WorldWideScience

Sample records for voc air emissions

  1. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    Science.gov (United States)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  2. Effect of heat waves on VOC emissions from vegetation and urban air quality

    Science.gov (United States)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  3. VOC emissions chambers

    Data.gov (United States)

    Federal Laboratory Consortium — In order to support the development of test methods and reference materials for volatile organic compounds (VOC) emissions from building materials and furnishings,...

  4. Effect of VOC emissions from vegetation on urban air quality during hot periods

    Science.gov (United States)

    Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim

    2016-04-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.

  5. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    C. Huang

    2011-05-01

    Full Text Available The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  6. Hydrogen sulphide, odor, and VOC air emission control systems for heavy oil storage, transport, and processing operations

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, H.P. [APC Technologies, Inc. (Canada)

    2011-07-01

    In the heavy oil industry, companies have to control their air emissions in compliance with regulatory and process improvement objectives. The industry therefore operates air emission control systems to eliminate odor complaints, reduce personnel exposure to H2S and remove BTEX and VOC emissions. This paper studies different cases of companies which have chosen to use a fixed activated carbon adsorption unit. The study was conducted on three cases of heavy oil industries which installed the CarbonPure adsorption system and describes their objectives, processes, emissions, technology options and performances. Results showed an elimination of odor complaints, a reduction of personnel exposure to harmful air contaminants and a reduction of VOC concentrations in a reliable, low maintenance and economic manner. This study presents the greater benefits of the CarbonPure adsorption system combined with an ultra high efficiency unit over those of other adsorption systems.

  7. Do time-averaged, whole-building, effective volatile organic compound (VOC) emissions depend on the air exchange rate? A statistical analysis of trends for 46 VOCs in U.S. offices.

    Science.gov (United States)

    Rackes, A; Waring, M S

    2016-08-01

    We used existing data to develop distributions of time-averaged air exchange rates (AER), whole-building 'effective' emission rates of volatile organic compounds (VOC), and other variables for use in Monte Carlo analyses of U.S. offices. With these, we explored whether long-term VOC emission rates were related to the AER over the sector, as has been observed in the short term for some VOCs in single buildings. We fit and compared two statistical models to the data. In the independent emissions model (IEM), emissions were unaffected by other variables, while in the dependent emissions model (DEM), emissions responded to the AER via coupling through a conceptual boundary layer between the air and a lumped emission source. For 20 of 46 VOCs, the DEM was preferable to the IEM and emission rates, though variable, were higher in buildings with higher AERs. Most oxygenated VOCs and some alkanes were well fit by the DEM, while nearly all aromatics and halocarbons were independent. Trends by vapor pressure suggested multiple mechanisms could be involved. The factors of temperature, relative humidity, and building age were almost never associated with effective emission rates. Our findings suggest that effective emissions in real commercial buildings will be difficult to predict from deterministic experiments or models.

  8. Comparison of VOC emissions between air-dried and heat-treated Norway spruce ( Picea abies), Scots pine ( Pinus sylvesteris) and European aspen ( Populus tremula) wood

    Science.gov (United States)

    Hyttinen, Marko; Masalin-Weijo, Marika; Kalliokoski, Pentti; Pasanen, Pertti

    2010-12-01

    Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.

  9. Reducing VOC Press Emission from OSB Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  10. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Science.gov (United States)

    Kim, S.-W.; McKeen, S. A.; Frost, G. J.; Lee, S.-H.; Trainer, M.; Richter, A.; Angevine, W. M.; Atlas, E.; Bianco, L.; Boersma, K. F.; Brioude, J.; Burrows, J. P.; de Gouw, J.; Fried, A.; Gleason, J.; Hilboll, A.; Mellqvist, J.; Peischl, J.; Richter, D.; Rivera, C.; Ryerson, T.; Te Lintel Hekkert, S.; Walega, J.; Warneke, C.; Weibring, P.; Williams, E.

    2011-11-01

    Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS) detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI-2005), in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs) in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2) columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50%-70% higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60% higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly reactive VOC emissions

  11. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    T. Ryerson

    2011-11-01

    Full Text Available Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting-Chemistry (WRF-Chem model with input from the US EPA's 2005 National Emission Inventory (NEI-2005, in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2 and volatile organic compounds (VOCs in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2 columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50%–70% higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60% higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly

  12. Evaluations of NOx and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    T. Ryerson

    2011-07-01

    Full Text Available Satellite and aircraft observations made during the 2006 Texas Air Quality Study (TexAQS detected strong urban, industrial and power plant plumes in Texas. We simulated these plumes using the Weather Research and Forecasting – Chemistry (WRF-Chem model with input from the US EPA's 2005 National Emission Inventory (NEI-2005, in order to evaluate emissions of nitrogen oxides (NOx = NO + NO2 and volatile organic compounds (VOCs in the cities of Houston and Dallas-Fort Worth. We compared the model results with satellite retrievals of tropospheric nitrogen dioxide (NO2 columns and airborne in-situ observations of several trace gases including NOx and a number of VOCs. The model and satellite NO2 columns agree well for regions with large power plants and for urban areas that are dominated by mobile sources, such as Dallas. However, in Houston, where significant mobile, industrial, and in-port marine vessel sources contribute to NOx emissions, the model NO2 columns are approximately 50 %–70 % higher than the satellite columns. Similar conclusions are drawn from comparisons of the model results with the TexAQS 2006 aircraft observations in Dallas and Houston. For Dallas plumes, the model-simulated NO2 showed good agreement with the aircraft observations. In contrast, the model-simulated NO2 is ~60 % higher than the aircraft observations in the Houston plumes. Further analysis indicates that the NEI-2005 NOx emissions over the Houston Ship Channel area are overestimated while the urban Houston NOx emissions are reasonably represented. The comparisons of model and aircraft observations confirm that highly reactive VOC emissions originating from industrial sources in Houston are underestimated in NEI-2005. The update of VOC emissions based on Solar Occultation Flux measurements during the field campaign leads to improved model simulations of ethylene, propylene, and formaldehyde. Reducing NOx emissions in the Houston Ship Channel and increasing highly

  13. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    Science.gov (United States)

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values.

  14. A mass transfer model for VOC emission from silage

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan

    2012-07-01

    Silage has been shown to be an important source of emissions of volatile organic compounds (VOCs), which contribute to the formation of ground-level ozone. Measurements have shown that environmental conditions and silage properties strongly influence emission rates, making it difficult to assess the contribution of silage in VOC emission inventories. In this work, we present an analytical convection-diffusion-dispersion model for predicting emission of VOCs from silage. It was necessary to incorporate empirical relationships from wind tunnel trials for the response of mass transfer parameters to surface air velocity and silage porosity. The resulting model was able to accurately predict the effect of temperature on ethanol emission in wind tunnel trials, but it over-predicted alcohol and aldehyde emission measured using a mass balance approach from corn silage samples outdoors and within barns. Mass balance results confirmed that emission is related to gas-phase porosity, but the response to air speed was not clear, which was contrary to wind tunnel results. Mass balance results indicate that alcohol emission from loose silage on farms may approach 50% of the initial mass over six hours, while relative losses of acetaldehyde will be greater.

  15. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  16. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    Science.gov (United States)

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers.

  17. Determination of VOC emission rates and compositions for offset printing.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Keil, C B

    1995-07-01

    The release rates of volatile organic compounds (VOC) as fugitive emissions from offset printing are difficult to quantify, and the compositions are usually not known. Tests were conducted at three offset printing shops that varied in size and by process. In each case, the building shell served as the test "enclosure," and air flow and concentration measurements were made at each air entry and exit point. Emission rates and VOC composition were determined during production for (1) a small shop containing three sheetfed presses and two spirit duplicators (36,700 sheets, 47,240 envelopes and letterheads), (2) a medium-size industrial in-house shop with two webfed and three sheetfed presses, and one spirit duplicator (315,130 total sheets), and (3) one print room of a large commercial concern containing three webfed, heatset operations (1.16 x 10(6) ft) served by catalytic air pollution control devices. Each test consisted of 12 one-hour periods over two days. Air samples were collected simultaneously during each period at 7-14 specified locations within each space. The samples were analyzed by gas chromatography (GC) for total VOC and for 13-19 individual organics. Samples of solvents used at each shop were also analyzed by GC. Average VOC emission rates were 4.7-6.1 kg/day for the small sheetfed printing shop, 0.4-0.9 kg/day for the industrial shop, and 79-82 kg/day for the commercial print room. Emission compositions were similar and included benzene, toluene, xylenes, ethylbenzene, and hexane. Comparison of the emission rates with mass balance estimates based on solvent usage and composition were quite consistent.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Emission inventory of evaporative emissions of VOCs in four metro cities in India.

    Science.gov (United States)

    Srivastava, Anjali; née Som Majumdar, Dipanjali

    2010-01-01

    High concentrations of volatile organic compounds (VOCs) in ambient air of urban areas stress the need for the control of VOC emissions due to the toxic and carcinogenic nature of many VOCs commonly encountered in urban air. Emission inventories are an essential tool in the management of local air quality, which provide a listing of sources of air pollutant emissions within a specific area over a specified period of time. This study intended to provide a level IV emission inventory as par the United States Environmental Protection Agency (USEPA) definition for evaporative VOC emissions in the metro cities of India namely Delhi, Mumbai, Chennai, and Kolkata. The vehicular evaporative emissions are found to be the largest contributor to the total evaporative emissions of hydrocarbons followed by evaporative losses related to petrol loading and unloading activities. Besides vehicle-related activities, other major sources contributing to evaporative emissions of hydrocarbons are surface coating, dry cleaning, graphical art applications, printing (newspaper and computer), and the use of consumer products. Various specific preventive measures are also recommended for reducing the emissions.

  19. Primary VOC emissions from Commercial Aircraft Jet Engines

    Science.gov (United States)

    Kilic, Dogushan; Huang, Rujin; Slowik, Jay; Brem, Benjamin; Durdina, Lukas; Rindlisbacher, Theo; Baltensperger, Urs; Prevot, Andre

    2014-05-01

    Air traffic is growing continuously [1]. The increasing number of airplanes leads to an increase of aviation emissions giving rise to environmental concerns globally by high altitude emissions and, locally on air quality at the ground level [2]. The overall impact of aviation emissions on the environment is likely to increase when the growing air transportation trend [2] is considered. The Aviation Particle Regulatory Instrumentation Demonstration Experiment (APRIDE)-5 campaign took place at Zurich Airport in 2013. In this campaign, aircraft exhaust is sampled during engine acceptance tests after engine overhaul at the facilities of SR Technics. Direct sampling from the engine core is made possible due to the unique fixed installation of a retractable sampling probe and the use of a standardized sampling system designed for the new particulate matter regulation in development for aircraft engines. Many of the gas-phase aircraft emissions, e.g. CO2, NOX, CO, SO2, hydrocarbons, and volatile organic compounds (VOC) were detected by the instruments in use. This study, part of the APRIDE-5 campaign, focuses on the primary VOC emissions in order to produce emission factors of VOC species for varying engine operating conditions which are the surrogates for the flight cycles. Previously, aircraft plumes were sampled in order to quantify VOCs by a proton transfer reaction quadrupole mass spectrometer (PTR-MS) [3]. This earlier study provided a preliminary knowledge on the emission of species such as methanol, acetaldehyde, acetone, benzene and toluene by varying engine thrust levels. The new setup was (i) designed to sample from the diluted engine exhaust and the new tool and (ii) used a high resolution time of flight PTR-MS with higher accuracy for many new species, therefore providing a more detailed and accurate inventory. We will present the emission factors for species that were quantified previously, as well as for many additional VOCs detected during the campaign

  20. Study on characteristics of double surface VOC emissions from dry flat-plate building materials

    Institute of Scientific and Technical Information of China (English)

    WANG Xinke; ZHANG Yinping; ZHAO Rongyi

    2006-01-01

    This paper sets up an analytic model of double surface emission of volatile organic compound (VOC) from dry, flat-plate building materials. Based on it, the influence of factors including air change rate, loading factor of materials in the room, mass diffusion coefficient, partition coefficient, convective mass transfer coefficient, thickness of materials, asymmetric convective flow and initial VOC concentration distribution in the building material on emission is discussed. The conditions for simplifying double surface emission into single surface emission are also discussed. The model is helpful to assess the double surface VOC emission from flat-plate building materials used in indoor furniture and space partition.

  1. VOC emission rates and emission factors for a sheetfed offset printing shop.

    Science.gov (United States)

    Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Javor, M; Keil, C B; Milz, S A

    1995-04-01

    Emission rates were determined during production for a sheetfed offset printing shop by combining the measured concentrations and ventilation rates with mass balance models that characterized the printing space. Air samples were collected simultaneously on charcoal tubes for 12 separate 1-hour periods at 6 locations. Air samples and cleaning solvents were analyzed by gas chromatography for total volatile organic compounds (VOC) and 13 hydrocarbons. The average VOC emission rate was 470 g/hr with a range of 160-1100 g/hr. These values were in good agreement with the amounts of VOC, hexane, toluene, and aromatic C9s determined from estimated solvent usage and measured solvent compositions. Comparison of the emission rates with source activities indicated an emission factor of 30-51 g VOC/press cleaning. Based on the test observations it was estimated that this typical small printing facility was likely to release 1-2 T VOC/year. The methodology also may be useful for the surface coating industry, as emission rates in this study were determined without recourse to a temporary total enclosure and without interfering with worker activities, increasing worker exposure, or increasing safety and explosion hazards.

  2. Development of biogenic VOC emission inventories for the boreal forest

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, V.

    2008-07-01

    The volatile organic compounds (VOCs) emitted by vegetation, especially forests, can affect local and regional atmospheric photochemistry through their reactions with atmospheric oxidants. Their reaction products may also participate in the formation and growth of new particles which affect the radiation balance of the atmosphere, and thus climate, by scattering and absorbing shortwave and longwave radiation and by modifying the radiative properties, amount and lifetime of clouds. Globally, anthropogenic VOC emissions are far surpassed by the biogenic ones, making biogenic emission inventories an integral element in the development of efficient air quality and climate strategies. The inventories are typically constructed based on landcover information, measured emissions of different plants or vegetation types, and empirical dependencies of the emissions on environmental variables such as temperature and light. This thesis is focused on the VOC emissions from the boreal forest, the largest terrestrial biome with characteristic vegetation patterns and strong seasonality. The isoprene, monoterpene and sesquiterpene emissions of the most prevalent boreal tree species in Finland, Scots pine, have been measured and their seasonal variation and dependence on temperature and light have been studied. The measured emission data and other available observations of the emissions of the principal boreal trees have been used in a biogenic emission model developed for the boreal forests in Finland. The model utilizes satellite landcover information, Finnish forest classification and hourly meteorological data to calculate isoprene, monoterpene, sesquiterpene and other VOC emissions over the growing season. The principal compounds emitted by Scots pine are DELTA3-carene and alpha-pinene in the south boreal zone and alpha- and beta-pinene in the north boreal zone. The monoterpene emissions are dependent on temperature and have a clear seasonal cycle with high emissions in spring

  3. Anthropogenic VOC speciation in emission inventories: a method for improvement and evaluation

    Science.gov (United States)

    von Schneidemesser, E.; D'angiola, A.; Granier, C.; Monks, P. S.; Law, K.

    2011-12-01

    Volatile organic compounds (VOCs) are important precursor compounds for the formation of ozone and other secondary organic aerosols. Anthropogenic sources of VOCs are dominated by industrial usage and transportation sources, the latter being extremely important in urban areas. Megacities and large urban conglomerations are emission hot spots that exert disproportionately large adverse health effects on the population and surrounding environment, owing to their high population density and concentrated emission sources. Exceedances of ozone air quality standards are a problem in many urban areas. Improvements in the modelling of ozone precursors would benefit our understanding of the impact of changes in emissions and the effect of future legislation on air quality. As many VOCs are extremely reactive in the atmosphere and have high ozone forming potential, improved speciation of VOCs in models could lead to better predictions of ozone levels and secondary organic aerosol formation. Previously, VOC and carbon monoxide (CO) data from urban areas around the world were compared. Significant differences in VOC concentrations were observed, however, when normalized to CO, the VOC-CO ratios were similar for many locations and over time, even as emission reductions were implemented. The largest variation was found in the lighter alkanes due to the use of alternative transportation fuels in various world regions. These ratios were grouped by region and used to develop a new speciation for surface emissions of VOCs, by applying the regional observed VOC-CO ratios to the CO emissions for the urban areas. Urban areas were defined as 150 inhabitants per km2 or greater. Model simulations were performed using the MOZART-4 chemistry transport model to assess the improved speciation of the VOC emissions. The model outputs were compared to urban observational data where available. The impact of the new speciation of the distribution of CO, OH and ozone at the global scale will be

  4. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX PAINT AND ALKYD PAINTS

    Science.gov (United States)

    The report gives details of a small-chamber test method developed by the EPA for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current knowledge about VOC, including hazardous air pollutant, emissions from interior paints generated...

  5. An analytical solution for VOCs emission from multiple sources/sinks in buildings

    Institute of Scientific and Technical Information of China (English)

    DENG BaoQing; YU Bo; Chang Nyung KIM

    2008-01-01

    An analytical solution is presented to describe the emission/sorption of volatile organic compounds (VOCs) from/on multiple single-layer materials coexisting in buildings. The diffusion of VOCs within each material is described by a transient diffusion equation. All diffusion equations are coupled with each other through the equation of mass conservation in the air. The analytical solution is validated by the experimental data in literature, Compared to the one-material case, the coexistence of multiple materials may decrease the emission rate of VOCs from each material. The smaller the diffusion coef-ficient is, the more the emission rate decreases. Whether a material is a source or a sink in the case of multiple materials coexisting is not affected by the diffusion coefficient. For the case of multiple mate-rials with different partition coefficients, a material with a high partition coefficient may become a sink. This may promote the emission of VOCs from other materials.

  6. Optimizing the emission inventory of volatile organic compounds (VOCs) based on network observations

    Science.gov (United States)

    Chen, Sheng-Po; Liu, Wen-Tzu; Ou-Yang, Chang-Feng; Chang, Julius S.; Wang, Jia-Lin

    2014-02-01

    Hourly observations of 56 non-methane hydrocarbons (NMHCs) performed by a network of photochemical assessment monitoring stations (PAMS) at 11 locations across Taiwan were used to evaluate 56 speciated emissions and the resulting simulations of an air quality model. Based on the PAMS observations at two urban sites, emission modification was made for the 56 PAMS species in the model. To further test the applicability of this emission correction approach, the same modified emissions were subject to seven different meteorological conditions and comparison with observations of all the 11 PAMS sites. Originally there was a minimum of only 8 of 56 species showed agreement with observations for the worst of the 11 PAMS sites and 28 of 56 species for the best site. With modified emissions, the number increased to 13-52 species across the 11 PAMS sites, demonstrating that the simple urban based correction procedure has broad applicability. When applying this modification of PAMS emissions to the simulations of other air quality gases, SO2 and NOx showed small changes compared with observations (-0.27% and -2.51%, respectively), while total VOC concentrations showed significant changes (+15.28%) as a result of the adjustment in VOC emissions (+26.7%). Although VOCs are the precursor of ozone, the relatively large changes in VOC did not seem to affect ozone formation to the similar extent, only resulting in the changes of average O3 by 2.9 ppb (+9.41%). It shows that although the emission modification improves individual VOC simulations, the performance in oxidant simulation is still largely unaltered. Although the original U.S. VOC emission profiles can capture the general features of ambient VOCs, further optimization of emissions may still be needed by referencing extensive observations, so that emissions can better fit domestic conditions and accuracy in model simulations can be improved.

  7. SUBSTRATE EFFECTS ON VOC EMISSIONS FROM A LATEX PAINT

    Science.gov (United States)

    The effects of two substrates -- a stainless steel plate and a gypsum board -- on the volatile organic compound (VOC) emissions from a latex paint were evaluated by environmental chamber tests. It was found that the amount of VOCs emitted from the painted stainless steel was 2 to...

  8. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    Science.gov (United States)

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  9. Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley

    Science.gov (United States)

    Sarkar, Chinmoy; Sinha, Vinayak; Kumar, Vinod; Rupakheti, Maheswar; Panday, Arnico; Mahata, Khadak S.; Rupakheti, Dipesh; Kathayat, Bhogendra; Lawrence, Mark G.

    2016-03-01

    The Kathmandu Valley in Nepal suffers from severe wintertime air pollution. Volatile organic compounds (VOCs) are key constituents of air pollution, though their specific role in the valley is poorly understood due to insufficient data. During the SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley-Atmospheric Brown Clouds) field campaign conducted in Nepal in the winter of 2012-2013, a comprehensive study was carried out to characterise the chemical composition of ambient Kathmandu air, including the determination of speciated VOCs, by deploying a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) - the first such deployment in South Asia. In the study, 71 ion peaks (for which measured ambient concentrations exceeded the 2σ detection limit) were detected in the PTR-TOF-MS mass scan data, highlighting the chemical complexity of ambient air in the valley. Of the 71 species, 37 were found to have campaign average concentrations greater than 200 ppt and were identified based on their spectral characteristics, ambient diel profiles and correlation with specific emission tracers as a result of the high mass resolution (m / Δm > 4200) and temporal resolution (1 min) of the PTR-TOF-MS. The concentration ranking in the average VOC mixing ratios during our wintertime deployment was acetaldehyde (8.8 ppb) > methanol (7.4 ppb) > acetone + propanal (4.2 ppb) > benzene (2.7 ppb) > toluene (1.5 ppb) > isoprene (1.1 ppb) > acetonitrile (1.1 ppb) > C8-aromatics ( ˜ 1 ppb) > furan ( ˜ 0.5 ppb) > C9-aromatics (0.4 ppb). Distinct diel profiles were observed for the nominal isobaric compounds isoprene (m / z = 69.070) and furan (m / z = 69.033). Comparison with wintertime measurements from several locations elsewhere in the world showed mixing ratios of acetaldehyde ( ˜ 9 ppb), acetonitrile ( ˜ 1 ppb) and isoprene ( ˜ 1 ppb) to be among the highest reported to date. Two "new" ambient compounds, namely formamide (m / z = 46.029) and acetamide (m / z

  10. Quantification of Methane and VOC Emissions from Natural Gas Production in Two Basins with High Ozone Events

    Science.gov (United States)

    Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.

    2015-12-01

    Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.

  11. Consideration of the Change of Material Emission Signatures due to Longterm Emissions for Enhancing VOC Source Identification

    DEFF Research Database (Denmark)

    Han, K. H.; Zhang, J. S.; Knudsen, Henrik Nellemose

    2011-01-01

    The objectives of this study were to characterize the changes of VOC material emission profiles over time and develop a method to account for such changes in order to enhance a source identification technique that is based on the measurements of mixed air samples and the emission signatures of in...

  12. Consideration Of The Change Of Material Emission Signatures Due To Long-term Emissions For Enhancing Voc Source Identification

    DEFF Research Database (Denmark)

    Han, K. H.; Zhang, J. S.; Knudsen, H. N.

    2011-01-01

    The objectives of this study were to characterize the changes of VOC material emission profiles over time and develop a method to account for such changes in order to enhance a source identification technique that is based on the measurements of mixed air samples and the emission signatures of in...

  13. VOC emissions during outdoor ship painting and health-risk assessment

    Science.gov (United States)

    Malherbe, Laure; Mandin, Corinne

    Painting of ship external surfaces in building or repair shipyards generates significant emissions of volatile organic compounds (VOC) to the atmosphere. Such emissions have not been specifically regulated so far. The purpose of our study is therefore to evaluate the quantities and as far as possible the nature of the emitted VOC, to characterize the dispersion of these chemicals in the atmosphere and to assess the exposure and resulting health risks for surrounding populations. This study is focused on VOC emitted during outdoor work involving use of paints and solvents. VOC emissions are diffuse, since they come from the whole painted surfaces. A methodology for quantifying them is developed and tested, using information provided by ALSTOM—Chantiers de l'Atlantique and data found in paint technical sheets. Its reliability is checked against emission values established by ALSTOM or found in literature. Then, for two particular situations, construction on one hand, repair on the other hand, atmospheric dispersion of total VOC is simulated to assess the long-term impact (characterized by the plume extension and the annual mean concentrations) of these compounds. Finally, a health-risk assessment based on the estimates is carried out to evaluate the risks by inhalation for people living near the site. Considering the presumed composition of paints and the available reference toxicological values, total VOC are entirely assimilated to toluene. In both examples (construction and repair) and in the current state of knowledge, the calculated risk is not of health concern. Several ways for taking this study further are proposed: a more exhaustive collection of data relative to VOC and other substances contained in paints, on-site measurement of VOC in the ambient air, characterization of diffuse emissions related to other activities, such as purging or welding, and other pollutants, like particles.

  14. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  15. Effects of cold temperature and ethanol content on VOC emissions from light-duty gasoline vehicles

    Science.gov (United States)

    Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty spark ignition vehicles operating on summer and winter grade gasoline (E0) and ethanol blended (E10 and E85) fuels. Vehicle...

  16. Control of VOC emissions from a flexographic printing facility using an industrial biotrickling filter.

    Science.gov (United States)

    Sempere, F; Martínez-Soria, V; Penya-Roja, J M; Waalkens, A; Gabaldón, C

    2012-01-01

    The study of an industrial unit of biotrickling filter for the treatment of the exhaust gases of a flexographic facility was investigated over a 2-year period with the objective to meet the volatile organic compound (VOC) regulatory emission limits. Increasing the water flow rate from 2 to 40 m(3) h(-1) improved the performance of the process, meeting the VOC regulation when 40 m(3) h(-1) were used. An empty bed residence time (EBRT) of 36 s was used when the inlet air temperature was 18.7 °C, and an EBRT as low as 26 s was set when the inlet temperature was 26.8 °C. During this long-term operation, the pressure drop over the column of the bioreactor was completely controlled avoiding clogging problems and the system could perfectly handle the non-working periods without VOC emission, demonstrating its robustness and feasibility to treat the emission of the flexographic sector.

  17. Biogenic VOCs emission inventory development of temperate grassland vegetation in Xilin River Basin,Inner Mongolia,China

    Institute of Scientific and Technical Information of China (English)

    HE Nian-peng; HAN Xing-guo; SUN Wei; Pan Qing-min

    2004-01-01

    Given the key role of biogenic volatile organic compounds(VOCs) to tropospheric chemistry and regional air quality, it is important to generate accurate VOCs emission inventories. However, only a less fraction of plant species, in temperate grassland of Inner Mongolia, has been characterized by quantitative measurements. A taxonomic methodology, which assigns VOCs measurements to unmeasured species, is an applicable and inexpensive alternation for extensive VOCs emission survey, although data are needed for additional plant families and genera to further validate the taxonomic approach in grassland vegetation. In this experiment, VOCs emission rates of 178 plant species were measured with a portable photoionization detector(PID). The results showed the most of genera and some families have consistent feature of their VOCs emission, especially for isoprene, and provide the basic premise of taxonomic methodology to develop VOCs emission inventories for temperate grassland. Then, the taxonomic methodology was introduced into assigning emission rate to other 96 species, which no measured emission rates available here. A systematical emission inventory of temperate grassland vegetation in Inner Mongolia was provided and further evidence that taxonomy relationship can serve as a useful guide for generalizing the emissions behavior of many, but not all, plant families and genera to grassland vegetation.

  18. VOC emissions of smouldering combustion from Mediterranean wildfires in central Portugal

    Science.gov (United States)

    Evtyugina, Margarita; Calvo, Ana Isabel; Nunes, Teresa; Alves, Célia; Fernandes, Ana Patrícia; Tarelho, Luís; Vicente, Ana; Pio, Casimiro

    2013-01-01

    Emissions of trace gases and C5-C10 volatile organic compounds (VOCs) from Mediterranean wildfires occurring in Portugal in summer 2010 were studied. Fire smoke was collected in Tedlar bags and analysed for CO, CO2, total hydrocarbons (THC) and VOCs. The CO, CO2 and THC emission factors (EFs) were 206 ± 79, 1377 ± 142 and 8.1 ± 9 g kg-1 biomass burned (dry basis), respectively. VOC emissions from Mediterranean wildfires were reported for the first time. Aromatic hydrocarbons were major components of the identified VOC emissions. Among them, benzene and toluene were dominant compounds with EFs averaging 0.747 ± 0.303 and 0.567 ± 0.422 g kg-1 biomass burned (dry basis), respectively. Considerable amounts of oxygenated organic volatile compounds (OVOCs) and isoprenoids were detected. 2-Furaldehyde and hexanal were the most abundant measured OVOCs with EFs of 0.337 ± 0.259 and 0.088 ± 0.039 g kg-1 biomass burned (dry basis), respectively. The isoprenoid emissions were dominated by isoprene (EF = 0.207 ± 0.195 g kg-1 dry biomass burned) and α-pinene (EF = 0.112 ± 0.093 g kg-1 dry biomass burned). Emission data obtained in this work are useful for validating and improving emission inventories, as well for carrying out modelling studies to assess the effects of vegetation fires on air pollution and tropospheric chemistry.

  19. 国内外 VOCs 排放标准体系研究%Study of Emission Standards System of VOCs at Home and Abroad

    Institute of Scientific and Technical Information of China (English)

    罗斌; 蒋燕; 王斌

    2014-01-01

    It had important significance to develop VOCs emission standards for controlling VOCs emissions, improving air quality, and protecting human health and ecological environment. The characteristics of emission standards system of VOCs at home and abroad were analyzed, and some suggestions on the development of VOCs emission standards were proposed that toxicity and emissions of pollutants, particular pollutants of key industries should be considered when developing standards, and establishing emission standards system of VOCs giving priority to industry standards.%制定VOCs排放标准对于控制VOCs排放量,改善环境空气质量,保护人体健康和生态环境有重要意义。分析了国内外VOCs排放标准体系的特点,提出我国制定VOCs排放标准的几点建议,即标准制定过程中应考虑污染物毒性和排放量大小,考虑控制重点行业的特征污染物,并建立以行业排放标准为主的VOCs排放标准体系。

  20. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  1. Emission Facilities - Air Emission Plants

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Represents the Primary Facility type Air Emission Plant (AEP) point features. Air Emissions Plant is a DEP primary facility type related to the Air Quality Program....

  2. Characteristics of volatile organic compounds (VOCs) from the evaporative emissions of modern passenger cars

    Science.gov (United States)

    Yue, Tingting; Yue, Xin; Chai, Fahe; Hu, Jingnan; Lai, Yitu; He, Liqang; Zhu, Rencheng

    2017-02-01

    Volatile organic compounds (VOCs) from vehicle evaporative emissions contribute substantially to photochemical air pollution. Yet, few studies of the characteristics of VOCs emitted from vehicle evaporative emissions have been published. We investigate the characteristics of 57 VOCs in hot soak, 24 h diurnal and 48 h diurnal emissions by applying the Sealed Housing Evaporative Determination unit (SHED) test to three modern passenger cars (one US Tier 2 and two China IV vehicles) using two different types of gasoline. The characteristics of the VOCs from the hot soak, 24 h diurnal and 48 h diurnal emissions were different due to their different emission mechanisms. In the hot soak emissions, toluene, isopentane/n-pentane, and 2,2,4-trimethylpentane were dominant species. In the 24 h and 48 h diurnal emissions, isopentane and n-pentane were dominant species. Toluene was the third most dominant component in the 24 h diurnal emissions but decreased by a mass of 42%-80% in the 48 h diurnal emissions. In the hot soak, 24 h diurnal and 48 h diurnal emissions, alkanes were generally the dominant hydrocarbons, followed by aromatics and olefins. However, owing to different evaporative emission mechanisms, the weight percentages of the aromatic hydrocarbons decreased and the weight percentages of the alkanes increased from the hot soak test to the 24 h diurnal and 48 h diurnal tests for each vehicle. The dominant contributors to the ozone formation potentials (OFPs) were also different in the hot soak, 24 h diurnal and 48 h diurnal emissions. The OFPs (g O3/g VOC) of the hot soak emissions were higher than those of the 24 h and 48 h diurnal emissions. In addition, the combined effect of decreasing the olefin and aromatic contents of gasoline on vehicle evaporative emissions was investigated. The aromatics all decreased substantially in the hot soak, 24 h and 48 h diurnal emissions, and the total masses of the VOCs and OFPs decreased, with the greatest reduction occurring in

  3. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  4. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    Science.gov (United States)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  5. Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources.

    Science.gov (United States)

    Tassi, F; Capecchiacci, F; Giannini, L; Vougioukalakis, G E; Vaselli, O

    2013-09-01

    This study presents the chemical composition of VOCs in air and gas discharges collected at Nisyros Island (Dodecanese Archipelago, Greece). The main goals are i) to discriminate between natural and anthropogenic VOC sources and ii) to evaluate their impact on local air quality. Up to 63 different VOCs were recognized and quantitatively determined in 6 fumaroles and 19 air samples collected in the Lakki caldera, where fumarolic emissions are located, and the outer ring of the island, including the Mandraki village and the main harbor. Air samples from the crater area show significant concentrations of alkanes, alkenes, cyclic, aromatics, and S- and O-bearing heterocycles directly deriving from the hydrothermal system, as well as secondary O-bearing compounds from oxidation of primary VOCs. At Mandraki village, C6H6/Σ(methylated aromatics) and Σ(linear)/Σ(branched) alkanes ratios <1 allow to distinguish an anthropogenic source related to emissions from outlet pipes of touristic and private boats and buses.

  6. Oxygenated VOC and monoterpene emissions from a boreal coniferous forest

    Science.gov (United States)

    Taipale, R.; Rantala, P.; Kajos, M. K.; Patokoski, J.; Ruuskanen, T. M.; Aalto, J.; Kolari, P.; Bäck, J.; Hari, P.; Kulmala, M.; Rinne, J.

    2012-04-01

    Compared with terpenoids, emissions of oxygenated volatile organic compounds (VOCs) from boreal ecosystems have been poorly characterized. We measured ecosystem scale emissions of three oxygenated compounds (methanol, acetaldehyde, and acetone) and monoterpenes from a Scots pine dominated forest in southern Finland during the summers 2006-2008. The measurements were conducted using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The contribution of the three oxygenated compounds to the measured total emissions was 40-60 %. The highest oxygenated VOC emissions were those of methanol, comprising 20-30 % of the total, followed by acetone with a share of 10-20 %. The acetaldehyde emissions were 5-10 % of the total. This emission composition will be compared with that obtained from shoot enclosure measurements. Methanol showed deposition during some periods although its overall flux was towards the atmosphere. The monoterpene emissions had a light dependent component, suggesting that part of the emissions originated directly from monoterpene biosynthesis. Diurnal, seasonal, and inter-annual variations in the emissions, along with temperature and light dependencies, will be discussed.

  7. Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air

    Science.gov (United States)

    Hung, Richard; Yin, Guohua; Klich, Maren A.; Grimm, Casey; Bennett, Joan W.

    2016-01-01

    In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We evaluated the volatile production of Aspergillus versicolor strains SRRC 108 (NRRL 3449) and SRRC 2559 (ATCC 32662) grown on nutrient rich fungal medium, and grown under conditions to mimic the substrate encountered in the built environment where fungi would typically grow indoors (moist wallboard and ceiling tiles). Using headspace solid phase microextraction/gas chromatography-mass spectrometry, we analyzed VOC profiles of the two strains. The most abundant compound produced by both strains on all three media was 1-octen-3-ol. Strain SRRC 2559 made several terpenes not detected from strain SRRC 108. Using a split-plate bioassay, we grew Arabidopsis thaliana in a shared atmosphere with VOCs from the two strains of Aspergillus versicolor grown on yeast extract sucrose medium. The VOCs emitted by SRRC 2559 had an adverse impact on seed germination and plant growth. Chemical standards of individual VOCs from the Aspergillus versicolor mixture (2-methyl-1-butanol, 3-methyl-1-butanol, 1-octen-3-ol, limonene, and β-farnesene), and β-caryophyllene were tested one by one in seed germination and vegetative plant growth assays. The most inhibitory compound to both seed germination and plant growth was 1-octen-3-ol. Our data suggest that Arabidopsis is a useful model for monitoring indoor air quality as it is sensitive to naturally emitted fungal volatile mixtures as well as to chemical standards of individual compounds, and it exhibits relatively quick concentration- and duration-dependent responses.

  8. Impact of air pressure on volatile organic compound emissions from a carpet

    Institute of Scientific and Technical Information of China (English)

    高鹏; 邓琴琴; LIN; Chao-hsin; 杨旭东

    2009-01-01

    The measurement of volatile organic compound (VOC) emissions from materials is normally conducted under standard environmental conditions, i.e., (23±1) ℃ temperature, (50±5)% relative humidity, and 0.1 MPa pressure. In order to define VOC emissions in non-standard environmental conditions, it is necessary to study the impact of key environmental parameters on emissions. This paper evaluates the impact of air pressure on VOC emissions from an aircraft carpet. The correlation between air pressure and VOC diffusion coefficient is derived, and the emission model is applied to studying the VOC emissions under pressure conditions of less than 0.1 MPa.

  9. Comparison of the substrate effect on VOC emissions from water based varnish and latex paint.

    Science.gov (United States)

    Silva, Gabriela V; Vasconcelos, M Teresa S D; Santos, Armando M; Fernandes, Eduardo O

    2003-01-01

    The building materials are recognised to be major contributors to indoor air contamination by volatile organic compounds (VOCs). The improvement of the quality of the environment within buildings is a topic of increasing research and public interest. Legislation in preparation by the European Commission may induce, in the near future, European Union Member States to solicit the industries of paints, varnishes and flooring materials for taking measures, in order to reduce the VOC emissions resulting from the use of their products. Therefore, product characterisation and information about the influence of environmental parameters on the VOC emissions are fundamental for providing the basic scientific information required to allow architects, engineers, builders, and building owners to provide a healthy environment for building occupants. On the other hand, the producers of coating building materials require this information to introduce technological alterations, when necessary, in order to improve the ecological quality of their products, and to make them more competitive. Studies of VOC emissions from wet materials, like paints and varnishes, have usually been conducted after applying the material on inert substrates, due to its non-adsorption and non-porosity properties. However, in real indoor environments, these materials are applied on substrates of a different nature. One aim of this work was to study, for the first time, the VOC emissions from a latex paint applied on concrete. The influence of the substrate (uncoated cork parquet, eucalyptus parquet without finishing and pine parquet with finishing) on the emissions of VOC from a water-based varnish was also studied. For comparison purposes, polyester film (an inert substrate) was used for both wet materials. The specific emission rates of the major VOCs were monitored for the first 72 h of material exposure in the atmosphere of a standardized test chamber. The air samples were collected on Tenax TA and

  10. Preliminary insights into the chemical composition and emissions of urban VOCs in the East Mediterranean

    Science.gov (United States)

    Sauvage, S.; Borbon, A.; Afif, C.; Bechara, J.; Leonardis, T.; Fronval, I.; Waked, A.; Brioude, J.; Locoge, N.

    2011-12-01

    The Mediterranean region is an area where polluted air masses coming from Eastern and Central Europe increase air pollution, particularly during stagnation periods, together with intense solar radiation. It was demonstrated that the eastern coast of the Mediterranean Sea suffers from this kind of phenomena. Favorable weather conditions, remote sources, high urban and biogenic emissions lead to the formation of secondary pollutants (ozone and secondary organic aerosols, SOA), which may have significant impacts on health and climate. However, data are sparse in this region. The ECOCEM (Emission and Chemistry of Organic Carbon in the East Mediterranean - Beirut) project aims to improve our understanding of air pollution in this area by studying the composition of the gaseous and particulate phases in Beirut (Lebanon). Beirut is located on the eastern border of the Mediterranean basin. The goal of the project, which is taking place over two intensive field campaigns (July 2011 and February 2012), is to provide valuable observations on the composition and the temporal evolution of organics (summer versus winter),to identify and quantify the relative importance of sources of volatile organic compounds (VOCs) and aerosols (SOA) and to study the role of VOCs in the first oxidation steps of SOA formation. For that purpose, a large suite of primary and secondary VOCs (>60) were measured during the summertime campaign (July 2nd to July 17th 2011) at one suburban site in Beirut. Techniques encompass off-line sampling on carbonaceous sorbent tubes (2-hour time resolution) and liquid coil scrubbing (1-hour time resolution), an on-line GCFID (1-hour time resolution) and a PTR-MS (4-min time resolution). We will discuss here the atmospheric composition of VOCs in relation with their emissions. In particular, these data provide useful constraints to evaluate the first temporally and spatially resolved national emission inventory that was built for the year 2010. Preliminary results

  11. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2010-09-01

    Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.

    The smallest reliable fluxes we determined were less than 0.1 nmol m−2 s−1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m−2 s−1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  12. New observations of VOC emissions and concentrations in, above, and around the Central Valley of California

    Science.gov (United States)

    Goldstein, A. H.; Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Ormeno, E.; Holzinger, R.; Misztal, P. K.; Karl, T. R.; Guenther, A. B.; Fischer, M. L.; Harley, R. A.; Karlik, J. F.

    2011-12-01

    Large portions of the Central Valley of California are out of compliance with current state and federal air quality standards for ozone and particulate matter, and the relative importance of biogenic and anthropogenic VOC emissions to their photochemical production in this region remains uncertain. In 2009-2011 multiple measurement campaigns were completed investigating the VOC emission inventory and concentration distributions. In 2009 BVOC emissions from more than 20 species of major agricultural crops in California were measured in a greenhouse using branch enclosures by both PTRMS and in-situ GC. Overall, crops were found to emit low amounts of BVOC compared to the natural forests surrounding the valley. Crops mainly emitted methanol and terpenes, with a broad array of other species emitted at lower levels, and all the measured crops showed negligible emissions of isoprene. Navel oranges were the largest crop BVOC emitters measured so a full year of flux measurements were made in an orange grove near Visalia in 2010 by eddy covariance(EC)-PTRMS with two multi-week periods of concentration measurements by hourly in-situ GC, and one month of high mass resolution flux measurements by EC-PTR-TOF-MS. The dominant BVOC emissions from the orange grove were methanol and terpenes, followed by acetone, acetaldehyde, and a low level of emissions for many other species. In 2011 aircraft eddy covariance measurements of BVOC fluxes were made by EC-PTRMS covering a large area of California as part of the California Airborne Bvoc Emission Research in Natural Ecosystem Transects (CABERNET) campaign aimed at improving BVOC emission models on regional scales, mainly profiling BVOC emissions from oak woodlands surrounding the Central Valley. In 2010, hourly in-situ VOC measurements were made via in-situ GC in Bakersfield, CA as part of the CalNex experiment. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel. Measurements by

  13. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China.

    Science.gov (United States)

    Yin, Shasha; Zheng, Junyu; Lu, Qing; Yuan, Zibing; Huang, Zhijiong; Zhong, Liuju; Lin, Hui

    2015-05-01

    Accurate and gridded VOC emission inventories are important for improving regional air quality model performance. In this study, a four-level VOC emission source categorization system was proposed. A 2010-based gridded Pearl River Delta (PRD) regional VOC emission inventory was developed with more comprehensive source coverage, latest emission factors, and updated activity data. The total anthropogenic VOC emission was estimated to be about 117.4 × 10(4)t, in which on-road mobile source shared the largest contribution, followed by industrial solvent use and industrial processes sources. Among the industrial solvent use source, furniture manufacturing and shoemaking were major VOC emission contributors. The spatial surrogates of VOC emission were updated for major VOC sources such as industrial sectors and gas stations. Subsector-based temporal characteristics were investigated and their temporal variations were characterized. The impacts of updated VOC emission estimates and spatial surrogates were evaluated by modeling O₃ concentration in the PRD region in the July and October of 2010, respectively. The results indicated that both updated emission estimates and spatial allocations can effectively reduce model bias on O₃ simulation. Further efforts should be made on the refinement of source classification, comprehensive collection of activity data, and spatial-temporal surrogates in order to reduce uncertainty in emission inventory and improve model performance.

  14. Volatile Organic Compound (VOC) Emissions from Dairy Cows and Their Waste

    Science.gov (United States)

    Shaw, S.; Holzinger, R.; Mitloehner, F.; Goldstein, A.

    2005-12-01

    Biogenic VOCs are typically defined as those directly emitted from plants, but approximately 6% of global net primary production is consumed by cattle that carry out enteric fermentation and then emit VOCs that could also be considered biogenic. Current regulatory estimates suggest that dairy cattle in central California emit VOCs at rates comparable to those from passenger vehicles in the region, and thus contribute significantly to the extreme non-attainment of ozone standards there. We report PTR-MS measurements of ammonia and VOCs, and cavity-enhanced-absorption gas analyzer (Los Gatos Research, Inc.) measurements of CH4, emitted from dairy cattle in various stages of pregnancy/lactation and their waste. Experiments were conducted in chambers at UC Davis that simulate freestall cow housing conditions. CH4 fluxes ranged from 125-374 lb/cow/year. The compounds with the highest fluxes from '3 cows+waste' treatments were: ammonia (1-18), methanol (0-2.3), acetone+propanal (0.2-0.7), dimethylsulfide (0-0.4), and mass 109 (likely ID = p-cresol; 0-0.3) in lb/cow/year. Mass 60 (likely ID = trimethylamine) and acetic acid were also abundant. There were 10s of additional compounds with detectable, but small, emissions. A few compounds that were likely emitted (i.e. ethanol, formaldehyde, and dimethylamine) were not quantified by the PTR-MS. The total flux for all measured organic gases (TOG = CH4 + PTR-MS VOCs(including acetone+propanal)) averaged 246±45 lb/cow/year for '3 cows+waste' treatments, and was dominated by methane (>98%). TOG flux for 'waste only' treatments averaged 1.1±0.1 lb/cow/year, and was instead dominated by VOC (>84%). The PTR-MS VOCs as a percent of TOG (0.6±0.2%) emitted from '3 cows+waste' treatments in chamber conditions was a factor of 10 smaller than that currently estimated by the California Air Resources Board. In addition, the ozone forming potentials of the most abundant VOCs are only about 10% those of typical combustion or plant

  15. Characterizing the chemical evolution of air masses via multi-platform measurements of volatile organic compounds (VOCs) during CalNEX: Composition, OH reactivity, and potential SOA formation

    Science.gov (United States)

    Gilman, J. B.; Kuster, W. C.; Bon, D.; Warneke, C.; Lerner, B. M.; Williams, E. J.; Holloway, J. S.; Pollack, I. B.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Herndon, S. C.; Zahniser, M. S.; Vlasenko, A. L.; Li, S.; Alvarez, S. L.; Rappenglueck, B.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; De Gouw, J. A.

    2011-12-01

    Volatile organic compounds (VOCs) are critical components in the photochemical production of ozone (O3) and secondary organic aerosol (SOA). During the CalNex 2010 field campaign, an extensive set of VOCs were measured at the Pasadena ground site, and aboard the NOAA WP-3D aircraft and the WHOI Research Vessel Atlantis. The measurements from each platform provide a unique perspective into the emissions, transport, and atmospheric processing of VOCs within the South Coast Air Basin (SoCAB). The observed enhancement ratios of the hydrocarbons measured on all three platforms are in good agreement and are generally well correlated with carbon monoxide (CO), indicating the prevalence of on-road VOC emission sources throughout the SoCAB. Offshore measurements aboard the ship and aircraft are used to characterize the air mass composition as a function of the land/sea-breeze effect. VOC ratios and other trace gases are used to identify air masses containing relatively fresh emissions that were often associated with offshore flow and re-circulated continental air associated with onshore flow conditions. With the prevailing southwesterly airflow pattern in the LAB throughout the daytime, the Pasadena ground site effectively functions as a receptor site and is used to characterize primary VOC emissions from downtown Los Angeles and to identify the corresponding secondary oxidation products. The chemical evolution of air masses as a function of the time of day is investigated in order to determine the relative impacts of primary emissions vs. secondary VOC products on OH reactivity and potential SOA formation. The reactivity of VOCs with the hydroxyl radical (OH) at the Pasadena site was dominated by the light hydrocarbons, isoprene, and oxygenated VOCs including aldehydes (secondary products) and alcohols (primary anthropogenic emissions). Toluene and benzaldehyde, both of which are associated with primary anthropogenic emissions, are the predominant VOC precursors to the

  16. Performance of the JULES land surface model for UK Biogenic VOC emissions

    Science.gov (United States)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi

  17. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Science.gov (United States)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  18. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Llusia, J.; Penuelas, J. [Universitat Autonoma de Barcelona (Spain). Unitat Ecofisiologia CSIC-CEAB-CREAF; Gimeno, R.S. [CIEMAT, Madrid (Spain). Ecotoxicologia de la Contaminacion Atmosferica

    2002-08-01

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l{sup -1} of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While {alpha}-pinene emissions decreased with ozone fumigation in Olea europaea, {alpha}-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95

  19. [Volatile organic compounds (VOCs) emitted from wood furniture--estimation of emission rate by passive flux sampler].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Nishimura, Tetsuji

    2011-01-01

    The aim of this study was to evaluate aldehydes and other volatile organic compounds (VOCs) emission from furniture, which may cause hazardous influence on human being such as sick building/sick house syndrome. In this study, VOCs emitted from six kinds of wood furniture, including three set of dining tables and three beds, were analyzed by large chamber test method (JIS A 1911). Based on the emission rates of total VOCs (TVOC), the impacts on the indoor TVOC was estimated by the simulation model with volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table and one bed. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in two sets of dining tables and two beds. These results revealed that VOC emissions from wood furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative five areas of furniture unit were evaluated by passive sampling method using flux sampler and emission rate from full-sized furniture was predicted. Emission rates predicted by flux passive sampler were 10-106% (formaldehyde) and 8-141% (TVOC) of the data measured using large chamber test, respectively.

  20. Mechanisms of Increased Particle and VOC Emissions during DPF Active Regeneration and Practical Emissions Considering Regeneration.

    Science.gov (United States)

    Yamada, Hiroyuki; Inomata, Satoshi; Tanimoto, Hiroshi

    2017-02-27

    Mechanisms involved in increased particle and volatile organic compound (VOC) emissions during active and parked active regenerations of a diesel particulate filter (DPF) were investigated using heavy-duty trucks equipped with both a urea selective catalytic reduction system and a DPF (SCR + DPF) and a DPF-only. Particle emissions increased in the later part of the regeneration period but the mechanisms were different above and below 23 nm. Particles above 23 nm were emitted due to the lower filtering efficiency of the DPF because of the decreasing amount of soot trapped during regeneration. Small particles below 23 nm were thought to be mainly sulfuric acid particles produced from SO2 trapped by the catalyst, being released and oxidized during regeneration. Contrary to the particle emissions, VOCs increased in the earlier part of the regeneration period. The mean molecular weights of the VOCs increased gradually as the regeneration proceeded. To evaluate "practical emissions" in which increased emissions during the regeneration were considered, a Regeneration Correction Factor (RCF), which is the average emission during one cycle of regeneration/emission in normal operation, was adopted. The RCFs of PM and VOCs were 1.1-1.5, and those of PNs were as high as 3-140, although they were estimated from a limited number of observations.

  1. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Science.gov (United States)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  2. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Directory of Open Access Journals (Sweden)

    R. Seco

    2011-12-01

    Full Text Available Atmospheric volatile organic compounds (VOCs are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce.

    We conducted seasonal (winter and summer measurements of VOC mixing ratios in an elevated (720 m a.s.l. holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula. Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air.

    The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these

  3. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires a...

  4. MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOCS FROM AIR

    Science.gov (United States)

    The paper discusses a project designed to evaluate the feasibility of using a membrane-supported extraction and biotreatment process to meet the National Emissions Standard for Hazardous Air Pollutants (NESHAP) for aircraft painting and depainting facilities. The proposed system...

  5. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China.

    Science.gov (United States)

    Ou, Jiamin; Zheng, Junyu; Li, Rongrong; Huang, Xiaobo; Zhong, Zhuangmin; Zhong, Liuju; Lin, Hui

    2015-10-15

    The increasing ground-ozone (O3) levels, accompanied by decreasing SO2, NO2, PM10 and PM2.5 concentrations benefited from air pollution control measures implemented in recent years, initiated a serious challenge to control Volatile Organic Compound (VOC) emissions in the Pearl River Delta (PRD) region, China. Speciated VOC emission inventory is fundamental for estimating Ozone Formation Potentials (OFPs) to identify key reactive VOC species and sources in order to formulate efficient O3 control strategies. With the use of the latest bulk VOC emission inventory and local source profiles, this study developed the PRD regional speciated Oxygenated Volatile Organic Compound (OVOC) and VOC emission inventories to identify the key emission-based and OFP-based VOC sources and species. Results showed that: (1) Methyl alcohol, acetone and ethyl acetate were the major constituents in the OVOC emissions from industrial solvents, household solvents, architectural paints and biogenic sources; (2) from the emission-based perspective, aromatics, alkanes, OVOCs and alkenes made up 39.2%, 28.2%, 15.9% and 10.9% of anthropogenic VOCs; (3) from the OFP-based perspective, aromatics and alkenes become predominant with contributions of 59.4% and 25.8% respectively; (4) ethene, m/p-xylene, toluene, 1,2,4-trimethyl benzene and other 24 high OFP-contributing species were the key reactive species that contributed to 52% of anthropogenic emissions and up to 80% of OFPs; and (5) industrial solvents, industrial process, gasoline vehicles and motorcycles were major emission sources of these key reactive species. Policy implications for O3 control strategy were discussed. The OFP cap was proposed to regulate VOC control policies in the PRD region due to its flexibility in reducing the overall OFP of VOC emission sources in practice.

  6. Measurements and modeling to quantify emissions of methane and VOCs from shale gas operations: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Presto, Albert A [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-06-30

    The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PA and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.

  7. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    Science.gov (United States)

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  8. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    Science.gov (United States)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  9. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles.

    Science.gov (United States)

    Petry, Thomas; Vitale, Danielle; Joachim, Fred J; Smith, Ben; Cruse, Lynn; Mascarenhas, Reuben; Schneider, Scott; Singal, Madhuri

    2014-06-01

    Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating and cooking, construction materials as well as outdoor sources. To understand the contribution of scented candles to the indoor load of airborne substances and particulate matter, candle emission testing was undertaken in environmentally controlled small and large emission chambers. Candle emission rates, calculated on the basis of measured chamber concentrations of volatile and semi-volatile organic compounds (VOC, SVOC) and particulate matter (PM), were used to predict their respective indoor air concentrations in a standard EU-based dwelling using 2 models: the widely accepted ConsExpo 1-box inhalation model and the recently developed RIFM 2-box indoor air dispersion model. The output from both models has been used to estimate more realistic consumer exposure concentrations of specific chemicals and PM in candle emissions. Potential consumer health risks associated with the candle emissions were characterized by comparing the exposure concentrations with existing indoor or ambient air quality guidelines or, where not existent, to established toxicity thresholds. On the basis of this investigation it was concluded that under normal conditions of use scented candles do not pose known health risks to the consumer.

  10. Measurement of VOC and SVOC emissions from computer monitors with a 1 m{sup 3} emission test chamber

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, M. [Fraunhofer Wilhelm-Klauditz-Inst., Material Analysis and Indoor Chemistry (Germany)

    2004-07-01

    Electronic devices such as computer monitors emit a large number of different chemicals to the indoor air and their environment under operating conditions, particularly due to their heat development. This basically creates a potential exposure of the room users to those chemicals, some of which may be injurious to human health because of their classification as toxic substances. The spectrum of emissions ranges from more volatile (VOC) auxiliary production agents (solvents) and residual emissions of plastic monomers up to more semi-volatile plasticizers and flame retardants (SVOC) which are added to polymer materials in a well-aimed way in order to achieve certain desired material properties durably. The paper describes the measurement of these emissions with a 1 m{sup 3} test chamber and the health-related evaluation of the results. (orig.)

  11. A comparative study in treating two VOC mixtures in trickle bed air biofilters.

    Science.gov (United States)

    Cai, Zhangli; Kim, Daekeun; Sorial, George A

    2007-06-01

    Two independent parallel trickling bed air biofilters (TBABs) ("A" and "B") with two different typical VOC mixtures were investigated. Toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) were the target VOCs in the mixtures. Biofilter "A" was fed equal molar ratio of the VOCs and biofilter "B" was fed a mixture based on EPA 2003 emission report. Backwashing and substrate starvation operation were conducted as biomass control. Biofilter "A" and "B" maintained 99% overall removal efficiency for influent concentration up to 500 and 300 ppmv under backwashing operating condition, respectively. The starvation study indicated that it can be an effective biomass control for influent concentrations up to 250 ppmv for biofilter "A" and 300 ppmv for "B". Re-acclimation of biofilter performance was delayed with increase of influent concentration for both biofilters. Starvation operation helped the biofilter to recover at low concentrations and delayed re-acclimation at high concentrations. Furthermore, re-acclamation for biofilter "B" was delayed due to its high toluene content as compared to biofilter "A". The pseudo first-order removal rate constant decreased with increase of volumetric loading rate for both biofilters. MEK and MIBK were completely removed in the upper 3/8 media depth. While biofilter depth utilization for the removal of styrene and toluene increased with increase of influent concentrations for both biofilters. However, toluene removal utilized more biofilter depth for biofilter "B" as compared to biofilter "A".

  12. On-Road Measurement of Vehichle VOC Emission Measurements During the 2003 Mexico City Metropolitan Area Field Campaign

    Science.gov (United States)

    Knighton, W. B.; Rogers, T.; Grimsrud, E.; Herndon, S.; Allwine, E.; Lamb, B.; Velasco, E.; Westberg, H.

    2004-12-01

    In the spring of 2003 (April 1-May 5), a multinational team of experts conducted an intensive, five-week field campaign in the Mexico City Metropolitan Area (MCMA). The overall goal of this effort was to contribute to the understanding of the air quality problem in megacities. As part of the campaign the Aerodyne Mobile Laboratory was equipped with state-of-the-art analytical instruments and deployed for measuring a variety of vehicle emissions in real time including CO2, NO2, NH3, HCHO, VOC's and volatile (at 600 °C) aerosol. The on-road measurement of vehicle VOC emissions were performed using a commercial version of the IONICON PTR-MS modified to operate onboard the mobile lab platform. A summary of the PTR-MS results from these and supporting laboratory experiments will be presented and discussed. In particular, selected chase events will be presented to illustrate the utility of the PTR-MS technique for characterizing vehicle VOC emission profiles in real time. VOC emission profiles for different vehicle engine types which include gasoline, diesel and compressed natural gas will be discussed and compared to the measurements from other high time response instruments deployed on the Aerodyne mobile van.

  13. Assessment of the impact of biogenic VOC emissions in a high ozone episode via integrated remote sensing and the CMAQ model

    Institute of Scientific and Technical Information of China (English)

    Kaiyu CHENG; Ni-Bin CHANG

    2009-01-01

    In many metropolitan regions, natural sources contribute a substantial fraction of volatile organic compound (VOC) emissions. These biogenic VOC emissions are precursors to tropospheric Ozone (O3) formation.Because forests make up 59% of the land area in Taiwan Province, China, the biogenic VOC emissions from forests and farmland could play an important role in photochemical reactions. On the other hand, anthropogenic emissions might also be one of the major inputs for ground level O3concentrations. Hence, emission inventory data, grouped as point, area, mobile and biogenic VOC sources, are a composite of reported and estimated pollutant emission information and are used by many air quality models to simulate ground level O3 concentrations. Before using relevant air quality models, the emission inventory data generally require huge amounts of processing for spatial,temporal, and species congruence with respect to the associated air quality modeling work. The fist part of this research applied satellite remote sensing and geographic information system (GIS) analyses to characterize land use/land cover (LULC) patterns, integrating various sources of anthropogenic emissions and biogenic emissions associated with a variety of plant species. To investigate the significance of biogenic VOC emissions on ozone formation, meteorological and air quality modeling were then employed to generate hourly ozone estimates for a case study of a high ozone episode in southern Taiwan, which is the leading industrial hub on the island. To enhance the modeling accuracy, a unique software module, SMOKE, was set up for emission processing to prepare emission inputs for the U.S. EPA's Models-3/CMAQ. An emission inventory of Taiwan,TEDS 4.2, was used as the anthropogenic emission inventory. Biogenic emission modeling was accomplished by BEIS-2 in SMOKE, with improvement of local LULC data and revised emission factors. Research findings show that the majority of biogenic VOC emissions occur

  14. Push-Pull Air Curtain Performances for VOCs Containment in an Industrial Process

    Directory of Open Access Journals (Sweden)

    A. Aubert

    2011-01-01

    Full Text Available The aim of this study is to analyze the efficiency of a Volatile Organic Compounds (VOCs containment system using an air curtain (push-pull type on a manual workstation. This work combines CFD numerical simulations of the air curtain system and experimental studies on a real scale test bench. The point is to evaluate whether the actual worker protection can be replaced by an air curtain system, without weakening human safety. The new system could considerably reduce energetic consumption (ventilation, heating and VOCs emissions into the atmosphere. Experimental studies of the flow using a Particle Image Velocimetry anemometer (PIV have been carried out to validate the numerical model kinematics. The containment quality obtained by the model has been validated with experimental concentration fields given by a gaseous analyzer using flame ionization (FID. Numerical simulation provides an overview of the containment efficiency in the global area of the system. Thus, it is possible to evaluate numerically, but accurately, the quality of the containment of the system. Moreover, an energetic study proves the economic benefit of the push-pull system.

  15. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection

    Science.gov (United States)

    Zheng, Chenghang; Shen, Jiali; Zhang, Yongxin; Huang, Weiwei; Zhu, Xinbo; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Cen, Kefa

    2017-02-01

    The temporal trends of industrial volatile organic compound (VOC) emissions was comprehensively summarized for the 2011 to 2013 period, and the projections for 2020 to 2050 for China were set. The results demonstrate that industrial VOC emissions in China increased from 15.3 Tg in 2011 to 29.4 Tg in 2013 at an annual average growth rate of 38.3%. Guangdong (3.45 Tg), Shandong (2.85 Tg), and Jiangsu (2.62 Tg) were the three largest contributors collectively accounting for 30.4% of the national total emissions in 2013. The top three average industrial VOC emissions per square kilometer were Shanghai (247.2 ton/km2), Tianjin (62.8 ton/km2), and Beijing (38.4 ton/km2), which were 12-80 times of the average level in China. The data from the inventory indicate that the use of VOC-containing products, as well as the production and use of VOCs as raw materials, as well as for storage and transportation contributed 75.4%, 10.3%, 9.1%, and 5.2% of the total emissions, respectively. ArcGIS was used to display the remarkable spatial distribution variation by allocating the emission into 1 km × 1 km grid cells with a population as surrogate indexes. Combined with future economic development and population change, as well as implementation of policy and upgrade of control technologies, three scenarios (scenarios A, B, and C) were set to project industrial VOC emissions for the years 2020, 2030, and 2050, which present the industrial VOC emissions in different scenarios and the potential of reducing emissions. Finally, the result shows that the collaborative control policies considerably influenced industrial VOC emissions.

  16. Initial Analysis of VOCs Speciation in CREATE Emissions Inventory using the MAPS-Seoul Aircraft Field Campaign

    Science.gov (United States)

    Bu, C.; Woo, J. H.; Lee, Y.; Kim, J.; Choi, K. C.; Kim, Y.; Kim, J.; Jang, Y. K.; Kim, S.

    2016-12-01

    As the first international cooperative air quality field study, the MAPS-Seoul (Megacity Air Pollution Studies-Seoul) aircraft mission was conducted in May - June 2016 over the South Korea, to understand of climate and atmospheric environment. The aircraft carried observation instruments for measurements of GHGs, ozone and its precursors, aerosols, and chemical tracers. The CREATE (Comprehensive Regional Emissions inventory for Atmospheric Environment) emissions inventory and SMOKE-Asia emission processing system were used to support chemical forecasting and to serve as a priori for evaluation. Initial results of comparison studies show large discrepancies in VOC species over the South Korea - especially over urban regions. Several VOC species observed high near megacities and petro-chemical plants but under-predicted by chemical transport models (CTMs) - possibly due to relatively low emissions. The chemical speciation profiles and emissions inventory for each emission sources, therefore, have to be re-visited to improve emissions information. In this study, we have; 1) re-examined our emissions inventory and emission speciation processes, 2) and tried to find possible missing sources and alternative chemical speciation profiles, to improve our modelling emissions inventory. Initial review of the mapping and classification profiles, the original US chemical speciation profiles were found to be low in partitioning painting and surface coating sources, although they are the very significant contributors. Unlike other major national cities in China, Shanghai's VOC emissions fraction seems very similar to that of Seoul. Continuous analysis of major urban and industrial areas of the country will be presented at site.Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment

  17. Indoor air quality (IAQ) assessment in a multistorey shopping mall by high-spatial-resolution monitoring of volatile organic compounds (VOC).

    Science.gov (United States)

    Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M

    2014-12-01

    In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.

  18. Removal of dissolved VOCs from water with an air stripper/membrane vapor separation system

    NARCIS (Netherlands)

    Wijmans, J.G.; Kamaruddin, H.D.; Segelke, S.V.; Wessling, Matthias; Baker, R.W.

    1997-01-01

    Treatment of water contaminated with volatile organic compounds (VOCs) is a major problem for the United States chemical industry. Currently, VOCs are removed from moderately contaminated wastewater streams by processes such as steam stripping and from dilute wastewaters by air stripping combined wi

  19. Emissions of selected VOC from forests: First results on measurements needed for improvement and validation of emission models

    Science.gov (United States)

    Steigner, D.; Steinbrecher, R.; Rappenglück, B.; Gasche, R.; Hansel, A.; Graus, M.; Lindinger, Ch.

    2003-04-01

    Biogenic volatile organic compounds (BVOCs) play a crucial role in the formation of photo-oxidants and particles through the diverse BVOC degradation pathways. Yet, current estimations about temporal and spatial BVOC emissions, including the specific BVOC mix are rather vague. This project addresses this issue by: the determination of (a) BVOC net emission rates and (b) primary emissions of BVOCs from the trees and soils. Measurement campaigns were carried out at the Waldstein site in the Fichtelgebirge in 2001 and 2002. Primary emissions of isoprenoids from the soil and from twigs of Norway spruce (Picea abies [L.] Karst.) and stand fluxes of isoprenoids were quantified by means of REA-technique with in situ GC-FID analysis and GC-MS analysis in the laboratory. Moreover, REA-samples obtained by the system were analysed by a PTR-MS. A critical value when using the REA approach is the Businger-Oncley parameter b. For this canopy type a b value of 0.39 (threshold velocity w_o = 0.6) was determined. The PTR-MS data show clear diurnal variations of ambient air mixing ratios of VOC such as isoprene and monoterpenes, but also of oxygenated VOCs such as carbonyls and alcohols and methylvinylketone (MVK) and methacrolein (MAK), products from isoprene degradation. Four selected trees (Picea abies [L.] Karst.) were intensively screened for primary BVOC emission rates. Most abundant species are b-pinene/sabinene and camphene. They show typical diurnal patterns with high emissions during daytime. Soil emissions of NO reached 250 nmol N m-2 s-1 at soil temperatures (in 3 cm depth) of 13^oC and at a relative air humidity of 60%. Ambient air mixing ratios near the soil surface of NO reached values of up to 0.7 ppb. NO_2 and ozone mixing ratios varied between 0.1 to 1.5 ppb and 10 to 37 ppb, respectively. As expected nitrogen oxide emissions rates tend to increase with increasing surface temperature. Isoprenoid emission from the soil was low and in general near the detection limit

  20. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  1. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  2. A High Performance Biofilter for VOC Emission Control.

    Science.gov (United States)

    Wu, G; Conti, B; Leroux, A; Brzezinski, R; Viel, G; Heitz, M

    1999-02-01

    Biofiltration is a cleaning technique for waste air contaminated with some organic compounds. The advantages of the conventional biofilter over other biological systems are a high-superficial area best suited for the treatment of some compounds with poor water solubility, ease of operation, and low operating costs. It has crucial disadvantages, however; for example, it is not suitable to treat waste gases with high VOC concentrations and it has poor control of reaction conditions. To improve on these problems and to build a high-performance biofilter, three structured peat media and two trickling systems have been introduced in this study. The influences of media size and composition have been investigated experimentally. Peat bead blended with 30% (w/w) certain mineral material with a good binding capacity has advantages over other packing materials, for example, suitable size to prevent blockage due to microbial growth, strong buffering capacity to neutralize acidic substances in the system, and a pH range of 7.0-7.2 suitable for the growth of bacteria. Dropwise trickling system offers an effective measure to easily control the moisture content of the bed and the reaction conditions (pH, nutrient) and to partially remove excess biomass produced during the metabolic processes of microorganisms. The influence of nutrient supplementation has also been investigated in this study, which has revealed that the biological system was in a condition of nutrient limitation instead of carbon limitation. The biofilters built in our laboratory were used to treat waste gas contaminated with toluene in a concentration range of 1 to 3.2 g/m(3) and at the specific gas flow rate of 24 to120 m(3)/m(2).hr. Under the conditions employed, a high elimination capacity (135 g/m(3).hr) was obtained in the biofilter packed with peat beads (blended with 30% of the mineral material), and no blockage problem was observed in an experimental period of 2-3 months.

  3. Water-Air Volatilization Factors to Determine Volatile Organic Compound (VOC Reference Levels in Water

    Directory of Open Access Journals (Sweden)

    Vicenç Martí

    2014-06-01

    Full Text Available The goal of this work is the modeling and calculation of volatilization factors (VFs from water to air for volatile organic compounds (VOCs in order to perform human health risk-based reference levels (RLs for the safe use of water. The VF models have been developed starting from the overall mass-transfer coefficients (Koverall concept from air to water for two interaction geometries (flat surface and spherical droplets in indoor and outdoor scenarios. For a case study with five groups of risk scenarios and thirty VOCs, theoretical VFs have been calculated by using the developed models. Results showed that Koverall values for flat and spherical surface geometries were close to the mass transfer coefficient for water (KL when Henry’s law constant (KH was high. In the case of spherical drop geometry, the fraction of volatilization (fV was asymptotical when increasing KH with fV values also limited due to Koverall. VFs for flat surfaces were calculated from the emission flux of VOCs, and results showed values close to 1000KH for the most conservative indoor scenarios and almost constant values for outdoor scenarios. VFs for spherical geometry in indoor scenarios followed also constant VFs and were far from 1000KH. The highest calculated VF values corresponded to the E2A, E2B, E3A and E5A scenarios and were compared with experimental and real results in order to check the goodness of flat and sphere geometry models. Results showed an overestimation of calculated values for the E2A and E2B scenarios and an underestimation for the E3A and E5A scenarios. In both cases, most of the calculated VFs were from 0.1- to 10-times higher than experimental/real values.

  4. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    Directory of Open Access Journals (Sweden)

    Peiqiang Cui

    2014-08-01

    Full Text Available Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC, making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS and ultraviolet-visible spectroscopy testing (UV-Vis were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  5. Efficient control of odors and VOC emissions via activated carbon technology.

    Science.gov (United States)

    Mohamed, Farhana; Kim, James; Huang, Ruey; Nu, Huong Ton; Lorenzo, Vlad

    2014-07-01

    This research study was undertaken to enhance the efficiency and economy of carbon scrubbers in controlling odors and volatile organic compounds (VOCs) at the wastewater collection and treatment facilities of the Bureau of Sanitation, City of Los Angeles. The butane activity and hydrogen sulfide breakthrough capacity of activated carbon were assessed. Air streams were measured for odorous gases and VOCs and removal efficiency (RE) determined. Carbon towers showed average to excellent removal of odorous compounds, VOCs, and siloxanes; whereas, wet scrubbers demonstrated good removal of odorous compounds but low to negative removal of VOCs. It was observed that the relative humidity and empty bed contact time are one of the most important operating parameters of carbon towers impacting the pollutant RE. Regular monitoring of activated carbon and VOCs has resulted in useful information on carbon change-out frequency, packing recommendations, and means to improve performance of carbon towers.

  6. An Improved, Automated Whole-Air Sampler and VOC Analysis System: Results from SONGNEX 2015

    Science.gov (United States)

    Lerner, B. M.; Gilman, J.; Tokarek, T. W.; Peischl, J.; Koss, A.; Yuan, B.; Warneke, C.; Isaacman-VanWertz, G. A.; Sueper, D.; De Gouw, J. A.; Aikin, K. C.

    2015-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven challenging due to the requirements of short sample collection times (=10 s) to maximize spatial resolution and sampling frequency and high sensitivity (pptv) to chemically diverse hydrocarbons, halocarbons, oxygen- and nitrogen-containing VOCs. NOAA ESRL CSD has built an improved whole air sampler (iWAS) which collects compressed ambient air samples in electropolished stainless steel canisters, based on the NCAR HAIS Advanced Whole Air Sampler [Atlas and Blake]. Post-flight chemical analysis is performed with a custom-built gas chromatograph-mass spectrometer system that pre-concentrates analyte cryostatically via a Stirling cooler, an electromechanical chiller which precludes the need for liquid nitrogen to reach trapping temperatures. For the 2015 Shale Oil and Natural Gas Nexus Study (SONGNEX), CSD conducted iWAS measurements on 19 flights aboard the NOAA WP-3D aircraft between March 19th and April 27th. Nine oil and natural gas production regions were surveyed during SONGNEX and more than 1500 air samples were collected and analyzed. For the first time, we employed real-time mapping of sample collection combined with live data from fast time-response measurements (e.g. ethane) for more uniform surveying and improved target plume sampling. Automated sample handling allowed for more than 90% of iWAS canisters to be analyzed within 96 hours of collection - for the second half of the campaign improved efficiencies reduced the median sample age at analysis to 36 hours. A new chromatography peak-fitting software package was developed to minimize data reduction time by an order of magnitude without a loss of precision or accuracy. Here we report mixing ratios for aliphatic and aromatic hydrocarbons (C2-C8) along with select

  7. Pollution characteristic of VOCs of ambient air in winter and spring in Shijiazhuang City

    Directory of Open Access Journals (Sweden)

    Qing CHANG

    2015-06-01

    Full Text Available In order to further explore the pollution characteristics of volatile organic compounds in ambient air in winter and spring in Shijiazhuang City, the pollution characteristics of 62 volatile organic compounds (VOCs, monthly and quarterly variation, the correlation between VOCs and PM2.5, and the main sources of VOCs are investigated by using EPA TO-15 method. It shows that 40 organic compounds of the 64 VOCs have been quantitatively determined in winter and spring in the city, which are mainly acetone, benzene, carbon tetrachloride, dichloromethane, toluene, ethyl acetate, etc.. In the no-quantitatively determined components, higher ethanol, butyl acetate, butane etc. are detected. The VOCs concentration has positive correlation with the PM2.5 concentration during haze days.

  8. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ok Baek

    2015-08-01

    Full Text Available This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory

  9. VOC emission from oil refinery and petrochemical wastewater treatment plant estimation

    Directory of Open Access Journals (Sweden)

    Mihajlović Marina A.

    2013-01-01

    Full Text Available The introduction of environmental legislation improvement for industrial producers in Serbia, notably the Integrated Pollution Prevention Control (IPPC license, will oblige the industrial producers to provide annual report on the pollutant emissions into the environment, as well as to pay certain environment fee. Wastewater treatment plant can be a significant source of volatile organic compounds (VOCs diffuse emissions, which are difficult to measure directly. In the near future reporting obligations might expend to benzene and other VOCs. This paper deals with gaseous emissions calculations from API separator based on the emission factors and the adequate software applications. The analyzed results show that the estimated emission values differ depending on the applied method. The VOC emissions have been estimated using US EPA and CONCAWE emissions factors. The calculated emissions range from 40 to 4500 tons/year for oil refinery WWTP of 2,000,000 m3/year. The calculations of benzene and toluene emissions have been performed using three methods: US EPA emission factors, WATER9, and Toxchem+ software. The calculated benzene and toluene emissions range from 5.5-60 and 0.7-20 tons/year, respectively. The highest emission values were obtained by the US EPA emission factors, while the lowest values were the result of Toxchem+ analysis. The sensitivity analysis of obtained results included the following parameters: flow, temperature, oil content, and the concentration of benzene and toluene in the effluent. Wide range of results indicates the need for their official interpretation for the conditions typical for Serbia, thus establishing adequate national emission factors for future utilization of the “polluter pays principle” on the VOC and benzene emissions.

  10. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China

    Directory of Open Access Journals (Sweden)

    B. Yuan

    2013-03-01

    Full Text Available Volatile organic compounds (VOCs were measured by two online instruments (GC-FID/MS and PTR-MS at a receptor site on Changdao Island (37.99° N, 120.70° E in eastern China. Reaction with OH radical dominated the chemical loss of most VOC species during the Changdao campaign. A photochemical age based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory, but the emission ratios of oxygenated VOCs (OVOCs are significantly lower than those from emission inventory. The photochemical age based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of OA to CO are determined to be 14.9 μg m−3 ppm−1 and SOA are produced at an enhancement ratio of 18.8 μg m−3 ppm−1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m−3 ppm−1 CO and low-NOx condition (6.5 μg m−3 ppm−1 CO. Polycyclic aromatic hydrocarbons (PAHs and higher alkanes (>C10 account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs may be a large contributor to SOA formation during the Changdao campaign. SOA formation potential of primary VOC emissions determined from both field campaigns and emission inventory in China are lower than the measured SOA levels reported in Beijing and Pearl River Delta (PRD, indicating SOA formation cannot be explained by VOC oxidation in this regions. SOA budget in China is estimated to be 5.0–13.7 Tg yr−1, with a fraction of at least 2.7 Tg yr−1 from anthropogenic emissions, which are much higher than the previous estimates from regional models.

  11. On-road emission characteristics of VOCs from light-duty gasoline vehicles in Beijing, China

    Science.gov (United States)

    Cao, Xinyue; Yao, Zhiliang; Shen, Xianbao; Ye, Yu; Jiang, Xi

    2016-01-01

    This study is the third in a series of three papers aimed at characterizing the VOC emissions of vehicles in Beijing. In this study, 30 light-duty vehicles fueled with gasoline were evaluated using a portable emission measurement system (PEMS) as they were driven on a predesigned, fixed test route. All of the tested vehicles were rented from private vehicle owners and spanned regulatory compliance guidelines ranging from Pre-China I to China IV. Alkanes, alkenes, aromatics and some additional species in the exhaust were collected in Tedlar bags and analyzed using gas chromatography/mass spectrometry (GC-MS). Carbonyls were collected on 2,4-dinitrophenyhydrazine (DNPH) cartridges and analyzed using high-performance liquid chromatography (HPLC). Overall, 74 VOC species were detected from the tested vehicles, including 22 alkanes, 6 alkenes, 1 alkyne, 16 aromatics, 3 cyclanes, 10 halohydrocarbons, 12 carbonyls and 4 other compounds. Alkanes, aromatics and carbonyls were the dominant VOCs with weight percentages of approximately 36.4%, 33.1% and 17.4%, respectively. The average VOC emission factors and standard deviations of the Pre-China I, China I, China II, China III and China IV vehicles were 469.3 ± 200.1, 80.7 ± 46.1, 56.8 ± 37.4, 25.6 ± 11.7 and 14.9 ± 8.2 mg/km, respectively, which indicated that the VOC emissions significantly decreased under stricter vehicular emission standards. Driving cycles also influenced the VOC emissions from the tested vehicles. The average VOC emission factors based on the travel distances of the tested vehicles under urban driving cycles were greater than those under highway driving cycles. In addition, we calculated the ozone formation potential (OFP) using the maximum incremental reactivity (MIR) method. The results of this study will be helpful for understanding the true emission levels of light-duty gasoline vehicles and will provide information for controlling VOC emissions from vehicles in Beijing, China.

  12. CHARACTERIZATION OF LOW-VOC LATEX PAINTS: VOLATILE ORGANIC COMPOUND CONTENT, VOC AND ALDEHYDE EMISSIONS, AND PAINT PERFORMANCE

    Science.gov (United States)

    The report gives results of laboratory tests to evaluate commercially available latex paints advertised as "low-odor," "low-VOC (volatile organic compound)," or "no-VOC." Measurements were performed to quantify the total content of VOCs in the paints...

  13. VOC emission into the atmosphere by trees and leaf litter in Polish forests

    Science.gov (United States)

    Isidorov, V.; Smolewska, M.; Tyszkiewicz, Z.

    2009-04-01

    It is generally recognized at present that the vegetation of continents is the principal source of reactive volatile organic compounds (VOC) of the atmosphere. The upper limit of the evaluation of global phytogenic VOC is 1100-1500 Tg/yr (Isidorov, 1990; Guenther et al., 1995). Although these global evaluations showing the place of phytogenic emission among of other VOC sources are important, evaluations for individual countries are also very important. This poster represents the results of the estimation of VOC emission from Polish forests. Calculations took into account the composition and age of forests. According to our estimation, the total VOC emission by the arboreal vegetation differs from 190 to 750 kt/yr, depending of weather conditions in different years. There are only few studies conducted on decaying plant material as a source of atmospheric VOCs, but still they are able to give evidence of the importance of this source. For Polish forests, the litter mass is estimated to be (16-19)106 t/yr. These organic materials undergo decomposition by mesofauna and microorganisms. In these processes volatile organic compounds (VOC) stored in the litter and secondary metabolites of litter-destroying fungi are emitted into the atmosphere. The scale of the phenomenon makes leaf litter an important VOC source in the atmosphere. The filling of numerous gaps in researches of VOC emissions from decomposing leaf litter demands carrying out of long term field experiments in various climatic conditions. In this communication we report also the results of 3.5-year experiment on qualitative and quantitative GC-MS investigations of VOC emitted into the gas phase from leaves litter of some species of deciduous and coniferous trees of Polish forests. Apart from terpenes and their oxygenated derivatives, which are usual in plant tissues, leaf litter intensively emits vast amounts of lower alcohols and carbonyl compounds. We suppose that these volatile substances are products

  14. On speciation of VOC localization

    Science.gov (United States)

    Chen, S.; Chang, J.; Wang, J.

    2011-12-01

    Most of the gas-phase chemical mechanisms successfully used in gas-phase atmospheric chemical processes, such as CBM-Z, RADM2 or SAPRC-07, treat hundreds of VOC as lumped organic species by their chemical characteristics. Most of the model results are compared with total VOC observations, and it is not appropriate to compare lumped VOC simulations to observations even if there are separate VOC observations like Photochemical Assessment Monitoring Stations (PAMS). While the PAMS Air Quality Model (PAMS-AQM) is developed, separate organic species observed by PAMS without a doubt can be directly compared with model simulations. From the past case study (Chen et al., 2010), it shows a major and very significant finding in that detailed emissions of VOC in the existing emissions database are often in error in Taiwan or other countries due to the fact that the annual VOC emissions are classified into hundreds of species-specific emissions by using the speciation factors following the protocol of the U.S. EPA (AP-42). Based on all PAMS observations from 2006-2007, four base cases with well comparable meteorological simulations were selected for the unified correction for all sources in Taiwan. After the PAMS species emissions are modified, the diurnal patterns and simulation-observation correlation for most of the PAMS species are improved, and the concentration levels are more comparable with those of observations. More expanded case studies also revealed necessary corrections for the PAMS species emissions. Sensitivity analyses for lumped organic species with modified PAMS species emissions are also conducted. After modified PAMS emissions are added into lumped VOC emissions, there is an increase of only 10% of totally VOC emissions. While the sources of the lumped VOC emissions are changed, ozone formation shows no significant change with modified lumped VOC emissions. This helps to support the argument that for ozone simulation, the lumped VOC processes balance out

  15. Influence of way of finishing furniture segments on amount emissions VOCs

    Directory of Open Access Journals (Sweden)

    Petr Čech

    2010-01-01

    Full Text Available The study deals with the influence of way of finishing furniture segments on amount emissions VOCs (volatile organic compounds. The so-called Volatile Organic Compounds (VOC are among the largest pollution sources of both the internal and external environments.VOC is defined as emission of any organic compound or a mixture thereof, with the exception of methane, whereby the compound exerts the pressure of 0.01 kPa or more at the temperature of 20 °C (293.15 K and reaches the corresponding volatility under the specific conditions of its use and can undergo photochemical reactions with nitrogen oxides when exposed to solar radiation. The effects of VOC upon environment can be described by equation: VOC + NOx + UV radiation + heat = tropospheric ozone (O3In this work there were tested MDF (medium density fibreboard coated by resin impregnated paper was used for the furniture components’ production. Next were tested compressed wood, which was used as a second material of furniture components. These both chosen materials was covered by resin impregnated paper and than sequentially finished by regular coat of finish.An attention of this study is especially put on mentioned factors and on quantity of instant and long-term VOCs emissions emitted from furniture components.The amount of emissions from furniture components, in different phases of the preparation including the resin impregnated paper coating finish, was monitored within the time intervals of 24 hours and 720 hours starting after the time of the finish preparation.The MDF (medium density fibreboard coated by resin impregnated paper was used for the furniture components´ production.A compressed wood was used as a second material of furniture components. This alternative material was covered by resin impregnated paper and than sequentially finished by regular coat of finish.

  16. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  17. Feasibility Analysis of Sustainability-Based Measures to Reduce VOC Emissions in Office Partition Manufacturing

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2010-02-01

    Full Text Available A feasibility analysis is reported of reduction opportunities for volatile organic compound (VOC emissions in manufacturing office furniture partitions, aimed at contributing to efforts to improve the sustainability of the process. A pollution prevention methodology is utilized. The purpose is to provide practical options for VOC emissions reductions during the manufacturing of office furniture partitions, but the concepts can be generally applied to the wood furniture industry. Baseline VOC emissions for a typical plant are estimated using a mass balance approach. The feasibility analysis expands on a preliminary screening to identify viable pollution prevention options using realistic criteria and weightings, and is based on technical, environmental and economic considerations. The measures deemed feasible include the implementation of several best management practices, ceasing the painting of non-visible parts, switching to hot melt backwrapping glue, application of solvent recycling and modification of the mechanical clip attachment. Implementation, measurement and control plans are discussed for the measures considered feasible, which can enhance the sustainability of the manufacturing of office furniture partitions. Reducing VOC emissions using the measures identified can, in conjunction with other measures, improve the sustainability of the manufacturing process.

  18. Volatile organic compounds (VOCs) emission characteristics and control strategies for a petrochemical industrial area in middle Taiwan.

    Science.gov (United States)

    Yen, Chia-Hsien; Horng, Jao-Jia

    2009-11-01

    This study investigated VOC emissions from the largest petrochemical industrial district in Taiwan and recommended some control measures to reduce VOC emissions. In addition to the petrochemical industry, the district encompasses a chemical and fiber industry, a plastics industry and a harbor, which together produce more than 95% of the VOC emissions in the area. The sequence of VOC emission was as follows: components (e.g., valves, flanges, and pumps) (47%) > tanks (29%) > stacks (15%) > wastewater treatment facility (6%) > loading (2%) > flares (1%). Other plants producing high-density polyethylene (HDPE), styrene, ethylene glycol (EG), gas oil, and iso-nonyl-alchol (INA) were measured to determine the VOC leaching in the district. The VOC emissions of these 35 plants (90% of all plants) were less than 100 tons/year. About 74% of the tanks were fixed-roof tanks that leached more VOCs than the other types of tanks. To reduce leaching, the components should be checked periodically, and companies should be required to follow the Taiwan EPA regulations. A VOC emission management system was developed in state implementation plans (SIPs) to inspect and reduce emissions in the industrial district.

  19. On-site passive flux sampler measurement of emission rates of carbonyls and VOCs from multiple indoor sources

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Naohide [Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba City, Ibaraki 305-8569 (Japan); Kai, Yuya; Mizukoshi, Atsushi; Kumagai, Kazukiyo; Okuizumi, Yumiko; Jona, Miki; Yanagisawa, Yukio [Department of Environment Systems, Institute of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8563 (Japan); Fujii, Minoru [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City, Ibaraki 305-8506 (Japan)

    2009-05-15

    In indoor environments with high levels of air pollution, it is desirable to remove major sources of emissions to improve air quality. In order to identify the emission sources that contribute most to the concentrations of indoor air pollutants, we used passive flux samplers (PFSs) to measure emission rates of carbonyl compounds and volatile organic compounds (VOCs) from many of the building materials and furnishings present in a room in a reinforced concrete building in Tokyo, Japan. The emission flux of formaldehyde from a desk was high (125 {mu}g/m{sup 2}/h), whereas fluxes from a door and flooring were low (21.5 and 16.5 {mu}g/m{sup 2}/h, respectively). The emission fluxes of toluene from the ceiling and the carpet were high (80.0 and 72.3 {mu}g/m{sup 2}/h, respectively), whereas that from the flooring was low (9.09 {mu}g/m{sup 2}/h). The indoor and outdoor concentrations of formaldehyde were 61.5 and 8.64 {mu}g/m{sup 3}, respectively, and those of toluene were 43.2 and 17.5 {mu}g/m{sup 3}, respectively. The air exchange rate of the room as measured by the perfluorocarbon tracer (PFT) method was 1.84/h. Taking into consideration the area of the emission sources, the carpet, ceiling, and walls were identified as the principal emission sources, contributing 24%, 20%, and 22% of the formaldehyde, respectively, and 22%, 27%, and 14% of the toluene, respectively, assuming that the emission rate from every major emission sources could be measured. In contrast, the door, the flooring, and the desk contributed little to the indoor levels of formaldehyde (1.0%, 0.54%, and 4.1%, respectively) and toluene (2.2%, 0.31%, and 0.85%, respectively). (author)

  20. CORONA DESTRUCTION: AN INNOVATIVE CONTROL TECHNOLOGY FOR VOCS AND AIR TOXICS

    Science.gov (United States)

    This paper discusses the work and results to date leading to the demonstration of the corona destruction process at pilot scale. The research effort in corona destruction of volatile organic compounds (VOCs) and air toxics has shown significant promise for providing a valuable co...

  1. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.

    Science.gov (United States)

    You, Zhiqiang; Zhu, Yun; Jang, Carey; Wang, Shuxiao; Gao, Jian; Lin, Che-Jen; Li, Minhui; Zhu, Zhenghua; Wei, Hao; Yang, Wenwei

    2017-01-01

    To develop a sound ozone (O3) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O3. Using the "Shunde" city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O3 polluted city. The "Jiangmen" city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NOx) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NOx control could slightly increase the ground O3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O3 under the high NOx abatement ratio (75.00%). The real-time assessment of O3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O3 concentration in Shunde. Copyright © 2016. Published by Elsevier B.V.

  2. Plant VOC emissions: making use of the unavoidable.

    Science.gov (United States)

    Peñuelas, Josep; Llusià, Joan

    2004-08-01

    All plants emit substantial amounts of phytogenic volatile organic compounds (PVOCs), which include alkanes, alkenes, alcohols, aldehydes, eters, esters and carboxylic acids. Defence, communication and/or protection against extreme conditions have been proposed as reasons for these emissions. However, Rosenstiel and colleagues have recently proposed that emission of PVOCs represents a metabolic 'safety valve' by preventing the unnecessary sequestration of phosphates. Additionally, Niinemets and colleagues suggest that the emission rates of some PVOCs are determined by the principal physicochemical characteristics of the emitted compounds, such as their solubility, volatility and diffusivity, rather than by physiological mechanisms, such as their synthesis rates. These two new studies lead to the hypothesis that there is not necessarily a specific role for every PVOC emitted, given that their emission is unavoidable as result of their volatility. However, in some cases, natural selection has worked to take advantage of this volatility.

  3. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis

    Science.gov (United States)

    Yuan, Bin; Shao, Min; de Gouw, Joost; Parrish, David D.; Lu, Sihua; Wang, Ming; Zeng, Limin; Zhang, Qian; Song, Yu; Zhang, Jianbo; Hu, Min

    2012-12-01

    Volatile organic compounds (VOCs) were measured online at an urban site in Beijing in August-September 2010. Diurnal variations of various VOC species indicate that VOCs concentrations were influenced by photochemical removal with OH radicals for reactive species and secondary formation for oxygenated VOCs (OVOCs). A photochemical age-based parameterization method was applied to characterize VOCs chemistry. A large part of the variability in concentrations of both hydrocarbons and OVOCs was explained by this method. The determined emission ratios of hydrocarbons to acetylene agreed within a factor of two between 2005 and 2010 measurements. However, large differences were found for emission ratios of some alkanes and C8 aromatics between Beijing and northeastern United States secondary formation from anthropogenic VOCs generally contributed higher percentages to concentrations of reactive aldehydes than those of inert ketones and alcohols. Anthropogenic primary emissions accounted for the majority of ketones and alcohols concentrations. Positive matrix factorization (PMF) was also used to identify emission sources from this VOCs data set. The four resolved factors were three anthropogenic factors and a biogenic factor. However, the anthropogenic factors are attributed here to a common source at different stages of photochemical processing rather than three independent sources. Anthropogenic and biogenic sources of VOCs concentrations were not separated completely in PMF. This study indicates that photochemistry of VOCs in the atmosphere complicates the information about separated sources that can be extracted from PMF and the influence of photochemical processing must be carefully considered in the interpretation of source apportionment studies based upon PMF.

  4. VOC characteristics, emissions and contributions to SOA formation during hazy episodes

    Science.gov (United States)

    Sun, Jie; Wu, Fangkun; Hu, Bo; Tang, Guiqian; Zhang, Junke; Wang, Yuesi

    2016-09-01

    Volatile organic compounds (VOC) are important precursors of secondary organic aerosols (SOA). The pollution processes in Beijing were investigated from 18th October to 6th November 2013 to study the characteristics, SOA formation potential and contributing factors of VOC during hazy episodes. The mean concentrations of VOC were 67.4 ± 33.3 μg m-3 on clear days and have 5-7-fold increase in polluted periods. VOC concentrations rapidly increased at a visibility range of 4-5 km with the rate of 25%/km in alkanes, alkenes and halocarbons and the rate of 45%/km in aromatics. Analysis of the mixing layer height (MLH); wind speed and ratios of benzene/toluene (B/T), ethylbenzene/m,p-xylene (E/X), and isopentane/n-pentane (i/n) under different visibility conditions revealed that the MLH and wind speed were the 2 major factors affecting the variability of VOC during clear days and that local emissions and photochemical reactions were main causes of VOC variation on polluted days. Combined with the fractional aerosol coefficient (FAC) method, the SOA formation potentials of alkanes, alkenes and aromatics were 0.3 ± 0.2 μg m-3, 1.1 ± 1.0 μg m-3 and 6.5 ± 6.4 μg m-3, respectively. As the visibility deteriorated, the SOA formation potential increased from 2.1 μg m-3 to 13.2 μg m-3, and the fraction of SOA-forming aromatics rapidly increased from 56.3% to 90.1%. Initial sources were resolved by a positive matrix factorization (PMF) model. Vehicle-related emissions were an important source of VOC at all visibility ranges, accounting for 23%-32%. As visibility declined, emissions from solvents and the chemical industry increased from 13.2% and 6.3% to 34.2% and 23.0%, respectively. Solvents had the greatest SOA formation ability, accounting for 52.5% on average on hazy days, followed by vehicle-related emissions (20.7%).

  5. Organic liquids storage tanks volatile organic compounds (VOCS) emissions dispersion and risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania.

    Science.gov (United States)

    Jackson, Msafiri M

    2006-05-01

    . Emission rates for benzene, toluene, and xylene were used as input to CALPUFF air dispersion model for the calculation of spatial downwind concentrations from area sources. By using global positioning system (GPS) and geographical information system (GIS) the spatial benzene concentration contributed by organic liquid storage tanks has been mapped for Dar-es-Salaam City. Highest concentrations for all the three toxic pollutants were observed at Kigamboni area, possibly because the area is located at the wind prevailing direction from the locations of the storage tanks. The model predicted concentrations downwind from the sources were below tolerable concentrations by WHO and US-OSHA. The highest 24 hrs averaging time benzene concentration was used for risk assessment in order to determine maximum carcinogenic risk amongst the population exposed at downwind. Established risk for adult and children at 2.9x10(-3) and 1.9x10(-3) respectively, are higher than the acceptable US-EPA risk of 1x10(-6). It is very likely that the actual VOCs concentrations in some urban areas in Tanzania including Dar-es-Salaam City are much higher than the levels reported in this study when other sources such as petrol stations and motor vehicles on the roads are considered. Tanzania Government therefore need to put in place: an air quality policy and legislation, establish air quality guidelines and acquire facilities which will enable the implementation of air quality monitoring and management programmes.

  6. Temperature and light dependence of the VOC emissions of Scots pine

    Directory of Open Access Journals (Sweden)

    V. Tarvainen

    2004-10-01

    Full Text Available The volatile organic compound (VOC emission rates of Scots pine (Pinus sylvestris L. were measured from trees growing in a natural forest environment at two locations in Finland. The emission rate measurements were carried out using a dynamic flow through technique with samples collected on adsorbent tubes and analyzed using thermodesorption followed by a gas chromatograph with a mass-selective detector (GC-MS. The standard emission potentials (at 303.15 K and 1000 µmol photons m−2 s−1 were calculated for the measured compounds using nonlinear regression to fit the experimental data to temperature and light dependent emission algorithms.

    The observed total VOC emission rates varied between 21 and 874 ng/g(dw*h and 268 and 1670 ng/g(dw*h in southern and northern Finland, respectively. A clear seasonal cycle was detected with high emission rates in early spring, a decrease of the emissions in late spring and early summer, high emissions again in late summer, and a gradual decrease in autumn.

    The main emitted compounds were Δ3-carene (southern Finland and α- and β-pinene (northern Finland, with approximate relative contributions of 60–70% and 60–85% of the total observed monoterpene emission rates, respectively. Sesquiterpene (β-caryophyllene and 2-methyl-3-buten-2-ol (MBO emissions were initiated in early summer at both sites. The observed MBO emission rates were between 1 and 3.5% of the total monoterpene emission rates. The sesquiterpene emission rates varied between 2 and 5% of the total monoterpene emission rates in southern Finland, but were high (40% in northern Finland in spring.

    Most of the measured emission rates were found to be well described by the temperature dependent emission algorithm. The calculated standard emission potentials were high in spring and early summer, decreased somewhat in late summer, and were high again towards autumn. The experimental

  7. Temperature and light dependence of the VOC emissions of Scots pine

    Directory of Open Access Journals (Sweden)

    V. Tarvainen

    2005-01-01

    Full Text Available The volatile organic compound (VOC emission rates of Scots pine (Pinus sylvestris L. were measured from trees growing in a natural forest environment at two locations in Finland. The observed total VOC emission rates varied between 21 and 874 ngg-1 h-1 and 268 and 1670 ngg-1 h-1 in southern and northern Finland, respectively. A clear seasonal cycle was detected with high emission rates in early spring, a decrease of the emissions in late spring and early summer, high emissions again in late summer, and a gradual decrease in autumn. The main emitted compounds were Δ3-carene (southern Finland and α- and β-pinene (northern Finland, with approximate relative contributions of 60–70% and 60–85% of the total observed monoterpene emission rates, respectively. Sesquiterpene (β-caryophyllene and 2-methyl-3-buten-2-ol (MBO emissions were initiated in early summer at both sites. The observed MBO emission rates were between 1 and 3.5% of the total monoterpene emission rates. The sesquiterpene emission rates varied between 2 and 5% of the total monoterpene emission rates in southern Finland, but were high (40% in northern Finland in spring. Most of the measured emission rates were found to be well described by the temperature dependent emission algorithm. The calculated standard emission potentials were high in spring and early summer, decreased somewhat in late summer, and were high again towards autumn. The experimental coefficient β ranged from 0.025 to 0.19 (average 0.10 in southern Finland, with strongest temperature dependence in spring and weakest in late summer. Only the emission rates of 1,8-cineole were found to be both light and temperature dependent.

  8. Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean

    Science.gov (United States)

    Derstroff, Bettina; Hüser, Imke; Bourtsoukidis, Efstratios; Crowley, John N.; Fischer, Horst; Gromov, Sergey; Harder, Hartwig; Janssen, Ruud H. H.; Kesselmeier, Jürgen; Lelieveld, Jos; Mallik, Chinmay; Martinez, Monica; Novelli, Anna; Parchatka, Uwe; Phillips, Gavin J.; Sander, Rolf; Sauvage, Carina; Schuladen, Jan; Stönner, Christof; Tomsche, Laura; Williams, Jonathan

    2017-08-01

    During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014) in the eastern Mediterranean, multiple volatile organic compounds (VOCs) were measured from a 650 m hilltop site in western Cyprus (34° 57' N/32° 23' E). Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy) and eastern (Turkey, Greece) Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80-100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs) methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5-3 ppbv median level by day, range: ca. 1-8 ppbv) than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days) of air masses originating from eastern and western Europe. Ozone and many OVOC levels were ˜ 20 and ˜ 30-60 % higher, respectively, in air arriving from the east. Using the FLEXPART calculated transport time, the contribution of photochemical

  9. Volatile organic compounds (VOCs in photochemically aged air from the eastern and western Mediterranean

    Directory of Open Access Journals (Sweden)

    B. Derstroff

    2017-08-01

    Full Text Available During the summertime CYPHEX campaign (CYprus PHotochemical EXperiment 2014 in the eastern Mediterranean, multiple volatile organic compounds (VOCs were measured from a 650 m hilltop site in western Cyprus (34° 57′ N/32° 23′ E. Periodic shifts in the northerly Etesian winds resulted in the site being alternately impacted by photochemically processed emissions from western (Spain, France, Italy and eastern (Turkey, Greece Europe. Furthermore, the site was situated within the residual layer/free troposphere during some nights which were characterized by high ozone and low relative humidity levels. In this study we examine the temporal variation of VOCs at the site. The sparse Mediterranean scrub vegetation generated diel cycles in the reactive biogenic hydrocarbon isoprene, from very low values at night to a diurnal median level of 80–100 pptv. In contrast, the oxygenated volatile organic compounds (OVOCs methanol and acetone exhibited weak diel cycles and were approximately an order of magnitude higher in mixing ratio (ca. 2.5–3 ppbv median level by day, range: ca. 1–8 ppbv than the locally emitted isoprene and aromatic compounds such as benzene and toluene. Acetic acid was present at mixing ratios between 0.05 and 4 ppbv with a median level of ca. 1.2 ppbv during the daytime. When data points directly affected by the residual layer/free troposphere were excluded, the acid followed a pronounced diel cycle, which was influenced by various local effects including photochemical production and loss, direct emission, dry deposition and scavenging from advecting air in fog banks. The Lagrangian model FLEXPART was used to determine transport patterns and photochemical processing times (between 12 h and several days of air masses originating from eastern and western Europe. Ozone and many OVOC levels were  ∼  20 and  ∼  30–60 % higher, respectively, in air arriving from the east. Using the FLEXPART

  10. Behavior of VOCs and carbonyl compounds emission from different types of wallpapers in Korea.

    Science.gov (United States)

    Lim, Jungyun; Kim, Suejin; Kim, Arong; Lee, Wooseok; Han, Jinseok; Cha, Jun-Seok

    2014-04-17

    Emissions of volatile organic compounds (VOCs) and carbonyls from three types of commercially available wallpapers (i.e., PVC-coated, paper-backed, natural material-coated) in Korea were evaluated using a 20 L small chamber. A total of 332 products were tested for emission factors, frequencies of occurrence and composition ratios. Toluene and formaldehyde concentrations were below Korean standard values for all products; however, the total VOC (TVOC) concentrations exceeded current standards (4.0 mg/m²·h) for 30 products. The TVOC emission factor for PVC-coated wallpapers, for which polymer materials are used in the manufacturing process, was seven and 16 times higher than those of paper-backed and natural material-coated wallpapers, respectively. The detection frequencies for toluene and formaldehyde were the highest (82.5%) and fourth highest (79.5%), respectively among the 50 target chemical species. The composition ratios for BTEX ranged from 0.3% to 5.1% and unidentified VOCs, which were not qualitatively analyzed using standard gas methods, ranged from 90.2% to 94.8%. Among six carbonyl compounds (acrolein was not detected in any type of wallpaper), acetone had the highest concentrations in PVC-coated (44.6%) and paper-backed (66.6%) wallpapers. Formaldehyde emissions were highest (64.6%) for natural material-coated wallpapers, a result of the formaldehyde-based resin used in the manufacturing process for these products.

  11. Diffusion-controlled toluene reference material for VOC emissions testing: international interlaboratory study.

    Science.gov (United States)

    Howard-Reed, Cynthia; Liu, Zhe; Cox, Steven; Leber, Dennis; Samarov, Dan; Little, John C

    2014-04-01

    The measurement of volatile organic compound (VOC) emissions from building products and materials by manufacturers and testing laboratories, and the use of the test results for labeling programs, continue to expand. One issue that hinders wide acceptance for chamber product testing is the lack of a reference material to validate test chamber performance. To meet this need, the National Institute of Standards and Technology (NIST) and Virginia Tech (VT) have developed a prototype reference material that emits a single VOC similar to the emissions of a diffusion-controlled building product source with a dynamic emissions profile. The prototype material has undergone extensive testing at NIST and a pilot interlaboratory study (ILS) with four laboratories. The next development step is an evaluation of the prototype source in multiple-sized chambers of 14 laboratories in seven countries. Each laboratory was provided duplicate specimens and a test protocol. Study results identified significant issues related to the need to store the source at a subzero Celsius temperature until tested and possible inconsistencies in large chambers. For laboratories using a small chamber and meeting all the test method criteria, the results were very encouraging with relative standard deviations ranging from 5% to 10% across the laboratories. Currently, the chamber performance of laboratories conducting product VOC emissions testing is assessed through interlaboratory studies (ILS) using a source with an unknown emission rate. As a result, laboratory proficiency can only be based on the mean and standard deviation of emission rates measured by the participating ILS laboratories. A reference material with a known emission rate has the potential to provide an independent assessment of laboratory performance as well as improve the quality of interlaboratory studies. Several international laboratories with different chamber testing systems demonstrated the ability to measure the emission rate

  12. Determination of radon exhalation from construction materials using VOC emission test chambers.

    Science.gov (United States)

    Richter, M; Jann, O; Kemski, J; Schneider, U; Krocker, C; Hoffmann, B

    2013-10-01

    The inhalation of (222) Rn (radon) decay products is one of the most important reasons for lung cancer after smoking. Stony building materials are an important source of indoor radon. This article describes the determination of the exhalation rate of stony construction materials by the use of commercially available measuring devices in combination with VOC emission test chambers. Five materials - two types of clay brick, clinker brick, light-weight concrete brick, and honeycomb brick - generally used for wall constructions were used for the experiments. Their contribution to real room concentrations was estimated by applying room model parameters given in ISO 16000-9, RP 112, and AgBB. This knowledge can be relevant, if for instance indoor radon concentration is limited by law. The test set-up used here is well suited for application in test laboratories dealing with VOC emission testing.

  13. Non-Destructive Evaluation of Historical Paper Based on pH Estimation from VOC Emissions

    Directory of Open Access Journals (Sweden)

    Boris Pihlar

    2007-12-01

    Full Text Available Volatile organic compounds (VOCs emitted from materials during degradationcan be a valuable source of information. In this work, the emissions of furfural and aceticacid from cellulose were studied using solid-phase micro-extraction (SPME incombination with gas chromatography-mass spectrometry. Two sampling techniques wereemployed: static headspace sampling using SPME for 1 h at 40 oC after 18-h samplepreparation at 80 oC in a closed glass vial, and contact SPME in a stack of paper (or abook. While a number of VOCs are emitted from paper under conditions of natural oraccelerated degradation, two compounds were confirmed to be of particular diagnosticvalue: acetic acid and furfural. The emissions of furfural are shown to correlate with pH ofthe cellulosic environment. Since pH is one of the most important parameters regardingdurability of this material, the developed method could be used for non-destructiveevaluation of historical paper.

  14. Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources

    Science.gov (United States)

    Yuan, Bin; Coggon, Matthew M.; Koss, Abigail R.; Warneke, Carsten; Eilerman, Scott; Peischl, Jeff; Aikin, Kenneth C.; Ryerson, Thomas B.; de Gouw, Joost A.

    2017-04-01

    Concentrated animal feeding operations (CAFOs) emit a large number of volatile organic compounds (VOCs) to the atmosphere. In this study, we conducted mobile laboratory measurements of VOCs, methane (CH4) and ammonia (NH3) downwind of dairy cattle, beef cattle, sheep and chicken CAFO facilities in northeastern Colorado using a hydronium ion time-of-flight chemical-ionization mass spectrometer (H3O+ ToF-CIMS), which can detect numerous VOCs. Regional measurements of CAFO emissions in northeastern Colorado were also performed using the NOAA WP-3D aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign. Alcohols and carboxylic acids dominate VOC concentrations and the reactivity of the VOCs with hydroxyl (OH) radicals. Sulfur-containing and phenolic species provide the largest contributions to the odor activity values and the nitrate radical (NO3) reactivity of VOC emissions, respectively. VOC compositions determined from mobile laboratory and aircraft measurements generally agree well with each other. The high time-resolution mobile measurements allow for the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the emissions of ethanol are primarily associated with feed storage and handling. Based on mobile laboratory measurements, we apply a multivariate regression analysis using NH3 and ethanol as tracers to determine the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls, carboxylic acids and sulfur-containing species. Emissions of phenolic species and nitrogen-containing species are predominantly associated with animals and their waste.

  15. Emissions of Volatile Organic Compounds (VOCs) from Animal Husbandry: Chemical Compositions, Separation of Sources and Animal Types

    Science.gov (United States)

    Yuan, B.; Coggon, M.; Koss, A.; Warneke, C.; Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; De Gouw, J. A.

    2016-12-01

    Concentrated animal feeding operations (CAFOs) are important sources of volatile organic compounds (VOCs) in the atmosphere. We used a hydronium ion time-of-flight chemical ionization mass spectrometer (H3O+ ToF-CIMS) to measure VOC emissions from CAFOs in the Northern Front Range of Colorado during an aircraft campaign (SONGNEX) for regional contributions and from a mobile laboratory sampling for chemical characterizations of individual animal feedlots. The main VOCs emitted from CAFOs include carboxylic acids, alcohols, carbonyls, phenolic species, sulfur- and nitrogen-containing species. Alcohols and carboxylic acids dominate VOC concentrations. Sulfur-containing and phenolic species become more important in terms of odor activity values and NO3 reactivity, respectively. The high time-resolution mobile measurements allow the separation of the sources of VOCs from different parts of the operations occurring within the facilities. We show that the increase of ethanol concentrations were primarily associated with feed storage and handling. We apply a multivariate regression analysis using NH3 and ethanol as tracers to attribute the relative importance of animal-related emissions (animal exhalation and waste) and feed-related emissions (feed storage and handling) for different VOC species. Feed storage and handling contribute significantly to emissions of alcohols, carbonyls and carboxylic acids. Phenolic species and nitrogen-containing species are predominantly associated with animals and their waste. VOC ratios can be potentially used as indicators for the separation of emissions from dairy and beef cattle from the regional aircraft measurements.

  16. Emission characteristics of VOCs from three fixed-roof p-xylene liquid storage tanks.

    Science.gov (United States)

    Lu, Chungsying; Huang, Hsiaoyun; Chang, Shenteng; Hsu, Shihchieh

    2013-08-01

    This study evaluates emission characteristics of volatile organic compounds (VOCs) caused by standing loss (L S) and working loss (L W) of three vertical fixed-roof p-xylene (p-X) liquid tanks during 1-year storage and filling operation. The annual net throughput of the tanks reached 70,446 t, resulting in 9,425 kg of p-X vapor emission including 5,046 kg of L S (53.54 %) and 4,379 kg of L W (46.46 %). The estimated L W of AP-42 displayed better agreement with the measured values of a VOC detector than the estimated L S of AP-42. The L S was best correlated with the liquid height of the tanks, while the L W was best correlated with the net throughput of the tanks. As a result, decreasing vapor space volume of the tanks and avoiding high net throughput of the tanks in a high ambient temperature period were considered as effective means to lessen VOC emission from the fixed-roof organic liquid storage tank.

  17. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations.

    Science.gov (United States)

    Jimenez-Relinque, E; Castellote, M

    2014-10-01

    Nowadays, a large proportion of photocatalytic oxidation (PCO) devices are being implemented in heating, ventilation and air-conditioning systems. However, no systematic studies have been carried out regarding the influence of inlet air preconditioning. To analyse the impact of the inlet air-conditions into photocatalytic efficiency, a simulated air-conditioning duct with flowing gas through inside was designed. Isobutylene was chosen as the target VOCs. The concentration in the gas phase was monitored using a photoionization detector. The influence of flow rate, relative humidity and temperature on the VOC removal efficiency was analysed. Experimental results were presented in terms of gas-removal efficiency (η) and clean air delivery rate (CADR) and analysed on a kinetic basis. From them, the weight of each parameter in the global process has been determined, from bigger to smaller contribution, flow>temperature>relative humidity. Also, the relevance of the inlet air conditions has been illustrated in a model room in order to determinate the time necessary to obtain a threshold value accomplishing with enough air quality and the energy consumption of the device. Additionally, the photocatalytic decontamination has been assimilated to the "air exchange rate", a parameter commonly used in indoor air quality studies. The results show that preconditioning of air can improve the efficiency of photocatalytic devices and bring important energy savings.

  18. The Amazonian Floodplains, an ecotype with challenging questions on volatile organic compound (VOC) emissions

    Science.gov (United States)

    Kesselmeier, J.

    2012-12-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another factor usually overlooked but very important for the tropical rainforest in Amazonia is regular flooding. According to recent estimates, the total Amazonian floodplain area easily ranges up to 700,000 km^2, including whitewater river floodplains (várzea) blackwater regions (igapó) and further clearwater regions. Regarding the total Amazonian wetlands the area sums up to more than 2.000.000 km^2, i.e. 30% of Amazonia. To survive the flooding periods causing anoxic conditions for the root system of up to several months, vegetation has developed several morphological, anatomical and physiological strategies. One is to switch over the root metabolism to fermentation, thus producing ethanol as one of the main products. Ethanol is a toxic metabolite which is transported into the leaves by the transpiration stream. From there it can either be directly emitted into the atmosphere, or can be re-metabolized to acetaldehyde and/or acetate. All of these compounds are volatile enough to be partly released into the atmosphere. We observed emissions of ethanol, acetaldehyde and acetic acid under root anoxia. Furthermore, plant stress induced by flooding also affected leaf primary physiological processes as well as other VOC emissions such as the release of isoprenoids and other volatiles. For example, Hevea spruceana could be identified as a monoterpene emitting tree species behaving differently upon anoxia depending on the origin, with increasing emissions of the species from igapó and decreasing with the corresponding species from várzea. Contrasting such short term inundations, studies of VOC emissions under long term conditions (2-3 months) did not confirm the ethanol/acetaldehyde emissions, whereas emissions of other VOC species decreased considerably. These results demonstrate that the transfer of our knowledge

  19. VOC and air toxics control using biofiltration: 2 full-scale system case studies

    Energy Technology Data Exchange (ETDEWEB)

    Fucich, W.J.; Togna, A.P.; Loudon, R.E. [Envirogen, Inc., Lawrenceville, NJ (United States)] [and others

    1997-12-31

    Industry continuous to search for innovative air treatment technologies to cost effectively meet the stringent requirements of the CAAA. High volume process exhaust streams contaminated with dilute concentrations of VOCs and HAPs are an especially challenging problem. Biological treatment is an option that must be evaluated with the traditional control technologies (chemical scrubbing, condensation, adsorption, thermal oxidation, etc.) because of the low operating costs and the system is environmentally friendly. In the United States, biofiltration is considered an emerging technology, however, full-scale biofiltration systems are now successfully operating in two rigorous services. At Nylonge Corporation, a biofilter is safely and efficiently degrading CS{sub 2} and H{sub 2}S vapor emissions. The ABTco system is successfully treating the target compounds, methanol and formaldehyde, in a press exhaust containing inert particulate and semi-volatiles. These systems are both based on a unique, patented modular design. The modular concept allows the system to be easily installed resulting in construction cost minimization and maintaining critical project schedules. The modular system offers flexibility because the biofilter is easily expanded to accommodate future plant growth. The modular design benefits the end user because individual modules or biofilter sections can be isolated for service and inspection while the biofilter system stays on-line. An up-flow configuration and the patented irrigation system allow biofilters to be used on the most difficult services. In the case of Nylonge, the biofilter is handling the sulfuric acid generated during the degradation of CS{sub 2} and H{sub 2}S vapors. At ABTco, stable operation is achieved in a stream containing particulates and semi-volatiles.

  20. Removal of VOCs from air stream with corrugated sheet as adsorbent

    Directory of Open Access Journals (Sweden)

    Rabia Arshad

    2016-10-01

    Full Text Available A large proportional of volatile organic compounds (VOCs are released into the environment from various industrial processes. The current study elucidates an application of a simple adsorption phenomenon for removal of three main types of VOCs, i.e., benzene, xylene and toluene, from an air stream. Two kinds of adsorbents namely acid digested adsorbent and activated carbon are prepared to assess the removal efficiency of each adsorbent in the indoor workplace environment. The results illustrate that the adsorbents prepared from corrugated sheets were remarkably effective for the removal of each pollutant type. Nevertheless, activated carbon showed high potential of adsorbing the targeted VOC compared to the acid digested adsorbent. The uptake by the adsorbents was in the following order: benzene > xylene > toluene. Moreover, maximum adsorption of benzene, toluene and xylene occurred at 20 °C and 1.5 cm/s for both adsorbents whereas minimum success was attained at 30 °C and 1.0 cm/s. However, adsorption pattern are found to be similar for each of the the three aromatic hydrocarbons. It is concluded that the corrugated sheets waste can be a considered as a successful and cost-effective solution towards effective removal of targeted pollutants in the air stream.

  1. Global Emissions of Terpenoid VOCs from Terrestrial Vegetation in the Last Millennium

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Navarro, J. C.; Smolander, S.; Struthers, H.; Zorita, E.; Ekman, A. M.; Kaplan, J. O.; Guenther, Alex B.; Arneth, A.; Riipinen, I.

    2014-06-16

    land cover change. In addition, isoprene emission sensitivity to drought proved to have signifcant short term global effects. By the end of the past millennium MEGAN isoprene emissions were 634 TgC yr-1 (13% and 19% less than during during 1750-1850 and 1000- 1200, respectively) and LPJ-GUESS emissions were 323 TgC yr-1 (15% and 16 17 20% less than during 1750-1850 and 1000-1200, respectively). Monoterpene emissions were 89 TgC yr-1 (10% and 6% higher than during 1750-1850 and 18 1000-1200, respectively) in MEGAN, and 24 TgC yr-1 (2% higher and 5% less than during 1750-1850 and 1000-1200, respectively) in LPJ-GUESS. MEGAN sesquiterpene emissions were 36 TgC yr-1 (10% and 4% higher than during1750-1850 and 1000-1200, respectively). Although both models capture similar emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.emission trends, the magnitude of the emissions are different. This highlights the importance of building better constraints on VOC emissions from terrestrial vegetation.

  2. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    Energy Technology Data Exchange (ETDEWEB)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  3. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    Science.gov (United States)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  4. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  5. Heterogeneous photocatalysis of aromatic and chlorinated volatile organic compounds (VOCs) for non-occupational indoor air application.

    Science.gov (United States)

    Jo, Wan-Kuen; Park, Kun-Ho

    2004-11-01

    The current study evaluated the technical feasibility of applying TiO2 photocatalysis to the removal of low-ppb concentrations of volatile organic compounds (VOCs) commonly associated with non-occupational indoor air quality issues. A series of experiments was conducted to evaluate five parameters (relative humidity (RH), hydraulic diameter (HD), feeding type (FT) for VOCs, photocatalytic oxidation (PCO) reactor material (RM), and inlet port size (IPS) of PCO reactor) in relation to the PCO destruction efficiencies of the selected target VOCs. None of the target VOCs exhibited any significant dependence on the RH, which is inconsistent with a previous study where, under conditions of low humidity and a ppm toluene inlet level, a drop in the PCO efficiency was reported with a decreasing humidity. However, the other four parameters (HD, RM, FT, and IPS) were found to be important for better VOC removal efficiencies as regards the application of TiO2 photocatalytic technology for cleansing non-occupational indoor air. The PCO destruction of VOCs at concentrations associated with non-occupational indoor air quality issues was up to nearly 100%, and the CO generated during PCO was a negligible addition to indoor CO levels. Accordingly, a PCO reactor would appear to be an important tool in the effort to improve non-occupational indoor air quality.

  6. Large decrease of VOC emissions of Switzerland's car fleet during the past decade: results from a highway tunnel study

    Science.gov (United States)

    Stemmler, Konrad; Bugmann, Stefan; Buchmann, Brigitte; Reimann, Stefan; Staehelin, Johannes

    The emissions of 14 C 4-C 8 VOC species from road traffic have been measured in a highway tunnel (Gubristtunnel) near Zurich, Switzerland in 2002. The investigated traffic situation corresponds to highway driving with an average speed of 90 km h -1 and hot engine conditions. The comparison with measurements in the same tunnel performed in 1993 indicates that the emission factors of the individual hydrocarbons decreased on average by 80% in the 9 years between both investigations. This improvement can mainly be explained by the nearly complete elimination of non-catalyst gasoline-fuelled cars from the Swiss car fleet in the past decade. The relative emission strengths of the quantified individual VOCs were similar in 1993 and 2002. The emission factors reported in this study are the lowest reported from on-road vehicle emission measurements so far, indicating the efficient technology of modern car fleets with respect to VOC emissions. The emission factors derived from the tunnel study are compared to modelled emission factors based on dynamometric test measurements on Swiss passenger cars. The employed model is the Handbuch für Emissionsfaktoren des Strassenverkehrs; version 1.2 (Umweltbundesamt Berlin and INFRAS AG Bern, 1999). A good agreement between the modelled and measured emissions was found for the investigated traffic situation, indicating that the development of the VOC emissions during the last decade is well understood on the basis of the fleet composition and the dynamometric test measurements. The observed VOC emission reduction corresponds to a traffic situation, where an optimal exhaust gas catalyst performance can be expected. Factors leading to a somewhat less beneficial influence of the catalytic converter technique in other relevant driving situations are therefore additionally discussed.

  7. Characterization of Volatile Organic Compound (VOC) Emissions at Sites of Oil Sands Extraction and Upgrading in northern Alberta

    Science.gov (United States)

    Marrero, J.; Simpson, I. J.; Meinardi, S.; Blake, D. R.

    2011-12-01

    The crude oil reserves in Canada's oil sands are second only to Saudi Arabia, holding roughly 173 billion barrels of oil in the form of bitumen, an unconventional crude oil which does not flow and cannot be pumped without heating or dilution. Oil sands deposits are ultimately used to make the same petroleum products as conventional forms of crude oil, though more processing is required. Hydrocarbons are the basis of oil, coal and natural gas and are an important class of gases emitted into the atmosphere during oil production, particularly because of their effects on air quality and human health. However, they have only recently begun to be independently assessed in the oil sands regions. As part of the 2008 ARCTAS airborne mission, whole air samples were collected in the boundary layer above the surface mining operations of northern Alberta. Gas chromatography analysis revealed enhanced concentrations of 53 VOCs (C2 to C10) over the mining region. When compared to local background levels, the measured concentrations were enhanced up to 1.1-400 times for these compounds. To more fully characterize emissions, ground-based studies were conducted in summer 2010 and winter 2011 in the oil sands mining and upgrading areas. The data from the 200 ground-based samples revealed enhancements in the concentration of 65 VOCs. These compounds were elevated up to 1.1-3000 times above background concentrations and include C2-C8 alkanes, C1-C5 alkyl nitrates, C2-C4 alkenes and potentially toxic aromatic compounds such as benzene, toluene, and xylenes.

  8. On-line field measurements of VOC emissions from a spruce tree at SMEAR Estonia

    Science.gov (United States)

    Bourtsoukidis, Efstratios; Bonn, Boris; Noe, Steffen

    2013-04-01

    We have investigated VOC emissions from a Norway spruce tree (Picea abies) in a hemi-boreal mixed forest in September and October 2012, using Proton Transfer Reaction Mass Spectrometry and Gas Chromatography - Mass Spectrometry techniques, applied in a dynamic branch enclosure system that was automatically operated with an electrical compressor. Parallel to BVOC measurements a vast amount of atmospheric (CO2, CH4, H2O, CO, particles) and meteorological (temperature, relative humidity, photosynthetic active radiation, wind speed and direction, precipitation) parameters were measured in the ambient atmosphere and inside the cuvette enclosure (temperature, relative humidity, O3). Prior to the measuring period, an innovatory experimental setup was built at Järvselja forest station, in order to accomplish the detection of BVOC and minimize sampling losses. Therefore, a new inlet line, consisting of 19.4m of heated and isolated glass tube was constructed. The new inlet system applied, allowed the on-line detection and calculation of sesquiterpene (SQT) emission rates for the first time in a hemi-boreal forest site. It total, 12 atmospheric relevant BVOCs were continuously monitored for a three week period and the emission rates were derived. Along with diurnal profiles and continuous timeless, some interesting observations showed the possibility of ozone effect on SQT emissions, the possibility of radiation effect on MT emissions, the higher induced emissions due to mechanical stress and the possibility for a valid intercomparison between different spruce trees located in mountain Kleiner Feldberg (Germany) and in Järvseja forest station (Estonia).

  9. Characterization of volatile organic compounds (VOCs in Asian and North American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers

    Directory of Open Access Journals (Sweden)

    B. Barletta

    2009-03-01

    Full Text Available We present results from the Intercontinental Chemical Transport Experiment – Phase B (INTEX-B aircraft mission conducted in spring 2006. By analyzing the mixing ratios of volatile organic compounds (VOCs measured during the second part of the field campaign, together with kinematic back trajectories, we were able to identify five plumes originating from China, four plumes from other Asian regions, and three plumes from the United States. To identify specific tracers for the different air masses, we focused on characterizing the VOC composition of these different pollution plumes. The Chinese and other Asian air masses were significantly enhanced in carbonyl sulfide (OCS and methyl chloride (CH3Cl, while all CFC replacement compounds were elevated in US plumes, particularly HCFC-134a.

    Although elevated mixing ratios of Halon-1211 were measured in some of the Chinese plumes, several measurements at background levels were also observed. After analyzing the VOC distribution in the Chinese pollution plumes and the correlations among selected compounds, we suggest the use of a suite of species, rather than the use of a single gas, to be used as specific tracers of Chinese air masses (namely OCS, CH3Cl, 1,2-dichloroethane, and Halon-1211. In an era of constantly changing halocarbon usage patterns, this suite of gases best reflects new emission characteristics from China.

  10. Characterization of volatile organic compounds (VOCs in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers

    Directory of Open Access Journals (Sweden)

    A. J. Weinheimer

    2009-07-01

    Full Text Available We present results from the Intercontinental Chemical Transport Experiment – Phase B (INTEX-B aircraft mission conducted in spring 2006. By analyzing the mixing ratios of volatile organic compounds (VOCs measured during the second part of the field campaign, together with kinematic back trajectories, we were able to identify five plumes originating from China, four plumes from other Asian regions, and three plumes from the United States. To identify specific tracers for the different air masses we characterized their VOC composition and we compared their background levels with those obtained during the 2004 INTEX-A mission. The Chinese and other Asian air masses were significantly enhanced in carbonyl sulfide (OCS and methyl chloride (CH3Cl, while all CFC replacement compounds were elevated in US plumes, particularly HFC-134a.

    Although elevated mixing ratios of Halon-1211 were measured in some Chinese plume samples, several measurements at background levels were also observed. After analyzing the VOC distribution and correlations within the Chinese pollution plumes and applying principal component analysis (PCA, we suggest the use of a suite of species, rather than a single gas, as specific tracers of Chinese air masses (namely OCS, CH3Cl, 1,2-dichloroethane, ethyl chloride, and Halon-1211. In an era of constantly changing halocarbon usage patterns, this suite of gases best reflects new emission characteristics from China.

  11. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    Science.gov (United States)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  12. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  13. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Science.gov (United States)

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  14. Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China.

    Science.gov (United States)

    Ni, Zhe; Liu, Jianguo; Song, Mingying; Wang, Xiaowei; Ren, Lianhai; Kong, Xin

    2015-03-01

    Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.

  15. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  16. Volatile organic chemical emissions from structural insulated panel (SIP) materials and implications for indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.

    2003-09-01

    The emissions of volatile organic compounds (VOCs) from structural insulated panel (SIP) materials were investigated. Specimens of newly produced SIPs and associated panel adhesives were obtained from two relatively large manufacturers. Additionally, specimens of the oriented strand board (OSB) used as the inner and outer sheathing and the extruded polystyrene core for the SIP were obtained from one manufacturer. Using small-scale chambers, emissions of formaldehyde, acetaldehyde, acetic acid and other VOCs from SIPs, OSB and polystyrene were measured over a period of four months and from the adhesives over two months. SIP specimens overlaid by gypsum board panels were also tested over four months. The predominant VOCs emitted by the SIPs included acetic acid, pentanal, hexanal and styrene. The emissions of formaldehyde and acetaldehyde were relatively low. Acetic acid and the aldehydes derived from the OSB, while styrene derived from the polystyrene. One of the SIPs emitted toluene and methyl acetate. The adhesives primarily emitted a mixture of hydrocarbons. The emission rates of most VOCs from the SIP/gypsum board assemblies were approximately the same or higher than their respective emission rates from the unfinished SIPs. Modeling using VOC emission factors obtained for the SIP/gypsum board assemblies demonstrated the potential for SIP materials to degrade indoor air quality in houses. A field study to investigate VOC concentrations and emission rates in SIP houses relative to closely matched conventionally constructed houses is necessary to determine the actual impacts of SIPs. If significant impacts are observed, to it may be desirable to develop control measures to reduce the emissions of VOCs from SIPs, such as the substitution of lower emitting materials or the use of vapor diffusion barriers.

  17. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    Science.gov (United States)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  18. H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study.

    Science.gov (United States)

    Lebrero, Raquel; Rodríguez, Elisa; Martin, María; García-Encina, Pedro A; Muñoz, Raúl

    2010-07-01

    The robustness of a conventional biofilter and an air diffusion bioreactor (ADB) was comparatively evaluated in laboratory-scale plants treating a mixture of H2S, butanone, toluene and alpha-pinene at gas residence times of 50 s. Under steady state conditions, H2S, butanone and toluene were almost completely degraded, while alpha-pinene removal did not exhibit removal efficiencies (REs) higher than 11.0 +/- 2.3%. Fluctuations in temperature from 8 degrees C to 30 degrees C did not impact significantly process performance in any of the biotechnologies tested. However, while the ADB unit was able to cope with three and six fold step increases in pollutant loadings, volatile organic compounds (VOCs) REs noticeably decreased in the biofilter when subjected to a six fold step change (i.e. 90% reduction for butanone and 30% for toluene). A process shutdown of five days resulted in the temporary loss of butanone and toluene RE in the ADB system. A lack of irrigation during five days caused a slight decrease in the biofilter REs, while a failure in the pH control system drastically affected the ADB performance. Finally, process robustness was quantified. The calculated overall risks showed that both biotechnologies were reliable for H2S and VOCs treatment in wastewater treatment plants, ADB diffusion exhibiting a higher robustness towards fluctuations commonly found under routine operation. This robustness was further confirmed by the high stability of the DGGE profiles.

  19. Volatile Organic Compound (VOC) emissions from feedlot pen surface materials as affected by within pen location, moisture, and temperature

    Science.gov (United States)

    A laboratory study was conducted to evaluate the effects of pen location, moisture, and temperature on emissions of volatile organic compounds (VOC) from surface materials obtained from feedlot pens where beef cattle were fed a diet containing 30% wet distillers grain plus solubles. Surface material...

  20. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    Science.gov (United States)

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  1. Surface application of soybean peroxidase and calcium peroxide for reducing odorous VOC emissions from swine manure slurry

    Science.gov (United States)

    A laboratory experiment was conducted to evaluate and compare topical and fully mixed treatments of soybean peroxidase and calcium peroxide (SBP/CaO2) for reducing odorous volatile organic compound (VOC) emissions from swine manure slurry. The five treatments consisted of a control, the fully mixed ...

  2. Prediction of short-term and long-term VOC emissions from SBR bitumen-backed carpet under different temperatures

    NARCIS (Netherlands)

    Yang, X.; Chen, Q.; Bluyssen, P.M.

    1998-01-01

    This paper presents two models for volatile organic compound (VOC) emissions from carpet. One is a numerical model using the computational fluid dynamics (CFD) tech-nique for short-term predictions, the other an analytical model for long-term predictions. The numerical model can (1) deal with carpet

  3. Prediction of short-term and long-term VOC emissions from SBR bitumen-backed carpet under different temperatures

    NARCIS (Netherlands)

    Yang, X.; Chen, Q.; Bluyssen, P.M.

    1998-01-01

    This paper presents two models for volatile organic compound (VOC) emissions from carpet. One is a numerical model using the computational fluid dynamics (CFD) tech-nique for short-term predictions, the other an analytical model for long-term predictions. The numerical model can (1) deal with

  4. Air Emission Inventory for the INEEL -- 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  5. Leaf level VOC emissions of single plants from Amazonian and Mediterranean ecosystems: Ontogeny and flooding as stress factor for VOC emissions

    OpenAIRE

    Bracho Nunez, Araceli

    2010-01-01

    Die Vegetation ist die wichtigste Quelle von organischen flüchtigen Verbindungen (auf Englisch volatile organic compounds,VOCs), die einen bemerkenswerten Einfluss auf der Chemie und Physik der Atmosphäre haben. VOCs beeinflussen die oxidative Kapazität der Atmosphäre und tragen zu der Bildung und zum Wachstum von sekundären organischen Aerosolen bei, welche einerseits eine Streuung und Reflektierung der Energie verursachen und andererseits sich an der Bildung und Entwicklung von Wolken betei...

  6. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  7. Emissions of volatile hydrocarbons (VOC) during drying of sawdust; Utslaepp av laettflyktiga kolvaeten vid torkning av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Granstroem, Karin

    2001-08-01

    In the project 'Emissions of volatile hydrocarbons (VOC) during drying of sawdust' the identity, amount and composition of monoterpenes found in the drying medium of a fluidized bed drier drying sawdust from Norwegian spruce and Scotch pine has been determined. The energy efficiency of the drier has also been measured. The aim of this project was to reduce both emissions and energy required for drying, to minimize environmental and health hazards, and make drying more competitive. This would help our primary target group - small scale saw mills - to make use of the sawdust produced as a by- product by making pellets and briquettes. If the VOC remains in the sawdust its energy content will improve and therefore also its value as a fuel. The sawdust was dried to different moisture levels in a spouted bed drier at atmospheric pressure, using either recirculating or not recirculating drying medium with temperatures 140, 170 or 200 deg C. The emissions of VOC were measured using a flame ionization detector (FID) and the nature of the emissions analyzed with a gas chromatograph with mass spectrometric detector (GC-MS). The GC-MS data is reported as emitted substance per oven dry weight (odw). Experiments show that terpenes do not leave the sawdust in great amounts until it is dried to a moisture content (water/total weight) below 10%. When sawdust is dried to a predetermined moisture level, the terpene emissions increase when warmer incoming drying medium is used. The monoterpenes found in greatest amount are a-pinene, b-pinene, 3-carene, limonene and myrcene. y-terpinene was detected in emissions from pine but not from spruce. The relative amounts of different monoterpenes did not vary significantly with post-drying moisture content, but drying medium of higher temperature caused an increase in the relative amount of less volatile monoterpenes. The FID data is reported as concentration of VOC in the drying medium, and as weight VOC per odw. The concentration

  8. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: A case study on a petroleum refinery in Northern China.

    Science.gov (United States)

    Wei, Wei; Lv, Zhaofeng; Yang, Gan; Cheng, Shuiyuan; Li, Yue; Wang, Litao

    2016-11-01

    This study aimed to apply an inverse-dispersion calculation method (IDM) to estimate the emission rate of volatile organic compounds (VOCs) for the complicated industrial area sources, through a case study on a petroleum refinery in Northern China. The IDM was composed of on-site monitoring of ambient VOCs concentrations and meteorological parameters around the source, calculation of the relationship coefficient γ between the source's emission rate and the ambient VOCs concentration by the ISC3 model, and estimation of the actual VOCs emission rate from the source. Targeting the studied refinery, 10 tests and 8 tests were respectively conducted in March and in June of 2014. The monitoring showed large differences in VOCs concentrations between background and downwind receptors, reaching 59.7 ppbv in March and 248.6 ppbv in June, on average. The VOCs increases at receptors mainly consisted of ethane (3.1%-22.6%), propane (3.8%-11.3%), isobutane (8.5%-10.2%), n-butane (9.9%-13.2%), isopentane (6.1%-12.9%), n-pentane (5.1%-9.7%), propylene (6.1-11.1%) and 1-butylene (1.6%-5.4%). The chemical composition of the VOCs increases in this field monitoring was similar to that of VOCs emissions from China's refineries reported, which revealed that the ambient VOCs increases were predominantly contributed by this refinery. So, we used the ISC3 model to create the relationship coefficient γ for each receptor of each test. In result, the monthly VOCs emissions from this refinery were calculated to be 183.5 ± 89.0 ton in March and 538.3 ± 281.0 ton in June. The estimate in June was greatly higher than in March, chiefly because the higher environmental temperature in summer produced more VOCs emissions from evaporation and fugitive process of the refinery. Finally, the VOCs emission factors (g VOCs/kg crude oil refined) of 0.73 ± 0.34 (in March) and 2.15 ± 1.12 (in June) were deduced for this refinery, being in the same order with previous direct

  9. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    Science.gov (United States)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  10. Efficiency of catalytic processes for the reduction of CO and VOC emissions from wood combustion in domestic fireplaces

    Energy Technology Data Exchange (ETDEWEB)

    Ozil, Fabien; Tschamber, V.; Trouve, G. [Universite de haute Alsace - Laboratoire Gestion des Risques Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Haas, Frederic (FONDIS SA, ZI Vieux Thann, 68801 Thann Cedex France)

    2009-09-15

    Pollutant characterization of domestic fireplaces, according to two paces of functioning (normal and low-charge phase) was performed. Two catalysts supported on cordierite or metal were placed in the exhaust of two domestic fireplaces (old and new generation) in order to reduce gaseous pollutants. Active phase of catalysts is composed of noble metals (Pd, Pt) and cerium. Methane was the dominant compound of the released Volatile Organic Compounds (VOC, 80% b. v.). Products resulting from incomplete combustion (CO and other VOC) did not represent more than 6% of the initial carbon content in wood. Lower concentration of CO in the exhaust was obtained with the new generation fireplace as compared to the older one with mean concentrations of CO normalized for 13% oxygen b.v. equal to 0.12% and 0.3%, respectively. Emission of VOC is also drastically reduced for new generation fireplace. The presence of a catalyst induced a decrease of the CO and VOC emission factors during ignition and low-charge phases by factors ranging from 65% to 70%. The abatement of VOC for the old generation fireplace was better in the presence of metal as compared to cordierite, with efficiency values of 65% and 30%, respectively. The new fireplace was the one on which the addition of the cleanup implements had most impact. Besides the introduction of a catalyst, a heating system of the fume was set up below the catalyst. This heating system allowed a faster activation of the catalyst, particularly during ignition and low-charge phases. Best abatements were obtained with the heated metallic support with values close to 80% and 94% for VOC and CO respectively. (author)

  11. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    Directory of Open Access Journals (Sweden)

    C. L. Faiola

    2014-09-01

    Full Text Available The largest global source of volatile organic compounds (VOCs in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata, blue spruce (Picea pungens, western redcedar (Thuja plicata, grand fir (Abies grandis, and Douglas-fir (Pseudotsugas menziesii. Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID. Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  12. Impacts of simulated herbivory on VOC emission profiles from coniferous plants

    Science.gov (United States)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2014-09-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsugas menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate, an herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  13. Emissions of volatile organic compounds (VOCs) from the food and drink industries of the European community

    Science.gov (United States)

    Passant, Neil R.; Richardson, Stephen J.; Swannell, Richard P. J.; Gibson, N.; Woodfield, M. J.; van der Lugt, Jan Pieter; Wolsink, Johan H.; Hesselink, Paul G. M.

    Estimates were made of the amounts of volatile organic compounds (VOCs) released into the atmosphere as a result of the industrial manufacture and processing of food and drink in the European Community. The estimates were based on a review of literature sources, industrial and government contacts and recent measurements. Data were found on seven food manufacturing sectors (baking, vegetable oil extraction, solid fat processing, animal rendering, fish meal processing, coffee production and sugar beet processing) and three drink manufacturing sectors (brewing, spirit production and wine making). The principle of a data quality label is advocated to illustrate the authors' confidence in the data, and to highlight areas for further research. Emissions of ethanol from bread baking and spirit maturation were found to be the principle sources. However, significant losses of hexane and large quantities of an ill-defined mixture of partially oxidized hydrocarbons were noted principally from seed oil extraction and the drying of plant material, respectively. This latter mixture included low molecular weight aldehydes, carboxylic acids, ketones, amines and esters. However, the precise composition of many emissions were found to be poorly understood. The total emission from the food and drink industry in the EC was calculated as 260 kt yr -1. However, many processes within the target industry were found to be completely uncharacterized and therefore not included in the overall estimate (e.g. soft drink manufacture, production of animal food, flavourings, vinegar, tea, crisps and other fried snacks). Moreover, the use of data quality labels illustrated the fact that many of our estimates were based on limited data. Hence, further emissions monitoring is recommended from identified sources (e.g. processing of sugar beet, solid fat and fish meal) and from uncharacterized sources.

  14. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    Science.gov (United States)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  15. Air Emissions Sources, Charts and Maps

    Data.gov (United States)

    U.S. Environmental Protection Agency — Air Emissions provides (1) interactive charts supporting national, state, or county charts, (2) county maps of criteria air pollutant emissions for a state, and (3)...

  16. Using Multiple Regression in Estimating (semi) VOC Emissions and Concentrations at the European Scale

    DEFF Research Database (Denmark)

    Fauser, Patrik; Thomsen, Marianne; Pistocchi, Alberto

    2010-01-01

    This paper proposes a simple method for estimating emissions and predicted environmental concentrations (PECs) in water and air for organic chemicals that are used in household products and industrial processes. The method has been tested on existing data for 63 organic high-production volume che...

  17. Reducing odorous VOC emissions from swine manure using soybean peroxidase and peroxides

    Science.gov (United States)

    Air emissions from swine production facilities can cause odor nuisance issues. Peroxidase enzymes have been used to treat phenolic compounds in industrial wastewaters, but little is known about their efficacy for treating swine manure. The objective of the research was to determine the optimum app...

  18. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China

    Science.gov (United States)

    Li, Bowei; Ho, Steven Sai Hang; Xue, Yonggang; Huang, Yu; Wang, Liqin; Cheng, Yan; Dai, Wenting; Zhong, Haobin; Cao, Junji; Lee, Shuncheng

    2017-07-01

    Vehicular emission (VE) is one of the important anthropogenic sources for ground-level volatile organic compounds (VOCs) in both urban and suburban areas. A first comprehensive campaign was conducted at an urban roadside in Xi'an, China in summer, 2016. A total of 57 VOCs, as known as critical surface ozone (O3) precursors, and other trace gases were measured simultaneously during the sampling period. Iso-pentane, a tracer of gasoline evaporation, was the most abundant VOC in the roadside samples, followed by isobutane and benzene, attributed to the largest composition (∼70%) of gasoline-fueled vehicles on the road. The molar ratio of toluene/benzene (T/B) in our study (0.36) is far lower than the range reported in other cities, indicating the stronger contributions from diesel emissions. The results of source apportionment achieved with positive matrix factorization (PMF) receptor model were highly consistent with the vehicles compositions, strongly evidenced that the precise characterization of the VE sources from those marker species. The degrees of individual compound contributed to O3 production were weighed by ozone formation potential (OFP). Propylene (20%), 1-butene (11%) and iso-pentane(10%) were the top three contributors at the roadside. The information of this study complements the VOCs database regarding to the VE sources in Northwestern China.

  19. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ model – Part 1: Building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. N. Smith

    2010-01-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates volatile organic compound (VOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  20. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  1. VOLATILE ORGANIC COMPOUND EMISSIONS FROM LATEX PAINT-PART 2. TEST HOUSE STUDIES AND INDOOR AIR QUALITY (IAQ) MODELING

    Science.gov (United States)

    Emission models developed using small chamber data were combined with an Indoor Air Quality (IAQ) model to analyze the impact of volatile organic compound (VOC) emissions from latex paint on indoor environments. Test house experiments were conducted to verify the IAQ model's pred...

  2. Adsorption-electro-desorption treatment of air polluted by VOCs; Traitement de l'air charge en COV par adsorption-electrodesorption

    Energy Technology Data Exchange (ETDEWEB)

    Subrenat, A.; Le Cloirec, P. [Ecole des Mines de Nantes 44 (France)

    2004-10-01

    Volatile organic compounds (VOCs) are pollutants involved in the greenhouse effect. Their abatement is today seriously controlled when they are produced by industrial classified facilities. This paper presents a air treatment system based on the adsorption by activated carbon tissues. The filters are regenerated by electrical heating. The physico-chemical and electrical properties of activated carbon tissues are presented first with their adsorption properties with respect to VOCs. Then the design of a specific adsorber is described: adsorption filters, pressure drops and air flow, implementation and efficiency. Finally, the efficiency results obtained on a real-scale industrial plant are presented. (J.S.)

  3. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    Science.gov (United States)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  4. Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2011-07-01

    Full Text Available Photochemical processes inside urban plumes in the Northeast of the United States have been studied using a highly detailed chemical model, based upon the Master Chemical Mechanism (MCM. The model results have been compared to measurements of oxygenated VOCs (acetone, methyl ethyl ketone, acetaldehyde, acetic acid and methanol obtained during several flights of the NOAA WP-3D aircraft, which sampled plumes from the New York City area during the ICARTT campaign in 2004. The agreement between the model and the measurements was within 40–60 % for all species, except acetic acid.

    The model results have been used to study the formation and photochemical evolution of acetone, methyl ethyl ketone and acetaldehyde. Under the conditions encountered during the ICARTT campaign, acetone is produced from the oxidation of propane (24–28 % and i-propanol (<15 % and from a number of products of i-pentane oxidation. Methyl ethyl ketone (MEK is mostly produced from the oxidation of n-butane (20–30 % and 3-methylpentane (<40 %. Acetaldehyde is formed from several precursors, mostly small alkenes, >C5 alkanes, propanal and MEK. Ethane and ethanol oxidation account, respectively, for 6–23 % and 5–25 % of acetaldehyde photochemical formation. The results highlight the importance of alkanes for the photochemical production of ketones and the role of hydroperoxides in sustaining their formation far from the emission sources.

  5. Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2008-06-01

    Full Text Available Photochemical processes inside urban plumes in the Northeast of the United States have been studied using a highly detailed chemical model, based upon the Master Chemical Mechanism (MCM. The model results have been compared to measurements of oxygenated VOCs (acetone, methyl ethyl ketone, acetaldehyde, acetic acid and methanol obtained during several flights of the NOAA WP-3D aircraft, which sampled plumes from the New York City area during the ICARTT campaign in 2004. The agreement between the model and the measurements was within 40–60% for all species, except acetic acid.

    The model results have been used to study the formation and photochemical evolution of acetone, methyl ethyl ketone and acetaldehyde. Under the conditions encountered during the ICARTT campaign, acetone is produced from the oxidation of propane (24–28% and i-propanol (<15% and from a number of products of i-pentane oxidation. Methyl ethyl ketone (MEK is mostly produced from the oxidation of n-butane (20–30% and 3-methylpentane (<40%. Acetaldehyde is formed from several precursors, mostly small alkenes, >C5 alkanes, propanal and MEK. Ethane and ethanol oxidation account, respectively, for 6–23% and 5–25% of acetaldehyde photochemical formation. The results highlight the importance of long-chain alkanes for the photochemical production of ketones and the role of hydroperoxides in sustaining their formation far from the emission sources.

  6. Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-08-01

    Full Text Available Understanding the fate of ozone within and above forested environments is vital to assessing the anthropogenic impact on ecosystems and air quality at the urban-rural interface. Observed forest-atmosphere exchange of ozone is often much faster than explicable by stomatal uptake alone, suggesting the presence of additional ozone sinks within the canopy. Using the Chemistry of Atmosphere-Forest Exchange (CAFE model in conjunction with summer noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007, we explore the viability and implications of the hypothesis that ozonolysis of very reactive but yet unidentified biogenic volatile organic compounds (BVOC can influence the forest-atmosphere exchange of ozone. Non-stomatal processes typically generate 67 % of the observed ozone flux, but reactions of ozone with measured BVOC, including monoterpenes and sesquiterpenes, can account for only 2 % of this flux during the selected timeframe. By incorporating additional emissions and chemistry of a proxy for very reactive VOC (VRVOC that undergo rapid ozonolysis, we demonstrate that an in-canopy chemical ozone sink of ~2 × 108 molec cm−3 s−1 can close the ozone flux budget. Even in such a case, the 65 min chemical lifetime of ozone is much longer than the canopy residence time of ~2 min, highlighting that chemistry can influence reactive trace gas exchange even when it is "slow" relative to vertical mixing. This level of VRVOC ozonolysis could enhance OH and RO2 production by as much as 1 pptv s−1 and substantially alter their respective vertical profiles depending on the actual product yields. Reaction products would also contribute significantly to the oxidized VOC budget and, by extension, secondary organic aerosol mass. Given the potentially significant ramifications of a chemical ozone flux for both in-canopy chemistry and estimates of ozone

  7. Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-05-01

    Full Text Available Understanding the fate of ozone within and above forested environments is vital to assessing the anthropogenic impact on ecosystems and air quality at the urban-rural interface. Observed forest-atmosphere exchange of ozone is often much faster than explicable by stomatal uptake alone, suggesting the presence of additional ozone sinks within the canopy. Using the Chemistry of Atmosphere-Forest Exchange (CAFE model in conjunction with summer noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007, we explore the viability and implications of the hypothesis that ozonolysis of very reactive but yet unidentified biogenic volatile organic compounds (BVOC can influence the forest-atmosphere exchange of ozone. Non-stomatal processes typically generate 67% of the observed ozone flux, but reactions of ozone with measured BVOC, including monoterpenes and sesquiterpenes, can account for only 2% of this flux during the selected timeframe. By incorporating additional emissions and chemistry of a proxy for very reactive VOC (VRVOC that undergo rapid ozonolysis, we demonstrate that an in-canopy chemical ozone sink of ~2×108 molecules cm−3 s−1 can close the ozone flux budget. Even in such a case, the 65 min chemical lifetime of ozone is much longer than the canopy residence time of ~2 min, highlighting that chemistry can influence reactive trace gas exchange even when it is "slow" relative to vertical mixing. This level of VRVOC ozonolysis could enhance OH and RO2 production by as much as 1 pptv s−1 and substantially alter their respective vertical profiles depending on the actual product yields. Reaction products would also contribute significantly to the oxidized VOC budget and, by extension, secondary organic aerosol mass. Given the potentially significant ramifications of a chemical ozone flux for both in-canopy chemistry and estimates of ozone

  8. Emission control measures for precursors of tropospheric ozone. Pt. 1 and 2; Emissionsminderungsmoeglichkeiten bei Vorlaeufersubstanzen von bodennahem Ozon. Bd. 1: Systemanalyse der Ozonminderungsmassnahmen in den USA. Bd. 2: Luftreinhaltemassnahmen in den USA zur Minderung von VOC-Emissionen aus Kleinanlagen und Produkten und Vergleich mit europaeischen Regelungen

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, T.; Schiefer, C.; Bergmann, S.; Hrabovski, Z. [Institut fuer Umwelttechnologie und Umweltanalytik e.V. (IUTA), Duisburg (Germany)

    1998-08-01

    For more than two decades now experiences of ozone reduction have been made in the USA. In many regions great efforts for VOC control are made to reduce their high ozone concentrations in ambient air that in some cases reach up to more than twice the German peak concentrations. This report places focus on small stationary sources and products, for these sources actually contribute more than half of the VOC emissions in Germany and are still not regulated under the German Immission Control Law. Therefore, main aim of this examination was to determine the major elements of VOC control strategies in the U.S. and to consider, whether strategies and measures are transferable taking into account German circumstances. Volume 1 describes the strategies and measures for ozone control in the U.S. (national) as well as in five regions with high ozone concentrations in ambient air. The authorities and responsbilities at federal, state, regional, and local levels are highlighted, legislation and different types of regulations are explained, priorities concerning VOC versus NO{sub x} related control are mentioned and the control measures on different sources for reducing VOC and NO{sub x} are summarized briefly. Volume 2 contains a detailed description of control measures for reducing VOC emissions from products and stationary sources, namely the proposed national VOC emission standards for coatings and consumer products, the California Consumer Products Regulations, the state-wide requirements for industrial and commercial sources in California and the VOC related rules of the South Coast Air Quality Management District (LA and surrounded Countries). The South Coast Rules were chosen as an example for District Rules for they were generally the most stringent because of the extreme ozone concentration in this area. Moreover, the regulations for VOC emission control in Europe concerning small stationary sources and products are mentioned. The different approaches to control VOC

  9. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    Science.gov (United States)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  10. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  11. Using growth and decline factors to project VOC emissions from oil and gas production.

    Science.gov (United States)

    Oswald, Whitney; Harper, Kiera; Barickman, Patrick; Delaney, Colleen

    2015-01-01

    Projecting future-year emission inventories in the oil and gas sector is complicated by the fact that there is a life cycle to the amount of production from individual wells and thus from well fields in aggregate. Here we present a method to account for that fact in support of regulatory policy development. This approach also has application to air quality modeling inventories by adding a second tier of refinement to the projection methodology. Currently, modeling studies account for the future decrease in emissions due to new regulations based on the year those regulations are scheduled to take effect. The addition of a year-by-year accounting of production decline provides a more accurate picture of emissions from older, uncontrolled sources. This proof of concept approach is focused solely on oil production; however, it could be used for the activity and components of natural gas production to compile a complete inventory for a given area.

  12. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    Science.gov (United States)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  13. Biological anoxic treatment of O{sub 2}-free VOC emissions from the petrochemical industry: A proof of concept study

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Raúl; Souza, Theo S.O. [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Glittmann, Lina [Ostfalia University of Applied Sciences, Department of Supply Engineering, Wolfenbüttel (Germany); Pérez, Rebeca [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain); Quijano, Guillermo, E-mail: gquijano@iq.uva.es [Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid (Spain)

    2013-09-15

    Highlights: • The treatment of O{sub 2}-free VOC emissions can be done by means of denitrifying processes. •Toluene vapors were successfully removed under anoxic denitrifying conditions. • A high bacterial diversity was observed. • Actinobacteria and Proteobacteria were the predominant phyla. • The nature and number of metabolites accumulated varied with the toluene load -- Abstract: An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O{sub 2} supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m{sup −3} h{sup −1} (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m{sup −3} h{sup −1}. However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m{sup −3} h{sup −1}, while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m{sup −3} (which entailed a loading rate increase from 3 to 6 g m{sup −3} h{sup −1}), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.

  14. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    Science.gov (United States)

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies.

  15. Photocatalytic treatment of VOC polluted air; Distribuzione fotoossidativa di sostanze organiche volatili

    Energy Technology Data Exchange (ETDEWEB)

    Vigo, F. [Genoa Univ., Genoa (Italy). Dipt. di Chimica e Chimica Industriale

    2000-10-01

    Volatile organic substances (VOC) air pollution can be controlled by photo catalytic processes, as widely reported in literature. In order to check the true feasibility of such a technique, it was assembled a photo reactor having a flat titania surface onto which air polluted with methanol vapours was forced, under both artificial and solar illumination. Experimental results showed that in the tests conditions, methanol promptly undergoes photochemical oxidation in the concentration range: 30-300 mg.m{sup -}3, with depletion yields 95-68% respectively. The oxidation reaction is complete (no undesirable by-products were detected beside carbon dioxide) and it is performed in a single step; the yields depend on initial concentration, air flow rate and illumination intensity. Solar light tests showed similar results, provided that solar spectrum contains much less UV than the lam used in the laboratory tests. The collected data allowed to draw out an approximate forecasting of the performances of such a technique if applied to practical pollution problems. [Italian] Il problema dell'inquinamento atmosferico da sostanze organiche volatili (S.O.V.) puo' essere affrontato con metodi fotocatalitici, come risulta da numerosi lavori rintracciabili nella letteratura specifica. Allo scopo di verificare l'applicabilita' pratica di questo processo di avanguardia, nei laboratori e' stato costruito un reattore a biossido di titanio supportato su superficie piana e con esso si e' sperimentata la fotossidazione di vapori di metanolo. Le prove sono state condotte sia con luce artificiale, ricca di UV, che con quella solare. I risultati hanno dimostrato che il metanolo viene prontamente ossidato in un intervallo di concentrazioni compreso tra 30 e 300 mg m{sup -}3, con rese di abbattimento percentuale varianti tra il 68 e uk 95% dopo un singolo passaggio, a seconda della velocita' di transito sul catalizzatore, della concentrazione e della intensita

  16. Noise Emission from Laboratory Air Blowers

    Science.gov (United States)

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  17. Emission control measures for precursors of tropospheric ozone. Pt. 1 and 2; Emissionsminderungsmoeglichkeiten bei Vorlaeufersubstanzen von bodennahem Ozon. Bd. 1: Systemanalyse der Ozonminderungsmassnahmen in den USA. Bd. 2: Luftreinhaltemassnahmen in den USA zur Minderung von VOC-Emissionen aus Kleinanlagen und Produkten und Vergleich mit europaeischen Regelungen

    Energy Technology Data Exchange (ETDEWEB)

    Leclaire, T.; Schiefer, C.; Bergmann, S.; Hrabovski, Z. [Institut fuer Umwelttechnologie und Umweltanalytik e.V. (IUTA), Duisburg (Germany)

    1998-08-01

    For more than two decades now experiences of ozone reduction have been made in the USA. In many regions great efforts for VOC control are made to reduce their high ozone concentrations in ambient air that in some cases reach up to more than twice the German peak concentrations. This report places focus on small stationary sources and products, for these sources actually contribute more than half of the VOC emissions in Germany and are still not regulated under the German Immission Control Law. Therefore, main aim of this examination was to determine the major elements of VOC control strategies in the U.S. and to consider, whether strategies and measures are transferable taking into account German circumstances. Volume 1 describes the strategies and measures for ozone control in the U.S. (national) as well as in five regions with high ozone concentrations in ambient air. The authorities and responsbilities at federal, state, regional, and local levels are highlighted, legislation and different types of regulations are explained, priorities concerning VOC versus NO{sub x} related control are mentioned and the control measures on different sources for reducing VOC and NO{sub x} are summarized briefly. Volume 2 contains a detailed description of control measures for reducing VOC emissions from products and stationary sources, namely the proposed national VOC emission standards for coatings and consumer products, the California Consumer Products Regulations, the state-wide requirements for industrial and commercial sources in California and the VOC related rules of the South Coast Air Quality Management District (LA and surrounded Countries). The South Coast Rules were chosen as an example for District Rules for they were generally the most stringent because of the extreme ozone concentration in this area. Moreover, the regulations for VOC emission control in Europe concerning small stationary sources and products are mentioned. The different approaches to control VOC

  18. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  19. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2011-04-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ. Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly

  20. Online hourly determination of 62 VOCs in ambient air: system evaluation and comparison with another two analytical techniques.

    Science.gov (United States)

    Durana, Nieves; Navazo, Marino; Alonso, Luclo; García, José A; Ilardia, Juan L; Gómez, M Carmen; Gangoiti, Gotzon

    2002-10-01

    This paper presents results of the processing and validation of data collected by an automatic gas chromatograph (AGC). This system was used to monitor 62 volatile organic compounds (VOCs) in urban air in the Basque Country, Spain. The nonpolar compounds (C2-C10) identified-paraffins, olefins, aromatics, and chlorinated compounds-accounted for 88% of the mass of total non-methane hydrocarbons (TNMHCs) in ambient air. The evaluation of linearity, precision, detection limits (DLs), and stability of retention times (RTs) indicates that the equipment is suitable for measuring ambient air automatically for prolonged periods (6 months). The calibration of the equipment using response factors calculated on the basis of the effective carbon number (ECN) showed variations of over 10% for acetylene, isoprene, and n-hexane. The results provided by the automatic chromatograph correlated significantly with simultaneous results from other widely used techniques for determining VOCs in ambient air: (1) portable GC, equipped with photoionization detector (PID), and (2) active adsorption on Tenax-TA followed by thermal desorption and chromatographic analysis.

  1. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    Directory of Open Access Journals (Sweden)

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  2. Lean VOC-Air Mixtures Catalytic Treatment: Cost-Benefit Analysis of Competing Technologies

    Directory of Open Access Journals (Sweden)

    Gabriele Baldissone

    2017-06-01

    Full Text Available Various processing routes are available for the treatment of lean VOC-air mixtures, and a cost-benefit analysis is the tool we propose to identify the most suitable technology. Two systems have been compared in this paper, namely a “traditional” plant, with a catalytic fixed-bed reactor with a heat exchanger for heat recovery purposes, and a “non-traditional” plant, with a catalytic reverse-flow reactor, where regenerative heat recovery may be achieved thanks to the periodical reversal of the flow direction. To be useful for decisions-making, the cost-benefit analysis must be coupled to the reliability, or availability, analysis of the plant. Integrated Dynamic Decision Analysis is used for this purpose as it allows obtaining the full set of possible sequences of events that could result in plant unavailability, and, for each of them, the probability of occurrence is calculated. Benefits are thus expressed in terms of out-of-services times, that have to be minimized, while the costs are expressed in terms of extra-cost for maintenance activities and recovery actions. These variable costs must be considered together with the capital (fixed cost required for building the plant. Results evidenced the pros and cons of the two plants. The “traditional” plant ensures a higher continuity of services, but also higher operational costs. The reverse-flow reactor-based plant exhibits lower operational costs, but a higher number of protection levels are needed to obtain a similar level of out-of-service. The quantification of risks and benefits allows the stakeholders to deal with a complete picture of the behavior of the plants, fostering a more effective decision-making process. With reference to the case under study and the relevant operational conditions, the regenerative system was demonstrated to be more suitable to treat lean mixtures: in terms of time losses following potential failures the two technologies are comparable (Fixed bed

  3. 2008 LANL radionuclide air emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  4. 2009 LANL radionuclide air emissions report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  5. 2010 LANL radionuclide air emissions report /

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  6. Carbon dioxide emissions from international air freight

    Science.gov (United States)

    Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

    2011-12-01

    Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

  7. Implementation of VOC source reduction practices in a manufactured house and in school classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, A.T.; Apte, M.G.; Shendell, D.G.; Beal, D.; McIlvaine, J.E.R.

    2002-01-01

    Detailed studies of a new manufactured house and four new industrialized relocatable school classrooms were conducted to determine the emission sources of formaldehyde and other VOCs and to identify and implement source reduction practices. Procedures were developed to generate VOC emission factors that allowed reasonably accurate predictions of indoor air VOC concentrations. Based on the identified sources of formaldehyde and other aldehydes, practices were developed to reduce the concentrations of these compounds in new house construction. An alternate ceiling panel reduced formaldehyde concentrations in the classrooms. Overall, the classrooms had relatively low VOC concentrations.

  8. VOCs and odors: key factors in selecting `green` building materials?

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C. [Steven Winter Associates Inc., Norwalk, CT and Washington DC (United States)

    1998-12-01

    The current state of knowledge available for selecting building materials on the basis of emissions of volatile organic compounds (VOCs) and odors is reviewed. The significance of VOCs and odors in building materials is related to their role in influencing indoor air quality. As far as toxicity is concerned, many of the VOCs detected in indoor air are relatively inert when considered singly. They are not however, unimportant because in actual fact they are invariably found in mixtures some of which can be toxic. Although knowledge of VOCs is incomplete, it is important to specify ozone-resistant polymeric building products, i.e. those that are chemically stable and inert to oxidation. In addition to VOCs, attention should also be focused on semi-volatile organic compounds (SVOCs) since they are even more persistent than VOCs and tend to offgas for prolonged periods of time. Similarly, it is reasonable to specify low-odor materials. Inclusion of issues related to complex indoor chemistry, less volatile emissions, in addition to VOCs and odor, should in time result in expanded choices of building materials that promote indoor air quality. 16 refs.,2 tabs.

  9. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  10. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    Science.gov (United States)

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.

  11. Effect of resin content and substrate on the emission of BTEX and carbonyls from low-VOC water-based wall paint.

    Science.gov (United States)

    Zhao, Ping; Cheng, Yu-Hsiang; Lin, Chi-Chi; Cheng, Yu-Lin

    2016-02-01

    The primary aim of this work is to explore the effect of resin content and the effect of substrate on the emission of benzene, toluene, ethylbenzene, and xylene (BTEX) and carbonyls from low-VOC water-based wall paint. Four low-volatile organic compound (VOC) paints include paints A (20% acrylic), B (30% acrylic), C (20% polyvinyl acetate), and D (30% polyvinyl acetate) were painted on stainless steel specimen for the study of resin effect. Green calcium silicate, green cement, and stainless steel were painted with paints A and C for the study of substrate effect. Concentrations of the VOCs in the chamber decreased with the elapsed time. Both resin type and resin quantity in paint had effects on VOC emissions. Paints with acrylic resin emitted less BTEX and carbonyls than paints with polyvinyl acetate resin. However, the effects of resin quantity varied with VOCs. Porous substrates were observed to interact more strongly with paints than inert substrates. Both green calcium silicate and green cement substrates have strong power of adsorption of VOCs from wall paints, namely toluene, formaldehyde, acetaldehyde, 2-butanone, methacrolein, butyraldehyde, and benzaldehyde. Some compounds like toluene, formaldehyde, and butyaldehyde were desorbed very slowly from green calcium silicate and green cement substrates.

  12. VOC methods and levels in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Bomboi, M.T. [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Majadahonda (Spain)

    2004-07-01

    Ozone precursors began to be studied in the eighties in Spain, in order to know their levels and composition in areas, which had high concentrations of other atmospheric polluting agents. At the end of the eighties, VOC were incorporated into the air quality networks in urban areas in order to anticipate at the derived amendments of the entrance into force on the Directive 92/72/CEE of 1992 on air pollution by ozone. At the same time, field campaigns for VOC toxics were started in specific industrial areas and the zones with high traffic. More recently, the air quality networks have been orientated to non-urban areas, to cover the knowledge of VOC in semi-urban and rural areas. On the other hand, the role of the biogenic emissions and the role that their chemical and photochemical products play in atmospheric chemistry was becoming important in the nineties. Therefore some research projects, e.g. 'Biogenic Emissions in the Mediterranean Area (BEMA)', were developed in order to understand the vegetation emissions in the Mediterranean area in relation to anthropogenic compounds and to get information on their participation in tropospheric ozone formation. VOC have been sampled at European Monitoring and Evaluation Programme (EMEP) sites since 1999, based on recommendations from the EMEP Workshop on Measurements of Hydrocarbons/VOC in Lindau 1989. Collection of light hydrocarbons started in 1999, whereas measurements of carbonyls have just started in 2003. In this work, the most important sampling and analysis techniques to determine ozone precursors and to control VOC are shown, as well as the main results obtained in projects, networks and measurement campaigns performed with these methods.

  13. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    Science.gov (United States)

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  14. A novel method to quantify the emission and conversion of VOCs in the smoking of electronic cigarettes

    Science.gov (United States)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-11-01

    An analytical technique was developed for the quantitation of volatile organic compounds (VOC) in three different forms of electronic cigarette (EC): solution, vapor, and aerosol. Through the application of the mass change tracking (MCT) approach, the consumed amount of the solution was measured to track the conversion of targets between the different phases. The concentration of aerosol plus vapor (A&V) decreased exponentially (559 to 129 g m-3) with increasing puff velocity (0.05 to 1 L min-1). A strong correlation existed between sampling volume and consumed solution mass (R2 = 0.9972 ± 0.0021 (n = 4)). In the EC solution, acetic acid was considerably high (25.8 μg mL-1), along with trace quantities of some VOCs (methyl ethyl ketone, toluene, propionic acid, and i-butyric acid: 0.24 ± 0.15 μg mL-1 (n = 4)). In the aerosol samples, many VOCs (n-butyraldehyde, n-butyl acetate, benzene, xylene, styrene, n-valeric acid, and n-hexanoic acid) were newly produced (138 ± 250 μg m-3). In general, the solution-to-aerosol (S/A) conversion was significant: e.g., 1,540% for i-butyric acid. The emission rates of all targets computed based on their mass in aerosol/ consumed solution (ng mL-1) were from 30.1 (p-xylene) to 398 (methyl ethyl ketone), while those of carboxyls were much higher from 166 (acetic acid) to 5,850 (i-butyric acid).

  15. An elaborate high resolution emission inventory of primary air pollutants for the Central Plain Urban Agglomeration of China

    Science.gov (United States)

    Qiu, Peipei; Tian, Hezhong; Zhu, Chuanyong; Liu, Kaiyun; Gao, Jiajia; Zhou, Junrui

    2014-04-01

    A high resolution emission inventory of primary air pollutants was developed based on the detailed collected activity data and the latest source-specific emission factors for the year 2010 in the Central Plain Urban Agglomeration (CPUA) region of China. The total emissions of SO2, NOx, PM10, PM2.5, CO, VOCs, and NH3 were estimated to be about 863.7 kt, 1058.2 kt, 1180.4 kt, 753.2 kt, 2854.3 kt, 466.1 kt, and 496.0 kt, respectively. Therein, power plants were demonstrated to be the largest sources for NOx, contributing about 36.1% of total emissions; industrial processes and biomass burning sources were proved to be the two major contributors of PM10, PM2.5 and VOCs emissions, together accounting for about 71.1%, 79.2% and 56.9% of the total emissions respectively. Besides, 18.4% of VOCs emissions can be explained by VOCs product-related sources. Other stationary combustion sources accounted for 57.7% of SO2 and 30.3% of CO emissions, respectively. Livestock and N-fertilizer application sources contributed about 81.0% of NH3 emissions together. Further, the emissions were spatially distributed into grid cells with a resolution of 3 km × 3 km, by using spatial allocation surrogates such as high resolution gridded population density and regional GDP. This inventory will benefit for policymakers and researchers to better understand the current situation of complex air pollution in the CPUA region of China and supply important necessary input for regional air quality modeling and policymaking.

  16. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    Science.gov (United States)

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  17. Development of North American emission inventories for air quality modeling under climate change.

    Science.gov (United States)

    Woo, Jung-Hun; He, Shan; Tagaris, Efthimios; Liao, Kuo-Jen; Manomaiphiboon, Kasemsan; Amar, Praveen; Russell, Armistead G

    2008-11-01

    An assessment of how future climate change will impact regional air quality requires projecting emissions many decades into the future in a consistent manner. An approach that integrates the impact of both the current regulations and the longer-term national and global trends is developed to construct an emissions inventory (EI) for North America for the mid-century in support of a regional modeling study of ozone and particulate matter (PM) less than or equal to 2.5 microm (PM2.5). Because the time horizon of such a distant projection is beyond that of EIs used in typical modeling studies, it is necessary to identify a practical approach that allows the emission projections to account for emission controls and climatic and energy-use changes. However, a technical challenge arises because this requires integration of various different types of information with which emissions from human activities are associated. Often, emission information in global models has less detail and uses coarser spatiotemporal resolution. The method developed here is based on data availability, spatiotemporal coverage and resolution, and future-scenario consistency (i.e., Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios [IPCC SRES] A1B), and consists of two major steps: (1) near-future EI projection (to the year 2020), and (2) longer-term EI projection (to mid-century). The first step is based closely on the U.S. Environmental Protection Agency Clean Air Interstate Rule EI, the Environment Canada EI, as well estimates of Mexico's EI; whereas the second step follows approaches proposed by the EI from the Integrated Model to Assess the Global Environment (IMAGE), developed by Netherlands's National Institute for Public Health and the Environment (RIVM). For the United States, the year-2050 emissions for nitrogen oxides (NOx), sulfur dioxide (SO2), PM2.5, anthropogenic volatile organic compounds (VOCs), and ammonia are projected to change by -55, -55, -30, -40

  18. Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface.

    Science.gov (United States)

    Tinel, Liselotte; Rossignol, Stéphanie; Ciuraru, Raluca; George, Christian

    2015-04-01

    Investigating the pathway for the photochemical formation of VOCs in presence of an organic monolayer at the air/water interface. Liselotte Tinel, Stéphanie Rossignol, Raluca Ciuraru and Christian George Université de Lyon, Université Lyon 1, CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France Recently the surface microlayer (SML) has received growing attention for its role in the deposition and emission of trace gases. This SML is presumably a highly efficient environment for photochemical reactions thanks to its physical and chemical properties, showing enrichment in chromophores [1]. Still, little is known about the possible photochemical processes that could influence the emission and deposition of volatile organic compounds (VOCs) in the SML. A recent study underlines the particularity of the presence of an organic microlayer, showing enhanced formation of peptide bonds at the air-water interface, although this reaction is thermodynamically disfavoured in bulk water [2]. Also, emissions of small gas phase carbonyl compounds formed photochemically by dissolved organic matter have been measured above natural water and glyoxal, for example, measured above the open ocean is thought to be photochemically produced [3, 4]. This study presents the results of a set of laboratory studies set up in order to better understand the role of the SML in the photochemical production of VOCs. Recently, our group has shown the formation of VOCs by light driven reactions in a small quartz reactor (14mL) containing aqueous solutions of humic acids (HA) in the presence of an organic (artificial or natural) microlayer [5]. The main VOCs produced were oxidized species, such as aldehydes, ketones and alcohols, as classically can be expected by the oxidation of the organics present at the interface initiated by triplet excited chromophores present in the HA. But also alkenes, dienes, including isoprene and

  19. Radioactive air emissions 1992 summary. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, L. [comp.

    1993-10-01

    This report summarizes, by radionuclide or product and by emitting facility, the Laboratory`s 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total {sup 41}Ar activity was decreased, total gaseous/mixed activation product (except {sup 41}Ar) activity was increased, total particulate/vapor activation product activity was increased, and total {sup 32}P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted.

  20. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  1. The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid (CNSL).

    Science.gov (United States)

    Kim, Sumin

    2010-10-15

    To discuss the reduction of formaldehyde and volatile organic compound (VOC) emissions from engineered flooring, cashew nut shell liquid (CNSL)-formaldehyde (CF) resin and CF/PVAc resin were applied for the maple face of the veneer bonding on plywood. The CF resin was used to replace urea-formaldehyde (UF) resin in the formaldehyde-based resin system in order to reduce formaldehyde and VOC emissions from the adhesives used between the plywoods and fancy veneers. For the CF/PVAc resins, 5, 10, 20 or 30% of PVAc was added to the CF resin. The CF/PVAc resins showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The standard formaldehyde emission test and a VOC analyzer were used to determine the formaldehyde and VOC emissions, respectively, from the engineered floorings. The CF resin and CF/PVAc resin systems with UV coating satisfied the E(1) and E(0) grades of the Korean Standard. TVOC emission was slightly increased by the PVAc addition.

  2. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-03

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts.

  3. Carbon Emissions from air-Conditioning

    OpenAIRE

    Rajesh Kumar

    2013-01-01

    This paper explores electricity consumption and carbon emissions associated with air-conditioning. The total heat load of a room fitted with air conditioner of 1.5 ton capacity has been calculated by calculating conduction and ventilation losses. Solar heat gain and internal gain were taken as the other two parameters for the total heat calculation.

  4. Carbon Emissions from air-Conditioning

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2013-01-01

    Full Text Available This paper explores electricity consumption and carbon emissions associated with air-conditioning. The total heat load of a room fitted with air conditioner of 1.5 ton capacity has been calculated by calculating conduction and ventilation losses. Solar heat gain and internal gain were taken as the other two parameters for the total heat calculation.

  5. Theoretical model for removal of volatile organic compound (VOC) air pollutant in trickling biofilter

    Institute of Scientific and Technical Information of China (English)

    LIAO; Qiang; (廖; 强); CHEN; Rong; (陈; 蓉); ZHU; Xun; (朱; 恂)

    2003-01-01

    This paper presents an analytical model for predicting VOC waste gas degradation in a trickling biofilter. To facilitate the analysis, the packed bed is simplified into a series of straight capillary tubes covered by the biofilm. The gas-liquid flow field through the tube is divided into the liquid film flow on the biofilm and the gas core flow in the center. The biofilm consists of a reaction free zone close to solid wall and a reaction zone beneath the liquid film. The capillary tube model accounts for the effect of mass transport resistance in the liquid film and the biofilm, the gas-liquid interfacial mass transport resistance, the biochemical reaction, and the limitation of oxygen to biochemical reaction. The liquid film thickness in the capillary tube is obtained by simultaneously solving a set of hydrodynamic equations representing the momentum transport behaviors of the gas-liquid two-phase flow. The mass transport equations are established for gas core, liquid film, and biofilm combined with biochemical kinetics equations. An iterative computation process is employed to solve the discrete equations. The predicted purification efficiencies of VOC waste gas in trickling biofilter are found to be in good agreement with the experimental data. It has been revealed that for a fixed inlet concentration of toluene, the purification efficiency of trickling biofilter decreases with the increase in gas flow rate and liquid flow rate. The purification efficiency of VOC waste gas is dominated by mass transport resistance in liquid film and biofilm. The highest biodegradation rate occurs at the inlet of waste gas in trickling biofilter.

  6. Evaluating the effectiveness of joint emission control policies on the reduction of ambient VOCs: Implications from observation during the 2014 APEC summit in suburban Beijing

    Science.gov (United States)

    Li, Kun; Li, Junling; Wang, Weigang; Tong, Shengrui; Liggio, John; Ge, Maofa

    2017-09-01

    Ambient volatile organic compounds (VOCs) at a suburban Beijing site were on-line detected using proton transfer reaction-mass spectrometry (PTR-MS) during autumn of 2014, near the location of the Asia-Pacific Economic Cooperation (APEC) summit. During the APEC summit, the Chinese government enacted strict emission control policies. It was found that VOC concentrations only slightly decreased during the first emission control period (EC I), when control policies were performed in Beijing and 5 cities along the Tai-hang Mountains. However, most of the VOCs (10 out of 12 non-biogenic species) significantly decreased (more than 40%) during the second emission control period (EC II), when control policies were carried out in 16 cities including Beijing, Tianjin, 8 cities of Hebei province and 6 cities of Shandong province. Also the ratio of toluene and benzene decreased during EC II, likely because the emission control policies changed the proportions of different anthropogenic sources. Using the positive matrix factorization (PMF) source apportionment method, five factors are analyzed: (1) vehicle + fuel, (2) solvent, (3) biomass burning, (4) secondary, and (5) background + long-lived. Among them, vehicle + fuel, solvent and biomass burning contribute most of the VOCs concentrations (60%-80%) during the polluted periods and are affected most by emission control policies. During EC II, the reductions of vehicle + fuel, solvent, biomass burning and secondary species were all no less than 50%. Overall, when emission control policies were carried out in many North China Plain (NCP) cities (i.e. EC II), the VOC concentrations of suburban Beijing markedly decreased. This indicates the cross-regional joint-control policies have a large influence on reductions of organic gas species. The findings of this study have vital implications for helping formulate effective emission control policies in China and other countries.

  7. Biogenic C5 VOCs: release from leaves after freeze-thaw wounding and occurrence in air at a high mountain observatory

    Science.gov (United States)

    Fall, Ray; Karl, Thomas; Jordan, Alfons; Lindinger, Werner

    During investigations of the formation of volatile organic compounds (VOCs) in leaves, we observed C5 VOCs during leaf drying, senescence, and following freeze-thaw damage. VOCs were quantified by proton-transfer-reaction mass spectrometry (PTR-MS). In freeze-damaged leaves, VOC products were verified with a gas chromatography PTR-MS system, showing that a variety of plants produced 1-penten-3-ol and 1-penten-3-one with smaller amounts of 2(Z)-penten-1-ol and pentenals; similar VOCs have been detected in soybean seed homogenates (Gardner et al., J. Agric. Food Chem. 44 (1996) 882). Most plants wounded in this way also released hexenals and hexanal, and clover also released methylbutanals. The formation of the C5 products was oxygen-dependent, consistent with the involvement of the enzyme lipoxygenase, and pentenone appeared to form independent of an alcohol dehydrogenase reaction; the latter is apparently disrupted by the freeze-thaw treatment. In parallel with these laboratory experiments, on-line PTR-MS measurements of ambient air were conducted at the Sonnblick Observatory in the Austrian Alps (3106 m a.s.l.). Following a hard freeze in central Austria, substantial amounts of C5 VOCs, ranging from 300 pptv to 6 ppbv and including 1-penten-3-ol, methylbutanals and probably pentenone, were detected at this site for several days peaking after midnight. Factor analysis supported their biogenic origin. We speculate that these VOCs were derived from freeze-damaged local vegetation by processes similar to those seen in laboratory freezing studies. If confirmed, these results suggest that leaf-freezing events in forests will give rise to the release of substantial levels of reactive C5 and C6 VOCs that can contribute to regional tropospheric chemistry.

  8. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea

    Science.gov (United States)

    Song, Sang-Keun; Shon, Zang-Ho

    2012-12-01

    The emissions of greenhouse gases (GHGs) and air pollutants from aircraft in the boundary layer at four major international airports in Korea over a two-year period (2009-2010) were estimated using the Emissions and Dispersion Modeling System (EDMS) (i.e. activity-based (Landing/Take-Off (LTO) cycle) methodology). Both domestic and international LTOs and ground support equipment at the airports were considered. The average annual emissions of GHGs (CO2, N2O, CH4 and H2O) at all four airports during the study period were 1.11 × 103, 1.76 × 10-2, -1.85 × 10-3 and 3.84 × 108 kt yr-1, respectively. The emissions of air pollutants (NOx, CO, VOCs and particulate matter) were 5.20, 4.12, 7.46 × 10-1 and 3.37 × 10-2 kt yr-1, respectively. The negative CH4 emission indicates the consumption of atmospheric CH4 in the engine. The monthly and daily emissions of GHGs and air pollutants showed no significant variations at all airports examined. The emissions of GHGs and air pollutants for each aircraft operational mode differed considerably, with the largest emission observed in taxi-out mode.

  9. Push-Pull Air Curtain Performances for VOCs Containment in an Industrial Process

    National Research Council Canada - National Science Library

    A. Aubert; C. Solliec

    2011-01-01

    ...) containment system using an air curtain (push-pull type) on a manual workstation. This work combines CFD numerical simulations of the air curtain system and experimental studies on a real scale test bench...

  10. Review on Volatile Organic Compounds Emission from Wood Composites

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; YU Yaoming; SHEN Jun; LIU Ming

    2006-01-01

    The problem of indoor air quality (IAQ) is mainly caused by the volatile organic compounds (VOC) emission from the wood-based composites. As a material for decoration, furniture manufacturing or building, wood-based composite is one of the sources of VOC emissions. Most of them are formaldehyde, terpene, ketone and benzene. The paper reviews on VOC emission of wood-based composites at home and abroad, including the source of the VOC, its impacts on IAQ, its emission during processing and using, the usual sampling and analyse methods of VOC in different conditions. Meanwhile, main problems existed in the past researches are summarized and some suggestions are put forward.

  11. Volatile Organic Compound (VOC measurements in the Pearl River Delta (PRD region, China

    Directory of Open Access Journals (Sweden)

    Chih-chung Chang

    2008-03-01

    Full Text Available We measured levels of ambient volatile organic compounds (VOCs at seven sites in the Pearl River Delta (PRD region of China during the Air Quality Monitoring Campaign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ and Xinken (XK, were intensive sites at which we collected multiple daily canister samples. The observations reported here provide a look at the VOC distribution, speciation, and photochemical implications in the PRD region. Alkanes constituted the largest percentage (>40% in mixing ratios of the quantified VOCs at six sites; the exception was one major industrial site that was dominated by aromatics (about 52%. Highly elevated VOC levels occurred at GZ during two pollution episodes; however, the chemical composition of VOCs did not exhibit noticeable changes during these episodes. We calculated the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contributions of reactive aromatics were more important at XK. Our preliminary analysis of the VOC correlations suggests that the ambient VOCs at GZ came directly from local sources (i.e., automobiles; those at XK were influenced by both local emissions and transportation of air mass from upwind areas.

  12. 2014 LANL Radionuclide Air Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  13. Characterization of organic air emissions from the Certification and Segregation Building and Air Support Weather Shield II at the Radioactive Waste Management Complex

    Energy Technology Data Exchange (ETDEWEB)

    Shoop, D.S.; Jackson, J.M.; Jolley, J.G.; Izbicki, K.J.

    1994-12-01

    During the latter part of Fiscal Year (FY-92), a task was initiated to characterize the organic air emissions from the Certification and Segregation (C and S) Building [Waste Management Facility (WMF) 612] and the Air Support Weather Shield II (ASWS II or ASB II) (WMF 711) at the Radioactive Waste Management Complex (RWMC). The purpose of this task, titled the RWMC Organic Air Emissions Evaluation Task, was to identify and quantify the volatile organic compounds (VOCS) present in the ambient air in these two facilities and to estimate the organic air emissions. The VOCs were identified and quantified by implementing a dual method approach using two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and SUMMA canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14. The data gathered were used in conjunction with the building`s ventilation rate to calculate an estimated organic air emissions rate. This report presents the data gathered during the performance of this task and relates the data to the relevant regulatory requirements.

  14. Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber

    Science.gov (United States)

    Lee, Shun-Cheng; Wang, Bei

    The objective of this study was to characterize the emissions of air pollutants from incense burning in a large environmental test chamber. Air pollutants emitted from ten types of commonly used incense manufactured in different regions were compared. The target pollutants included particulate matters (PM 10, PM 2.5), volatile organic compounds (VOCs), carbonyls, carbon monoxide (CO), carbon dioxide (CO 2), nitrogen oxides (NO x), methane (CH 4) and non-methane hydrocarbon (NMHC). The particulate matters emitted from all the incense significantly exceeded the Recommended Indoor Air Quality Objectives for Office Buildings and Public Places in Hong Kong (HKIAQO). The CO peak levels of seven incense types greatly exceeded the HKIAQO standard. The formaldehyde concentrations of six types of incense were higher than the HKIAQO. The highest formaldehyde level exceeded the standard by 2 times. The results indicated that the concentrations of benzene, toluene, methyl chloride and methylene chloride significantly increased with the burning of all incense tested. In addition, the benzene concentrations of all tested incense were significantly higher than the HKIAQO standard. Although Incense 2 and 6 were claimed to be environmental friendly, the quantity of the pollutants emitted was not observed to be lower than the others. It was observed that when comparing the gas pollutant emission factors between two major incense categories (i.e. traditional and aromatic), the traditional incense (i.e. Incense 1-6) had relatively higher values than aromatic incense (i.e. Incense 7-9). Generally, it was found that the VOCs emitted sequence was aromatic incense>tradition incense>church incense (i.e. Incense 10). However, the carbonyl compounds emission sequence was traditional incense>aromatic incense>church incense. The results show that incense burning is one of the important indoor air pollution sources for PM, CO and VOCs.

  15. Effects of Cold Temperature and Ethanol Content on VOC Emissions from Light-Duty Gasoline Vehicles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Table S6 provides emission rates in g/km of volatile organic compounds measured from gasoline vehicle exhaust during chassis dynamometer...

  16. Dioxin air emission inventory 1990-2004

    Energy Technology Data Exchange (ETDEWEB)

    Capral Henriksen, T.; Illerup, J.B.; Nielsen, Ole-Kenneth [DMU, Dept. of Policy Analysis (Denmark)

    2006-12-15

    The present Danish dioxin air emission inventory shows that the emission has been reduced from 68.6 g I-TEQ in 1990 to 22.0 g I-TEQ in 2004, or about 68% over this period. Most of the significant reductions have been achieved in the industrial sector, where emissions have been reduced from 14.67 g I-TEQ in 1990 to 0.17 g I-TEQ in 2004; a reduction of almost 99%. Lower emissions from steel and aluminium reclamation industries form the major part of the reduction within industry. Emissions from waste incineration reduced from 32.5 g I-TEQ in 1990 to 2.1 g ITEQ in 2004; which is approx. 94%. This is due to installation of dioxin abatement equipment in incineration plants. The most important source of emission in 2004 is residential wood combustion, at 8.5 g I-TEQ, or around 40% of the total emission. In 2004, accidental fires, which are estimated to emit 6.1 g I-TEQ/year, are the second most important source, contributing with around 28% of the total emission. The present dioxin emission inventory for Denmark shows how emissions in 2004 come from sources other than waste incineration plants and industry, which were the largest sources in 1990. (au)

  17. Influence of future anthropogenic emissions on climate, natural emissions, and air quality

    Science.gov (United States)

    Jacobson, Mark Z.; Streets, David G.

    2009-04-01

    This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner" than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by ˜3% in the B1 scenario and ˜12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by ˜2% in both scenarios. Emissions of isoprene and monoterpenes increased by ˜1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by ˜14% in the A1B scenario and ˜4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by ˜2% in the A1B scenario and decreased by ˜2% in the B1 scenario. The resulting 1.4% higher

  18. PM2.5 and volatile organic compounds (VOCs) in ambient air: a focus on the effect of meteorology.

    Science.gov (United States)

    Giakoumi, A; Maggos, Th; Michopoulos, J; Helmis, C; Vasilakos, Ch

    2009-05-01

    PM(2.5) and VOCs (benzene, toluene, m-p-o-xylenes) concentrations were measured in an urban and a suburban site in Athens, Greece, during the period between April and November 2004. This period, which is considered to be the warmer period in Greece, is characterized by the development of sea-breeze over the Attica Basin. Additionally strong Northern, North-eastern winds called "The Etesians", predominate during the summer months (July-August), acting positively to the dispersion of pollutants. In this campaign, 24 days with sea-breeze development were observed, 15 days with northern winds, 6 days with southern winds while the rest of the days presented no specific wind profile. Maximum concentrations of PM(2.5), VOCs and nitrogen oxides, were detected during the days with sea-breeze, while minimum concentrations during the days with northern winds. Ozone was the only pollutant that appeared to have higher concentrations in the background site and not in the city centre, where benzene presented strong negative correlation with ozone, indicating the photochemical reaction of hydrocarbons that lead to the ozone formation. The BTX ratios were similar for both sites and wind profiles, indicating common sources for those pollutants. T/B ratio ranged in low levels, between 3-5 for site A and 2-5 for site B, suggesting vehicles emissions as the main sources of volatile compounds. Finally, the strong correlations of PM(2.5) and benzene concentrations, between the two sampling sites, indicate that both the city centre and the background site, are affected by the same sources, under common meteorological conditions (sea-breeze, northern winds).

  19. Health evaluation of volatile organic compound (VOC) emission from exotic wood products

    DEFF Research Database (Denmark)

    Kirkeskov, L; Witterseh, T; Funch, L W

    2009-01-01

    analyses by climate chamber measurement (iroko, ramin, sheesham, merbau, and rubber tree). Samples of exotic wood (rubber tree and belalu) were further analyzed for emission of chemical compounds by migration into artificial saliva and for content of pesticides and allergenic natural rubber latex (NR latex......) (rubber tree). The toxicological effects of all substances identified were evaluated and the lowest concentrations of interest (LCI) assessed. An R-value was calculated for each wood product (R-value below 1 is considered to be unproblematic as regards health). Emission from the evaluated exotic wood only...

  20. Using Multiple Regression in Estimating (semi) VOC Emissions and Concentrations at the European Scale

    DEFF Research Database (Denmark)

    Fauser, Patrik; Thomsen, Marianne; Pistocchi, Alberto

    2010-01-01

    for an in-depth risk assessment. Uncertainty measures are not available for the RAR data; however, uncertainties for the applied regression models are given in the paper. Evaluation of the methods reveals that between 79% and 93% of all emission and PEC estimates are within one order of magnitude...... of the reported RAR values. Bearing in mind that the domain of the method comprises organic industrial high-production volume chemicals, four chemicals, prioritized in the Water Framework Directive and the Stockholm Convention on Persistent Organic Pollutants, were used to test the method for estimated emissions...

  1. Root anoxia effects on physiology and emissions of volatile organic compounds (VOC) under short- and long-term inundation of trees from Amazonian floodplains.

    Science.gov (United States)

    Bracho-Nunez, Araceli; Knothe, Nina Maria; Costa, Wallace R; Maria Astrid, Liberato R; Kleiss, Betina; Rottenberger, Stefanie; Piedade, Maria Teresa Fernandez; Kesselmeier, Jürgen

    2012-01-01

    Volatile organic compound (VOC) emissions are affected by a variety of biotic and abiotic factors such as light intensity, temperature, CO2 and drought. Another stress factor, usually overlooked but very important for the Amazon region, is flooding. We studied the exchange of VOCs in relation to CO2 exchange and transpiration of 8 common tree species from the Amazonian floodplain forest grown up from seeds using a dynamic enclosure system. Analysis of volatile organics was performed by PTR-MS fast online measurements. Our study confirmed emissions of ethanol and acetaldehyde at the beginning of root anoxia after inundation, especially in less anoxia adapted species such as Vatairea guianensis, but not for Hevea spruceana probably due to a better adapted metabolism. In contrast to short-term inundation, long-term flooding of the root system did not result in any emission of ethanol or/and acetaldehyde. Emission of other VOCs, such as isoprenoids, acetone, and methanol exhibited distinct behavior related to the origin (igapó or várzea type of floodplain) of the tree species. Also physiological activities exhibited different response patterns for trees from igapó or várzea. In general, isoprenoid emissions increased within the course of some days of short-term flooding. After a long period of waterlogging, VOC emissions decreased considerably, along with photosynthesis, transpiration and stomatal conductance. However, even under long-term testing conditions, two tree species did not show any significant decrease or increase in photosynthesis. In order to understand ecophysiological advantages of the different responses we need field investigations with adult tree species.

  2. Major reactive species of ambient volatile organic compounds (VOCs) and their sources in Beijing

    Institute of Scientific and Technical Information of China (English)

    SHAO; Min; FU; Linlin; LIU; Ying; LU; Sihua; ZHANG; Yuanhan

    2005-01-01

    Volatile organic compounds (VOCs) are important precursors of atmospheric chemical processes. As a whole mixture, the ambient VOCs show very strong chemical reactivity. Based on OH radical loss rates in the air, the chemical reactivity of VOCs in Beijing was calculated. The results revealed that alkenes, accounting for only about 15% in the mixing ratio of VOCs, provide nearly 75% of the reactivity of ambient VOCs and the C4 to C5 alkenes were the major reactive species among the alkenes. The study of emission characteristics of various VOCs sources indicated that these alkenes are mainly from vehicle exhaust and gasoline evaporation. The reduction of alkene species in these two sources will be effective in photochemical pollution control in Beijing.

  3. Air Quality Modelling and the National Emission Database

    DEFF Research Database (Denmark)

    Jensen, S. S.

    The project focuses on development of institutional strengthening to be able to carry out national air emission inventories based on the CORINAIR methodology. The present report describes the link between emission inventories and air quality modelling to ensure that the new national air emission...... inventory is able to take into account the data requirements of air quality models...

  4. Global dataset of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    Directory of Open Access Journals (Sweden)

    K. Sindelarova

    2014-04-01

    Full Text Available The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1 together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA meteorological fields were used to create a global emission dataset of biogenic volatile organic compounds (BVOC available on a monthly basis for the time period of 1980–2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg (C yr−1 consisting of isoprene (70%, monoterpenes (11%, methanol (6%, acetone (3%, sesquiterpenes (2.5% and other BVOC species each contributing less than 2%. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of up to ±17% of the reference isoprene total. A greater impact was observed for a sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene inventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene, α-pinene and group of monoterpenes showed a reasonable agreement with surface flux measurements at sites located in tropical forests in the Amazon and Malaysia. The model was able to capture the seasonal variation of isoprene emissions in the Amazon forest.

  5. Mitigating ammonia and volatile organic compounds (VOCs) emissions from poultry houses using vegetative environmental buffers

    Science.gov (United States)

    The expansion of the poultry industry due to the growing demand of livestock products is putting considerable stress on the atmospheric environment and is also a public health concern. While many regulators and researchers identify land-applied poultry manure as a source of air pollutants, less is k...

  6. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    Science.gov (United States)

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions.

  7. 长江三角洲地区基于喷涂工艺的溶剂源 VOCs 排放特征%Process-based Emission Characteristics of Volatile Organic Compounds(VOCs) from Paint Industry in the Yangtze River Delta, China

    Institute of Scientific and Technical Information of China (English)

    莫梓伟; 牛贺; 陆思华; 邵敏; 勾斌

    2015-01-01

    了解挥发性有机物(volatile organic compounds,VOCs)的溶剂源排放特征是制定长江三角洲地区 PM2.5和臭氧防控策略的关键.本研究通过罐采样-GC-MS/ FID 测定了长江三角洲地区重点喷涂行业(集装箱喷涂、造船喷涂、木器喷涂和汽车喷涂业)的 VOCs 排放特征.结果表明,长江三角洲地区喷涂行业排放的主要 VOCs 组分为甲苯、二甲苯、乙苯等芳香烃类物质,三者之和占总 VOCs 的质量分数为79%~99%.生产工艺的不同对 VOCs 的排放组成影响并不大,废气处理装置中活性炭吸附对 VOCs 的组成并无明显影响,而催化燃烧的处理过程会使 VOCs 的排放组成产生显著变化,乙烯排放明显增大,同时也使得催化燃烧处理最大增量反应活性(maximum increment reactivity,MIR)值高于活性炭吸附处理后的 MIR 值,说明不同的处理措施的使用将影响 VOCs 对臭氧的生成作用.%Understanding the volatile organic compounds (VOCs) emission characteristics from solvent usage industry is essential to reduce PM2. 5 and O3 in Yangtze River Delta region. In this work, VOCs source characteristics of ship container, shipbuilding, wood, and automobile painting industry were measured using canister-GC-MS/ FID analysis system. The results showed that VOCs emitted from these industrial sectors were mainly aromatics, such as toluene, xylene, and ethylbenzene, accounting for 79% - 99% of total VOCs. The VOCs treatment facilities of activated carbon adsorption had little impact on changing the composition patterns of VOCs, while catalytic combustion treatments produced more alkenes. The combustion treatment of VOCs changed the maximum increment reactivity (MIR) of the VOCs emissions, and was thus very likely to change the ozone formation potentials.

  8. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings.

    Science.gov (United States)

    Steinle, Patrick

    2016-01-01

    Emissions from a desktop 3D printer based on fused deposition modeling (FDM) technology were measured in a test chamber and indoor air was monitored in office settings. Ultrafine aerosol (UFA) emissions were higher while printing a standard object with polylactic acid (PLA) than with acrylonitrile butadiene styrene (ABS) polymer (2.1 × 10(9) vs. 2.4 × 10(8) particles/min). Prolonged use of the printer led to higher emission rates (factor 2 with PLA and 4 with ABS, measured after seven months of occasional use). UFA consisted mainly of volatile droplets, and some small (100-300 nm diameter) iron containing and soot-like particles were found. Emissions of inhalable and respirable dust were below the limit of detection (LOD) when measured gravimetrically, and only slightly higher than background when measured with an aerosol spectrometer. Emissions of volatile organic compounds (VOC) were in the range of 10 µg/min. Styrene accounted for more than 50% of total VOC emitted when printing with ABS; for PLA, methyl methacrylate (MMA, 37% of TVOC) was detected as the predominant compound. Two polycyclic aromatic hydrocarbons (PAH), fluoranthene and pyrene, were observed in very low amounts. All other analyzed PAH, as well as inorganic gases and metal emissions except iron (Fe) and zinc (Zn), were below the LOD or did not differ from background without printing. A single 3D print (165 min) in a large, well-ventilated office did not significantly increase the UFA and VOC concentrations, whereas these were readily detectable in a small, unventilated room, with UFA concentrations increasing by 2,000 particles/cm(3) and MMA reaching a peak of 21 µg/m(3) and still being detectable in the room even 20 hr after printing.

  9. Composition of gaseous organic carbon during ECOCEM in Beirut, Lebanon: new observational constraints for VOC anthropogenic emission evaluation in the Middle East

    Science.gov (United States)

    Salameh, Thérèse; Borbon, Agnès; Afif, Charbel; Sauvage, Stéphane; Leonardis, Thierry; Gaimoz, Cécile; Locoge, Nadine

    2017-01-01

    The relative importance of eastern Mediterranean emissions is suspected to be largely underestimated compared to other regions worldwide. Here we use detailed speciated measurements of volatile organic compounds (VOCs) to evaluate the spatial heterogeneity of VOC urban emission composition and the consistency of regional and global emission inventories downscaled to Lebanon (European Monitoring and Evaluation Programme, EMEP; Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP; and MACCity, Monitoring Atmospheric Composition and Climate and megaCITY Zoom for the Environment). The assessment was conducted through the comparison of the emission ratios (ERs) extracted from the emission inventories to the ones obtained from the hourly observations collected at a suburban site in Beirut, Lebanon, during summer and winter ECOCEM (Emissions and Chemistry of Organic Carbon in the Eastern Mediterranean) campaigns. The observed ERs were calculated using two independent methods. ER values from both methods agree very well and are comparable to the ones of the road transport sector from near-field measurements for more than 80 % of the species. There is no significant seasonality in ER for more than 90 % of the species, unlike the seasonality usually observed in other cities worldwide. Regardless of the season, ERs agree within a factor of 2 between Beirut and other representative cities worldwide, except for the unburned fuel fraction and ethane. ERs of aromatics (except benzene) are higher in Beirut compared to northern post-industrialized countries and even the Middle Eastern city Mecca. The comparison of the observed ER to the ones extracted from the ACCMIP and MACCity global emission inventories suggests that the overall speciation of anthropogenic sources for major hydrocarbons that act as ozone and secondary organic aerosol (SOA) precursors in ACCMIP is better represented than other species. The comparison of the specific road transport ERs, relative

  10. The Development of a SPME-GC/MS Method for the Analysis of VOC Emissions from Historic Plastic and Rubber Materials

    OpenAIRE

    Curran, K.; Underhill, M.; Gibson, L. T.; Strlic, M.

    2015-01-01

    Analytical methods have been developed for the analysis of VOC emissions from historic plastic and rubber materials using SPME-GC/MS. Parameters such as analysis temperature, sampling time and choice of SPME fibre coating were investigated and sampling preparation strategies explored, including headspace sampling in vials and in gas sampling bags. The repeatability of the method was evaluated. It was found that a 7 d accumulation time at room temperature, followed by sampling using a DVB/CAR/...

  11. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    Science.gov (United States)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  12. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  13. 2006 LANL Radionuclide Air Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  14. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  15. Impact of Mexico City emissions on regional air quality from MOZART-4 simulations

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-07-01

    Full Text Available An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4, a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been "tagged" to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City when averaged over the month. However, considerable variation in the fire contribution (2–15% of total CO is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air downwind of Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of Ox to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the

  16. Impact of Mexico City emissions on regional air quality from MOZART-4 simulations

    Directory of Open Access Journals (Sweden)

    L. K. Emmons

    2010-02-01

    Full Text Available An extensive set of measurements was made in and around Mexico City as part of the MILAGRO (Megacity Initiative: Local and Global Research Observations experiments in March 2006. Simulations with the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4, a global chemical transport model, have been used to provide a regional context for these observations and assist in their interpretation. These MOZART-4 simulations reproduce the aircraft observations generally well, but some differences in the modeled volatile organic compounds (VOCs from the observations result from incorrect VOC speciation assumed for the emission inventories. The different types of CO sources represented in the model have been "tagged" to quantify the contributions of regions outside Mexico, as well as the various emissions sectors within Mexico, to the regional air quality of Mexico. This analysis indicates open fires have some, but not a dominant, impact on the atmospheric composition in the region around Mexico City, when averaged over the month. However, considerable variation in the fire contribution (2–15% of total CO is seen during the month. The transport and photochemical aging of Mexico City emissions were studied using tags of CO emissions for each day, showing that typically the air near Mexico City was a combination of many ages. Ozone production in MOZART-4 is shown to agree well with the net production rates from box model calculations constrained by the MILAGRO aircraft measurements. Ozone production efficiency derived from the ratio of Ox to NOz is higher in MOZART-4 than in the observations for moderately polluted air. OH reactivity determined from the MOZART-4 results shows the same increase in relative importance of oxygenated VOCs downwind of Mexico City as the reactivity inferred from the observations. The amount of ozone produced by emissions from Mexico City and surrounding areas has been quantified in the model by

  17. Ship emissions and air pollution in Denmark

    DEFF Research Database (Denmark)

    Olesen, Helge Rørdam; Winther, Morten; Ellermann, Thomas

    A project has been carried out to map the contribution from ship traffic to air pollution in Denmark. A main element in the project is the establishment of a new, improved inventory of ship emissions for the waters around Denmark. The inventory makes use of the so-called AIS system, which...... continuously keeps track of ship positions. The inventory provides basis for model calculations of air quality in Denmark for the years 2007, 2011 and 2020. The study has focus on identifying the contribution from ships, and on assessing the effect of international regulations of ship pollution. A minor...... component of the study concerns the contribution to local air pollution from ships at port....

  18. Ship emissions and air pollution in Denmark

    DEFF Research Database (Denmark)

    Olesen, Helge Rørdam; Winther, Morten; Ellermann, Thomas

    A project has been carried out to map the contribution from ship traffic to air pollution in Denmark. A main element in the project is the establishment of a new, improved inventory of ship emissions for the waters around Denmark. The inventory makes use of the so-called AIS system, which...... continuously keeps track of ship positions. The inventory provides basis for model calculations of air quality in Denmark for the years 2007, 2011 and 2020. The study has focus on identifying the contribution from ships, and on assessing the effect of international regulations of ship pollution. A minor...... component of the study concerns the contribution to local air pollution from ships at port....

  19. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    Energy Technology Data Exchange (ETDEWEB)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  20. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  1. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  2. Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species

    Science.gov (United States)

    König, Georg; Brunda, Monika; Puxbaum, Hans; Hewitt, C. Nicholas; Duckham, S. Craig; Rudolph, Jochen

    Emission rates of more than 50 individual VOCs were determined for eight plant species and three different types of grass land typical for natural deciduous and agricultural vegetation in Austria. In addition to the emissions of isoprene and monoterpenes, 33 biogenic oxygenated volatile organic compounds (BOVOCs) were detected. Of these, 2-methyl-l-propanol, 1-butanal, 2-butanal, 1-pentanol, 3-pentanol, 1-hexanol, 6-methyl-5-hepten-2-one, butanal and ethylhexylacetate were observed for the first time as plant emissions. In terms of prevalence of one of the groups of emitted VOCs (isoprene, terpenes, BOVOCs) the grain plants wheat and rye, grape, oilseed rape and the decidous trees hombeam and birch could be classified as "BOVOC"-emitters. For the grass plots examined, BOVOCs and terpenes appear to be of equal importance. The emission rates of the total assigned organic plant emissions ranged from 0.01 μ g -1 h -1 for wheat to 0.8 μg g -1 h -1 for oak (based on dry leaf weight). Intercomparison with available data from other studies show that our emission rates are rather at the lower end of reported ranges. The influence of the stage of growth was examined for rye, rape (comparing emissions of blossoming and nonblossoming plants) and for grape (with and without fruit). Emission rate differences for different stages of growth varied from nondetectable for blossoming and nonblossoming rye to a factor of six for the grape with fruits vs grape without fruits (emission rate based on dry leaf weight). The major decidous tree in Austria (beech) is a terpene emitter, with the contribution of BOVOCs below 5% of the total assigned emissions of 0.2 μg g -1 h -1 for the investigations of 20°C.

  3. Radionuclide Air Emission Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  4. Radionuclide Air Emission Report for 2009

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  5. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

    Science.gov (United States)

    Drewniak, Beth A.; Snyder, Peter K.; Steiner, Allison L.; Twine, Tracy E.; Wuebbles, Donald J.

    2014-01-01

    A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5-6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs.

  6. Radionuclide Air Emissions Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Linnea [Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Berkeley Lab operates facilities where radionuclides are produced, handled, store d, and potentially emitted . These facilities are subject to the EPA radioactive air emission regulations in 40 CFR 61, Subpart H (EPA 1989a). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2012, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]) . These minor sources include d about 140 stack sources and no diffuse sources . T here were no unplanned airborne radionuclide emissions from Berkeley Lab operations . Emissions from minor sources were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building- specific and common parameters, Laboratory personnel applied the EPA -approved computer code s, CAP88-PC and COMPLY , to calculate doses to the maximally exposed individual (MEI) at any offsite point where there is a residence, school, business, or office. Because radionuclides are used at three noncontiguous locations (the main site, Berkeley West Bio center, and Joint BioEnergy Institute), three different MEIs were identified.

  7. Air toxics emissions from an IGCC process

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Norrbacka, P. [Enviropower Inc., Espoo (Finland); Hinderson, A. [Vattenfall (Sweden); Rosenberg, R.; Zilliacus, R.; Kurkela, E.; Nieminen, M. [VTT Energy, Espoo (Finland); Hoffren, H. [IVO International Oy, Vantaa (Finland)

    1996-12-01

    The so-called simplified coal gasification combined cycle process, incorporating air gasification and hot gas cleanup, promises high power generation efficiency in an environmentally acceptable manner. Increasingly more stringent environmental regulations have focused attention on the emissions of not only SO{sub 2} and NO{sub x} but also on the so-called air toxics which include a number of toxic trace elements. As result of recent amendments to the United States Clean Air Act, IGCC emissions of eleven trace elements: antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium - as well as the radionuclides uranium and thorium may be regulated. Similarly, air missions standards in Europe include a limit of 0.05 mg Nm{sup 3} for mercury and cadmium and 1.0 3/Nm{sup 3} for other class I trace elements. A suitable sampling/measuring system has been developed in this project (in cooperation with Imatran Voima Oy, Electric Power Research Institute (EPRI) and Radian Cooperation) which will be used in the pressurized gasification tests. This will enable an accurate measurement of the volatilized trace element species, at high temperature and pressure, which may be found in the vapour phase. Models are being developed that can be used to determine not only the chemical equilibrium composition of gaseous, liquid and solid phases, but also possible interactions of the gaseous species with aerosol particles and surfaces, These should be used to more accurately assess the impact of the toxic trace metals emitted from the simplified IGCC system

  8. Biomonitoring of VOC emissions from the coating process at DaimlerChrysler - an inside view of motivation factors

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, H.U. [DaimlerChrysler AG, Sindelfingen (Germany); Kostka-Rick, R. [Biologisch Ueberwachen und Bewerten, Echterdingen (Germany)

    2002-07-01

    To reduce ambient air pollution by solvents in the Boeblingen/Sindelfingen area, water-based paints were introduced in the Sindelfingen factory in the early nineties. Effect monitoring using plants was to clarify what effects the coating process had on the environment and to what extent the environmental impact was reduced by water-based paint technology. Depending on the results, the new method was to be optimized. In terms of the environmental liability legislation, the findings were to permit a self-appraisal of production effects. Between 1992 and 1996, a special bio-indication process tailored to the solvent emissions from the paint shop was developed. From 37 different plant species and varieties, nasturtium, different varieties of bush bean and of tomato were selected as bio-indicators, reacting specifically and sensitively to the solvent emissions. The monitoring plants were exposed at 13 different sites on the factory premises and in the urban area of Sindelfingen for air quality monitoring. Since 1992, more than 9,700 plants have been exposed and investigated and some 125,000 injury scores have been recorded. (orig.)

  9. Impact of emission control on regional air quality: an observational study of air pollutants before, during and after the Beijing Olympic Games.

    Science.gov (United States)

    Wang, Shulan; Gao, Jian; Zhang, Yuechong; Zhang, Jingqiao; Cha, Fahe; Wang, Tao; Ren, Chun; Wang, Wenxing

    2014-01-01

    An observational study on trace gases and PM2.5 was conducted at three sites in and around Beijing, during the Olympic season from 2007 to 2009. Air quality improved significantly during the Olympic Games due to the special emission control measures. However, concentrations of the primary pollutants and PM were found to have risen significantly after the Games. Although the major O3 precursors (NO(x) and VOCs) were well controlled during the Olympic season, O3 was still found to be the highest in 2008, based on the data of ground-based observation. All this information suggests that while control of regional emissions for the Beijing Olympic Games did improved the air quality in Beijing, more efforts will be needed for the continuous improvement of regional air quality, especially for significant reductions of O3 and fine particulate pollution, and not only in Beijing, but also in the Beijing-Tianjin-Hebei region.

  10. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    Science.gov (United States)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang

  11. Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO{sub 2}) in a medium size city in Northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Parra, M.A. [Laboratorio Integrado de Calidad Ambiental (LICA), Departamento de Quimica y Edafologia, Facultad de Ciencias, Universidad de Navarra. Irunlarrea 1, 31008, Pamplona, Navarra (Spain)], E-mail: mparravi@alumni.unav.es; Elustondo, D.; Bermejo, R.; Santamaria, J.M. [Laboratorio Integrado de Calidad Ambiental (LICA), Departamento de Quimica y Edafologia, Facultad de Ciencias, Universidad de Navarra. Irunlarrea 1, 31008, Pamplona, Navarra (Spain)

    2009-01-15

    Ambient concentrations of volatile organic compounds (VOC) and nitrogen dioxide (NO{sub 2}) were measured by means of passive sampling at 40 sampling points in a medium-size city in Northern Spain, from June 2006 to June 2007. VOC and NO{sub 2} samplers were analysed by thermal desorption followed by gas chromatography/mass-selective detector and by visible spectrophotometry, respectively. Mean concentrations of benzene, toluene, ethylbenzene, xylenes, propylbenzene, trimethylbenzenes, and NO{sub 2} were 2.84, 13.26, 2.15, 6.01, 0.59, 1.32 and 23.17 {mu}g m{sup -3} respectively, and found to be highly correlated. Their spatial distribution showed high differences in small distances and pointed to traffic as the main emission source of these compounds. The lowest levels of VOC and NO{sub 2} occurred during summer, owing to the increase in solar radiation and to lower traffic densities. Mean concentrations of benzene and NO{sub 2} exceeded the European limits at some of the monitored points.

  12. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    Science.gov (United States)

    Maurer, Devin L.; Koziel, Jacek A.; Bruning, Kelsey; Parker, David B.

    2017-02-01

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate surface-applied soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manure additive to mitigate emissions of odorous volatile organic compounds (VOC) including dimethyl disulfide/methanethiol (DMDS/MT), dimethyl trisulfide, n-butyric acid, valeric acid, isovaleric acid, p-cresol, indole, and skatole. The secondary impact on emissions of NH3, H2S, and GHG was also measured. The SBP was tested at four treatments (2.28-45.7 kg/m2 manure) with CaO2 (4.2% by weight of SBP) over 137 days. Significant reductions in VOC emissions were observed: DMDS/MT (36.2%-84.7%), p-cresol (53.1%-89.5%), and skatole (63.2%-92.5%). There was a corresponding significant reduction in NH3 (14.6%-67.6%), and significant increases in the greenhouse gases CH4 (32.7%-232%) and CO2 (20.8%-124%). The remaining emissions (including N2O) were not statistically different. At a cost relative to 0.8% of a marketed hog it appears that SBP/CaO2 treatment could be a promising option at the lowest (2.28 kg/m2) treatment rate for reducing odorous gas and NH3 emissions at swine operations, and field-scale testing is warranted.

  13. Emission of pesticides into the air

    Science.gov (United States)

    Van Den, Berg; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; Van Der Linden, A. M. A.

    1999-01-01

    During and after the application of a pesticide in agriculture, a substantial fraction of the dosage may enter the atmosphere and be transported over varying distances downwind of the target. The rate and extent of the emission during application, predominantly as spray particle drift, depends primarily on the application method (equipment and technique), the formulation and environmental conditions, whereas the emission after application depends primarily on the properties of the pesticide, soils, crops and environmental conditions. The fraction of the dosage that misses the target area may be high in some cases and more experimental data on this loss term are needed for various application types and weather conditions. Such data are necessary to test spray drift models, and for further model development and verification as well. Following application, the emission of soil fumigants and soil incorporated pesticides into the air can be measured and computed with reasonable accuracy, but further model development is needed to improve the reliability of the model predictions. For soil surface applied pesticides reliable measurement methods are available, but there is not yet a reliable model. Further model development is required which must be verified by field experiments. Few data are available on pesticide volatilization from plants and more field experiments are also needed to study the fate processes on the plants. Once this information is available, a model needs to be developed to predict the volatilization of pesticides from plants, which, again, should be verified with field measurements. For regional emission estimates, a link between data on the temporal and spatial pesticide use and a geographical information system for crops and soils with their characteristics is needed.

  14. 山西省人为源VOCs排放清单及其对臭氧生成贡献%Emission Inventory of Anthropogenic VOCs and Its Contribution to Ozone Formation in Shanxi Province

    Institute of Scientific and Technical Information of China (English)

    闫雨龙; 彭林

    2016-01-01

    Based on the activity levels, emission factors and composition characteristics of VOCs, which was obtained in statistic data and references, the emission amount of anthropogenic VOCs in Shanxi province in 2013 was calculated, and the ozone formation potential of VOCs was studied in this study. The results showed that the emission amount of anthropogenic VOCs in Shanxi province in 2013 was 723 700 t, with the major sector of the industrial emission and vehicle emission, accounting for 36. 47% and 24. 28% of total emission amount, respectively. Coke and chemicals production, the major emission source of VOCs in industrial emission, emitting 190 600 t and 38 800 t VOCs in 2013, accounting for 72. 22% and 14. 72% of industrial emission, respectively. The emission amount of ozone precursor VOCs was 435 900 t, and the total amount of ozone formation potential in Shanxi province in 2013 was 1 769 900 t. The sources of the greatest contribution to total ozone were vehicle emission, combustion sources and industrial emission. The results indicated that industrial emission was the major source of VOCs emission, which showed the simplification and heavy industrial structure. The increasing numbers of vehicles led to the huge emission of VOCs in recent years. In conclusion, the main measure of controlling the ozone pollution caused by VOCs emissions was controlling the VOCs emission from industrial emission and vehicle emission.%根据统计年年鉴中主要的人为挥发性有机物(VOCs)排放源的行业活动水平和文献中查阅到的 VOCs 排放因子和组分特征,计算了山西省2013年的人为源 VOCs 的排放量,计算了臭氧生成潜势.计算结果显示山西省2013年人为源 VOCs 排放量为72.37万 t,最主要的排放行业是工业排放源和移动源,分别占总排放量的36.47%和24.28%;在工业源中,焦炭生产和化学品生产的 VOCs 排放量分别为19.06万 t 和3.88万 t,分别占工业排放行业总排放量的72.22

  15. Diffuse emissions of Volatile Organic Compounds (VOCs) from soil in volcanic and hydrothermal systems: evidences for the influence of microbial activity on the carbon budget

    Science.gov (United States)

    Venturi, Stefania; Tassi, Franco; Fazi, Stefano; Vaselli, Orlando; Crognale, Simona; Rossetti, Simona; Cabassi, Jacopo; Capecchiacci, Francesco

    2017-04-01

    Soils in volcanic and hydrothermal areas are affected by anomalously high concentrations of gases released from the deep reservoirs, which consists of both inorganic (mainly CO2 and H2S) and organic (volatile organic compounds; VOCs) species. VOCs in volcanic and hydrothermal fluids are mainly composed of saturated and unsaturated hydrocarbons (alkanes, aromatics, alkenes, and cyclics), with variable concentrations of O- and S-bearing compounds and halocarbons, depending on the physicochemical conditions at depth. VOCs in interstitial soil gases and fumarolic emissions from four volcanic and hydrothermal systems in the Mediterranean area (Solfatara Crater, Poggio dell'Olivo and Cava dei Selci, in Italy, and Nisyros Island, in Greece) evidenced clear compositional differences, suggesting that their behavior is strongly affected by secondary processes occurring at shallow depths and likely controlled by microbial activity. Long-chain saturated hydrocarbons were significantly depleted in interstitial soil gases with respect to those from fumarolic discharges, whereas enrichments in O-bearing compounds (e.g. aldehydes, ketones), DMSO2 and cyclics were commonly observed. Benzene was recalcitrant to degradation processes, whereas methylated aromatics were relatively instable. The chemical and isotopic (δ13C in CO2 and CH4) composition of soil gases collected along vertical profiles down to 50 cm depth at both Solfatara Crater and Poggio dell'Olivo (Italy) showed evidences of relevant oxidation processes in the soil, confirming that microbial activity likely plays a major role in modifying the composition of deep-derived VOCs. Despite their harsh conditions, being typically characterized by high temperatures, low pH, and high toxic gases and metal contents, the variety of habitats characterizing volcanic and hydrothermal environments offers ideal biomes to extremophilic microbes, whose metabolic activity can consume and/or produce VOCs. In the Solfatara Crater, microbial

  16. Air toxics emission from an IGCC process

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Hovath, A. [Carbona Inc, Helsinki (Finland); Hinderson, A. [Vattenfall Utveckling (Sweden); Nykaenen, J.; Hoffren, H. [Imatran Voima Oy, Vantaa (Finland); Nieminen, M.; Kurkela, E. [VTT, Espoo (Finland)

    1997-10-01

    The emissions of 12 toxic trace element from a coal-fired IGCC plant were calculated based on thermodynamic equilibrium in the gas phase and some of the results published. The theoretical calculations were extended to include some other fuels as well as mixture of some of these fuels. The combustion of the product gas in the gas turbine is also considered. These simulations correspond to gasification of the fuel at 850-1050 deg C (depending on the fuel) and 1823 bar pressure. The gas composition was taken from the measured data as far as possible. In the absence of experimental data, a computer code developed for the U-Gas gasifier was used to determine the fuel gas composition. The gas was then cooled to 550 deg C in the gas cooler and filtered at this same temperature and burned in the gas turbine with an air ratio of 3.2. The results of these simulations are compared with the measured data of an experimental program designed to measure the emissions of a few selected trace elements from a 15 MW,h pressurized fluidized bed gasification pilot plant. The pilot plant was equipped with an advanced hot gas cleanup train which includes a two fluidized-bed reactor system for high-temperature, high-pressure external sulfur removal and a filtration unit housing porous, rigid ceramic candle filters. The trace element concentrations in the fuel, bottom ash, and filter ash are determined and the results compared with EPA regulatory levels

  17. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Science.gov (United States)

    2010-12-23

    ... existing technology for reducing air emissions from cargo and passenger vessels regulated under the Clean... SECURITY Coast Guard Shipboard Air Emission Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION... cargo and passenger vessels that operate in United States waters and ports. For this study, the Coast...

  18. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers.

  19. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long......-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according...... to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously...

  20. 75 FR 958 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; 2002 Base Year Emission...

    Science.gov (United States)

    2010-01-07

    ... emissions modeling software, MOBILE6. The FMVCP and RVP emission reductions are then removed from the base... and/or VOC) accounting for any growth that occurs during the six year period following the baseline... source emissions accounting for all mobile control measures. The MVEBs for the 2008 RFP are shown...

  1. 75 FR 953 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; 2002 Base Year Emission...

    Science.gov (United States)

    2010-01-07

    ... reductions are determined by the State using EPA's on-road mobile source emissions modeling software, MOBILE6... SIP revision must provide for a 15 percent emission reduction (either NO X and/or VOC) accounting for... the 2008 RFP is based on the projected 2008 mobile source emissions accounting for all mobile...

  2. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-03-21

    ...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols Production... pollutants: National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols...

  3. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  4. Odor and VOC Emissions from Pan Frying of Mackerel at Three Stages: Raw, Well-Done, and Charred

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Ahn

    2014-11-01

    Full Text Available Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel were analyzed at three different cooking stages (stage 1 = raw (R, stage 2 = well-done (W, and stage 3 = overcooked/charred (O. Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O, e.g., 465 (trimethylamine and 106 ppb (acetic acid. In contrast, at stage 2 (W, the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R and during overcooking leading to charring (stage 3 (O. As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality.

  5. Biofiltration of wastewater lift station emissions: evaluation of VOC removal in the presence of H{sub 2}S

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Alvaro; Rathibandla, Snehasheela; Jones, Kim; Cabezas, Jose [Texas A and M University-Kingsville, Department of Environmental Engineering, Kingsville, TX (United States)

    2008-02-15

    The capacity of biofilter systems to remove volatile organic compounds in the presence of high concentrations of hydrogen sulfide was investigated for applications in wastewater lift stations. The treatment system was an enclosed unit composed of a biotrickling filter coupled with a biofilter. The biofilter media were plastic hollow spherical balls filled with a compost mixture; and the biotrickling filter media was a structured plastic packing. The gases from the pumping station wet well were a mixture of H{sub 2}S and low concentration aliphatic and aromatic VOCs, toluene being the most significant in concentrations of 41 ppb. The H{sub 2}S concentration was 314 ppm with fluctuations of 100 ppm resulting from pumping cycles at the station. No inhibition effect was detected from the simultaneous biological removal of VOCs and H{sub 2}S: toluene removal efficiency was 91% with the two sections contributing approximately equally to the pollutant removal; and the average removal of H{sub 2}S was 74%. A traditional open-in-ground biofilter filled with wood chips and compost, existing in the site, attained similar removal efficiencies for toluene, but the elimination capacity of the biotrickling/biofilter system was 3.3-times higher than the open biofilter. (orig.)

  6. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    Science.gov (United States)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  7. Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation.

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Terenzio, Zenone; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan A; Ceulemans, Reinhart

    2016-03-01

    Leaves of fast-growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a 'coppiced' poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo-oxidation products (Methyl Vinyl Ketone and Methacrolein, iox ), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI. © 2015 John Wiley & Sons Ltd.

  8. PROCEEDINGS: LOW- AND NO-VOC COATING TECHNOLOGIES - 2ND BIENNIAL INTERNATIONAL CONFERENCE

    Science.gov (United States)

    The report documents an international conference that provided a forum for the exchange of technical information on coating technologies. It focused on improved and emerging technologies that result in fewer volatile organic compound (VOC) and toxic air emissions that those from ...

  9. Ethanol emission from loose corn silage and exposed silage particles

    Science.gov (United States)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  10. Observation of Polarised Microwave Emission from Cosmic Ray Air Showers

    CERN Document Server

    Smida, R; Engel, R; Arteaga-Velazquez, J C; Bekk, K; Bertaina, M; Bluemer, J; Bozdog, H; Brancus, I M; Chiavassa, A; Cossavella, F; Di Pierro, F; Doll, P; Fuchs, B; Fuhrmann, D; Grupen, C; Haungs, A; Heck, D; Hoerandel, J R; Huber, D; Huege, T; Kampert, K -H; Kang, D; Klages, H; Kleifges, M; Kroemer, O; Link, K; Luczak, P; Ludwig, M; Mathes, H J; Mayer, H J; Mathys, S; Melissas, M; Morello, C; Neunteufel, P; Oehlschlaeger, J; Palmieri, N; Pekala, J; Pierog, T; Rautenberg, J; Rebel, H; Riegel, M; Roth, M; Salamida, F; Schieler, H; Schoo, S; Schroeder, F G; Sima, O; Stasielak, J; Toma, G; Trinchero, G C; Unger, M; Weber, M; Weindl, A; Wilczynski, H; Will, M; Wochele, J; Zabierowski, J

    2013-01-01

    We report on the first direct measurement of the basic features of microwave radio emission from extensive air showers. Using a trigger provided by the KASCADE-Grande air shower array, the signals of the microwave antennas of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have been read out and searched for signatures of radio emission by high-energy air showers. Microwave signals have been detected for more than 30 showers with energies above $3\\times10^{16}$\\,eV. The observations presented in this Letter are consistent with a mainly forward-beamed, coherent and polarised emission process in the GHz frequency range. An isotropic, unpolarised radiation is disfavoured as the dominant emission model. The measurements show that microwave radiation offers a new means of studying air showers at very high energy.

  11. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber

    Science.gov (United States)

    Lee, S. C.; Wang, B.

    The objective of this study was to characterize the emissions of air pollutants from mosquito coils and candles burning in a large environmental test chamber. The target pollutants included particulate matters (PM 10, PM 2.5), carbon monoxide (CO), nitrogen oxides (NO x), methane (CH 4), non-methane hydrocarbons (NMHC), volatile organic compounds (VOCs) and carbonyl compounds. The average PM 10 concentrations for all tested mosquito coils exceeded Excellent and Good Classes objectives specified by Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [ HKEPD, 2003. Guidance Notes for the Management of Indoor Air Quality in Offices and Public Places. Indoor Air Quality Management Group, The Government of the Hong Kong Special Administrative Region]. The emission factors (mg g -1 mosquito coil) of mosquito coils combustion were: PM 2.5, 20.3-47.8; PM 10, 15.9-50.8; CO, 74.6-89.1; NO, 0.1-0.5; NO 2, n.d.-0.1; NO x, 0.1-0.5; CH 4, n.d.-4.7; NMHC, 0.1-5.7. Formaldehyde and acetaldehyde were the most abundant carbonyls species in the coil smoke. The average concentrations of formaldehyde and benzene of all tested mosquito coils exceeded Good Class of IAQO. Nitrogen oxides were the most abundant gas pollutants relating to candle burning among all target air pollutants. The candle made of gel (CAN 4) would emit more air pollutants than the paraffin candles (CAN 1, 2 and 3) and beeswax candle (CAN 5). Among five candles tested, CAN 5, the one made of beeswax, generated relatively smaller amount of air pollutants. It was noted that the concentrations of most VOCs from candles combustion were below the detection limit.

  12. Development and demonstration of a method to monitor the effects of measures to reduce VOC emissions in the EU. LIFE 95/NL/A11/NL/365/ZHL [1996-1998] (Final Report )

    NARCIS (Netherlands)

    Keuken, M.P.; Oss, R.F. van

    1998-01-01

    In 1996, TNO was granted by the European Commission to carry out in the framework of the LIFE programme a project entitled "Development and dem-onstration of a method to monitor the effects of measures to reduce VOC emis-sions in the EU". An additional grant was supplied by the Dutch Ministry for Ho

  13. 688 AMBIENT VOLATILE ORGANIC COMPOUNDS (VOCS ...

    African Journals Online (AJOL)

    Osondu

    The VOCs were classified thus: aromatics 41%, halogenated 42%, esters 3%, ketones 8%, ... and Industrial emission were identified as sources of VOCs in the studied industrial area with ... canisters, or by dynamic or diffusive adsorption .... The GC/FID was standardized and ... with CS2 was prepared from stock standard in.

  14. DEVELOPING A NO-VOC WOOD TOPCOAT

    Science.gov (United States)

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  15. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    Science.gov (United States)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  16. Volatile Organic Compounds (VOCs in Conventional and High Performance School Buildings in the U.S.

    Directory of Open Access Journals (Sweden)

    Lexuan Zhong

    2017-01-01

    Full Text Available Exposure to volatile organic compounds (VOCs has been an indoor environmental quality (IEQ concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ by limiting emissions from building-related sources and by increasing ventilation rates.

  17. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S.

    Science.gov (United States)

    Zhong, Lexuan; Su, Feng-Chiao; Batterman, Stuart

    2017-01-01

    Exposure to volatile organic compounds (VOCs) has been an indoor environmental quality (IEQ) concern in schools and other buildings for many years. Newer designs, construction practices and building materials for “green” buildings and the use of “environmentally friendly” products have the promise of lowering chemical exposure. This study examines VOCs and IEQ parameters in 144 classrooms in 37 conventional and high performance elementary schools in the U.S. with the objectives of providing a comprehensive analysis and updating the literature. Tested schools were built or renovated in the past 15 years, and included comparable numbers of conventional, Energy Star, and Leadership in Energy and Environmental Design (LEED)-certified buildings. Indoor and outdoor VOC samples were collected and analyzed by thermal desorption, gas chromatography and mass spectroscopy for 94 compounds. Aromatics, alkanes and terpenes were the major compound groups detected. Most VOCs had mean concentrations below 5 µg/m3, and most indoor/outdoor concentration ratios ranged from one to 10. For 16 VOCs, the within-school variance of concentrations exceeded that between schools and, overall, no major differences in VOC concentrations were found between conventional and high performance buildings. While VOC concentrations have declined from levels measured in earlier decades, opportunities remain to improve indoor air quality (IAQ) by limiting emissions from building-related sources and by increasing ventilation rates. PMID:28117727

  18. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  19. 76 FR 20598 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Control of Emissions of...

    Science.gov (United States)

    2011-04-13

    ... going through http://www.regulations.gov your e-mail address will be automatically captured and included...-21-25 ``Control of VOC emissions from reinforced plastic composites production operations,'' which... regulated by and complying with chapter 3745-76, which regulates non-methane organic emissions from...

  20. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    Directory of Open Access Journals (Sweden)

    S. Situ

    2013-03-01

    Full Text Available In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC emission model (MEGAN v2.1. The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by ~3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou-Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  1. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    Energy Technology Data Exchange (ETDEWEB)

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  2. Determination of VOCs in In-door Smoking Air by GC/MS with Canister Sampling%SUMMA罐采样-GC/MS法测定吸烟室内空气中挥发性有机物

    Institute of Scientific and Technical Information of China (English)

    杨丽莉; 王美飞; 胡恩宇

    2011-01-01

    采用空气预浓缩与气相色谱/质谱联用技术对空气中59种痕量挥发性有机化合物进行定性与定量分析,应用研究的技术对吸烟室烟草空气中的挥发性有机物成分定性解析,对59种常见挥发性有机污染物定量检测.室内环境烟草空气中检出多种挥发性有机污染物,主要有烯烃、烷烃、苯系物等有害成分,不仅对被动吸烟人群造成危害,同时也影响大气环境质量.%A determination method of 59 volatile organic compounds ( VOCs) in ambient air by air pre-con-centration and gas chromatography-mass spectrometry has been studied. VOCs in air of smoking room was qualitatively analyzed and 59 VOCs was quantitatively detected. Some VOCs in the air were hazardous pollutants such as olefins, alkanes, and aromatic hydrocarbons. These compounds not only harmed to passive smoking people but also affected the atmospheric environmental quality.

  3. Polarized radio emission from extensive air showers measured with LOFAR

    NARCIS (Netherlands)

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Krause, M.; Nelles, A.; Rachen, J. P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles,

  4. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    Science.gov (United States)

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  5. Radioactive air emissions notice of construction for HEPA filtered vacuum radioactive air emission units

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E.

    1997-10-27

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health (WDOH) for the use of vacuums on the Hanford Site. These previous agreements/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant. Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year. This application is intended to request sitewide approval for the new activities, and provide an option for any facility on the site to use this approval, within the terms of this NOC. The HVUs used in accordance with this NOC will support reduction of radiological contamination at various locations on the Hanford Site. Radiation Protection Air

  6. 40 CFR 1065.667 - Dilution air background emission correction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission correction. 1065.667 Section 1065.667 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements §...

  7. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees

    Science.gov (United States)

    Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.

    2016-02-01

    Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.

  8. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Deniz, E-mail: deniz.sari@tubitak.gov.tr [TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470 Kocaeli (Turkey); Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir (Turkey)

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO{sub 2}), nitrogen dioxides (NO{sub 2}), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO{sub 2}), nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model.

  9. 78 FR 6736 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control District

    Science.gov (United States)

    2013-01-31

    ... taking direct final action to approve revisions to the Placer County Air Pollution Control District... regulations that control VOCs, NO X , and PM emissions. Rules 301-306 limit emissions of air pollutants... Toxic Control Measure to Reduce Emissions of Toxic Air Contaminants from Outdoor Residential...

  10. Biofiltration for control of volatile organic compounds (VOCS)

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States); Govind, R. [Univ. of Cincinnati, OH (United States)

    1995-10-01

    Air biofiltration is a promising technology for control of air emissions of biodegradable volatile organic compounds (VOCs). In conjunction with vacuum extraction of soils or air stripping of ground water, it can be used to mineralize VOCs removed from contaminated soil or groundwater. The literature describes three major biological systems for treating contaminated air bioscrubbers, biotrickling filters and biofilters. Filter media can be classified as: bioactive fine or irregular particulates, such as soil, peat, compost or mixtures of these materials; pelletized, which are randomly packed in a bed; and structured, such as monoliths with defined or variable passage size and geometry. The media can be made of sorbing and non-absorbing materials. Non-bioactive pelletized and structured media require recycled solutions of nutrients and buffer for efficient microbial activity and are thus called biotrickling filters. Extensive work has been conducted to improve biofiltration by EPA`s Risk Reduction Engineering Laboratory and the University of Cincinnati in biofilters using pelletized and structured media and improved operational approaches. Representative VOCs in these studies included compounds with a range of aqueous solubilities and octanol-water partition coefficients. The compounds include iso-pentane, toluene, methylene chloride, trichloroethylene (TCE), ethyl benzene, chlorobenzene and perchloroethylene (PCE) and alpha ({alpha}-) pinene. Comparative studies were conducted with peat/compost biofilters using isopentane and {alpha}-pinene. Control studies were also conducted to investigate adsorption/desorption of contaminants on various media using mercuric chloride solution to insure the absence of bioactivity.

  11. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  12. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    Science.gov (United States)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  13. Spatial distribution of emissions to air - the SPREAD model

    Energy Technology Data Exchange (ETDEWEB)

    Plejdrup, M.S.; Gyldenkaerne, S.

    2011-04-15

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark's obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long-range transboundary air pollution, CLRTAP. NERI has developed a model to distribute emissions from the national emission inventories on a 1x1 km grid covering the Danish land and sea territory. The new spatial high resolution distribution model for emissions to air (SPREAD) has been developed according to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously, a distribution on the 17x17 km EMEP grid has been set up and used in research projects combined with detailed distributions for a few sectors or sub-sectors e.g. a distribution for emissions from road traffic on 1x1 km resolution. SPREAD is developed to generate improved spatial emission data for e.g. air quality modelling in exposure studies. SPREAD includes emission distributions for each sector in the Danish inventory system; stationary combustion, mobile sources, fugitive emissions from fuels, industrial processes, solvents and other product use, agriculture and waste. This model enables generation of distributions for single sectors and for a number of sub-sectors and single sources as well. This report documents the methodologies in this first version of SPREAD and presents selected results. Further, a number of potential improvements for later versions of SPREAD are addressed and discussed. (Author)

  14. Spatial distribution of emissions to air – the SPREAD model

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Gyldenkærne, Steen

    The National Environmental Research Institute (NERI), Aarhus University, completes the annual national emission inventories for greenhouse gases and air pollutants according to Denmark’s obligations under international conventions, e.g. the climate convention, UNFCCC and the convention on long...... to the requirements for reporting of gridded emissions to CLRTAP. Spatial emission data is e.g. used as input for air quality modelling, which again serves as input for assessment and evaluation of health effects. For these purposes distributions with higher spatial resolution have been requested. Previously...

  15. Laboratory studies of corona emissions from air terminals

    Science.gov (United States)

    D'Alessandro, F.; Berger, G.

    1999-11-01

    This paper presents some of the results obtained from a systematic series of laboratory investigations into the corona emission characteristics of air terminals. Two particular aspects are considered, namely the effect on corona emission of changing the distance between the tip of the air terminal and the overhead energized electrode, and the relationship between the two fundamental corona parameters (`amplitude coefficient' and onset electric field) and the height of the air terminal above a ground plane. The implications of the results for lightning protection designs are discussed.

  16. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong.

    Science.gov (United States)

    Wang, B; Lee, S C; Ho, K F; Kang, Y M

    2007-05-01

    Field investigations of target air pollutants at two of the most famous temples in Hong Kong were conducted. The air pollution problems in these two temples during peak and non-peak periods were characterized. The target air pollutants included particulate matters (PM(10), PM(2.5)), volatile organic compounds (VOCs), carbonyl compounds, carbon monoxide (CO), nitrogen oxides (NO(x)), methane (CH(4)), non-methane hydrocarbons (NMHC), organic carbon (OC), elemental carbon (EC), and inorganic ions (Cl(-), NO(3)(-), SO(4)(2-), Na(+), NH(4)(+), and K(+)). The pollutant levels of the two temples during peak period were shown to be significantly higher than those during non-peak period. The highest average CO level was obtained at Temple 1 during peak period, which exceeded IAQO 8-h Good Class criteria. In general, the average PM(2.5)/PM(10) ratios were approximately 82%. The results revealed that the fine particulates (PM(2.5)) constituted the majority of suspended particulates at both temples. It was noted that formaldehyde was the most abundant carbonyl compounds, followed by acetaldehyde. At Temple 1 during peak period, the average benzene concentration exceeded almost 8 times more than Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [HKEPD, 2003. Guidance notes for the management of indoor air quality in offices and public places. Indoor air quality management group, The Government of the Hong Kong Special Administrative Region.] Good Class criteria. The average OC/EC ratios ranged from 2.6 to 17 in PM(10) and from 4.2 to 18 in PM(2.5) at two temples, which suggested that OC measured in these two temple areas may be due to both direct emission from incense burning and secondary formation by chemical reactions. The total mass of inorganic ions, organic carbon, and elemental carbon accounted for about 71% in PM(2.5) and 72% in PM(10).

  17. EVALUATION OF LOW-VOC LATEX PAINTS

    Science.gov (United States)

    The paper gives results of an evaluation of four commercially available low-VOC (volatile organic compound) latex paints as substitutes for conventional latex paints by assessing both their emission characteristics and their performance as coatings. Bulk analysis indicated that ...

  18. Spatial/temporal variations and source apportionment of VOCs monitored at community scale in an urban area.

    Science.gov (United States)

    Yu, Chang Ho; Zhu, Xianlei; Fan, Zhi-hua

    2014-01-01

    This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs) using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile) sites in Paterson and one background site in Chester, NJ (located ∼58 km southwest of Paterson). Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene) were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (pp-xylene, o-xylene, and p-dichlorobenzene measured at the commercial site were significantly higher than the industrial/mobile sites (pp-dichlorobenzene) were significantly different by season (pp<0.05). These results are consistent with literature data, indicating the impact of anthropogenic VOC sources on air pollution in Paterson. Positive Matrix Factorization (PMF) analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%), solvents uses (19%), industrial emissions (16%), mobile+stationery sources (12%), small shop emissions (11%), and others (22%). Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in Paterson. The study demonstrated the community-scale monitoring approach can capture spatial variation of VOCs in an urban community with mixed VOC sources. It also provided robust data to identify major sources of concern in the community.

  19. Working Toward Policy-Relevant Air Quality Emissions Scenarios

    Science.gov (United States)

    Holloway, T.

    2010-12-01

    Though much work has been done to develop accurate chemical emission inventories, few publicly available inventories are appropriate for realistic policy analysis. Emissions from the electricity and transportation sectors, in particular, respond in complex ways to policy, technology, and energy use change. Many widely used inventories, such as the EPA National Emissions Inventory, are well-suited for modeling current air quality, but do not have the specificity needed to address "what if?" questions. Changes in electricity demand, fuel prices, new power sources, and emission controls all influence the emissions from regional power production, requiring a plant-by-plant assessment to capture the spatially explicit impacts. Similarly, land use, freight distribution, or driving behavior will yield differentiated transportation emissions for urban areas, suburbs, and rural highways. We here present results from three recent research projects at the University of Wisconsin—Madison, where bottom-up emission inventories for electricity, freight transport, and urban vehicle use were constructed to support policy-relevant air quality research. These three studies include: 1) Using the MyPower electricity dispatch model to calculate emissions and air quality impacts of Renewable Portfolio Standards and other carbon-management strategies; 2) Using advanced vehicle and commodity flow data from the Federal Highway Administration to evaluate the potential to shift commodities from truck to rail (assuming expanded infrastructure), and assess a range of alternative fuel suggestions; and 3) Working with urban planners to connect urban density with vehicle use to evaluate the air quality impacts of smart-growth in major Midwest cities. Drawing on the results of these three studies, and on challenges overcome in their execution, we discuss the current state of policy-relevant emission dataset generation, as well as techniques and attributes that need to be further refined in order

  20. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality.

    Science.gov (United States)

    Sari, Deniz; Bayram, Abdurrahman

    2014-08-01

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO2), nitrogen dioxides (NO2), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) in İzmir for 2008-2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir.

  1. Amplified radio emission from cosmic ray air showers in thunderstorms

    CERN Document Server

    Buitink, S; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Y; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Buitink, Stijn

    2007-01-01

    Cosmic ray air showers produce radio emission, consisting in large part of geosynchrotron emission. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. We examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. We selected and evaluated LOPES data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We find that during thunderstorms the radio emission can be strongly enhanced. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during ...

  2. Probing the radio emission from air showers with polarization measurements

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  3. [Evaluation and selection of VOCs treatment technologies in packaging and printing industry].

    Science.gov (United States)

    Wang, Hai-Lin; Wang, Jun-Hui; Zhu, Chun-Lei; Nie, Lei; Hao, Zheng-Ping

    2014-07-01

    Volatile organic compounds (VOCs) play an important role in urban air pollution. Activities of industries including the packaging and printing industries are regarded as the major sources. How to select the suitable treating techniques is the major problem for emission control. In this article, based on the VOCs emission characteristics of the packaging and printing industry and the existing treatment technologies, using the analytic hierarchy process (AHP) model, an evaluation system for VOCs selection was established and all the technologies used for treatment were assessed. It showed that the priority selection was in the following order: Carbon Fiber Adsorption-Desorption > Granular Carbon Adsorption-Desorption > Thermal Combustion > Regenerative Combustion > Catalytic combustion > Rotary adsorption-concentration and combustion > Granular Carbon adsorption-concentration and combustion. Carbon Fiber Adsorption-Desorption was selected as the best available technology due to its highest weight among those technologies.

  4. Compost spreading in Mediterranean shrubland indirectly increases biogenic emissions by promoting growth of VOC-emitting plant parts

    Science.gov (United States)

    Olivier, Romain; Lavoir, Anne-Violette; Ormeño, Elena; Mouillot, Florent; Greff, Stéphane; Lecareux, Caroline; Staudt, Michael; Fernandez, Catherine

    2011-07-01

    We investigated the effect of sewage sludge compost spreading on plant growth and leaf terpene emissions and content of Quercus coccifera, Rosmarinus officinalis and Cistus albidus in a Mediterranean shrubland. Measurements were performed during 3 consecutive summers on 2 different plots treated in 2002 or 2007 with 50 or 100 tons of compost per hectare, corresponding to observations carried out 2 months to 7 years after spreading. A slight nutrient enrichment of soil and leaves ( R. officinalis and C. albidus) was observed, especially for phosphorous. Terpene emissions were not affected by compost spreading, although they tended to increase on treated plots after 6 and 7 years for R. officinalis and C. albidus respectively. Terpene content was not affected by any compost treatment. Leaf and stem growth were significantly enhanced by compost spreading after 2 and/or 7 years in all species with little difference between doses. Total leaf biomass on the last growth units was increased by more than 50% in C. albidus and more than 90% in Q. coccifera. The results suggest that compost spreading in Meditteranean shrublands has no or little direct effect on leaf terpene emissions, but indirectly leads to their increase through leaf biomass enhancement. Simulation of terpene emissions at stand level revealed an increase of terpene fluxes ranging between 6 and 13%, depending on the plant species. Overall, compost spreading was assessed to result in an emission rate of 1.1 kg ha -1 y -1 for a typical Q. coccifera shrubland, but can reach 2.6 kg ha -1 y -1 for a typical R. officinalis shrubland.

  5. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM)10, PM2.5, CO, VOCs, SO2, black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  6. 天津市O3生成与其前体物NOx、VOCs排放的相关性研究%Study of the Correlationship between O3 Generation and its Precursors NOx and VOCs E-mission in Tianjin

    Institute of Scientific and Technical Information of China (English)

    周阳; 王艳丽; 陈璐; 王伟; 张丽娜; 吉晟

    2014-01-01

    The SO2 and NOx emission data from Tianjin pollution source survey of 2010 and industrial volatile organic compounds estimation data were used as main sources to establish Tianjin air pollutant emission inventory.The meteorological fields of Tianjin Area in January,April,July,October 2010 were simulated using MM5.Finally,CMAQ model was used and several scenarios were designed to analyze the correlation ship between the O3 concentration change and NOx and VOCs emission change.The results indi-cated that O3 generation in Tianjin was limited by VOCs.O3 concentration might continue to increase when more and more NOx emis-sions were cut down,but VOCs reduction was beneficial to O3 control.In summer,more than 40% VOCs emission was needed to be cut down to avoid the O3 increase in Tianjin.%以天津市2010年污染源普查数据中 SO2、NOx及颗粒物排放数据以及各行业挥发性有机物调查核算数据为主要数据源,制作天津市大气污染物排放清单,用 MM5模型模拟2010年天津市地区1、4、7、10月的气象场,通过 CMAQ 模型,设置不同计算情景,分析天津市ρ(O3)变化与 NOx 及挥发性有机物的排放量变化关系。结果表明,天津市的 O3生成处于VOCs控制区,随着天津市 NOx减排力度的不断加大,ρ(O3)可能呈上升趋势,在夏季,需要削减40%以上挥发性有机物,以避免ρ(O3)进一步上升。

  7. Duri Indonesia air emission inventory and dispersion modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Soetjiptono, T.E.; Nugraha, S.; VanDerZanden, D.F. [and others

    1996-11-01

    The Caltex Pacific Indonesia production field located in Duri, Indonesia, is the world`s largest steam flood. Because of the large scale of these operations, there is an interest in understanding the emissions into the atmosphere from the various sources in the field as well as the possible impact on the air quality resulting from these emissions. To be proactive and to fulfill this need, a study was done to inventory emissions from the facilities in the field and to use air dispersion models to estimate impacts on the air quality using the inventory results. This paper will discuss methods and procedures used in & study to quantify the emissions from the following sources in the Duri field: process vents, production impoundments and wastewater canals, roads, fugitive emissions, storage links, and combustion sources. Emissions of the following pounds were addressed in the study: non-methane hydrocarbons (NMHC) and aromatic hydrocarbons (BTEX), hydrogen sulfide, nitrogen oxides, sulfur oxides, particulate matter (PM), and carbon monoxide. Because of the diverse nature of the sources in the field, a wide range of emission estimating procedures were used including direct measurement methods, empirical methods based on mass transfer principles, and standard emission factors or procedures available from the United States Environmental Protection Agency (U.S. EPA). To quantify and track the emissions data generated, a computerized emissions inventory was developed. This paper will also discuss the dispersion modeling methods that were used to estimate the ground level concentrations in the surrounding areas using the data developed in the emission inventory. These discussions are based upon the results of a preliminary study which is limited to a portion of the Duri production field.

  8. VOC signatures from North American oil and gas sources (Invited)

    Science.gov (United States)

    Simpson, I. J.; Marrero, J.; Blake, N. J.; Barletta, B.; Hartt, G.; Meinardi, S.; Schroeder, J.; Apel, E. C.; Hornbrook, R. S.; Blake, D. R.

    2013-12-01

    Between 2008 and 2013 UC Irvine has used its whole air sampling (WAS) technique to investigate VOC source signatures from a range of oil and gas sources in North America, including five separate field campaigns at the Alberta oil sands (1 airborne, 4 ground-based); the 2010 Deepwater Horizon oil spill (airborne and ship-based); the 2012 airborne Deep Convective Clouds and Chemistry Project (DC3) mission over oil and gas wells in Colorado, Texas and Oklahoma; and the 2013 ground-based Barnett Shale Campaign in Texas. Each campaign has characterized more than 80 individual C1-C10 VOCs including alkanes, alkenes and aromatics. For example, oil sands are an extra-heavy, unconventional crude oil that is blended with diluent in order to flow, and upgraded into synthetic crude oil. The VOC signature at the oil sands mining and upgrading facilities is alkane-rich, and the fuel gas associated with these operations has an i-butane/n-butane ratio similar to that of liquefied petroleum gas (LPG). In addition to light alkanes, enhanced levels of benzene were observed over US oil and natural gas wells during DC3, likely because of its use in hydrofracking fluid. A series of VOC emission ratios from North American petrochemical sources will be presented and compared, including oil sands, conventional oil and hydrofracking operations.

  9. VOC emission control by circulating fluidized bed adsorption; Controle de l'emission de composes organiques volatils par adsorption en lit fluidise circulant

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.

    2003-12-15

    This work deals with the circulating fluidized bed technology, applied to the elimination by adsorption of volatile organic compounds (VOCs), like toluene, in a gas flow. In the process, the adsorbent (millimetric spherical grains of micro-porous carbon) is moved by a strong flow rate of gas inside a vertical tube without lining. Mass and heat transfers are very important and important volumes of compounds can be processed. This work presents the determination of the adsorption equilibrium, the description of the experimental facility and of the results of experiments, the development of an original model of the process which combines a flow model and a mass transfer model, a parametric study of this model, and finally, some extensions of the process principle to staged operations with pressure variation or temperature variation cycles. (J.S.)

  10. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  11. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    Science.gov (United States)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  12. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  13. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, W.J. [Potlatch Corp., San Francisco, CA (United States)

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  14. Emissions and Air Quality Impacts of Freight Transportation

    Science.gov (United States)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  15. Effect of low emission sources on air quality in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Nedoma, J. [EKOPOL Environmental Engineering Studies and Design Office, Co. Ltd., Cracow (Poland)

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  16. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    Science.gov (United States)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  17. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  18. Test methods and reduction of organic pollutant compound emissions from wood-based building and furniture materials.

    Science.gov (United States)

    Kim, Sumin; Choi, Yoon-Ki; Park, Kyung-Won; Kim, Jeong Tai

    2010-08-01

    This paper reviews different methods for the analysis of formaldehyde and volatile organic compounds (VOCs) from wood-based panel materials for furniture and building interiors and highlights research on reduction of emission from wood-based panels that can adversely affect indoor air quality. In Korea, standard test methods have been developed to determine formaldehyde and VOC emissions from building products, and the Ministry of Environment regulates the use of building materials with pollutant emissions. Desiccator and perforator methods are being used for formaldehyde and the chamber and field and laboratory emission cell (FLEC) methods for VOC and formaldehyde emissions. The VOC analyzer is a suitable pre-test method for application as a total VOC (TVOC) emission test and bake-out is a useful method to reduce TVOC and formaldehyde emissions from furniture materials in indoor environments.

  19. Polarized radio emission from extensive air showers measured with LOFAR

    CERN Document Server

    Schellart, P; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Krause, M; Nelles, A; Rachen, J P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G

    2014-01-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization exceeding $99\\%$, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for $179$ individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from $(3.47\\pm 0.79)\\%$ for very inclined air showers at $25\\, \\m...

  20. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  1. Continental background in oceanic air masses and marine emission of Volatile Organic Compounds in Drake Passage

    Science.gov (United States)

    Colomb, Aurélie; Paris, Rodolphe; Losno, Rémi; Desboeufs, Karine; Provost, Christine

    2010-05-01

    In Drake Passage, continental air masses are mixed with pure oceanic air masses, and are evolving through the circumpolar atmospheric circulation. The most probable origin of continental air is Australia and Patagonia. Atmospheric dust content and deposition rate is quite unknown in Austral region. Long term evolution of continental air over the ocean is only poorly known, even if the oceanic surface is more than 80% of the Southern Hemisphere. Recent field experiments have shown large differences between estimated and measured dust or deposition. Dust particles can be carried up from the sources into the atmosphere for long range transport. Then, dust is deposited into the ocean surface. Dust deposition can bring micro-nutrients to the marine biota as trace metals and metalloids. During transport, some trace gases are oxidized depending on their lifetimes. It is therefore possible to calculate the photochemical age of the air masses, with some tracers of the long range transport and some tracers of sources origin. The Southern Ocean is poorly characterized in term of organic compounds and trace gases. Numerous experiments have shown that marine biology, such as phytoplankton can emit volatile organic compounds (VOC) but few shipborne measurements have been performed to determine potential source or sink of selected species. Especially in austral region, recent campaigns (MANCHOT in Indian Austral Ocean in December 2004 (Colomb et al, 2009); OOMPH between Cape Town and Punta Arenas in January 2007) have shown the impact of oceanic emission on the local and global atmospheric chemistry. During the ANT XXV-4 cruise on board the Polarstern in 2009, from Punta Arenas through Drake passage to Antarctic Peninsula, 165 air samples and 25 aerosol samples were collected, distributed all along the track. Additionally we took 4 rain samples to estimate the wet deposition. All the samples were taken at the front of the crow deck. Particles size and distribution and ozone

  2. 我国空气中挥发性有机物标准体系建设的对策和建议%Countermeasures for System Building of VOCs Standards in Air

    Institute of Scientific and Technical Information of China (English)

    李宁; 王倩; 杜健; 郭健

    2014-01-01

    In this paper,the definition and danger of volatile organic pollutants were introduced.Emissions standards,control strategy and management experience of VOCs in America,Europe and Japan were also de-scribed.The situation and problems of emissions characterization,emissions standards and management of VOCs in china were discussed.Suggestions were made to screen of optimal control list,to revise emissions standards and to develop VOCs gas standards.%介绍了挥发性有机物(VOCs)的界定与危害,以及美国、欧盟、日本 VOCs的排放标准、控制经验、效果、气体标准样品研究现状等。分析了我国 VOCs的污染、标准体系建设、标准样品等研究现状及存在的问题,提出我国应建立 VOCs筛选优控名单、制定并完善行业排放标准和监测方法体系,以及开展 VOCs气体标准样品研究等相关对策和建议。

  3. Securing and reporting for 2008 and 2010 on the amount and type of VOC emissions from plants in the scope of the 31th BImSchV; Sicherung und Berichterstattung fuer 2008 und 2010 ueber Menge und Art der VOC-Emissionen aus Anlagen im Geltungsbereich der 31.BImSchV

    Energy Technology Data Exchange (ETDEWEB)

    Tebert, Christian; Volz, Susanne [Institut fuer Oekologie und Politik GmbH (OEKOPOL), Hamburg (Germany); Theloke, Jochen [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER)

    2011-09-15

    The Directive 1999/13/EC (also called ''VOC-directive'' or ''Solvents Directive'') obliges the Member States of the European Union to a preparation of a report on the implementation of this Directive every three years. The target of a project of the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) is to assist the federal government in meeting the reporting requirements and to relieve the Federal States during data acquisition as possible. For this, an estimation of the CMR material types and quantities of CMR is focused. Recommendations are pronounced to determine the total emissions of VOCs from plants within the scope of the 31th BImSchV (Federal Nuisance Control Ordinance). The research project investigated the requirements for data provision in the individual Federal States and the possibilities for data delivery in addition to a full survey of the Federal States.

  4. T2VOC user`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Falta, R.W. [Clemson Univ., Clemson, SC (United States). Dept. of Earth Sciences; Pruess, K.; Finsterle, S. [Lawrence Berkeley Lab., CA (United States); Battistelli, A. [AQUATER S.p.A., San Lorenzo in Campo, (Italy)

    1995-03-01

    T2VOC is a numerical simulator for three-phase, three-component, non-isothermal flow of water, air, and a volatile organic compound (VOC) in multidimensional heterogeneous porous media. Developed at the Lawrence Berkeley Laboratory, T2VOC is an extension of the TOUGH2 general-purpose simulation program. This report is a self-contained guide to application of T2VOC to subsurface contamination problems involving nonaqueous phase liquids (NAPLs). It gives a technical description of the T2VOC code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Detailed instructions for preparing input data are presented along with several illustrative sample problems.

  5. Review of Maritime Transportation Air Emission Pollution and Policy Analysis

    Institute of Scientific and Technical Information of China (English)

    WANG Haifeng; LIU Dahai; DAI Guilin

    2009-01-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the 'bottom up' approach, the 'top down' approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  6. Review of maritime transportation air emission pollution and policy analysis

    Science.gov (United States)

    Wang, Haifeng; Liu, Dahai; Dai, Guilin

    2009-09-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the ‘bottom up’ approach, the ‘top down’ approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  7. VOC transport in vented drums containing simulated waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.J.; Gresham, G.L.; Rae, C.; Connolly, M.J.

    1994-02-01

    A model is developed to estimate the volatile organic compound (VOC) concentration in the headspace of the innermost layer of confinement in a lab-scale vented waste drum containing simulated waste sludge. The VOC transport model estimates the concentration using the measured VOC concentration beneath the drum lid and model parameters defined or estimated from process knowledge of drum contents and waste drum configuration. Model parameters include the VOC diffusion characteristic across the filter vent, VOC diffusivity in air, size of opening in the drum liner lid, the type and number of layers of polymer bags surrounding the waste, VOC permeability across the polymer, and the permeable surface area of the polymer bags. Comparison of model and experimental results indicates that the model can accurately estimate VOC concentration in the headspace of the innermost layer of confinement. The model may be useful in estimating the VOC concentration in actual waste drums.

  8. Observation of microwave emission from extensive air showers with CROME

    Directory of Open Access Journals (Sweden)

    Wilczyński H.

    2013-06-01

    Full Text Available We report on the measurement of microwave radio signals from air showers with the CROME (Cosmic Ray Observation via Microwave Emission experiment. CROME is located in the center of the KASCADE-Grande air shower array. The radio signals of the CROME antennas are stored for each high-energy trigger from the KASCADE-Grande array and matched offine with the KASCADE-Grande data. After almost one year of data taking microwave signals have been observed for more than ten air showers.

  9. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Science.gov (United States)

    2011-12-27

    ... inventory for the pulp and paper (subpart S) source category: cadmium compounds, lead compounds, mercury... 1995 URE Unit Risk Estimate VCS Voluntary Consensus Standards VOC Volatile Organic Compound WWW... Bulletin No. 973).\\6\\ Additionally, the largest HAP emission compound in the category, methanol,...

  10. Assessing the effectiveness of vegetative environmental buffers in mitigating air pollutant emissions from poultry houses

    Science.gov (United States)

    Over 560 million broilers are produced on the Delmarva Peninsula each year. However, emissions from poultry houses have come under intense scrutiny due to the potential human and environmental effects of the released particulate matter (PM), ammonia, and volatile organic compounds (VOCs). Ammonia an...

  11. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils].

    Science.gov (United States)

    He, Wan-Qing; Tian, Gang; Nie, Lei; Qu, Song; Li, Jing; Wang, Min-Yan

    2012-09-01

    Cooking oil fume is one of the important sources of atmospheric volatile organic compounds (VOCs), which are the key precursors of ozone and secondary organic aerosols in air. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the VOCs emission characteristics. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. The results showed that the emission of VOCs increased with the increase of the heating temperature for all the investigated cooking oils, and at a given temperature, the blend oil emitted the lowest amount of VOCs. The VOCs emission intensity at different heating temperatures fitted well with binomial equations and ranged from 1.6-11.1 mg x (kg x min)(-1).

  12. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  13. Measurement of radio emission from extensive air showers

    OpenAIRE

    Hoerandel, Joerg R.

    2009-01-01

    A new promising development in astroparticle physics is to measure the radio emission from extensive air showers. The particles in the cascade emit synchrotron radiation (30 - 90 MHz) which is detected with arrays of dipole antennas. Recent experimental efforts are discussed.

  14. Air pollution emission inventory along a major traffic route within ...

    African Journals Online (AJOL)

    Soyannwo, Olusola

    Increasing road congestion and high traffic volume is often times an indicator of ... Data was collected monthly over a period of four months in the morning peak, off ... There was a strong correlation (p=0.05) between ambient CO levels and traffic ... Key words: Air quality, vehicular emissions, traffic density, carbon dioxide.

  15. Emission projections for the U.S. Environmental Protection Agency Section 812 second prospective Clean Air Act cost/benefit analysis.

    Science.gov (United States)

    Wilson, James H; Mullen, Maureen A; Bollman, Andrew D; Thesing, Kirstin B; Salhotra, Manish; Divita, Frank; Neumann, James E; Price, Jason C; DeMocker, James

    2008-05-01

    Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the

  16. Biodiesel and Cold Temperature Effect on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  17. Biodiesel and Cold Temperature Effects on Speciated Mobile Source Air Toxics from Modern Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) with a particular focus on mobile source air toxics (MSATs) were measured in diesel exhaust from three heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a temperature controlled chass...

  18. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    Science.gov (United States)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  19. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  20. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  1. Formation of alkenes and oxygenated VOCs from light mediated surface chemistry of nonanoic acid at the air-seawater interface

    Science.gov (United States)

    Gonzalez, L.; Volkamer, R.; Ciuraru, R.; Bernard, F.; George, C.

    2013-12-01

    Organic carbon is relevant in the atmosphere because it affects oxidative capacity that determines the removal rate of climate active gases and modifies aerosols. The significant presence of organic compounds at the surface of the ocean is a source for primary and secondary aerosol formation that potentially can modify cloud cover. Field observations of glyoxal over the remote marine boundary layer, and the tropical free troposphere remain unexplained by atmospheric models, and indicate missing sources of marine organic carbon species from heterogeneous processes mediated by light. We have studied the light induced surface chemistry of synthetic aqueous -mixtures containing NaCl, NaBr, NaI, photosensitizers (humic acids) and an organic surfactant (nonanoic acid) in a photochemical Quartz flowreactor. The air from the flowreactor was transferred to a dark reactor where the products from photosensitized reactions at the air/sea interface were further exposed to ozone. The products were sampled in the presence/absence of light and ozone by Proton Transfer Reaction Time of Flight Mass Spectrometry (PTR-ToF-MS) and Light-Emitting-Diode Cavity-Enhanced Differential Optical Absorption Spectroscopy (LED-CE-DOAS). In the presence of light nonenal formation is observed. Addition of ozone leads to the formation of glyoxal, among other products. Further experiments were conducted in an atmospheric simulation chamber. We discuss first results and atmospheric implications.

  2. Release of VOCs and particles during use of nanofilm spray products.

    Science.gov (United States)

    Nørgaard, Asger W; Jensen, Keld A; Janfelt, Christian; Lauritsen, Frants R; Clausen, Per A; Wolkoff, Peder

    2009-10-15

    Here, we present emission data on VOCs and particles emitted during simulated use of four commercial nanofilm spray products (NFPs) used for making easy-to-clean or self-cleaning surfaces on floors, ceramic tiles, and windows. The aim was to characterize the emitted VOCs and to provide specific source strength data for VOCs and particles released to the airduring use of the products. Containers with NFP were mounted on a spray-stand inside a closed stainless steel chamber with no air exchange. NFPs were sprayed in amounts corresponding to 1 m2 surface toward a target plate at a distance of 35 cm. Released VOCs were measured by a combination of air sampling on Tenax TA adsorbent followed by thermal desorption GC/MS and GC/FID analysis and real time measurements using a miniature membrane inlet mass spectrometer. Particles were measured using a fast mobility particle sizer and an aerosol particle sizer. A number of VOCs were identified, including small alcohols, ketones and ethers, chlorinated acetones, a perfluorinated silane, limonene, and cyclic siloxanes. The number of generated particles was on the order of 3 x 10(8) to 2 x 10(10) particles/m3 per g sprayed NFP and were dominated by nanosize particles.

  3. Locating industrial VOC sources with aircraft observations.

    Science.gov (United States)

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground.

  4. The impact of speciated VOCs on regional ozone increment derived from measurements at the UK EMEP supersites between 1999 and 2012

    Directory of Open Access Journals (Sweden)

    C. S. Malley

    2015-03-01

    Full Text Available The impact of 27 volatile organic compounds (VOC on the regional O3 increment was investigated using measurements made at the UK EMEP supersites Harwell (1999–2001 and 2010–2012 and Auchencorth (2012. Ozone at these sites is representative of rural O3 in south-east England and northern UK, respectively. Monthly-diurnal regional O3 increment was defined as the difference between the regional and hemispheric background O3 concentrations, respectively derived from oxidant vs. NOx correlation plots, and cluster analysis of back trajectories arriving at Mace Head, Ireland. At Harwell, which had substantially greater regional ozone increments than at Auchencorth, variation in the regional O3 increment mirrored afternoon depletion of VOCs due to photochemistry (after accounting for diurnal changes in boundary layer mixing depth, and weighting VOC concentrations according to their photochemical ozone creation potential. A positive regional O3 increment occurred consistently during the summer, during which time afternoon photochemical depletion was calculated for the majority of measured VOCs, and to the greatest extent for ethene and m + p-xylene. This indicates that, of the measured VOCs, ethene and m + p-xylene emissions reduction would be most effective in reducing the regional O3 increment, but that reductions in a larger number of VOCs would be required for further improvement. The VOC diurnal photochemical depletion was linked to the sources of the VOC emissions through the integration of gridded VOC emissions estimates over 96 h air-mass back trajectories. This demonstrated that the effectiveness of VOC gridded emissions for use in measurement and modelling studies is limited by the highly aggregated nature of the 11 SNAP source sectors in which they are reported, as monthly variation in speciated VOC trajectory emissions did not reflect monthly changes in individual VOC diurnal photochemical depletion. Additionally, the major VOC emission

  5. Volatile Organic Compound (VOC Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-03-01

    Full Text Available Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs (toluene-propylene-butadiene from air was performed using a poly dimethyl siloxane (PDMS/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10−4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID. The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  6. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up.

    Science.gov (United States)

    Rebollar-Perez, Georgette; Carretier, Emilie; Lesage, Nicolas; Moulin, Philippe

    2011-03-03

    Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10-4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry.

  7. Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics

    Science.gov (United States)

    Xing, Jia; Zhang, Yang; Wang, Shuxiao; Liu, Xiaohuan; Cheng, Shuhui; Zhang, Qiang; Chen, Yaosheng; Streets, David G.; Jang, Carey; Hao, Jiming; Wang, Wenxing

    2011-04-01

    Understanding of the relative impacts of emission reductions and meteorological variations on air quality during the 2008 Beijing Olympics has an important policy implication. In this work, detailed process analyses and sensitivity simulations under different emission and meteorology scenarios were conducted using CMAQ and the Process Analysis tool to quantify the air quality benefits from emission reductions and meteorological variations in August 2008. The results indicate that emission-driven changes dominate surface concentration reductions of SO 2, NO 2, VOCs, daily maxima O 3 and PM 2.5 by -11% to -83%. The effect of meteorology-driven changes on species concentrations can be either ways (by -46% to 105%) at different locations. The dominant processes contributing to O 3, PM 2.5, SO 42-, NO 3-, and secondary organic aerosol (SOA) are identified. Gas-phase chemistry is a major process for O 3 production, and PM processes are dominant sources for PM 2.5 in the planetary boundary layer (PBL). The reduced emissions weaken the source contributions of gas-phase chemistry to O 3 and those of PM processes to PM 2.5, with weaker vertical mixing processes and horizontal transport in the PBL. Compared with 2007, 2008 has a higher humidity, lower temperature and more precipitation that benefit O 3 reduction within the PBL, and a weaker vertical mixing that disbenefits reductions of all pollutants concentrations. Stronger process contributions of cloud processes (e.g., below- and in-cloud scavenging, and wet deposition) in 2008 help reduce concentrations of PM 2.5, NO 3-, and SOA, but they (e.g., aqueous-phase chemistry) enhance surface SO 42- concentrations. Smaller process contributions of aerosol processes help reduce the concentrations of SOA and SO 42- but enhance NO 3- and PM 2.5 in lower layers (1-6) due to the evaporation of NO 3-. The ratios of P O /P increase under the controlled simulation, indicating that the emission control actions enforced during the 2008

  8. Low VOC Barrier Coating for Industrial Maintenance

    Science.gov (United States)

    2012-09-01

    Technology Certification Program HAP Hazardous Air Pollutant HW hazardous waste LVBC low VOC barrier coating MEK methyl ethyl ketone MIL-DTL...peeling, blistering , tape adhesion, pull-off adhesion, film thickness, and LVBC/ZVT patch test adhesion testing in an acceptable or better manner...significant reductions in the amount of hazardous waste generated by the Navy. The ZVT technology contains less than 5 g/l of VOC and the resulting

  9. Chemical speciation and anthropogenic sources of ambient volatile organic compounds(VOCs)during summer in Beijing,2004

    Institute of Scientific and Technical Information of China (English)

    LU Sihua; LIU Ying; SHAO Min; HUANG Shan

    2007-01-01

    Volatile organic compounds(VOCs)were measured at six sites in Beijing in August,2004.Up to 148 VOC species,including C3 to C12 alkanes,C3 to C11 alkenes,C6 to C12 aromatics,and halogenated hydrocarbons,were quantified.Although the concentrations differed at the sites,the chemical compositions were similar,except for the Tongzhou site where aromatics were significantly high in the air.Based on the source profiles measured from previous studies,the source apportionment of ambient VOCs was preformed by deploying the chemical mass balance(CMB)model.The results show that urban VOCs are predominant from mobile source emissions,which contribute more than 50% of the VOCs(in mass concentrations)to ambient air at most sites.Other important sources are gasoline evaporation,painting,and solvents.The exception is at the Tongzhou site where vehicle exhaust,painting,and solvents have about equal contribution,around 35% of the ambient VOC concentration.As the receptor model is not valid for deriving the sources of reactive species,such as isoprene and 1,3-butadiene,other methodologies need to be further explored.

  10. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  11. Health effects of SRS non-radiological air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.

    1997-06-16

    This report examines the potential health effects of non radiological emissions to the air resulting from operations at the Savannah River Site (SRS). The scope of this study was limited to the 55 air contaminants for which the US Environmental Protection Agency (EPA) has quantified risk by determining unit risk factors (excess cancer risks) and/or reference concentrations (deleterious non cancer risks). Potential health impacts have been assessed in relation to the maximally exposed individual. This is a hypothetical person who resides for a lifetime at the SRS boundary. The most recent (1994) quality assured SRS emissions data available were used. Estimated maximum site boundary concentrations of the air contaminants were calculated using air dispersion modeling and 24-hour and annual averaging times. For the emissions studied, the excess cancer risk was found to be less than the generally accepted risk level of 1 in 100,000 and, in most cases, was less than 1 in 1,000,000. Deleterious non cancer effects were also found to be very unlikely.

  12. Innovations in projecting emissions for air quality modeling ...

    Science.gov (United States)

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  13. The impacts of rapid land use changes on regional climate, air quality and atmospheric sensitivities to emissions

    Science.gov (United States)

    Yim, S. H. L.; Wong, M.; Wang, Y.; Chan, A.

    2016-12-01

    The Pearl River Delta region has undergone a rapid urbanization in recent several decades. Literature has found significant impacts on climate and air quality. Previous studies however mainly investigated the impacts on climate and ozone concentration in a relatively short time period. None of them investigated the monthly variation in impacts on ozone (O3) and fine particulate matters (PM2.5), and the atmospheric sensitivity to emissions, which are particularly important for atmospheric scientists and policy makers. In this study, we used the state-of-the-art atmospheric regional models with the technique of high-order decoupled direct method to quantify the impacts of urbanization on not only the regional climate and O3 concentration but also the O3 sensitivities to emissions of nitrogen oxides and volatile organic compound. Our preliminary results show that the urbanization shifts the energy budget from latent heat to sensible heat and ground heat storage. These changes cause an increase in ground level temperature and planetary boundary layer with a maximum annual change of 1.7ºC and 330m, respectively, and a reduction of relative humidity and wind speed up to 9.6% and 0.5m/s, respectively. Such changes are favorable to air pollution. Compared to the two land-use scenarios, we found that O3 increases by 14.2%, while PM2.5 decreases by 16.9% in urban areas. Due to urbanization, the O3 sensitivities to nitrogen oxides (NOx) and volatile organic compound (VOC) change by 2.4% and 47.5%, respectively. This indicates that the atmospheric response in the region tends to be more sensitive to emission changes after urbanization. Our findings pinpoint that urbanization can significantly affect not only the regional climate and air quality but also the atmospheric responses to emission changes, highlighting the significant interactions between land-use policies, and climate and air quality policies.

  14. Comparison of air pollutant emissions among mega-cities

    Science.gov (United States)

    Parrish, David D.; Kuster, William C.; Shao, Min; Yokouchi, Yoko; Kondo, Yutaka; Goldan, Paul D.; de Gouw, Joost A.; Koike, Makoto; Shirai, Tomoko

    2009-12-01

    Ambient measurements of hydrocarbons, carbon monoxide and nitrogen oxides from three mega-cities (Beijing, Mexico City, Tokyo) are compared with similar measurements from US cities in the mid-1980s and the early 2000s. The common hydrocarbon pattern seen in all data sets suggests that emissions associated with gasoline-fueled vehicles dominate in all of these cities. This commonality suggests that it will be efficient and, ultimately, cost effective to proceed with vehicular emission controls in most emerging mega-cities, while proceeding with development of more locally appropriate air quality control strategies through emissions inventory development and ambient air monitoring. Over the three decades covered by the US data sets, the hydrocarbon emissions decreased by a significant factor (something like an order of magnitude), which is greater than suggested by emission inventories, particularly the EDGAR international inventory. The ambient hydrocarbon and CO concentrations reported for the three non-US mega-cities are higher than present US ambient concentrations, but lower than those observed in the 1980s in the US. The one exception to the preceding statement is the high concentrations of CO observed in Beijing, which apparently have a large regional contribution.

  15. Modelling of radio emission from cosmic ray air showers

    Science.gov (United States)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  16. Effects of future anthropogenic pollution emissions on global air quality

    Science.gov (United States)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  17. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Science.gov (United States)

    2012-10-03

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines to..., ``National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New...

  18. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Science.gov (United States)

    2013-02-01

    ..., beryllium, cadmium, lead, chromium, manganese, nickel, ethylene dioxide, and PCBs. In addition, the final..., arsenic, beryllium, cadmium, lead, chromium, manganese, nickel, POM, ethylene dioxide, and PCBs. In... emissions of harmful toxic air emissions from these combustion sources, improving air quality,...

  19. Characterization of process air emissions in automotive production plants.

    Science.gov (United States)

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  20. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    Science.gov (United States)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  1. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs, CO2, CO, NO2, NO, HCN and CH3CN

    Directory of Open Access Journals (Sweden)

    M. Yang

    2011-07-01

    Full Text Available Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs using gas chromatography. Together with simultaneous measurements of CO2, CO, CH4, CH2O, NO2, NO, HCN and CH3CN, these measurements represent the most comprehensive assessment of trace gas emissions from boreal forest fires to date. Based on 105 air samples collected in fresh Canadian smoke plumes, 57 of the 80 measured NMVOCs (including CH2O were emitted from the fires, including 45 species that were quantified from boreal forest fires for the first time. After CO2, CO and CH4, the largest emission factors (EFs for individual species were formaldehyde (2.1 ± 0.2 g kg−1, followed by methanol, NO2, HCN, ethene, α-pinene, β-pinene, ethane, benzene, propene, acetone and CH3CN. Globally, we estimate that boreal forest fires release 2.4 ± 0.6 Tg C yr−1 in the form of NMVOCs, with approximately 41 % of the carbon released as C1-C2 NMVOCs and 21 % as pinenes. These are the first reported field measurements of monoterpene emissions from boreal forest fires, and we speculate that the pinenes, which are relatively heavy molecules, were detected in the fire plumes as the result of distillation of stored terpenes as the vegetation is heated. Their inclusion in smoke chemistry models is expected to improve model predictions of secondary organic aerosol (SOA formation. The fire-averaged EF of dichloromethane or CH2Cl2, (6.9 ± 8.6 × 10−4 g kg−1, was not significantly different from zero and supports recent findings that its global biomass burning source appears to have been overestimated. Similarly, we found no evidence for emissions of chloroform (CHCl3 or methyl

  2. Improved Estimates of Air Pollutant Emissions from Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D.

    2015-11-13

    We have attempted to use detailed kinetic modeling approach for improved estimation of combustion air pollutant emissions from biorefinery. We have developed a preliminary detailed reaction mechanism for biomass combustion. Lignin is the only biomass component included in the current mechanism and methane is used as the biogas surrogate. The model is capable of predicting the combustion emissions of greenhouse gases (CO2, N2O, CH4) and criteria air pollutants (NO, NO2, CO). The results are yet to be compared with the experimental data. The current model is still in its early stages of development. Given the acknowledged complexity of biomass oxidation, as well as the components in the feed to the combustor, obviously the modeling approach and the chemistry set discussed here may undergo revision, extension, and further validation in the future.

  3. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections.

  4. Trends of VOC exposures among a nationally representative sample: Analysis of the NHANES 1988 through 2004 data sets

    Science.gov (United States)

    Su, Feng-Chiao; Mukherjee, Bhramar; Batterman, Stuart

    2011-09-01

    Exposures to volatile organic compounds (VOCs) are ubiquitous due to emissions from personal, commercial and industrial products, but quantitative and representative information regarding long term exposure trends is lacking. This study characterizes trends from 1988 to 2004 for the 15 VOCs measured in blood in five cohorts of the National Health and Nutrition Examination Survey (NHANES), a large and representative sample of U.S. adults. Trends were evaluated at various percentiles using linear quantile regression (QR) models, which were adjusted for solvent-related occupations and cotinine levels. Most VOCs showed decreasing trends at all quantiles, e.g., median exposures declined by 2.5 (m,p-xylene) to 6.4 (tetrachloroethene) percent per year over the 15 year period. Trends varied by VOC and quantile, and were grouped into three patterns: similar decreases at all quantiles (including benzene, toluene); most rapid decreases at upper quantiles (ethylbenzene, m,p-xylene, o-xylene, styrene, chloroform, tetrachloroethene); and fastest declines at central quantiles (1,4-dichlorobenzene). These patterns reflect changes in exposure sources, e.g., upper-percentile exposures may result mostly from occupational exposure, while lower percentile exposures arise from general environmental sources. Both VOC emissions aggregated at the national level and VOC concentrations measured in ambient air also have declined substantially over the study period and are supportive of the exposure trends, although the NHANES data suggest the importance of indoor sources and personal activities on VOC exposures. While piecewise QR models suggest that exposures of several VOCs decreased little or any during the 1990's, followed by more rapid decreases from 1999 to 2004, questions are raised concerning the reliability of VOC data in several of the NHANES cohorts and its applicability as an exposure indicator, as demonstrated by the modest correlation between VOC levels in blood and personal air

  5. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  6. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    Science.gov (United States)

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  7. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Science.gov (United States)

    2012-01-09

    ... products are used for applications in packaging, building and construction. We identified two currently...--National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical...--Polycyclic Organic Matter PRD--Pressure Relief Device RACT--Reasonably Available Control Technology...

  8. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  9. New method for simulation of VOC emission from building materials and measurement of mass transfer parameters%建材VOC散发过程模拟与传质参数测定新方法

    Institute of Scientific and Technical Information of China (English)

    宋伟; 孔庆媛; 李洪枚

    2013-01-01

    建材中挥发性有机化合物(VOC)的散发是一个复杂传质过程.为准确把握传质特性,首先建立了一套描述干建材散发行为的显性完全解析模型,适用于模拟对人体最不利的无换气情况;代入有关文献中的传质参数预测了环境舱浓度,与文献中对应的实验数据及数值算法预测值吻合良好.然后基于对模型的分析提出一套简便快捷的实验方法,能够利用不同VOC背景值下干建材在密闭舱中散发的平衡浓度或逐时浓度,求取预测散发过程的4个重要的传质参数:可散发浓度C0、扩散系数D、分配系数K和对流传质系数hm;实验部分测算了两类密度板中甲醛散发的C0、D、K、hm,代入数值算法预测了密闭舱和直流舱的环境舱浓度,与实验数据吻合良好.该套模型和测定方法能够应用于建材散发的模拟研究.%Emission of volatile organic compounds (VOC) from building materials is a complex process of mass transfer. To have a clear picture of mass transfer characteristics, this paper first established an explicitly fully analytical model describing VOC emission behavior from dry building materials, which is applicable to emission simulation in static chamber that is most unfavorable to human health. The VOC concentration in the chamber predicted based on the mass transfer parameters in literature is in good agreement with corresponding experimental data and numerical calculation in literature. Based on this model, an experimental method is proposed for convenient, rapid and simultaneous measurement of four important mass transfer parameters for VOC emission prediction (emittable concentration C0, diffusion coefficient D, partition coefficient K and convection mass transfer coefficient hm) by making use of emission equilibrium or process concentration in a static chamber at a series of background concentrations. With the values of C0, D, K and hm for formaldehyde emission mass transfer obtained

  10. Simulating radio emission from air showers with CoREAS

    CERN Document Server

    Huege, T; James, C W

    2013-01-01

    CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptions on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.

  11. The consideration of non-anthropogenic emissions for air quality modelling in South Africa

    CSIR Research Space (South Africa)

    Naidoo, M

    2015-10-01

    Full Text Available Air quality modelling requires the identification of all relevant sources of emissions and the accurate calculation of the emissions rates. Many of these sources include anthropogenic activities that need to be accounted for in any emissions...

  12. 75 FR 32005 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Science.gov (United States)

    2010-06-04

    ... hazardous air pollutants emissions standards reflecting the application of the maximum achievable control....7485 of subpart DDDDD (National Emission Standards for Hazardous Air Pollutants (NESHAP) for Industrial... were not achieving emissions reductions through the use of an emission control system and there were...

  13. Evaluation of emissions and air quality in megacities

    Science.gov (United States)

    Gurjar, B. R.; Butler, T. M.; Lawrence, M. G.; Lelieveld, J.

    Several concepts and indicators exist to measure and rank urban areas in terms of their socio-economic, infrastructural, and environment-related parameters. The World Bank regularly publishes the World Development Indicators (WDI), and the United Nations reports the City Development Index (CDI) and also ranks megacities on the basis of their population size. Here, we evaluate and rank megacities in terms of their trace gas and particle emissions and ambient air quality. Besides ranking the megacities according to their surface area and population density, we evaluate them based on carbon monoxide (CO) emissions per capita, per year, and per unit surface area. Further, we rank the megacities according to ambient atmospheric concentrations of criteria pollutants, notably total suspended particles (TSP), sulfur dioxide (SO 2), and nitrogen dioxide (NO 2). We propose a multi-pollutant index (MPI) considering the combined level of the three criteria pollutants (i.e., TSP, SO 2, and NO 2) in view of the World Health Organization (WHO) Guidelines for Air Quality. Of 18 megacities considered here 5 classify as having "fair" air quality, and 13 as "poor". The megacities with the highest MPI, Dhaka, Beijing, Cairo, and Karachi, most urgently need reduction of air pollution.

  14. US Department of Energy report 1996 LANL radionuclide air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K.W.

    1997-08-01

    Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by the Los Alamos National Laboratory (LANL) in 1996. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The effective dose equivalent (EDE) to a hypothetical maximum exposed individual (MEI) of the public was calculated, using procedures specified by the EPA and described in this report. That dose was 1.93 mrem for 1996. Emissions of {sup 11}C, {sup 13}N, and {sup 15}O from a 1-mA, 800 MeV proton accelerator contributed over 92% of the EDE to LANL`s MEI. Using CAP88, the EPA`s dose assessment model, more than 86% of the total dose received by the MEI was via the air immersion pathway.

  15. Observations of Microwave Continuum Emission from Air Shower Plasmas

    CERN Document Server

    Gorham, P W; Varner, G S; Beatty, J J; Connolly, A; Chen, P; Conde, M E; Gai, W; Hast, C; Hebert, C L; Miki, C; Konecny, R; Kowalski, J; Ng, J; Power, J G; Reil, K; Saltzberg, D; Stokes, B T; Walz, D

    2007-01-01

    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, cou...

  16. POCP for individual VOC under European conditions

    Energy Technology Data Exchange (ETDEWEB)

    Altenstedt, J.; Pleijel, K.

    1998-09-01

    Ground level ozone has been recognised as one of the most important environmental threats on the regional scale in Europe. Ozone is today considered to be harmful to human health already at the relatively low concentrations present in southern Scandinavia. The fact that ozone has the potential to damage vegetation at these concentrations is already well known. Ozone also gives rise to degradation of materials and is one of the gases which adds to the greenhouse effect. Ground level ozone is formed from nitrogen oxides (NO{sub x}) and volatile organic compounds (VOC) in the presence of sunlight. The only way to reduce ozone is therefore to reduce the emissions of the precursors. Ranking individual VOC by their ozone formation potential can make emission reductions more environmentally efficient and save time and money. POCP values give a ranking of the ozone formation ability of an individual VOC relative to other VOC. A critical analysis of the POCP concept has been performed which shows that the background emissions of NO{sub x} and VOC affect the POCP values to a large extent. Based on the critical analysis, five scenarios with different background emissions of NO{sub x} and VOC were selected for calculation of POCP values. These scenarios were chosen because they reflect the variation in POCP values which arise in different environments within Europe. The range thus indicates POCP values which are intended to be applicable within Europe. POCP values for 83 different VOC are presented in the form of ranges in this report. 42 refs, 13 figs, 3 tabs

  17. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  18. Air Force Research Laboratory Support for Sustainment

    Science.gov (United States)

    2011-08-18

    Reduce or eliminate chromium, cadmium, nickel , hazardous air pollutants (HAPS), and volatile organic compounds (VOCs) from coatings and related...hazardous waste Less toxic exposure Less hazardous air emissions Reduced cost Improved performance Hazardous Cr and Cd Replacements Laser Paint...Pb) Aircraft electronics Significant Cadmium (Cd) Circuit breakers, relays, connectors, wire Significant Hexavalent Chrome Anti-corrosion primer

  19. Microbial community analysis in biotrickling filters treating isopropanol air emissions.

    Science.gov (United States)

    Pérez, M Carmen; Alvarez-Hornos, F Javier; San-Valero, Pau; Marzal, Paula; Gabaldón, Carmen

    2013-01-01

    The evolution of the microbial community was analysed over one year in two biotrickling filters operating under intermittent feeding conditions and treating isopropanol emissions, a pollutant typically found in the flexography sector. Each reactor was packed with one media: plastic cross-flow-structured material or polypropylene rings. The communities were monitored by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA region. After inoculation with activated sludge, the biotrickling filters were operated using inlet loads (ILs) from 20 to 65 g C m(-3) h(-1) and empty-bed residence times (EBRTs) from 14 to 160 s. Removal efficiencies higher than 80% were obtained with ILs up to 35 g C m(-3) h(-1) working at EBRTs as low as 24 s. There was an increase in the total percentage of the target domains of up to around 80% at the end of the experiment. Specifically, the Gammaproteobacteria domain group, which includes the well-known volatile organic compound (VOC)-degrading species such as Pseudomonas putida, showed a noticeable rise in the two biotrickling filters of 26% and 27%, respectively. DGGE pattern band analysis revealed a stable band of Pseudomonas putida in all the samples monitored, even in the lower diversity communities. In addition, at similar operational conditions, the biotrickling filter with a greater relative abundance of Pseudomonas sp. (19.2% vs. 8%) showed higher removal efficiency (90% vs. 79%). Results indicate the importance of undertaking a further in-depth study of the involved species in the biofiltration process and their specific function.

  20. Concentrations and emissions of gasoline and other vapors from residential vehicle garages

    Science.gov (United States)

    Batterman, Stuart; Hatzivasilis, Gina; Jia, Chunrong

    High concentrations of airborne volatile organic compounds (VOCs) may be present in residential garages due to emissions from vehicles, lawnmowers, storage containers, and many other items stored in the garage. VOC emissions will ultimately be transported into ambient air and, if the garage is attached to a residence or other building, into living spaces. This study reports on VOC concentrations and emissions at 15 residential garages in Michigan that varied in type, size, use and other characteristics. VOCs were measured in garages and in outside air using 4-day passive sampling, thermal desorption, and GC-MS analysis. Effective air exchange rates (AERs) were determined using a perfluorocarbon tracer gas and the constant injection method. A modeling analysis shows the effect of time-varying ventilation. To estimate temporal and spatial variability, concentrations were measured on 7 subsequent occasions at multiple locations in one garage. This garage was well-mixed, and the temporal variation in AERs and concentrations was modest. Across the 15 garages, 36 different VOCs in garage air, and 20 in ambient air, were quantified. Source groups identified and attributed to garage emissions included evaporated gasoline, solvents, paints, oils, and cleaners. Concentrations of gasoline-related VOCs in most garages were high, e.g., benzene levels reached 159 μg m -3 in one garage. TVOC emissions per garage averaged 3.0±4.1 g day -1, and AERs averaged 0.77±0.51 h -1. VOC concentrations and AERs were not strongly correlated to observed house, garage or meteorological factors, but appeared largely dependent on occupant activities (opening of the garage door) and VOC sources present. This study quantifies the importance of attached garages as VOC sources, and the results are significant for understanding and mitigating indoor exposures, and for estimating emissions for source inventory purposes.

  1. Inventory of pesticide emissions into the air in Europe

    Science.gov (United States)

    Sarigiannis, D. A.; Kontoroupis, P.; Solomou, E. S.; Nikolaki, S.; Karabelas, A. J.

    2013-08-01

    Creation of a reliable and comprehensive emission inventory of the pesticides used in Europe is a key step towards quantitatively assessing the link between actual pesticide exposure and adverse health effects. An inventory of pesticide emissions was generated at a 1 × 1 km grid, for the year 2000. The emission model comprises three components: estimates of active substance (AS) wind drift taking into account crop type, volatilization during pesticide application and volatilization from the crop canopy. Results show that atmospheric emission of pesticides varies significantly across Europe. Different pesticide families are emitted from different parts of Europe as a function of the main crop(s) cultivated, agro-climatic conditions and production intensity. The pesticide emission inventory methodology developed herein is a valuable tool for assessing air quality in rural and peri-urban Europe, furnishing the necessary input for atmospheric modelling at different scales. Its estimates have been tested using global sensitivity and Monte Carlo analysis for uncertainty assessment and they have been validated against national and local surveys in four European countries; the results demonstrate the robustness and reliability of the inventory. The latter may therefore be readily used for exposure and health risk assessment studies targeting farmers, applicators, but also bystanders and the general population in Europe.

  2. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory; Allen, Shannon P. [Los Alamos National Laboratory; Archuleta, Debra C. [Los Alamos National Laboratory; Brock, Burgandy [Los Alamos National Laboratory; Coronado, Melissa A. [Los Alamos National Laboratory; Dewart, Jean M. [Los Alamos National Laboratory; Eisele, William F. Jr. [Los Alamos National Laboratory; Fuehne, David P. [Los Alamos National Laboratory; Gadd, Milan S. [Los Alamos National Laboratory; Green, Andrew A. [Los Alamos National Laboratory; Lujan, Joan J. [Los Alamos National Laboratory; MacDonell, Carolyn [Los Alamos National Laboratory; Whicker, Jeffrey J. [Los Alamos National Laboratory

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  3. Optimal strategies for VOC emission abatement produced by solvent evaporation. The Italian case study; Strategie ottimali per la riduzione delle emissioni di composti organici volatili da uso di solventi: il caso italiano

    Energy Technology Data Exchange (ETDEWEB)

    Vetrella, G.; Cirillo, M.C. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1998-07-01

    This work analyses technologies and costs of VOC (volatile organic compounds) abatement in the activities which belong to the solvent evaporation sector, and then it singles out the most successful strategies from the costs point of view to reduce the sector emissions on the base of fixed abatement objectives. The Italian case is discussed. [Italian] Il lavoro analizza tecnologie e costi di abbattimento dei COV (composti organici volatili) nel settore evaporazione solventi, e individua la strategia piu' efficace dal punto di vista dei costi per ridurre le emissioni del settore sulla base di prefissati obiettivi di abbattimento. Analizza la situazione italiana.

  4. Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganthus.

    Science.gov (United States)

    Jeguirim, Mejdi; Dorge, Sophie; Trouvé, Gwenaelle

    2010-01-01

    The aim of this work was to study the thermal behavior of two herbaceous crops (Miscanthus giganthus, Arundo donax) obtained from energy plantations. Thermogravimetric analyses were performed at 5 degrees C min(-1) under air atmosphere. The thermal degradation rates in devolatilization and combustion steps, the initial degradation temperature, and the residual weight were determined. The gas emissions and Particle Matter (PM) were also quantified. The thermal behavior of energy crops depends on the chemical composition. In fact, the initial degradation temperature for A. donax under air atmosphere was lower than for M. giganthus. However, the thermal degradation rate was higher for M. giganthus. Kinetic expressions for the degradation rate in devolatilization and combustion steps have been obtained for both energy crops. The comparison of the gas and PM emissions showed the same order of magnitude for both energy crops. In fact, 26.8 mmol/g of CO, CO(2), VOC and 1.8 x 10(13) particles/g were mainly emitted.

  5. Locating industrial VOC sources with aircraft observations

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, P., E-mail: p.toscano@ibimet.cnr.it [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Gioli, B. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Dugheri, S. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Salvini, A. [Department of Organic Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Florence (Italy); Matese, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Bonacchi, A. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Zaldei, A. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Cupelli, V. [Careggi Hospital-University of Florence, Occupational Health Division, Largo Palagi 1, 50100 Florence (Italy); Miglietta, F. [Institute for Biometeorology (IBIMET - CNR), Via G. Caproni 8, 50145 Firenze (Italy); Fondazione Edmund Mach, Via Mach 1, San Michele all' Adige, Trento (Italy)

    2011-05-15

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: > Flight plan aimed at sampling industrial area at various altitudes and locations. > SPME sampling strategy was based on plume detection by means of CO{sub 2}. > Concentrations obtained were lower than the limit values or below the detection limit. > Scan mode highlighted presence of {gamma}-butyrolactone (GBL) compound. > Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  6. Emission rate estimates determined for a large number of volatile organic compounds using airborne measurements for the oil sands facilities in Alberta, Canada

    Science.gov (United States)

    Li, S. M.; Leithead, A.; Moussa, S.; Liggio, J.; Moran, M. D.; Wang, D. K.; Hayden, K. L.; Darlington, A.; Gordon, M.; Staebler, R. M.; Makar, P.; Stroud, C.; McLaren, R.; Liu, P.; O'brien, J.; Mittermeier, R. L.; Zhang, J.; Marson, G.; Cober, S.; Wolde, M.; Wentzell, J.

    2016-12-01

    In August and September of 2013, aircraft-based measurements of air pollutants were made during a field campaign in support of the Joint Canada-Alberta Implementation Plan on Oil Sands Monitoring in Alberta, Canada. Volatile organic compounds (VOCs) were determined using a high resolution proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) continuously at 2-5 second resolution during the flights, and from 680 discretely sampled stainless steel canisters collected during flights followed by offline GC-MS and GC-FID analyses for four large oil sands surface mining facilities. The Top-down Emission Rate Retrieval Algorithm (TERRA), developed at Environment and Climate Change Canada (ECCC), was applied to the aromatics and oxygenated VOC results from the PTR-ToF-MS to determine their emission rates. Additional VOC species, determined in the canisters, were compared with the PTR-ToF-MS VOC species to determine their emission ratios. Using these emission ratios and the emission rates for the aromatics and oxygenated VOCs, the individual emission rates for 73-90 volatile organic compounds (VOCs) were determined for each of the four major oil sands facilities. The results are the first independently determined emission rates for a large number of VOCs at the same time for large industrial complexes such as the oil sands mining facilities. These measurement-based emission data will be important for strengthening VOC emission reporting.

  7. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    Science.gov (United States)

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region.

  8. Catalyst screening for the VOC decomposition using adsorption and oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.H.; Ogata, A. [National Inst. of Advanced Industrial Science and Technology, Tokyo (Japan)

    2010-07-01

    Emissions of volatile organic compounds (VOCs) are directly related to the formation of photochemical smog and the secondary aerosol formation, particularly in urban areas. As such, VOC pollution control is a high priority in air quality management. Non-thermal plasmas (NTPs) have been considered for the abatement of VOCs, but 3 key factors must be addressed, notably improve the energy efficiency, have less NOx formation and acceptable material balance. A recent trend in the use of NTP for air pollution control is the combination of NTP with a catalyst. This combined process is subdivided into single-stage and two-stage depending on the position of the catalyst. Ozone-assisted catalysis is the two-stage system. This study focused on the decomposition of VOCs using a single-stage plasma-driven catalysis (PDC) system, and demonstrated the effectiveness of the PDC in terms of energy efficiency, product selectivity and carbon balance. The PDC reactor has a strong dependence on the oxygen content in the oxidation of VOCs. The potentials of various catalysts for cycled system were evaluated in terms of adsorption capability of VOC and enhancement factor (EF). The study focused on zeolites with a large surface area. Nanometer-sized active metals were also loaded on the zeolite surfaces, and their catalytic activity was tested. The metal nanoparticles supported on zeolites enhanced the catalytic activities considerably. ICCD camera observation of the discharge plasma on the surface of catalyst provided an important insight into the understanding of discharge plasma and catalyst. The area of discharge plasma expanded over a wide range by the metal nanoparticles. This physical influence was found to be closely related to the enhanced performance of the plasma-driven catalyst process. 15 refs., 5 figs.

  9. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 mg m3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol

  10. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    Science.gov (United States)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  11. Spatial/temporal variations and source apportionment of VOCs monitored at community scale in an urban area.

    Directory of Open Access Journals (Sweden)

    Chang Ho Yu

    Full Text Available This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile sites in Paterson and one background site in Chester, NJ (located ∼58 km southwest of Paterson. Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (p<0.01. Ethylbenzene, m,p-xylene, o-xylene, and p-dichlorobenzene measured at the commercial site were significantly higher than the industrial/mobile sites (p<0.01. Seven VOCs (acetylene, benzene, dichloromethane, methyl ethyl ketone, styrene, toluene, and p-dichlorobenzene were significantly different by season (p<0.05, that is, higher in cold seasons than in warm seasons. In addition, dichloromethane, methyl ethyl ketone, and toluene were significantly higher on weekdays than weekend days (p<0.05. These results are consistent with literature data, indicating the impact of anthropogenic VOC sources on air pollution in Paterson. Positive Matrix Factorization (PMF analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%, solvents uses (19%, industrial emissions (16%, mobile+stationery sources (12%, small shop emissions (11%, and others (22%. Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in

  12. Measurements of major VOCs released into the closed cabin environment of different automobiles under various engine and ventilation scenarios.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Jo, Hyo-Jae; Lee, Min-Hee; Kim, Yong-Hyun; Kwon, Eilhann; Ma, Chang-Jin; Kumar, Pawan

    2016-08-01

    Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the 'idling engine' levels (5.24 ± 4.07) was 1.3-5 times higher than the 'engine off' levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes.

  13. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  14. Overview of Megacity Air Pollutant Emissions and Impacts

    Science.gov (United States)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  15. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    Science.gov (United States)

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  16. Wind Energy and Air Emission Reduction Benefits: A Primer

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  17. Measurement of radio emission from extensive air showers with LOPES

    Energy Technology Data Exchange (ETDEWEB)

    Hoerandel, J.R., E-mail: j.horandel@astro.ru.n [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Apel, W.D. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Arteaga, J.C. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Asch, T. [IPE, Forschungszentrum Karlsruhe (Germany); Badea, F. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Baehren, L. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bekk, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Bertaina, M. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Biermann, P.L. [Max-Planck-Institut fuer Radioastronomie Bonn (Germany); Bluemer, J. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Bozdog, H. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Brueggemann, M.; Buchholz, P. [Fachbereich Physik, Universitaet Siegen (Germany); Buitink, S. [Radboud University Nijmegen, Department of Astrophysics, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Cantoni, E. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Istituto di Fisica dello Spazio Interplan etario, INAF Torino (Italy); Chiavassa, A. [Dipartimento di Fisica Generale dell' Universita di Torino (Italy); Cossavella, F. [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany); Daumiller, K. [Institut fuer Kernphysik, Forschungszentrum Karlsruhe (Germany); Souza, V. de [Institut fuer Experimentelle Kernphysik, Universitaet Karlsruhe (Germany)

    2011-02-21

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES{sup star} and new methods are explored to realize a radio self-trigger algorithm in real time.

  18. Measurement of Radio Emission from Extensive Air Showers with LOPES

    CERN Document Server

    Hoerandel, J R

    2009-01-01

    A new method is explored to detect extensive air showers: the measurement of radio waves emitted during the propagation of the electromagnetic shower component in the magnetic field of the Earth. Recent results of the pioneering experiment LOPES are discussed. It registers radio signals in the frequency range between 40 and 80 MHz. The intensity of the measured radio emission is investigated as a function of different shower parameters, such as shower energy, angle of incidence, and distance to shower axis. In addition, new antenna types are developed in the framework of LOPES-Star and new methods are explored to realize a radio self-trigger algorithm in real time.

  19. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    Science.gov (United States)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    implications for the oxidizing capacity of the atmosphere increased from an average value of 14 /s (N.F.E.) to 40 /s (F.E.) just due to CO, NOx and the measured aromatics. The observed increase in ozone was 10ppbV higher after sunrise on the day after the fire plume was sampled and driven by the sudden NOx availability at a site that normally falls in a NOx limited ozone production regime. The strong pollutant enhancements in carcinogenic aromatic hydrocarbons that are also highly reactive and fuel ozone and secondary organic aerosol formation when accompanied by the high NOx and CO levels resulting from crop residue burning in N. India, clearly highlight the need to address the practice of crop residue burning which strongly alters the composition and chemistry of the atmosphere with adverse effects on both air quality and health. This study is the first from within India to combine fast in-situ PTR-MS VOC emission tracer measurements with online measurements of primary pollutants and MODIS satellite data. Further targeted studies employing a comprehensive measurement suite of both aerosol and gas species are needed to assess the full impact of crop residue burning on atmospheric chemistry and regional air quality. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD),India and IISER Mohali for funding the facility. Vinod Kumar acknowledges the DST INSPIRE Fellowship programme. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding support.

  20. Exposure to volatile organic compounds (VOC) in public buses of Pamplona, Northern Spain.

    Science.gov (United States)

    Parra, M A; Elustondo, D; Bermejo, R; Santamaría, J M

    2008-10-01

    This study examines the exposure level of passengers and drivers to VOC in public buses in a medium-size metropolitan area (Northern Spain). In-vehicle monitoring was performed on different routes, on peak and non-peak hours, during January and February 2007. A total of 112 air samples were collected onto adsorbent tubes and analysed by thermal desorption (TD) and gas chromatography/mass selective detector (GC/MSD) technique. Statistical differences were found among route to route concentrations, with those routes with major prevalence in the commercial area of the city displaying higher values; differences between peak and non-peak hours were also observed. A decrease in VOC concentrations was also registered during the weekend. BTEX ratios were estimated and found to be related to traffic emissions and similar for all the surveyed routes. Correlations confirmed traffic as the main emission source for BTEX and trimethylbenzene, their concentrations being highly associated to changes in meteorological conditions.

  1. Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city.

    Science.gov (United States)

    Bandeira, Jorge M; Coelho, Margarida C; Sá, Maria Elisa; Tavares, Richard; Borrego, Carlos

    2011-02-15

    The main objective of this work was to evaluate the impact of urban development trends in mobility patterns of a medium sized Portuguese city and air quality consequences, using a sequential modeling process, comprising i) land use and transportation, TRANUS model; ii) road traffic air pollutants emissions, TREM model and; iii) air quality, TAPM model. This integrated methodology was applied to a medium sized Portuguese city. In order to evaluate the implementation of the methodology, a preliminary study was performed, which consisted on the comparison of modeled mobility patterns and CO and PM(10) concentrations with measured data used in the definition of the current scenario. The comparison between modeled and monitored mobility patterns at the morning peak hour for a weekday showed an RMSE of 31%. Regarding CO concentrations, an underestimation of the modeled results was observed. Nevertheless, the modeled PM(10) concentrations were consistent with the monitored data. Overall, the results showed a reasonable consistency of the modeled data, which allowed the use of the integrated modeling system for the study scenarios. The future scenarios consisted on the definition of different mobility patterns and vehicle technology characteristics, according to two main developing trends: (1) "car pooling" scenario, which imposes a mean occupancy rate of 3 passengers by vehicle and (2) the "Euro 6" scenario, which establishes that all vehicles accomplish at least the Euro 6 standard technology. Reductions of 54% and 83% for CO, 44% and 95% for PM(10), 44% and 87% for VOC and 44% and 79% for NO(x) emissions were observed in scenarios 1 and 2, respectively. Concerning air quality, a reduction of about 100 μg m(-3) of CO annual average concentration was observed in both scenarios. The results of PM(10) annual concentrations showed a reduction of 1.35 μg m(-3) and 2.7 μg m(-3) for scenarios 1 and 2 respectively.

  2. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  3. Remove volatile organic compounds (VOCs) with membrane separation techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  4. Covering the different steps of the coffee processing: Can headspace VOC emissions be exploited to successfully distinguish between Arabica and Robusta?

    Science.gov (United States)

    Colzi, Ilaria; Taiti, Cosimo; Marone, Elettra; Magnelli, Susanna; Gonnelli, Cristina; Mancuso, Stefano

    2017-12-15

    This work was performed to evaluate the possible application of PTR-ToF-MS technique in distinguishing between Coffea arabica (Arabica) and Coffea canephora var. robusta (Robusta) commercial stocks in each step of the processing chain (green beans, roasted beans, ground coffee, brews). volatile organic compounds (VOC) spectra from coffee samples of 7 Arabica and 6 Robusta commercial stocks were recorded and submitted to multivariate statistical analysis. Results clearly showed that, in each stage of the coffee processing, the volatile composition of coffee is highly influenced by the species. Actually, with the exception of green beans, PTR-ToF-MS technique was able to correctly recognize Arabica and Robusta samples. Particularly, among 134 tentatively identified VOCs, some masses (16 for roasted coffee, 12 for ground coffee and 12 for brewed coffee) were found to significantly discriminate the two species. Therefore, headspace VOC analyses was showed to represent a valuable tool to distinguish between Arabica and Robusta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach.

    Science.gov (United States)

    Saral, Arslan; Demir, Selami; Yildiz, Senol

    2009-08-30

    An air pollution modeling study was conducted to investigate the odorous effects of volatile organic compounds (VOCs) emissions from a sanitary landfill area on ambient air quality. The atmospheric dispersion of hydrogen sulfide (H(2)S) and 22 VOCs was modeled. Industrial Source Complex v3 Short Term (ISCST3) model was used to estimate hourly concentrations of odorous VOCs over the nearest residential area. Odor thresholds of VOCs of interest were also found in the literature. Results showed that short-term averages of three odorous VOCs, namely ethyl mercaptan, methyl mercaptan and hydrogen sulfide, exceeded their odor thresholds, which are reported to be 0.022, 0.138 and 11.1 microg/m(3), respectively, at several points within the domain. Their highest concentrations within Gokturk County were estimated to be 0.09387 microg/m(3) for ethyl mercaptan, 0.07934 microg/m(3) for methyl mercaptan and 6.315 microg/m(3) for hydrogen sulfide. Short-term model results revealed the occasional odor problems being reported for Gokturk County. Hourly concentrations were used to obtain frequencies of odor episodes in Gokturk County via a probability analysis. The results showed that ethyl mercaptan concentrations did not exceed its odor threshold during more than 8.84% of the time. Similarly, the maximum odor episode frequencies for methyl mercaptan and hydrogen sulfide were 0.98% and 0.34% of the time, respectively.

  6. Quantitative Estimate of Unorganized Emission of VOCs from Petroleum Refinery Wastwater Treatment%石化炼油废水处理VOCs无组织排放定量估算研究

    Institute of Scientific and Technical Information of China (English)

    戴晓波; 邱贤锋; 何金平; 王文成; 陈选文

    2012-01-01

    炼油厂废水处理中无组织排放VOCs是石化企业污染源核查的重要内容。概述了影响VOCs挥发因素,利用基于MATLAB神经网络工具箱的图形用户界面GUI,并且使用在某石化企业所收集的相关数据,建立了石化企业炼油废水处理中无组织排放VOCs的定量模型。通过实验,证明了模型具有更广泛的应用范围,弥补了新建项目环境影响评价中的缺陷。%In view of the fact that unorganized emission of VOSc from Wastwater Treatment is one of the major pollution sources of a petroleum refinery, this paper studies effecting factors of VOCs volatilization and establishes a quantitative model of unorganized VOCs emission from Wastewater Treatment on the basis of the data from a petroleum refinery by means of GUI of MATLAB neural network toolbox. Experiments prove that the model fits for a wide range of applications, which will im- prove project environment impact assessments.

  7. Effects of saponin extracts on air emissions from steers.

    Science.gov (United States)

    Li, W; Powers, W

    2012-11-01

    A series of experiments were conducted to quantify the effects of saponin extracts from Quillaja saponaria Molina (QS), Yucca schidigera Roezl ex Ortgies (YS), and Camellia sinensis (L.) Kuntze (TS) on gaseous emissions from steers (Bos taurus). During Exp. 1, a control diet [C1, corn (Zea mays L.) and corn silage basal diet] was compared with YS1 (C1 + 0.64% dietary DM of YS) and QS1 (C1 + 1.5% dietary DM of QS), with 4 replicates per treatment. During Exp. 2, the control diet (C2, corn and corn silage basal diet) was compared with TS2 (C2 + 0.25% dietary DM of TS). Product inclusion levels were established to provide the same concentration of saponin compounds across studies for Exp. 1 and 2. Experiment 3 compared C3 (corn and corn silage basal diet), QS3 (C3 + 1.5% QS), YS3 (C3 + 1.5% YS), and TS3 (C3 + 0.5% TS). Holstein steers (n = 12) at initial BW of 354 ± 10 kg (Exp. 1), 429 ± 10 kg (Exp. 2), 382 ± 16 kg (Period 1, Exp. 3) and 400 ± 12 kg (Period 2, Exp. 3) were individually housed in environmental rooms for 22 d per study. Gaseous emissions including methane (CH(4)), ammonia (NH(3)), and nitrous oxide (N(2)O) were monitored in room exhaust air. No differences in DMI (7.54 ± 0.09 kg) and ADG (1.16 ± 0.19 kg) were observed in Exp. 1 (P > 0.05). Adding TS2 to the diet improved DMI in Exp. 2 (8.94 kg in TS2 vs. 8.53 in C2; P < 0.01), whereas ADG was not affected by diet. During Exp. 3, steers fed the TS3 diet ate less (6.36 kg/d) and gained less BW (0.31 kg/d) compared with the other 3 treatments. Saponin inclusion did not alter daily CH(4) emission per unit DMI (13.17, 10.90, and 13.21 g/kg DMI, for Exp. 1, 2, and 3, respectively). Emissions of NH(3) per unit N intake were not affected by diets in Exp. 1 (134.89 mg/g N consumed) and Exp. 3 (134.99 mg/g N consumed). Feeding TS2 reduced NH(3) emission per unit of N consumed by 30% compared with C2 (P < 0.01). Feeding up to 0.5% of TS failed to reduce CH(4) emissions without impairing steer growth. Nitrous

  8. The predicted impact of VOCs from Marijuana cultivation operations on ozone concentrations in great Denver, CO.

    Science.gov (United States)

    Wang, C. T.; Vizuete, W.; Wiedinmyer, C.; Ashworth, K.

    2016-12-01

    Colorado is the first the marijuana legal states in the United States since 2014. As a result, thousands of legal Marijuana cultivation operations are at great Denver area now. Those Marijuana cultivation operations could be the potential to release a lot of biogenic VOCs, such as monoterpene(C10H16), alpha-pinene, and D-limonene. Those alkene species could rapidly increase the peroxy radicals and chemical reactions in the atmosphere, especially in the urban area which belong to VOC-limited ozone regime. These emissions will increase the ozone in Denver city, where is ozone non-attainment area. Some previous research explained the marijuana smoke and indoor air quality (Martyny, Serrano, Schaeffer, & Van Dyke, 2013) and the smell of marijuana chemical compounds(Rice & Koziel, 2015). However, there have been no studies discuss on identifying and assessing emission rate from marijuana and how those species impact on atmospheric chemistry and ozone concentration, and the marijuana emissions have been not considered in the national emission inventory, either. This research will use air quality model to identify the possibility of ozone impact by marijuana cultivation emission. The Comprehensive Air Quality Model with Extensions, CAMx, are applied for this research to identify the impact of ozone concentration. This model is government regulatory model based on the Three-State Air Quality Modeling Study (3SAQS), which developed by UNC-Chapel Hill and ENVIRON in 2012. This model is used for evaluation and regulate the ozone impact in ozone non-attainment area, Denver city. The details of the 3SAQS model setup and protocol can be found in the 3SAQS report(UNC-IE, 2013). For the marijuana emission study scenarios, we assumed the monoterpene (C10H16) is the only emission species in air quality model and identify the ozone change in the model by the different quantity of emission rate from marijuana cultivation operations.

  9. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  10. Urban scale air quality modelling using detailed traffic emissions estimates

    Science.gov (United States)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  11. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Sauvage, Stéphane; Locoge, Nadine; Sanchez, Olivier; Sarda-Estève, Roland; Kalogridis, Cerise; Petit, Jean-Eudes; Bonnaire, Nicolas; Baisnée, Dominique; Favez, Olivier; Albinet, Alexandre; Sciare, Jean; Bonsang, Bernard

    2016-09-01

    Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2-C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction - mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of

  12. ElectroCore separator for particulate air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.; Altman, R.F.; Olen, K.R.

    1998-07-01

    Coal combustion in fossil energy power systems releases trace amounts of chemical elements identified in the Clean Air Act Amendments of 1990 as hazardous air pollutants (HAPs). Most HAPs exist as solid phase particulate matter and are emitted to the atmosphere in this form. To reduce the emissions of these HAPs, a novel, high efficiency particle collection system known as the ElectroCore is being developed. The concept involves placing a high efficiency particle separator downstream of an underperforming electrostatic precipitator (ESP) that strips the particles from the incoming flow and returns them, along with a small amount of recirculation flow, back to the inlet of the ESP. The main component of the system is the ElectroCore separator. Its design is based on the mechanical Core Separator developed by LSR as a high efficiency centrifugal separator. Enhancing the Core Separator by adding an electrical field improves the separation efficiency of particles in the sub-micron range which is the range where centrifugal separation is ineffective. In the combined system, the centrifugal forces operating on the particles augmented by electrostatic forces so that the ElectroCore has high separation efficiency for particles of all sizes. Field tests have shown that the ElectroCore operating downstream of an underperforming ESP can reduce the particulate emission rate to below 4.3 ng/J (0.01 lb{sub m}/million Btu) even for ESPs with emission rates as high as 260 ng/J (0.6 lb{sub m}/million Btu). The ElectroCore system can perform with most all coal ranks or residual fuel oils (RFO) and has a potentially low capital cost.

  13. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP

  14. Cost and Performance Report: Low-Hazardous Air Pollutant (HAP)/Volatile Organic Compound (VOC)-Compliant Resins for Military Applications

    Science.gov (United States)

    2012-03-01

    VOCs evaporate at substantial rates at room temperature and could potentially produce smog-promoting ozone as well as long-term and acute health...spectroscopy ( FTIR ) testing was used to determine the presence of unreacted epoxy groups. Unreacted epoxy groups indicated incomplete conversion of...80 cP at 25 °C (MLau) Viscosity ា cP at 25 °C (MOct) Unreacted epoxy FTIR , NMR No epoxy present None detected Correct reactant ratios NMR

  15. GEIGER BRICKEL BENEFITS FROM LOW -VOC COATINGS

    Science.gov (United States)

    Midwest Research Institute, under a cooperative agreement with the U.S. Environmental Protection Agency (EPA), conducted a study to identify wood furniture manufacturing facilities that had converted to low-volatile organic compound (VOC)/hazardous air pollutant (HAP) wood furnit...

  16. A multi-methodological approach to study the temporal and spatial distribution of air quality related to road transport emissions in Madrid, Spain

    Science.gov (United States)

    Perez, Pedro; Miranda, Regina

    2013-04-01

    The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local

  17. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    OpenAIRE

    Zhao, Y.; J. Zhang; C. P. Nielsen

    2014-01-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the fu...

  18. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  19. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  20. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    Science.gov (United States)

    Zhao, Yu; Zhou, Yaduan; Mao, Pan; Zhang, Jie

    2017-04-01

    Improved emission inventories combining detailed source information are crucial for better understanding the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport model might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled and revised at plant level based on various data sources and on-site survey. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOX emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3/Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized mean

  1. Development of a high-resolution emission inventory and its evaluation and application through air quality modeling for Jiangsu Province, China

    Science.gov (United States)

    Zhou, Yaduan; Zhao, Yu; Mao, Pan; Zhang, Qiang; Zhang, Jie; Qiu, Liping; Yang, Yang

    2017-01-01

    Improved emission inventories combining detailed source information are crucial for better understanding of the atmospheric chemistry and effectively making emission control policies using air quality simulation, particularly at regional or local scales. With the downscaled inventories directly applied, chemical transport models might not be able to reproduce the authentic evolution of atmospheric pollution processes at small spatial scales. Using the bottom-up approach, a high-resolution emission inventory was developed for Jiangsu China, including SO2, NOx, CO, NH3, volatile organic compounds (VOCs), total suspended particulates (TSP), PM10, PM2.5, black carbon (BC), organic carbon (OC), and CO2. The key parameters relevant to emission estimation for over 6000 industrial sources were investigated, compiled, and revised at plant level based on various data sources and on-site surveys. As a result, the emission fractions of point sources were significantly elevated for most species. The improvement of this provincial inventory was evaluated through comparisons with other inventories at larger spatial scales, using satellite observation and air quality modeling. Compared to the downscaled Multi-resolution Emission Inventory for China (MEIC), the spatial distribution of NOx emissions in our provincial inventory was more consistent with summer tropospheric NO2 VCDs observed from OMI, particularly for the grids with moderate emission levels, implying the improved emission estimation for small and medium industrial plants by this work. Three inventories (national, regional, and provincial by this work) were applied in the Models-3 Community Multi-scale Air Quality (CMAQ) system for southern Jiangsu October 2012, to evaluate the model performances with different emission inputs. The best agreement between available ground observation and simulation was found when the provincial inventory was applied, indicated by the smallest normalized mean bias (NMB) and normalized

  2. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  3. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    Science.gov (United States)

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  4. Silica deactivation of bead VOC catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Libanati, C.; Pereira, C.J. [Research Division, W. R. Grace and Co., Columbia, MD (United States); Ullenius, D.A. [Grace TEC Systems, De Pere, WI (United States)

    1998-01-15

    Catalytic oxidation is a key technology for controlling the emissions of Volatile Organic Compounds (VOCs) from industrial plants. The present paper examines the deactivation by silica of bead VOC catalysts in a flexographic printing application. Post mortem analyses of field-aged catalysts suggest that organosilicon compounds contained in the printing ink diffuse into the catalyst and deposit as silica particles in the micropores. Laboratory activity evaluation of aged catalysts suggests that silica deposition is non-selective and that silica masks the noble metal active site

  5. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation’s site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale “background levels” or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile

  6. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Science.gov (United States)

    2011-01-24

    ... promulgated National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline.... Total gasoline consumption is the total used nationwide, so the emission inventory includes emissions... January 24, 2011 Part II Environmental Protection Agency 40 CFR Parts 9 and 63 National Emission Standards...

  7. 78 FR 7137 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Science.gov (United States)

    2013-01-31

    ... harmful toxic air emissions from these combustion sources. This will improve air quality and protect..., cadmium, chromium, lead, manganese, nickel and selenium) as an alternative to the proposed PM...

  8. VOCs Speciation From Steam Boiler Stacks of Industries Located in Naucalpan

    Science.gov (United States)

    Mejia, G. M.; Tejeda, D. D.; Bremauntz, M. P.; Valdez, A.; Montufar, P. C.; Martinez, M. A.; Sierra, M. J.; Gonzalez, C. A.

    2007-05-01

    Results of VOCs speciation from industrial steam boiler stacks located in Naucalpan are presented and discussed. This municipality is located north of the Metropolitan Zone of the Valley of Mexico (MZVM). Speciation of VOCs is important to generate information about sources of pollution, to update emission inventories, to study the dynamics of pollutants in the atmosphere, and to estimate possible risks of population exposure. This information is valuable for decision making on air pollution control strategies. Samples from 35 steam boilers form industries burning Diesel, LPG, or CNG were taken using the US-EPA Method 18. Selected samples from the use of different fuels were analyzed using gas chromatography and flame ionization detection (GC-FID) according to US-EPA protocol TO-14. The VOCs analyzed included alkanes of 9 carbons or less, alkenes of 7 carbons or less and aromatics (families of benzene). The results show consistency on the VOCs detected on Diesel samples. The main compounds found were 1- Butene+iButylene, m/p-Xylene, Ethane, Propene, Propane, Acetylene, 2Me-1Butene, and Toluene. The average concentrations of these compounds were in the range of 130 to 385 ppbC. The results of LPG samples did not show a definite pattern of VOCs, although light components predominate and, in some samples, Toluene and Xylene. These last components were not expected for industries reporting the use of LPG, perhaps due to the use of a combination of fuels and mistakes in the reports of fuel used at the time of sampling. The analysis of CNG samples show predominance of light VOCs, in the range of 90 to 300 ppbC. As in the case of LPG, some aromatics showed high concentrations in some samples analyzed perhaps due to the use of different fuels in the boiler. The results of this study are the first results of VOCs speciation obtained form exhaust gases from stacks of Mexican industries. The data reported are valuable to analyze emission inventories of VOCs and to better

  9. Radionuclide air emissions report for the Hanford site, Calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.; Diediker, L.P. [Westinghouse Hanford Co., Richland, WA (United States); Jette, S.J.; Rhoads, K.; Soldat, S.K. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  10. Radionuclide air emissions report for the Hanford Site, calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Diediker, L.P.; Johnson, A.R. [Westinghouse Hanford Co., Richland, WA (United States); Rhoads, K.; Klages, D.L.; Soldat, J.K. [Pacific Northwest Lab., Richland, WA (United States); Rokkan, D.J. [Science Applications International Corp., Richland, WA (United States)

    1993-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  11. Air pollutants and toxic emissions of various mileage motorcycles for ECE driving cycles

    Science.gov (United States)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung

    2017-03-01

    Motorcycles were selected to determine their fuel consumption and exhaust emissions following ECE driving cycles. Exhaust constituents including CO2, CO, NOx, total hydrocarbons (THC) and hydrocarbon species (27 paraffins, 9 olefins, 16 aromatics and 15 carbonyls) were investigated for this work. The age of 10- 90% of the selected motorcycles ranged from 2.5 to 12.4 years, and their mileage ranged from 5400 to 39,300 km. CO emission ranged from 1.4 to 6.4 g/km (median value: 2.98 g/km), THC from 0.41 to 1.54 g/km (median value: 0.98 g/km), NOx from 0.16 to 0.28 g/km (median value: 0.21 g/km), CO2 from 58.9 to 62.2 g/km (median value: 60.5 g/km) and fuel consumption from 30.7 to 36.4 km/L (median value: 33.4 km/L), corresponding to the percentage cumulative data from 10 to 90% of the selected motorcycles. Results indicated that the motorcycle exhaust emission and fuel consumption depended on their mileage and ages. An increase in mileage of 1000 km resulted in an increase of 103 mg for CO emission and 14.7 mg for hydrocarbon emission and a reduction of 1.52 mg NOx emission and 0.11 km per liter fuel consumption. For various VOC groups, a mileage increase of 1000 km corresponding to the increased exhaust emission of paraffins was 6.71 mg, olefins 1.90 mg, aromatics 7.04 mg, carbonyls 0.283 mg and 67 VOC species 15.9 mg. Fuel consumption and emissions of CO and hydrocarbon increased in motorcycles over the guaranteed mileage of 15,000 km.

  12. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS

    Directory of Open Access Journals (Sweden)

    A. Koss

    2017-08-01

    Full Text Available VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N and pyrroline (C4H7N, H2S, and a diamondoid (adamantane or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  13. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)

    Science.gov (United States)

    Koss, Abigail; Yuan, Bin; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Veres, Patrick R.; Peischl, Jeff; Eilerman, Scott; Wild, Rob; Brown, Steven S.; Thompson, Chelsea R.; Ryerson, Thomas; Hanisco, Thomas; Wolfe, Glenn M.; St. Clair, Jason M.; Thayer, Mitchell; Keutsch, Frank N.; Murphy, Shane; de Gouw, Joost

    2017-08-01

    VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March-April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.

  14. Energy and air emission implications of a decentralized wastewater system

    Science.gov (United States)

    Shehabi, Arman; Stokes, Jennifer R.; Horvath, Arpad

    2012-06-01

    Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

  15. Emissions of indoor air pollutants from six user scenarios in a model room

    Science.gov (United States)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  16. Heat and PAHs Emissions in Indoor Kitchen Air and Its Impact on Kidney Dysfunctions among Kitchen Workers in Lucknow, North India.

    Science.gov (United States)

    Singh, Amarnath; Kamal, Ritul; Mudiam, Mohana Krishna Reddy; Gupta, Manoj Kumar; Satyanarayana, Gubbala Naga Venkata; Bihari, Vipin; Shukla, Nishi; Khan, Altaf Hussain; Kesavachandran, Chandrasekharan Nair

    2016-01-01

    Indoor air quality and heat exposure have become an important occupational health and safety concern in several workplaces including kitchens of hotels. This study investigated the heat, particulate matter (PM), total volatile organic compounds (TVOCs) and polycyclic aromatic hydrocarbons (PAHs) emissions in indoor air of commercial kitchen and its association with kidney dysfunc