WorldWideScience

Sample records for vnj solar cell

  1. Nanostructured Solar Cells.

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  2. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  3. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  4. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  5. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  6. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  7. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  8. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  9. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  10. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  11. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  12. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  13. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  14. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  15. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  16. Photoelectrochemical Solar Cells.

    Science.gov (United States)

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  17. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  18. Transparent solar cell module

    Science.gov (United States)

    Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

    1979-01-01

    Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

  19. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  20. Optoelectronics of solar cells

    CERN Document Server

    Smestad, Greg P

    2002-01-01

    With concerns about worldwide environmental security, global warming, and climate change due to emissions of carbon dioxide from the burning of fossil fuels, it is desirable to have a wide range of energy technologies in a nation's portfolio. Photovoltaics, or solar cells, are a viable option as a nonpolluting renewable energy source. This text is designed to be an overview of photovoltaic solar cells for those in the fields of optics and optical engineering, as well as those who are interested in energy policy, economics, and the requirements for efficient photo-to-electric energy conversion.

  1. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available stream_source_info Cummings_2009.pdf.txt stream_content_type text/plain stream_size 3362 Content-Encoding UTF-8 stream_name Cummings_2009.pdf.txt Content-Type text/plain; charset=UTF-8 DYE SOLAR CELL RESEARCH Franscious... Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2...

  2. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  3. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  4. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  5. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  7. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    Science.gov (United States)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  8. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  9. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  10. Space solar cells - tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.R. [ISRO Satellite Centre, Bangalore (India). Power Systems Group

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions:geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15 kW power for 15 years mission life in GEO and 5 kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also shows that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future. (author)

  11. Space solar cells. Tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Raja [Power Systems Group, Solar Panels Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions: geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15kW power for 15 years mission life in GEO and 5kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also show that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future.

  12. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  13. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  14. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  15. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  16. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  17. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  18. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  19. Carbon Nanotube Solar Cells

    Science.gov (United States)

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  20. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  1. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  2. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  3. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  4. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  5. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  6. Upconversion in solar cells.

    Science.gov (United States)

    van Sark, Wilfried Gjhm; de Wild, Jessica; Rath, Jatin K; Meijerink, Andries; Schropp, Ruud Ei

    2013-02-15

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells.

  7. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  8. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  9. Progress in polymer solar cell

    Institute of Scientific and Technical Information of China (English)

    LI LiGui; LU GuangHao; YANG XiaoNiu; ZHOU EnLe

    2007-01-01

    This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

  10. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  11. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  12. Fundamentals of thin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)

    1995-08-01

    It is now widely recognized that thin solar cells can present certain advantages for performance and cost. This is particularly the case when light trapping in the semiconductor film is incorporated, as compensation for the diminished single path thickness of the solar cell. In a solar cell thinner than a minority carrier diffusion length, the current collection is of course very easy. More importantly the concentration of an equivalent number of carriers in a thinner volume results in a higher Free Energy, or open circuit voltage. This extra Free Energy may be regarded as due to the concentration factor, just as it would be for photons, electrons, or for any chemical species. The final advantage of a thin solar cell is in the diminished material usage, a factor of considerable importance when we consider the material cost of the high quality semiconductors which we hope to employ.

  13. Solar cell with back side contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  14. Solar cell with back side contacts

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  15. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  16. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  17. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  18. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  19. Plasma Etching Improves Solar Cells

    Science.gov (United States)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  20. Dye Sysentized Solar Cell (Dyssc

    Directory of Open Access Journals (Sweden)

    A. Dileep,

    2015-11-01

    Full Text Available This paper presents a Dye sensitized solar cell (DYSSC, which is called as future generation solar cell. It is a new class of green photovoltaic cell based on photosynthesis principle in nature. DYSSCs are fabricated using two different natural dyes as sensitizers, which extracted from the materials existing in nature and our life, such as flowers, leaves, fruits, traditional Chinese medicines, and beverages. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrystalline morphology permits to harvest a large fraction of sunlight. There are good prospects to produce these cells at lower cost and much better efficiency than conventional semiconductor devices by introducing various chemical and natural dyes. DYSSC are implemented with simple and new technique to overcome the energy crisis and excess cost of semiconductor solar cells.

  1. Advances in Perovskite Solar Cells.

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J; Han, Hongwei; Huang, Jinsong; Cahen, David; Ding, Liming

    2016-07-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  2. Interdigitated back contact solar cells

    Science.gov (United States)

    Lundstrom, M. S.; Schwartz, R. J.

    1980-08-01

    The interdigitated back contact solar cell (IBC cell) was shown to possess a number of advantages for silicon solar cells, which operate at high concentration. A detailed discussion of the factors which need to be considered in the analysis of semiconducting devices which utilize heavily doped regions such as those which are found in solar cells in both the emitter and in the back surface field regions is given. This discussion covers the questions of: how to handle degeneracy, how to compute carrier concentrations in the absence of knowledge of the details of the band structure under heavily doped conditions, and how to reconcile the usual interpretation of heavy doping as a rigid shift of the bands with the band tailing and impurity level conduction models. It also discusses the reasons for the observed discrepancies between various experimental measurements of bandgap narrowing.

  3. Advances in Perovskite Solar Cells

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  4. Compact Concentrators for Solar Cells

    Science.gov (United States)

    Whang, V. S.

    1984-01-01

    Each cell in array has own concentrator. A Cassegrain Reflector combination of paraboloidal and hyperboloidar mirrors-used with conical reflector at each element of array. Three components direct light to small solar cell. No cooling fins, fans, pumps, or heat pipes needed, not even in vacuum.

  5. Polymer tandem solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin

    2007-01-01

    The global demand for energy is expanding continually. Therefore, realization of green power sources are needed since combustion of fossil fuels will have serious consequences for the climate on the Earth. With a photovoltaic device, the solar light can be converted into electricity which is the mos

  6. Development of concentrator solar cells

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  7. Solar cell is not absolutely ecologically sound

    Energy Technology Data Exchange (ETDEWEB)

    Van Calmthout, M.

    1988-11-01

    The University of Utrecht, Netherlands, inventorized the social costs of a large-scale solar cell industry in particular with regard to the environmental impacts. During production and dismantlement of photovoltaic systems hazardous wastes and dangerous situations can be released respectively can occur. The most important results are discussed. Four solar cell technologies are highlighted: the crystalline silicon solar cell, the amorphous silicon solar cell, the CdS/CuInSe/sub 2/ solar cell, and the GaAs solar cell. 1 fig., 1 tab.

  8. Photon upconversion for thin film solar cells

    NARCIS (Netherlands)

    de Wild, J.

    2012-01-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part

  9. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  10. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; V. I. Kuznetsov

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  11. Porphyrins and phthalocyanines in solar photovoltaic cells

    OpenAIRE

    Walter, Michael G.; Rudine, Alexander B.; Wamser, Carl C.

    2010-01-01

    This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, and dye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.

  12. Current-Enhanced Quantum Well Solar Cells

    Institute of Scientific and Technical Information of China (English)

    LOU Chao-Gang; SUN Qiang; XU Jun; ZHANG Xiao-Bing; LEI Wei; WANG Bao-Ping; CHEN Wen-Jun; QIAO Zai-Xiang

    2006-01-01

    We present the experimental results that demonstrate the enhancement of the short-circuit current of quantum well solar cells. The spectral response shows that the introduction of quantum wells extends the absorption spectrum of solar cells. The current densities under different truncated spectrums significantly increase, showing that quantum well solar cells are suitable to be the middle cells of GaInP/GaAs/Ge triple-junction solar cells to increase their overall conversion efficiency.

  13. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  14. PHOTOELECTROCHEMICAL SOLAR CELLS BASED ON DYE ...

    African Journals Online (AJOL)

    potential application in liquid junction photovoltaic cells. ... negative than the semiconductor conduction band potential to enable ... carbon nanotubes could help to make nanoparticle- based solar ..... nanocrystallinc solar cells: synthesis and.

  15. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  16. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  17. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  18. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  19. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  20. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers...

  1. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...

  2. Silicon solar cells: Physical metallurgy principles

    Science.gov (United States)

    Mauk, Michael G.

    2003-05-01

    This article reviews the physical metallurgy aspects of silicon solar cells. The production of silicon solar cells relies on principles of thermochemical extractive metallurgy, phase equilibria, solidification, and kinetics. The issues related to these processes and their impact on solar cell performance and cost are discussed.

  3. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  4. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  5. Asymmetric tandem organic solar cells

    Science.gov (United States)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells

  6. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  7. Towards stable silicon nanoarray hybrid solar cells.

    Science.gov (United States)

    He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H

    2014-01-16

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  8. Pin solar cells made of amorphous silicon

    Science.gov (United States)

    Plaettner, R. D.; Kruehler, W. W.

    Investigations leading to solar cells with a structure SnO2-pin and an efficiency up to 9.8% are reviewed. The production of large-surface metal/pin/transparent conductive oxide (TCO)-solar cells is discussed. A two-chamber reactor, grid structure and tinning of cells, and an a-Si-module are described. The production of glass/TCO/pin/metal-solar cells and a-SiGe:H-compounds is outlined. Measurements on solar cells and diodes including the efficiency of a-Si:H-solar cells, spectral sensitivity, diffusion lengths, field effect measurements, and modifications of solar cells (space-charge limited currents, reduction of solar cells aging) are treated.

  9. ELECTRON BOMBARDMENT OF SILICON SOLAR CELLS,

    Science.gov (United States)

    DAMAGE, ELECTRON IRRADIATION, SOLAR CELLS , SILICON, PHOTOELECTRIC CELLS(SEMICONDUCTOR), QUARTZ, GLASS, SHIELDING, CRYSTAL DEFECTS, HEAT TREATMENT, ARTIFICIAL SATELLITES, SPACECRAFT, GRAPHICS, GRAPHICS.

  10. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  11. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  12. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    the morphology of the active layer of the solar cells when produced with water based inks using R2R coating. Using a broad range of scattering and imaging techniques, cells coated with water based inks were investigated, and compared to their spin coated counterpart. Two challenges to be addressed were small...... cells. Ptychography offers desirable properties such as potentially high resolution, quantitative contrast and possibility for tomography. Both these X-ray imaging techniques were used to measure the samples with high spatial and chemical resolution. In addition, these experiments explored and reviewed...

  13. Automated solar-cell-array assembly machine

    Science.gov (United States)

    Costogue, E. N.; Mueller, R. L.; Person, J. K.; Yasui, R. K.

    1978-01-01

    Continuous-feeding machine automatically bonds solar cells to printed-circuit substrate. In completed machine, cells move to test station where electrical characteristics could be checked. If performance of cell is below specifications, that cell is marked and removed. All machine functions are synchronized by electronics located within unit. It may help to lower costs in future solar-cell production.

  14. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  15. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    oxygen since their EPR and conductivity data indicated the presence of unpaired charges. On the other hand, intramolecular CT complexes have recently...been reported for polythiophene [2], where weak CT occurs from a polymer unit cell to the covalently bonded acceptor molecule. Nevertheless, it was...intracavity optical doubler (532 nm), diode lasers (670, 810 nm) and light emitting diodes (490, 630 nm). Measurements were conducted for pump intensity 0.1

  16. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    OpenAIRE

    Phuyal, Dibya

    2012-01-01

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenera...

  17. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  18. Semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.J. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials Science and Engineering)

    1991-01-01

    This review covers the historical background of the solar cell development, the physical principles of photovoltaic energy conversion, technology of solar cell devices and the structural and physical properties of lattice defects in semiconductors. Single crystal and polycrystalline silicon, single crystal and epitaxial gallium arsenide, polycrystalline thin films and amorphous thin films are discussed in detail. Semiconductors have emerged as the most promising group of materials which can convert sunlight directly into electrical energy. They utilize the fundamental physical process that a photon that penetrates into the semiconductor and is absorbed can generate electron-hole pairs. Because of their opposite charges they can be separated by an internal electrical field and collected at two contacts thus giving rise to a voltage and photocurrent if the two contacts are connected externally. In semiconductors internal electric fields occur in connection with space charges at junctions and a variety of technological concepts are used to produce a built-in voltage. The most widely used device principle is the operation of a solar cell as a diode or p-n junction. Alternative concepts are heterojunction devices where the materials on either side of the junction are different semiconductors. (author).

  19. Perovskite solar cells: Stability lies at interfaces

    Science.gov (United States)

    Lira-Cantú, Mónica

    2017-07-01

    Perovskite solar cells are developing fast but their lifetimes must be extended. Now, large-area printed perovskite solar modules have been shown to be stable for more than 10,000 hours under continuous illumination.

  20. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  1. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  2. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... counterparts, due to the promising advantages, such as transparency, flexibility, ease of processing etc. But their efficiencies cannot be compared to the inorganic ones. Boosting the efficiency of OSCs by nanopatterning has thus been puzzling many researchers within the past years. Therefore various methods...... technique. Resist imprinted Al dimples drag the main focus showing increase in absorption and efficiency enhancement in poly(3-hexylthiophene-2,5-diyl) (P3HT) and Phenyl-C61-butyric acid methyl (PCBM) BHJ devices. Not limited to this, nanostructures by imprinting the organic layer of P3HT:PCBM and imprinted...

  3. Solar Energy Cell with Rare Earth Film

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Yang Tao; Zhou Yao; Zhou Meng; Fu Xiliang; Fu Li

    2004-01-01

    The characteristic of the solar energy cell with the rare earth film according to theory of molecular structure was introduced.When sunlight shines, the molecules of the rare earth film can absorb energy of the photon and jump to the excited state from the basic state, and play a role in storing solar energy.When sunlight do not shine, the electron of the excited state returns to the basic state, the rare earth film can automatically give out light and shine to surface of the solar cell, which can make solar cell continuously generate electric current.The rare earth film can absorb direct,scattering sunlight, and increase density of solar energy to reach surface of the solar cell, and play focusing function.The rare earth film can bear 350 ~ 500 ℃, which make the solar cell be able to utilize the focusing function system.Because after luminescence of the rare earth film, it can release again the absorbed solar energy through 1 ~ 8 h, and play a role in storing solar energy; The solar cell with the rare-earth film can generate electricity during night and cloudy days, and remarkably increase efficiency of the solar cell.

  4. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  5. Understanding the photostability of perovskite solar cell

    Science.gov (United States)

    Joshi, Pranav H.

    Global climate change and increasing energy demands have led to a greater focus on cheaper photovoltaic energy solutions. Perovskite solar cells and organic solar cells have emerged as promising technologies for alternative cheaper photovoltaics. Perovskite solar cells have shown unprecedentedly rapid improvement in power conversion efficiency, from 3% in 2009 to more than 21% today. High absorption coefficient, long diffusion lengths, low exciton binding energy, low defect density and easy of fabrication has made perovskites near ideal material for economical and efficient photovoltaics. However, stability of perovskite and organic solar cells, especially photostability is still not well understood. In this work, we study the photostability of organic solar cells and of perovskite solar cells. (Abstract shortened by ProQuest.).

  6. Bypass diode for a solar cell

    Science.gov (United States)

    Rim, Seung Bum; Kim, Taeseok; Smith, David D.; Cousins, Peter J.

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  7. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  8. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  9. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  10. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Liu, Wei; Kovalgin, Alexey Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  11. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.

  12. Nanostructured organic and hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Dunbar, Ricky B.; Hesse, Holger C.; Wiedemann, Wolfgang; Schmidt-Mende, Lukas [Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University (LMU) Munich, Amalienstr. 54, 80799 Munich (Germany)

    2011-04-26

    This progress report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  14. Very High Efficiency Solar Cell Modules

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  15. Organic ternary solar cells: a review.

    Science.gov (United States)

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  16. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  17. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Kovalgin, Alexey Y.; Werf, van der Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  18. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  19. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    Science.gov (United States)

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  20. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  1. Infrared-Controlled Welding of Solar Cells

    Science.gov (United States)

    Paulson, R.; Finnell, S. E.; Decker, H. J.; Hodor, J. R.

    1982-01-01

    Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

  2. Perovskite solar cells: an emerging photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Nam-Gyu Park

    2015-03-01

    Full Text Available Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions. However, the liquid-based perovskite solar cell receives little attention because of its stability issues, including instant dissolution of the perovskite in a liquid electrolyte. A long-term, stable, and high efficiency (∼10% perovskite solar cell was developed in 2012 by substituting the solid hole conductor with a liquid electrolyte. Efficiencies have quickly risen to 18% in just 2 years. Since PCE values over 20% are realistically anticipated with the use of cheap organometal halide perovskite materials, perovskite solar cells are a promising photovoltaic technology. In this review, the opto-electronic properties of perovskite materials and recent progresses in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

  3. Si concentrator solar cell development. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  4. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  5. Nanowire-based All Oxide Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  6. Methodologies for high efficiency perovskite solar cells.

    Science.gov (United States)

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  7. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  8. Methodologies for high efficiency perovskite solar cells

    Science.gov (United States)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  9. Coating Processes Boost Performance of Solar Cells

    Science.gov (United States)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  10. Dye-sensitized Solar Cells for Solar Energy Harvesting

    Science.gov (United States)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  11. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  12. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  13. Planar multijunction high voltage solar cells

    Science.gov (United States)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  14. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  15. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Menna, P.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-06-10

    We used a 10-kW, high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. We found that all of these HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. We also used the HFSF to crystallize a-Si:H thin films on glass, to texture crystalline silicon surfaces, to deposit gold contacts on silicon wafers, and to getter impurities from metallurgical grade silicon. HFSF processing offers several advantages over conventional furnace processing: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. We conclude that HFSF processing of silicon solar cells has the potential to improve cell efficiency, reduce cell fabrication costs, and also be an environmentally friendly manufacturing method. We have also demonstrated that the HFSF can be used to achieve solid-phase crystallization of a-Si:H at very high speed

  16. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  17. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  18. Semiconductor quantum dot-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jianjun Tian

    2013-10-01

    Full Text Available Semiconductor quantum dots (QDs have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1 the effect of quantum confinement on QDSCs, 2 the multiple exciton generation (MEG of QDs, 3 fabrication methods of QDs, and 4 nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  19. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  20. Nanocomposite enables sensitized solar cell

    Science.gov (United States)

    Phuyal, Dibya D.

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenerate the dye. On the photoanode is a high band-gap semiconducting material, primarily of a nanostructure morphology of titanium (II) dioxide (TiO2), dye molecules whose molar absorption is typically in the visible spectrum, are adsorbed onto the surface of TiO 2. To improve the current DSSCs, there are many parameters that can be investigated. In a conventional DSSC, a thick semiconducting layer such as the nanoparticle TiO2 layer induces charge separation efficiently while concurrently increasing the charge transport distance, leading the cell to suffer from more charge recombination and deterioration in charge collection efficiency. To improve on this limitation, TiO2 nanowires (NW) and nanotubes (NT) are explored to replace the nanoparticle photoanode. One-dimensional nanostructures are known for the excellent electron transport properties as well as maintaining a relatively high surface area. Hence one of the focuses of this thesis explores at using different morphologies and composition of TiO2 nanostructures to enhance electron collection efficiency. Another challenge in conventional DSSCs is the limit in light absorption of solar irradiation. Dyes are limited to absorption only in the visible range, and have a low molar absorption coefficient in the near infrared (NIR). Tuning dyes is extremely complicated and may have more disadvantages than simply by extending light harvesting. Therefore our strategy is to incorporate quantum dots to replace the dye, as well as prepare a

  1. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  2. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  3. Development of Nanoparticle Sensitized Solar Cells

    OpenAIRE

    2013-01-01

    In this thesis, I have been working with the development of nanoparticle sensitized solar cells. In the subarea of quantum dot sensitized solar cells (QDSCs), I have investigated type-II quantum dots (QDs), quantum rods (QRs) and alloy QDs, and developed novel redox couples as electrolytes. I have also proposed upconversion nanoparticles as energy relay materials for dye-sensitized solar cells (DSCs). Colloidal ZnSe/CdS type-II QDs were applied for QDSCs for the first time. The interesting fe...

  4. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  5. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Lab., Golden, CO (United States)

    1994-12-31

    The authors used a 10-kW high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. They found that all of the HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. HFSF processing offers several advantages that may contribute to improved solar cell efficiency: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. The HFSF has also been successfully used to texture the surface of silicon wafers and to crystallize a-Si:H thin films on glass.

  6. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  7. Optical models for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  8. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  9. MoSe2 / Polyaniline Solar Cells

    Directory of Open Access Journals (Sweden)

    H.S. Patel

    2011-01-01

    Full Text Available Solar cells have been investigated since long for harnessing the solar energy. During this decade, a new direction has come up where in the polymers have been used in the fabrication of solar cells. Polyaniline is one of the polymers which has shown potential for its applications in heterostructure solar cells. This material is being used along with the semiconductors like InSe, TiO2, Si etc. to form the photosensitive interface. In this direction, we report our investigations on the use of Molybdenum diselenide (MoSe2 as photosensitive semiconducting material in MoSe2 / polyaniline solar cells. In this paper, the preparation of MoSe2 / polyaniline solar cells has been reported. Also, the photovoltage → photocurrent characteristics of this structure have been discussed in detail in this paper. The variation of different parameters of MoSe2 / polyaniline solar cells (like open circuit voltage, short circuit current, photoconversion efficiency and fill factor with the intensity of incident illuminations has been reported in this paper. In present case, the photocurrent density was found to be around 250 µA/cm2 with the photovoltage around 8.5 mV (which is low the photoconversion efficiency was found to be around 0.7 % along with the fill factor around 0.33. The efforts have been made to explain the low values of the photoconversion efficiency.

  10. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available to chemical analysis, techniques such as impedance spectroscopy (Nyquist and Bode plots), cyclic voltammetry and I-V measurements by means of a PC-interfaced solar simulator are used to determine the stability of the cells. Further work includes research...

  11. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  12. High Efficiency, Deployable Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrathin, lightweight, flexible, and easily deployable solar cell (SC) capable of specific power greater than 1kW/kg are at an early stage of development for...

  13. Heavily doped polysilicon-contact solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.; Arienzo, M.; Iles, P. A.

    1985-01-01

    The first use of a (silicon)/heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction or back-surface-field (BSF) structure of silicon solar cells is reported. Compared with BSF and back-ohmic-contact (BOC) control samples, the polysilicon-back solar cells show improvements in red spectral response (RSR) and open-circuit voltage. Measurement reveals that a decrease in effective surface recombination velocity S is responsible for this improvement. Decreased S results for n-type (Si:As) polysilicon, consistent with past findings for bipolar transistors, and for p-type (Si:B) polysilicon, reported here for the first time. Though the present polysilicon-back solar cells are far from optimal, the results suggest a new class of designs for high efficiency silicon solar cells. Detailed technical reasons are advanced to support this view.

  14. Semitransparent Fully Air Processed Perovskite Solar Cells.

    Science.gov (United States)

    Bu, Lingling; Liu, Zonghao; Zhang, Meng; Li, Wenhui; Zhu, Aili; Cai, Fensha; Zhao, Zhixin; Zhou, Yinhua

    2015-08-19

    Semitransparent solar cells are highly attractive for application as power-generating windows. In this work, we present semitransparent perovskite solar cells that employ conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) film as the transparent counter electrode. The PSS electrode is prepared by transfer lamination technique using plastic wrap as the transfer medium. The use of the transfer lamination technique avoids the damage of the CH3NH3PbI3 perovskite film by direct contact of PSS aqueous solution. The semitransparent perovskite solar cells yield a power conversion efficiency of 10.1% at an area of about 0.06 cm(2) and 2.9% at an area of 1 cm(2). The device structure and the fabrication technique provide a facile way to produce semitransparent perovskite solar cells.

  15. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  16. Multijunction Ultralight Solar Cells and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  17. A space solar cell bonding robot

    Institute of Scientific and Technical Information of China (English)

    FU Zhuang; ZHAO Yan-zheng; LIU Ren-qiang; DONG Zhi

    2006-01-01

    A space solar cell bonding robot system which consists of a three-axis Cartesian coordinate's robot,coating device,bonding device,orientation plate,and control subsystem was studied.A method,which can control the thickness of adhesive layer on the solar cell,was put forward and the mechanism was designed.Another method which can achieve the auto-bonding between thin coverglass and the space solar cell was studied and realized.It produced no air bubble in the adhesives layer under the condition of no vacuum environment,and ensures the assembly dislocation ≤0.1 mm.Compared to the conventional method,it has advantages such as no fragment exists,and no adhesives outflow onto the cover-glass and solar cells.

  18. The perils of solar cell efficiency measurements

    Science.gov (United States)

    Snaith, Henry J.

    2012-06-01

    Ignorance and negligence are frequently causing solar cells to be mischaracterized, and invalid efficiency results have been reported in a number of journals. This problem can be greatly alleviated by employing a few simple precautions and guidelines.

  19. Solar cell efficiency tables (version 50)

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin A. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia; Hishikawa, Yoshihiro [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Ibaraki Tsukuba 305-8568 Japan; Warta, Wilhelm [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Dunlop, Ewan D. [European Commission-Joint Research Centre, Directorate C-Energy, Transport and Climate, Via E. Fermi 2749 Ispra IT-21027 VA Italy; Levi, Dean H. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Hohl-Ebinger, Jochen [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Ho-Baillie, Anita W. H. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia

    2017-06-21

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2017 are reviewed.

  20. Solar-cell testing and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakos, E.K.; Collis, W.J.

    1982-04-01

    A two year study of the degradation effects in AlGaAs/GaAs solar cells is described. Illuminated current-voltage measurements were made during temperature and humidity cycling and time dependent degradation measurements were recorded.

  1. Roll-to-roll fabrication of polymer solar cells

    National Research Council Canada - National Science Library

    Søndergaard, Roar; Hösel, Markus; Angmo, Dechan; Larsen-Olsen, Thue T; Krebs, Frederik C

    2012-01-01

    .... Solution processing, low cost, low energy budget, flexible solar cells, are keywords associated with organic solar cells, and through several decades the driving force for research within the field of polymer solar cells has been the huge potential of the technology to enable high throughput production of cheap solar cells. The evolution started with sm...

  2. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  3. Organic Based Solar Cells with Morphology Control

    OpenAIRE

    Andersen, Thomas Rieks; Bundgaard, Eva; Jørgensen, Mikkel

    2013-01-01

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morpholog...

  4. Strategies for Optimizing Organic Solar Cells

    OpenAIRE

    Wynands, David

    2011-01-01

    This work investigates organic solar cells made of small molecules. Using the material system α,ω-bis(dicyanovinylene)-sexithiophene (DCV6T) - C60 as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (Tsub ) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown b...

  5. Efficiency Enhancement in Plasmonic IBC Solar Cells

    OpenAIRE

    Christian Chaverri-Ramos; J. Ayúcar; L. Bellières; Guillermo Sánchez Plaza; James Connolly

    2012-01-01

    Silicon solar cells dominate photovoltaics but suffer from poor interaction with light. This work reports on progress regarding both spectral conversion and improved light interaction with the LIMA design [1]. This combines an efficient interdigitated back-contact (IBC) solar cell [2] with a silicon quantum dot (Si-QD) [3] to optimize the spectral distribution of the incident spectrum, and finally a front-side plasmon layer to optimize light interaction. Reflectivity after thickness and proce...

  6. Achieving High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  7. Perovskite solar cells: from materials to devices.

    Science.gov (United States)

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

  8. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  9. Transparent superstrate terrestrial solar cell module

    Science.gov (United States)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  10. Optimization and performance of Space Station Freedom solar cells

    Science.gov (United States)

    Khemthong, S.; Hansen, N.; Bower, M.

    1991-01-01

    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.

  11. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average reflecta......We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  12. Nanoparticle Solar Cell Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  13. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  14. Automated solar cell assembly team process research

    Science.gov (United States)

    Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.

    1994-06-01

    This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.

  15. Influence of radiation on the properties of solar cells

    OpenAIRE

    Zdravković Miloš R.; Vasić Aleksandra I.; Radosavljević Radovan Lj.; Vujisić Miloš Lj.; Osmokrović Predrag V.

    2011-01-01

    The wide substitution of conventional types of energy by solar energy lies in the rate of developing solar cell technology. Silicon is still the mostly used element for solar cell production, so efforts are directed to the improvement of physical properties of silicon structures. There are several trends in the development of solar cells, but mainly two directions are indicated: the improvement of the conventional solar cell characteristics based on semiconductor materials, and explorin...

  16. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  17. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (VOC) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of VOC to discuss the difference in the primary loss mechanism of VOC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of VOC in both solar cells are further discussed on the basis of the experimental data.

  18. Microbial solar cells: applying photosynthetic and electrochemically active organisms

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.J.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    Microbial solar cells (MSCs) are recently developed technologies that utilize solar energy to produce electricity or chemicals. MSCs use photoautotrophic microorganisms or higher plants to harvest solar energy, and use electrochemically active microorganisms in the bioelectrochemical system to gener

  19. Plastic Schottky-barrier solar cells

    Science.gov (United States)

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  20. Solar Cell Calibration and Measurement Techniques

    Science.gov (United States)

    Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave

    2004-01-01

    The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.

  1. Semi-transparent polymer solar cells

    Science.gov (United States)

    Romero-Gómez, Pablo; Pastorelli, Francesco; Mantilla-Pérez, Paola; Mariano, Marina; Martínez-Otero, Alberto; Elias, Xavier; Betancur, Rafael; Martorell, Jordi

    2015-01-01

    Over the last three decades, progress in the organic photovoltaic field has resulted in some device features which make organic cells applicable in electricity generation configurations where the standard silicon-based technology is not suitable, for instance, when a semi-transparent photovoltaic panel is needed. When the thin film solar cell performance is evaluated in terms of the device's visible transparency and power conversion efficiency, organic solar cells offer the most promising solution. During the last three years, research in the field has consolidated several approaches for the fabrication of high performance semi-transparent organic solar cells. We have grouped these approaches under three categories: devices where the absorber layer includes near-infrared absorption polymers, devices incorporating one-dimensional photonic crystals, and devices with a metal cavity light trapping configuration. We herein review these approaches.

  2. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  3. Organic solar cells fundamentals, devices, and upscaling

    CERN Document Server

    Rand, Barry P

    2014-01-01

    Solution-Processed DonorsB. Burkhart, B. C. ThompsonSmall-Molecule and Vapor-Deposited Organic Photovoltaics R. R. Lunt, R. J. HolmesAcceptor Materials for Solution-Processed Solar Cells Y. HeInterfacial Layers R. Po, C. Carbonera, A. BernardiElectrodes in Organic Photovoltaic Cells S. Yoo, J.-Y. Lee, H. Kim, J. LeeTandem and Multi-Junction Organic Solar Cells J. Gilot, R. A. J. JanssenBulk Heterojunction Morphology Control and Characterization T. Wang, D. G. LidzeyOptical Modeling and Light Management

  4. Microscopic optoelectronic defectoscopy of solar cells

    Directory of Open Access Journals (Sweden)

    Dallaeva D.

    2013-05-01

    Full Text Available Scanning probe microscopes are powerful tool for micro- or nanoscale diagnostics of defects in crystalline silicon solar cells. Solar cell is a large p-n junction semiconductor device. Its quality is strongly damaged by the presence of defects. If the cell works under low reverse-biased voltage, defects emit a light in visible range. The suggested method combines three different measurements: electric noise measurement, local topography and near-field optical beam induced current and thus provides more complex information. To prove its feasibility, we have selected one defect (truncated pyramid in the sample, which emitted light under low reverse-biased voltage.

  5. Solar cells by polyacetylene films

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, E.; Ali, N.; Grigoryan, G. [State Engineering University of Armenia, Yerevan (Armenia)

    2004-07-01

    One of the perspective methods of utilization of organic conductors for conversion of solar energy into electrical is using organic semiconductor films (OSE), which are organic semiconductors on the base of (CH)x. In comparison with traditional photoconvertors (on the base of Si, Ge) this method has generated considerable interest from the point of view of potentially low -cost solar energy conversion, and the technology of production is relatively simple. The change of the polyacetylene film conductivity is conditioned by changes of the electron and hole concentrations, also by their mobility. In this connection their relative influence on the value of the film photoconductivity can be very different. (orig.)

  6. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    2005-01-01

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  7. Inexpensive Antireflection Coating for Solar Cells

    Science.gov (United States)

    Tracy, C. E.; Kern, W.; Vibronek, R. D.

    1982-01-01

    Continuous method for applying antireflection coating to solar cells increases efficiency of devices by preventing energy from being reflected away, but adds little to manufacturing cost. Method consists of spraying solution on cells or glass collector plates, drying sprayed layer, and curing it. Solution is formulated to spread evenly over surfaces.

  8. Neutral Color Semitransparent Microstructured Perovskite Solar Cells

    KAUST Repository

    Eperon, Giles E.

    2014-01-28

    Neutral-colored semitransparent solar cells are commercially desired to integrate solar cells into the windows and cladding of buildings and automotive applications. Here, we report the use of morphological control of perovskite thin films to form semitransparent planar heterojunction solar cells with neutral color and comparatively high efficiencies. We take advantage of spontaneous dewetting to create microstructured arrays of perovskite "islands", on a length-scale small enough to appear continuous to the eye yet large enough to enable unattenuated transmission of light between the islands. The islands are thick enough to absorb most visible light, and the combination of completely absorbing and completely transparent regions results in neutral transmission of light. Using these films, we fabricate thin-film solar cells with respectable power conversion efficiencies. Remarkably, we find that such discontinuous films still have good rectification behavior and relatively high open-circuit voltages due to the inherent rectification between the n- and p-type charge collection layers. Furthermore, we demonstrate the ease of "color-tinting" such microstructured perovksite solar cells with no reduction in performance, by incorporation of a dye within the hole transport medium. © 2013 American Chemical Society.

  9. CZTSSe thin film solar cells: Surface treatments

    Science.gov (United States)

    Joglekar, Chinmay Sunil

    Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques. Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the thickness of sintered CZTSSe film. The etching treatment creates recombination centers which lead to poor device performance. Various after treatments were used to improve the performance of the devices. It was observed that the performance of the solar cell devices could not be improved by any of the after treatment steps. Other surface treatment processes are explored including KCN etching and gaseous H2S treatments. Hybrid solar cells which included use of CIGS nanoparticles at the interface between CZTSSe and CdS are also explored.

  10. Fruit based Dye Sensitized Solar Cells

    Science.gov (United States)

    Ung, M. C.; Sipaut, C. S.; Dayou, J.; Liow, K. S.; Kulip, J.; Mansa, R. F.

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) was first discovered in 1991 by O’regan and Gratzel. This new type of solar cell was reported to have lower production cost with efficiency as high as 12% which is comparable to conventional silicon solar cell. Initially, it uses ruthenium dye as light sensitizer for the operation. However, DSSC with ruthenium dyes are facing environment friendly issues due to the toxic chemicals and costly purification in processing ruthenium dye. Regardless of the poor performance in DSSC, natural dyes which are easy to prepare, cheap and environmental friendly still appear to be an alternative as dye sensitizer. In this study, dye sensitized solar cells (DSSCs) were fabricated using anthocyanin source dyes extracted from several local fruits. All the extracts absorb a wide range of the visible light and ultraviolet spectrum. Therefore, all of the natural dyes show light absorption properties which is important for a dye sensitizer. A DSSC is comprised of conductive substrate, nanoporous semiconductor TiO2 layer, dye sensitizer, electrolyte with redox couple and a counter electrode with catalyst. In this study, the effect of different light source and different counter electrode are been investigated. However, it is vital to know that further research need to do more on the locally Borneo sourced dyes to evaluate and enhance their performance in Dye Sensitized Solar Cell.

  11. Light-trapping in perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qing Guo, E-mail: duqi0001@e.ntu.edu.sg [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Institute of High Performance Computing, A* STAR, Singapore, 138632 (Singapore); Shen, Guansheng [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876 (China); John, Sajeev [Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7 (Canada); Department of Physics, Soochow University, Suzhou (China)

    2016-06-15

    We numerically demonstrate enhanced light harvesting efficiency in both CH{sub 3}NH{sub 3}PbI{sub 3} and CH(NH{sub 2}){sub 2}PbI{sub 3}-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm{sup 2}, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm{sup 2}) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH{sub 2}){sub 2}PbI{sub 3} based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm{sup 2}, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH{sub 2}){sub 2}PbI{sub 3} based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  12. Light-trapping in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Qing Guo Du

    2016-06-01

    Full Text Available We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH22PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2 and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH22PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH22PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  13. Quantum Dot Solar Cell Fabrication Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; Luther, Joseph M.; Beard, Matthew C.

    2017-01-10

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. We include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solar cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.

  14. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  15. Photon upconversion for thin film solar cells

    Science.gov (United States)

    de Wild, J.

    2012-09-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part that cannot be absorbed by the solar cells, because the photon energy is too low. This conversion of light is done by so called upconversion, which means that lower energy photons are converted into higher energy photons that can be absorbed by the solar cell. The upconverters used in this thesis are those based on lanthanide ions doped in crystalline hosts. Lanthanide ions have very specific absorption and emission lines, which means that by choosing an appropriate ion one can convert any arbitrary wavelength. One of the most important aspects when one wants to apply upconverters onto solar cells is the light intensity necessary for efficient conversion. Because the upconversion process requires two photons to make a new, higher energy photon, the conversion process is non-linearly dependent on the light intensity. This is the main limitation for practical applications. Therefore, next to applying upconverters onto solar cells also more fundamental questions are addressed in this thesis, for instance, the question what determines efficient conversion. At first the upconverter materials in different hosts are characterized and investigated. The host material influences non-radiative decays, the absorption strength, the lifetime and the energy transfer rate between the lanthanide ions. By investigating two upconverter hosts with small differences (α and β-NaYF4 doped with Er3+ and Yb3+), we have tried to investigate the origin of the difference in upconversion efficiency. For this, emission and absorption spectra are measured under the same conditions and concentrations of the lanthanide ions. Also the absorption strength on the upconverter efficiency is investigated

  16. Mechanically stacked concentrator tandem solar cells

    Science.gov (United States)

    Andreev, V. M.; Rumyantsev, V. D.; Karlina, L. B.; Kazantsev, A. B.; Khvostikov, V. P.; Shvarts, M. Z.; Sorokina, S. V.

    1995-01-01

    Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.

  17. Quantum-Tuned Multijunction Solar Cells

    Science.gov (United States)

    Koleilat, Ghada I.

    Multijunction solar cells made from a combination of CQDs of differing sizes and thus bandgaps are a promising means by which to increase the energy harvested from the Sun's broad spectrum. In this dissertation, we first report the systematic engineering of 1.6 eV PbS CQD solar cells, optimal as the front cell responsible for visible wavelength harvesting in tandem photovoltaics. We rationally optimize each of the device's collecting electrodes---the heterointerface with electron accepting TiO2 and the deep-work-function hole-collecting MoO3 for ohmic contact---for maximum efficiency. Room-temperature processing enables flexible substrates, and permits tandem solar cells that integrate a small-bandgap back cell atop a low thermal-budget larger-bandgap front cell. We report an electrode strategy that enables a depleted heterojunction CQD PV device to be fabricated entirely at room temperature. We develop a two-layer donor-supply electrode (DSE) in which a highly doped, shallow work function layer supplies a high density of free electrons to an ultrathin TiO2 layer via charge-transfer doping. Using the DSE we build all-room-temperature-processed small-bandgap (1 eV) colloidal quantum dot solar cells suitable for use as the back junction in tandem solar cells. We further report in this work the first efficient CQD tandem solar cells. We use a graded recombination layer (GRL) to provide a progression of work functions from the hole-accepting electrode in the bottom cell to the electron-accepting electrode in the top cell. The recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We conclude our dissertation by presenting the generalized conditions for design of efficient graded recombination layer solar devices. We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the

  18. Perovskite Solar Cells: Potentials, Challenges, and Opportunities

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Ahmed

    2015-01-01

    Full Text Available Heralded as a major scientific breakthrough of 2013, organic/inorganic lead halide perovskite solar cells have ushered in a new era of renewed efforts at increasing the efficiency and lowering the cost of solar energy. As a potential game changer in the mix of technologies for alternate energy, it has emerged from a modest beginning in 2012 to efficiencies being claimed at 20.1% in a span of just two years. This remarkable progress, encouraging at one end, also points to the possibility that the potential may still be far from being fully realized. With greater insight into the photophysics involved and optimization of materials and methods, this technology stands to match or even exceed the efficiencies for single crystal silicon solar cells. With thin film solution processability, applicability to flexible substrates, and being free of liquid electrolyte, this technology combines the benefits of Dye Sensitized Solar Cells (DSSCs, Organic Photovoltaics (OPVs, and thin film solar cells. In this review we present a brief historic perspective to this development, take a cognizance of the current state of the art, and highlight challenges and the opportunities.

  19. Hybrid solar cell on a carbon fiber

    Science.gov (United States)

    Grynko, Dmytro A.; Fedoryak, Alexander N.; Smertenko, Petro S.; Dimitriev, Oleg P.; Ogurtsov, Nikolay A.; Pud, Alexander A.

    2016-05-01

    In this work, a method to assemble nanoscale hybrid solar cells in the form of a brush of radially oriented CdS nanowire crystals around a single carbon fiber is demonstrated for the first time. A solar cell was assembled on a carbon fiber with a diameter of ~5-10 μm which served as a core electrode; inorganic CdS nanowire crystals and organic dye or polymer layers were successively deposited on the carbon fiber as active components resulting in a core-shell photovoltaic structure. Polymer, dye-sensitized, and inverted solar cells have been prepared and compared with their analogues made on the flat indium-tin oxide electrode.

  20. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  1. Towards upconversion for amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    de Wild, J.; Rath, J.K.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Meijerink, A. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Condensed Matter and Interfaces, P.O. Box 80000, 3508 TA Utrecht (Netherlands); van Sark, W.G.J.H.M. [Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-11-15

    Upconversion of subbandgap light of thin film single junction amorphous silicon solar cells may enhance their performance in the near infrared (NIR). In this paper we report on the application of the NIR-vis upconverter {beta}-NaYF{sub 4}:Yb{sup 3+}(18%) Er{sup 3+}(2%) at the back of an amorphous silicon solar cell in combination with a white back reflector and its response to infrared irradiation. Current-voltage measurements and spectral response measurements were done on experimental solar cells. An enhancement of 10 {mu}A/cm{sup 2} was measured under illumination with a 980 nm diode laser (10 mW). A part of this was due to defect absorption in localized states of the amorphous silicon. (author)

  2. Stability Issues on Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Xing Zhao

    2015-11-01

    Full Text Available Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3 and formamidinium lead iodide (HC(NH22PbI3 show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable nature of perovskite was observed when exposing it to continuous illumination, moisture and high temperature, impeding the commercial development in the long run and thus becoming the main issue that needs to be solved urgently. Here, we discuss the factors affecting instability of perovskite and give some perspectives about further enhancement of stability of perovskite solar cell.

  3. Fabricating solar cells with silicon nanoparticles

    Science.gov (United States)

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  4. A special issue on solar cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Bing CHENG

    2011-01-01

    @@ The increasing demand for renewable energy has made the solar cell technology as one of the most significantresearch and development areas of today.Silicon based solar cells are the dominant photovoltaic products at the present time, but the relatively high costs are barriers for their broad applications.Research has been active worldwide in developing other photovoltaic technologies that use cheap materials and can be easily manufactured.Organic solar cells have attracted a lot of interests recently due to their potential to be low cost photovoltaic technologies.This special issue of the Frontiers of Optoelectronics in China has collected research articles by a number of Chinese and international experts.It is aimed to broaden the readers' view about some of the recent developments and challenges in this important R&D field.Thirteen excellent papers are in this special issue including 4 review articles and 9 research articles.

  5. Questionable effects of antireflective coatings on inefficiently cooled solar cells

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Galster, Georg; Larsen, Esben

    1998-01-01

    of the output power and efficiency curves throughout the day the coherence between technical parameters of the solar cells and the climate in the operation region is observed and examined. It is shown how the drop in output power around noon can be avoided by fitting technical parameters of the solar cells......A model for temperature effects in p-n junction solar cells is introduced. The temperature of solar cells and the losses in the solar cell junction region caused by elevating temperature are discussed. The model developed is examined for low-cost silicon solar cells. In order to improve the shape...

  6. Chapter 10: CPV Multijunction Solar Cell Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, Carl R.; Siefer, Gerald

    2016-04-15

    Characterization of solar cells can be divided into two types: the first is measurement of electrooptical semiconductor device parameters, and the second is determination of electrical conversion efficiency. This chapter reviews the multijunction concepts that are necessary for understanding Concentrator photovoltaic (CPV) cell characterization techniques, and describes how CPV efficiency is defined and used. For any I-V measurement of a multijunction cell, the sun simulator spectrum has to be adjusted in a way that all junctions generate the same photocurrent ratios with respect to each other as under reference conditions. The chapter discusses several procedures for spectral irradiance adjustments of solar simulators, essential for multijunction measurements. It overviews the light sources and optics commonly used in simulators for CPV cells under concentration. Finally, the chapter talks about the cell area, quantum efficiency (QE), and current-voltage (I-V) curve measurements that are needed to characterize cells as a function of irradiance.

  7. Kesterite Deposited by Spray Pyrolysis for Solar Cell Applications

    OpenAIRE

    Espindola Rodriguez, Moises

    2015-01-01

    Solar cells generate electrical power by direct conversion of solar radiation into electricity using semiconductors. Once produced, the solar cells do not require the use of water; operate in silence and can be easily installed almost everywhere, as solar panels with low technological risk. In this thesis new photovoltaic materials and solar cells are investigated. From the beginning of the semiconductor era, silicon has been present; the semiconductor theory improved with the silicon tec...

  8. Modeling light trapping in nanostructured solar cells.

    Science.gov (United States)

    Ferry, Vivian E; Polman, Albert; Atwater, Harry A

    2011-12-27

    The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local and guided modes contributing to enhanced absorption, and optimize the design. We then study the role of the different interfaces and show that Al is a viable plasmonic back contact material.

  9. Silicon nitride film for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    El amrani, A.; Menous, I.; Mahiou, L.; Touati, A.; Lefgoum, A. [Silicon Technology Unit. 2, Boulevard Frantz Fanon, BP 140 Alger-7 Merveilles, 16200 Algiers (Algeria); Tadjine, R. [Advanced Technologies Development Centre, Cite 20 Aout 1656, Baba hassen, Algiers (Algeria)

    2008-10-15

    In this work, our aim was to determine the deposition parameters leading to optimal optical properties of Silicon nitride (SiN) film for photovoltaic application. The deposition was performed in an industrial pulsed direct-PECVD using a gas mixture of NH{sub 3}/SiH{sub 4}. After defining the optimum deposition parameters, we have chemically evaluated the film quality in BOE solution. Plasma removal of the optimized SiN films from multicrystalline 4-in solar cells allows highlighting and estimating the emitter passivation and ARC effects on the solar cell electrical performance. (author)

  10. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  11. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  12. Solar cell contact formation using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  13. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  14. Solar recharging system for hearing aid cells.

    Science.gov (United States)

    Gòmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muñiz, L; Aristimuño, D; Unanue, J M; Torca, J; Urruticoechea, A

    1994-09-01

    We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity.

  15. Stability Issues on Perovskite Solar Cells

    OpenAIRE

    2015-01-01

    Organo lead halide perovskite materials like methylammonium lead iodide (CH3NH3PbI3) and formamidinium lead iodide (HC(NH2)2PbI3) show superb opto-electronic properties. Based on these perovskite light absorbers, power conversion efficiencies of the perovskite solar cells employing hole transporting layers have increased from 9.7% to 20.1% within just three years. Thus, it is apparent that perovskite solar cell is a promising next generation photovoltaic technology. However, the unstable natu...

  16. Photovoltage analysis of a heterojunction solar cell

    Institute of Scientific and Technical Information of China (English)

    Xiong Chao; Yao Ruo-He; Geng Kui-Wei

    2011-01-01

    According to the p-n junction model of Shockley, the relationship between the equilibrium carrier concentrations of n-type and p-type semiconductors on the edges of the depletion region of a p-n junction solar cell is analysed. The calculation results show that the photovoltage can exceed the built-in voltage for a special kind of heterojunction solar cell. When the photovoltage exceeds the built-in voltage under illumination, the dark current and the photocurrent are impeded by the peak of voltage barrier at the interface and the expression of the total Ⅰ-Ⅴ characteristic is given.

  17. A review of high-efficiency silicon solar cells

    Science.gov (United States)

    Rohatgi, A.

    1986-01-01

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  18. Printable CIGS thin film solar cells

    Science.gov (United States)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  19. Calculation of the Performance of Solar Cells With Spectral Down Shifters Using Realistic Outdoor Solar Spectra

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2007-01-01

    Spectral down converters and shifters have been proposed as a good means to enhance the efficiency of underlying solar cells. In this paper, we focus on the simulation of the outdoor performance of solar cells with spectral down shifters, i.e., multicrystalline silicon solar cells with semiconductor

  20. Calculation of the Performance of Solar Cells With Spectral Down Shifters Using Realistic Outdoor Solar Spectra

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2007-01-01

    Spectral down converters and shifters have been proposed as a good means to enhance the efficiency of underlying solar cells. In this paper, we focus on the simulation of the outdoor performance of solar cells with spectral down shifters, i.e., multicrystalline silicon solar cells with semiconductor

  1. Development of Inorganic Solar Cells by Nano-technology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; HueyLiang Hwang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  2. Flexible implementation of rigid solar cell technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Hollowell, Andrew E.

    2010-08-01

    As a source of clean, remote energy, photovoltaic (PV) systems are an important area of research. The majority of solar cells are rigid materials with negligible flexibility. Flexible PV systems possess many advantages, such as being transportable and incorporable on diverse structures. Amorphous silicon and organic PV systems are flexible; however, they lack the efficiency and lifetime of rigid cells. There is also a need for PV systems that are light weight, especially in space and flight applications. We propose a solution to this problem by arranging rigid cells onto a flexible substrate creating efficient, light weight, and flexible devices. To date, we have created a working prototype of our design using the 1.1cm x 1cm Emcore cells. We have achieved a better power to weight ratio than commercially available PowerFilm{reg_sign}, which uses thin film silicon yielding .034W/gram. We have also tested our concept with other types of cells and verified that our methods are able to be adapted to any rigid solar cell technology. This allows us to use the highest efficiency devices despite their physical characteristics. Depending on the cell size we use, we can rival the curvature of most available flexible PV devices. We have shown how the benefits of rigid solar cells can be integrated into flexible applications, allowing performance that surpasses alternative technologies.

  3. Hybrid nanorod-polymer solar cells.

    Science.gov (United States)

    Huynh, Wendy U; Dittmer, Janke J; Alivisatos, A Paul

    2002-03-29

    We demonstrate that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers. By controlling nanorod length, we can change the distance on which electrons are transported directly through the thin film device. Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum. A photovoltaic device consisting of 7-nanometer by 60-nanometer CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of 6.9% under 0.1 milliwatt per square centimeter illumination at 515 nanometers. Under Air Mass (A.M.) 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  4. A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.

    Science.gov (United States)

    Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan

    2016-06-01

    A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.

  5. Nanostructured Semiconductor Device Design in Solar Cells

    Science.gov (United States)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  6. Perovskite solar cells: On top of commercial photovoltaics

    Science.gov (United States)

    Albrecht, Steve; Rech, Bernd

    2017-01-01

    The efficiency of single-junction solar cells is intrinsically limited and high efficiency multi-junctions are not cost effective yet. Now, semi-transparent perovskite solar cells suggest that low cost multi-junctions could be within reach.

  7. Perovskite Solar Cells: Beyond Methylammonium Lead Iodide.

    Science.gov (United States)

    Boix, Pablo P; Agarwala, Shweta; Koh, Teck Ming; Mathews, Nripan; Mhaisalkar, Subodh G

    2015-03-05

    Organic-inorganic lead halide based perovskites solar cells are by far the highest efficiency solution-processed solar cells, threatening to challenge thin film and polycrystalline silicon ones. Despite the intense research in this area, concerns surrounding the long-term stability as well as the toxicity of lead in the archetypal perovskite, CH3NH3PbI3, have the potential to derail commercialization. Although the search for Pb-free perovskites have naturally shifted to other transition metal cations and formulations that replace the organic moiety, efficiencies with these substitutions are still substantially lower than those of the Pb-perovskite. The perovskite family offers rich multitudes of crystal structures and substituents with the potential to uncover new and exciting photophysical phenomena that hold the promise of higher solar cell efficiencies. In addressing materials beyond CH3NH3PbI3, this Perspective will discuss a broad palette of elemental substitutions, solid solutions, and multidimensional families that will provide the next fillip toward market viability of the perovskite solar cells.

  8. Photochromic dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Noah M. Johnson

    2015-11-01

    Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.

  9. Baselines for Lifetime of Organic Solar Cells

    DEFF Research Database (Denmark)

    Gevorgyan, Suren; Espinosa Martinez, Nieves; Ciammaruchi, Laura

    2016-01-01

    The process of accurately gauging lifetime improvements in organic photovoltaics (OPVs) or other similar emerging technologies, such as perovskites solar cells is still a major challenge. The presented work is part of a larger effort of developing a worldwide database of lifetimes that can help e...

  10. Stability of deuterated amorphous silicon solar cells

    CERN Document Server

    Munyeme, G; Van der Meer, L F G; Dijkhuis, J I; Van der Weg, W F; Schropp, R

    2004-01-01

    In order to elucidate the microscopic mechanism for the earlier observed enhanced stability of deuterated amorphous silicon solar cells we conducted a side by-side study of fully deuterated intrinsic layers on crystalline silicon substrates using the free-electron laser facility at Nieuwegein (FELIX) to resonantly excite the Si-D stretching vibration and measure the various relaxation channels available to these modes, and of p-i-n solar cells with identical intrinsic absorber layers on glass/TCO substrates to record the degradation and stabilization of solar cell parameters under prolonged light soaking treatments. From our comparative study it is shown that a-Si:D has a superior resistance against light-induced defect creation as compared to a-Si:H and that this can now be explained in the light of the 'H collision model' since the initial step in the process, the release of H, is more likely than that of D. Thus, a natural explanation for the stability as observed in a-Si:D solar cells is provided.

  11. Solar Cells Having a Nanostructured Antireflection Layer

    DEFF Research Database (Denmark)

    2013-01-01

    An solar cell having a surface in a first material is provided, the optical device having a non-periodic nanostructure formed in the surface, the nanostructure comprising a plurality of cone -haped structures wherein the cones are distributed non-periodically on the surface and have a random heig...

  12. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a bul

  13. Stability and Degradation of Polymer Solar cells

    DEFF Research Database (Denmark)

    Norrman, Kion

    The current state-of-the-art allows for roll-to-roll manufacture of polymer solar cells in high volume with stability and efficiency sufficient to grant success in low-energy applications. However, further improvement is needed for the successful application of the devices in real life applications...

  14. Upconverter solar cells: materials and applications

    NARCIS (Netherlands)

    de Wild, J.|info:eu-repo/dai/nl/314641378; Meijerink, A.|info:eu-repo/dai/nl/075044986; Rath, J.K.|info:eu-repo/dai/nl/304830585; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2011-01-01

    Spectral conversion of sunlight is a promising route to reduce spectral mismatch losses that are responsible for the major part of the efficiency losses in solar cells. Both upconversion and downconversion materials are presently explored. In an upconversion process, photons with an energy lower tha

  15. Hybrid Silicon Nanocone–Polymer Solar Cells

    KAUST Repository

    Jeong, Sangmoo

    2012-06-13

    Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices because the Schottky junction between the Si and organic material can be formed by solution processes at a low temperature. In this study, we demonstrate a hybrid solar cell composed of Si nanocones and conductive polymer. The optimal nanocone structure with an aspect ratio (height/diameter of a nanocone) less than two allowed for conformal polymer surface coverage via spin-coating while also providing both excellent antireflection and light trapping properties. The uniform heterojunction over the nanocones with enhanced light absorption resulted in a power conversion efficiency above 11%. Based on our simulation study, the optimal nanocone structures for a 10 μm thick Si solar cell can achieve a short-circuit current density, up to 39.1 mA/cm 2, which is very close to the theoretical limit. With very thin material and inexpensive processing, hybrid Si nanocone/polymer solar cells are promising as an economically viable alternative energy solution. © 2012 American Chemical Society.

  16. Distributed series resistance effects in solar cells

    DEFF Research Database (Denmark)

    Nielsen, Lars Drud

    1982-01-01

    A mathematical treatment is presented of the effects of one-dimensional distributed series resistance in solar cells. A general perturbation theory is developed, including consistently the induced spatial variation of diode current density and leading to a first-order equivalent lumped resistance...

  17. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  18. A Photoelectrochemical Solar Cell: An Undergraduate Experiment.

    Science.gov (United States)

    Boudreau, Sharon M.; And Others

    1983-01-01

    Preparation and testing of a cadmium selenide photoelectrical solar cell was introduced into an environmental chemistry course to illustrate solid state semiconductor and electrochemical principles. Background information, procedures, and results are provided for the experiment which can be accomplished in a three- to four-hour laboratory session…

  19. Hybrid solar cells : Perovskites under the Sun

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Hummelen, Jan C.

    2013-01-01

    Mixed-halide organic–inorganic hybrid perovskites are reported to display electron–hole diffusion lengths over 1 μm. This observation provides important insight into the charge-carrier dynamics of this class of semiconductors and increases the expectations for highly efficient and cheap solar cells.

  20. Screen printed interdigitated back contact solar cell

    Science.gov (United States)

    Baraona, C. R.; Mazaris, G. A.; Chai, A. T.

    1984-10-01

    Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions.

  1. Screen printed interdigitated back contact solar cell

    Science.gov (United States)

    Baraona, C. R.; Mazaris, G. A.; Chai, A. T. (Inventor)

    1984-01-01

    Interdigitated back contact solar cells are made by screen printing dopant materials onto the back surface of a semiconductor substrate in a pair of interdigitated patterns. These dopant materials are then diffused into the substrate to form junctions having configurations corresponding to these patterns. Contacts having configurations which match the patterns are then applied over the junctions.

  2. Perovskite solar cells: Danger from within

    Science.gov (United States)

    Wilks, Regan G.; Bär, Marcus

    2017-01-01

    Extensive efforts are under way to increase not only the efficiency but also the stability of organic-inorganic halide perovskite based solar cells. However, research shows that iodine-containing perovskites are vulnerable to a self-degradation pathway that may inherently limit their lifetime.

  3. Absolute indoor calibration of large area solar cells

    Science.gov (United States)

    Metzdorf, J.; Wittchen, T.; Kaase, H.

    1986-11-01

    Equipment for the calibration of reference solar cells which is traceable back to their primary radiometric standards is presented. The apparatus, based on the differential spectral responsivity method is an absolute indoor procedure without reference solar cells, and needs no solar simulator. The method is applicable to all kinds of test devices up to solar cell areas of 10 x 10 cm without any requirements on linearity and spectral responsivity of the cells.

  4. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  5. Studies of silicon pn junction solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.

    1977-01-01

    Modifications of the basic Shockley equations that result from the random and nonrandom spatial variations of the chemical composition of a semiconductor were developed. These modifications underlie the existence of the extensive emitter recombination current that limits the voltage over the open circuit of solar cells. The measurement of parameters, series resistance and the base diffusion length is discussed. Two methods are presented for establishing the energy bandgap narrowing in the heavily-doped emitter region. Corrections that can be important in the application of one of these methods to small test cells are examined. Oxide-charge-induced high-low-junction emitter (OCI-HLE) test cells which exhibit considerably higher voltage over the open circuit than was previously seen in n-on-p solar cells are described.

  6. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    Science.gov (United States)

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with

  7. New Materials for Chalcogenide Based Solar Cells

    Science.gov (United States)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  8. Solar cell efficiency tables (version 48): Solar cell efficiency tables (version 48)

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin A. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney New South Wales 2052 Australia; Emery, Keith [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Hishikawa, Yoshihiro [Research Center for Photovoltaics (RCPV), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1 Tsukuba Ibaraki 305-8568 Japan; Warta, Wilhelm [Characterisation and Simulation/CalLab Cells, Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2 D-79110 Freiburg Germany; Dunlop, Ewan D. [European Commission - Joint Research Centre, Renewable Energy Unit, Institute for Energy, Via E. Fermi 2749 IT-21027 Ispra VA Italy

    2016-06-17

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2016 are reviewed.

  9. Solar cell efficiency tables (version 49): Solar cell efficiency tables (version 49)

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin A. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney NSW 2052 Australia; Emery, Keith [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Hishikawa, Yoshihiro [Research Center for Photovoltaics (RCPV), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1 Tsukuba Ibaraki 305-8568 Japan; Warta, Wilhelm [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 D-79110 Freiburg Germany; Dunlop, Ewan D. [Renewable Energy Unit, Institute for Energy, European Commission-Joint Research Centre, Via E. Fermi 2749 IT-21027 Ispra (VA) Italy; Levi, Dean H. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Ho-Baillie, Anita W. Y. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney NSW 2052 Australia

    2016-11-28

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since June 2016 are reviewed.

  10. Defect engineering in solar cell manufacturing and thin film solar cell development

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    During the last few years many defect engineering concepts were successfully applied to fabricate high efficiency silicon solar cells on low-cost substrates. Some of the research advances are described.

  11. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.|info:eu-repo/dai/nl/375268456; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Schropp, Ruud; Faaij, A.

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  12. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Schropp, Ruud; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  13. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  14. A Cost Roadmap for Silicon Heterojunction Solar Cells

    NARCIS (Netherlands)

    Louwen, A.; van Sark, W.G.J.H.M.; Schropp, Ruud; Faaij, A.

    2016-01-01

    Research and development of silicon heterojunction (SHJ) solar cells has seen a marked increase since the recent expiry of core patents describing SHJ technology. SHJ solar cells are expected to offer various cost benefits compared to conventional crystalline silicon solar cells. This paper analyses

  15. Assessing Possibilities & Limits for Solar Cells

    CERN Document Server

    Nayak, Pabitra K; Cahen, David

    2011-01-01

    What are the solar cell efficiencies that we can strive towards? We show here that several simple criteria, based on cell and module performance data, serve to evaluate and compare all types of today's solar cells. Analyzing these data allows to gauge in how far significant progress can be expected for the various cell types and, most importantly from both the science and technology points of view, if basic bounds, beyond those known today, may exist, that can limit such progress. This is important, because half a century after Shockley and Queisser (SQ) presented limits, based on detailed balance calculations for single absorber solar cells, those are still held to be the only ones, we need to consider; most efforts to go beyond SQ are directed towards attempts to circumvent them, primarily via smart optics, or optoelectronics. After formulating the criteria and analyzing known loss mechanisms, use of such criteria suggests - additional limits for newer types of cells, Organic and Dye-Sensitized ones, and th...

  16. Review of Recent Progress in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fan-Tai Kong

    2007-08-01

    Full Text Available We introduced the structure and the principle of dye-sensitized solar cell (DSC. The latest results about the critical technology and the industrialization research on dye-sensitized solar cells were reviewed. The development of key components, including nanoporous semiconductor films, dye sensitizers, redox electrolyte, counter electrode, and conducting substrate in dye-sensitized solar cells was reviewed in detail. The developing progress and prospect of dye-sensitized solar cells from small cells in the laboratory to industrialization large-scale production were reviewed. At last, the future development of DSC was prospective for the tendency of dye-sensitized solar cells.

  17. Plastic Schottky barrier solar cells

    Science.gov (United States)

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  18. Fast Electronic Solar Cell Tester

    Science.gov (United States)

    Lathrop, J. W.; Saylor, C. R.

    1983-01-01

    Microcomputer controlled system gather current and voltage data. System consists of light source, microcomputer, programable dc power supply, analog/ digital interface, and data storage display equipment. Applies series of test loads to cell via programable dc power supply to obtain I/V characteristic curve and key cell-peformance parameter. Apparatus and programming technique are applicable to devices such as batteries and sensors.

  19. Trial Production and Evaluation of Solar Cells Optimized for Solar Spectrum in Mars Atmosphere

    Science.gov (United States)

    Toyota, Hiroyuki; Shimada, Takanobu; Takahashi, Yu; Oyama, Akira; Washio, Hidetoshi

    2014-08-01

    We describe the production and evaluation of a prototype of an inverted metamorphic triple-junction (IMM3J) solar cell optimized for the solar spectrum on the surface of Mars. High-efficiency, flexible, lightweight solar panels containing IMM3J solar cells are promising power sources for Mars surface explorers such as rovers, landers, and airplanes. The intensity of sunlight at the Martian surface substantially decreases at wavelengths shorter than 700 nm because of absorption and scattering by the atmosphere. This decreases the output current of the InGaP top cells in state-of-the-art IMM3J solar cells, and thus decreases the overall output current. Therefore, solar cells for Mars surface explorers need to be optimized for the solar spectrum at the Martian surface. We modified IMM3J solar cells in two ways to increase the output power. We increased the thickness of the InGaP top cell to increase the light absorption, which increased the output current of the entire cell. We also increased the band gap energy of the InGaAs bottom cell by trimming the surplus current, in order to increase the output voltage. In the simulated Martian solar spectrum, the performance of the prototype solar cells was higher than that of IMM3J solar cells designed for the AM0 spectrum.

  20. Photocurrent generation in nanostructured organic solar cells.

    Science.gov (United States)

    Yang, Fan; Forrest, Stephen R

    2008-05-01

    Photocurrent generation in nanostructured organic solar cells is simulated using a dynamical Monte Carlo model that includes the generation and transport properties of both excitons and free charges. Incorporating both optical and electrical properties, we study the influence of the heterojunction nanostructure (e.g., planar vs bulk junctions) on donor-acceptor organic solar cell efficiencies based on the archetype materials copper phthalocyanine (CuPc) and C(60). Structures considered are planar and planar-mixed heterojunctions, homogeneous and phase-separated donor-acceptor (DA) mixtures, idealized structures composed of DA pillars, and nanocrystalline DA networks. The thickness dependence of absorption, exciton diffusion, and carrier collection efficiencies is studied for different morphologies, yielding results similar to those experimentally observed. The influences of charge mobility and exciton diffusion length are studied, and optimal device thicknesses are proposed for various structures. Simulations show that, with currently available materials, nanocrystalline network solar cells optimize both exciton diffusion and carrier collection, thus providing for highly efficient solar energy conversion. Estimations of achievable energy conversion efficiencies are made for the various nanostructures based on current simulations used in conjunction with experimentally obtained fill factors and open-circuit voltages for conventional small molecular weight materials combinations.

  1. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells

    OpenAIRE

    Ishwor Khatri; Jianfeng Bao; Naoki Kishi; Tetsuo Soga

    2012-01-01

    Here, we examine the device architecture of two different types of solar cells mainly inverted organic solar cells and solid state dye-sensitized solar cells (DSSCs) that use organic materials as hole transportation. The inverted organic solar cells structure is dominated by work on titanium dioxide ( T i O 2 ) and zinc oxide (ZnO). These layers are sensitized with dye in solid state DSSCs. Because of the similar device architecture, it becomes possible to fabricate laminated solid-state DSSC...

  2. Similar Device Architectures for Inverted Organic Solar Cell and Laminated Solid-State Dye-Sensitized Solar Cells

    OpenAIRE

    Ishwor Khatri; Jianfeng Bao; Naoki Kishi; Tetsuo Soga

    2012-01-01

    Here, we examine the device architecture of two different types of solar cells mainly inverted organic solar cells and solid state dye-sensitized solar cells (DSSCs) that use organic materials as hole transportation. The inverted organic solar cells structure is dominated by work on titanium dioxide ( T i O 2 ) and zinc oxide (ZnO). These layers are sensitized with dye in solid state DSSCs. Because of the similar device architecture, it becomes possible to fabricate laminated solid-state DSSC...

  3. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    Directory of Open Access Journals (Sweden)

    Yu Kehan

    2008-01-01

    Full Text Available Abstract The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  4. Proton irradiation effects of amorphous silicon solar cell for solar power satellite

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yousuke; Oshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Sasaki, Susumu; Kuroda, Hideo; Ushirokawa, Akio

    1997-03-01

    Flexible amorphous silicon(fa-Si) solar cell module, a thin film type, is regarded as a realistic power generator for solar power satellite. The radiation resistance of fa-Si cells was investigated by the irradiations of 3,4 and 10 MeV protons. The hydrogen gas treatment of the irradiated fa-Si cells was also studied. The fa-Si cell shows high radiation resistance for proton irradiations, compared with a crystalline silicon solar cell. (author)

  5. TRANSPARENT COATINGS FOR SOLAR CELLS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Glatkowski, P. J.; Landis, D. A.

    2013-04-16

    Todays solar cells are fabricated using metal oxide based transparent conductive coatings (TCC) or metal wires with optoelectronic performance exceeding that currently possible with Carbon Nanotube (CNT) based TCCs. The motivation for replacing current TCC is their inherent brittleness, high deposition cost, and high deposition temperatures; leading to reduced performance on thin substrates. With improved processing, application and characterization techniques Nanofiber and/or CNT based TCCs can overcome these shortcomings while offering the ability to be applied in atmospheric conditions using low cost coating processes At todays level of development, CNT based TCC are nearing commercial use in touch screens, some types of information displays (i.e. electronic paper), and certain military applications. However, the resistivity and transparency requirements for use in current commercial solar cells are more stringent than in many of these applications. Therefore, significant research on fundamental nanotube composition, dispersion and deposition are required to reach the required performance commanded by photovoltaic devices. The objective of this project was to research and develop transparent conductive coatings based on novel nanomaterial composite coatings, which comprise nanotubes, nanofibers, and other nanostructured materials along with binder materials. One objective was to show that these new nanomaterials perform at an electrical resistivity and optical transparency suitable for use in solar cells and other energy-related applications. A second objective was to generate new structures and chemistries with improved resistivity and transparency performance. The materials also included the binders and surface treatments that facilitate the utility of the electrically conductive portion of these composites in solar photovoltaic devices. Performance enhancement venues included: CNT purification and metallic tube separation techniques, chemical doping, CNT

  6. Bringing some photonic structures for solar cells to the fore.

    Science.gov (United States)

    Escoubas, Ludovic; Simon, Jean-Jacques; Torchio, Philippe; Duché, David; Vedraine, Sylvain; Vervisch, Wilfried; Le Rouzo, Judikaël; Flory, François; Rivière, Guillaume; Yeabiyo, Gizachew; Derbal, Hassina

    2011-03-20

    A review on the use of photonic structures enabling a better absorption of solar radiation within solar cells is proposed. Specific geometric configurations, such as folded solar cells or fiber-based architectures, are shown to be promising solutions to reach better light absorption. Electromagnetic optimization of thin-film solar cells and the use of angular thin-film filters, proposed by several research groups, also provide solutions to better concentrate solar radiation within the active layers of solar cells. Finally, results on "photonized" solar cells comprising gratings or more advanced photonic components, such as photonic crystals or plasmonic structures, and their effects on light-matter interaction in solar cells are highlighted.

  7. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Redwing, Joan [Pennsylvania State Univ., University Park, PA (United States). Dept. of Material Science and Engineering; Mallouk, Tom [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemistry; Mayer, Theresa [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering; Dickey, Elizabeth [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; Wronski, Chris [Pennsylvania State Univ., University Park, PA (United States). Dept. of Electrical Engineering

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematic and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (Voc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion

  8. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Directory of Open Access Journals (Sweden)

    Lioz Etgar

    2013-02-01

    Full Text Available Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  9. Semiconductor Nanocrystals as Light Harvesters in Solar Cells

    Science.gov (United States)

    Etgar, Lioz

    2013-01-01

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318

  10. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.

    Science.gov (United States)

    Etgar, Lioz

    2013-02-04

    Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered.

  11. Space solar cell technology development - A perspective

    Science.gov (United States)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  12. Superstrate sub-cell voltage-matched multijunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mascarenhas, Angelo; Alberi, Kirstin

    2016-03-15

    Voltage-matched thin film multijunction solar cell and methods of producing cells having upper CdTe pn junction layers formed on a transparent substrate which in the completed device is operatively positioned in a superstate configuration. The solar cell also includes a lower pn junction formed independently of the CdTe pn junction and an insulating layer between CdTe and lower pn junctions. The voltage-matched thin film multijunction solar cells further include a parallel connection between the CdTe pn junction and lower pn junctions to form a two-terminal photonic device. Methods of fabricating devices from independently produced upper CdTe junction layers and lower junction layers are also disclosed.

  13. Device Physics of Nanoscale Interdigitated Solar Cells (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, W.; Levi, D.

    2008-05-01

    Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

  14. Rational Strategies for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Seo, Jangwon; Noh, Jun Hong; Seok, Sang Il

    2016-03-15

    A long-standing dream in the large scale application of solar energy conversion is the fabrication of solar cells with high-efficiency and long-term stability at low cost. The realization of such practical goals depends on the architecture, process and key materials because solar cells are typically constructed from multilayer heterostructures of light harvesters, with electron and hole transporting layers as a major component. Recently, inorganic-organic hybrid lead halide perovskites have attracted significant attention as light absorbers for the fabrication of low-cost and high-efficiency solar cells via a solution process. This mainly stems from long-range ambipolar charge transport properties, low exciton binding energies, and suitable band gap tuning by managing the chemical composition. In our pioneering work, a new photovoltaic platform for efficient perovskite solar cells (PSCs) was proposed, which yielded a high power conversion efficiency (PCE) of 12%. The platform consisted of a pillared architecture of a three-dimensional nanocomposite of perovskites fully infiltrating mesoporous TiO2, resulting in the formation of continuous phases and perovskite domains overlaid with a polymeric hole conductor. Since then, the PCE of our PSCs has been rapidly increased from 3% to over 20% certified efficiency. The unprecedented increase in the PCE can be attributed to the effective integration of the advantageous attributes of the refined bicontinuous architecture, deposition process, and composition of perovskite materials. Specifically, the bicontinuous architectures used in the high efficiency comprise a layer of perovskite sandwiched between mesoporous metal-oxide layer, which is a very thinner than that of used in conventional dye-sensitized solar cells, and hole-conducting contact materials with a metal back contact. The mesoporous scaffold can affect the hysteresis under different scan direction in measurements of PSCs. The hysteresis also greatly depends on

  15. Multiscale experimental characterization of solar cell defects

    Science.gov (United States)

    Škarvada, Pavel; Škvarenina, Lubomír.; Tománek, Pavel; Sobola, Dinara; Macků, Robert; Brüstlová, Jitka; Grmela, Lubomír.; Smith, Steve

    2016-12-01

    The search for alternative sources of renewable energy, including novel photovoltaics structures, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. We investigate multiscale aspects of electrical, optical and thermal properties of solar cells under illumination and in dark conditions when an external bias is applied. We present the results of a research of the micron and sub-micron defects in a crystalline solar cell structure utilizing scanning probe microscopy and electric noise measurement.

  16. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko.

    1990-01-24

    This invention concerns a module frame of solar cell and a solar cell module using this frame. In particular, it concerns a frame and a module useful for the CdS/CdTe or CdS/CuInSe {sub 2} based cell. In the existing solar cell module, sealant is packed in between the edges of a glass substrate, a resin layer and a back protective thin film, etc. and a grooved frame of U-shaped section. For the sealant, silicon based resin and butyl rubber based resin are used many times, but either resin has defects such as their overflow from the module structure. In order to solve these defects, this invention proposes to provide stair-shaped protrusions along the four sides of the bottom of the box frame (herein after called the lower frame) of the module and at the same time, provide a groove for pooling the sealant at the portion where such protrusion meets the side wall, furthermore to provide depressions for pooling the sealant at the upper edge inside the side wall of the lower frame or to punch holes at the corners of the bottom of the lower frame. 9 figs.

  17. Thin foil silicon solar cells with coplanar back contacts

    Science.gov (United States)

    Ho, F.; Iles, P. A.; Baraona, C. R.

    1981-01-01

    To fabricate 50 microns thick, coplanar back contact (CBC) silicon solar cells, wraparound junction design was selected and proved to be effective. The process sequence used, the cell design, and the cell performance are described. CBC cells with low solar absorptance have shown AMO efficiencies to 13%, high cells up to 14%; further improvements are projected with predictable optimization.

  18. Recent advances in sensitized mesoscopic solar cells.

    Science.gov (United States)

    Grätzel, Michael

    2009-11-17

    Perhaps the largest challenge for our global society is to find ways to replace the slowly but inevitably vanishing fossil fuel supplies by renewable resources and, at the same time, avoid negative effects from the current energy system on climate, environment, and health. The quality of human life to a large degree depends upon the availability of clean energy sources. The worldwide power consumption is expected to double in the next 3 decades because of the increase in world population and the rising demand of energy in the developing countries. This implies enhanced depletion of fossil fuel reserves, leading to further aggravation of the environmental pollution. As a consequence of dwindling resources, a huge power supply gap of 14 terawatts is expected to open up by year 2050 equaling today's entire consumption, thus threatening to create a planetary emergency of gigantic dimensions. Solar energy is expected to play a crucial role as a future energy source. The sun provides about 120,000 terawatts to the earth's surface, which amounts to 6000 times the present rate of the world's energy consumption. However, capturing solar energy and converting it to electricity or chemical fuels, such as hydrogen, at low cost and using abundantly available raw materials remains a huge challenge. Chemistry is expected to make pivotal contributions to identify environmentally friendly solutions to this energy problem. One area of great promise is that of solar converters generally referred to as "organic photovoltaic cells" (OPV) that employ organic constituents for light harvesting or charge carrier transport. While this field is still in its infancy, it is receiving enormous research attention, with the number of publications growing exponentially over the past decade. The advantage of this new generation of solar cells is that they can be produced at low cost, i.e., potentially less than 1 U.S. $/peak watt. Some but not all OPV embodiments can avoid the expensive and energy

  19. Highly efficient light management for perovskite solar cells

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  20. Highly efficient light management for perovskite solar cells

    CERN Document Server

    Wang, Dong-Lin; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2015-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  1. Light trapping in thin film organic solar cells

    Directory of Open Access Journals (Sweden)

    Zheng Tang

    2014-10-01

    Full Text Available A major issue in organic solar cells is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in organic solar cells. Therefore, light trapping schemes are critically important for efficient organic solar cells. Traditional light trapping schemes for thick solar cells need to be modified for organic thin film solar cells in which coherent optics and wave effects play a significant role. In this review, we discuss the light trapping schemes for organic thin film solar cells, which includes geometric engineering of the structure of the solar cell at the micro and nanoscale, plasmonic structures, and more.

  2. Highly efficient light management for perovskite solar cells.

    Science.gov (United States)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  3. Interface engineering of Graphene-Silicon heterojunction solar cells

    Science.gov (United States)

    Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren

    2016-11-01

    Graphene has attracted great research interests due to its unique mechanical, electrical and optical properties, which opens up a huge number of opportunities for applications. Recently, Graphene-Silicon (Grsbnd Si) solar cell has been recognized as one interesting candidate for the future photovoltaic. Since the first Grsbnd Si solar cell reported in 2010, Grsbnd Si solar cell has been intensively investigated and the power converse efficiency (PCE) of it has been developed to 15.6%. This review presents and discusses current development of Grsbnd Si solar cell. Firstly, the basic concept and mechanism of Grsbnd Si solar cell are introduced. Then, several key technologies are introduced to improve the performance of Grsbnd Si solar cells, such as chemical doping, annealing, Si surface passivation and interlayer insertion. Particular emphasis is placed on strategies for Grsbnd Si interface engineering. Finally, new pathways and opportunities of "MIS-like structure" Grsbnd Si solar cells are described.

  4. A Physics-based Analytical Model for Perovskite Solar Cells

    OpenAIRE

    Sun, Xingshu; Asadpour, Reza; Nie, Wanyi; Mohite, Aditya D.; Alam, Muhammad A.

    2015-01-01

    Perovskites are promising next-generation absorber materials for low-cost and high-efficiency solar cells. Although perovskite cells are configured similar to the classical solar cells, their operation is unique and requires development of a new physical model for characterization, optimization of the cells, and prediction of the panel performance. In this paper, we develop such a physics-based analytical model to describe the operation of different types of perovskite solar cells, explicitly...

  5. A thermodynamic cycle for the solar cell

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the ;putt-putt; engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  6. Organic Based Solar Cells with Morphology Control

    DEFF Research Database (Denmark)

    Andersen, Thomas Rieks

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need...... to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morphology in the active layer, and a more environmental friendly processing, where the vast use of organic solvents...... offers a great challenge. In this thesis the development of inks with a pre-arranged morphology was attempted by two methods. First by grafting of silicon nanoparticles with an organic phenylene vinylene oligomer, the resulting particles were analyzed by 1H-NMR, absorption spectroscopy, Atomic Force...

  7. Polymer:fullerene bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Jenny Nelson

    2011-10-01

    Full Text Available The efficiency of solar cells made from a conjugated polymer blended with a fullerene derivative has risen from around 1 % to over 9 % in the last ten years, making organic photovoltaic technology a viable contender for commercialization. The efficiency increases have resulted from the development of new materials with lower optical gaps, new polymer:fullerene combinations with higher charge separated state energies, and new approaches to control the blend microstructure, all driven by a qualitative understanding of the principles governing organic solar cell operation. In parallel, a device physics framework has been developed that enables the rational design of device structures and materials for improved organic photovoltaic devices. We review developments in both materials science and device physics for organic photovoltaics.

  8. Perovskite Materials: Solar Cell and Optoelectronic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [ORNL; Geohegan, David B [ORNL; Xiao, Kai [ORNL

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure, and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.

  9. Optical Management Techniques for Organic Solar Cells

    CERN Document Server

    Rajagopal, Adharsh

    2016-01-01

    In this thesis, two different optical management techniques for organics based solar cells are explored. The first part is focused on the development of a textured rear reflector for OPVs. The use of textured reflector (TR) facilitates an increase in the optical path length along with light trapping within the active layer. TR was fabricated through a relatively simpler technique by depositing metal films over a microlens array (MLA). Zinc oxide nanoparticles were used to minimize the shadowing effect. Using TR, enhancements in short-circuit current density and power conversion efficiencies up to 10-25% were demonstrated for a polymer based organic solar cell. The second part is focused on improving the effectiveness of MLA incorporation in OPVs. The increase in path length achieved using MLA can be improved by increasing the refractive index of MLA and incorporating MLA directly on the transparent electrode instead of glass substrate. This approach could avoid the optical losses occurring at the interface be...

  10. A Bicontinuous Double Gyroid Hybrid Solar Cell

    KAUST Repository

    Crossland, Edward J. W.

    2009-08-12

    We report the first successful application of an ordered bicontinuous gyroid semiconducting network in a hybrid bulk heterojunction solar cell. The freestanding gyroid network is fabricated by electrochemical deposition into the 10 nm wide voided channels of a self-assembled, selectively degradable block copolymer film. The highly ordered pore structure is ideal for uniform infiltration of an organic hole transporting material, and solid-state dye-sensitized solar cells only 400 nm thick exhibit up to 1.7% power conversion efficiency. This patterning technique can be readily extended to other promising heterojunction systems and is a major step toward realizing the full potential of self-assembly in the next generation of device technologies. © 2009 American Chemical Society.

  11. Screen printed boron emitters for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Recart, F.; Freire, I.; Perez, L.; Lago-Aurrekoetxea, R.; Jimeno, J.C.; Bueno, G. [Instituto de Tecnologia Microelectronica, Teknologia Mikroelektronikoaren Institutua UPV/EHU, Alda.Urquijo s/n, 48013 Bilbao (Spain)

    2007-06-15

    Screen printed (SP) boron emitters are presented as a useful option for the manufacturing of p-type emitters of solar cells. Details are provided on the diffusion process, including deposition, drying and firing steps, the latter performed in an infrared belt furnace. Besides their main dependences on the firing conditions, the sheet resistances and dopant profiles of the resulting emitters reveal the relevance of the drying step and the exhaustion limits of the doping source. A characterization of the recombination concludes that moderate emitter saturation currents (J{sub oe}<0.5 pA/cm{sup 2}) and acceptable bulk lifetimes ({tau}{sub B}>40 {mu}s) can be obtained on Czochralski silicon wafers. Finally, Cz n-type 0.7 {omega} cm solar cells are presented, which once again prove the feasibility of SP boron emitters and point to issues regarding their metallization. (author)

  12. Imprinting localized plasmons for enhanced solar cells.

    Science.gov (United States)

    Dunbar, Ricky B; Pfadler, Thomas; Lal, Niraj N; Baumberg, Jeremy J; Schmidt-Mende, Lukas

    2012-09-28

    Imprinted silver nanovoid arrays are investigated via angle-resolved reflectometry to demonstrate their suitability for plasmonic light trapping. Both wavelength- and subwavelength-scale nanovoids are imprinted into standard solar cell architectures to achieve nanostructured metallic electrodes which provide enhanced absorption for improving solar cell performance. The technique is versatile, low-cost and scalable and can be applied to a wide range of organic semiconductors. Absorption features which are independent of incident polarization and weakly dependent on incident angle reveal localized plasmonic modes at the structured interface. Metallic nanostructure-PCPDTBT:PCBM samples demonstrate absorption enhancements of up to 40%. The structured interface provides light trapping, which boosts absorption at wavelengths where the semiconductors absorb poorly.

  13. Solar cell module. Taiyo denchi module

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Akihiko; Matsumoto, Hitoshi; Komatsu, Yasumitsu; Shirai, Sadaharu.

    1989-09-29

    In the solar cell module of this invention, such junctions as CdS/CdTe or CdS/CuInSe {sub 2} are contained as a photoelectromotive force part coexists with air in a closed space which consists of glass, metal parts and a bonding resin layer; the photoelectromotive force part is coated either with a fluorine resin or a silicone resin. The fluorine resin contains a fundamental skeleton of an alternative copolymer of fluoroolefin and a hydrocarbon-based vinyl monomer; the silicone resin has three types, i.e., addition-reacted, condensated or UV-curing type, and the released oxygen is sealed in the closed space. The resin layer which adheres the glass and the metal plate is a thermoplastic resin which is polyethylene modified by copolymerization of acid anhydride. By this, the reliability of the solar cell module was enhanced. 3 figs.

  14. High efficiency silicon solar cell review

    Science.gov (United States)

    Godlewski, M. P. (Editor)

    1975-01-01

    An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.

  15. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  16. The photophysics of perovskite solar cells

    Science.gov (United States)

    Sum, Tze Chien

    2014-09-01

    Solution-processed hybrid organic-inorganic perovskite solar cells, a newcomer to the photovoltaic arena, have taken the field by storm with their extraordinary power conversion efficiencies exceeding 17%. In this paper, the photophysics and the latest findings on the carrier dynamics and charge transfer mechanisms in this new class of photovoltaic material will be examined and distilled. Some open photophysics questions will also be discussed.

  17. Crossed BiOI flake array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kewei; Jia, Falong; Zhang, Lizhi [Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan (China); Zheng, Zhi [Institute of Surface Micro and Nano Materials, Xuchang University (China)

    2010-12-15

    We report a new kind of solar cell based on crossed flake-like BiOI arrays for the first time. The BiOI flake arrays were fabricated on an FTO glass with a TiO{sub 2} block layer at room temperature by successive ionic layer adsorption and reaction (SILAR) method. The resulting BiOI flake array solar cell exhibited enhanced photovoltaic performance under solar illumination. This work provides an attractive and new solar cell system and a facile route to fabricate low cost and non-toxic solar cell. (author)

  18. Nanomaterials Enabled Dye-sensitized Solar Cells

    Science.gov (United States)

    Dong, Pei

    Dye sensitized solar cells (DSCs), as the third generation of solar cells, have attracted tremendous attention for their unique properties. The semi-transparent nature, low-cost, environmental friendliness, and convenient manufacturing conditions of this generation of solar cells are promising aspects of DSCs that make them competitive in their future applications. However, much improvement in many aspects of DSCs' is required for the realization of its full potential. In this thesis, various nanomaterials, such as graphene, multi wall carbon nanotubes, vertically aligned single wall carbon nanotubes, hybrid structures and etc, have been used to improve the performance of DSCs. First, the application of graphene covered metal grids as transparent conductive electrodes in DSCs is explored. It is demonstrated that the mechanical properties of these flexible hybrid transparent electrodes, in both bending and stretching tests, are better than their oxide-based counter parts. Moreover, different kinds of carbon nanotubes, for instance vertically aligned single wall carbon nanotubes, have been used as a replacement for traditional platinum counter electrodes, in both iodine electrolyte, and sulfide-electrolyte. Further, a flexible, seamlessly connected, 3-dimensional vertically-aligned few wall carbon nanotubes graphene hybrid structures on Ni foil as DSCs' counter electrodes improve their efficiency significantly. All these nanomaterials enabled DSCs architectures achieve a comparable or better performance than standard brittle platinum/fluorine doped tin oxide combination. The large surface area of such nanomaterials in addition to the high electrical conductivity and their mechanical robustness provides a platform for significant enhancements in DSCs' performance.

  19. Oxide nanowires for solar cell applications.

    Science.gov (United States)

    Zhang, Qifeng; Yodyingyong, Supan; Xi, Junting; Myers, Daniel; Cao, Guozhong

    2012-03-07

    Oxide nanowire arrays were studied for their applications to solar cells. It was demonstrated that the nanowires could provide direct pathways for electron transport in dye-sensitized solar cells and therefore, while forming photoelectrode films, they offered better suppression of charge recombination than nanoparticles. However, the photoelectron films consisting of nanowires suffered a disadvantage in giving large surface area for dye adsorption. Such a shortcoming of nanowires had been exemplified in this paper illustrating that it could be well compensated by incorporating with nanoparticles to form a nanoparticle-nanowire array hybrid photoelectrode film. The oxide nanowires were also demonstrated to be able to enhance the performance of inverted structure polymer solar cells as a cathode buffer layer by establishing a large interface with the polymers so as to facilitate the transport of photogenerated electrons from the polymer to the electron collecting electrode. Such an enhancement effect could be further boosted while the nanowires were replaced with nanotubes; the latter may build up larger interface with the polymers than the former and therefore facilitates the electron transport more efficiently.

  20. Modeling Anomalous Hysteresis in Perovskite Solar Cells.

    Science.gov (United States)

    van Reenen, Stephan; Kemerink, Martijn; Snaith, Henry J

    2015-10-01

    Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-diffusion model to describe device operation of perovskite solar cells. To achieve hysteresis in the modeled current-voltage characteristics, we must include both ion migration and electronic charge traps, serving as recombination centers. Trapped electronic charges recombine with oppositely charged free electronic carriers, of which the density depends on the bias-dependent ion distribution in the perovskite. Our results therefore show that reduction of either the density of mobile ionic species or carrier trapping at the perovskite interface will remove the adverse hysteresis in perovskite solar cells. This gives a clear target for ongoing research effort and unifies previously conflicting experimental observations and theories.

  1. PbSe Nanocrystal Excitonic Solar Cells

    KAUST Repository

    Choi, Joshua J.

    2009-11-11

    We report the design, fabrication, and characterization of colloidal PbSe nanocrystal (NC)-based photovoltaic test structures that exhibit an excitonic solar cell mechanism. Charge extraction from the NC active layer is driven by a photoinduced chemical potential energy gradient at the nanostructured heterojunction. By minimizing perturbation to PbSe NC energy levels and thereby gaining insight into the "intrinsic" photovoltaic properties and charge transfer mechanism of PbSe NC, we show a direct correlation between interfacial energy level offsets and photovoltaic device performance. Size dependent PbSe NC energy levels were determined by cyclic voltammetry and optical spectroscopy and correlated to photovoltaic measurements. Photovoltaic test structures were fabricated from PbSe NC films sandwiched between layers of ZnO nanoparticles and PEDOT:PSS as electron and hole transporting elements, respectively. The device current-voltage characteristics suggest a charge separation mechanism that Is distinct from previously reported Schottky devices and consistent with signatures of excitonic solar cells. Remarkably, despite the limitation of planar junction structure, and without film thickness optimization, the best performing device shows a 1-sun power conversion efficiency of 3.4%, ranking among the highest performing NC-based solar cells reported to date. © 2009 American Chemical Society.

  2. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the

  3. Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting

    Science.gov (United States)

    Sholin, Veronica

    Increasing energy demand and the parallel increase of greenhouse gas emissions are challenging researchers to find new and cleaner energy sources. Solar energy harvesting is arguably the most promising candidate for replacing fossil-fuel power generation. Photovoltaics are the most direct way of collecting solar energy; cost continues to hinder large-scale implementation of photovoltaics, however. Therefore, alternative technologies that will allow the extraction of solar power, while maintaining the overall costs of fabrication, installation, collection, and distribution low, must be explored. This thesis focuses on the fabrication and testing of two types of devices that step up to this challenge: the luminescent solar concentrator (LSC) and all-inorganic nanoparticle solar cells. In these devices I make use of novel materials, semiconducting polymers and inorganic nanoparticles, both of which have lower costs than the crystalline materials used in the fabrication of traditional photovoltaics. Furthermore, the cost of manufacturing LSCs and the nanoparticle solar cells is lower than the manufacturing cost of traditional optics-based concentrators and crystalline solar cells. An LSC is essentially a slab of luminescent material that acts as a planar light pipe. The LSC absorbs incoming photons and channels fluoresced photons toward appropriately located solar cells, which perform the photovoltaic conversion. By covering large areas with relatively inexpensive fluorescing organic dyes or semiconducting polymers, the area of solar cell needed is greatly reduced. Because semiconducting polymers and quantum dots may have small absorption/emission band overlaps, tunable absorption, and longer lifetimes, they are good candidates for LSC fabrication, promising improvement with respect to laser dyes traditionally used to fabricate LSCs. Here the efficiency of LSCs consisting of liquid solutions of semiconducting polymers encased in glass was measured and compared to the

  4. Scaling Up ITO-free solar cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Coenen, Erica W. C.; Zimmermann, Birger

    2014-01-01

    and the effect of the grid line resistance are explored for a series of devices. Laser-beam-induced current (LBIC) mapping is used for quality control of the devices. A theoretical modeling study is presented that enables the identification of the most rational cell dimension for the grids with different...... resistances. The performance of ITO-free organic solar cells with different dimensions and different electrode resistances are evaluated for different light intensities. The current generation and electric potential distribution are found to not be uniformly distributed in large-area devices at simulated 1...

  5. Light enhancements in nano-structured solar cells

    OpenAIRE

    Pastorelli, Francesco

    2013-01-01

    In this century some of our main issues are energy shortage and pollution. This work will briefly describe these problems, proposing a plan of action combining energy saving and different sustainable energy sources. Within different types of renewable energy sources, solar energy is the most abundant one. To make solar energy a more sustainable and cost effective technology we focus on enhancing the optical characteristics of thin film solar cells. In this category, organic solar cells are go...

  6. Transparent antennas for solar cell integration

    Science.gov (United States)

    Yasin, Tursunjan

    Transparent patch antennas are microstrip patch antennas that have a certain level of optical transparency. Highly transparent patch antennas are potentially suitable for integration with solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas employed on small satellites compete with solar cells for surface area. However, a transparent patch antenna can be placed directly on top of solar cells and resolve the issue of competing for limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells' point of view. On the other hand, the antenna should possess at least acceptable radiation properties at the same time. This dissertation focuses on some of the most important concerns from the perspective of small satellite applications. For example, an optimization method to simultaneously improve both optical transparency and radiation efficiency of the antenna is studied. Active integrated antenna design method is extended to meshed patch applications in an attempt to improve the overall power efficiency of the front end communication subsystem. As is well known, circular polarization is immune from Faraday rotation effect in the ionosphere and thus can avoid a 3-dB loss in geo-satellite communication. Therefore, this research also aims to present design methods for circularly polarized meshed patch antennas. Moreover, a meshed patch antenna capable of supporting a high communication data rate is investigated. Lastly, other types of transparent patch antennas are also analyzed and compared to meshed patches. In summary, many properties of transparent patch antennas are examined in order to meet different design requirements.

  7. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  8. Simulation of the Mars Surface Solar Spectra for Optimized Performance of Triple-Junction Solar Cells

    Science.gov (United States)

    Edmondson, Kenneth M.; Joslin, David E.; Fetzer, Chris M.; King, RIchard R.; Karam, Nasser H.; Mardesich, Nick; Stella, Paul M.; Rapp, Donald; Mueller, Robert

    2007-01-01

    The unparalleled success of the Mars Exploration Rovers (MER) powered by GaInP/GaAs/Ge triple-junction solar cells has demonstrated a lifetime for the rovers that exceeded the baseline mission duration by more than a factor of five. This provides confidence in future longer-term solar powered missions on the surface of Mars. However, the solar cells used on the rovers are not optimized for the Mars surface solar spectrum, which is attenuated at shorter wavelengths due to scattering by the dusty atmosphere. The difference between the Mars surface spectrum and the AM0 spectrum increases with solar zenith angle and optical depth. The recent results of a program between JPL and Spectrolab to optimize GaInP/GaAs/Ge solar cells for Mars are presented. Initial characterization focuses on the solar spectrum at 60-degrees zenith angle at an optical depth of 0.5. The 60-degree spectrum is reduced to 1/6 of the AM0 intensity and is further reduced in the blue portion of the spectrum. JPL has modeled the Mars surface solar spectra, modified an X-25 solar simulator, and completed testing of Mars-optimized solar cells previously developed by Spectrolab with the modified X-25 solar simulator. Spectrolab has focused on the optimization of the higher efficiency Ultra Triple-Junction (UTJ) solar cell for Mars. The attenuated blue portion of the spectrum requires the modification of the top sub-cell in the GaInP/GaAs/Ge solar cell for improved current balancing in the triple-junction cell. Initial characterization confirms the predicted increase in power and current matched operation for the Mars surface 60-degree zenith angle solar spectrum.

  9. Silicon nanostructures for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Gourbilleau, F. [CIMAP, UMR CNRS/CEA/Ensicaen 6252, 6 Bd Marechal Juin, 14050 Caen Cedex (France)], E-mail: fabrice.gourbilleau@ensicaen.fr; Dufour, C. [CIMAP, UMR CNRS/CEA/Ensicaen 6252, 6 Bd Marechal Juin, 14050 Caen Cedex (France); Rezgui, B.; Bremond, G. [INL, UMR CNRS 5270, Universite de Lyon, INSA-Lyon, Bat. Blaise Pascal, 7 Av. Jean Capelle, 69621 Villeurbanne Cedex (France)

    2009-03-15

    Among the numerous applications of Si nanostructures in the microelectronic or photonic domains, one which could be promising concerns the use of such structures as the active layer in pin solar cells. By taking advantage of the quantum confinement of the carriers in Si nanograins whose size is lower than 8 nm, it is expected to improve the solar cell efficiency by increasing the absorption range of the solar spectrum. In this work, we report the fabrication, microstructural and optical properties of Si-rich silicon oxide (SRSO) composite layers and SRSO/SiO{sub 2} multilayers fabricated by reactive magnetron sputtering process. This process allows monitoring either the Si nanograins size and/or the Si nanograin density through specific deposition parameters such as the hydrogen rate in the plasma, the substrate temperature, the annealing treatment. Their effects on the photoluminescent properties as well as on the absorption coefficient are discussed. The SRSO/SiO{sub 2} multilayers absorption is higher with respect to the SRSO composite layer. Such behaviour has been attributed to a better control of the Si nanograin size.

  10. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators

    NARCIS (Netherlands)

    Farrell, D.J.; van Sark, W.G.J.H.M.; Velthuijsen, S.; Schropp, R.E.I.

    2010-01-01

    We have, for the first time, designed and fabricated hydrogenated amorphous silicon solar cells to be used in conjunction with Luminescent Solar Concentrators (LSCs). LSCs are planar plastic sheets doped with organic dyes that absorb solar illumination and down shift the energy to narrowband

  11. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  12. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Directory of Open Access Journals (Sweden)

    Yunfei Shang

    2015-10-01

    Full Text Available Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous, gallium arsenide (GaAs solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed

  13. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    Science.gov (United States)

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  14. Organic Solar Cells: Problems and Perspectives

    Directory of Open Access Journals (Sweden)

    G. Chidichimo

    2010-01-01

    Full Text Available For photovoltaic cells to convert solar into electric energy is probably the most interesting research challenge nowadays. A good efficiency of these devices has been obtained by using inorganic semiconductor materials. On the other hand, manufacture processes are very expensive in terms of both materials and techniques. For this reason organic-based photovoltaic (OPV cells are attracting the general attention because of the possible realization of more economical devices. Organic materials are abundant and easily handling. Unfortunately OPV cells efficiency is significantly lower than that of inorganic-based devices, representing a big point of weakness at the present. This is mainly due to the fact that organic semiconductors have a much higher band gap with respect to inorganic semiconductors. In addition, OPV cells are very susceptible to oxygen and water. In this paper we will describe some of the different approaches to the understanding and improving of organic photovoltaic devices.

  15. Electrochemical solar cells with two photoactive electrodes

    Science.gov (United States)

    Ti Tien, H.; Higgins, John

    1982-12-01

    One of the major goals of solar energy utilization is the photolysis of water. Energetic requirements make electrolysis cells driven by two-photon processes more efficient in the solar spectrum. We report a new design of this type: n-type SnO 2 made light-sensitive by dye Victoria Blue B (VBB) on the photoanode and meso-tetraphenylporphyrin (TPP) on the photocathode. Characteristics are photopotential more than 1 V and photocurrent 100 μA (while light irradiation 100 mW cm -2), and quantum efficiency greater than 1%. Of special interest is the mechanism that takes place at the pigmented SnO 2 electrodes. The VBB layer is considered as an n-type and TPP as a p-type organic semiconductor. The results are discussed in terms of a Schottky barrier model.

  16. OPTEC: A Cubesat for Solar Cell Calibration

    Science.gov (United States)

    Landis, Geoffrey; Hepp, Aloysius; Arutyunov, Dennis; White, Kelsey; Witsberger, Paul

    2014-01-01

    A new type of small spacecraft, the cubesat, has introduced a new concept for extremely small, low-cost missions into space. Cubesats are designed to be launched as secondary payloads on other missions, and are made up of unit elements (U) of size 10 cm by 10 cm by 10 cm, with a nominal mass of no more than 1.33 kg per U. We have designed a cubesat, OPTEC (Orbital Photovoltaic Testbed Cubesat) as a low-cost testbed to demonstrate, calibrate, and test solar cell technologies in space. Size of the cubesat is 2U (10x10x20cm, and the mass 2.66 kg. The cubesat deploys from the International Space Station into Low Earth Orbit at an altitude of about 420 km. Up to two 4x8cm test solar panels can be flown, with full I-V curves and temperature measurements taken.

  17. Modeling the Effects of Solar Cell Attitude Distribution on Optical Cross Section for Solar Panel Simulations

    Science.gov (United States)

    Feirstine, K.; Bush, K.; Crosher, C.; Klein, M.; Bowers, D.; Wellems, D.; Duggin, M.; Vaughn, L.

    2012-09-01

    The Air Force Research Laboratory (AFRL) Time-domain Analysis Simulation for Advanced Tracking (TASAT) was used to explore the variation of Optical Cross Section (OCS) with glint angle for a solar panel with different solar cell attitude distribution statistics. Simulations were conducted using a 3D model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of "solar cell" material is not appropriate for OCS glint studies. However, modeling each individual solar cell on the panel, the tips and tilts of which come from a distribution of specified statistics (distribution type, mean, and standard deviation), accurately captures the solar panel OCS with glint angle. The objective of the simulations was to vary the glint measurement angle about the maximum glint position of the solar panel and observe the variations in OCS with angle for a bi-static illumination condition. OCS was calculated relative to the simulated scattering of a Spectralon material in the glint orientation. Results show the importance of solar cell attitude distribution statistics in modeling the OCS observed for a solar panel.

  18. An interim report on the NTS-2 solar cell experiment

    Science.gov (United States)

    Statler, R. L.; Walker, D. H.

    1979-01-01

    Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.

  19. Applications of Laser Precisely Processing Technology in Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CuInSe2 solar cells, the buried contact silicon solar cells' electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40μm, the results have met solar cell's fabrication technology, and made finally the buried cells' conversion efficiency be improved from 18% to 21% .

  20. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  1. Simulation of an electrowetting solar concentration cell

    Science.gov (United States)

    Khan, Iftekhar; Rosengarten, Gary

    2015-09-01

    Electrowetting control of liquid lenses has emerged as a novel approach for solar tracking and concentration. Recent studies have demonstrated the concept of steering sunlight using thin electrowetting cells without the use of any bulky mechanical equipment. Effective application of this technique may facilitate designing thin and flat solar concentrators. Understanding the behavior of liquid-liquid and liquid-solid interface of the electrowetting cell through trial and error experimental processes is not efficient and is time consuming. In this paper, we present a simulation model to predict the liquid-liquid and liquid-solid interface behavior of electrowetting cell as a function of various parameters such as applied voltage, dielectric constant, cell size etc. We used Comsol Multiphysics simulations incorporating experimental data of different liquids. We have designed both two dimensional and three dimensional simulation models, which predict the shape of the liquid lenses. The model calculates the contact angle using the Young-Lippman equation and uses a moving mesh interface to solve the Navier-stokes equation with Navier slip wall boundary condition. Simulation of the electric field from the electrodes is coupled to the Young-Lippman equation. The model can also be used to determine operational characteristics of other MEMS electrowetting devices such as electrowetting display, optical switches, electronic paper, electrowetting Fresnel lens etc.

  2. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  3. Industrialization of polymer solar cells - phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, H.; Krebs, F.C. [Technical Univ. of Denmark. DTU Energy Conversion, DTU Risoe Campus, Roskilde (Denmark); Andersen, Rasmus B. [Mekoprint A/S, Stoevrimg (Denmark); Bork, J.; Bentzen, B.

    2012-03-15

    A three-phased project with the objective to industrialize DTU's basic polymer solar cell technology was started in the summer of 2009. The technology comprises a specific design of the polymer solar cell and a corresponding roll-to-roll manufacturing process. This basic technology is referred to as ProcessOne in the open literature. The present report relates to the project's phase 1.The key tasks in phase 1 are to stream-line DTU's tech-nology for the industrial utilization, to demonstrate production according to this stream-lined technology at Mekoprint A/S and finally to fertilize the market for polymer solar cells by demonstrating their use in appli-cations that harmonize with their present maturity level. The main focus in the stream-lining of DTU's technology has been to demonstrate a convincing rate of reduction for the production cost, and thereby make a competitive price plausible. This has been materialized as a learning curve showing that the polymer technology presently develops considerably faster than the silicon technology. The polymer solar cells will, under the assumption that both technologies follow a projection of the learning curve, gain a cost-leading position within a reasonable time. A production cost of 5 Euro/Wp has already been demonstrated in DTU's pilot plant, and a road map for the further decrease to 1 Euro/Wp is drawn. This target is expected to be reached in 2013 in the ongoing phase 2 of the project. Another activity essential for the industrialization has been the launch of specialized materials, equipment and services required for the processing of DTU's polymer solar cells. Relevant products and services are made available for sale on DTU's homepage, www.energyconversion.dtu.dk. A production line for polymer solar cells has been established at Mekoprint. For this a retrofit solution was chosen where the core of an existing screen-printing line was dismantled and fitted to a slot-die printing head manufactured in DTU's workshop

  4. Recent progress in stability of perovskite solar cells

    Science.gov (United States)

    Qin, Xiaojun; Zhao, Zhiguo; Wang, Yidan; Wu, Junbo; Jiang, Qi; You, Jingbi

    2017-01-01

    Perovskite solar cells have attracted significant attention in just the past few years in solar cell research fields, where the power conversion efficiency was beyond 22.1%. Now, the most important challenge for perovskite solar cells in practical applications is the stability issue. In this mini-review, we will summarize the degradation mechanism of perovskite solar cells, including the perovskite material itself and also the interfaces. While we also provide our opinion on improving the stability of perovskite solar cells. Project supported by China Huaneng Group Project High Performance Perovskite Solar Cells (No. TW-15-HJK01), the National Key Research and Development Program of China (No. 2016YFB0700700), the National 1000 Young Talent Awards, and the National Natural Science Foundation of China (No. 61574133).

  5. Advantages of thin silicon solar cells for use in space

    Science.gov (United States)

    Denman, O. S.

    1978-01-01

    A system definition study on the Solar Power Satellite System showed that a thin, 50 micrometers, silicon solar cell has significant advantages. The advantages include a significantly lower performance degradation in a radiation environment and high power-to-mass ratios. The advantages of such cells for an employment in space is further investigated. Basic questions concerning the operation of solar cells are considered along with aspects of radiation induced performance degradation. The question arose in this connection how thin a silicon solar cell had to be to achieve resistance to radiation degradation and still have good initial performance. It was found that single-crystal silicon solar cells could be as thin as 50 micrometers and still develop high conversion efficiencies. It is concluded that the use of 50 micrometer silicon solar cells in space-based photovoltaic power systems would be advantageous.

  6. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  7. Investigation of Indoor Stability Testing of Polymer Solar Cell

    Directory of Open Access Journals (Sweden)

    Pelin Kavak

    2016-01-01

    Full Text Available We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT. We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h. PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.

  8. Intensity modulated short circuit current spectroscopy for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavasoglu, Nese; Sertap Kavasoglu, A.; Birgi, Ozcan; Oktik, Sener [Mugla University, Faculty of Arts and Sciences, Physics Department, TR-48000 Mugla (Turkey); Mugla University Clean Energy Research and Development Centre, TR-48000 Mugla (Turkey)

    2011-02-15

    Understanding charge separation and transport is momentously important for the rectification of solar cell performance. To probe photo-generated carrier dynamics, we implemented intensity modulated short circuit current spectroscopy (IMSCCS) on porous Si and Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells. In this experiment, the solar cells were lightened with sinusoidally modulated monochromatic light. The photocurrent response of the solar cell as a function of modulation frequency is measured as the optoelectronic transfer function of the system. The optoelectronic transfer function introduces the connection between the modulated light intensity and measured AC current of the solar cell. In this study, interaction of free carriers with the density of states of the porous Si and Cu(In{sub x}, Ga{sub 1-x})Se{sub 2} solar cells was studied on the basis of charge transport time by IMSCCS data. (author)

  9. Studies of silicon p-n junction solar cells

    Science.gov (United States)

    Neugroschel, A.; Lindholm, F. A.

    1979-01-01

    To provide theoretical support for investigating different ways to obtain high open-circuit voltages in p-n junction silicon solar cells, an analytical treatment of heavily doped transparent-emitter devices is presented that includes the effects of bandgap narrowing, Fermi-Dirac statistics, a doping concentration gradient, and a finite surface recombination velocity at the emitter surface. Topics covered include: (1) experimental determination of bandgap narrowing in the emitter of silicon p-n junction devices; (2) heavily doped transparent regions in junction solar cells, diodes, and transistors; (3) high-low-emitter solar cell; (4) determination of lifetimes and recombination currents in p-n junction solar cells; (5) MOS and oxide-charged-induced BSF solar cells; and (6) design of high efficiency solar cells for space and terrestrial applications.

  10. Applications of Fluorogens with Rotor Structures in Solar Cells

    Directory of Open Access Journals (Sweden)

    Kok-Haw Ong

    2017-05-01

    Full Text Available Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  11. Solar Cell Nanotechnology Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Das, Biswajit [Univ. of Nevada, Las Vegas, NV (United States)

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arrays of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the

  12. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells

    OpenAIRE

    Kyu-Tae Lee; L. Jay Guo; Hui Joon Park

    2016-01-01

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite “islands” and transparent electrodes—the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency—are investigated. Moreover, the perovskite...

  13. Nanoscale dimples for improved absorption in organic solar cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    Organic solar cells (OSC’s) have attracted much attention in the past years due to their potential low-cost, light-weight and mechanical flexibility. A method for improving the power conversion efficiencies of the devices is by incorporating structured electrodes in the solar cell architecture, a...... ordered and discorded dimple arrangement and their contribution to light management is presented. Such dimples can later be employed to fabricate nanostructured electrodes in P3HT/PCBM organic solar cells....

  14. Forecasting the Development of Different Solar Cell Technologies

    OpenAIRE

    Arturo Morales-Acevedo; Gaspar Casados-Cruz

    2013-01-01

    Solar cells are made of several materials and device structures with the main goal of having maximum efficiency at low cost. Some types of solar cells have shown a rapid efficiency progress whereas others seem to remain constant as a consequence of different factors such as the technological and economic ones. Using information published by the National Renewable Energy Laboratory (NREL) about the increase of solar cells record efficiency, we apply a simple mathematical model to estimate the ...

  15. Applicability of the Meyer-Neldel rule to solar cells

    Science.gov (United States)

    Goradia, C.; Weizer, V. G.

    1984-01-01

    A comparison of data taken on high quality silicon, GaAs, and GaInAs solar cells with those taken on a variety of homojunction, heterojunction, and metal-insulator-semiconductor devices indicates that while the Meyer-Neldel rule may be applicable to certain types of solar cells it is not applicable to well-behaved, diffusion-controlled homojunction devices. It cannot be used, therefore, as a universal rule to predict maximum achievable solar cell voltages.

  16. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    Science.gov (United States)

    2015-02-09

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...band solar cell incorporating low dimensional structures made with dilute nitrogen alloys of III-V semiconductors is investigated theoretically and

  17. Electro-optics of perovskite solar cells

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Nagiri, Ravi Chandra Raju; Burn, Paul L.; Meredith, Paul

    2015-02-01

    Organohalide-perovskite solar cells have emerged as a leading next-generation photovoltaic technology. However, despite surging efficiencies, many questions remain unanswered regarding the mechanisms of operation. Here we report a detailed study of the electro-optics of efficient CH3NH3PbI3-perovskite-only planar devices. We report the dielectric constants over a large frequency range. Importantly, we found the real part of the static dielectric constant to be ∼70, from which we estimate the exciton-binding energy to be of order 2 meV, which strongly indicates a non-excitonic mechanism. Also, Jonscher's Law behaviour was consistent with the perovskite having ionic character. Accurate knowledge of the cell's optical constants allowed improved modelling and design, and using this information we fabricated an optimized device with an efficiency of 16.5%. The optimized devices have ∼100% spectrally flat internal quantum efficiencies and minimal bimolecular recombination. These findings establish systematic design rules to achieve silicon-like efficiencies in simple perovskite solar cells.

  18. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  19. Simulation of Organic Solar Cells Using AMPS-1D Program

    Directory of Open Access Journals (Sweden)

    Samah G. Babiker

    2012-03-01

    Full Text Available The analysis of microelectronic and photonic structure in one dimension program [AMPS-1D] program has been successfully used to study inorganic solar cells. In this work the program has been used to optimize the performance of the organic solar cells. The cells considered consist of poly(2-methoxy-5-(3,7- dimethyloctyloxy-1,4-phenylenevinylene [MDMO-PPV

  20. Silicon bulk growth for solar cells: Science and technology

    Science.gov (United States)

    Kakimoto, Koichi; Gao, Bing; Nakano, Satoshi; Harada, Hirofumi; Miyamura, Yoshiji

    2017-02-01

    The photovoltaic industry is in a phase of rapid expansion, growing by more than 30% per annum over the last few decades. Almost all commercial solar cells presently use single-crystalline or multicrystalline silicon wafers similar to those used in microelectronics; meanwhile, thin-film compounds and alloy solar cells are currently under development. The laboratory performance of these cells, at 26% solar energy conversion efficiency, is now approaching thermodynamic limits, with the challenge being to incorporate these improvements into low-cost commercial products. Improvements in the optical design of cells, particularly in their ability to trap weakly absorbed light, have also led to increasing interest in thin-film cells based on polycrystalline silicon; these cells have advantages over other thin-film photovoltaic candidates. This paper provides an overview of silicon-based solar cell research, especially the development of silicon wafers for solar cells, from the viewpoint of growing both single-crystalline and multicrystalline wafers.

  1. [Advances in microbial solar cells--A review].

    Science.gov (United States)

    Guo, Xiaoyun; Yu, Changping; Zheng, Tianling

    2015-08-04

    The energy crisis has become one of the major problems hindering the development of the world. The emergence of microbial fuel cells provides a new solution to the energy crisis. Microbial solar cells, integrating photosynthetic organisms such as plants and microalgae into microbial fuel cells, can convert solar energy into electrical energy. Microbial solar cell has steady electric energy, and broad application prospects in wastewater treatment, biodiesel processing and intermediate metabolites production. Here we reviewed recent progress of microbial solar cells from the perspective of the role of photosynthetic organisms in microbial fuel cells, based on a vast amount of literature, and discussed their advantages and deficiency. At last, brief analysis of the facing problems and research needs of microbial fuel cells are undertaken. This work was expected to be beneficial for the application of the microbial solar cells technology.

  2. Plastic solar cell interface and morphological characterization

    Science.gov (United States)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and

  3. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  4. Transmutation doping of silicon solar cells

    Science.gov (United States)

    Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.

    1977-01-01

    Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.

  5. Novel Flexible Plastic-Based Solar Cells

    Science.gov (United States)

    2012-10-19

    different types of solar cells: 1) Synthesis of hole transporting low band gap polymers, development of ligand exchange in a nanocomposite, and...a) Energy band diagram of the device structure, (b) The SEM image of the cross section of the devices, (c) I-V characteristics of the TiO2 -PbS... band gap polymers have been investigated to exhibit PCE as high as 8~9% with a PCBM derivative (PC71BM). As a replacement of a typical organic

  6. Recombination in quantum dot sensitized solar cells.

    Science.gov (United States)

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Gómez, Roberto; Shen, Qing; Toyoda, Taro; Bisquert, Juan

    2009-11-17

    Quantum dot sensitized solar cells (QDSCs) have attracted significant attention as promising third-generation photovoltaic devices. In the form of quantum dots (QDs), the semiconductor sensitizers have very useful and often tunable properties; moreover, their theoretical thermodynamic efficiency might be as high as 44%, better than the original 31% calculated ceiling. Unfortunately, the practical performance of these devices still lags behind that of dye-sensitized solar cells. In this Account, we summarize the strategies for depositing CdSe quantum dots on nanostructured mesoporous TiO(2) electrodes and discuss the methods that facilitate improvement in the performance and stability of QDSCs. One particularly significant factor for solar cells that use polysulfide electrolyte as the redox couple, which provides the best performance among QDSCs, is the passivation of the photoanode surface with a ZnS coating, which leads to a dramatic increase of photocurrents and efficiencies. However, these solar cells usually show a poor current-potential characteristic, so a general investigation of the recombination mechanisms is required for improvements. A physical model based on recombination through a monoenergetic TiO(2) surface state that takes into account the effect of the surface coverage has been developed to better understand the recombination mechanisms of QDSCs. The three main methods of QD adsorption on TiO(2) are (i) in situ growth of QDs by chemical bath deposition (CBD), (ii) deposition of presynthesized colloidal QDs by direct adsorption (DA), and (iii) deposition of presynthesized colloidal QDs by linker-assisted adsorption (LA). A systematic investigation by impedance spectroscopy of QDSCs prepared by these methods showed a decrease in the charge-transfer resistance and increased electron lifetimes for CBD samples; the same result was found after ZnS coating because of the covering of the TiO(2) surface. The increase of the lifetime with the ZnS treatment

  7. Nanoparticles and nanoimaging for organic solar cells

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind

    to a water based ink would provide a production environment without toxic fumes from organic solvents and the nanoparticle structure would provide additional morphological control. The first part of the dissertation maps photodegradation in active layers cast from organic solvents. Reduction in degradation...... in photoactive Landfester nanoparticles. The dispersed particles are characterized by size, internal structure and crystallinity. Crystal orientation and spatial distribution of materials are quantified for cast layers of Landfester particles. A layer of particles is also investigated in a tandem solar cell...

  8. Method of fabricating bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J; Chiu, Philip T; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2014-10-07

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  9. Dye solar cell research: EU delegation presentation

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-09

    Full Text Available stream_source_info Cummings1_2009.pdf.txt stream_content_type text/plain stream_size 3236 Content-Encoding UTF-8 stream_name Cummings1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 DYE SOLAR CELL RESEARCH... Franscious Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 13 November 2009 © CSIR 2007 www.csir.co.za CONTENT head2right...

  10. Large area perovskite solar cell module

    Science.gov (United States)

    Cai, Longhua; Liang, Lusheng; Wu, Jifeng; Ding, Bin; Gao, Lili; Fan, Bin

    2017-01-01

    The recent dramatic rise in power conversion efficiencies (PCE) of perovskite solar cells has triggered intense research worldwide. However, their practical development is hampered by poor stability and low PCE values with large areas devices. Here, we developed a gas-pumping method to avoid pinholes and eliminate local structural defects over large areas of perovskite film, even for 5 × 5 cm2 modules, the PCE reached 10.6% and no significant degradation was found after 140 days of outdoor testing. Our approach enables the realization of high performance large-area PSCs for practical application.

  11. Flexible solar cells based on curved surface nano-pyramids

    Science.gov (United States)

    Shrestha, Anil; Mizuno, Genki; Oduor, Patrick; Dutta, Achyut K.; Dhar, Nibir K.; Lewis, Jay

    2016-05-01

    The advent of ultrathin crystalline silicon (c-Si) solar cells has significantly reduced the cost of silicon solar cells by consuming less material. However, the very small thickness of ultrathin solar cells poses a challenge to the absorption of sufficient light to provide efficiency that is competitive to commercial solar cells. Light trapping mechanisms utilizing nanostructure technologies have been utilized to alleviate this problem. Unfortunately, a significant portion of light is still being lost even before entering the solar cells because of reflection. Different kinds of nanostructures have been employed to reduce reflection from solar cells, but reflection losses still prevail. In an effort to reduce reflection loss, we have used an array of modified nanostructures based cones or pyramids with curved sides, which matches the refractive index of air to that of silicon. Moreover, use of these modified nano-pyramids provides a quintic (fifth power) gradient index layer between air and silicon, which significantly reduces reflection. The solar cells made of such nanostructures not only significantly increase conversion efficiency at reduced usage of crystalline silicon material (e.g. thinner), but it also helps to make the c-Si based solar cell flexible. Design and optimization of flexible c-Si solar cell is presented in the paper.

  12. Stability and Degradation of Organic and Polymer Solar Cells

    DEFF Research Database (Denmark)

    Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability...... during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art...

  13. Organic solar cells theory, experiment, and device simulation

    CERN Document Server

    Tress, Wolfgang

    2014-01-01

    This book covers in a textbook-like fashion the basics or organic solar cells, addressing the limits of photovoltaic energy conversion and giving a well-illustrated introduction to molecular electronics with focus on the working principle and characterization of organic solar cells. Further chapters based on the author's dissertation focus on the electrical processes in organic solar cells by presenting a detailed drift-diffusion approach to describe exciton separation and charge-carrier transport and extraction. The results, although elaborated on small-molecule solar cells and with focus on

  14. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  15. Graphene-Based Bulk-Heterojunction Solar Cells: A Review.

    Science.gov (United States)

    Singh, Eric; Nalwa, Hari Singh

    2015-09-01

    The current highest power-conversion efficiencies found for different types of solar cell devices range from 20% to 46%, depending on the nature of the photovoltaic materials used and device configuration. Graphene has emerged as an important organic photovoltaic material for photoenergy conversion, where graphene can be used as a transparent electrode, active interfacial layer, electron transport layer, hole transport layer, or electron/hole separation layer in fabricating solar cell devices. This review article briefly discusses some recent advances made in different types of photovoltaic materials, and then summarizes the current status of graphene-based bulk-heterojunction (BHJ) solar cells, including graphene-containing perovskite and tandem solar cell devices. Power-conversion efficiencies currently exceed 10% for heteroatom-doped multilayer graphene-based BHJ solar cells and 15.6% for graphene-containing perovskite-based solar cells. The role of graphene layer thickness, bending, thermal annealing, passivation, heteroatom doping, perovskite materials, and tandem solar cell structure on the photovoltaic performance of graphene-based solar cells is discussed. Besides aiming for high power-conversion efficiency, factors such as long-term environmental stability and degradation, and the cost-effectiveness of graphene-based solar cells for large-scale commercial production are challenging tasks.

  16. Nanostructured InGaP Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The operating conditions of conventional multijunction solar cells are severely limited by the current matching requirements of serially connected devices. The goal...

  17. Erroneous efficiency reports harm organic solar cell research

    Science.gov (United States)

    Zimmermann, Eugen; Ehrenreich, Philipp; Pfadler, Thomas; Dorman, James A.; Weickert, Jonas; Schmidt-Mende, Lukas

    2014-09-01

    Mischaracterization of solar cell power conversion efficiencies and widespread publication of inconsistent data in scientific journals threatens to undermine progress in organic and hybrid photovoltaics research.

  18. Design of solar cell lighting and sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Khaing, A.A. [Mandalay Technological Univ., Mandalay (Myanmar); Ministry of Science, Yangon (Myanmar)

    2008-07-01

    A solar cell lighting and sun tracking system was discussed and the characteristics of solar cells were studied. An SM50H solar module was analyzed with a maximum power rating of 50 W and a current rate of 3.15 A. The main components of the system include solar cells, charged controllers, and a sun tracking system. The solar tracker is an automatic control system designed to track the solar modules in relation to the sun's direction. A linear drive actuator was used to track the modules with an energy consumption rate between 24 and 36 DC voltages. Power output solar cell equations were presented along with a review of batteries used for stationary and portable solar energy equipment. Issues related to cost of tracking systems were discussed. System sizing recommendations were provided, and solar cell design requirements were reviewed. A comparison of tracking and fixed solar energy systems was presented for a day in Yangon, Myanmar. It was concluded that solar tracking systems can be used to provide energy in rural and remote areas. 18 refs., 4 tabs., 5 figs.

  19. How the relative permittivity of solar cell materials influences solar cell performance

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole

    2017-01-01

    The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect of ...

  20. A Solar Cell That Is Triggered by Sun and Rain.

    Science.gov (United States)

    Tang, Qunwei; Wang, Xiaopeng; Yang, Peizhi; He, Benlin

    2016-04-18

    All-weather solar cells are promising in solving the energy crisis. A flexible solar cell is presented that is triggered by combining an electron-enriched graphene electrode with a dye-sensitized solar cell. The new solar cell can be excited by incident light on sunny days and raindrops on rainy days, yielding an optimal solar-to-electric conversion efficiency of 6.53 % under AM 1.5 irradiation and current over microamps as well as a voltage of hundreds of microvolts by simulated raindrops. The formation of π-electron|cation electrical double-layer pseudocapacitors at graphene/raindrop interface is contributable to current and voltage outputs at switchable charging-discharging process. The new concept can guide the design of advanced all-weather solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    OpenAIRE

    Yu Kehan; Chen Junhong

    2008-01-01

    Abstract The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar ce...

  2. Solar Cell Fabrication Studies Pertinent to Developing Countries.

    Science.gov (United States)

    Prah, Joseph Henry

    That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell

  3. E. coli cells adaptation to solar environment

    Energy Technology Data Exchange (ETDEWEB)

    Favre, A. [Institute J. Monod, Paris (France)

    1997-12-31

    Full text. Photo mutagenesis of E.coli cells exposed to solar light results essentially from the combined effect of its U V C, U V B and U V A components. The high photo mutagenic efficiency of UVC is known to be hampered when the cells have been pre illuminated with near UV light. Near UV light triggers the growth delay effect at sublethal fluences ( and reveals poorly mutagenic). The chromophore leading to this growth lag effect is a rare nucleoside, 4-thio uridine s4U, present only in position 8 of E. coli tRNAs. Upon photo activation s4U led to formation of an intramolecular 8-13 crosslink in a number of tRNA species, including tRNAphe and tRNApro. These two crosslinked Trna species can no more be efficiently acylated by their corresponding tRNa ligases and accumulate on the uncharged from thus preventing protein synthesis, and effect amplified by the so called stringent response. Accordingly nuvA mutant cells no more exhibit growth delay UVC induced mutagenesis involves activation of the inducible error-prone SOS system which requires protein synthesis. By compacting the level of expression of the SOS gene sfiA (using a sfiA:lacZ fusion) in wild-type and nuvA mutant cells submitted to combined UVC, UVA radiations, we have demonstrated that indeed 4-thio uridine behaves as an anti photo mutagenic device. Adaptation of E. coli cell to its solar environment will be discussed in the light of this finding

  4. Reducing the Cost of Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, B.

    2012-04-01

    Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lost as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is

  5. A three solar cell system based on a self-supporting, transparent AlGaAs top solar cell

    Science.gov (United States)

    Negley, Gerald H.; Rhoads, Sandra L.; Terranova, Nancy E.; Mcneely, James B.; Barnett, Allen M.

    1989-01-01

    Development of a three solar cell stack can lead to practical efficiencies greater than 30 percent (1x,AM0). A theoretical efficiency limitation of 43.7 percent at AM0 and one sun is predicted by this model. Including expected losses, a practical system efficiency of 36.8 percent is anticipated. These calculations are based on a 1.93eV/1.43eV/0.89eV energy band gap combination. AlGaAs/GaAs/GaInAsP materials can be used with a six-terminal wiring configuration. The key issues for multijunction solar cells are the top and middle solar cell performance and the sub-bandgap transparency. AstroPower has developed a technique to fabricate AlGaAs solar cells on rugged, self-supporting, transparent AlGaAs substrates. Top solar cell efficiencies greater than 11 percent AM0 have been achieved. State-of-the-art GaAs or InP devices will be used for the middle solar cell. GaInAsP will be used to fabricate the bottom solar cell. This material is lattice-matched to InP and offers a wide range of bandgaps for optimization of the three solar cell stack. Liquid phase epitaxy is being used to grow the quaternary material. Initial solar cells have shown open-circuit voltages of 462 mV for a bandgap of 0.92eV. Design rules for the multijunction three solar cell stack are discussed. The progress in the development of the self-supporting AlGaAs top solar cell and the GaInAsP bottom solar cell is presented.

  6. Serigraphy materialization of bi facial solar cells; Metalizacao serigrafica de celulas solares bifaciais

    Energy Technology Data Exchange (ETDEWEB)

    Moehlecke, Adriano; Zanesco, Izete; Mallmann, Ana P.; Eberhardt, Dario; Pereira, Gabriel F. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Centro Brasileiro para Desenvolvimento da Energia Solar Fotovoltaica - CB-Solar]. E-mail: moehleck@pucrs.br

    2006-07-01

    This paper presents the low cost metallization process, based on serigraphy, for the fabrication of bifacial solar cells, optimizing the metallic patches project and the solar cell considering the serigraphic pastes, projected and manufactured a metallization mask, and implanted a screen-printer.

  7. Photosensitizers from Spirulina for Solar Cell

    Directory of Open Access Journals (Sweden)

    Liqiu Wang

    2014-01-01

    Full Text Available Spirulina is a kind of blue-green algae with good photosynthetic efficiency and might be used for photovoltaic power generation. So this paper used living spirulina as novel photosensitizer to construct spirulina biosolar cell. The results showed that spirulina had the photoelectric conversion effect, and could let the spirulina biosolar cell have 70 μA photocurrent. Meanwhile, adding glucose sucrose or chitosan in the spirulina anode chamber, they could make the maxima current density of the cell greatly increased by 80 μA, 100 μA, and 84 μA, respectively, and the sucrose could improve the maximum power density of the cell to 63 mW/m−2. Phycobiliprotein played an important role in the photosynthesis of spirulina. So in this paper phycobiliprotein was extracted from spirulina to composite with squaraine dye to sensitize nanocrystalline TiO2 photoanode for building dye sensitized solar cell, and the photoelectric properties of the cell also were investigated.

  8. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    Science.gov (United States)

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  9. Nanobump assembly for plasmonic organic solar cells

    Science.gov (United States)

    Song, Hyung-Jun; Jung, Kinam; Lee, Gunhee; Ko, Youngjun; Lee, Jong-Kwon; Choi, Mansoo; Lee, Changhee

    2014-10-01

    We demonstrate novel plasmonic organic solar cells (OSCs) by embedding an easy processible nanobump assembly (NBA) for harnessing more light. The NBA is consisted of precisely size-controlled Ag nanoparticles (NPs) generated by an aerosol process at atmospheric pressure and thermally deposited molybdenum oxide (MoO3) layer which follows the underlying nano structure of NPs. The active layer, spin-casted polymer blend solution, has an undulated structure conformably covering the NBA structure. To find the optimal condition of the NBA structure for enhancing light harvest as well as carrier transfer, we systematically investigate the effect of the size of Ag NPs and the MoO3 coverage on the device performance. It is observed that the photocurrent of device increases as the size of Ag NP increases owing to enhanced plasmonic and scattering effect. In addition, the increased light absorption is effectively transferred to the photocurrent with small carrier losses, when the Ag NPs are fully covered by the MoO3 layer. As a result, the NBA structure consisted of 40 nm Ag NPs enclosed by 20 nm MoO3 layer leads to 18% improvement in the power conversion efficiency compared to the device without the NBA structure. Therefore, the NBA plasmonic structure provides a reliable and efficient light harvesting in a broad range of wavelength, which consequently enhances the performance of organic solar cells.

  10. Sensitizers for Aqueous-Based Solar Cells.

    Science.gov (United States)

    Li, Chun-Ting; Lin, Ryan Yeh-Yung; Lin, Jiann T

    2017-03-02

    Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.

  11. Graphene applications in Schottky barrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lancellotti, L., E-mail: laura.lancellotti@enea.it [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Polichetti, T.; Ricciardella, F. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Tari, O., E-mail: orlando.tari@unina.it [University of Naples ' Federico II' , Dept. of Electronic Engineering, Via Claudio 21, 80125 Napoli (Italy); Gnanapragasam, S. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy); Daliento, S. [University of Naples ' Federico II' , Dept. of Electronic Engineering, Via Claudio 21, 80125 Napoli (Italy); Di Francia, G. [ENEA Research Centre Portici, Piazzale E. Fermi 1, 80055 Portici (Napoli) (Italy)

    2012-11-01

    We report a theoretical study about the performances of graphene on semiconductor Schottky barrier solar cells with the aim to show the potentiality of this kind of device. The simulations are carried by a generalized equivalent circuit model, where the circuital parameters are strictly dependent on the physical properties of the graphene and semiconductor which form the Schottky junction. We have realized graphene samples and characterized them by optical and atomic force microscopy, and Raman spectroscopy. Capacitance-voltage measurements have been made on some 'ad hoc' graphene based devices in order to obtain graphene workfunction, a very essential physical parameter. The estimated value is compatible with four layer graphene. This result is in agreement with the morphological characterizations of our material. - Highlights: Black-Right-Pointing-Pointer An equivalent circuit model simulates graphene based Schottky barrier solar cells. Black-Right-Pointing-Pointer Graphene flakes are identified through Raman spectroscopy and Atomic Force Microscopy. Black-Right-Pointing-Pointer Workfunction estimation by Capacitance-Voltage (C-V) on graphene based devices Black-Right-Pointing-Pointer A multilayered structure is evidenced by morphological and C-V characterization.

  12. Solar energy from spinach and toothpaste: fabrication of a solar cell in schools

    Science.gov (United States)

    Siemsen, F.; Bunk, A.; Fischer, K.; Korneck, F.; Engel, H.; Roux, D.

    1998-01-01

    We will show how pupils can make a solar cell with spinach, toothpaste and a few other items found in any school laboratory. This device is called a Graetzel cell, and could trigger off a revolution in photovoltaic technology.

  13. Dendritic web silicon for solar cell application

    Science.gov (United States)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  14. TEMPERATUREEFFECT OFELECTRICALPROPERTIES OF CIGS SOLAR CELL

    Directory of Open Access Journals (Sweden)

    A. M. Ferouani

    2015-07-01

    Full Text Available In this paper we are interested in studying the copper–indium–gallium–selenium (CIGS solar cells sandwiched between cadmium sulfide (CdS and ZnO as buffer layers, and Molybdenum (Mo. Thus, we report our simulation results using the capacitance simulator (SCAPS in terms of layer thickness, absorber layer band gap and operating temperature to find out the optimum choice. An efficiency of 20.61% (with Voc of 635.2mV, Jsc of 44.08 mA/cm2 and fill factor of 0.73 has been achieved with CdS used as buffer layer as the reference case. It is also found that the high efficiency CIGS cells with the low temperature were a very high efficiency conversion.

  15. Bulk heterojunction solar cells of three polythienothiophenes

    Directory of Open Access Journals (Sweden)

    Elif Alturk Parlak

    2015-06-01

    Full Text Available Semiconducting conjugated copolymers poly(3-phenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh, poly(3-(4-methoxyphenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-OMe and poly(3-(4-N,N-dimethylaminophenyl-2-(thiophen-2-ylthieno[3,2-b]thiophene (PTTPh-N(CH 3 2, which were synthesized previously through Suzuki coupling method, were fabricated for solar cell applications. The devices had a structure of glass/ITO/PEDOT:PSS/polymer:PC61BM/Al. Bulk heterojunction photovoltaic cells were prepared as blends of PTTPh, PTTPh-OMe, PTTPh-N(CH 3 2 and PC61BM in a 1:1 ratio, which delivered power conversion efficiencies of 0.43%, 0.039% and 0.027%, respectively, without addition of additives or device optimization.

  16. Using amorphous silicon solar cells to boost the viability of luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Daniel J. [Physics Department, Imperial College London, South Kensington campus, SW7 2AZ, London (United Kingdom); Sark, Wilfried G.J.H.M. van [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands); Utrecht University, Copernicus Institute for Sustainable Development and Innovation, Science, Technology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Velthuijsen, Steven T.; Schropp, Ruud E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Devices, P.O. Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-15

    We have, for the first time, designed and fabricated hydrogenated amorphous silicon solar cells to be used in conjunction with Luminescent Solar Concentrators (LSCs). LSCs are planar plastic sheets doped with organic dyes that absorb solar illumination and down shift the energy to narrowband luminescence which is collected by solar cells attached to the sheet edge. We fabricated an LSC module with two bonded solar cells and performed characterisation with the cells connected in series and parallel configurations. We find that the LSC module has an optical collection efficiency of 9.5% and an optimum power conversion efficiency of approaching 1% when the cells are in a parallel connection. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Review of Polymer, Dye-Sensitized, and Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Mohd-Nasir

    2014-01-01

    Full Text Available The combination of inorganic nanoparticles semiconductor, conjugated polymer, and dye-sensitized in a layer of solar cell is now recognized as potential application in developing flexible, large area, and low cost photovoltaic devices. Several conjugated low bandgap polymers, dyes, and underlayer materials based on the previous studies are quoted in this paper, which can provide guidelines in designing low cost photovoltaic solar cells. All of these materials are designed to help harvest more sunlight in a wider range of the solar spectrum besides enhancing the rate of charge transfer in a device structure. This review focuses on developing solid-state dye-synthesized, polymer, and hybrid solar cells.

  18. Metal Matrix Composite Solar Cell Metallization

    Directory of Open Access Journals (Sweden)

    Wilt David M.

    2017-01-01

    Full Text Available Advanced solar cells are moving to ever thinner formats in order to save mass and in some cases improve performance. As cells are thinned, the possibility that they may fracture or cleave due to mechanical stresses is increased. Fractures of the cell can degrade the overall device performance if the fracture propagates through the contact metallization, which frequently occurs. To address this problem, a novel semiconductor metallization system based on multi-walled carbon nanotube (CNT reinforcement, termed metal matrix composite (MMC metallization is under investigation. Electro-mechanical characterization of MMC films demonstrate their ability to provide electrical conductivity over >40 micron wide cracks in the underlying semiconductor, with the carbon nanotubes bridging the gap. In addition, these materials show a “self-healing” behaviour, electrically reconnecting at ~30 microns when strained past failure. Triple junction (TJ space cells with MMC metallization demonstrated no loss in Jsc after intentional fracture, whereas TJ cells with conventional metallization suffer up to 50% Jsc loss.

  19. Efficiency improvement of silicon nanostructure-based solar cells.

    Science.gov (United States)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-24

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  20. Detailed balance limit of the efficiency of tandem solar cells

    Science.gov (United States)

    de Vos, A.

    1980-05-01

    The fundamental (detailed balance) limit of the performance of a tandem structure is presented. The model takes into account the fact that a particular cell is not only illuminated by part of the solar irradiance but also by the electroluminescence of other cells of the set. Whereas under 1 sun irradiance a single solar cell only converts 30% of the solar energy, a tandem structure of two cells can convert 42%, a tandem structure of three cells can convert 49%, etc. Under the highest possible light concentration, these efficiencies are 40% (one cell), 55% (two cells), 63% (three cells), etc. The model also allows one to predict the ideal efficiency of a stack with an infinite number of solar cells. Such a tandem system can convert 68% of the unconcentrated sunlight, and 86% of the concentrated sunlight.

  1. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Internal and External Light Trapping for Solar Cells and Modules

    OpenAIRE

    Dijk, L. van

    2016-01-01

    Renewable energy resources are essential to realize a sustainable society and a clean environment. In virtually all energy scenarios, solar power will supply a significant share of the world energy demand within a few decades. This energy transition can be significantly supported and accelerated when the power conversion efficiency of solar cells improves. This will bring down the cost per delivered unit of energy and thereby solar cells become even more financially competitive with burning f...

  3. Experiment Based Teaching of Solar Cell Operation and Characterization Using the SolarLab Platform

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2014-01-01

    Experiment based teaching methods are a great way to get students involved and interested in almost any topic. This paper presents such a hands-on approach for teaching solar cell operation principles along with characterization and modelling methods. This is achieved with the SolarLab platform...... interfaces for exploring different solar cell principles and topics. The exercises presented in the current paper have been adapted from the original exercises developed for the SolarLab platform and are currently included in the Photovoltaic Power Systems courses (MSc and PhD level) taught at the Department...

  4. SEMICONDUCTOR DEVICES: Optimization of grid design for solar cells

    Science.gov (United States)

    Wen, Liu; Yueqiang, Li; Jianjun, Chen; Yanling, Chen; Xiaodong, Wang; Fuhua, Yang

    2010-01-01

    By theoretical simulation of two grid patterns that are often used in concentrator solar cells, we give a detailed and comprehensive analysis of the influence of the metal grid dimension and various losses directly associated with it during optimization of grid design. Furthermore, we also perform the simulation under different concentrator factors, making the optimization of the front contact grid for solar cells complete.

  5. Control Device for Temperature Characteristics of a Solar Cell

    Directory of Open Access Journals (Sweden)

    N.I. Slipchenko

    2013-10-01

    Full Text Available The device for measuring of the temperature coefficients of the photovoltaic characteristics of a solar cell is developed. This device provides a real-time monitoring and study of the energy and photovoltaic parameters of a solar cells and its temperature dependence.

  6. Plasmonic light trapping in thin-film Si solar cells

    NARCIS (Netherlands)

    Spinelli, P.; Ferry, V.E.; van de Groep, J.; van Lare, M.; Verschuuren, M.A.; Schropp, R.E.I.; Atwater, H.A.; Polman, A.

    2011-01-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in whic

  7. Control Device for Temperature Characteristics of a Solar Cell

    OpenAIRE

    N.I. Slipchenko; V.A. Pismenetskiy; N.V. Gerasimenko; A.D. Sheremet`ev

    2013-01-01

    The device for measuring of the temperature coefficients of the photovoltaic characteristics of a solar cell is developed. This device provides a real-time monitoring and study of the energy and photovoltaic parameters of a solar cells and its temperature dependence.

  8. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  9. Applications of ``PV Optics`` for solar cell and module design

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Madjdpour, J.; Chen, W. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper describes some applications of a new optics software package, PV Optics, developed for the optical design of solar cells and modules. PV Optics is suitable for the analysis and design of both thick and thin solar cells. It also includes a feature for calculation of metallic losses related to contacts and back reflectors.

  10. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  11. Nanostructured Dielectric Layer for Ultrathin Crystalline Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yusi Chen

    2017-01-01

    Full Text Available Nanostructures have been widely used in solar cells due to their extraordinary photon management properties. However, due to poor pn junction quality and high surface recombination velocity, typical nanostructured solar cells are not efficient compared with the traditional commercial solar cells. Here, we demonstrate a new approach to design, simulate, and fabricate whole-wafer nanostructures on dielectric layer on thin c-Si for solar cell light trapping. The optical simulation results show that the periodic nanostructure arrays on dielectric materials could suppress the reflection loss over a wide spectral range. In addition, by applying the nanostructured dielectric layer on 40 μm thin c-Si, the reflection loss is suppressed to below 5% over a wide spectra and angular range. Moreover, a c-Si solar cell with 2.9 μm ultrathin absorber layer demonstrates 32% improvement in short circuit current and 44% relative improvement in energy conversion efficiency. Our results suggest that nanostructured dielectric layer has the potential to significantly improve solar cell performance and avoid typical problems of defects and surface recombination for nanostructured solar cells, thus providing a new pathway towards realizing high-efficiency and low-cost c-Si solar cells.

  12. Pathways to a New Efficiency Regime for Organic Solar Cells

    NARCIS (Netherlands)

    Koster, L. Jan Anton; Shaheen, Sean E.; Hummelen, Jan C.

    2012-01-01

    Three different theoretical approaches are presented to identify pathways to organic solar cells with power conversion efficiencies in excess of 20%. A radiation limit for organic solar cells is introduced that elucidates the role of charge-transfer (CT) state absorption. Provided this CT action is

  13. Plasmonic light trapping in thin-film Si solar cells

    NARCIS (Netherlands)

    Spinelli, P.; Ferry, V.E.; van de Groep, J.; van Lare, M.; Verschuuren, M.A.; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584; Atwater, H.A.; Polman, A.|info:eu-repo/dai/nl/07435325X

    2011-01-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in whic

  14. Stability and degradation mechanisms in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Bernhard

    2012-04-26

    This thesis deals with stability improvements and the investigation of degradation mechanisms in organic solar cells. Organic solar cells have been in the focus of extensive academic research for over almost two decades and are currently entering the market in small scale applications. For successful large scale applications, next to the improvement of the power conversion efficiency, the stability of organic solar cells has to be increased. This thesis is dedicated to the investigation of novel materials and architectures to study stability-related issues and degradation mechanisms in order to contribute to the basic understanding of the working principles of organic solar cells. Here, impedance spectroscopy, a frequency domain technique, is used to gain information about stability and degradation mechanisms in organic solar cells. In combination with systematic variations in the preparation of solar cells, impedance spectroscopy gives the possibility to differentiate between interface and bulk dominated effects. Additionally, impedance spectroscopy gives access to the dielectric properties of the device, such as capacitance. This offers among other things the opportunity to probe the charge carrier concentration and the density of states. Another powerful way of evaluation is the combination of experimentally obtained impedance spectra with equivalent circuit modelling. The thesis presents results on novel materials and solar cell architectures for efficient hole and electron extraction. This indicates the importance of knowledge over interlayers and interfaces for improving both the efficiency and stability of organic solar cells.

  15. Transparent conductive oxides for thin-film silicon solar cells

    NARCIS (Netherlands)

    Löffler, J.

    2005-01-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses,

  16. Solar energy powered microbial fuel cell with a reversible bioelectrode

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    The solar energy powered microbial fuel cell is an emerging technology for electricity generation via electrochemically active microorganisms fueled by solar energy via in situ photosynthesized metabolites from algae, cyanobacteria, or living higher plants. A general problem with microbial fuel cell

  17. Microstructure and Mechanical Aspects of Multicrystalline Silicon Solar Cells

    NARCIS (Netherlands)

    Popovich, V.A.

    2013-01-01

    Due to pressure from the photovoltaic industry to decrease the cost of solar cell production, there is a tendency to reduce the thickness of silicon wafers. Unfortunately, wafers contain defects created by the various processing steps involved in solar cell production, which significantly reduce the

  18. Topology optimization of front metallization patterns for solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front surfa

  19. Topology optimization for improving the performance of solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.

    2014-01-01

    This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the

  20. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    Science.gov (United States)

    2014-09-01

    Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells by Charles Brandon Sweeney, Mark Bundy, Mark Griep, and Shashi P. Karna...ARL-TR-7100 September 2014 Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells Charles Brandon Sweeney Texas A&M...

  1. Photoelectrochemistry of metallo-octacarboxyphthalocyanines for the development of dye solar cells

    CSIR Research Space (South Africa)

    Mphahlele, N

    2011-09-01

    Full Text Available Significant attention is being paid to dye solar cells (DSCs) as the next generation in solar cell technology for their low cost alternative as compared to solid state solar cells....

  2. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  3. Monolithic Perovskite Silicon Tandem Solar Cells with Advanced Optics

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Jan C.; Bett, Alexander J.; Bivour, Martin; Blasi, Benedikt; Eisenlohr, Johannes; Kohlstadt, Markus; Lee, Seunghun; Mastroianni, Simone; Mundt, Laura; Mundus, Markus; Ndione, Paul; Reichel, Christian; Schubert, Martin; Schulze, Patricia S.; Tucher, Nico; Veit, Clemens; Veurman, Welmoed; Wienands, Karl; Winkler, Kristina; Wurfel, Uli; Glunz, Stefan W.; Hermle, Martin

    2016-11-14

    For high efficiency monolithic perovskite silicon tandem solar cells, we develop low-temperature processes for the perovskite top cell, rear-side light trapping, optimized perovskite growth, transparent contacts and adapted characterization methods.

  4. Theory of back-surface-field solar cells

    Science.gov (United States)

    Vonroos, O.

    1979-01-01

    Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.

  5. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  6. Innovative laser based solar cell scribing

    Science.gov (United States)

    Frei, Bruno; Schneeberger, Stefan; Witte, Reiner

    2011-03-01

    The solar photovoltaic market is continuously growing utilizing boths crystalline silicon (c-Si) as well as thin film technologies. This growth is directly dependant on the manufacturing costs for solar cells. Factors for cost reduction are innovative ideas for an optimization of precision and throughput. Lasers are excellent tools to provide highly efficient processes with impressive accuracy. They need to be used in combination with fast and precise motion systems for a maximum gain in the manufacturing process, yielding best cost of ownership. In this article such an innovative solution is presented for laser scribing in thin film Si modules. A combination of a new glass substrate holding system combined with a fast and precise motion system is the foundation for a cost effective scribing machine. In addition, the advantages of fiber lasers in beam delivery and beam quality guarantee not only shorter setup and down times but also high resolution and reproducibility for the scribing processes P1, P2 and P3. The precision of the whole system allows to reduce the dead zone to a minimum and therefore to improve the efficiency of the modules.

  7. Enhancing solar cell efficiency by using spectral converters

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Utrecht (Netherlands); Meijerink, A. [Department of Chemistry of Condensed Matter, Debye Institute, Utrecht University, Utrecht (Netherlands); Schropp, R.E.I. [Department of Surfaces, Interfaces and Devices, Debye Institute, Utrecht University, Utrecht (Netherlands); Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2005-04-01

    Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength.

  8. Enhancing solar cell efficiency by using spectral converters

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van [Utrecht University (Netherlands). Copernicus Institute; Meijerink, A.; Schropp, R.E.I. [Utrecht University (Netherlands). Debye Institute; Roosmalen, J.A.M. van [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht University (Netherlands). Centre for Energy Research

    2005-05-01

    Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength. (author)

  9. Business, market and intellectual property analysis of polymer solar cells

    DEFF Research Database (Denmark)

    Damgaard Nielsen, Torben; Cruickshank, C.; Foged, S.

    2010-01-01

    The business potential of polymer solar cells is reviewed and the market opportunities analyzed on the basis of the currently reported and projected performance and manufacturing cost of polymer solar cells. Possible new market areas are identified and described. An overview of the present patent...... and intellectual property situation is also given and a patent map of polymer solar cells is drawn in a European context. It is found that the business potential of polymer solar cells is large when taking the projections for future performance into account while the currently available performance...... and manufacturing cost leaves little room for competition on the thin film photovoltaic market. However, polymer solar cells do enable the competitive manufacture of low cost niche products and is viewed as financially viable in its currently available form in a large volume approximation. Finally, it is found...

  10. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyu-Tae Lee

    2016-04-01

    Full Text Available In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite “islands” and transparent electrodes—the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency—are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  11. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells.

    Science.gov (United States)

    Lee, Kyu-Tae; Guo, L Jay; Park, Hui Joon

    2016-04-11

    In this review, we summarize recent works on perovskite solar cells with neutral- and multi-colored semitransparency for building-integrated photovoltaics and tandem solar cells. The perovskite solar cells exploiting microstructured arrays of perovskite "islands" and transparent electrodes-the latter of which include thin metallic films, metal nanowires, carbon nanotubes, graphenes, and transparent conductive oxides for achieving optical transparency-are investigated. Moreover, the perovskite solar cells with distinctive color generation, which are enabled by engineering the band gap of the perovskite light-harvesting semiconductors with chemical management and integrating with photonic nanostructures, including microcavity, are discussed. We conclude by providing future research directions toward further performance improvements of the semitransparent perovskite solar cells.

  12. Emerging Semitransparent Solar Cells: Materials and Device Design.

    Science.gov (United States)

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Review on light management by nanostructures in chalcopyrite solar cells

    Science.gov (United States)

    Schmid, M.

    2017-04-01

    Light management has gained wide interest for various types of solar cells. This paper reviews the application of nanostructures for light management to chalcopyrite (CIGSe) type solar cells. Firstly, the relevance of light management for CIGSe solar cells will be introduced and concepts of nanostructures for absorption enhancement discussed. The development of ultra-thin CIGSe solar cells and examples for nanoparticle fabrication techniques together with their chances and challenges for application to CIGSe will be presented. Particular attention will be paid to nanostructures that have been applied to CIGSe solar cells, revealing many theoretical and some experimental results. Metallic and dielectric nanostructures as well as intrinsic nanotextures will be covered. For the future, combined considerations of optical and electrical properties will gain in importance.

  14. Exploiting nanocarbons in dye-sensitized solar cells.

    Science.gov (United States)

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost.

  15. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    The field of polymer solar cells has undergone an extensive development in recent years after the invention of semiconducting polymers in 1991. Efficiencies have gradually increased to above 10 %, and high throughput processing methods such as roll-to-roll coating allow for production of thousands...... of solar cells with low embedded time, material, and energy consumption as compared to silicon solar cells. Consequently, different demonstration products of small mobile gadgets based on polymer solar cells have been produced, which are fully competitive with conventional energy technologies, illustrating...... process where oxygen and water diffusion from the atmosphere, morphology evolution, and photo-bleaching of the polymer are some of the dominant processes. Encapsulation by foils consisting of multi-layer polymer stacks is a conventional way to reduce the diffusion into the solar cell, by which the life...

  16. Volume morphology of printable solar cells

    Directory of Open Access Journals (Sweden)

    Joachim Loos

    2010-10-01

    Full Text Available Printable polymer or hybrid solar cells (PSCs have the potential to become one of the leading technologies of the 21st century in conversion of sunlight to electrical energy. Because of their ease of processing from solution fast and low cost mass production of devices is possible in a roll-to-roll printing fashion. The performance of such printed devices, in turn, is determined to a large extent by the three-dimensional organization of the photoactive layer, i.e. layer where light is absorbed and converted into free electrical charges, and its contacts with the charge collecting electrodes. In this review I briefly introduce our current understanding of morphology-performance relationships in PSCs with specific focus on electron tomography as analytical tool providing volume information with nanometer resolution.

  17. Multilayer solar cell waveguide structures containing metamaterials

    Science.gov (United States)

    Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.

    2017-01-01

    Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.

  18. Hot exciton dissociation in polymer solar cells.

    Science.gov (United States)

    Grancini, G; Maiuri, M; Fazzi, D; Petrozza, A; Egelhaaf, H-J; Brida, D; Cerullo, G; Lanzani, G

    2013-01-01

    The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.

  19. Electrical characterization of polymer solar cells

    Science.gov (United States)

    Green, Christopher; Cohick, Zane; Tzolov, Marian

    2013-03-01

    Polymer solar cell devices were fabricated using a mixture of the polymer PCPDTBT, PCBM, and 1,8-diiodooctane. The films were spin coated on ITO patterned substrates and covered with a hole injection layer. The film drying was performed at varied annealing temperatures and times. These devices were characterized utilizing current-voltage characteristics and the fill factor was determined. Devices were tested under dark and bright conditions using a xenon lamp. The current-voltage characteristics were modeled with an equivalent circuit yielding values for the shunt and series resistances. The variations in performance due to the changes in annealing temperatures and drying times were studied. Impedance spectroscopy was used to determine the dielectric constant of the active film.

  20. Theoretical model of a photoelectrochemical solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.; Singh, S.L.; Khare, N.

    1986-03-01

    A Schottky barrier theoretical model for explaining the J-V characteristic of a photoelectrochemical solar cell (PESC) has been developed considering the effect of dark current, space-charge recombination, surface states, and detailed charge transfer kinetics at the interface. Both isoenergetic charge transfer and inelastic charge transfers (via surface states) at the interface have been considered and their relative importance are discussed. The theory has been applied to explain the (a) J-V characteristic for n-GaAs/SeS , SeS 2 junction and (b) Fermi-level pinning observed in GaAs PESC. The inelastic charge transfer via surfaces states has been shown to play an important role in deciding these characteristics.

  1. Flexible ITO-Free Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Krebs, Frederik C

    2013-01-01

    Indium tin oxide (ITO) is the material-of-choice for transparent conductors in any optoelectronic application. However, scarce resources of indium and high market demand of ITO have created large price fluctuations and future supply concerns. In polymer solar cells (PSCs), ITO is the single....... In this regard, replacing ITO has the potential to dramatically reduce material and processing cost and the energy payback time of PSCs. Several alternatives to ITO are present but not all of them bring competitive advantage over ITO for application in PSCs. This review explores some potentially low......-cost alternatives to ITO suitable for use in PSCs. These alternatives belong to four material groups: polymers; metal and polymer composites; metal nanowires and ultra-thin metal films; and carbon nanotubes and graphene. We further present the progress of employing these alternatives in PSCs and identify future...

  2. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  3. Inexpensive transparent nanoelectrode for crystalline silicon solar cells.

    Science.gov (United States)

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-12-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  4. Inexpensive transparent nanoelectrode for crystalline silicon solar cells

    Science.gov (United States)

    Peng, Qiang; Pei, Ke; Han, Bing; Li, Ruopeng; Zhou, Guofu; Liu, Jun-Ming; Kempa, Krzysztof; Gao, Jinwei

    2016-06-01

    We report an easily manufacturable and inexpensive transparent conductive electrode for crystalline silicon (c-Si) solar cells. It is based on a silver nanoparticle network self-forming in the valleys between the pyramids of a textured solar cell surface, transformed into a nanowire network by sintering, and subsequently "buried" under the silicon surface by a metal-assisted chemical etching. We have successfully incorporated these steps into the conventional c-Si solar cell manufacturing process, from which we have eliminated the expensive screen printing and firing steps, typically used to make the macro-electrode of conducting silver fingers. The resulting, preliminary solar cell achieved power conversion efficiency only 14 % less than the conventionally processed c-Si control cell. We expect that a cell with an optimized processing will achieve at least efficiency of the conventional commercial cell, but at significantly reduced manufacturing cost.

  5. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  6. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  7. One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Ho Yun

    2016-12-01

    Full Text Available This review presents one dimensional (1D TiO2 nanostructured photoanodes for next generation solar cells such as dye-sensitised solar cells (DSCs and perovskite solar cells (PSCs. Due to the unique morphological properties, 1D TiO2 nanostructures can act as express electron channels as well as light scattering layer, leading to improved charge transport properties, such as charge separation, electron injection, and electron lifetime, and light harvesting efficiency. As 1D TiO2 nanostructures are applied to solar cells, 1D TiO2 nanostructures should be further modified to overcome some drawbacks. In this review, we have described some solutions by introducing various 1D TiO2 synthetic methods and device fabrication processes for solar cell applications, where we have described some important surface engineering and hierarchical device design strategies that facilitate charge transport and light utilisation in 1D TiO2 nanostructured photoanode system.

  8. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  9. The Effect of a Varying Solar Spectrum on the Energy Performance of Solar Cells

    NARCIS (Netherlands)

    Houshyani Hassanzahed, B.; van Sark, W.G.J.H.M.; de Keizer, A.C.; Reich, N.H.

    2007-01-01

    The annual performance of a multi-crystalline silicon cell (mc-Si) and an amorphous silicon cell (a-Si) is calculated using modelled spectra in combination with the well-known solar cell one-diode model. Two different sets of modelled minutely spectra are utilized for modelling cell performance: 1)

  10. Solar LBIC scanning of high-efficiency point-contact silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; Dyk, E.E. van [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University (NMMU), Port Elizabeth (South Africa)

    2008-07-01

    The induced current response from a High Efficiency Concentrator (HECO) monocrystaline Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. Recombination accounts for a major portion of the reduction in quantum efficiency in these cells. This paper examines the spatial distribution of defect mechanisms causing a reduction of collected photocurrent of the backside point-contact device structure while under spot illumination. By examining the bias dependence of the S-LBIC maps, the identification of current loss mechanisms of solar cells under concentrated solar irradiance may be improved. The techniques employed to interpret the spatially distributed I-V curves are discussed and results presented. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  12. Recycling Perovskite Solar Cells To Avoid Lead Waste.

    Science.gov (United States)

    Binek, Andreas; Petrus, Michiel L; Huber, Niklas; Bristow, Helen; Hu, Yinghong; Bein, Thomas; Docampo, Pablo

    2016-05-25

    Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.

  13. Fundamental Limitations to Plasmonic Hot-Carrier Solar Cells.

    Science.gov (United States)

    Zhang, Yu; Yam, ChiYung; Schatz, George C

    2016-05-19

    Detailed balance between photon-absorption and energy loss constrains the efficiency of conventional solar cells to the Shockley-Queisser limit. However, if solar illumination can be absorbed over a wide spectrum by plasmonic structures, and the generated hot-carriers can be collected before relaxation, the efficiency of solar cells may be greatly improved. In this work, we explore the opportunities and limitations for making plasmonic solar cells, here considering a design for hot-carrier solar cells in which a conventional semiconductor heterojunction is attached to a plasmonic medium such as arrays of gold nanoparticles. The underlying mechanisms and fundamental limitations of this cell are studied using a nonequilibrium Green's function method, and the numerical results indicate that this cell can significantly improve the absorption of solar radiation without reducing open-circuit voltage, as photons can be absorbed to produce mobile carriers in the semiconductor as long as they have energy larger than the Schottky barrier rather than above the bandgap. However, a significant fraction of the hot-carriers have energies below the Schottky barrier, which makes the cell suffer low internal quantum efficiency. Moreover, quantum efficiency is also limited by hot-carrier relaxation and metal-semiconductor coupling. The connection of these results to recent experiments is described, showing why plasmonic solar cells can have less than 1% efficiency.

  14. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  15. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications

    Science.gov (United States)

    Yang, Yudong; Mao, Haiyang; Xiong, Jijun; Ming, Anjie; Wang, Weibing

    2016-11-01

    In this work, hybrid nanocone forests (HNFs) with high absorption in full-solar-spectrum are fabricated based on a plasma repolymerization technique. The HNFs combine light trapping effect of the nanocone forests with surface plasmon resonance effect of the metallic nanoparticles, thus can achieve an optimized absorption larger than 80% in the full-solar spectrum (i.e. 200-2500nm). Besides, with the hybrid nanostructures, the absorption decrease around the Si bandgap width can be narrowed greatly, while the normalized utilization efficiency of solar radiation can be increased. Therefore, usage of the HNFs as a texture structure in solar cells to obtain higher conversion efficiencies is foreseeable.

  16. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A. [Univ. of Washington, Seattle, WA (United States); Ginger, David S. [Univ. of Washington, Seattle, WA (United States); Cao, Guozhong [Univ. of Washington, Seattle, WA (United States)

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  17. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  18. Silicon based solar cells using a multilayer oxide as emitter

    Science.gov (United States)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  19. Silicon based solar cells using a multilayer oxide as emitter

    Directory of Open Access Journals (Sweden)

    Jie Bao

    2016-08-01

    Full Text Available In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells were presented via simple physical vapor deposition (PVD. Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2. Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  20. Simulation of interdigitated back contact solar cell with trench structure

    Science.gov (United States)

    Kim, Soo Min; Chun, Seungju; Kang, Min Gu; Song, Hee-Eun; Lee, Jong-Han; Boo, Hyunpil; Bae, Soohyun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2015-02-01

    We performed two-dimensional technology computer-aided design simulations for interdigitated back contact (IBC) solar cells with rear trench structures (TS), denoted here as TS-IBC solar cells. First, we calculated a reference simulation model for conventional IBC solar cells. We then assumed a trench structure at the rear surface of the IBC solar cell. For this structure, we analyzed solar cell performance as a function of various trench depths and type. It was found that emitter trench formation affects minority carrier collection, such that the short-circuit current density increases with increasing trench depth. However, the back-surface field (BSF) trench exhibited poor minority carrier collection, which reduced the conversion efficiency of the TS-IBC solar cells. It was also found that for the same trench depth (30 μm), the difference in conversion efficiencies of an IBC solar cell with an emitter trench and that with a BSF trench was 0.6%. We are thus convinced that the emitter trench structure is more important than the BSF trench structure.

  1. Low cost thin film poly-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents the results of a project to design and develop a high density plasma based thin-film poly-silicon (TFPS) deposition system based on PQL proprietary advanced plasma technology to produce semiconductor quality TFPS for fabricating a TFPS solar cell. Details are given of the TFPS deposition system, the material development programme, solar cell structure, and cell efficiencies. The reproducibility of the deposition process and prospects for commercial exploitation are discussed.

  2. Solar energy conversion in photoelectrochemical cells with semiconductor electrodes

    Science.gov (United States)

    Pleskov, Yu. V.

    in recent years the semiconductor/electrolyte interface has been attracting much attention in connection with the search for effective ways of utilizing solar energy. This review systematizes information on photoelectrochemical cells, both for production of hydrogen by water photoelectrolysis and for electric power generation in “liquid-junction solar cells.” Special attention is given to integral characteristics of photoelectrochemical cells. The main difficulties in practical realization of the conversion process and some possible methods of surmounting them are formulated.

  3. Studies of bulk heterojunction solar cells

    Science.gov (United States)

    Cossel, Raquel; McIntyre, Max; Tzolov, Marian

    We are studying bulk heterojunction solar cells that were fabricated using a mixture of PCPDTBT and PCBM­C60. The impedance data of the cells in dark responded like a simple RC circuit. The value of the dielectric constant derived from these results is consistent with the values reported in the literature for these materials. We are showing that the parallel resistance in the equivalent circuit of linear lump elements can be interpreted using the DC current­voltage measurements. The impedance spectra under light illumination indicated the existence of additional polarization. This extra feature can be described by a model that includes a series RC circuit in parallel with the equivalent circuit for a device in dark. The physical interpretation of the additional polarization is based on photo­generated charges getting trapped in wells, which have a characteristic relaxation time corresponding to the observed break frequency in the impedance spectra. We have studied the influence of the anode and cathode interface on this phenomena, either by using different interface materials, or by depositing the metal electrode while the substate is heated.

  4. Solar cells: state of the art and trends; Solarzellen: Stand der Technik und Trends

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W. [Fraunhofer-Institut fuer Solare Energiesysteme, Freiburg (Germany)

    1997-12-31

    The present article gives an overview of the state of the art of solar cell design. In this connection it deals with the following technologies: solar cells of crystalline silicon (serigraphic solar cells of Cs silicon and mc silicon, high-efficiency silicon solar cells), thin film solar cells (solar cells of amorphous silicon; solar cells of gallium arsenide, solar cells of copper indium (gallium) diselenide, solar cells of cadmium telluride), crystalline silicon film solar cells, and nanocrystalline dye-sensitised solar cells. (HW) [Deutsch] Der vorliegende Beitrag gibt einen Ueberblick ueber den Stand der Technik bei Solarzellen. In diesem Zusammenhang wird auf folgende Technologien eingegangen: Solarzellen aus kristallinem Silizium (Siebdruck-Solarzellen aus Cs-Silicium und mc-Silicium, High-efficiency-Silicium-Solarzellen), Duennschicht-Solarzellen (Solarzellen aus amorphem Silicium, Solarzellen aus Galliumarsenid, Solarzellen aus Kupferindium(Gallium)diselenid, Solarzellen aus Cadmiumtellurid), kristalline Silicium-Film-Solarzellen, Nanokristalline farbstoffsensibilisierte Solarzellen. (HW)

  5. Fundamental investigations on periodic nano- and microstructured organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Niggemann, M.

    2005-03-15

    Using organic semiconducting materials in solar cells is a new approach with promising possibilities. The great potential of low cost production combined with mechanical flexibility gives rise to new applications. Due to the relatively simple fabrication process from solution and the mechanical flexibility, the production of organic solar cells by the cost effective roll-to-roll process appears promising. However, the preconditions for commercialization are not fulfilled as yet. The demands on organic solar cells strongly depend on the type of application. The highest demands on solar cell technologies are set by the energy market. Organic solar cells are only expected to be competitive on the energy market when the requirements on efficiency, lifetime and costs are fulfilled at the same time. Regarding this as a long term goal, a less demanding but still challenging medium term goal would be the application of relatively small organic solar cell modules for i.e. portable electronic devices. The integration of Organic Field Effect Transistors (OFET) and Organic Light Emitting Diodes (OLED) to all-polymer electronic devices is still under development. Nevertheless, the integration of organic solar cells as one functional component appears promising as the production technologies are expected to be compatible. The innovative contribution of this thesis to the development of organic solar cells is as follows: Motivated by the desire to fabricate efficient and cost effective organic solar cells, the approach of developing novel solar cell architectures based on periodic nano- and microstructures is followed. At present, planar organic solar cells with indium tin oxide (ITO) as a transparent electrode are intensively studied. One decisive cost factor would, however, be the indium price, which is the key component of the ITO electrode. The planar cell architecture can be conceived as a one-dimensional photonic device, however the presented work widens the investigations

  6. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    Science.gov (United States)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  7. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  8. Upconverter materials and upconversion solar-cell devices: simulation and characterization with broad solar spectrum illumination

    Science.gov (United States)

    Fischer, S.; Fröhlich, B.; Ivaturi, A.; Herter, B.; Wolf, S.; Krämer, K. W.; Richards, B. S.; Goldschmidt, J. C.

    2014-03-01

    Upconverter materials and upconverter solar devices were recently investigated with broad-band excitation revealing the great potential of upconversion to enhance the efficiency of solar cell at comparatively low solar concentration factors. In this work first attempts are made to simulate the behavior of the upconverter β-NaYF4 doped with Er3+ under broad-band excitation. An existing model was adapted to account for the lower absorption of broader excitation spectra. While the same trends as observed for the experiments were found in the simulation, the absolute values are fairly different. This makes an upconversion model that specifically considers the line shape function of the ground state absorption indispensable to achieve accurate simulations of upconverter materials and upconverter solar cell devices with broadband excitations, such as the solar radiation.

  9. The Shockley-Queisser limit for nanostructured solar cells

    CERN Document Server

    Xu, Yunlu; Munday, Jeremy N

    2014-01-01

    The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a new class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of 42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non- concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

  10. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  11. Accelerated aging of GaAs concentrator solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, P.E.

    1982-04-01

    An accelerated aging study of AlGaAs/GaAs solar cells has been completed. The purpose of the study was to identify the possible degradation mechanisms of AlGaAs/GaAs solar cells in terrestrial applications. Thermal storage tests and accelerated AlGaAs corrosion studies were performed to provide an experimental basis for a statistical analysis of the estimated lifetime. Results of this study suggest that a properly designed and fabricated AlGaAs/GaAs solar cell can be mechanically rugged and environmentally stable with projected lifetimes exceeding 100 years.

  12. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2008-11-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  13. A Novel Robot of Manufacturing Space Solar Cell Arrays

    Directory of Open Access Journals (Sweden)

    Wu Yuexin

    2007-03-01

    Full Text Available This paper presents a novel robot employed to manufacture space solar cell arrays. First of all including the mechanical configuration and control system, the architecture of the robot is described. Then the flow velocity field of adhesive in the dispensing needles is acquired based on hydrodynamics. The accurate section form model of adhesive dispensed on the solar cells is obtained, which is essential for the robot to control the uniformity of dispensing adhesive. Finally the experiment validates the feasibility and reliability of the robot system. The application of robots instead of manual work in manufacturing space solar cell arrays will enhance the development of space industry.

  14. Status note on solar cell technology; Statusnotat om solcelleteknologi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This status note briefly describes development and perspectives for solar cell technology internationally and nationally. The note will form part of the background for a coming proposal for a national solar cell strategy. The strategy will be prepared by the Danish Energy Authority in collaboration with the Ministry of Science, Technology and Innovation, Elkraft System, Eltra, representatives from the industry and others. The proposal is expected to give an overall picture of Danish R and D niches and opportunities within solar cell technology. (BA)

  15. Intermediate band solar cells. The transition metal supersaturated Silicon approach

    OpenAIRE

    González Díaz, Germán; García Hemme, Eric; García Hernansanz, Rodrigo; Olea Ariza, Javier; Pastor Pastor, David; Prado Millán, Alvaro del; Mártil de la Plaza, Ignacio; Wahnón Benarroch, Perla

    2013-01-01

    Within the framework of the third solar cell generation some new ideas to enlarge the spectral response of the solar cells toward the infrared have been proposed. Among them the inclusion of an Intermediate Band (IB) seems to be very promising. This paper will deal with one of the ways to generate the IB namely the deep level center approach. We will discuss not only its existence but also the carriers lifetime recovery which is necessary to obtain the expected increase of the solar cell effi...

  16. Highly doped layer for tunnel junctions in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Christopher M.

    2017-08-01

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  17. Solar cell with doped groove regions separated by ridges

    Energy Technology Data Exchange (ETDEWEB)

    Molesa, Steven Edward; Pass, Thomas; Kraft, Steve

    2017-01-31

    Solar cells with doped groove regions separated by ridges and methods of fabricating solar cells are described. In an example, a solar cell includes a substrate having a surface with a plurality of grooves and ridges. A first doped region of a first conductivity type is disposed in a first of the grooves. A second doped region of a second conductivity type, opposite the first conductivity type, is disposed in a second of the grooves. The first and second grooves are separated by one of the ridges.

  18. Optical and electronic loss analysis of mesoporous solar cells

    Science.gov (United States)

    Kovalsky, Anton; Burda, Clemens

    2016-07-01

    We review the art of complete optical and electronic characterization of the popular mesoporous solar cell motif. An overview is given of how the mesoporous paradigm is applied to solar cell technology, followed by a discussion on the variety of techniques available for thoroughly probing efficiency leaching mechanisms at every stage of the energy transfer pathway. Some attention is dedicated to the rising importance of computational results to augment loss analysis due to the complexity of solar cell devices, which have emergent properties that are important to account for, but difficult to measure, such as parasitic absorption.

  19. Applications of atomic layer deposition in solar cells.

    Science.gov (United States)

    Niu, Wenbin; Li, Xianglin; Karuturi, Siva Krishna; Fam, Derrick Wenhui; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Tok, Alfred Iing Yoong

    2015-02-13

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  20. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  1. High Efficiency Polymer Solar Cells with Long Operating Lifetimes

    KAUST Repository

    Peters, Craig H.

    2011-04-20

    Organic bulk-heterojunction solar cells comprising poly[N-9\\'-hepta-decanyl- 2,7-carbazole-alt-5,5-(4\\',7\\'-di-2-thienyl-2\\', 1\\',3\\'-benzothiadiazole) (PCDTBT) are systematically aged and demonstrate lifetimes approaching seven years, which is the longest reported lifetime for polymer solar cells. An experimental set-up is described that is capable of testing large numbers of solar cells, holding each device at its maximum power point while controlling and monitoring the temperature and light intensity. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organic solar cells: an overview focusing on active layer morphology.

    Science.gov (United States)

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  3. Volatile Organic Compounds are Ghosts for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Prakash R. Somani

    2014-11-01

    Full Text Available All our efforts to demonstrate a multifunctional device – photovoltaic gas sensor (i.e. solar cell which show photovoltaic action depending on the gas / volatile organic compounds (VOC in the surrounding atmosphere yielded negative results. Photovoltaic performance of the organic solar cells under study degraded – almost permanently by exposing them to volatile organic compounds (VOCs. Although, the proposed multifunctional device could not be demonstrated; Present investigations yielded very important result that organic solar cells have problems not only with oxygen and humidity (known facts but also with many VOCs and hazardous gases – making lamination / encapsulation step mandatory for their practical utilization.

  4. Hydrogen passivation of multi-crystalline silicon solar cells

    Institute of Scientific and Technical Information of China (English)

    胡志华; 廖显伯; 刘祖明; 夏朝凤; 陈庭金

    2003-01-01

    The effects of hydrogen passivation on multi-crystalline silicon (mc-Si) solar cells are reported in this paper.Hydrogen plasma was generated by means of ac glow discharge in a hydrogen atmosphere. Hydrogen passivation was carried out with three different groups of mc-Si solar cells after finishing contacts. The experimental results demonstrated that the photovoltaic performances of the solar cell samples have been improved after hydrogen plasma treatment, with a relative increase in conversion efficiency up to 10.6%. A calculation modelling has been performed to interpret the experimental results using the model for analysis of microelectronic and photonic structures developed at Pennsylvania State University.

  5. A high irradiance solar furnace for solar cell characterization and nanomaterial synthesis

    Science.gov (United States)

    Babai, Dotan; Feuermann, Daniel; Gordon, Jeffrey M.

    2010-08-01

    A high irradiance solar furnace geared toward elucidating the distinctive physics of concentrator photovoltaics and driving high-temperature reactors for the generation of novel nanostructures is described, with a target irradiance up to 12 W/mm2. The opto-mechanical design permits real-sun flash illumination at a millisecond time scale so that solar cells can be characterized with only insubstantial increases in cell temperature even at irradiance levels of thousands of suns.

  6. Assembly and characterization of quantum-dot solar cells

    Science.gov (United States)

    Leschkies, Kurtis Siegfried

    Environmentally clean renewable energy resources such as solar energy have gained significant attention due to a continual increase in worldwide energy demand. A variety of technologies have been developed to harness solar energy. For example, photovoltaic (or solar) cells based on silicon wafers can convert solar energy directly into electricity with high efficiency, however they are expensive to manufacture, and thus unattractive for widespread use. As the need for low-cost, solar-derived energy becomes more dire, strategies are underway to identify materials and photovoltaic device architectures that are inexpensive yet efficient compared to traditional silicon solar cells. Nanotechnology enables novel approaches to solar-to-electric energy conversion that may provide both high efficiencies and simpler manufacturing methods. For example, nanometer-size semiconductor crystallites, or semiconductor quantum dots (QDs), can be used as photoactive materials in solar cells to potentially achieve a maximum theoretical power conversion efficiency which exceeds that of current mainstay solar technology at a much lower cost. However, the novel concepts of quantum dot solar cells and their energy conversion designs are still very much in their infancy, as a general understanding of their assembly and operation is limited. This thesis introduces various innovative and novel solar cell architectures based on semiconductor QDs and provides a fundamental understanding of the operating principles that govern the performance of these solar cells. Such effort may lead to the advancement of current nanotechnology-based solar power technologies and perhaps new initiatives in nextgeneration solar energy conversion devices. We assemble QD-based solar cells by depositing photoactive QDs directly onto thin ZnO films or ZnO nanowires. In one scheme, we combine CdSe QDs and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell (QDSSC). An array of Zn

  7. A solution process for inverted tandem solar cells

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Bundgaard, Eva; Sylvester-Hvid, Kristian O.

    2011-01-01

    Tandem solar cells with normal and inverted device geometries were prepared by a solution process. Both device types were based on the use of zinc(II)oxide as the electron transporting layer (ETL). The hole transporting layer (HTL) was either PEDOT:PSS for normal geometry tandem solar cells...... or vanadium(V)oxide in the case of inverted tandem cells. It was found that the inverted tandem solar cells performed comparable or better than the normal geometry devices, showing that the connection structure of vanadium(V)oxide, Ag nanoparticles and zinc(II)oxide functions both as a good recombination...... layer, ensuring serial connection, and as a solvent barrier, protecting the first photoactive layer from processing of the second layer. This successfully demonstrates a tandem solar cell fabrication process fully compatible with state-of-the-art solution based automated production procedures....

  8. Forecasting the Development of Different Solar Cell Technologies

    Directory of Open Access Journals (Sweden)

    Arturo Morales-Acevedo

    2013-01-01

    Full Text Available Solar cells are made of several materials and device structures with the main goal of having maximum efficiency at low cost. Some types of solar cells have shown a rapid efficiency progress whereas others seem to remain constant as a consequence of different factors such as the technological and economic ones. Using information published by the National Renewable Energy Laboratory (NREL about the increase of solar cells record efficiency, we apply a simple mathematical model to estimate the evolution in the near future for the different cell technologies. Here, as an example, we use data for solar cells made with representative materials and structures of each of the three “PV generations.”

  9. All-Weather Solar Cells: A Rising Photovoltaic Revolution.

    Science.gov (United States)

    Tang, Qunwei

    2017-06-16

    Solar cells have been considered as one of the foremost solutions to energy and environmental problems because of clean, high efficiency, cost-effective, and inexhaustible features. The historical development and state-of-the-art solar cells mainly focus on elevating photoelectric conversion efficiency upon direct sunlight illumination. It is still a challenging problem to realize persistent high-efficiency power generation in rainy, foggy, haze, and dark-light conditions (night). The physical proof-of-concept for all-weather solar cells opens a door for an upcoming photovoltaic revolution. Our group has been exploring constructive routes to build all-weather solar cells so that these advanced photovoltaic technologies can be an indication for global solar industry in bringing down the cost of energy harvesting. How the all-weather solar cells are built without reducing photo performances and why such architectures can realize electricity outputs with no visible-light are discussed. Potential pathways and opportunities to enrich all-weather solar cell families are envisaged. The aspects discussed here may enable researchers to develop undiscovered abilities and to explore wide applications of advanced photovoltaics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  11. Solar Cells Based on Low-dimensional Nanocomposite Structures

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2016-12-01

    Full Text Available Converting solar energy into electric energy with using of solar batteries is a major task for developers and research teams. In this article we will look at the development of different generations of solar batteries for to create a nanocomposite structure. Production of solar batteries has gone through some steps, taking into account technological and economic aspects that have been associated with improved of their parameters. Thus the first generations of solar batteries have been based on the single-crystal silicon substrates (с-Si. The use of polycrystalline silicon and multi- crystalline allowed lower costs of modules, but due to the efficiency of solar energy conversion. The solar batteries of the second generation were based on thin-film technology, in which use different materials: silicon films based on amorphous silicon (a-Si, a film based on cadmium telluride (CdTe and film selenide copper-indium-gallium (CuInGaSe2, or CIGS. The use of such technology has allowed increasing the coefficient of performance (COP solar cell with a significant reduction in costs. The solar batteries of third-generation based on nanotechnology, nanocrystals and nano-sized clusters of semiconductors. The creation of such solar cells requires availability of a low-dimensional composite structure. Low-dimensional nanocomposite structures that are constructed on quantum dots and nano-porous materials have new modified optoelectronic properties. They can be used in solar elements, where absorption bands can be optimally adapted to the wavelength of radiation light. These structures could theoretically can lead to increased efficiency of solar energy conversion more than 65%, which can double practically current efficiency of solar batteries.

  12. Bulk heterojunction organic solar cells based on merocyanine colorants.

    Science.gov (United States)

    Kronenberg, Nils M; Deppisch, Manuela; Würthner, Frank; Lademann, Hans W A; Deing, Kaja; Meerholz, Klaus

    2008-12-28

    Traditional low-molecular weight colorants that are widely applied in textile coloration, for printing purposes and nonlinear optics, now afford bulk heterojunction solar cells in combination with soluble C(60) fullerene derivative PCBM with power conversion efficiencies up to 1.7% under standard solar radiation.

  13. Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells

    NARCIS (Netherlands)

    Koster, L. Jan Anton; Kemerink, Martijn; Wienk, Martijn M.; Maturova, Klara; Janssen, Rene A. J.

    2011-01-01

    We present a new experimental technique that affords direct quantification of the fraction of charge carriers lost in poly(3-hexylthiophene): fullerene solar cells by bimolecular recombination. Depending on annealing conditions up to 17% of carriers recombine bimolecularly under solar illumination.

  14. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  15. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  16. Semitransparent organic solar cells with organic wavelength dependent reflectors

    NARCIS (Netherlands)

    Galagan, Y.O.; Debije, M.G.; Blom, P.W.M.

    2011-01-01

    Semitransparent organic solar cells employing solution-processable organic wavelength dependent reflectors of chiral nematic (cholesteric) liquid crystals are demonstrated. The cholesteric liquid crystal (CLC) reflects only in a narrow band of the solar spectrum and remains transparent for the remai

  17. Impurities in silicon and their impact on solar cell performance

    NARCIS (Netherlands)

    Coletti, Gianluca

    2011-01-01

    Photovoltaic conversion of solar energy is a rapidly growing technology. More than 80% of global solar cell production is currently based on silicon. The aim of this thesis is to understand the complex relation between impurity content of silicon starting material (“feedstock”) and the resulting sol

  18. Light management in thin-film silicon solar cells

    NARCIS (Netherlands)

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved

  19. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.

    Science.gov (United States)

    Nie, Wanyi; Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Neukirch, Amanda J; Gupta, Gautam; Crochet, Jared J; Chhowalla, Manish; Tretiak, Sergei; Alam, Muhammad A; Wang, Hsing-Lin; Mohite, Aditya D

    2015-01-30

    State-of-the-art photovoltaics use high-purity, large-area, wafer-scale single-crystalline semiconductors grown by sophisticated, high-temperature crystal growth processes. We demonstrate a solution-based hot-casting technique to grow continuous, pinhole-free thin films of organometallic perovskites with millimeter-scale crystalline grains. We fabricated planar solar cells with efficiencies approaching 18%, with little cell-to-cell variability. The devices show hysteresis-free photovoltaic response, which had been a fundamental bottleneck for the stable operation of perovskite devices. Characterization and modeling attribute the improved performance to reduced bulk defects and improved charge carrier mobility in large-grain devices. We anticipate that this technique will lead the field toward synthesis of wafer-scale crystalline perovskites, necessary for the fabrication of high-efficiency solar cells, and will be applicable to several other material systems plagued by polydispersity, defects, and grain boundary recombination in solution-processed thin films.

  20. Bias-dependent high saturation solar LBIC scanning of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-06-15

    A light beam-induced current measurement system that uses concentrated solar radiation as a beam probe to map spatially distributed defects on a solar cell has been developed and tested [F.J. Vorster, E.E. van Dyk, Rev. Sci. Instrum., submitted for review]. The induced current response from a flat plate EFG Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. This paper examines the issues relating to transient capacitive effects as well as the electrical behaviour of typical solar cell defect mechanisms under spot illumination. By examining the bias dependence of the S-LBIC maps, various defect mechanisms of photovoltaic (PV) cells under concentrated solar irradiance may be identified. The techniques employed to interpret the spatially distributed IV curves as well as initial results are discussed. (author)

  1. Transparent Conductive Oxides for Thin-Film Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.

    2005-04-25

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150C and 350C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the

  2. Transparent conductive oxides for thin-film silicon solar cells

    Science.gov (United States)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  3. Evaluation of Shunt Losses in Industrial Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Somasundaran

    2016-01-01

    Full Text Available Shunting is one of the key issues in industrial silicon solar cells which degrade cell performance. This paper presents an approach for investigation of the performance degradation caused by the presence of ohmic extended shunts at various locations in industrial silicon solar cells. Location, nature, and area of the shunts existing in solar cells have been examined by lock-in infrared thermography (LIT. Based on LIT images and experimental dark I-V curves of solar cell, shunted cell has been modeled, from which loss in fill factor and efficiency due to the specific shunt has been obtained. Distributed diode modeling approach of solar cell has been exploited for obtaining simulation results which were supported by experimental measurements. The presented approach is useful to estimate performance reduction due to specific shunts and to quantify losses, which can help in improving the efficiency of solar cell during production by tackling the shunt related problems based on the level of severity and tolerance.

  4. Heat transparent high intensity high efficiency solar cell

    Science.gov (United States)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  5. Silicon heterojunction solar cell and crystallization of amorphous silicon

    Science.gov (United States)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since they use less materials resulting in lower cost. Polycrystalline silicon (poly-Si) is one promising thin-film material. It has the potential advantages to not only retain the performance and stability of c

  6. Progress in the Multijunction Solar Cell Mantech Program

    Science.gov (United States)

    Keener, David N.; Marvin, Dean; Brinker, David J.; Curtis, Henry B.

    2004-01-01

    In September, 1995, the joint Wright Laboratory/Phillips Laboratory/NASA Lewis Multijunction Solar Cell Manufacturing Technology (ManTech) Program began to improve multijunction cell performance and scale them up to production size and quantity to support Air Force and commercial satellite programs. The first milestone of the program has been reached and the purpose of this paper is to present the results of the program so far. The objectives of the Multijunction Solar Cell ManTech Program are to increase the GaInP2/GaAs/Ge lot average cell efficiency to 24-26%, increase the cell size to > or equal to 16 sq cm while maintaining high efficiency, and limit the per cell costs to cells. Advanced manufacturing technology and process control techniques such as in-situ process monitoring and real time process feedback are being used to optimize multijunction solar cell growth processes to achieve these goals. This paper will discuss progress made in Phase I of the program and give an overview of Phase II but will focus on side-by-side testing results collected by Phillips Laboratory and NASA Lewis on Phase I deliverable cells from both vendors. Cell performance, pre- and post radiation, and temperature coefficient results on initial production multijunction solar cells will be presented and discussed. The data shows that this technology meets the objectives of the program, and that, in the interim before a new solar simulation standard becomes widely available, the measurement techniques being used by the major space solar cell manufacturers are providing adequate testing results for solar array design.

  7. Decohesion Kinetics in Polymer Organic Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-12-10

    © 2014 American Chemical Society. We investigate the role of molecular weight (MW) of the photoactive polymer poly(3-hexylthiophene) (P3HT) on the temperature-dependent decohesion kinetics of bulk heterojunction (BHJ) organic solar cells (OSCs). The MW of P3HT has been directly correlated to its carrier field effect mobilities and the ambient temperature also affects OSC in-service performance and P3HT arrangement within the BHJ layer. Under inert conditions, time-dependent decohesion readily occurs within the BHJ layer at loads well below its fracture resistance. We observe that by increasing the MW of P3HT, greater resistance to decohesion is achieved. However, failure consistently occurs within the BHJ layer representing the weakest layer within the device stack. Additionally, it was found that at temperatures below the glass transition temperature (∼41-45 °C), decohesion was characterized by brittle failure via molecular bond rupture. Above the glass transition temperature, decohesion growth occurred by a viscoelastic process in the BHJ layer, leading to a significant degree of viscoelastic deformation. We develop a viscoelastic model based on molecular relaxation to describe the resulting behavior. The study has implications for OSC long-term reliability and device performance, which are important for OSC production and implementation.

  8. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  9. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    Science.gov (United States)

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  10. Plasmonic-enhanced organic solar cells

    Science.gov (United States)

    Shahin, Shiva; Gangopadhyay, Palash; Norwood, Robert

    2012-10-01

    Organic bulk-heterojunction solar cells have several good characteristics, such as ease of fabrication, and low-cost materials. However, the bottleneck in their adoption is their much lower efficiency as compared with their silicon counterparts. In our previous work, we demonstrated that by appropriately inserting AuNPs in the OPV device, the efficiency can be increased by 30% and that silanization of ITO positively impacts device performance, where we identified the field enhancement due to AuNPs as the main reason for the increase in the efficiency of the device. In this work, we further investigate the impact of self-assembly of the gold nanoparticles on the efficiency by also considering two other factors which can possibly contribute to the improvement of our structure's performance. One is the change in the substrate's workfunction after silanization, and the other factor is the variations in PEDOT: PSS characteristics due to the AuNPs' plasmonic resonance. We conclude that the AuNPs not only increase the photon absorption efficiency but also increase the conductivity of the surrounding medium (PEDOT: PSS) thereby facilitating charge transport through PEDOT: PSS.

  11. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    and used for FTDT simulations, in order to identify the set of parameters (NPs size and array periodicity) which could show LSP resonance in the NIR range. Two techniques are here used to fabricate NPs: electron beam lithography (EBL), to deposit ordered arrays of gold and silver NPs, simple to be compared...... the solar cell structure (GaAs, SiO2, Si3N4, AZO/Cr), in order to investigate the LSP resonance and tune it to exploit it below the energy band gap of the semiconductor. EBL is a difficult technique when working by lift-off on critical size (20-50 nm) nanoparticles. The optimization of the process saw...... a change from ZEP resist to double layer of PMMA and always requires preliminary exposure dose-tests and final particular attention for lift-off step. EBL resulted to be more suitable for silver NPs, since the deposition of gold (on top of an adhesion thin titanium layer) leads to a variation and non...

  12. Solar Cells Active in Complete Darkness

    Energy Technology Data Exchange (ETDEWEB)

    Dharmadasa, I M; Elsherif, O; Tolan, G J, E-mail: Dharme@shu.ac.uk [Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom)

    2011-03-01

    A graded bandgap multi-layer solar cell device structure was designed to absorb UV, visible and IR radiation, and to incorporate impact ionisation and impurity photovoltaic effects within one device. The design was experimentally tested with a well researched material system, MOVPE grown GaAs/AlGaAs. Open circuit voltages of {approx}1175 mV with highest possible FF values (0.83-0.87) and J{sub sc}{approx}12 mAcm{sup -2} have been observed [1,3]. These parameters were independently verified by measuring in five different laboratories in Europe and United States including NREL. While the work is continuing to increase short circuit current density values, these devices were tested to explore the experimental evidence of impurity PV effect, as expected from this design. Responsivity measurements and PV activity in dark conditions have been carried out to investigate impurity PV effect in these devices. Responsivity measurements indicate current collection in the infra-red region confirming the contribution from IR photons. The I-V measurements in dark conditions produce open circuit voltages exceeding 750 mV confirming the contribution from surrounding heat radiation. The new features of graded bandgap devices enable impurity PV effect to dominate and create useful charge carriers, suppressing detrimental recombination process. These experimental results will be presented in this paper.

  13. Process for cooling a solar cell and a combined photovoltaic and photothermic solar device

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, J.

    1982-07-13

    A solar cell cooling process is disclosed. The device implementing this process comprises a transparent assembly disposed in front of a photovoltaic cell. The transparent assembly, through which flows the cooling fluid leaving a radiator integral with the cell, absorbs the wavelengths greater than 1.1 micron. Thus, heating of the cell is limited and the fluid leaving the radiator is heated by the beam striking the cell.

  14. Acceptable contamination levels in solar grade silicon: From feedstock to solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, J. [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)], E-mail: jasmin.hofstetter@ies-def.upm.es; Lelievre, J.F.; Canizo, C.; Luque, A. del [Instituto de Energia Solar, Avd. Complutense s/n, 28040 Madrid (Spain)

    2009-03-15

    Ultimately, alternative ways of silicon purification for photovoltaic applications are developed and applied. There is an ongoing debate about what are the acceptable contamination levels within the purified silicon feedstock to specify the material as solar grade silicon. Applying a simple model and making some additional assumptions, we calculate the acceptable contamination levels of different characteristic impurities for each fabrication step of a typical industrial mc-Si solar cell. The acceptable impurity concentrations within the finished solar cell are calculated for SRH recombination exclusively and under low injection conditions. It is assumed that during solar cell fabrication impurity concentrations are only altered by a gettering step. During the crystallization process, impurity segregation at the solid-liquid interface and at extended defects are taken into account. Finally, the initial contamination levels allowed within the feedstock are deduced. The acceptable concentration of iron in the finished solar cell is determined to be 9.7x10{sup -3} ppma whereas the concentration in the silicon feedstock can be as high as 12.5 ppma. In comparison, the titanium concentration admitted in the solar cell is calculated to be 2.7x10{sup -4} ppma and the allowed concentration of 2.2x10{sup -2} ppma in the feedstock is only two orders of magnitude higher. Finally, it is shown theoretically and experimentally that slow cooling rates can lead to a decrease of the interstitial Fe concentration and thus relax the purity requirements in the feedstock.

  15. IBIC analysis of CdTe/CdS solar cells

    CERN Document Server

    Colombo, E; Calusi, S; Giuntini, L; Giudice, A Lo; Manfredotti, C; Massi, M; Olivero, P; Romeo, A; Romeo, N; Vittone, E

    2016-01-01

    This paper reports on the investigation of the electronic properties of a thin film CdS/CdTe solar cell with the Ion Beam Induced Charge (IBIC) technique. The device under test is a thin film (total thickness around 10 um) multilayer heterojunction solar cell, displaying an efficiency of 14% under AM1.5 illumination conditions. The IBIC measurements were carried out using focused 3.150 MeV He ions raster scanned onto the surface of the back electrode. The charge collection efficiency (CCE) maps show inhomogeneous response of the cell to be attributed to the polycrystalline nature of the CdTe bulk material. Finally, the evolution of the IBIC signal vs. the ion fluence was studied in order to evaluate the radiation hardness of the CdS/CdTe solar cells in view of their use in solar modules for space applications.

  16. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  17. Performance of planar heterojunction perovskite solar cells under light concentration

    Science.gov (United States)

    Alnuaimi, Aaesha; Almansouri, Ibraheem; Nayfeh, Ammar

    2016-11-01

    In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  18. Flexible organic solar cells including efficiency enhancing grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light......In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques......, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption...

  19. Long-range exciton dissociation in organic solar cells

    National Research Council Canada - National Science Library

    Domenico Caruso; Alessandro Troisi

    2012-01-01

    It is normally assumed that electrons and holes in organic solar cells are generated by the dissociation of excitons at the interface between donor and acceptor materials in strongly bound hole-electron pairs...

  20. High Efficiency Quantum Well Waveguide Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The long-term objective of this program is to develop flexible, lightweight, single-junction solar cells using quantum structured designs that can achieve ultra-high...