Fuchs, H.; Novelli, A.; Wegener, R.; Kaminski, M.; Schmitt, S. H.; Wahner, A.; Kiendler-Scharr, A.

    2015-12-01

    It is well known that hydroxyl radicals (OH) act as a dominant reactive species in the degradation of VOCs in the atmosphere. In recent field studies, directly measured total OH reactivity often showed poor agreement with OH reactivity calculated from VOC measurements (e.g. Nölscher et al., 2013; Lu et al., 2012a). This "missing OH reactivity" is attributed to unaccounted biogenic VOC emissions and/or oxidation products. The comparison of total OH reactivity being directly measured and calculated from single component measurements of VOCs and their oxidation products gives us a further understanding on the source of unmeasured reactive species in the atmosphere. This allows also the determination of the magnitude of the contribution of primary VOC emissions and their oxidation products to the missing OH reactivity. A series of experiments was carried out in the atmosphere simulation chamber SAPHIR in Jülich, Germany, to explore in detail the photochemical degradation of VOCs (isoprene, ß-pinene, limonene, and D6-benzene) by OH. The total OH reactivity was determined from the measurement of VOCs and their oxidation products by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS) with a GC/MS/FID system, and directly measured by a laser-induced fluorescence (LIF) at the same time. The comparison between these two total OH reactivity measurements showed an increase of missing OH reactivity in the presence of oxidation products of VOCs, indicating a strong contribution to missing OH reactivity from uncharacterized oxidation products.

  4. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75...

  5. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst.

    Science.gov (United States)

    Abdullah, Ahmad Zuhairi; Bakar, Mohamad Zailani Abu; Bhatia, Subhash

    2006-02-28

    The paper reports on the performance of chromium or/and copper supported on H-ZSM-5(Si/Al = 240) modified with silicon tetrachloride (Cr1.5/SiCl4-Z, Cu1.5/SiCl4-Z and Cr1.0Cu0.5/SiCl4-Z) as catalysts in the combustion of chlorinated VOCs (Cl-VOCs). A reactor operated at a gas hourly space velocity (GHSV) of 32,000 h(-1), a temperature between 100 and 500 degrees C with 2500 ppm of dichloromethane (DCM), trichloromethane (TCM) and trichloroethylene (TCE) is used for activity studies. The deactivation study is conducted at a GHSV of 3800 h(-1), at 400 degrees C for up to 12 h with a feed concentration of 35,000 ppm. Treatment with silicon tetrachloride improves the chemical resistance of H-ZSM-5 against hydrogen chloride. TCM is more reactive compared to DCM but it produces more by-products due to its high chlorine content. The stabilization of TCE is attributed to resonance effects. Water vapor increases the carbon dioxide yield through its role as hydrolysis agent forming reactive carbocations and acting as hydrogen-supplying agent to suppress chlorine-transfer reactions. The deactivation of Cr1.0Cu0.5/SiCl4-Z is mainly due to the chlorination of its metal species, especially with higher Cl/H feed. Coking is limited, particularly with DCM and TCM. In accordance with the Mars-van Krevelen model, the weakening of overall metal reducibility due to chlorination leads to a loss of catalytic activity.

  6. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  7. Efficient control of odors and VOC emissions via activated carbon technology.

    Science.gov (United States)

    Mohamed, Farhana; Kim, James; Huang, Ruey; Nu, Huong Ton; Lorenzo, Vlad

    2014-07-01

    This research study was undertaken to enhance the efficiency and economy of carbon scrubbers in controlling odors and volatile organic compounds (VOCs) at the wastewater collection and treatment facilities of the Bureau of Sanitation, City of Los Angeles. The butane activity and hydrogen sulfide breakthrough capacity of activated carbon were assessed. Air streams were measured for odorous gases and VOCs and removal efficiency (RE) determined. Carbon towers showed average to excellent removal of odorous compounds, VOCs, and siloxanes; whereas, wet scrubbers demonstrated good removal of odorous compounds but low to negative removal of VOCs. It was observed that the relative humidity and empty bed contact time are one of the most important operating parameters of carbon towers impacting the pollutant RE. Regular monitoring of activated carbon and VOCs has resulted in useful information on carbon change-out frequency, packing recommendations, and means to improve performance of carbon towers.

  8. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  9. Volatile organic compound fluxes and concentrations in London (ClearfLo)

    Science.gov (United States)

    Valach, Amy; Langford, Ben; Nemitz, Eiko; MacKenzie, Rob; Hewitt, Nick

    2014-05-01

    Volatile organic compounds (VOCs) from anthropogenic sources such as fuel combustion or evaporative emissions can directly and indirectly affect human health. Some VOCs, such as benzene and 1,3- butadiene are carcinogens. These and other VOCs contribute to the formation of ozone (O3) and aerosol particles, which have effects on human health and the radiative balance of the atmosphere. Although in the UK VOC emissions are subject to control under European Commission Directive 2008/50/EC and emission reducing technologies have been implemented, urban air pollution remains a concern. Urban air quality is likely to remain a priority since currently >50% of the global population live in urban areas with trends in urbanization and population migration predicted to increase. The ClearfLo project is a large multi-institutional consortium funded by the UK Natural Environment Research Council (NERC) and provides integrated measurements of meteorology, gas phase and particulate composition of the atmosphere over London. Both long term and IOP measurements were made at street and elevated locations at a range of sites across London and its surroundings during 2011 and 2012. Mixing ratios of a selection of nine VOCs were measured using a high sensitivity proton transfer reaction-mass spectrometer (PTR-MS) at a ground level urban background (North Kensington) and kerbside (Marylebone Road) site during the winter IOP. VOC fluxes were measured by virtually disjunct eddy covariance (vDEC) at an elevated urban site (King's College Strand) in Aug-Dec 2012. Our results for the first IOP showed that most of the selected compound concentrations depended on traffic emissions, although there was a marked difference between the urban background and kerbside sites. We identified some temperature effects on VOC concentrations. We also present the first analyses of VOC flux measurements over London. Preliminary analyses indicate most compounds associated with vehicle emissions closely

  10. Anthropogenic VOC speciation in emission inventories: a method for improvement and evaluation

    Science.gov (United States)

    von Schneidemesser, E.; D'angiola, A.; Granier, C.; Monks, P. S.; Law, K.

    2011-12-01

    Volatile organic compounds (VOCs) are important precursor compounds for the formation of ozone and other secondary organic aerosols. Anthropogenic sources of VOCs are dominated by industrial usage and transportation sources, the latter being extremely important in urban areas. Megacities and large urban conglomerations are emission hot spots that exert disproportionately large adverse health effects on the population and surrounding environment, owing to their high population density and concentrated emission sources. Exceedances of ozone air quality standards are a problem in many urban areas. Improvements in the modelling of ozone precursors would benefit our understanding of the impact of changes in emissions and the effect of future legislation on air quality. As many VOCs are extremely reactive in the atmosphere and have high ozone forming potential, improved speciation of VOCs in models could lead to better predictions of ozone levels and secondary organic aerosol formation. Previously, VOC and carbon monoxide (CO) data from urban areas around the world were compared. Significant differences in VOC concentrations were observed, however, when normalized to CO, the VOC-CO ratios were similar for many locations and over time, even as emission reductions were implemented. The largest variation was found in the lighter alkanes due to the use of alternative transportation fuels in various world regions. These ratios were grouped by region and used to develop a new speciation for surface emissions of VOCs, by applying the regional observed VOC-CO ratios to the CO emissions for the urban areas. Urban areas were defined as 150 inhabitants per km2 or greater. Model simulations were performed using the MOZART-4 chemistry transport model to assess the improved speciation of the VOC emissions. The model outputs were compared to urban observational data where available. The impact of the new speciation of the distribution of CO, OH and ozone at the global scale will be

  11. Assessment of Volatile Organic Compounds (VOCs) in indooor parking facilities at Houston, Texas

    Science.gov (United States)

    Kristanto, Gabriel Andari

    This dissertation identified the types, magnitudes, sources, and assessed risk exposure of VOCs in different types of indoor parking facilities. VOCs are ones of major pollutants emitted from automobiles. The indoor parking facilities included were attached garages, grounds, and underground parking. Modification of method TO15 by EPA had been applied for identifying types and magnitudes of VOCs. Results of these identifications are presented. Eight most abundant VOCs could be identified in every sampling location with toluene as the most abundant compound followed by m,p-xylene, ethylbenzene and benzene. Compare to ground and underground parking, attached garages have the highest concentration of TVOCs. For sources identification, BTEX, m,p-xylene and benzene, and toluene and benzene ratios are calculated. BTEX ratios for ground and underground parking are similar compare to attached garage due to the similar pattern of driving speed and the content of gasoline fuel. On the other hand the ratios of m,p-xylene and benzene and toluene and benzene in attached garage are higher compare to the same ratios for ground and underground parking due to other significant contributor of VOCs such as solvent, household cleanings stored. Cancer and noncancer risk assessment were also calculated. Results showed that cancer and noncancer risk due human exposures to VOC in indoor parking facilities were relatively low. However the risk of the human exposure to VOCs from indoor parking facilities has to be considered as a part of total risks of VOC exposures on human during their daily activities. When people in Houston have already exposed to high VOC concentrations from outdoor environment activities such as traffic and refineries and petrochemical facilities, additional activities causing VOC exposures will add the risk significantly.

  12. Raman scattering investigation of VOCs in interaction with ice particles

    Science.gov (United States)

    Facq, Sébastien; Oancea, Adriana; Focsa, Cristian; Chazallon, Bertrand

    2010-05-01

    Cirrus clouds that form in the Earth's upper troposphere (UT) are known to play a significant role in the radiation budget and climate [1]. These clouds that cover about 35% of the Earth's surface [2] are mainly composed of small ice particles that can provide surfaces for trace gas interactions [3]. Volatile Organic Compounds (VOCs) are present in relative high abundance in the UT [4][5]. They promote substantial sources of free OH radicals that are responsible for driving photochemical cycles in the atmosphere. Their presence can both influence the oxidizing capacity and the ozone budget of the atmosphere. VOCs can interact with ice particles via different trapping processes (adsorption, diffusion, freezing, and co-deposition, i.e., incorporation of trace gases during growing ice conditions) which can result in the perturbation of the chemistry and photochemistry of the UT. Knowledge of the incorporation processes of VOCs in ice particles is important in order to understand and predict their impact on the ice particles structure and reactivity and more generally on the cirrus cloud formation. This proceeds via the in-situ characterization of the ice condensed phase in a pressure and temperature range of the UT. An important mechanism of UT cirrus cloud formation is the heterogeneous ice freezing process. In this study, we examine and characterize the interaction of a VOC, i.e., ethanol (EtOH) with ice particles during freezing. Vibrational spectra of water O-H and EtOH C-H spectral regions are analysed using confocal micro-Raman spectroscopy. Information at the molecular level on the surface structure can be derived from accompanying changes observed in band shapes and vibrational mode frequencies. Depending of the EtOH content, different crystalline phases have been identified and compared to hydrates previously reported for the EtOH-water system. Particular attention is paid on the effect of EtOH aqueous solutions cooling rate and droplet sizes on the phases

  13. Surface acoustic wave sensing of VOCs in harsh chemical environments

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, K.B.; Martin, S.J.; Ricco, A.J.

    1993-06-01

    The measurement of VOC concentrations in harsh chemical and physical environments is a formidable task. A surface acoustic wave (SAW) sensor has been designed for this purpose and its construction and testing are described in this paper. Included is a detailed description of the design elements specific to operation in 300{degree}C steam and HCl environments including temperature control, gas handling, and signal processing component descriptions. In addition, laboratory temperature stability was studied and a minimum detection limit was defined for operation in industrial environments. Finally, a description of field tests performed on steam reforming equipment at Synthetica Technologies Inc. of Richmond, CA is given including a report on destruction efficiency of CCl{sub 4} in the Synthetica moving bed evaporator. Design improvements based on the field tests are proposed.

  14. Flux-P: Automating Metabolic Flux Analysis

    OpenAIRE

    Ebert, Birgitta E.; Anna-Lena Lamprecht; Bernhard Steffen; Blank, Lars M.

    2012-01-01

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in ...

  15. Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-08-01

    Full Text Available Understanding the fate of ozone within and above forested environments is vital to assessing the anthropogenic impact on ecosystems and air quality at the urban-rural interface. Observed forest-atmosphere exchange of ozone is often much faster than explicable by stomatal uptake alone, suggesting the presence of additional ozone sinks within the canopy. Using the Chemistry of Atmosphere-Forest Exchange (CAFE model in conjunction with summer noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007, we explore the viability and implications of the hypothesis that ozonolysis of very reactive but yet unidentified biogenic volatile organic compounds (BVOC can influence the forest-atmosphere exchange of ozone. Non-stomatal processes typically generate 67 % of the observed ozone flux, but reactions of ozone with measured BVOC, including monoterpenes and sesquiterpenes, can account for only 2 % of this flux during the selected timeframe. By incorporating additional emissions and chemistry of a proxy for very reactive VOC (VRVOC that undergo rapid ozonolysis, we demonstrate that an in-canopy chemical ozone sink of ~2 × 108 molec cm−3 s−1 can close the ozone flux budget. Even in such a case, the 65 min chemical lifetime of ozone is much longer than the canopy residence time of ~2 min, highlighting that chemistry can influence reactive trace gas exchange even when it is "slow" relative to vertical mixing. This level of VRVOC ozonolysis could enhance OH and RO2 production by as much as 1 pptv s−1 and substantially alter their respective vertical profiles depending on the actual product yields. Reaction products would also contribute significantly to the oxidized VOC budget and, by extension, secondary organic aerosol mass. Given the potentially significant ramifications of a chemical ozone flux for both in-canopy chemistry and estimates of ozone

  16. Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-05-01

    Full Text Available Understanding the fate of ozone within and above forested environments is vital to assessing the anthropogenic impact on ecosystems and air quality at the urban-rural interface. Observed forest-atmosphere exchange of ozone is often much faster than explicable by stomatal uptake alone, suggesting the presence of additional ozone sinks within the canopy. Using the Chemistry of Atmosphere-Forest Exchange (CAFE model in conjunction with summer noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007, we explore the viability and implications of the hypothesis that ozonolysis of very reactive but yet unidentified biogenic volatile organic compounds (BVOC can influence the forest-atmosphere exchange of ozone. Non-stomatal processes typically generate 67% of the observed ozone flux, but reactions of ozone with measured BVOC, including monoterpenes and sesquiterpenes, can account for only 2% of this flux during the selected timeframe. By incorporating additional emissions and chemistry of a proxy for very reactive VOC (VRVOC that undergo rapid ozonolysis, we demonstrate that an in-canopy chemical ozone sink of ~2×108 molecules cm−3 s−1 can close the ozone flux budget. Even in such a case, the 65 min chemical lifetime of ozone is much longer than the canopy residence time of ~2 min, highlighting that chemistry can influence reactive trace gas exchange even when it is "slow" relative to vertical mixing. This level of VRVOC ozonolysis could enhance OH and RO2 production by as much as 1 pptv s−1 and substantially alter their respective vertical profiles depending on the actual product yields. Reaction products would also contribute significantly to the oxidized VOC budget and, by extension, secondary organic aerosol mass. Given the potentially significant ramifications of a chemical ozone flux for both in-canopy chemistry and estimates of ozone

  17. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    monitor speed and direction of flow and 3 cartridges to monitor different sources of pollution - VOC's, heavy metals and nutrients. The modular design enables to sample several types of pollution at the same time. The principles and the design of the iFLUX technology will be presented, together with the results from performance and sensitivity analysis for different field scenarios and several field cases.

  18. Thermal response and recyclability of poly(stearylacrylate-co-ethylene glycol dimethacrylate) gel as a VOCs absorbent

    Science.gov (United States)

    The development of absorbent materials for volatile organic compounds (VOCs) is in demand for a variety of environmental applications including protective barriers for VOCs point sources. One of the challenges for the currently available VOCs absorbents is their recyclability. In this study, we syn...

  19. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-12-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells. We observed that, even if the gas-phase pollutants

  20. Gaseous VOCs rapidly modify particulate matter and its biological effects – Part 1: Simple VOCs and model PM

    Directory of Open Access Journals (Sweden)

    H. E. Jeffries

    2012-02-01

    Full Text Available This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC, particulate matter (PM, and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity. Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells – even if the gas-phase pollutants are not

  1. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    Science.gov (United States)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  2. Volatile organic compounds sources and sinks in a wheat canopy. Analysis based on combined eddy-covariance fluxes, in-canopy profiles and chamber measurements with a PTR-TOF-Qi-MS

    Science.gov (United States)

    Loubet, Benjamin; Gonzaga, Lais; Buysse, Pauline; Ciuraru, Raluca; Lafouge, Florence; Decuq, Céline; Zurfluh, Olivier; Fortineau, Alain; Fanucci, Olivier; Sarda-Esteve, Roland; Zannoni, Nora; Truong, Francois; Boissard, Christophe; Gros, Valérie

    2017-04-01

    Volatile organic compounds (VOC) are essential drivers of atmospheric chemistry. Many VOCs are emitted from and deposited to ecosystems. While forests and grasslands have already been substantially studied, exchanges of VOCs with crops are less known, although these ecosystems represent more than 50% of the surface in France. In this study, we analyze sources and sinks of VOCs in a wheat field (at the ICOS FR-GRI site near Paris) at anthesis based on measurements of fluxes, concentration profiles and branch chambers. The VOCs were measured using a PTR-TOF-Qi-MS (where Qi stands for Quad Ion guide). Air was successively sampled through lines located at different heights within and above the canopy, of which one was used for Eddy Covariance and located near a sonic anemometer. Additional measurements included the standard ICOS meteorological data as well as leaf area index profiles and photosynthesis curves at several heights in the canopy. We report fluxes and profiles for more than 500 VOCs. The deposition velocities of depositing compounds are compared to the maximum exchange velocity and the ozone deposition velocity. The sources and sinks location and magnitude are evaluated by inverse Lagrangian modelling assuming no reaction and simple reaction schemes in the canopy. The sources and sinks of VOC in the canopy are interpreted in terms crop phenology and the potential for reaction with ozone and NOx is evaluated. This study takes place in the ADEME CORTEA COV3ER French project (http://www6.inra.fr/cov3er).

  3. Use of Compound Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2012-01-01

    chlorinated hydrocarbons . The full list of the compounds included (weight %): ethanol – 69 % n-decane – 4 % p-xylene – 9 % MEK – 10 % n-pentane – 5...biodegradation of trichloroethylene and toluene: Implications for intrinsic bioremediation . Organic Geochem. 1999, 30, 813-820. 9) SIGMA-ALDRICH

  4. Use of On-Site GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    71DE Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives , paints, gasoline Bonide Tree Sprays and...ay be less ef adhesives . H products con ion include ces of the e to its abil f indoor air h stakehold y interprete ncern, a fou samples ra rounds...Bonder, Radio Shack Anti Static Foaming Cleaner Chloroform Dry cleaned clothes, fire extinguishers, adhesive remover, chlorinated drinking water

  5. ELI/SBP'S UVB (VACUUM VAPORIZATION WELL) SYSTEM FOR TREATMENT OF VOC-CONTAMINATED SOILS; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the findings of an evaluation of the Unterdruck-Verdampfer-Brunnen (UVB) technology developed by IEG Technologies (IEG) and licensed in the eastern United States by Environmental Laboratories, Inc. (ELI) and SBP Technologies (SBP). This evaluation was cond...

  6. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    the hole and covered with approximately 3-4 inches of 20/40 sand. The remainder of the hole was sealed with a combination of hydrated bentonite clay ...Shallow stratigraphy consists of glacial lake sediments (e.g., clays and silts) overlying a sedimentary bedrock. In the vicinity of Building 1533...shallow soils are predominantly sand and gravel fill. Underlying the fill is a clay layer approximately 30- 40 feet thick (AMEC, 2010). Depth

  7. Workshop: Addressing Regulatory Challenges In Vapor Intrusion: A State-of-the Science Update Focusing On Chlorinated VOCs

    Science.gov (United States)

    The U.S. Environmental Protection Agency's (EPA's) Offices of Research and Devevlopment and Solid Waste and Emergency Response continue to collaborate on providing technical assistance and support to EPA regional offices, other federal agencies, state regulators, and other intere...

  8. Use of Compound-Specific Stable Isotope Analysis to Distinguish between Vapor Intrusion and Indoor Sources of VOC

    Science.gov (United States)

    2013-12-01

    Program GC gas chromatography GSI GSI Environmental GW groundwater HC hydrocarbons IRMS isotope ratio mass spectrometer µg/L micrograms per...per thousand PHC petroleum hydrocarbons pp positive pressure ppbV parts per billion by volume QA quality assurance sq ft square feet TCE...environmental samples can be used to 1) distinguish between different sources of the contaminants, and 2) understand biodegradation and other

  9. Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands

    Directory of Open Access Journals (Sweden)

    B. C. Kindel

    2014-10-01

    Full Text Available Measuring water vapor in the upper troposphere and lower stratosphere is difficult due to the low mixing ratios found there, typically only a few parts per million. Here we examine near infrared spectra acquired with the Solar Spectral Flux Radiometer during the first science phase of the NASA Airborne Tropical Tropopause EXperiment. From the 1400 and 1900 nm absorption bands, we infer water vapor amounts in the tropical tropopause layer and adjacent regions between 14 and 18 km altitude. We compare these measurements to solar transmittance spectra produced with the MODerate resolution atmospheric TRANsmission (MODTRAN radiative transfer model, using in situ water vapor, temperature, and pressure profiles acquired concurrently with the SSFR spectra. Measured and modeled transmittance values agree within 0.002, with some larger differences in the 1900 nm band (up to 0.004. Integrated water vapor amounts along the absorption path lengths of 3 to 6 km varied from 1.26 × 10−4 to 4.59 × 10−4 g cm−2. A 0.002 difference in absorptance at 1367 nm results in a 3.35 × 10−5 g cm−2 change of integrated water vapor amount, 0.004 absorptance change at 1870 nm results in 5.5 × 10−5 g cm−2 of water vapor. These are 27% (1367 nm and 44% (1870 nm differences at the lowest measured value of water vapor (1.26 × 10−4 g cm−2 and 7% (1367 nm and 12% (1870 nm differences at the highest measured value of water vapor (4.59 × 10−4 g cm−2. A potential method for extending this type of measurement from aircraft flight altitude to the top of the atmosphere (TOA is discussed.

  10. Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    B. Langford

    2010-09-01

    Full Text Available As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90% of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46mg m−2 h−1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.

  11. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    Science.gov (United States)

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  12. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  13. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    Science.gov (United States)

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  14. Indoor contaminants from Hardcopy Devices: Characteristics of VOCs in photocopy centers

    Science.gov (United States)

    Sarkhosh, Maryam; Mahvi, Amir Hossein; Zare, Mohammad Reza; Fakhri, Yadolah; Shamsolahi, Hamid Reza

    2012-12-01

    Indoor air pollution in working places is widely recognized as one of the most serious potential environment risks to human health. Mean volatile organic compound (VOC) concentrations of 144 samples from four copy centers in Tehran, Iran in two seasons were monitored for the purpose of quantifying the various VOCs in these areas. Area samples were collected in thermal desorption tubes and were analyzed using gas chromatography/mass selective detector. Real-time personal total volatile organic compounds were measured using a data-logging photo-ionization detector. Simultaneously, BTEX (benzene, toluene, ethylbenzene, xylenes) outdoor measurements were performed in the same manner as were the indoor measurements. Nineteen different VOCs were detected in the area samples. The results show that in all photocopy centers, the indoor levels of toluene were much higher than the outdoor levels. During business hours, the VOC levels increased, especially toluene indoor concentration. The ventilation decreased the indoor VOC concentrations. The background and indoor VOC concentrations were higher in winter than in spring. The minimum ratio of the indoor to outdoor concentration of BTEX was estimated to be more than 42. This value proved that buildings with photocopiers can be a site of VOC accumulation.

  15. VOC reactivity and its effect on ozone production during the HaChi summer campaign

    Directory of Open Access Journals (Sweden)

    L. Ran

    2011-05-01

    Full Text Available Measurements of ozone and its precursors conducted within the HaChi (Haze in China project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP. Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %, isoprene (15 %, trimethylbenzenes (11 %, xylenes (8.5 %, 3-methylhexane (6 %, n-hexane (5 % and toluene (4.5 %. Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR_MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present.

  16. Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean

    Science.gov (United States)

    Kaltsonoudis, Christos; Kostenidou, Evangelia; Florou, Kalliopi; Psichoudaki, Magda; Pandis, Spyros N.

    2016-11-01

    During the summer of 2012 volatile organic compounds (VOCs) were monitored by proton transfer reaction mass spectrometry (PTR-MS) in urban sites, in Athens and Patras, two of the largest cities in Greece. Also, during the winter of 2013, PTR-MS measurements were conducted in the center of the city of Athens. Positive matrix factorization (PMF) was applied to the VOC measurements to gain insights about their sources. In summer most of the measured VOCs were due to biogenic and traffic emissions. Isoprene, monoterpenes, and several oxygenated VOCs (oVOCs) originated mainly from vegetation either directly or as oxidation products. Isoprene average concentrations in Patras and Athens were 1 and 0.7 ppb respectively, while the monoterpene concentrations were 0.3 and 0.9 ppb respectively. Traffic was the main source of aromatic compounds during summer. For Patras and Athens the average concentrations of benzene were 0.1 and 0.2 ppb, of toluene 0.3 and 0.8 ppb, and of the xylenes 0.3 and 0.7 ppb respectively. Winter measurements in Athens revealed that biomass burning used for residential heating was a major VOC source contributing both aromatic VOCs and biogenic compounds such as monoterpenes. Several episodes related to biomass burning were identified and emission ratios (ERs) and emission factors (EFs) were estimated.

  17. VOCs in industrial, urban and suburban neighborhoods—Part 2: Factors affecting indoor and outdoor concentrations

    Science.gov (United States)

    Jia, Chunrong; Batterman, Stuart; Godwin, Christopher

    Many microenvironmental and behavioral factors can affect concentrations of and exposures to volatile organic compounds (VOCs). Identifying these determinants is important to understand exposures and risks, and also to design policies and strategies that minimize concentrations. This study is aimed at determining factors associated with VOC concentrations found indoors in residences and outdoors in ambient air. It utilizes results from a comprehensive field study in which 98 VOCs were measured both inside and outside of 159 residences in three communities in southeast Michigan, USA. Additional measurements included indoor CO 2 concentrations, temperature, relative humidity, building and neighborhood characteristics, and occupant activities, assessed using a questionnaire and comprehensive walkthrough investigation. Factors potentially affecting concentrations were identified using bivariate and multivariate analyses. Outdoors, seasonal and community effects were observed. Indoors, seasonal effects were limited to the urban and industrial communities, largely due to changes in ambient levels. Elevated indoor VOC concentrations were associated with eight sources or activities: the presence of an attached garage; recent renovations; older residences; indoor smoking; less frequent window or door opening; higher CO 2 concentrations; and lower ventilation rates. VOC levels were uninfluenced by building materials (wood vs. brick), flooring type (carpeting vs. wood), stove type (gas or electric), number of occupants, air freshener use, and hobbies involving arts and crafts. Factor analyses identified up to five factors for the ambient VOC measurements, and up to 10 factors for the indoor measurements, which further helped to explain the variability of concentrations and associations between VOCs.

  18. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    Science.gov (United States)

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  19. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  20. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  1. A nonisothermal emissivity and absorptivity formulation for water vapor

    Science.gov (United States)

    Ramanathan, V.; Downey, P.

    1986-01-01

    An emissivity approach is taken to modeling fluxes and cooling rates in the atmosphere. The nonisothermal water vapor long wave radiation emissivity and absorptivity model that is developed satisfies the requirements of defining a monochromatic transfer equation for predicting water vapor emissions. Predictions made with the model compare favorably with fluxes predicted by a radiation model for narrow-band emissions in 5 kayser intervals. The spectral resolution assumed in narrow-band models is shown to be an arbitrary parameter and, if a far wing continuum-type opacity is included in the emissivity scheme presented, results can be obtained which are as accurate as predictions made with state of the art line-by-line (LBL) calculations.

  2. Deposition fluxes of terpenes over grassland

    Science.gov (United States)

    Bamberger, I.; HöRtnagl, L.; Ruuskanen, T. M.; Schnitzhofer, R.; Müller, M.; Graus, M.; Karl, T.; Wohlfahrt, G.; Hansel, A.

    2011-07-01

    Eddy covariance flux measurements were carried out for two subsequent vegetation periods above a temperate mountain grassland in an alpine valley using a proton-transfer-reaction-mass spectrometer (PTR-MS) and a PTR time-of-flight-mass spectrometer (PTR-TOF). In 2008 and during the first half of the vegetation period 2009 the volume mixing ratios (VMRs) for the sum of monoterpenes (MTs) were typically well below 1 ppbv and neither MT emission nor deposition was observed. After a hailstorm in July 2009 an order of magnitude higher amount of terpenes was transported to the site from nearby coniferous forests causing elevated VMRs. As a consequence, deposition fluxes of terpenes to the grassland, which continued over a time period of several weeks without significant reemission, were observed. For days without precipitation the deposition occurred at velocities close to the aerodynamic limit. In addition to monoterpene uptake, deposition fluxes of the sum of sesquiterpenes (SQTs) and the sum of oxygenated terpenes (OTs) were detected. Considering an entire growing season for the grassland (i.e., 1 April to 1 November 2009), the cumulative carbon deposition of monoterpenes reached 276 mg C m-2. This is comparable to the net carbon emission of methanol (329 mg C m-2), which is the dominant nonmethane volatile organic compound (VOC) emitted from this site, during the same time period. It is suggested that deposition of monoterpenes to terrestrial ecosystems could play a more significant role in the reactive carbon budget than previously assumed.

  3. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    Science.gov (United States)

    2014-07-01

    Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives , paints, gasoline Bonide Tree Sprays and... adhesives . However, carbon tetrachloride and chloroform are also associated with household cleaning products containing chlorine bleach (Odabasi, 2008...Radio Shack Anti Static Foaming Cleaner Chloroform Dry cleaned clothes, fire extinguishers, adhesive remover, chlorinated drinking water Time Mist

  4. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - CSIA Protocol for Vapor Intrusion Investigations

    Science.gov (United States)

    2014-07-01

    Ethylene Dichloride) AFB Air Force Base bgs Below ground surface cis-1,2-DCE cis-1,2-Dichloroethene COC Constituent of concern CSIA Compound-Specific...in the environment. CSIA measures the carbon, chlorine , and/or hydrogen isotope ratios for individual chemicals. The results, however, are not...PDB) for carbon, Standard Mean Ocean Chloride (SMOC) for chlorine , and Vienna-Standard Mean Ocean Water (V-SMOW) for hydrogen. CSIA Protocol for

  5. 国内外 VOCs 排放标准体系研究%Study of Emission Standards System of VOCs at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    罗斌; 蒋燕; 王斌

    2014-01-01

    It had important significance to develop VOCs emission standards for controlling VOCs emissions, improving air quality, and protecting human health and ecological environment. The characteristics of emission standards system of VOCs at home and abroad were analyzed, and some suggestions on the development of VOCs emission standards were proposed that toxicity and emissions of pollutants, particular pollutants of key industries should be considered when developing standards, and establishing emission standards system of VOCs giving priority to industry standards.%制定VOCs排放标准对于控制VOCs排放量,改善环境空气质量,保护人体健康和生态环境有重要意义。分析了国内外VOCs排放标准体系的特点,提出我国制定VOCs排放标准的几点建议,即标准制定过程中应考虑污染物毒性和排放量大小,考虑控制重点行业的特征污染物,并建立以行业排放标准为主的VOCs排放标准体系。

  6. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  7. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  8. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi

    2006-01-01

    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  9. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  10. Critical heat flux around strongly heated nanoparticles.

    Science.gov (United States)

    Merabia, Samy; Keblinski, Pawel; Joly, Laurent; Lewis, Laurent J; Barrat, Jean-Louis

    2009-02-01

    We study heat transfer from a heated nanoparticle into surrounding fluid using molecular dynamics simulations. We show that the fluid next to the nanoparticle can be heated well above its boiling point without a phase change. Under increasing nanoparticle temperature, the heat flux saturates, which is in sharp contrast with the case of flat interfaces, where a critical heat flux is observed followed by development of a vapor layer and heat flux drop. These differences in heat transfer are explained by the curvature-induced pressure close to the nanoparticle, which inhibits boiling. When the nanoparticle temperature is much larger than the critical fluid temperature, a very large temperature gradient develops, resulting in close to ambient temperature just a radius away from the particle surface. The behavior reported allows us to interpret recent experiments where nanoparticles can be heated up to the melting point, without observing boiling of the surrounding liquid.

  11. Selected ion flow tube-MS analysis of headspace vapor from gastric content for the diagnosis of gastro-esophageal cancer.

    Science.gov (United States)

    Kumar, Sacheen; Huang, Juzheng; Cushnir, Julia R; Španěl, Patrik; Smith, David; Hanna, George B

    2012-11-01

    Gastric content is a complex biofluid within the human stomach which has an important role in digestive processes. It is believed that gastric content may be a contributory factor in the development of upper gastro-intestinal diseases. In this work, selected ion flow tube mass spectrometry (SIFT-MS) has been applied to the quantification of volatile organic compounds (VOCs) in the headspace vapor of gastric content samples, which were retrieved from three groups of patients, including those with gastro-esophageal cancer, noncancer diseases of the upper gastro-intestinal tract, and a healthy cohort. Twelve VOCs have been investigated in this study; the following 7 VOCs, acetone, formaldehyde, acetaldehyde, hexanoic acid, hydrogen sulphide, hydrogen cyanide, and methyl phenol, were found to be significantly different between cancer and healthy groups by the Mann-Whitney U test. Receiver operating characteristics (ROC) analysis was applied for the combined VOCs of acetaldehyde, formaldehyde, hydrogen sulphide, and methyl phenol to discriminate cancer patients from healthy controls. The area under the curve (AUC) was 0.9. This result raises the prospect that a VOC profile rather than a single biomarker may be preferable in the molecular-orientated diagnosis of gastro-oseophageal cancer, and this warrants further investigation to assess its potential application as a new diagnostic test.

  12. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    Science.gov (United States)

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  13. Biotreatment of air containing triethylamine (TEA vapor in biotrickling filter

    Directory of Open Access Journals (Sweden)

    A. Safari Variani

    2015-08-01

    Full Text Available Background: Treatment of waste air containing volatile organic compounds (VOCs using cheap and environmentally friendly methods is one of active fields in air pollution control. Objective: The aim of this study was to treat air containing triethylamine (TEA vapor using biotrickling filter inoculated with microbial species decomposing TEA. Methods: This experimental study was conducted in the School of Health affiliated to Qazvin University of Medical Sciences in 2014. Biotreatment was performed with biotrickling filter inoculated with microbial species decomposing TEA for two months. The biotrickling filter was set up with air containing TEA as the sole source of carbon, at Empty Bed Residence Times (EBRT of 36 sec, and inlet concentration of 84 ppm. Data were analyzed using descriptive statistics. Findings: Treatment of TEA contaminated air was made after an adaptation period of 11 days. Despite an increase in mass loading to 111 g/m3/h, TEA was eliminated with 109 g/m3/h capacity and 94-100% removal efficiency by zero order kinetics.Elimination capacity and removal efficiency were close to each other and confirmed109 g/m3/h as loading region with critical elimination capacity. Conclusion: With regards to the results, it is possible to treat air containing TEA vapor in biotrickling filter.

  14. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  15. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Science.gov (United States)

    Kim, S.-W.; McKeen, S. A.; Frost, G. J.; Lee, S.-H.; Trainer, M.; Richter, A.; Angevine, W. M.; Atlas, E.; Bianco, L.; Boersma, K. F.; Brioude, J.; Burrows, J. P.; de Gouw, J.; Fried, A.; Gleason, J.; Hilboll, A.; Mellqvist, J.; Peischl, J.; Richter, D.; Rivera, C.; Ryerson, T.; Te Lintel Hekkert, S.; Walega, J.; Warneke, C.; Weibring, P.; Williams, E.

    2011-11-01

    Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI-2005), in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2) columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50%-70% higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60% higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly reactive VOC emissions

  16. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    T. Ryerson

    2011-11-01

    Full Text Available Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem model with input from the US EPA's 2005 National Emission Inventory (NEI-2005, in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2 and volatile organic compounds (VOCs in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2 columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50%–70% higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60% higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly

  17. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    T. Ryerson

    2011-07-01

    Full Text Available Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting – Chemistry (WRF-Chem model with input from the US EPA's 2005 National Emission Inventory (NEI-2005, in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2 and volatile organic compounds (VOCs in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2 columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50 %–70 % higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60 % higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly

  18. Solvents and vapor intrusion pathways.

    Science.gov (United States)

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  19. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  20. Turbulent fluxes by "Conditional Eddy Sampling"

    Science.gov (United States)

    Siebicke, Lukas

    2015-04-01

    for the field (one to two orders of magnitude lower compared to current closed-path laser based eddy covariance systems). Potential applications include fluxes of CO2, CH4, N2O, VOCs and other tracers. Finally we assess the flux accuracy of the Conditional Eddy Sampling (CES) approach as in our real implementation relative to alternative techniques including eddy covariance (EC) and relaxed eddy accumulation (REA). We further quantify various sources of instrument and method specific measurement errors. This comparison uses real measurements of 20 Hz turbulent time series of 3D wind velocity, sonic temperature and CO2 mixing ratio over a mixed decidious forest at the 'ICOS' flux tower site 'Hainich', Germany. Results from a simulation using real wind and CO2 timeseries from the Hainich site from 30 April to 3 November 2014 and real instrument performance suggest that the maximum flux estimates error (50% and 75% error quantiles) from Conditional Eddy Sampling (CES) relative to the true flux is 1.3% and 10%, respectively for monthly net fluxes, 1.6% and 7%, respectively for daily net fluxes and 8% and 35%, respectively for 30-minute CO2 flux estimates. Those results from CES are promising and outperform our REA estimates by about a factor of 50 assuming REA with constant b value. Results include flux time series from the EC, CES and REA approaches from 30-min to annual resolution.

  1. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-05-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as onboard aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, i.e. the instantaneous permeation rate can be ascribed via a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts. The uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1 %. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  2. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    Science.gov (United States)

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  3. An unheated permeation device for calibrating atmospheric VOC measurements

    Directory of Open Access Journals (Sweden)

    J. Brito

    2011-10-01

    Full Text Available The development of an unpowered permeation device for continuous calibration of in-situ instruments measuring atmospheric volatile organic compounds (VOCs is described. Being lightweight and compact, and containing only negligible amounts of chemicals, the device is especially suited for field use such as on board aircraft. Its speciality is to maintain the permeation process in thermal equilibrium, so that the instantaneous permeation rate can be ascribed to a simple temperature measurement. This equilibrium state is maintained by a combination of three features: (i a thin PTFE membrane as permeation medium which guarantees short stabilization times, (ii a water bath as heat buffer, and (iii a vacuum-panel based insulation, in which features (ii and (iii minimize temperature drifts to ~30 mK h−1 per Kelvin temperature difference to the environment. The respective uncertainty of the permeation rate due to thermal non-equilibrium is kept below 1%. An extensive theory part details the major permeation processes of gases through porous polymers, being Fick's diffusion, Knudsen flow, and viscous flow. Both the measured stabilization time and the measured temperature dependence of the permeation rate independently indicate that the permeation can be described by a viscous flow model, where diffusion of the gas molecules in large pores (having a diameter of >0.05 μm dominates.

  4. Measurements of VOCs in Mexico City during the MILAGRO Campaign

    Science.gov (United States)

    Baker, A. K.; Beyersdorf, A. J.; Blake, N. J.; Meinardi, S.; Atlas, E.; Rowland, F.; Blake, D. R.

    2006-12-01

    During March of 2006 we participated in MILAGRO (Megacities Initiative: Local and Global Research Observations), a multi-platform campaign to measure pollutants in and in outflow from the Mexico City metropolitan area. As part of MILAGRO we collected whole air canister samples at two Mexico City ground sites: the Instituto Mexicano del Petroleo, located in the city, northeast of the center, and the Universidad Technologica de Tecamac, a suburban site approximately 50 km northeast of the city center. Samples were also collected in various other locations throughout Mexico City. Over 300 whole air samples were collected and analyzed for a wide range of volatile organic compounds (VOCs) including methane, carbon monoxide, nonmethane hydrocarbons (NMHCs) and halocarbons. Propane was the most abundant NMHC at both the urban and suburban locations, with mixing ratios frequently in excess of 10 parts per billion at both locations. This is likely the result of the widespread use of liquefied petroleum gas (LPG) of which propane is the major component. For most species, median mixing ratios at the urban sites were significantly greater than at the suburban site. Here we compare results from both urban and suburban locations and also examine the influence of transport on the composition of outflow from Mexico City.

  5. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  6. 33 CFR 154.828 - Vapor recovery and vapor destruction units.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor recovery and vapor... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Vapor Control Systems § 154.828 Vapor recovery and vapor destruction units. (a) The inlet to a vapor recovery unit...

  7. Reactivity of ambient volatile organic compounds (VOCs) in summer of 2004 in Beijing

    Institute of Scientific and Technical Information of China (English)

    Shan Huang; Min Shao; Sihua Lu; Ying Liu

    2008-01-01

    Ambient volatile organic compounds (VOCs) were sampled at six sites in Beijing in the summer of 2004 and analyzed byGCMS. The chemical reactivities of 73 quantified VOCs species were evaluated by OH loss rates (L<,OH) and ozone formationpotentials (OFPs). Top 15 reactive species, mainly alkenes and aromatics, were identified by these two methods, and accounted formore than 70% of total reactivity of VOCs. In urban areas, isoprene was the most reactive species in term of OH loss rate,contributing 11.4% to the Loft of VOCs. While toluene, accounting for 9.4% of OFPs, appeared to have a long-time role in thephotochemical processes. Tongzhou site is obviously influenced by local chemical industry, but the other five sites showed typicalurban features influenced mainly by vehicular emissions.2008 Min Shao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  8. An analytical solution for VOCs emission from multiple sources/sinks in buildings

    Institute of Scientific and Technical Information of China (English)

    DENG BaoQing; YU Bo; Chang Nyung KIM

    2008-01-01

    An analytical solution is presented to describe the emission/sorption of volatile organic compounds (VOCs) from/on multiple single-layer materials coexisting in buildings. The diffusion of VOCs within each material is described by a transient diffusion equation. All diffusion equations are coupled with each other through the equation of mass conservation in the air. The analytical solution is validated by the experimental data in literature, Compared to the one-material case, the coexistence of multiple materials may decrease the emission rate of VOCs from each material. The smaller the diffusion coef-ficient is, the more the emission rate decreases. Whether a material is a source or a sink in the case of multiple materials coexisting is not affected by the diffusion coefficient. For the case of multiple mate-rials with different partition coefficients, a material with a high partition coefficient may become a sink. This may promote the emission of VOCs from other materials.

  9. EVALUATION AND PERFORMANCE ASSESSMENT OF INNOVATIVE LOW-VOC CONTACT ADHESIVES IN WOOD LAMINATING OPERATIONS

    Science.gov (United States)

    The report gives results of an evaluation and assessment of the perfor-mance, economics, and emission reduction potential upon application of low-volatile organic compound (VOC) waterborne contact adhesive formulations specifically ina manual laminating operation for assembling s...

  10. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  11. VocMat projekt - uudsed e-õppe võimalused turismiasjalistele / Heli Tooman

    Index Scriptorium Estoniae

    Tooman, Heli, 1949-

    2008-01-01

    Turismivaldkonna spetsialistidele mõeldud koolitusprojektist VocMat (Vocational Management Training for the Tourism Industry). Projekti partneriteks Eestis on Ettevõtluse Arendamise Sihtasutuse Turismiarenduskeskus ja Tartu Ülikooli Pärnu kolledzh. Lisa: Kokkuvõte

  12. Advances in carbon flux observation and research in Asia

    Institute of Scientific and Technical Information of China (English)

    YU Guirui; ZHANG Leiming; SUN Xiaomin; FU Yuling; LI Zhengquan

    2005-01-01

    As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.

  13. Leaf level VOC emissions of single plants from Amazonian and Mediterranean ecosystems: Ontogeny and flooding as stress factor for VOC emissions

    OpenAIRE

    Bracho Nunez, Araceli

    2010-01-01

    Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken betei...

  14. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  15. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  16. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection

    Science.gov (United States)

    Zheng, Chenghang; Shen, Jiali; Zhang, Yongxin; Huang, Weiwei; Zhu, Xinbo; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Cen, Kefa

    2017-02-01

    The temporal trends of industrial volatile organic compound (VOC) emissions was comprehensively summarized for the 2011 to 2013 period, and the projections for 2020 to 2050 for China were set. The results demonstrate that industrial VOC emissions in China increased from 15.3 Tg in 2011 to 29.4 Tg in 2013 at an annual average growth rate of 38.3%. Guangdong (3.45 Tg), Shandong (2.85 Tg), and Jiangsu (2.62 Tg) were the three largest contributors collectively accounting for 30.4% of the national total emissions in 2013. The top three average industrial VOC emissions per square kilometer were Shanghai (247.2 ton/km2), Tianjin (62.8 ton/km2), and Beijing (38.4 ton/km2), which were 12-80 times of the average level in China. The data from the inventory indicate that the use of VOC-containing products, as well as the production and use of VOCs as raw materials, as well as for storage and transportation contributed 75.4%, 10.3%, 9.1%, and 5.2% of the total emissions, respectively. ArcGIS was used to display the remarkable spatial distribution variation by allocating the emission into 1 km × 1 km grid cells with a population as surrogate indexes. Combined with future economic development and population change, as well as implementation of policy and upgrade of control technologies, three scenarios (scenarios A, B, and C) were set to project industrial VOC emissions for the years 2020, 2030, and 2050, which present the industrial VOC emissions in different scenarios and the potential of reducing emissions. Finally, the result shows that the collaborative control policies considerably influenced industrial VOC emissions.

  17. VOC emissions during outdoor ship painting and health-risk assessment

    Science.gov (United States)

    Malherbe, Laure; Mandin, Corinne

    Painting of ship external surfaces in building or repair shipyards generates significant emissions of volatile organic compounds (VOC) to the atmosphere. Such emissions have not been specifically regulated so far. The purpose of our study is therefore to evaluate the quantities and as far as possible the nature of the emitted VOC, to characterize the dispersion of these chemicals in the atmosphere and to assess the exposure and resulting health risks for surrounding populations. This study is focused on VOC emitted during outdoor work involving use of paints and solvents. VOC emissions are diffuse, since they come from the whole painted surfaces. A methodology for quantifying them is developed and tested, using information provided by ALSTOM—Chantiers de l'Atlantique and data found in paint technical sheets. Its reliability is checked against emission values established by ALSTOM or found in literature. Then, for two particular situations, construction on one hand, repair on the other hand, atmospheric dispersion of total VOC is simulated to assess the long-term impact (characterized by the plume extension and the annual mean concentrations) of these compounds. Finally, a health-risk assessment based on the estimates is carried out to evaluate the risks by inhalation for people living near the site. Considering the presumed composition of paints and the available reference toxicological values, total VOC are entirely assimilated to toluene. In both examples (construction and repair) and in the current state of knowledge, the calculated risk is not of health concern. Several ways for taking this study further are proposed: a more exhaustive collection of data relative to VOC and other substances contained in paints, on-site measurement of VOC in the ambient air, characterization of diffuse emissions related to other activities, such as purging or welding, and other pollutants, like particles.

  18. Volatile Organic Compound (VOC) Testing at Building 348, Kelly AFB, Texas.

    Science.gov (United States)

    1987-11-01

    At the request of HQ AFLC/ SGB , the USAFOEHL conducted a stack sampling survey to determine total volatile organic compounds (VOC) being emitted from...Occupational and Environmental Health Laboratory (USAFOEHL/ECQ). The survey was requested by HQ AFLC/ SGB .to estimate VOC emissions through each of...stardards. 2. Range and Sensitivity 2.1 This method was validated over the range of 1417-5940 mg/M at an atmospheric temperature and pressure of 24 0C

  19. Water and heat fluxes in desert soils: 2. Numerical simulations

    Science.gov (United States)

    Scanlon, Bridget R.; Milly, P. C. D.

    1994-03-01

    Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations

  20. Influence of Hydration State on Permeation Testing and Vapor Transport Properties of Protective Clothing Layers

    Directory of Open Access Journals (Sweden)

    Phillip W. Gibson, Ph.D

    2009-12-01

    Full Text Available Protective clothing systems composed ofpermselective polymer film laminates are analternative to standard air-permeable garments basedon activated carbon. These polymer layers aredesigned with high water vapor permeation rates andlow permeation of chemical warfare agents. Polymerfilms that have a significant water vapor flux usuallyalso have an affinity for water, and will hydrate andswell significantly at high humidity levels. Thepolymer film’s increase in water content has thepotential to affect the transport rate of chemicalwarfare agents in vapor and liquid form, and usuallyalso has a large effect on the intrinsic water vaporpermeability of the membrane.

  1. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    Directory of Open Access Journals (Sweden)

    Peiqiang Cui

    2014-08-01

    Full Text Available Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC, making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS and ultraviolet-visible spectroscopy testing (UV-Vis were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  2. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    Science.gov (United States)

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  3. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  4. Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.

    Science.gov (United States)

    Chen, Yiming; Hou, Deyi; Lu, Chunhui; Spain, Jim C; Luo, Jian

    2016-09-06

    Most of the models for simulating vapor intrusion accept the local equilibrium assumption for multiphase concentration distributions, that is, concentrations in solid, liquid and vapor phases are in equilibrium. For simulating vapor transport with aerobic biodegradation controlled by counter-diffusion processes, the local equilibrium assumption combined with dual-Monod kinetics and biomass decay may yield near-instantaneous behavior at steady state. The present research investigates how predicted concentration profiles and fluxes change as interphase mass transfer resistances are increased for vapor intrusion with aerobic biodegradation. Our modeling results indicate that the attenuation coefficients for cases with and without mass transfer limitations can be significantly different by orders of magnitude. Rate-limited mass transfer may lead to larger overlaps of contaminant vapor and oxygen concentrations, which cannot be simulated by instantaneous reaction models with local equilibrium mass transfer. In addition, the contaminant flux with rate-limited mass transfer is much smaller than that with local equilibrium mass transfer, indicating that local equilibrium mass transfer assumption may significantly overestimate the biodegradation rate and capacity for mitigating vapor intrusion through the unsaturated zone. Our results indicate a strong research need for field tests to examine the validity of local equilibrium mass transfer, a widely accepted assumption in modeling vapor intrusion.

  5. Visualization Study on High Heat Flux Boiling and Critical Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this study, an integrated visible and infrared-based experimental method is introduced to simultaneously measure the details of high-resolution liquid-vapor phase and heat transfer distributions on a heated wall. The dynamics and heat transfer at high heat flux boiling and critical heat flux were observed. The experiment was conducted in pool of saturated water under atmospheric pressure. There have been many studies to examine the physical mechanisms of nucleation boiling and critical heat flux over several decades. Several visible and infrared-based optical techniques for time-resolved high resolution measurements for liquid-vapor phase and heater surface temperature during boiling have been introduced to understand the characteristics and mechanisms of them. Liquid-vapor phase, temperature, and heat flux distributions on the heated surface were measured during pool boiling of water using the integrated total reflection and infrared thermometry technique. Qualitative examination of the data for high heat flux boiling and CHF was performed. The main contributions of this work are summarized below. The existence and behavior of dry patches lead the way toward CHF condition. Therefore, the mechanistic modeling of the CHF phenomenon necessarily needs to include the physical parameters related to dynamics of the large dry patch such as life time and size. In addition to the dynamic behavior of the dry patch, the thermal behavior of the hot patch is also important. Even though the dry area was rewetted, the stored thermal energy in the hot patch can be remained if the rewetting time is short and the subsequent dry patch is regenerated quickly.

  6. Development of new VOC exposure metrics and their relationship to ''Sick Building Syndrome'' symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Ten Brinke, JoAnn [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States)

    1995-08-01

    Volatile organic compounds (VOCs) are suspected to contribute significantly to ''Sick Building Syndrome'' (SBS), a complex of subchronic symptoms that occurs during and in general decreases away from occupancy of the building in question. A new approach takes into account individual VOC potencies, as well as the highly correlated nature of the complex VOC mixtures found indoors. The new VOC metrics are statistically significant predictors of symptom outcomes from the California Healthy Buildings Study data. Multivariate logistic regression analyses were used to test the hypothesis that a summary measure of the VOC mixture, other risk factors, and covariates for each worker will lead to better prediction of symptom outcome. VOC metrics based on animal irritancy measures and principal component analysis had the most influence in the prediction of eye, dermal, and nasal symptoms. After adjustment, a water-based paints and solvents source was found to be associated with dermal and eye irritation. The more typical VOC exposure metrics used in prior analyses were not useful in symptom prediction in the adjusted model (total VOC (TVOC), or sum of individually identified VOCsVOCi)). Also not useful were three other VOC metrics that took into account potency, but did not adjust for the highly correlated nature of the data set, or the presence of VOCs that were not measured. High TVOC values (2--7 mg m-3) due to the presence of liquid-process photocopiers observed in several study spaces significantly influenced symptoms. Analyses without the high TVOC values reduced, but did not eliminate the ability of the VOC exposure metric based on irritancy and principal component analysis to explain symptom outcome.

  7. Development of new VOC exposure metrics and their relationship to ''Sick Building Syndrome'' symptoms

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-08-01

    Volatile organic compounds (VOCs) are suspected to contribute significantly to ''Sick Building Syndrome'' (SBS), a complex of subchronic symptoms that occurs during and in general decreases away from occupancy of the building in question. A new approach takes into account individual VOC potencies, as well as the highly correlated nature of the complex VOC mixtures found indoors. The new VOC metrics are statistically significant predictors of symptom outcomes from the California Healthy Buildings Study data. Multivariate logistic regression analyses were used to test the hypothesis that a summary measure of the VOC mixture, other risk factors, and covariates for each worker will lead to better prediction of symptom outcome. VOC metrics based on animal irritancy measures and principal component analysis had the most influence in the prediction of eye, dermal, and nasal symptoms. After adjustment, a water-based paints and solvents source was found to be associated with dermal and eye irritation. The more typical VOC exposure metrics used in prior analyses were not useful in symptom prediction in the adjusted model (total VOC (TVOC), or sum of individually identified VOCs ({Sigma}VOC{sub i})). Also not useful were three other VOC metrics that took into account potency, but did not adjust for the highly correlated nature of the data set, or the presence of VOCs that were not measured. High TVOC values (2--7 mg m{sup {minus}3}) due to the presence of liquid-process photocopiers observed in several study spaces significantly influenced symptoms. Analyses without the high TVOC values reduced, but did not eliminate the ability of the VOC exposure metric based on irritancy and principal component analysis to explain symptom outcome.

  8. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms.

    Science.gov (United States)

    Werner, Stephanie; Polle, Andrea; Brinkmann, Nicole

    2016-10-01

    We reviewed the impact of fungal volatile organic compounds (VOCs) on soil-inhabiting organisms and their physiological and molecular consequences for their targets. Because fungi can only move by growth to distinct directions, a main mechanism to protect themselves from enemies or to manipulate their surroundings is the secretion of exudates or VOCs. The importance of VOCs in this regard has been significantly underestimated. VOCs not only can be means of communication, but also signals that are able to specifically manipulate the recipient. VOCs can reprogram root architecture of symbiotic partner plants or increase plant growth leading to enlarged colonization surfaces. VOCs are also able to enhance plant resistance against pathogens by activating phytohormone-dependent signaling pathways. In some cases, they were phytotoxic. Because the response was specific to distinct species, fungal VOCs may contribute to regulate the competition of plant communities. Additionally, VOCs are used by the producing fungus to attack rivaling fungi or bacteria, thereby protecting the emitter or its nutrient sources. In addition, animals, like springtails, nematodes, and earthworms, which are important components of the soil food web, respond to fungal VOCs. Some VOCs are effective repellents for nematodes and, therefore, have applications as biocontrol agents. In conclusion, this review shows that fungal VOCs have a huge impact on soil fauna and flora, but the underlying mechanisms, how VOCs are perceived by the recipients, how they manipulate their targets and the resulting ecological consequences of VOCs in inter-kingdom signaling is only partly understood. These knowledge gaps are left to be filled by future studies.

  9. Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard

    Directory of Open Access Journals (Sweden)

    S. Fares

    2012-10-01

    Full Text Available Orange trees are widely cultivated in Mediterranean climatic regions where they are an important agricultural crop. Citrus have been characterized as emitters of volatile organic compounds (VOC in chamber studies under controlled environmental conditions, but an extensive characterization at field scale has never been performed using modern measurement methods, and is particularly needed considering the complex interactions between the orchards and the polluted atmosphere in which Citrus is often cultivated. For one year, in a Valencia orange orchard in Exeter, California, we measured fluxes using PTRMS (Proton Transfer Reaction Mass Spectrometer and eddy covariance for the most abundant VOC typically emitted from citrus vegetation: methanol, acetone, and isoprenoids. Concentration gradients of additional oxygenated and aromatic compounds from the ground level to above the canopy were also measured. In order to characterize concentrations of speciated biogenic VOC (BVOC in leaves, we analyzed leaf content by GC-MS (Gas Chromatography – Mass Spectrometery regularly throughout the year. We also characterized in more detail concentrations of speciated BVOC in the air above the orchard by in-situ GC-MS during a few weeks in spring flowering and summer periods. Here we report concentrations and fluxes of the main VOC species emitted by the orchard, discuss how fluxes measured in the field relate to previous studies made with plant enclosures, and describe how VOC content in leaves and emissions change during the year in response to phenological and environmental parameters. The orchard was a source of monoterpenes and oxygenated VOC. The highest emissions were observed during the springtime flowering period, with mid-day fluxes above 2 nmol m−2 s−1 for methanol and up to 1 nmol m−2 s−1 for acetone and monoterpenes. During hot summer days emissions were not as high as we expected considering the

  10. A High Performance Biofilter for VOC Emission Control.

    Science.gov (United States)

    Wu, G; Conti, B; Leroux, A; Brzezinski, R; Viel, G; Heitz, M

    1999-02-01

    Biofiltration is a cleaning technique for waste air contaminated with some organic compounds. The advantages of the conventional biofilter over other biological systems are a high-superficial area best suited for the treatment of some compounds with poor water solubility, ease of operation, and low operating costs. It has crucial disadvantages, however; for example, it is not suitable to treat waste gases with high VOC concentrations and it has poor control of reaction conditions. To improve on these problems and to build a high-performance biofilter, three structured peat media and two trickling systems have been introduced in this study. The influences of media size and composition have been investigated experimentally. Peat bead blended with 30% (w/w) certain mineral material with a good binding capacity has advantages over other packing materials, for example, suitable size to prevent blockage due to microbial growth, strong buffering capacity to neutralize acidic substances in the system, and a pH range of 7.0-7.2 suitable for the growth of bacteria. Dropwise trickling system offers an effective measure to easily control the moisture content of the bed and the reaction conditions (pH, nutrient) and to partially remove excess biomass produced during the metabolic processes of microorganisms. The influence of nutrient supplementation has also been investigated in this study, which has revealed that the biological system was in a condition of nutrient limitation instead of carbon limitation. The biofilters built in our laboratory were used to treat waste gas contaminated with toluene in a concentration range of 1 to 3.2 g/m(3) and at the specific gas flow rate of 24 to120 m(3)/m(2).hr. Under the conditions employed, a high elimination capacity (135 g/m(3).hr) was obtained in the biofilter packed with peat beads (blended with 30% of the mineral material), and no blockage problem was observed in an experimental period of 2-3 months.

  11. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  12. Multiwavelength Strontium Vapor Lasers

    Science.gov (United States)

    Soldatov, A. N.; Yudin, N. A.

    2016-08-01

    Based on an analysis of experimental and theoretical works, modern notion on conditions of forming of population density inversion on self-terminating IR transitions of alkali-earth metals is given. It is demonstrated that there is a significant difference in the inversion formation in lasers on self-terminating transitions in the visible and near-IR ranges and lasers on self-terminating transitions of alkali-earth metals lasing IR lines in the mid-IR range. It is shown that in the discharge circuit of lasers on self-terminating metal atom transitions (LSMT) there are processes strengthening the influence of the known mechanism limiting the frequency and energy characteristics (FEC) of radiation caused by the presence of prepulse electron concentration. The mechanism of influence of these processes on FEC of the LSMT and technical methods of their neutralization are considered. The possibility of obtaining average lasing power of ~200 W from one liter volume of the active medium of the strontium vapor laser is demonstrated under conditions of neutralization of these processes.

  13. Ionized Physical Vapor Deposition and Diagnostics

    Science.gov (United States)

    Ruzic, D. N.; Hayden, D. B.; Juliano, D. R.

    1997-11-01

    Magnetron sputtering is a typical method of physical vapor deposition (PVD) often used in depositing metal interconnects between layers of a semiconductor substrate. However, conventional PVD places an upper limit on the aspect ratio (depth:width) of features to be filled due to the isotropic velocity distribution of the sputtered neutrals. At higher aspect ratios the sputtered particles can coat the sides of a trench before filling it, thus pinching off the trench and leaving either an open circuit or a high resistivity connection. In our system an ICP coil is introduced between the magnetron target and substrate, creating a secondary plasma that can ionize a significant fraction of the sputtered neutral atoms. A negatively biased substrate will accelerate these ions normally, giving a directional flux that can fill the trench from the bottom up. The deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer. Plasma conditions are measured with a time-resolved Langmuir probe system. Both diagnostics are employed for various pressures, magnetron and RF powers, and background gas types. The ability of the system to fill higher aspect ratio features is also discussed.

  14. 2-Phase groundwater and soil vapor extraction site test at McClellan AFB

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, C.; Kingsley, G.B.; Lawrence J. [Radian Corp., Sacramento, CA (United States)] [and others

    1995-09-01

    The innovative 2-phase extraction technique is a method recently patented by Xerox Corporation for simultaneously extracting contaminated groundwater and soil vapor from the subsurface. The 2-phase technique is primarily applicable to those sites with semipermeable soils containing volatile organic compound (VOC) contamination in both soils and groundwater. This technique has several distinct advantages over either conventional soil vapor extraction or groundwater extraction, because it can: cut the dollar per-contaminant-pound cleanup costs by an order of magnitude; simplify the extraction and treatment of both contaminated water and vapor; and shorten remediation times. The U.S. EPA and the Air Force elected to conduct an EPA Site test of the 2-phase Extraction technology at McClellan results indicate: The groundwater flow rate is twice that of the pump-and-treat system. The mass of contaminants from a single well removed increased from 130 lbs/year to more than 5,000 lbs/year, over 30 times more than the pump-and treat rate, with potential for even higher removal rates: 5,000 to 8,000 pounds of contaminants per year. Up to 95% of the contamination was extracted in the vapor phase, where it could be treated more easily and efficiently.

  15. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  16. Vapor Intrusion Facilities - South Bay

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  17. Understanding Latent Heat of Vaporization.

    Science.gov (United States)

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  18. Modeling vapor dominated geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Marconcini, R.; McEdwards, D.; Neri, G.; Ruffilli, C.; Schroeder, R.; Weres, O.; Witherspoon, P.

    1977-09-12

    The unresolved questions with regard to vapor-dominated reservoir production and longevity are reviewed. The simulation of reservoir behavior and the LBL computer program are discussed. The geology of Serrazzano geothermal field and its reservoir simulation are described. (MHR)

  19. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong; SU Gao-li; YU Qiang; HU Bing-min; LI Jun

    2005-01-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.

  20. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Barksdale Boyle

    2016-03-01

    Full Text Available Epidemiologic studies can measure exposure to volatile organic compounds (VOCs using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS. We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking and by observations by a trained data collector (presence of scented products in homes. We found several significant (p < 0.01 relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite

  1. Optimizing the emission inventory of volatile organic compounds (VOCs) based on network observations

    Science.gov (United States)

    Chen, Sheng-Po; Liu, Wen-Tzu; Ou-Yang, Chang-Feng; Chang, Julius S.; Wang, Jia-Lin

    2014-02-01

    Hourly observations of 56 non-methane hydrocarbons (NMHCs) performed by a network of photochemical assessment monitoring stations (PAMS) at 11 locations across Taiwan were used to evaluate 56 speciated emissions and the resulting simulations of an air quality model. Based on the PAMS observations at two urban sites, emission modification was made for the 56 PAMS species in the model. To further test the applicability of this emission correction approach, the same modified emissions were subject to seven different meteorological conditions and comparison with observations of all the 11 PAMS sites. Originally there was a minimum of only 8 of 56 species showed agreement with observations for the worst of the 11 PAMS sites and 28 of 56 species for the best site. With modified emissions, the number increased to 13-52 species across the 11 PAMS sites, demonstrating that the simple urban based correction procedure has broad applicability. When applying this modification of PAMS emissions to the simulations of other air quality gases, SO2 and NOx showed small changes compared with observations (-0.27% and -2.51%, respectively), while total VOC concentrations showed significant changes (+15.28%) as a result of the adjustment in VOC emissions (+26.7%). Although VOCs are the precursor of ozone, the relatively large changes in VOC did not seem to affect ozone formation to the similar extent, only resulting in the changes of average O3 by 2.9 ppb (+9.41%). It shows that although the emission modification improves individual VOC simulations, the performance in oxidant simulation is still largely unaltered. Although the original U.S. VOC emission profiles can capture the general features of ambient VOCs, further optimization of emissions may still be needed by referencing extensive observations, so that emissions can better fit domestic conditions and accuracy in model simulations can be improved.

  2. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M.; Wright, David J.; Merrill, Lori S.; Alwis, K. Udeni; Blount, Benjamin C.; Mortensen, Mary E.; Moye, John; Dellarco, Michael

    2016-01-01

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  3. A comparative study of fungal and bacterial biofiltration treating a VOC mixture

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, José M. [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico); Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Hernández, Sergio [Departmento de Procesos e Hidráulica – Universidad Autónoma Metropolitana – Iztapalapa Mexico D.F. Mexico (Mexico); Muñoz, Raúl [Departamento de Ingeniería Química y Tecnología del Medio Ambiente – Universidad de Valladolid, Valladolid (Spain); Revah, Sergio, E-mail: srevah@xanum.uam.mx [Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Artificios 40, Col. Miguel Hidalgo, Delegación Álvaro Obregón (Mexico)

    2013-04-15

    Highlights: ► Bacterial biofilter showed better EC and ΔP than fungal biofilter. ► The preferential biodegradation order was: propanal > hexanol > MIBK > toluene. ► Propanal partially inhibited the biodegradation of the rest of VOCs. ► The two-stage biofilter showed a higher stability than the individual units. -- Abstract: Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 g C m{sup −3} reactor h{sup −1}), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈63% vs ≈43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal > hexanol > MIBK > toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24 h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances.

  4. Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers

    Science.gov (United States)

    Naphon, Paisarn; Wiriyasart, Songkran

    2016-09-01

    The results of the heat and flow characteristics of working fluid inside the vapor chamber with different sintering columns of 20, 81, 225 are presented. The vapor chambers with one inlet port and four outlet ports are tested by using water as coolant. Parametric studies including different heat fluxes, number and size of wick columns, and flow rate of coolants on the cooling performance are considered. A three-dimensional heat and mass transfer model for vapor chamber with wick and without sintering plate and sintering columns are developed. The numerical simulation results show the velocity and pressure distribution of liquid and vapor phases of the working fluid inside the vapor chamber. It is found that the number of wick column have an important influence to the velocity and pressure phenomena of working fluid which results in thermal performance of vapor chamber. Reasonable agreement is obtained from the comparison between the measured data and the predicted results.

  5. Interannual and Interdecadal Variability of Atmospheric Water Vapor Transport in the Haihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WEI Jie; LIN Zhao-Hui; XIA Jun; TAO Shi-Yan

    2005-01-01

    The seasonal mean atmospheric precipitable water and water vapor transport over the Haihe River Basin (HRB) in North China with a focus on their interannual to interdecadal variability, and then the relationships of the interannual and interdecadal variability of the water cycle over the HRB to the Pacific Decadal Oscillation (PDO) and El Nino-Southern Oscillation (ENSO) phenomena were investigated using the observational and National Centers for Environmental Prediction (NCEP) reanalysis data. There was a strong interdecadal variability for the water cycle (such as precipitation and water vapor transport) over the region, with an abrupt change occurring mostly in the mid 1970s. The intensity of the East Asian summer monsoon largely affected the atmospheric water vapor transport. Generally, the net meridional convergence of the water vapor flux over the region was relatively large before 1965, and it declined gradually from then on with a further notable decrease since mid 1970s. Zonal water vapor transport was similar to meridional, but with a much smaller magnitude and no noteworthy turning in the mid 1970s. Results also suggested that the wind field played an important role in the water vapor transport over the HRB before the mid 1960s, and the interdecadal variability of the water cycle (precipitation, water vapor transport, etc.) in the summer was related to the PDO; however, interannual variation of the water vapor transport could also be related to the ENSO phenomena.

  6. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    Science.gov (United States)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes

  7. Dispensing fuel with aspiration of condensed vapors

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, M.S.; Strock, D.J.

    1993-08-10

    A vapor recovery process is described, comprising the steps of: fueling a motor vehicle with gasoline by discharging gasoline into a fill opening or filler pipe of a tank of said vehicle through a fuel outlet conduit of a nozzle; emitting gasoline vapors from said tank during said fueling; substantially collecting said vapors during said fueling with a vapor return conduit of said nozzle and passing said vapors through said vapor return conduit in counter current flow relationship to said discharging gasoline in said fuel conduit; conveying said vapors from said vapor return conduit to a vapor return hose; at least some of said vapors condensing to form condensate in said vapor return hose; substantially removing said condensate from said vapor return hose during said fueling with a condensate pickup tube from said nozzle by passing said condensate through said condensate pickup tube in counter current flow relationship to said conveying vapors in said vapor return hose; sensing the presence of gasoline with a liquid sensing tube in said vapor return conduit of said nozzle between inner and outer spouts of said nozzle to detect when said tank of said vehicle is filled with said fuel conduit being within the inner spout of said nozzle; and automatically shutting off said fueling and condensate removing when said liquid sensing tube detects when said tank of said vehicle is filled and fuel enters said vapor return conduit.

  8. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  9. Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument

    Science.gov (United States)

    Coburn, S.; Ortega, I.; Thalman, R.; Blomquist, B.; Fairall, C. W.; Volkamer, R.

    2014-10-01

    Here we present first eddy covariance (EC) measurements of fluxes of glyoxal, the smallest α-dicarbonyl product of hydrocarbon oxidation, and a precursor for secondary organic aerosol (SOA). The unique physical and chemical properties of glyoxal - i.e., high solubility in water (effective Henry's law constant, KH = 4.2 × 105 M atm-1) and short atmospheric lifetime (~2 h at solar noon) - make it a unique indicator species for organic carbon oxidation in the marine atmosphere. Previous reports of elevated glyoxal over oceans remain unexplained by atmospheric models. Here we describe a Fast Light-Emitting Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (Fast LED-CE-DOAS) instrument to measure diurnal variations and EC fluxes of glyoxal and inform about its unknown sources. The fast in situ sensor is described, and first results are presented from a cruise deployment over the eastern tropical Pacific Ocean (20° N to 10° S; 133 to 85° W) as part of the Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOCs (TORERO) field experiment (January to March 2012). The Fast LED-CE-DOAS is a multispectral sensor that selectively and simultaneously measures glyoxal (CHOCHO), nitrogen dioxide (NO2), oxygen dimers (O4), and water vapor (H2O) with ~2 Hz time resolution (Nyquist frequency ~1 Hz) and a precision of ~40 pptv Hz-0.5 for glyoxal. The instrument is demonstrated to be a "white-noise" sensor suitable for EC flux measurements. Fluxes of glyoxal are calculated, along with fluxes of NO2, H2O, and O4, which are used to aid the interpretation of the glyoxal fluxes. Further, highly sensitive and inherently calibrated glyoxal measurements are obtained from temporal averaging of data (e.g., detection limit smaller than 2.5 pptv in an hour). The campaign average mixing ratio in the Southern Hemisphere (SH) is found to be 43 ± 9 pptv glyoxal, which is higher than the Northern Hemisphere (NH) average of 32 ± 6 pptv (error reflects

  10. Patterns of Flux Emergence

    Science.gov (United States)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  11. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    Science.gov (United States)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  12. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    Science.gov (United States)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  13. An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia

    Science.gov (United States)

    Maisey, S. J.; Saunders, S. M.; West, N.; Franklin, P. J.

    2013-12-01

    This study of indoor air quality reports VOC concentrations in 386 suburban homes located in Perth Western Australia, a city of low ambient pollution and temperate climate. Details of indoor VOC concentrations, temperature, relative humidity, and information on house characteristics and occupant activities were collected during the sampling periods. The concentration of VOCs observed in typical homes was low and individual compounds rarely exceeded 5 μg m-3. Median individual VOC concentrations ranged from 0.06 μg m-3 for 1,1,1 trichloroethane and butyl ether to 26.6 μg m-3 for cis/trans 2-butene. Recently renovated homes had higher concentrations of VOCs than non renovated homes, including ∑VOCs (p = 0.026), ∑BTEX (p = 0.03), ∑xylene (p = 0.013), toluene (p = 0.05), cyclohexane (p = 0.039), and propyl benzene (p = 0.039). Statistical analyses showed house age and attached garages were not significant factors for any of the VOCs tested. The concentrations of indoor VOCs in Perth were lower than overseas observations and those reported in recent Australian studies, with inferences made to differences in the climate and the occupant behaviour. The results are a baseline profile of indoor VOCs over the period 2006-2011, in an Australian city of low population density and of generally low ambient pollution.

  14. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis

    Science.gov (United States)

    Yuan, Bin; Shao, Min; de Gouw, Joost; Parrish, David D.; Lu, Sihua; Wang, Ming; Zeng, Limin; Zhang, Qian; Song, Yu; Zhang, Jianbo; Hu, Min

    2012-12-01

    Volatile organic compounds (VOCs) were measured online at an urban site in Beijing in August-September 2010. Diurnal variations of various VOC species indicate that VOCs concentrations were influenced by photochemical removal with OH radicals for reactive species and secondary formation for oxygenated VOCs (OVOCs). A photochemical age-based parameterization method was applied to characterize VOCs chemistry. A large part of the variability in concentrations of both hydrocarbons and OVOCs was explained by this method. The determined emission ratios of hydrocarbons to acetylene agreed within a factor of two between 2005 and 2010 measurements. However, large differences were found for emission ratios of some alkanes and C8 aromatics between Beijing and northeastern United States secondary formation from anthropogenic VOCs generally contributed higher percentages to concentrations of reactive aldehydes than those of inert ketones and alcohols. Anthropogenic primary emissions accounted for the majority of ketones and alcohols concentrations. Positive matrix factorization (PMF) was also used to identify emission sources from this VOCs data set. The four resolved factors were three anthropogenic factors and a biogenic factor. However, the anthropogenic factors are attributed here to a common source at different stages of photochemical processing rather than three independent sources. Anthropogenic and biogenic sources of VOCs concentrations were not separated completely in PMF. This study indicates that photochemistry of VOCs in the atmosphere complicates the information about separated sources that can be extracted from PMF and the influence of photochemical processing must be carefully considered in the interpretation of source apportionment studies based upon PMF.

  15. Development of a portable instrument for the continuous analysis of volatile organic compounds (VOCs) and its application to environmental monitoring.

    Science.gov (United States)

    Yamada, Etsu; Matsushita, Kazumasa; Nakamura, Mitsuaki; Fuse, Yasuro; Miki, Sadao; Fujimoto, Kiyoomi; Morita, Hiroyoshi; Shimada, Osamu

    2006-01-01

    A small, time efficient and sensitive instrument for the continuous analysis of very volatile organic compounds (VOCs) with a boiling point lower than 100 degrees C in addition to the analysis of VOCs with a boiling point in the range of 100-150 degrees C was developed and applied to the measurement of VOCs in the course of university research and environmental monitoring. VOCs, such as n-hexane, acetone, ethyl acetate, alcohols, benzene, toluene and xylene, were continuously measured once every 30 min. The detection limits of hexane, ethyl acetate, benzene and toluene at a preconcentration time of 10 min were 0.41 microg/m(3) (0.12 ppb), 0.67 microg/m(3) (0.19 ppb), 0.22 microg/m(3) (0.07 ppb) and 0.22 microg/m(3) (0.06 ppb), respectively. The relative standard deviations of VOCs were less than 5%. The sensitivities of the present method VOCs were higher than those of the conventional method. The temporal changes in VOC concentrations in several laboratories and at a plant for the disposal of organic liquid wastes were measured, and the behavior of VOCs was analyzed. All the VOC concentrations, except that of ethyl acetate, determined using the portable instrument were slightly lower than those determined using a passive sampler. The portable instrument developed in the course of this study can be used for the risk assessment and management of chemicals.

  16. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2014-12-01

    Full Text Available In this paper, we propose a volatile organic compound (VOC gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained.

  17. A High Sensitivity and Wide Dynamic Range Fiber-Optic Sensor for Low-Concentration VOC Gas Detection

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2014-01-01

    In this paper, we propose a volatile organic compound (VOC) gas sensing system with high sensitivity and a wide dynamic range that is based on the principle of the heterodyne frequency modulation method. According to this method, the time period of the sensing signal shift when Nile Red containing a VOC-sensitive membrane of a fiber-optic sensing element comes into contact with a VOC. This sensing membrane produces strong, fast and reversible signals when exposed to VOC gases. The response and recovery times of the proposed sensing system were less than 35 s, and good reproducibility and accuracy were obtained. PMID:25490592

  18. Low VOC drying of lumber and wood panel products. Progress report number 6

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H.; Wild, M.P.; Hooda, U.; Banerjee, S. [Institute of Paper Science and Technology, Inc., Atlanta, GA (United States); Shmulsky, R.; Thompson, A.; Ingram, L.; Conners, T. [Mississippi State Univ., MS (United States)

    1998-01-01

    Twenty five Southern pine boards were machined into 2 x 4 inch pieces. Next, the 8 foot boards were cut in half into matched pairs. One of the two was irradiated with RF, while the other served as a control. Both sets were dried under a conventional temperature-time based schedule. Results and conclusions are: RF pretreatment of lumber does not affect strength; the amount of pinene lost into the headspace during low-VOC RF-treatment of wood approximately corresponds to the amount of material lost from the wood; virtually all the pinene can be removed from the low-VOC reactor with steam, suggesting that pinene can be collected when the small amount of steam released during low-headspace treatment is condensed; temperature and moisture loss profiles for particle at 105 C has been modeled using experimental data at 130 C and 160 C; the VOC-temperature curve from dried particle shows a break at about 156 C, the boiling point of {alpha}-pinene, demonstrating that pinene boil-off occurs beyond this threshold; VOC release from dry particle has been successfully modeled; the transport of VOC from sapwood to the atmosphere for pine is faster than the corresponding movement from heartwood to sapwood; and seasonal variations in pine extractives are small.

  19. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    Science.gov (United States)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  20. VOC emission rates and emission factors for a sheetfed offset printing shop.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Javor, M; Keil, C B; Milz, S A

    1995-04-01

    Emission rates were determined during production for a sheetfed offset printing shop by combining the measured concentrations and ventilation rates with mass balance models that characterized the printing space. Air samples were collected simultaneously on charcoal tubes for 12 separate 1-hour periods at 6 locations. Air samples and cleaning solvents were analyzed by gas chromatography for total volatile organic compounds (VOC) and 13 hydrocarbons. The average VOC emission rate was 470 g/hr with a range of 160-1100 g/hr. These values were in good agreement with the amounts of VOC, hexane, toluene, and aromatic C9s determined from estimated solvent usage and measured solvent compositions. Comparison of the emission rates with source activities indicated an emission factor of 30-51 g VOC/press cleaning. Based on the test observations it was estimated that this typical small printing facility was likely to release 1-2 T VOC/year. The methodology also may be useful for the surface coating industry, as emission rates in this study were determined without recourse to a temporary total enclosure and without interfering with worker activities, increasing worker exposure, or increasing safety and explosion hazards.

  1. Release of VOCs and particles during use of nanofilm spray products.

    Science.gov (United States)

    Nørgaard, Asger W; Jensen, Keld A; Janfelt, Christian; Lauritsen, Frants R; Clausen, Per A; Wolkoff, Peder

    2009-10-15

    Here, we present emission data on VOCs and particles emitted during simulated use of four commercial nanofilm spray products (NFPs) used for making easy-to-clean or self-cleaning surfaces on floors, ceramic tiles, and windows. The aim was to characterize the emitted VOCs and to provide specific source strength data for VOCs and particles released to the airduring use of the products. Containers with NFP were mounted on a spray-stand inside a closed stainless steel chamber with no air exchange. NFPs were sprayed in amounts corresponding to 1 m2 surface toward a target plate at a distance of 35 cm. Released VOCs were measured by a combination of air sampling on Tenax TA adsorbent followed by thermal desorption GC/MS and GC/FID analysis and real time measurements using a miniature membrane inlet mass spectrometer. Particles were measured using a fast mobility particle sizer and an aerosol particle sizer. A number of VOCs were identified, including small alcohols, ketones and ethers, chlorinated acetones, a perfluorinated silane, limonene, and cyclic siloxanes. The number of generated particles was on the order of 3 x 10(8) to 2 x 10(10) particles/m3 per g sprayed NFP and were dominated by nanosize particles.

  2. Recent advances in vapor intrusion site investigations.

    Science.gov (United States)

    McHugh, Thomas; Loll, Per; Eklund, Bart

    2017-02-22

    Our understanding of vapor intrusion has evolved rapidly since the discovery of the first high profile vapor intrusion sites in the late 1990s and early 2000s. Research efforts and field investigations have improved our understanding of vapor intrusion processes including the role of preferential pathways and natural barriers to vapor intrusion. This review paper addresses recent developments in the regulatory framework and conceptual model for vapor intrusion. In addition, a number of innovative investigation methods are discussed.

  3. Energy balance closure at ChinaFLUX sites

    Institute of Scientific and Technical Information of China (English)

    LI Zhengquan; YU Guirui; WEN Xuefa; ZHANG Leiming; REN Chuanyou; FU Yuling

    2005-01-01

    Network of eddy covariance observation is measuring long-term carbon and water fluxes in contrasting ecosystems and climates. As one important reference of independently evaluating scalar flux estimates from eddy covariance, energy balance closure is used widely in study of carbon and water fluxes. Energy balance closure in ChinaFLUX was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat) against available energy (net radiation, soil heat flux, canopy heat storage) and the energy balance ratio (EBR) and the frequency distribution of relative errors of energy balance (δ). The trends of diurnal and seasonal variation of energy balance in ChinaFLUX were analyzed. The results indicated that the imbalance was prevalent in all observation sites, but there were little differences among sites because of the properties variation of sites. The imbalance was greater during nocturnal periods than daytime and closure was improved with friction velocity intensifying. Generally the results suggested that estimates of the scalar turbulent fluxes of sensible and latent heat were underestimated and/or that available energy was overestimated. Finally, we discussed certain factors that are contributed to the imbalance of energy, such as systematic errors associated with the sampling mismatch, systematic instrument bias, neglected energy sinks, low and high frequency loss of turbulent fluxes and advection of heat and water vapor.

  4. Comparison of surface fluxes and boundary-layer measurements at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Uttal, Taneil; Persson, Ola; Stone, Robert; Crepinsek, Sara; Albee, Robert; Makshtas, Alexander; Kustov, Vasily; Repina, Irina; Artamonov, Arseniy

    2014-05-01

    Observational evidence suggests that atmospheric energy fluxes are a major contributor to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the surrounding land areas and permafrost layers. To better understand the atmosphere-surface exchange mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate measurements are required of all components of the net surface energy budget and the carbon dioxide cycle over representative areas and over multiple years. This study analyzes and discusses variability of surface fluxes and basic meteorological parameters based on measurements made at several long-term research observatories near the coast of the Arctic Ocean located in USA (Barrow), Canada (Eureka), and Russia (Tiksi). Tower-based eddy covariance and solar radiation measurements provide a long-term near continuous temporal record of hourly average mass and energy fluxes respectively. The turbulent fluxes of the momentum, sensible heat, water vapor, and carbon dioxide are supported by additional atmospheric and surface/snow/permafrost measurements (mean wind speed, air temperature and humidity, upwelling and downwelling short-wave and long-wave atmospheric and surface radiation, snow depth, surface albedo, soil heat flux, active layer temperature profiles etc.) In this study we compare annual cycles of surface fluxes including solar radiation and other ancillary data to describe four seasons in the Arctic including spring onset of melt and fall onset of snow accumulation. Particular interest is a transition through freezing point, i.e. during transition from winter to spring and from summer to fall, when the carbon dioxide and/or water vapor turbulent fluxes change their direction. According to our data, in a summer period observed temporal variability of the carbon dioxide flux was generally in anti-phase with water vapor flux (downward CO2 flux and upward H2O flux). On average the turbulent flux of carbon

  5. [Evaluation and selection of VOCs treatment technologies in packaging and printing industry].

    Science.gov (United States)

    Wang, Hai-Lin; Wang, Jun-Hui; Zhu, Chun-Lei; Nie, Lei; Hao, Zheng-Ping

    2014-07-01

    Volatile organic compounds (VOCs) play an important role in urban air pollution. Activities of industries including the packaging and printing industries are regarded as the major sources. How to select the suitable treating techniques is the major problem for emission control. In this article, based on the VOCs emission characteristics of the packaging and printing industry and the existing treatment technologies, using the analytic hierarchy process (AHP) model, an evaluation system for VOCs selection was established and all the technologies used for treatment were assessed. It showed that the priority selection was in the following order: Carbon Fiber Adsorption-Desorption > Granular Carbon Adsorption-Desorption > Thermal Combustion > Regenerative Combustion > Catalytic combustion > Rotary adsorption-concentration and combustion > Granular Carbon adsorption-concentration and combustion. Carbon Fiber Adsorption-Desorption was selected as the best available technology due to its highest weight among those technologies.

  6. Energy recovery efficiency and cost analysis of VOC thermal oxidation pollution control technology.

    Science.gov (United States)

    Warahena, Aruna S K; Chuah, Yew Khoy

    2009-08-01

    Thermal oxidation of VOC is extremely energy intensive, and necessitates high efficiency heat recovery from the exhaust heat. In this paper, two independent parameters heat recovery factor (HRF) and equipment cost factor (ECF) are introduced. HRF and ECF can be used to evaluate separately the merits of energy efficiency and cost effectiveness of VOC oxidation systems. Another parameter equipment cost against heat recovery (ECHR) which is a function of HRF and ECF is introduced to evaluate the merit of different systems for the thermal oxidation of VOC. Respective cost models were derived for recuperative thermal oxidizer (TO) and regenerative thermal oxidizer (RTO). Application examples are presented to show the use and the importance of these parameters. An application examples show that TO has a lower ECF while RTO has a higher HRF. However when analyzed using ECHR, RTO would be of advantage economically in longer periods of use. The analytical models presented can be applied in similar environmental protection systems.

  7. VOC removal by plasma-photocatalyst combination : comparison between a low and an atmospheric pressure plasma.

    Science.gov (United States)

    Rousseau, Antoine; Guaitella, Olivier; Gatilova, Lina; Thevenet, Frederic; Guillard, Chantal; Hannemann, Mario; Roepcke, Jurgen

    2004-09-01

    The combination of a non thermal plasma with a photo-catalyst is promising for VOC and odour abatement at room temperature and at a very low energy cost. In classical photocatalysis, UV photons generate an electron hole pair on the surface of the photo-catalyst (TiO2), which generates primary radicals responsible of VOC oxidation. In plasma-photocatalysis combination, activation mechanisms of the photocatalytic surface are not clearly identified to the day. Our strategy is to compare a pulsed DBD at atmospheric pressure containing TiO2 pellets, with a pulsed low pressure DC discharge in contact with a porous TiO2 surface. These two discharge are characterized electrically and the efficiency of VOC removal is performed using infrared laser absorption spectroscopy and gas chromatography.

  8. Control of VOC emissions from a flexographic printing facility using an industrial biotrickling filter.

    Science.gov (United States)

    Sempere, F; Martínez-Soria, V; Penya-Roja, J M; Waalkens, A; Gabaldón, C

    2012-01-01

    The study of an industrial unit of biotrickling filter for the treatment of the exhaust gases of a flexographic facility was investigated over a 2-year period with the objective to meet the volatile organic compound (VOC) regulatory emission limits. Increasing the water flow rate from 2 to 40 m(3) h(-1) improved the performance of the process, meeting the VOC regulation when 40 m(3) h(-1) were used. An empty bed residence time (EBRT) of 36 s was used when the inlet air temperature was 18.7 °C, and an EBRT as low as 26 s was set when the inlet temperature was 26.8 °C. During this long-term operation, the pressure drop over the column of the bioreactor was completely controlled avoiding clogging problems and the system could perfectly handle the non-working periods without VOC emission, demonstrating its robustness and feasibility to treat the emission of the flexographic sector.

  9. A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal

    Directory of Open Access Journals (Sweden)

    Ting Ke Tseng

    2010-05-01

    Full Text Available The sol-gel process is a wet-chemical technique (chemical solution deposition, which has been widely used in the fields of materials science, ceramic engineering, and especially in the preparation of photocatalysts. Volatile organic compounds (VOCs are prevalent components of indoor air pollution. Among the approaches to remove VOCs from indoor air, photocatalytic oxidation (PCO is regarded as a promising method. This paper is a review of the status of research on the sol-gel method for photocatalyst preparation and for the PCO purification of VOCs. The review and discussion will focus on the preparation and coating of various photocatalysts, operational parameters, and will provide an overview of general PCO models described in the literature.

  10. Electronic nose system combined with membrane interface probe for detection of VOCs in water

    Science.gov (United States)

    Cho, Junghwan; Howard, Zachary; Kurup, Pradeep

    2011-09-01

    This paper describes a novel electronic nose system combined with a membrane interface probe (MIP) for detecting volatile organic compounds (VOCs) in water. The MIP is an in situ tool that allows the detection of certain VOCs in the soil via a pushed or driven probe. The MIP was combined with a sensor array consisting of four different tin-oxide gas sensors known as an electronic nose (e-nose). The designed e-nose system was calibrated in aqueous media spiked with benzene, toluene, ethylbenzene, and p-xylene (BTEX) at concentrations of 100, 250, and 500 ppm. Since the experiment was conducted utilizing five repetitions for each analyte, a data set of 60 measurements was prepared for principal components analysis (PCA). The results of the PCA showed that two principal components contain more than 99% variance information and each VOC is separable and detectable by the e-nose.

  11. Stage 2 vapor recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Koch, W.H.; Strock, D.J.; Butkovich, M.S.; Hartman, H.B.

    1993-05-25

    A vapor recovery system is described, comprising: a set of elongated underground storage tanks, each storage tank containing a different grade of gasoline; vent pipes; a series of dispensing units; fuel flow lines; vapor return lines; an array of fuel pumps for pumping gasoline from said storage tanks to said dispenser units; an elongated condensate liquid pickup tube; an elongated inner spout providing a fuel conduit and having an outer tip defining a fuel outlet for discharging gasoline into a filler pipe of a motor vehicle tank during fueling; an outer spout assembly; extending into and engaging said spout-receiving socket, said outer spout assembly comprising an outer spout providing a vapor return conduit and defining apertures providing a vapor inlet spaced from said fuel outlet for withdrawing, removing, and returning a substantial amount of gasoline vapors emitted during said fueling; an elongated liquid sensing tube; a manually operable level; a flow control valve assembly; an automatic shutoff valve assembly; and a venturi sleeve assembly positioned in said venturi sleeve receiving chamber.

  12. Comparison of the Decomposition VOC Profile during Winter and Summer in a Moist, Mid-Latitude (Cfb) Climate

    Science.gov (United States)

    Forbes, Shari L.; Perrault, Katelynn A.; Stefanuto, Pierre-Hugues; Nizio, Katie D.; Focant, Jean-François

    2014-01-01

    The investigation of volatile organic compounds (VOCs) associated with decomposition is an emerging field in forensic taphonomy due to their importance in locating human remains using biological detectors such as insects and canines. A consistent decomposition VOC profile has not yet been elucidated due to the intrinsic impact of the environment on the decomposition process in different climatic zones. The study of decomposition VOCs has typically occurred during the warmer months to enable chemical profiling of all decomposition stages. The present study investigated the decomposition VOC profile in air during both warmer and cooler months in a moist, mid-latitude (Cfb) climate as decomposition occurs year-round in this environment. Pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their VOC profile was monitored during the winter and summer months. Corresponding control sites were also monitored to determine the natural VOC profile of the surrounding soil and vegetation. VOC samples were collected onto sorbent tubes and analyzed using comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS). The summer months were characterized by higher temperatures and solar radiation, greater rainfall accumulation, and comparable humidity when compared to the winter months. The rate of decomposition was faster and the number and abundance of VOCs was proportionally higher in summer. However, a similar trend was observed in winter and summer demonstrating a rapid increase in VOC abundance during active decay with a second increase in abundance occurring later in the decomposition process. Sulfur-containing compounds, alcohols and ketones represented the most abundant classes of compounds in both seasons, although almost all 10 compound classes identified contributed to discriminating the stages of decomposition throughout both seasons. The advantages of GC×GC-TOFMS were demonstrated for

  13. Effects of VOCs on herbaceous plants in an open-top chamber experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cape, J.N.; Leith, I.D.; Binnie, J.; Content, J.; Donkin, M.; Skewes, M.; Price, D.N.; Brown, A.R.; Sharpe, A.D

    2003-07-01

    Birdsfoot trefoil and broad-leaved dock were affected by VOCs. - A selection of herbaceous plants representing the ground flora around a typical chemical installation in the UK was exposed continuously for 7 weeks to a mixture of six VOCs (acetone, acetonitrile, dichloromethane, ethanol, methyl t-butyl ether and toluene) in open-top chambers. Exposure concentrations were based on predictions of atmospheric dispersion from a single source, at a distance of approximately 2 km. The effects of continuous exposure, representing a worst-case, were measured in terms of uncontrolled water loss from leaves, leaf wettability, chlorophyll content and fluorescence, dry matter production and detailed observations of changes in plant growth and phenology. There were significant effects of VOC exposure on seed production, leaf water content and photosynthetic efficiency in some plant species. Such effects may be detectable in vegetation close to major industrial point sources of VOCs, or as a result of an accidental release of material during manufacture or transport. Some of the species tested e.g. birdsfoot trefoil (Lotus corniculatus L.) seem to be promising as potential bioindicators for VOCs, but there may be other even more sensitive species waiting to be discovered. However, the most obvious and conveniently measured response to VOC exposure in the birdsfoot trefoil (premature senescence i.e. advanced timing of seed pod production) could easily be confused in the field with climatic influences. It is also uncertain at this stage whether any of the effects observed would lead to longer term ecological changes in natural plant communities, through biased competition between sensitive and more tolerant species.

  14. Productions of Volatile Organic Compounds (VOCs) in Surface Waters from Reactions with Atmospheric Ozone

    Science.gov (United States)

    Hopkins, Frances; Bell, Thomas; Yang, Mingxi

    2017-04-01

    Ozone (O3) is a key atmospheric oxidant, greenhouse gas and air pollutant. In marine environments, some atmospheric ozone is lost by reactions with aqueous compounds (e.g. dissolved organic material, DOM, dimethyl sulfide, DMS, and iodide) near the sea surface. These reactions also lead to formations of volatile organic compounds (VOCs). Removal of O3 by the ocean remains a large uncertainty in global and regional chemical transport models, hampering coastal air quality forecasts. To better understand the role of the ocean in controlling O3 concentrations in the coastal marine atmosphere, we designed and implemented a series of laboratory experiments whereby ambient surface seawater was bubbled with O3-enriched, VOC-free air in a custom-made glass bubble equilibration system. Gas phase concentrations of a range of VOCs were monitored continuously over the mass range m/z 33 - 137 at the outflow of the bubble equilibrator by a proton transfer reaction - mass spectrometer (PTR-MS). Gas phase O3 was also measured at the input and output of the equilibrator to monitor the uptake due to reactions with dissolved compounds in seawater. We observed consistent productions of a variety of VOCs upon reaction with O3, notably isoprene, aldehydes, and ketones. Aqueous DMS is rapidly removed from the reactions with O3. To test the importance of dissolved organic matter precursors, we added increasing (milliliter) volumes of Emiliania huxleyi culture to the equilibrator filled with aged seawater, and observed significant linear increases in gas phase concentrations of a number of VOCs. Reactions between DOM and O3 at the sea-air interface represent a potentially significant source of VOCs in marine air and a sink of atmospheric O3.

  15. Influence of way of finishing furniture segments on amount emissions VOCs

    Directory of Open Access Journals (Sweden)

    Petr Čech

    2010-01-01

    Full Text Available The study deals with the influence of way of finishing furniture segments on amount emissions VOCs (volatile organic compounds. The so-called Volatile Organic Compounds (VOC are among the largest pollution sources of both the internal and external environments.VOC is defined as emission of any organic compound or a mixture thereof, with the exception of methane, whereby the compound exerts the pressure of 0.01 kPa or more at the temperature of 20 °C (293.15 K and reaches the corresponding volatility under the specific conditions of its use and can undergo photochemical reactions with nitrogen oxides when exposed to solar radiation. The effects of VOC upon environment can be described by equation: VOC + NOx + UV radiation + heat = tropospheric ozone (O3In this work there were tested MDF (medium density fibreboard coated by resin impregnated paper was used for the furniture components’ production. Next were tested compressed wood, which was used as a second material of furniture components. These both chosen materials was covered by resin impregnated paper and than sequentially finished by regular coat of finish.An attention of this study is especially put on mentioned factors and on quantity of instant and long-term VOCs emissions emitted from furniture components.The amount of emissions from furniture components, in different phases of the preparation including the resin impregnated paper coating finish, was monitored within the time intervals of 24 hours and 720 hours starting after the time of the finish preparation.The MDF (medium density fibreboard coated by resin impregnated paper was used for the furniture components´ production.A compressed wood was used as a second material of furniture components. This alternative material was covered by resin impregnated paper and than sequentially finished by regular coat of finish.

  16. Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

    1995-05-01

    Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

  17. Catalyst screening for the VOC decomposition using adsorption and oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.H.; Ogata, A. [National Inst. of Advanced Industrial Science and Technology, Tokyo (Japan)

    2010-07-01

    Emissions of volatile organic compounds (VOCs) are directly related to the formation of photochemical smog and the secondary aerosol formation, particularly in urban areas. As such, VOC pollution control is a high priority in air quality management. Non-thermal plasmas (NTPs) have been considered for the abatement of VOCs, but 3 key factors must be addressed, notably improve the energy efficiency, have less NOx formation and acceptable material balance. A recent trend in the use of NTP for air pollution control is the combination of NTP with a catalyst. This combined process is subdivided into single-stage and two-stage depending on the position of the catalyst. Ozone-assisted catalysis is the two-stage system. This study focused on the decomposition of VOCs using a single-stage plasma-driven catalysis (PDC) system, and demonstrated the effectiveness of the PDC in terms of energy efficiency, product selectivity and carbon balance. The PDC reactor has a strong dependence on the oxygen content in the oxidation of VOCs. The potentials of various catalysts for cycled system were evaluated in terms of adsorption capability of VOC and enhancement factor (EF). The study focused on zeolites with a large surface area. Nanometer-sized active metals were also loaded on the zeolite surfaces, and their catalytic activity was tested. The metal nanoparticles supported on zeolites enhanced the catalytic activities considerably. ICCD camera observation of the discharge plasma on the surface of catalyst provided an important insight into the understanding of discharge plasma and catalyst. The area of discharge plasma expanded over a wide range by the metal nanoparticles. This physical influence was found to be closely related to the enhanced performance of the plasma-driven catalyst process. 15 refs., 5 figs.

  18. Prompt atmospheric neutrino flux

    CERN Document Server

    Jeong, Yu Seon; Enberg, Rikard; Kim, C S; Reno, Mary Hall; Sarcevic, Ina; Stasto, Anna

    2016-01-01

    We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10\\% - 30\\%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.

  19. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Science.gov (United States)

    Kaser, L.; Karl, T.; Schnitzhofer, R.; Graus, M.; Herdlinger-Blatt, I. S.; DiGangi, J. P.; Sive, B.; Turnipseed, A.; Hornbrook, R. S.; Zheng, W.; Flocke, F. M.; Guenther, A.; Keutsch, F. N.; Apel, E.; Hansel, A.

    2013-03-01

    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20-25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and

  20. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China

    Science.gov (United States)

    Cao, Xinyue; Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Jiang, Xi

    2016-01-01

    This study is the third in a series of three papers aimed at characterizing the VOC emissions of vehicles in Beijing. In this study, 30 light-duty vehicles fueled with gasoline were evaluated using a portable emission measurement system (PEMS) as they were driven on a predesigned, fixed test route. All of the tested vehicles were rented from private vehicle owners and spanned regulatory compliance guidelines ranging from Pre-China I to China IV. Alkanes, alkenes, aromatics and some additional species in the exhaust were collected in Tedlar bags and analyzed using gas chromatography/mass spectrometry (GC-MS). Carbonyls were collected on 2,4-dinitrophenyhydrazine (DNPH) cartridges and analyzed using high-performance liquid chromatography (HPLC). Overall, 74 VOC species were detected from the tested vehicles, including 22 alkanes, 6 alkenes, 1 alkyne, 16 aromatics, 3 cyclanes, 10 halohydrocarbons, 12 carbonyls and 4 other compounds. Alkanes, aromatics and carbonyls were the dominant VOCs with weight percentages of approximately 36.4%, 33.1% and 17.4%, respectively. The average VOC emission factors and standard deviations of the Pre-China I, China I, China II, China III and China IV vehicles were 469.3 ± 200.1, 80.7 ± 46.1, 56.8 ± 37.4, 25.6 ± 11.7 and 14.9 ± 8.2 mg/km, respectively, which indicated that the VOC emissions significantly decreased under stricter vehicular emission standards. Driving cycles also influenced the VOC emissions from the tested vehicles. The average VOC emission factors based on the travel distances of the tested vehicles under urban driving cycles were greater than those under highway driving cycles. In addition, we calculated the ozone formation potential (OFP) using the maximum incremental reactivity (MIR) method. The results of this study will be helpful for understanding the true emission levels of light-duty gasoline vehicles and will provide information for controlling VOC emissions from vehicles in Beijing, China.

  1. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2013-03-01

    Full Text Available Volatile organic compounds (VOCs were measured by two online instruments (GC-FID/MS and PTR-MS at a receptor site on Changdao Island (37.99° N, 120.70° E in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO and low-NOx condition (6.5 μg m−3 ppm−1 CO. Polycyclic aromatic hydrocarbons (PAHs and higher alkanes (>C10 account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD, indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  2. Comparison of the substrate effect on VOC emissions from water based varnish and latex paint.

    Science.gov (United States)

    Silva, Gabriela V; Vasconcelos, M Teresa S D; Santos, Armando M; Fernandes, Eduardo O

    2003-01-01

    The building materials are recognised to be major contributors to indoor air contamination by volatile organic compounds (VOCs). The improvement of the quality of the environment within buildings is a topic of increasing research and public interest. Legislation in preparation by the European Commission may induce, in the near future, European Union Member States to solicit the industries of paints, varnishes and flooring materials for taking measures, in order to reduce the VOC emissions resulting from the use of their products. Therefore, product characterisation and information about the influence of environmental parameters on the VOC emissions are fundamental for providing the basic scientific information required to allow architects, engineers, builders, and building owners to provide a healthy environment for building occupants. On the other hand, the producers of coating building materials require this information to introduce technological alterations, when necessary, in order to improve the ecological quality of their products, and to make them more competitive. Studies of VOC emissions from wet materials, like paints and varnishes, have usually been conducted after applying the material on inert substrates, due to its non-adsorption and non-porosity properties. However, in real indoor environments, these materials are applied on substrates of a different nature. One aim of this work was to study, for the first time, the VOC emissions from a latex paint applied on concrete. The influence of the substrate (uncoated cork parquet, eucalyptus parquet without finishing and pine parquet with finishing) on the emissions of VOC from a water-based varnish was also studied. For comparison purposes, polyester film (an inert substrate) was used for both wet materials. The specific emission rates of the major VOCs were monitored for the first 72 h of material exposure in the atmosphere of a standardized test chamber. The air samples were collected on Tenax TA and

  3. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    Science.gov (United States)

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  4. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    L. Kaser

    2012-10-01

    Full Text Available Volatile organic compound (VOC mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS, a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS, a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA, a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS and a Fiber Laser-Induced Fluorescence Instrument (FILIF. The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK+MAC using PTR-(TOF-MS at this site. A study-average relative contribution of 85% for MVK+MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the

  5. Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    L. Kaser

    2013-03-01

    Full Text Available Volatile organic compound (VOC mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS, a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS, a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA, a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS and a Fiber Laser-Induced Fluorescence Instrument (FILIF. The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC using PTR-(TOF-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study

  6. VOCs Speciation From Steam Boiler Stacks of Industries Located in Naucalpan

    Science.gov (United States)

    Mejia, G. M.; Tejeda, D. D.; Bremauntz, M. P.; Valdez, A.; Montufar, P. C.; Martinez, M. A.; Sierra, M. J.; Gonzalez, C. A.

    2007-05-01

    Results of VOCs speciation from industrial steam boiler stacks located in Naucalpan are presented and discussed. This municipality is located north of the Metropolitan Zone of the Valley of Mexico (MZVM). Speciation of VOCs is important to generate information about sources of pollution, to update emission inventories, to study the dynamics of pollutants in the atmosphere, and to estimate possible risks of population exposure. This information is valuable for decision making on air pollution control strategies. Samples from 35 steam boilers form industries burning Diesel, LPG, or CNG were taken using the US-EPA Method 18. Selected samples from the use of different fuels were analyzed using gas chromatography and flame ionization detection (GC-FID) according to US-EPA protocol TO-14. The VOCs analyzed included alkanes of 9 carbons or less, alkenes of 7 carbons or less and aromatics (families of benzene). The results show consistency on the VOCs detected on Diesel samples. The main compounds found were 1- Butene+iButylene, m/p-Xylene, Ethane, Propene, Propane, Acetylene, 2Me-1Butene, and Toluene. The average concentrations of these compounds were in the range of 130 to 385 ppbC. The results of LPG samples did not show a definite pattern of VOCs, although light components predominate and, in some samples, Toluene and Xylene. These last components were not expected for industries reporting the use of LPG, perhaps due to the use of a combination of fuels and mistakes in the reports of fuel used at the time of sampling. The analysis of CNG samples show predominance of light VOCs, in the range of 90 to 300 ppbC. As in the case of LPG, some aromatics showed high concentrations in some samples analyzed perhaps due to the use of different fuels in the boiler. The results of this study are the first results of VOCs speciation obtained form exhaust gases from stacks of Mexican industries. The data reported are valuable to analyze emission inventories of VOCs and to better

  7. Optimization of metal vapor lasers

    Science.gov (United States)

    Buchanov, V. V.; Molodykh, E. I.; Tykotskii, V. V.

    1983-03-01

    The method proposed here for performing numerical calculations on a computer in order to predict and optimize the characteristics of metal vapor lasers is based on the use of a universal program for numerical experiments designed expressly for metal vapor lasers and on a simultaneous application of an algorithm for multifactor optimization of the output parameters. The latter, in turn, is based on the complex Boks method (Himmelblau, 1970) and on the Gel'fand-Tsetlin ravine method (Himmelblau, 1970). Calculations carried out for a metal with a copper vapor in neon reveal that for optimization with respect to the geometry of the active zone and the parameters of the electrical circuits (including the voltage pulses and excitation frequency) it is sufficient to use the Boks method. The objective function optimum regarding the concentration of the metal particles and the buffer gas found using this algorithm calls for further refinement; this can be performed efficiently with the Gel'fand-Tsetlin ravine method.

  8. Fuel for cyclones: How the water vapor budget of a hurricane depends on its motion

    CERN Document Server

    Makarieva, Anastassia M; Nefiodov, Andrei V; Chikunov, Alexander V; Sheil, Douglas; Nobre, Antonio D; Li, Bai-Lian

    2016-01-01

    Tropical cyclones are fueled by water vapor. Here we estimate the oceanic evaporation within an Atlantic hurricane to be less than one sixth of the total moisture flux precipitating over the same area. So how does the hurricane get the remaining water vapor? Our analysis of TRMM rainfall, MERRA atmospheric moisture and hurricane translation velocities suggests that access to water vapor relies on the hurricane's motion -- as it moves through the atmosphere, the hurricane consumes the water vapor it encounters. This depletion of atmospheric moisture by the hurricane leaves a "dry footprint" of suppressed rainfall in its wake. The thermodynamic efficiency of hurricanes -- defined as kinetic energy production divided by total latent heat release associated with the atmospheric moisture supply -- remains several times lower than Carnot efficiency even in the most intense hurricanes. Thus, maximum observed hurricane power cannot be explained by the thermodynamic Carnot limit.

  9. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    CERN Document Server

    Nikolayev, Vadim; Garrabos, Yves

    2016-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis.

  10. FLUXNET. Database of fluxes, site characteristics, and flux-community information

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holladay, S. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cook, R. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Falge, E. [Univ. Bayreuth, Bayreuth (Germany); Baldocchi, D. [Univ. of California, Berkeley, CA (United States); Gu, L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2004-02-28

    FLUXNET is a “network of regional networks” created by international scientists to coordinate regional and global analysis of observations from micrometeorological tower sites. The flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide (CO2), water vapor, and energy between terrestrial ecosystems and the atmosphere. FLUXNET’S goals are to aid in understanding the mechanisms controlling the exchanges of CO2, water vapor, and energy across a range of time (0.5 hours to annual periods) and space scales. FLUXNET provides an infrastructure for the synthesis and analysis of world-wide, long-term flux data compiled from various regional flux networks. Information compiled by the FLUXNET project is being used to validate remote sensing products associated with the National Aeronautics and Space Administration (NASA) Terra and Aqua satellites. FLUXNET provides access to ground information for validating estimates of net primary productivity, and energy absorption that are being generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. In addition, this information is also used to develop and validate ecosystem models.

  11. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  12. Variability of Summer Atmospheric Moisture Flux and Its Effect on Precipitation over East China

    Institute of Scientific and Technical Information of China (English)

    JIANG Ying; ZHAI ranmao; WANG Qiyi

    2005-01-01

    Using the in-situ precipitation and NCEP/NCAR daily reanalysis data, we found by studies of change of moisture flux and its effect that the northward water vapor transport represented by moisture flux in East China tends to retreat southward, and the eastward water vapor transport tends to weaken with weakening of the intensity of moisture flux. The north boundary of meridional moisture flux (50 kg m-1s-1) retreats 2.8 degrees in latitude per decade during 1968-2003. The weakening of water vapor transport implies the weakening and southward retreat of East Asian monsoon, which leads to the tendency of decrease in moisture flux convergence over North China and the middle and lower reaches of the Yellow River, and the tendency of decrease in precipitation over those regions, but on the contrary the enhanced water vapor transport convergence over the middle and lower reaches of the Yangtze River implies the tendency of increase in precipitation to some extent. Indeed the long-term variability of precipitation in East China has a close relation with that of atmospheric moisture flux.

  13. The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere

    Science.gov (United States)

    Karl, T.; Harley, P.; Guenther, A.; Rasmussen, R.; Baker, B.; Jardine, K.; Nemitz, E.

    2005-11-01

    Using new in-situ field observations of the most abundant oxygenated VOCs (methanol, acetaldehyde, acetone, C3/C4 carbonyls, MVK+MAC and acetic acid) we were able to constrain emission and deposition patterns above and within a loblolly pine (Pinus taeda) plantation with a sweetgum (Liquidambar styraciflua) understory. During the day canopy scale measurements showed significant emission of methanol and acetone, while methyl vinyl ketone and methacrolein, acetaldehyde and acetic acid were mainly deposited during the day. All oxygenated compounds exhibited strong losses during the night that could not be explained by conventional dry deposition parameterizations. Accompanying leaf level measurements indicated substantial methanol and acetone emissions from loblolly pine. The exchange of acetaldehyde was more complex. Laboratory measurements made on loblolly pine needles indicated that acetaldehyde may be either emitted or taken up depending on ambient concentrations, with the compensation point increasing exponentially with temperature, and that mature needles tended to emit more acetaldehyde than younger needles. Canopy scale measurements suggested mostly deposition. Short-term (approx. 2 h) ozone fumigation in the laboratory had no detectable impact on post-exposure emissions of methanol and acetone, but decreased the exchange rates of acetaldehyde. The emission of a variety of oxygenated compounds (e.g. carbonyls and alcohols) was triggered or significantly enhanced during laboratory ozone fumigation experiments. These results suggest that higher ambient ozone levels in the future might enhance the biogenic contribution of some oxygenated compounds. Those with sufficiently low vapor pressures may potentially influence secondary organic aerosol growth. Compounds recently hypothesized to be primarily produced in the canopy atmosphere via ozone plus terpenoid-type reactions can also originate from the oxidation reaction of ozone with leaf surfaces and inside the leaf

  14. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    Science.gov (United States)

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  15. 40 CFR Table 1 to Subpart B of... - Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings

    Science.gov (United States)

    2010-07-01

    ... Limits for Automobile Refinish Coatings 1 Table 1 to Subpart B of Part 59 Protection of Environment... Automobile Refinish Coatings Pt. 59, Subpt. B, Table 1 Table 1 to Subpart B of Part 59—Volatile Organic Compound (VOC) Content Limits for Automobile Refinish Coatings Coating category Grams VOC per liter...

  16. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX PAINT AND ALKYD PAINTS

    Science.gov (United States)

    The report gives details of a small-chamber test method developed by the EPA for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current knowledge about VOC, including hazardous air pollutant, emissions from interior paints generated...

  17. VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS

    Science.gov (United States)

    C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw

    2011-01-01

    Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...

  18. Reduction of odorous VOC in phenolics solutions and swine manure slurry using soybean peroxidase and hydrogen peroxide

    Science.gov (United States)

    A research project was conducted to evaluate the efficacy of low-activity soybean peroxidase (SBP; 0.75 U/mg) and H2O2 for reducing emissions of odorous volatile organic compounds (VOC) from standard solutions (phenol and 4-methylphenol; 1 mM each) and swine manure slurry. VOC emissions were measu...

  19. An Admiralty for Asia: Isaac le Maire and conflicting conceptions about the corporate governance of the VOC

    NARCIS (Netherlands)

    O. Gelderblom (Oscar); A. de Jong (Abe); J. Jonker (Joost)

    2010-01-01

    textabstractThe Dutch East India Company or VOC in 1602 showed many characteristics of modern corporations, including limited liability, freely transferable shares, and well-defined managerial functions. However, we challenge the notion of the VOC as the precursor of modern corporations to argue tha

  20. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  1. Is CHF triggered by the vapor recoil effect?

    CERN Document Server

    Nikolayev, Vadim S; Chatain, D

    2007-01-01

    This paper deals with the triggering mechanism of the boiling crisis, a transition from nucleate to film boiling. We observe the boiling crisis in pool saturated boiling experimentally at nearly critical pressure to take advantage of the slowness of the bubble growth and of the smallness of the Critical Heat Flux (CHF) that defines the transition point. Such experiments require the reduced gravity conditions. Close to the CHF, the slow growth of the individual dry spots and their subsequent fusion on the transparent heater are observed through the latter. As discussed in the paper, these observations are consistent with numerical results obtained with the vapor recoil model of the boiling crisis.

  2. Predicting the lifetime of organic vapor cartridges exposed to volatile organic compound mixtures using a partial differential equations model.

    Science.gov (United States)

    Vuong, François; Chauveau, Romain; Grevillot, Georges; Marsteau, Stéphanie; Silvente, Eric; Vallieres, Cécile

    2016-09-01

    In this study, equilibria, breakthrough curves, and breakthrough times were predicted for three binary mixtures of four volatile organic compounds (VOCs) using a model based on partial differential equations of dynamic adsorption coupling a mass balance, a simple Linear Driving Force (LDF) hypothesis to describe the kinetics, and the well-known Extended-Langmuir (EL) equilibrium model. The model aims to predict with a limited complexity, the BTCs of respirator cartridges exposed to binary vapor mixtures from equilibria and kinetics data obtained from single component. In the model, multicomponent mass transfer was simplified to use only single dynamic adsorption data. The EL expression used in this study predicted equilibria with relatively good accuracy for acetone/ethanol and ethanol/cyclohexane mixtures, but the prediction of cyclohexane uptake when mixed with heptane is less satisfactory. The BTCs given by the model were compared to experimental BTCs to determine the accuracy of the model and the impact of the approximation on mass transfer coefficients. From BTCs, breakthrough times at 10% of the exposure concentration t10% were determined. All t10% were predicted within 20% of the experimental values, and 63% of the breakthrough times were predicted within a 10% error. This study demonstrated that a simple mass balance combined with kinetic approximations is sufficient to predict lifetime for respirator cartridges exposed to VOC mixtures. It also showed that a commonly adopted approach to describe multicomponent adsorption based on volatility of VOC rather than adsorption equilibrium greatly overestimated the breakthrough times.

  3. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective.

  4. Measurements of Volatile Organic Compounds (VOCs) on Board of the Zeppelin NT during the PEGASOS Campaign in 2012

    Science.gov (United States)

    Jäger, Julia; Hofzumahaus, Andreas; Beck, Harry; Rohrer, Franz; Broch, Sebastian; Fuchs, Hendrik; Gomm, Sebastian; Holland, Frank; Lu, Keding; Kiendler-Scharr, Astrid; Mentel, Thomas; Rose, Bernhard; Wegener, Robert; Wahner, Andreas

    2013-04-01

    Volatile Organic Compounds (VOCs) are mostly emitted at the ground and are degraded by the reactions with OH, NO3 or O3 as they rise upwards in the atmosphere. VOCs play an important role as sources and sinks for radicals in the troposphere. Up to date, most of the VOC measurements were performed from ground based platforms; the profile measurements across the whole planetary boundary layer (PBL) are still quite limited which restrained the exploring of the VOCs chemistry of the entire PBL. This although these measurements are particularly interesting, as most of the chemistry of the VOC degradation in the troposphere takes place in the PBL. Moreover, fast VOCs measurements utilizing Gas Chromatography coupled with Mass Spectrometry (GC-MS) are a challenge due to the great chemical variability of VOC species. Therefore accurate in-situ measurements of VOCs together with other species as CO, NOx, O3 and the OH reactivity, encompassing different levels of altitude and fast time resolution, would essentially improve the understanding of the VOC distribution in the lower troposphere. Here we present the setup and the modifications of the fast GC-MS system and the results of the PEGASOS Zeppelin campaigns in summer 2012. First, we present our developments and modifications of an in-flight GC-MS system to detect volatile non methane hydrocarbons (NMHC) with a time resolution of 3 minutes and a detection limit in the order of 2 pptv. The modified setup enabled us to analyze 70 different VOC species, ranging from alkanes (C4 to C11), aromatics and terpenes to oxygenated hydrocarbons (OVOC) such as alcohols and aldehydes. Second, in contrast to previous airplane studies also utilizing a GC-MS system, the Zeppelin NT as a measuring platform during the PEGASOS campaign enabled us to measure vertical profiles up to 1500m at low travelling speeds which means a high spatial resolution. We will present results for selected VOC that offer new insights on height profiles

  5. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  6. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  7. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes at CFB Borden

    Science.gov (United States)

    2006-11-01

    with this activity is exposure to contaminants (principally VOCs) present in the ground water through inhalation or skin contact. Waterproof ... Waterproof , chemical resistant gloves shall be worn by site personnel when sub- sampling the flux meters and transferring to sample vials. 1.4.4 Site...soap and water or disinfectant moist towelettes before eating, drinking, smoking, or applying cosmetics . These activities will be restricted to the

  8. Spatial/temporal variations and source apportionment of VOCs monitored at community scale in an urban area.

    Science.gov (United States)

    Yu, Chang Ho; Zhu, Xianlei; Fan, Zhi-hua

    2014-01-01

    This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs) using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile) sites in Paterson and one background site in Chester, NJ (located ∼58 km southwest of Paterson). Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene) were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (pp-xylene, o-xylene, and p-dichlorobenzene measured at the commercial site were significantly higher than the industrial/mobile sites (pp-dichlorobenzene) were significantly different by season (pp<0.05). These results are consistent with literature data, indicating the impact of anthropogenic VOC sources on air pollution in Paterson. Positive Matrix Factorization (PMF) analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%), solvents uses (19%), industrial emissions (16%), mobile+stationery sources (12%), small shop emissions (11%), and others (22%). Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in Paterson. The study demonstrated the community-scale monitoring approach can capture spatial variation of VOCs in an urban community with mixed VOC sources. It also provided robust data to identify major sources of concern in the community.

  9. Final OSWER Vapor Intrusion Guidance

    Science.gov (United States)

    EPA is preparing to finalize its guidance on assessing and addressing vapor intrusion, which is defined as migration of volatile constituents from contaminated media in the subsurface (soil or groundwater) into the indoor environment. In November 2002, EPA issued draft guidance o...

  10. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  11. Hydrazine vapor inactivates Bacillus spores

    Science.gov (United States)

    Schubert, Wayne W.; Engler, Diane L.; Beaudet, Robert A.

    2016-05-01

    NASA policy restricts the total number of bacterial spores that can remain on a spacecraft traveling to any planetary body which might harbor life or have evidence of past life. Hydrazine, N2H4, is commonly used as a propellant on spacecraft. Hydrazine as a liquid is known to inactivate bacterial spores. We have now verified that hydrazine vapor also inactivates bacterial spores. After Bacillus atrophaeus ATCC 9372 spores deposited on stainless steel coupons were exposed to saturated hydrazine vapor in closed containers, the spores were recovered from the coupons, serially diluted, pour plated and the surviving bacterial colonies were counted. The exposure times required to reduce the spore population by a factor of ten, known as the D-value, were 4.70 ± 0.50 h at 25 °C and 2.85 ± 0.13 h at 35 °C. These inactivation rates are short enough to ensure that the bioburden of the surfaces and volumes would be negligible after prolonged exposure to hydrazine vapor. Thus, all the propellant tubing and internal tank surfaces exposed to hydrazine vapor do not contribute to the total spore count.

  12. Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale

    Energy Technology Data Exchange (ETDEWEB)

    Owen, S.M.; Boissard, C.; Hewitt, C.N. [Institute of Environmental and Natural Sciences, Lancaster University, Lancaster (United Kingdom). Department of Environmental Science

    2001-07-01

    Forty native Mediterranean plant species were screened for emissions of the C5 and C10 hydrocarbons, isoprene and monoterpenes, in five different habitats. A total of 32 compounds were observed in the emissions from these plants. The number of compounds emitted by different plant species varied from 19 (Quercus ilex) to a single compound emission, usually of isoprene. Emission rates were normalised to generate emission factors for each plant species for each sampling event at standard conditions of temperature and light intensity. Plant species were categorised according to their main emitted compound, the major groups being isoprene, {alpha}-pinene, linalool, and limonene emitters. Estimates of habitat fluxes for each emitted compound were derived from the contributing plant species' emission factors, biomass and ground cover. Emissions of individual compounds ranged from 0.002 to 505gha{sup -1}h{sup -1} (camphene from garrigue in Spain in autumn and isoprene from riverside habitats in Spain in late spring, respectively). Emissions of isoprene ranged from 0.3 to 505gha{sup -1}h{sup -1} (macchia in Italy in late spring and autumn, and riverside in Spain in late spring, respectively) and {alpha}-pinene emissions ranged from 0.51 to 52.92gha{sup -1}h{sup -1} (garrigue in Spain in late spring, and forest in France in autumn, respectively). Habitat fluxes of most compounds in autumn were greater than in late spring, dominated by emissions from Quercus ilex, Gemista scorpius and Quercus pubescens. This study contributes to regional emission inventories and will be of use to tropospheric chemical modellers. (author)

  13. Investigation of key parameters influencing the efficient photocatalytic oxidation of indoor volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Quici, Natalia; Kibanova, Daria; Vera, Maria Laura; Choi, Hyeok; Dionysiou, Dionysios D.; Litter, Marta I.; Cervini-Silva, Javiera; Hodgson, Alfred T.; Destaillats, Hugo; Destaillats, Hugo

    2008-06-01

    Photocatalytic oxidation of indoor VOCs has the potential to eliminate pollutants from indoor environments, thus effectively improving and/or maintaining indoor air quality while reducing ventilation energy costs. Design and operation of UV photocatalytic oxidation (UVPCO) air cleaners requires optimization of various parameters to achieve highest pollutant removal efficiencies while avoiding the formation of harmful secondary byproducts and maximizing catalyst lifetime.

  14. Schipperen op de Aziatische vaart: de financiering van de VOC kamer Enkhuizen, 1602-1622

    NARCIS (Netherlands)

    R. Schalk; O. Gelderblom; J. Jonker

    2012-01-01

    Negotiating the Asiatic Route: Financing the Dutch East India Company, Enkhuizen Chamber, 1602-1622 During its first twenty years the Dutch East India Company, or voc, struggled with the disadvantages of operations being spread over six local chambers, as imposed by its 1602 charter. Mirroring the D

  15. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  16. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  17. Principled pragmatism : VOC Interaction with Makassar 1637-68, and the nature of company diplomacy

    NARCIS (Netherlands)

    Feddersen, C.F.

    2016-01-01

    The thesis explores the nature of VOC diplomacy using the seventeenth century interaction between the Company and the sultanate of Makassar on the western coast of South Sulawesi as its case. I analyse the Directors’ reflections on diplomacy in the general and approach towards Makassar in particular

  18. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride tedlar bags

    Science.gov (United States)

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...

  19. Feasibility Analysis of Sustainability-Based Measures to Reduce VOC Emissions in Office Partition Manufacturing

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2010-02-01

    Full Text Available A feasibility analysis is reported of reduction opportunities for volatile organic compound (VOC emissions in manufacturing office furniture partitions, aimed at contributing to efforts to improve the sustainability of the process. A pollution prevention methodology is utilized. The purpose is to provide practical options for VOC emissions reductions during the manufacturing of office furniture partitions, but the concepts can be generally applied to the wood furniture industry. Baseline VOC emissions for a typical plant are estimated using a mass balance approach. The feasibility analysis expands on a preliminary screening to identify viable pollution prevention options using realistic criteria and weightings, and is based on technical, environmental and economic considerations. The measures deemed feasible include the implementation of several best management practices, ceasing the painting of non-visible parts, switching to hot melt backwrapping glue, application of solvent recycling and modification of the mechanical clip attachment. Implementation, measurement and control plans are discussed for the measures considered feasible, which can enhance the sustainability of the manufacturing of office furniture partitions. Reducing VOC emissions using the measures identified can, in conjunction with other measures, improve the sustainability of the manufacturing process.

  20. Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas.

    Science.gov (United States)

    Lerner, Jorge Esteban Colman; Kohajda, Tibor; Aguilar, Myriam Elisabeth; Massolo, Laura Andrea; Sánchez, Erica Yanina; Porta, Atilio Andrés; Opitz, Philipp; Wichmann, Gunnar; Herbarth, Olf; Mueller, Andrea

    2014-01-01

    After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors (n = 179) and indoors (n = 75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85% and about 50% in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60%. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization.

  1. Environmental aspects of VOCs evolved in the early stages of human decomposition.

    Science.gov (United States)

    Statheropoulos, M; Agapiou, A; Spiliopoulou, C; Pallis, G C; Sianos, E

    2007-10-15

    In the present study, the time profile, measured as "accumulation", of volatile organic compounds (VOCs) produced during the early stages of human decomposition was investigated. A human cadaver was placed in a sealed bag at approximately the 4th day after death. Evolved VOCs were monitored for 24 h by sampling at different time intervals. VOCs produced were analyzed by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). Over 30 substances were identified in total. These included mainly aliphatic and aromatic hydrocarbons, oxygenated compounds (alcohols, aldehydes, ketones) and organic sulfides. The last were the most prominent class of compounds identified. Eleven compounds were present in all the sampling cycles and constitute a "common core": ethanol, 2-propanone, dimethyl disulfide, methyl benzene, octane, 2-butanone, methyl ethyl disulfide, dimethyl trisulfide and o-, m- and p-xylenes. The last sampling cycle yielded the most abundant compounds in number and quantities. Inorganic gases such as CO2, CO, NH3 and H2S were also determined. The fundamental physicochemical properties of the evolved VOCs were used for evaluating their environmental impacts. It appears that the decay process, which is a dynamic procedure, can provide chemical signals that might be detected and properly evaluated by experts in the fields of forensic sciences, search and rescue units and environmental scientists.

  2. Principled pragmatism : VOC Interaction with Makassar 1637-68, and the nature of company diplomacy

    NARCIS (Netherlands)

    Feddersen, C.F.

    2016-01-01

    The thesis explores the nature of VOC diplomacy using the seventeenth century interaction between the Company and the sultanate of Makassar on the western coast of South Sulawesi as its case. I analyse the Directors’ reflections on diplomacy in the general and approach towards Makassar in particular

  3. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  4. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds... organic compounds (VOC). (a) The owner or operator of each storage vessel either with a design capacity... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for...

  5. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  6. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources.

    Science.gov (United States)

    Tassi, F; Capecchiacci, F; Giannini, L; Vougioukalakis, G E; Vaselli, O

    2013-09-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C6H6/Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios <1 allow to distinguish an anthropogenic source related to emissions from outlet pipes of touristic and private boats and buses.

  7. ‘Vervloekte goudzugt’. De VOC, slavenhandel en slavernij in Azië

    NARCIS (Netherlands)

    van Rossum, Matthias

    2015-01-01

    The Dutch history of slavery is often perceived from an Atlantic perspective. The study of slavery and slave trade in Asia, especially also in and around the territories controlled by the Dutch East India Company (VOC) has increasingly received attention, indicating the widespread nature of slavery

  8. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    Science.gov (United States)

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  9. Mechanisms of Increased Particle and VOC Emissions during DPF Active Regeneration and Practical Emissions Considering Regeneration.

    Science.gov (United States)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2017-02-27

    Mechanisms involved in increased particle and volatile organic compound (VOC) emissions during active and parked active regenerations of a diesel particulate filter (DPF) were investigated using heavy-duty trucks equipped with both a urea selective catalytic reduction system and a DPF (SCR + DPF) and a DPF-only. Particle emissions increased in the later part of the regeneration period but the mechanisms were different above and below 23 nm. Particles above 23 nm were emitted due to the lower filtering efficiency of the DPF because of the decreasing amount of soot trapped during regeneration. Small particles below 23 nm were thought to be mainly sulfuric acid particles produced from SO2 trapped by the catalyst, being released and oxidized during regeneration. Contrary to the particle emissions, VOCs increased in the earlier part of the regeneration period. The mean molecular weights of the VOCs increased gradually as the regeneration proceeded. To evaluate "practical emissions" in which increased emissions during the regeneration were considered, a Regeneration Correction Factor (RCF), which is the average emission during one cycle of regeneration/emission in normal operation, was adopted. The RCFs of PM and VOCs were 1.1-1.5, and those of PNs were as high as 3-140, although they were estimated from a limited number of observations.

  10. Optimization of an Innovative Biofiltration System as a VOC Control Technology for Aircraft Painting Facilities

    Science.gov (United States)

    2004-04-20

    Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and...degrade all VOCs tested except for styrene under the conditions imposed. Cladosporium resinae was able to degrade both organic acids, all of the ketones...2002). Cladosporium Cladosporium Exophiala Mucor Phanerochaete resinae sphaerospermum lecanii-corni rouxii chrysosporium No carbon source Glucose

  11. Schipperen op de Aziatische vaart. De financiering van de VOC kamer Enkhuizen, 1602-1622

    NARCIS (Netherlands)

    Schalk, R.|info:eu-repo/dai/nl/35509391X; Gelderblom, O.C.|info:eu-repo/dai/nl/19265473X; Jonker, J.P.B.|info:eu-repo/dai/nl/075034638

    2012-01-01

    Negotiating the Asiatic Route: Financing the Dutch East India Company, Enkhuizen Chamber, 1602-1622 During its first twenty years the Dutch East India Company, or voc, struggled with the disadvantages of operations being spread over six local chambers, as imposed by its 1602 charter. Mirroring the

  12. CASE STUDIES: LOW-VOC/HAP WOOD FURNITURE COATINGS (PROJECT SUMMARY)

    Science.gov (United States)

    The report gives results of a study in which wood furniture manufacturing fa-cilities were identified that had converted at least one of their primary coating steps to low-volatile organic compound (VOC)/hazardous air pollut-ant (HAP) wood furniture coatings [high-solids, waterbo...

  13. POLLUTION PREVENTION AND THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  14. DEMONSTRATION OF NO-VOC/NO-HAP WOOD FURNITURE COATING SYSTEM

    Science.gov (United States)

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesives Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating s...

  15. DEVELOPMENT OF A NO-VOC/NO-HAP WOOD FURNITURE COATINGS SYSTEM

    Science.gov (United States)

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The performance characteristics of the new coating system are excellent in terms of adhesion, drying time, gloss, ...

  16. CASE STUDY PROJECT: THE USE OF LOW-VOC/HAP COATINGS AT WOOD FURNITURE MANUFACTURING FACILITIES

    Science.gov (United States)

    The paper discusses a study of pollution prevention and the use of low-VOC/HAP (volatile organic compound/hazardous air pollutant) coatings at wood furniture manufacturing facilities. The study is to identify wood furniture and cabinet manufacturing facilities that have converted...

  17. Personal volatile organic compound (VOC) exposure of children attending elementary schools adjacent to industrial complex

    Science.gov (United States)

    Park, Kun-Ho; Jo, Wan-Kuen

    The major deficiency in linking the effects of environmental exposure to children's health is the lack of data on the exposure of children to hazardous environmental pollutants. Accordingly, the present study compared the personal volatile organic compound (VOC) exposure of children from four elementary schools at different proximities to the Daegu Dyeing Industrial Complex (DDIC) and adjacent to different traffic densities. The personal air concentrations of four VOCs (toluene, m, p-xylenes, and o-xylene) were significantly higher for the children attending the school (S1) closest to the boundary of the DDIC compared to the children attending the school (S2) further away. The DDIC was the likely primary cause for the elevated personal air concentrations of the four VOCs in the children attending the school nearest the DDIC. The personal exposure to toluene and methyl tertiary-butyl ether (MTBE) for the children attending the school near a major roadway with a high traffic density was significantly higher than that for the children attending the school near a roadway with a low traffic density. The difference in the breath concentrations was generally similar to the difference in the personal air concentrations among the children from the four schools. In contrast to the children attending schools in low-income areas, the children attending schools in high-income areas exhibited no significant difference in the concentrations of any of the target VOCs in the personal air and breath samples between the children living with and without a smoker in the home.

  18. Evaluation of Hydrogen/Oxygen Release Compounds for the Remediation of VOCs

    Directory of Open Access Journals (Sweden)

    S. Fiore

    2011-01-01

    Full Text Available Problem statement: Volatile Organic Compounds (VOCs are widespread in groundwater of industrialized areas and in situ remediation intervents characterized by a high environmental compatibility are of main interest. The scope of this study is the evaluation of the potential of two innovative reagents (HRC and ORC from Regenesis for the remediation of Volatile Organic Compounds (VOCs. The reagents respectively perform reduction and oxidation mechanisms, both effective in the degradation of VOCs. Approach: Hydrogen Release Compound (HRC and Oxygen Release Compound (ORC were tested about the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX and some chlorinated aliphatic compounds (CAHs. Five series of batch tests were performed with an artificial polluted aqueous phase and some soil coming from a polluted site in which natural attenuation of VOCs occurs. Results: ORC exhibited a good efficiency in the degradation of BTEX and the zero order model was found as a reliable approximation of experimental data (with the exceptions of benzene and toluene, for which a first order kinetic model was trustworthy, while HRC showed a good efficiency in the degradation of CAHs and a first order model consistently estimated almost all experimental data. The experimental data were modeled by means of different mathematical equations, considering zero and first order kinetics and the results were discussed and compared. Conclusions: On the grounds of the performed tests, Oxygen Release Compound (ORC is effective in BTEX degradation and Hydrogen Release Compound (HRC in CAHs removal.

  19. PROCEEDINGS: LOW- AND NO-VOC COATING TECHNOLOGIES - 2ND BIENNIAL INTERNATIONAL CONFERENCE

    Science.gov (United States)

    The report documents an international conference that provided a forum for the exchange of technical information on coating technologies. It focused on improved and emerging technologies that result in fewer volatile organic compound (VOC) and toxic air emissions that those from ...

  20. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal

    Science.gov (United States)

    Evtyugina, Margarita; Calvo, Ana Isabel; Nunes, Teresa; Alves, Célia; Fernandes, Ana Patrícia; Tarelho, Luís; Vicente, Ana; Pio, Casimiro

    2013-01-01

    Emissions of trace gases and C5-C10 volatile organic compounds (VOCs) from Mediterranean wildfires occurring in Portugal in summer 2010 were studied. Fire smoke was collected in Tedlar bags and analysed for CO, CO2, total hydrocarbons (THC) and VOCs. The CO, CO2 and THC emission factors (EFs) were 206 ± 79, 1377 ± 142 and 8.1 ± 9 g kg-1 biomass burned (dry basis), respectively. VOC emissions from Mediterranean wildfires were reported for the first time. Aromatic hydrocarbons were major components of the identified VOC emissions. Among them, benzene and toluene were dominant compounds with EFs averaging 0.747 ± 0.303 and 0.567 ± 0.422 g kg-1 biomass burned (dry basis), respectively. Considerable amounts of oxygenated organic volatile compounds (OVOCs) and isoprenoids were detected. 2-Furaldehyde and hexanal were the most abundant measured OVOCs with EFs of 0.337 ± 0.259 and 0.088 ± 0.039 g kg-1 biomass burned (dry basis), respectively. The isoprenoid emissions were dominated by isoprene (EF = 0.207 ± 0.195 g kg-1 dry biomass burned) and α-pinene (EF = 0.112 ± 0.093 g kg-1 dry biomass burned). Emission data obtained in this work are useful for validating and improving emission inventories, as well for carrying out modelling studies to assess the effects of vegetation fires on air pollution and tropospheric chemistry.

  1. Contaminated land clean-up using composted wastes and impacts of VOCs on land.

    Science.gov (United States)

    Williamson, J C; Akinola, M; Nason, M A; Tandy, S; Healey, J R; Jones, D L

    2009-05-01

    This paper describes experiments that demonstrate the effects and potential for remediation of a former steelworks site in Wales polluted with polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Under field conditions, PAH-contam