WorldWideScience

Sample records for vls nanowire nw

  1. Growth parameters and shape specific synthesis of silicon nanowires by the VLS method

    Energy Technology Data Exchange (ETDEWEB)

    Latu-Romain, Laurence; Mouchet, Celine [CEA-Grenoble, LITEN/DTNM/LCH (France); Cayron, Cyril [CEA-Grenoble, LITEN/DTH/Grenoble Electron Microscopy-Minatec (France); Rouviere, Emmanuelle; Simonato, Jean-Pierre, E-mail: jean-pierre.simonato@cea.f [CEA-Grenoble, LITEN/DTNM/LCH (France)

    2008-12-15

    In this paper the effect of varying temperature, pressure and chemical precursors on the vapour-liquid-solid (VLS) growth of silicon nanowires (Si NWs) have been investigated. Some aspects of nucleation and growth mechanisms are discussed. Control on Si NW morphology by varying the choice of gaseous precursor (silane or dichlorosilane) at elevated temperatures is reported.

  2. Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; Rigutti, Lorenzo; Tchernycheva, Maria; Misra, Soumyadeep; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2013-07-12

    Silicon nanowires (SiNWs) grown on low-cost substrates provide an ideal framework for the monolithic fabrication of radial junction photovoltaics. However, the quality of junction formation over a random matrix of SiNWs, fabricated via a vapor-liquid-solid (VLS) mechanism, has never been assessed in a realistic context. To address this, we probe the current response of individual radial junction solar cells under electron-beam and optical-beam excitations. Excellent current generation from the radial junction units, compared to their planar counterparts, has been recorded, indicating a high junction quality and effective doping in the ultra-thin SiNWs with diameters thinner than 20 nm. Interestingly, we found that the formation of radial junctions by plasma deposition can be quite robust against geometrical disorder and even the crossings of neighboring cell units. These results provide a strong support to the feasibility of building high-quality radial junction solar cells over high-throughput VLS-grown SiNWs on low-cost substrates.

  3. MBE-VLS grown zinc selenide and zinc sulfide nanowires: Growth mechanisms and photoluminescence properties

    Science.gov (United States)

    Chan, Siu Keung

    A lot of effort was recently devoted in realizing semiconducting nanowires (NWs) that are considered as a channel for electrons and photons no wider than a few thousand atoms. Such a one-dimensional structure will find potential applications in nano-optoelectronics and nano-photonics. The control of the growth orientation of NWs is particularly important because it will eventually affect their optical and transport properties. The ordering of NWs has also been a recent focus due to the fact that some of the above mentioned applications require the NWs fabricated in regular and periodic arrays. In this study, the growth of ZnSe and ZnS nanowires using the molecular beam epitaxy technique via the vapor-liquid-solid reaction with Au alloy droplets as the catalyst is successfully demonstrated. The nanowires resulting from this approach were found to orient along some specific crystallographic directions. Through detailed structural characterization, we have revealed that the preferred growth orientation of NWs depends on the chosen size of the catalyst and growth temperature. A phenomenological model based on the minimization of the total system energy of a nanowire was proposed to explain these observations. Based on these findings, we have successfully grown vertical ZnSe nanowires with a diameter around 10 nm on a GaAs(110) substrate. The interactions between the catalyst and the direct-contact materials (either the GaAs substrate or the ZnSe buffer) were analyzed in details. Through this study, it was found that thermal annealing of Au alloy catalyst droplets on a ZnSe buffer surface could result in nano-trenches along the directions. Based on the results obtained from a number of surface profiling and chemical analysis techniques, a model is proposed to describe the possible formation mechanisms of the observed nanotrenches. An ordered ZnSe NW array fabricated on a GaAs (111) substrate with a novel pre-patterning method associated with plasma etching is also

  4. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires

    Institute of Scientific and Technical Information of China (English)

    FU Xin; JIANG Jun; LIU Chao; YU Zhi-Yang; Steffan LEA; YUAN Jun

    2009-01-01

    We report a preferential growth of boron carbide nanowires with a Eve-fold twinned internal structure.The nanowires are found to grow catalytically via iron boron nanoparticles,but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines.We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes,followed by rapid spreading of atomic steps.This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.

  5. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM...... of SiNW were also investigated in situ. SiNWs were grown on silicon microcantilever heaters using the VLS mechanism. When grown across a gap between adjacent cantilevers, contact was formed when the SiNW impinged on the sidewall of an adjacent cantilever. Using in situ TEM, SiNW contact formation...

  6. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  7. Transfer-free synthesis of highly ordered Ge nanowire arrays on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, M.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Jevasuwan, W.; Fukata, N. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2015-09-28

    Vertically aligned Ge nanowires (NWs) are directly synthesized on glass via vapor-liquid-solid (VLS) growth using chemical-vapor deposition. The use of the (111)-oriented Ge seed layer, formed by metal-induced crystallization at 325 °C, dramatically improved the density, uniformity, and crystal quality of Ge NWs. In particular, the VLS growth at 400 °C allowed us to simultaneously achieve the ordered morphology and high crystal quality of the Ge NW array. Transmission electron microscopy demonstrated that the resulting Ge NWs had no dislocations or stacking faults. Production of high-quality NW arrays on amorphous insulators will promote the widespread application of nanoscale devices.

  8. Dense nanoimprinted silicon nanowire arrays with passivated axial p-i-n junctions for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng; Liu, Pei; Siontas, Stylianos; Zaslavsky, A.; Pacifici, D. [Department of Physics and School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Ha, Jong-Yoon; Krylyuk, S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Davydov, A. V. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2015-03-28

    We report on the fabrication and photovoltaic characteristics of vertical arrays of silicon axial p-i-n junction nanowire (NW) solar cells grown by vapor-liquid-solid (VLS) epitaxy. NW surface passivation with silicon dioxide shell is shown to enhance carrier recombination time, open-circuit voltage (V{sub OC}), short-circuit current density (J{sub SC}), and fill factor (FF). The photovoltaic performance of passivated individual NW and NW arrays was compared under 532 nm laser illumination with power density of ∼10 W/cm{sup 2}. Higher values of V{sub OC} and FF in the NW arrays are explained by enhanced light trapping. In order to verify the effect of NW density on light absorption and hence on the photovoltaic performance of NW arrays, dense Si NW arrays were fabricated using nanoimprint lithography to periodically arrange the gold seed particles prior to epitaxial growth. Compared to sparse NW arrays fabricated using VLS growth from randomly distributed gold seeds, the nanoimprinted NW array solar cells show a greatly increased peak external quantum efficiency of ∼8% and internal quantum efficiency of ∼90% in the visible spectral range. Three-dimensional finite-difference time-domain simulations of Si NW periodic arrays with varying pitch (P) confirm the importance of high NW density. Specifically, due to diffractive scattering and light trapping, absorption efficiency close to 100% in the 400–650 nm spectral range is calculated for a Si NW array with P = 250 nm, significantly outperforming a blanket Si film of the same thickness.

  9. Piezo and photoelectric coupled nanogenerator using CdSe quantum dots incorporated ZnO nanowires in ITO/ZnO NW/Si structure

    Energy Technology Data Exchange (ETDEWEB)

    Kathalingam, A.; Valanarasu, S.; Senthilkumar, V. [Millimeter-wave INnovation Technology Research Center (MINT), Dongguk University, Seoul 100-715 (Korea, Republic of); Rhee, Jin-Koo, E-mail: jkrhee@dongguk.edu [Millimeter-wave INnovation Technology Research Center (MINT), Dongguk University, Seoul 100-715 (Korea, Republic of)

    2013-02-15

    We report the fabrication of ITO/n-ZnO NW/p-Si sandwiched structure and its photoelectric and piezoelectric conversion properties. This hybrid cell was designed to harvest simultaneously both solar and mechanical energies. ZnO nanowires used in the work were grown on p-type Si substrates employing seed mediated low-temperature aqueous solution method. The synthesized ZnO nanowires were characterized by XRD, SEM and EDX characterization for their structural and morphological evaluation. The as-grown ZnO nanowires showed good crystallinity with c-axis preferable orientation. Free ZnO nanowires and CdSe quantum dots were also incorporated with the vertically grown nanowires and their response in harvesting optical and mechanical energies were investigated. The piezoelectric and photoelectric coupled effects of a ZnO nanowire device in the simultaneous conversion of both optical and mechanical energies have been studied for the first time with the goal of designing piezoelectric and photoelectric hybrid nanogenerator. This presented ITO/n-ZnO NW/p-Si heterojunction architecture is envisaged as a potentially valuable candidate for the next generation energy harvesting devices. Graphene-coated ITO was also used and its response was studied. - Highlights: ► Fabricated an unique sandwich type ITO/n-ZnO NW/p-Si nanogenerator. ► Simultaneous harvesting of both light and mechanical energy achieved. ► CdSe incorporation with ZnO nanowires increased the performance of the device. ► First report integrated both nanogenerator and solar cell in a same surface. ► Incorporating nanoantenna this structure can harvest light, heat and sound.

  10. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    Directory of Open Access Journals (Sweden)

    Gentile Pascal

    2011-01-01

    Full Text Available Abstract The growth of semiconductor (SC nanowires (NW by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x in Si1- x Ge x NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4. Characterization (by Raman spectroscopy and XRD revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

  11. Au catalyst assisted growth of ZnO nanowires by vapour phase transport method on p-Si and fabrication of p-Si/n-ZnO heterojunction diode

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Shashidhara; V, Shrisha B.; Naik, K Gopalakrishna, E-mail: gopal-mng@yahoo.com [Department of Physics, Mangalore University, Mangalagangotri – 574199 (India)

    2015-06-24

    In this work ZnO nanowires were grown on p type silicon (p-Si) substrate using Vapor-Liquid-Solid (VLS) approach using Au as catalyst by vapor phase transport growth method. Surface morphology and structural properties of the grown ZnO nanowires were examined by Scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. Using the n-ZnO nanowires (NW) grown on p-type silicon, n-ZnO NW/p-Si heterojunction diode was fabricated. The rectification property of the fabricated diode was studied by room temperature as well as high temperature (up to 370 K) current-voltage (I-V) measurements.

  12. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Vertically aligned, high-density ZnO nanowires (NWs were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as the catalyst. The growth was performed under argon gas flow and involved the vapor-liquid-solid (VLS growth process. We have investigated various ratios of catalyst components for the NWs growth and results indicate that very thin adhesion layers of Ni or Cu deposited prior to the Au layer are not deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct catalyst patterning of Au and subsequent NW array growth. Additionally, we found that an increase of in thickness of the Cu adhesion layer results in the simultaneous growth of NWs and nanoplates (NPs, indicating that in this case the growth involves both the VLS and vapor-solid (VS growth mechanisms. Energy dispersive X-ray spectroscopy (EDX and surface-enhanced Raman scattering (SERS studies were also performed to characterize the resulting ZnO NW arrays, indicating that the NWs grown using a thin adhesion layer of Ni or Cu under the Au show comparable SERS enhancement to those of the pure Au-catalyzed NWs.

  13. Modeling and estimation of process-induced stress in the nanowire field-effect-transistors (NW-FETs) on Insulator-on-Silicon substrates with high-k gate-dielectrics

    Science.gov (United States)

    Chatterjee, Sulagna; Chattopadhyay, Sanatan

    2016-10-01

    An analytical model including the simultaneous impact of lattice and thermo-elastic constant mismatch-induced stress in nanowires on Insulator-on-Silicon substrate is developed. It is used to calibrate the finite-element based software, ANSYS, which is subsequently employed to estimate process-induced stress in the sequential steps of NW-FET fabrication. The model considers crystal structures and orientations for both the nanowires and substrates. In-plane stress components along nanowire-axis are estimated for different radii and fractions of insertion. Nature of longitudinal stress is observed to change when inserted fraction of nanowires is changed. Effect of various high-k gate-dielectrics is also investigated. A longitudinal tensile stress of 2.4 GPa and compressive stress of 1.89 GPa have been obtained for NW-FETs with 1/4th and 3/4th insertions with La2O3 and TiO2 as the gate-dielectrics, respectively. Therefore, it is possible to achieve comparable values of electron and hole mobility in NW-FETs by judiciously choosing gate-dielectrics and fractional insertion of the nanowires.

  14. Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth

    Science.gov (United States)

    Nebol`sin, Valery A.; Dunaev, Alexander I.; Tatarenkov, Alexander F.; Shmakova, Svetlana S.

    2016-09-01

    In the process of Nanowire (NW) growth under the Vapor→Liquid Droplet→Solid (VLS) scheme, the stages that reach the boundary of the crystallization front (the triple phase line (TPL)) under the droplet of the catalyst are either absorbed by the TPL, or accumulate ahead of it. It has been shown that, in the first case, TPL can release stages, which leads to a decrease in supersaturation necessary for NW growth. An equation has been derived, which defines the change in free surface energy of the three-phase system in the absorption (release) of a stage, being a function of the contact angle of the droplet, and the ratio between the phase conjugation angles interface at equilibrium shift in the boundary line. A thermodynamic model has been developed and three possible scenarios for sustainable NW growth: Non-Wetting, Wetting and Fully Wetting have been considered in accordance with the processes occurring at the interface of three phases. The results obtained for each scenario were used to analyze the polytypism of GaAs and InAs NW, the radial periodic instability of Si NW and the formation of "negative" NW.

  15. Horizontal Assembly of Single Nanowire Diode Fabricated by p-n Junction GaN NW Grown by MOCVD

    Directory of Open Access Journals (Sweden)

    Ji-Hyeon Park

    2014-01-01

    Full Text Available Uniaxially p-n junction gallium nitride nanowires have been synthesized via metal-organic chemical vapor deposition method. Nanowires prepared on Si(111 substrates were found to grow perpendicular to the substrate, and the transmission electron microscopy studies demonstrated that the nanowires had singlecrystalline structures with a growth axis. The parallel assembly of the p-n junction nanowire was prepared on a Si substrate with a thermally grown SiO2 layer. The transport studies of horizontal gallium nitride nanowire structures assembled from p- and n-type materials show that these junctions correspond to well-defined p-n junction diodes. The p-n junction devices based on GaN nanowires suspended over the electrodes were fabricated and their electrical properties were investigated. The horizontally assembled gallium nitride nanowire diodes suspended over the electrodes exhibited a substantial increase in conductance under UV light exposure. Apart from the selectivity to different light wavelengths, high responsivity and extremely short response time have also been obtained.

  16. One-step growth of Si 3 N 4 stem-branch featured nanostructures: Morphology control by VS and VLS mode

    Science.gov (United States)

    Wang, Qiushi; Gao, Wei; Shan, Lianchen; Zhang, Jian; Jin, Yunxia; Cong, Ridong; Cui, Qiliang

    2011-09-01

    We report here one-step synthesis of Si 3N 4 nanodendrites by selectively applying a vapor-solid (VS) and vapor-liquid-solid (VLS) strategy via direct current arc discharge method. The resultant nanodendrites were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray powder diffraction. The spine-shaped nanodendrites were generated by a noncatalytic growth following a VS mode. The uniform secondary nanowire branches were epitaxial grown from two side surfaces of the nanowire stems. The pine-shaped nanodendrites were obtained through a catalytic growth in a VLS process. These branch nanowires were unsystematically grown from the nanocone-like stems. The photoluminescence spectra of the nanodendrites show a strong white light emission around 400-750 nm, suggesting their potential applications in light and electron emission devices.

  17. Investigation of the growth process of Si nanowires using the vapour-liquid-solid mechanism

    Institute of Scientific and Technical Information of China (English)

    邢英杰; 俞大鹏; 奚中和; 薛增泉

    2002-01-01

    Silicon nanowires have been grown by the thermal decomposition of silane via the vapour-liquid-solid (VLS)mechanism. Three different stages of VLS growth (eutectic alloy formation, crystal nucleation and unidirectional growth)were studied separately using a scanning electron microscope and a high-resolution transmission electron microscope.Very short silicon nanowires prepared under particular conditions provide direct evidence of the VLS mechanism on a nanometre scale. Our results will be very helpful for the controllable synthesis of Si nanowires.

  18. Optical properties of semiconducting nanowires

    NARCIS (Netherlands)

    Vugt, L.K. van

    2007-01-01

    Semiconductor nanowires of high purity and crystallinity hold promise as building blocks for opto-electronical devices at the nanoscale.. They are commonly grown via a Vapor-Liquid-Solid (VLS) mechanism in which metal (nano) droplets collect the semiconductor precursors to form a solution which, whe

  19. A model of axial heterostructure formation in III-V semiconductor nanowires

    Science.gov (United States)

    Dubrovskii, V. G.

    2016-03-01

    A kinetic model of the formation of axial heterostructures in nanocrystalline wires (nanowires, NWs) of III-V semiconductor compounds growing according to the vapor-liquid-solid (VLS) mechanism is proposed. A general system of nonstationary equations for effective fluxes of two elements of the same group (e.g., group III) is formulated that allows the composition profile of a heterostructure to be calculated as a function of the coordinate and epitaxial growth conditions, including the flux of a group V element. Characteristic times of the composition relaxation, which determine the sharpness of the heteroboundary (heterointerface), are determined in the linear approximation. A temporal interruption (arrest) of fluxes during the switching of elements for a period exceeding these relaxation times must increase sharpness of the heteroboundary. Model calculations of the composition profile in a double GaAs/InAs/GaAs axial heterostructure have been performed for various NW radii.

  20. VQS (vapor-quasiliquid-solid, vapor-quasisolid-solid) mechanism for the catalyst-free and catalyst-mediated non-eutectic syntheses of single-crystal nanowires

    Science.gov (United States)

    Noor Mohammad, S.

    2016-08-01

    Catalyst-free and catalyst-assisted nanowire (NW) syntheses are increasingly carried out by mechanism(s) other than the well-known VLS (vapor-liquid-solid) mechanism. Yet these growths are not fully understood. An in-depth investigation has been carried out to understand the mechanism of the catalyst-free and catalyst-mediated non-VLS NW growths. Various chemical and physical processes involved in these growths have been studied to formulate general principles. Phase transitions, synthesis routes, and the fundamentals underlying these routes have been explored. Nanoparticle surfaces conducive to NW syntheses have been examined. The role of surface treatment, such as oxidation, oxygenation, doping, acid treatment, plasma treatment, etc., in creating such surfaces has been elucidated. Surface treatment and phase transition under appropriate growth conditions (temperature, pressure, ambient, and the presence of contaminants) have been found to be important. They play a crucial role in creating diffusion paths for the diffusion of the growth species for NW growths. Interdiffusion of the catalyst and the growth species on the nanoparticle surface has been found also to add a new dimension to the growth kinetics. When integrated together, they create a unified platform versatile enough to explain essentially all catalyst-free and catalyst-mediated non-eutectic NW growths. The platform uncovers numerous growth-related problems never understood before. Available experiments extensively support this platform. These experiments suggest that it is based on solid foundation and has broad and probably universal appeal. It pertains to the vapor-quasiliquid-solid, vapor-quasi-solid-solid mechanism proposed some six years ago.

  1. Synthesis of nanostructures in nanowires using sequential catalyst reactions

    Science.gov (United States)

    Panciera, F.; Chou, Y.-C.; Reuter, M. C.; Zakharov, D.; Stach, E. A.; Hofmann, S.; Ross, F. M.

    2015-08-01

    Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a `mixing bowl’, in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.

  2. Variable VlsE is critical for host reinfection by the Lyme disease spirochete.

    Science.gov (United States)

    Rogovskyy, Artem S; Bankhead, Troy

    2013-01-01

    Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Despite the presence of a substantial number of additional proteins residing on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may utilize a VlsE-mediated system for immune avoidance of its surface antigens. To address this, the requirement of VlsE for host reinfection by the Lyme disease pathogen was investigated. Host-adapted wild type and VlsE mutant spirochetes were used to reinfect immunocompetent mice that had naturally cleared an infection with a VlsE-deficient clone. Our results demonstrate that variable VlsE is necessary for reinfection by B. burgdorferi, and this ability is directly related to evasion of the host antibody response. Moreover, the data presented here raise the possibility that VlsE prevents recognition of B. burgdorferi surface antigens from host antibodies. Overall, our findings represent a significant advance in our knowledge of immune evasion by B. burgdorferi, and provide insight to the possible mechanisms involved in VlsE-mediated immune avoidance.

  3. Variable VlsE is critical for host reinfection by the Lyme disease spirochete.

    Directory of Open Access Journals (Sweden)

    Artem S Rogovskyy

    Full Text Available Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Despite the presence of a substantial number of additional proteins residing on the bacterial surface, VlsE is the only known antigen that exhibits ongoing variation of its surface epitopes. This suggests that B. burgdorferi may utilize a VlsE-mediated system for immune avoidance of its surface antigens. To address this, the requirement of VlsE for host reinfection by the Lyme disease pathogen was investigated. Host-adapted wild type and VlsE mutant spirochetes were used to reinfect immunocompetent mice that had naturally cleared an infection with a VlsE-deficient clone. Our results demonstrate that variable VlsE is necessary for reinfection by B. burgdorferi, and this ability is directly related to evasion of the host antibody response. Moreover, the data presented here raise the possibility that VlsE prevents recognition of B. burgdorferi surface antigens from host antibodies. Overall, our findings represent a significant advance in our knowledge of immune evasion by B. burgdorferi, and provide insight to the possible mechanisms involved in VlsE-mediated immune avoidance.

  4. Variable VlsE Is Critical for Host Reinfection by the Lyme Disease Spirochete

    OpenAIRE

    Artem S Rogovskyy; Troy Bankhead

    2013-01-01

    Many pathogens make use of antigenic variation as a way to evade the host immune response. A key mechanism for immune evasion and persistent infection by the Lyme disease spirochete, Borrelia burgdorferi, is antigenic variation of the VlsE surface protein. Recombination results in changes in the VlsE surface protein that prevent recognition by VlsE-specific antibodies in the infected host. Despite the presence of a substantial number of additional proteins residing on the bacterial surface, V...

  5. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi.

    Science.gov (United States)

    Lawrenz, M B; Hardham, J M; Owens, R T; Nowakowski, J; Steere, A C; Wormser, G P; Norris, S J

    1999-12-01

    VlsE is a 35-kDa surface-exposed lipoprotein of Borrelia burgdorferi that was shown previously to undergo antigenic variation through segmental recombination of silent vls cassettes with vlsE during experimental mouse infections. Previous data had indicated that sera from North American Lyme disease patients and experimentally infected animals contained antibodies reactive with VlsE. In this study, sera from patients with Lyme disease, syphilis, and autoimmune conditions as well as from healthy controls were examined for reactivity with VlsE by Western blotting and enzyme-linked immunosorbent assay (ELISA). Strong Western blot reactivity to a recombinant VlsE cassette region protein was obtained consistently with Lyme disease sera. Although sera from Lyme disease patients also reacted with a band corresponding to VlsE in B. burgdorferi B31-5A3, interpretation was complicated by low levels of VlsE expression in in vitro-cultured B. burgdorferi and by the presence of comigrating bands. An ELISA using recombinant VlsE was compared with an ELISA using sonically disrupted B. burgdorferi as the antigen. For a total of 93 Lyme disease patient sera examined, the VlsE ELISA yielded sensitivities of 63% for culture-confirmed erythema migrans cases and 92% for later stages, as compared to 61 and 98%, respectively, for the "whole-cell" ELISA. The specificities of the two assays with healthy blood donor sera were comparable, but the VlsE ELISA was 90% specific with sera from syphilis patients, compared to 20% specificity for the whole-cell ELISA with this group. Neither assay showed reactivity with a panel of sera from 20 non-Lyme disease arthritis patients or 20 systemic lupus erythematosus patients. Our results indicate that VlsE may be useful in the immunodiagnosis of Lyme disease and may offer greater specificity than ELISAs using whole B. burgdorferi as the antigen.

  6. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  7. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells.

    Science.gov (United States)

    Shashaani, Hani; Faramarzpour, Mahsa; Hassanpour, Morteza; Namdar, Nasser; Alikhani, Alireza; Abdolahad, Mohammad

    2016-11-15

    Electrochemical approaches have played crucial roles in bio sensing because of their Potential in achieving sensitive, specific and low-cost detection of biomolecules and other bio evidences. Engineering the electrochemical sensing interface with nanomaterials tends to new generations of label-free biosensors with improved performances in terms of sensitive area and response signals. Here we applied Silicon Nanowire (SiNW) array electrodes (in an integrated architecture of working, counter and reference electrodes) grown by low pressure chemical vapor deposition (LPCVD) system with VLS procedure to electrochemically diagnose the presence of breast cancer cells as well as their response to anticancer drugs. Mebendazole (MBZ), has been used as antitubulin drug. It perturbs the anodic/cathodic response of the cell covered biosensor by releasing Cytochrome C in cytoplasm. Reduction of cytochrome C would change the ionic state of the cells monitored by SiNW biosensor. By applying well direct bioelectrical contacts with cancer cells, SiNWs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Our device detected the trace of MBZ drugs (with the concentration of 2nM) on electrochemical activity MCF-7 cells. Also, experimented biological analysis such as confocal and Flowcytometry assays confirmed the electrochemical results.

  8. Comparison of InAs nanowire conductivity: influence of growth method and structure

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, Kamil; Winden, Andreas; Wirths, Stephan; Weis, Karl; Bloemers, Christian; Guel, Oender; Grap, Thomas; Lenk, Steffi; Ahe, Martina van der; Hardtdegen, Hilde; Lepsa, Mihail Ion; Lueth, Hans; Schaepers, Thomas; Gruetzmacher, Detlev [Peter Gruenberg Institut (PGI-9), Forschungszentrum Juelich (Germany); Juelich Aachen Research Alliance (JARA) (Germany); Weirich, Thomas E. [Juelich Aachen Research Alliance (JARA) (Germany); Central Facility for Electron Microscopy (GFE), Institute of Crystallography, RWTH Aachen University (Germany); Lysov, Andrey; Li, Zi-An; Prost, Werner; Tegude, Franz-Josef [Center for Nanointegration, University of Duisburg-Essen, Duisburg (Germany)

    2012-02-15

    The conductivity and crystal structure of nominally undoped InAs nanowires deposited by three different methods - 1. selective area metal organic vapor phase epitaxy (SA MOVPE), 2. gold assisted vapor liquid solid (VLS) MOVPE and 3. extrinsic catalyst free VLS molecular beam epitaxy (MBE) - is investigated. The influence on conductivity by stacking faults and different growth conditions is analyzed to determine the main impact. It is found that in terms of crystal structure, nanowires deposited by VLS MOVPE and VLS MBE behave similarly showing a zinc blende (ZB) phase while nanowires deposited by SA MOVPE feature a high density of stacking faults and a tendency to higher amounts of wurtzite (WZ) when grown with a decreased growth rate. However, the conductivity of wires deposited by VLS MOVPE is found to be much higher and statistically less dispersive compared to the other two wire types. An electrical similarity between nominally undoped wires in VLS MOVPE and previously reported intentionally doped wires in SA MOVPE is observed and discussed. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Science.gov (United States)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  10. Growth of Gold-assisted Gallium Arsenide Nanowires on Silicon Substrates via Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    Ramon M. delos Santos

    2008-06-01

    Full Text Available Gallium arsenide nanowires were grown on silicon (100 substrates by what is called the vapor-liquid-solid (VLS growth mechanism using a molecular beam epitaxy (MBE system. Good quality nanowires with surface density of approximately 108 nanowires per square centimeter were produced by utilizing gold nanoparticles, with density of 1011 nanoparticles per square centimeter, as catalysts for nanowire growth. X-ray diffraction measurements, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy revealed that the nanowires are epitaxially grown on the silicon substrates, are oriented along the [111] direction and have cubic zincblende structure.

  11. Synthesis of silicon carbide nanowires by solid phase source chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    NI Jie; LI Zhengcao; ZHANG Zhengjun

    2007-01-01

    In this paper,we report a simple approach to synthesize silicon carbide(SiC)nanowires by solid phase source chemical vapor deposition(CVD) at relatively low temperatures.3C-SiC nanowires covered by an amorphous shell were obtained on a thin film which was first deposited on silicon substrates,and the nanowires are 20-80 am in diameter and several μm in length,with a growth direction of[200].The growth of the nanowires agrees well on vapor-liquid-solid (VLS)process and the film deposited on the substrates plays an important role in the formation of nanowires.

  12. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    Science.gov (United States)

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-08

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells.

  13. Germanium nanowires grown using different catalyst metals

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia, R.C., E-mail: riama@ifsp.edu.br [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Área de Ciências, Instituto Federal de Educação Ciência e Tecnologia de São Paulo, Rua Américo Ambrósio, 269, Jd. Canaã, Sertãozinho, CEP 14169-263 (Brazil); Kamimura, H.; Munhoz, R.; Rodrigues, A.D. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil); Leite, E.R. [Departamento de Química – LIEC, Universidade Federal de São Carlos, São Carlos, CEP 13565-905 (Brazil); Chiquito, A.J. [Departamento de Física – NanO Lab, Universidade Federal de São Carlos, Rod. Washington Luís, Km 235 – SP 310, São Carlos, CEP 13565-905 (Brazil)

    2016-11-01

    Germanium nanowires have been synthesized by the well known vapor-liquid-solid growth mechanism using gold, silver, cooper, indium and nickel as catalyst metals. The influence of metal seeds on nanowires structural and electronic transport properties was also investigated. Electron microscopy images demonstrated that, despite differences in diameters, all nanowires obtained presented single crystalline structures. X-ray patterns showed that all nanowires were composed by germanium with a small amount of germanium oxide, and the catalyst metal was restricted at the nanowires' tips. Raman spectroscopy evidenced the long range order in the crystalline structure of each sample. Electrical measurements indicated that variable range hopping was the dominant mechanism in carrier transport for all devices, with similar hopping distance, regardless the material used as catalyst. Then, in spite of the differences in synthesis temperatures and nanowires diameters, the catalyst metals have not affected the composition and crystalline quality of the germanium nanowires nor the carrier transport in the germanium nanowire network devices. - Highlights: • Ge nanowires were grown by VLS method using Au, Ag, Cu, In and Ni as catalysts. • All nanowires presented high single crystalline quality and long range order. • Devices showed semiconducting behavior having VRH as dominant transport mechanism. • The metal catalyst did not influence structural properties or the transport mechanism.

  14. Fabrication and characterization of silicon nanowire p-i-n MOS gated diode for use as p-type tunnel FET

    Science.gov (United States)

    Brouzet, V.; Salem, B.; Periwal, P.; Rosaz, G.; Baron, T.; Bassani, F.; Gentile, P.; Ghibaudo, G.

    2015-11-01

    In this paper, we present the fabrication and electrical characterization of a MOS gated diode based on axially doped silicon nanowire (NW) p-i-n junctions. These nanowires are grown by chemical vapour deposition (CVD) using the vapour-liquid-solid (VLS) mechanism. NWs have a length of about 7 \\upmu {m} with 3 \\upmu {m} of doped regions (p-type and n-type) and 1 \\upmu {m} of intrinsic region. The gate stack is composed of 15 nm of hafnium dioxide ({HfO}2), 80 nm of nickel and 120 nm of aluminium. At room temperature, I_{{on}} =-52 {nA}/\\upmu {m} (V_{{DS}}=-0.5 {V}, V_{{GS}}=-4 {V}), and an I_{{on}}/I_{{off}} ratio of about 104 with a very low I_{{off}} current has been obtained. Electrical measurements are carried out between 90 and 390 K, and we show that the I on current is less temperature dependent below 250 K. We also observe that the ON current is increasing between 250 and 390 K. These transfer characteristics at low and high temperature confirm the tunnelling transport mechanisms in our devices.

  15. Doping GaP Core-Shell Nanowire pn-Junctions: A Study by Off-Axis Electron Holography.

    Science.gov (United States)

    Yazdi, Sadegh; Berg, Alexander; Borgström, Magnus T; Kasama, Takeshi; Beleggia, Marco; Samuelson, Lars; Wagner, Jakob B

    2015-06-10

    The doping process in GaP core-shell nanowire pn-junctions using different precursors is evaluated by mapping the nanowires' electrostatic potential distribution by means of off-axis electron holography. Three precursors, triethyltin (TESn), ditertiarybutylselenide, and silane are investigated for n-type doping of nanowire shells; among them, TESn is shown to be the most efficient precursor. Off-axis electron holography reveals higher electrostatic potentials in the regions of nanowire cores grown by the vapor-liquid-solid (VLS) mechanism (axial growth) than the regions grown parasitically by the vapor-solid (VS) mechanism (radial growth), attributed to different incorporation efficiency between VLS and VS of unintentional p-type carbon doping originating from the trimethylgallium precursor. This study shows that off-axis electron holography of doped nanowires is unique in terms of the ability to map the electrostatic potential and thereby the active dopant distribution with high spatial resolution.

  16. Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires.

    Science.gov (United States)

    Gao, Jing; Lebedev, Oleg I; Turner, Stuart; Li, Yong Feng; Lu, Yun Hao; Feng, Yuan Ping; Boullay, Philippe; Prellier, Wilfrid; van Tendeloo, Gustaaf; Wu, Tom

    2012-01-11

    Rational synthesis of nanowires via the vapor-liquid-solid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored Au-Cu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary In-Sn-O phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.

  17. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor

    Directory of Open Access Journals (Sweden)

    Wolfgang Molnar

    2012-07-01

    Full Text Available Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes SinCl2n+2 (n = 2, 3 from which the octachlorotrisilane (n = 3, Cl8Si3, OCTS was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW by the well-established vapor–liquid–solid (VLS mechanism. By adding doping agents, specifically BBr3 and PCl3, we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD. These as grown NWs were investigated by means of scanning electron microscopy (SEM and transmission electron microscopy (TEM, as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation.

  18. Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor.

    Science.gov (United States)

    Molnar, Wolfgang; Lugstein, Alois; Wojcik, Tomasz; Pongratz, Peter; Auner, Norbert; Bauch, Christian; Bertagnolli, Emmerich

    2012-01-01

    Perchlorinated polysilanes were synthesized by polymerization of tetrachlorosilane under cold plasma conditions with hydrogen as a reducing agent. Subsequent selective cleavage of the resulting polymer yielded oligochlorosilanes Si(n)Cl(2) (n) (+2) (n = 2, 3) from which the octachlorotrisilane (n = 3, Cl(8)Si(3), OCTS) was used as a novel precursor for the synthesis of single-crystalline Si nanowires (NW) by the well-established vapor-liquid-solid (VLS) mechanism. By adding doping agents, specifically BBr(3) and PCl(3), we achieved highly p- and n-type doped Si-NWs by means of atmospheric-pressure chemical vapor deposition (APCVD). These as grown NWs were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as electrical measurements of the NWs integrated in four-terminal and back-gated MOSFET modules. The intrinsic NWs appeared to be highly crystalline, with a preferred growth direction of [111] and a specific resistivity of ρ = 6 kΩ·cm. The doped NWs appeared to be [112] oriented with a specific resistivity of ρ = 198 mΩ·cm for p-type Si-NWs and ρ = 2.7 mΩ·cm for n-doped Si-NWs, revealing excellent dopant activation.

  19. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    Science.gov (United States)

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  20. MOCVD growth and structural characterization of In-Sb-Te nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Selmo, S.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Milano (Italy); Cecchi, S.; Cecchini, R.; Wiemer, C.; Longo, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Rotunno, E.; Lazzarini, L. [IMEM-CNR, Parma (Italy)

    2016-02-15

    In this work, the self-assembly of In{sub 3}Sb{sub 1}Te{sub 2} and In-doped Sb{sub 4}Te{sub 1} nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, coupled with vapor-liquid-solid (VLS) mechanism, catalyzed by Au nanoparticles. Single crystal In{sub 3}Sb{sub 1}Te{sub 2} and In-doped Sb{sub 4}Te{sub 1} NWs were obtained for different reactor pressures at 325 C. The parameters influencing the NW self-assembly were studied and the compositional, morphological, and structural analysis of the grown structures was performed, also comparing the effect of the used substrate (crystalline Si and SiO{sub 2}). In both cases, NWs of several micrometer in length and with diameters as small as 15 nm were obtained. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Silicon nanowire field-effect chemical sensor

    NARCIS (Netherlands)

    Chen, Songyue

    2011-01-01

    This thesis describes the work that has been done on the project “Design and optimization of silicon nanowire for chemical sensing”, including Si-NW fabrication, electrical/electrochemical modeling, the application as ISFET, and the build-up of Si- NW/LOC system for automatic sample delivery. A nove

  2. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2009-12-01

    Full Text Available Antigenic variation plays a vital role in the pathogenesis of many infectious bacteria and protozoa including Borrelia burgdorferi, the causative agent of Lyme disease. VlsE, a 35 kDa surface-exposed lipoprotein, undergoes antigenic variation during B. burgdorferi infection of mammalian hosts, and is believed to be a critical mechanism by which the spirochetes evade immune clearance. Random, segmental recombination between the expressed vlsE gene and adjacent vls silent cassettes generates a large number of different VlsE variants within the infected host. Although the occurrence and importance of vlsE sequence variation is well established, little is known about the biological mechanism of vlsE recombination. To identify factors important in antigenic variation and vlsE recombination, we screened transposon mutants of genes known to be involved in DNA recombination and repair for their effects on infectivity and vlsE recombination. Several mutants, including those in BB0023 (ruvA, BB0022 (ruvB, BB0797 (mutS, and BB0098 (mutS-II, showed reduced infectivity in immunocompetent C3H/HeN mice. Mutants in ruvA and ruvB exhibited greatly reduced rates of vlsE recombination in C3H/HeN mice, as determined by restriction fragment polymorphism (RFLP screening and DNA sequence analysis. In severe combined immunodeficiency (C3H/scid mice, the ruvA mutant retained full infectivity; however, all recovered clones retained the 'parental' vlsE sequence, consistent with low rates of vlsE recombination. These results suggest that the reduced infectivity of ruvA and ruvB mutants is the result of ineffective vlsE recombination and underscores the important role that vlsE recombination plays in immune evasion. Based on functional studies in other organisms, the RuvAB complex of B. burgdorferi may promote branch migration of Holliday junctions during vlsE recombination. Our findings are consistent with those in the accompanying article by Dresser et al., and together

  3. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection.

    Directory of Open Access Journals (Sweden)

    Loïc Coutte

    2009-02-01

    Full Text Available Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

  4. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Artem S Rogovskyy

    Full Text Available Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.

  5. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi.

    Science.gov (United States)

    Rogovskyy, Artem S; Casselli, Timothy; Tourand, Yvonne; Jones, Cami R; Owen, Jeb P; Mason, Kathleen L; Scoles, Glen A; Bankhead, Troy

    2015-01-01

    Efficient acquisition and transmission of Borrelia burgdorferi by the tick vector, and the ability to persistently infect both vector and host, are important elements for the life cycle of the Lyme disease pathogen. Previous work has provided strong evidence implicating the significance of the vls locus for B. burgdorferi persistence. However, studies involving vls mutant clones have thus far only utilized in vitro-grown or host-adapted spirochetes and laboratory strains of mice. Additionally, the effects of vls mutation on tick acquisition and transmission has not yet been tested. Thus, the importance of VlsE antigenic variation for persistent infection of the natural reservoir host, and for the B. burgdorferi enzootic life cycle in general, has not been examined to date. In the current work, Ixodes scapularis and Peromyscus maniculatus were infected with different vls mutant clones to study the importance of the vls locus for the enzootic cycle of the Lyme disease pathogen. The findings highlight the significance of the vls system for long-term infection of the natural reservoir host, and show that VlsE antigenic variability is advantageous for efficient tick acquisition of B. burgdorferi from the mammalian reservoir. The data also indicate that the adaptation state of infecting spirochetes influences B. burgdorferi avoidance from host antibodies, which may be in part due to its respective VlsE expression levels. Overall, the current findings provide the most direct evidence on the importance of VlsE for the enzootic cycle of Lyme disease spirochetes, and underscore the significance of VlsE antigenic variation for maintaining B. burgdorferi in nature.

  6. A silicon carbide nanowire field effect transistor for DNA detection.

    Science.gov (United States)

    Fradetal, L; Bano, E; Attolini, G; Rossi, F; Stambouli, V

    2016-06-10

    This work reports on the label-free electrical detection of DNA molecules for the first time, using silicon carbide (SiC) as a novel material for the realization of nanowire field effect transistors (NWFETs). SiC is a promising semiconductor for this application due to its specific characteristics such as chemical inertness and biocompatibility. Non-intentionally n-doped SiC NWs are first grown using a bottom-up vapor-liquid-solid (VLS) mechanism, leading to the NWs exhibiting needle-shaped morphology, with a length of approximately 2 μm and a diameter ranging from 25 to 60 nm. Then, the SiC NWFETs are fabricated and functionalized with DNA molecule probes via covalent coupling using an amino-terminated organosilane. The drain current versus drain voltage (I d-V d) characteristics obtained after the DNA grafting and hybridization are reported from the comparative and simultaneous measurements carried out on the SiC NWFETs, used either as sensors or references. As a representative result, the current of the sensor is lowered by 22% after probe DNA grafting and by 7% after target DNA hybridization, while the current of the reference does not vary by more than ±0.6%. The current decrease confirms the field effect induced by the negative charges of the DNA molecules. Moreover, the selectivity, reproducibility, reversibility and stability of the studied devices are emphasized by de-hybridization, non-complementary hybridization and re-hybridization experiments. This first proof of concept opens the way for future developments using SiC-NW-based sensors.

  7. EDITORIAL: Nanowires Nanowires

    Science.gov (United States)

    Jagadish, Chennupati

    2010-02-01

    Nanowires are considered as building blocks for the next generation of electronics, photonics, sensors and energy applications. One-dimensional nanostructures offer unique opportunities to control the density of states of semiconductors, and in turn their electronic and optical properties. Nanowires allow the growth of axial heterostructures without the constraints of lattice mismatch. This provides flexibility to create heterostructures of a broad range of materials and allows integration of compound semiconductor based optoelectronic devices with silicon based microelectronics. Nanowires are widely studied and the number of papers published in the field is growing exponentially with time. Already nanowire lasers, nanowire transistors, nanowire light emitting diodes, nanowire sensors and nanowire solar cells have been demonstrated. This special issue on semiconductor nanowires features 17 invited papers from leading experts in the field. In this special issue, the synthesis and growth of semiconductor nanowires of a broad range of materials have been addressed. Both axial and radial heterostructures and their structural properties have been discussed. Electrical transport properties of nanowires have been presented, as well as optical properties and carrier dynamics in a range of nanowires and nanowire heterostructures. Devices such as nanowire lasers and nanowire sensors have also been discussed. I would like to thank the Editorial Board of the journal for suggesting this special issue and inviting me to serve as the Guest Editor. Sincere thanks are due to all the authors for their contributions to this special issue. I am grateful to the reviewers and editorial staff at Semiconductor Science and Technology and the Institute of Physics Publishing for their excellent efforts. Special thanks are due to Dr Claire Bedrock for coordinating this special issue.

  8. Gallium loading of gold seed for high yield of patterned GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, J. P.; Chia, A. C. E.; LaPierre, R. R., E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2014-08-25

    A method is presented for maximizing the yield and crystal phase purity of vertically aligned Au-assisted GaAs nanowires grown with an SiO{sub x} selective area epitaxy mask on GaAs (111)B substrates. The nanowires were grown by the vapor-liquid-solid (VLS) method in a gas source molecular beam epitaxy system. During annealing, Au VLS seeds will alloy with the underlying GaAs substrate and collect beneath the SiO{sub x} mask layer. This behavior is detrimental to obtaining vertically aligned, epitaxial nanowire growth. To circumvent this issue, Au droplets were pre-filled with Ga assuring vertical yields in excess of 99%.

  9. Influence of the Sn oxidation state in ferromagnetic Sn-doped In2O3 nanowires

    Science.gov (United States)

    Maloney, Francis Scott; Wang, Wenyong

    2016-12-01

    Sn-doped indium oxide nanowires were grown using a vapor-liquid-solid technique (VLS). The Sn content of the nanowires was tunable based on the source powder ratios used in the VLS process. The oxidation state of the Sn ions was examined using x-ray photoelectron spectroscopy. It was found that Sn2+ was the dominant ionic species in samples over 6% (atomic percentage) Sn. The nanowires were found to be ferromagnetic at room temperature, and their saturation magnetization increased with increasing Sn concentration, which could be associated with the spin-splitting of a defect band that was encouraged by the imbalance of Sn2+ to Sn4+ species at high Sn concentrations.

  10. Epitaxial growth of silicon nanowires using an aluminium catalyst.

    Science.gov (United States)

    Wang, Yewu; Schmidt, Volker; Senz, Stephan; Gösele, Ulrich

    2006-12-01

    Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

  11. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  12. Single Al{sub x}Ga{sub 1-x}As nanowires probed by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buick, Benjamin; Richter, Wolfgang [Dipartimento di Fisica, Universita di Roma Tor Vergata, Roma (Italy); Speiser, Eugen [ISAS, Institute for Analytical Sciences Department Berlin (Germany); Prete, Paola [IMM-CNR, Lecce Research Unit, Lecce (Italy); Paiano, Pasquale; Lovergine, Nicola [CNISM, Unita di Ricerca di Lecce (Italy); Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Lecce (Italy)

    2010-08-15

    The stoichiometry of single ternary III-V semiconductor nanowires was analyzed by Raman spectroscopy. Free-standing Al{sub x}Ga{sub 1-x}As nanowires were obtained through metal organic vapor phase epitaxy (MOVPE) by the vapor liquid solid (VLS) mechanism on GaAs substrates. The as-grown nanowires were studied with a scanning confocal Raman spectrometer (spatial resolution {approx}300 nm). They were located by Rayleigh imaging and individual nanowires selected for Raman spectroscopy. The acquired spectra exhibit 2-mode behavior. The stoichiometry of single nanowires was determined based on the frequencies of the GaAs- and AlAs-like transversal optical (TO) and longitudinal optical (LO) peaks with an accuracy of below 10%. Measurements at different positions along the axis revealed variations of the composition within single nanowires. This non-uniformity evidences that the nanowires possess an internal structure. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Voc Degradation in TF-VLS Grown InP Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve; Sutter-Fella, Carolin M.; Hettick, Mark; Javey, Ali; Bermel, Peter

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the whole sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.

  14. Surface physics of semiconducting nanowires

    Science.gov (United States)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  15. Ab initio vibrations in nonequilibrium nanowires

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Engelund, Mads; Markussen, T

    2010-01-01

    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predicti......We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative...... predictions for the thermoelectric properties, while for the atomic gold chains we evaluate microscopically the damping of the vibrations, due to the coupling of the chain atoms to the modes in the bulk contacts. Both approaches are based on the combination of density-functional theory, and nonequilibrium...... Green's functions....

  16. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  17. Long SiC nanowires synthesized from off-gases of the polycarbosilane-derived SiC preparation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gong-Yi; Li, Xiao-Dong; Wang, Hao [National University of Defense Technology, State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, Changsha (China); Liu, Lin [Wuhan Mechanical Technology College, Wuhan (China)

    2010-02-15

    In this communication, we report on the attempt to make full use of the off-gases from polycarbosilane-derived SiC preparation, and we successfully synthesized long SiC nanowires in large areas with Fe(NO{sub 3}){sub 3} as catalyst. The nanowires have diameters of about 80-300 nm and lengths of millimeters, and they are identified as single crystals {beta}-SiC along the left angle 111 right angle direction. The VLS mechanism was employed to interpret the nanowire growth. (orig.)

  18. SiC nanowires grown on activated carbon in a polymer pyrolysis route

    Energy Technology Data Exchange (ETDEWEB)

    Li Gongyi, E-mail: nudtlgy@gmail.co [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, No. 109 Deya Road, Shangdalong Street, Kaifu District, Changsha 410073 (China); Li Xiaodong, E-mail: xdli0153@sina.co [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, No. 109 Deya Road, Shangdalong Street, Kaifu District, Changsha 410073 (China); Wang Hao; Xing Xin; Yang Yong [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, No. 109 Deya Road, Shangdalong Street, Kaifu District, Changsha 410073 (China)

    2010-01-15

    beta-SiC nanowires are a novel type of photocatalysts. However, they tend to be entangled together especially at high concentrations when dispersed in water, which may reduce the photocatalytic activity. It is reasonable to expect that beta-SiC nanowires would provide better photocatalytic activity if they are grown on activated carbon. In the letter we report the successful synthesis of quantities of beta-SiC nanowires grown on the surfaces of the activated carbon by pyrolysis of polycarbosilane at 1300 deg. C. The nanowires, with the diameters of 50-100 nm and the length of tens of micrometers, are composed of single crystal beta-SiC along the <1 1 1> direction. Both the VLS and the VS mechanisms were employed to interpret the nanowires growth.

  19. Self-Catalytic Growth of Tin Oxide Nanowires by Chemical Vapor Deposition Process

    Directory of Open Access Journals (Sweden)

    Bongani S. Thabethe

    2013-01-01

    Full Text Available We report on the synthesis of tin oxide (SnO2 nanowires by a chemical vapor deposition (CVD process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system. The as-synthesized products were characterized using UV-visible absorption spectroscopy, X-ray diffraction (XRD, scanning electron microscopy (SEM, and high-resolution transmission electron microscopy (HRTEM. The band gap of the nanowires determined from UV-visible absorption was around 3.7 eV. The SEM micrographs revealed “wool-like” structure which contains nanoribbons and nanowires with liquid droplets at the tips. Nanowires typically have diameter in the range of 50–200 nm and length 10–100 μm. These nanowires followed the vapor-liquid-solid (VLS growth mechanism.

  20. Thermal resistance measurement of In{sub 3}SbTe{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, J.L.; Saci, A.; De, I. [I2M Laboratory, University of Bordeaux, UMR CNRS 5295, Talence (France); Cecchini, R.; Cecchi, S.; Longo, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Selmo, S.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, Unita di Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Milano (Italy)

    2017-05-15

    The thermal resistance along the thickness of In{sub 3}SbTe{sub 2} crystalline nanowires was measured using the scanning thermal microscopy in 3ω mode. The nanowires were grown by metal organic vapor deposition, exploiting the VLS mechanism induced by Au metal-catalyst nanoparticles and harvested on a SiO{sub 2}/Si substrate. Two nanowires with different thickness (13 and 23 nm) were investigated. The thermal resistance of the nanowires was determined using two different approaches; the first one exploits the experimental data, whereas the second one is more sophisticated, since it involves a minimization procedure. Both methods led to comparable values of the thermal resistance along the transverse direction (thickness) of the nanowire. The obtained results were explained starting from the mean free path of phonons calculated in the In{sub 3}SbTe{sub 2} bulk. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Investigating the potential role of non-vls genes on linear plasmid 28–1 in virulence and persistence by Borrelia burgdorferi

    OpenAIRE

    Magunda, Petronella R. Hove; Bankhead, Troy

    2016-01-01

    Background The lp28-1 plasmid is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. Mutational studies on this plasmid have shown that the vls locus is important for antigenic variation of the VlsE lipoprotein that leads to immune evasion and persistence. However, it is still unknown whether the vls system is the only genetic locus on this plasmid necessary for long-term infection, and thus the potential role of non-vls genes on lp28-1 in virulence and per...

  2. TEM determination of directions of (Ga,Mn)As nanowires grown by MBE on GaAs(001) substrates.

    Science.gov (United States)

    Dłuzewski, P; Sadowski, J; Kret, S; Dabrowski, J; Sobczak, K

    2009-11-01

    The structure of GaMnAs nanowires (NW) with nominal Mn concentration of up to 7 at% was investigated by transmission electron microscopy. The (Ga,Mn)As NW were grown on epiready GaAs(001) n-type wafers by molecular beam epitaxy. The crystal structure of the NW was determined to be zinc-blende. NW with Mn concentrations lower than 5 at% grow along the 111 direction. NW with higher Mn concentrations grow along the 110 direction and reveal a branching structure. The main nanowire and branches grow along the 110 directions belonging to only one {111} plane.

  3. Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Danveer; Raghuwanshi, Mohit; Pavan Kumar, G. V. [Photonics and Optical Nanoscopy Laboratory, Department of Physics and Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008 (India)

    2012-09-10

    We experimentally studied plasmon-polariton-assisted light propagation in serially coupled silver nanowire (Ag-NW) dimers and probed their dependence on bending-angle between the nanowires and polarization of incident light. From the angle-dependence study, we observed that obtuse angles between the nanowires resulted in better transmission than acute angles. From the polarization studies, we inferred that light emission from junction and distal ends of Ag-NW dimers can be systematically controlled. Further, we applied this property to show light routing and polarization beam splitting in obtuse-angled Ag-NW dimer. The studied geometry can be an excellent test-bed for plasmonic circuitry.

  4. Biofunctionalization of ZnO nanowires for DNA sensory applications

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Ulrich Christian; Gnauck, Martin; Ronning, Carsten [Institute of Solid State Physics, University of Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Moeller, Robert; Rudolph, Bettina; Fritzsche, Wolfgang [Institut fuer Photonische Technologien e.V., Albert-Einstein-Strasse 9, D-07745 Jena (Germany)

    2011-07-01

    In recent years, DNA detecting systems have received a growing interest due to promising fields of application like DNA diagnostics, gene analysis, virus detection or forensic applications. Nanowire-based DNA biosensor allows both miniaturization and easy continuous monitoring of a detection signal by electrical means. The label free detection scheme based on electrochemical changes of the surface potential during immobilization of specific DNA probes was heretofore mainly studied for silicon. In this work a surface decoration process with bifunctional molecules known as silanization was applied to VLS-grown ZnO nanowires which both feature a large sensitivity for surface modification, are biocompatible and easy to synthesize as well. Successfully bound DNA was proved by fluorescence microscopy. Dielectrophoresis (DEP) was chosen and optimized for quickly contacting the ZnO nanowires. Furthermore, electrical signal characterization was performed in preparation for DNA sensory applications.

  5. Catalytic growth of CdTe nanowires by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gwangseok; Jung, Younghun [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Seungju; Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-11-01

    CdTe nano-/micro-structures with various morphologies were grown by using the closed space sublimation (CSS) method on a sapphire substrate by Au-catalyzed vapor–liquid–solid (VLS) mechanism. Length, diameter, and morphology of the CdTe nano-/micro-structures depended on the growth time and temperature gradient between the substrate and powdered CdTe source. Scanning electron microscopy images showed that an Au catalyst droplet existed at the tips of CdTe nanowires, which confirms that CdTe nanowires were grown by an Au-catalyzed VLS mechanism. Also, we observed that the two-dimensional CdTe film layer initially formed before the growth of the CdTe nano-/micro-wires. The optical and structural properties of CdTe nano-/micro-structures were characterized by X-ray diffraction technique and micro-Raman spectroscopy. Our study demonstrates that diverse CdTe nano-/micro-structures can be fabricated by using Au-catalyzed VLS growth process in a simple CSS chamber by controlling the temperature gradient and growth time. - Highlights: • We demonstrated CdTe nanowires using closed space sublimation method. • Au-catalyst droplets at the tips confirmed vapor–liquid–solid mechanism. • Diameters and lengths increased with increasing temperature gradient and time.

  6. High-performance silicon nanowire bipolar phototransistors

    Science.gov (United States)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  7. Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Al-Shamery, Katharina;

    Single crystalline nanowires from fluorescing organic molecules like para-phenylenes or thiophenes are supposed to become key elements in future integrated optoelectronic devices [1]. For a sophisticated design of devices based on nanowires the basic principles of the nanowire formation have...

  8. Assembly of Ultra-Dense Nanowire-Based Computing Systems

    Science.gov (United States)

    2006-06-30

    TERMS nanowire;core/shell nanowire heterostructures; nonvolatile diode switch; nanowire/ ferroelectric heterostructures; nonvolatile nanowire transistor...scattering. To define the potential of Ge/Si NW heterostructures as high-performance FETs we have fabricated devices using thin HfO2 and ZrO2 high-K...for device B (L= 190 nm, 4 nm HfO2 dielectric) with blue, red and green data points corresponding to Vds values of -1, -0.1 and -0.01 V, respectively

  9. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  10. Nanomanufacturing of silica nanowires: Synthesis, characterization and applications

    Science.gov (United States)

    Sekhar, Praveen Kumar

    In this research, selective and bottom-up manufacturing of silica nanowires on silicon (Si) and its applications has been investigated. Localized synthesis of these nanowires on Si was achieved by metal thin film catalysis and metal ion implantation based seeding approach. The growth mechanism of the nanowires followed a vapor-liquid-solid (VLS) mechanism. Mass manufacturing aspects such as growth rate, re-usability of the substrate and experimental growth model were also investigated. Further, silica nanowires were explored as surface enhanced Raman (SER) substrate and immunoassay templates towards optical and electrochemical detection of cancer biomarkers respectively. Investigating their use in photonic applications, optically active silica nanowires were synthesized by erbium implantation after nanowire growth and implantation of erbium as a metal catalyst in Si to seed the nanowires. Ion implantation of Pd in Si and subsequent annealing in Ar at 1100 0 C for 60 mins in an open tube furnace resulted in silica nanowires of diameters ranging from 15 to 90 nm. Similarly, Pt was sputtered on to Si and further annealed to obtain silica nanowires of diameters ranging from 50 to 500 nm. Transmission electron microscopy studies revealed the amorphous nature of the wires. In addition, nano-sized Pd catalyst was found along the body of the nanowires seeded by Pd implantation into Si. After functionalization of the wires with 3 - AminoPropylTriMethoxySilane (APTMS), the Pd decorated silica nanowires served as an SER substrate exhibiting a sensitivity of 10 7 towards the detection of interleukin-10 (IL-10, a cancer biomarker) with higher spatial resolution. Voltammetric detection of IL-10 involved silica nanowires synthesized by Pd thin film catalysis on Si as an immunoassay template. Using the electrochemical scheme, the presence of IL-10 was detected down to 1fg/mL in ideal pure solution and 1 pg/mL in clinically relevant samples. Time resolved photoluminescence (PL

  11. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  12. Anisotropy of chemical transformation from In2Se3 to CuInSe2 nanowires through solid state reaction.

    Science.gov (United States)

    Schoen, David T; Peng, Hailin; Cui, Yi

    2009-06-17

    In(2)Se(3) nanowires synthesized by the VLS technique are transformed by solid-state reaction with copper into high-quality single-crystalline CuInSe(2) nanowires. The process is studied by in situ transmission electron microscopy. The transformation temperature exhibits a surprising anisotropy, with In(2)Se(3) nanowires grown along their [0001] direction transforming at a surprisingly low temperature of 225 degrees C, while nanowires in a [11(2)0] orientation require a much higher temperature of 585 degrees C. These results offer a route to the synthesis of CuInSe(2) nanowires at a relatively low temperature as well as insight into the details of a transformation commonly used in the fabrication of thin-film solar cells.

  13. Predicting the growth of S i3N4 nanowires by phase-equilibrium-dominated vapor-liquid-solid mechanism

    Science.gov (United States)

    Zhang, Yongliang; Cai, Jing; Yang, Lijun; Wu, Qiang; Wang, Xizhang; Hu, Zheng

    2017-09-01

    Nanomaterial synthesis is experiencing a profound evolution from empirical science ("cook-and-look") to prediction and design, which depends on the deep insight into the growth mechanism. Herein, we report a generalized prediction of the growth of S i3N4 nanowires by nitriding F e28S i72 alloy particles across different phase regions based on our finding of the phase-equilibrium-dominated vapor-liquid-solid (PED-VLS) mechanism. All the predictions about the growth of S i3N4 nanowires, and the associated evolutions of lattice parameters and geometries of the coexisting Fe -Si alloy phases, are experimentally confirmed quantitatively. This progress corroborates the general validity of the PED-VLS mechanism, which could be applied to the design and controllable synthesis of various one-dimensional nanomaterials.

  14. Growth mechanism of nanowires: binary and ternary chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  15. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  16. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    Science.gov (United States)

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  17. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity

    Directory of Open Access Journals (Sweden)

    Wilske Bettina

    2006-08-01

    Full Text Available Abstract Background At least three species of Borrelia burgdorferi sensu lato (Bbsl cause tick-borne Lyme disease. Previous work including the genome analysis of B. burgdorferi B31 and B. garinii PBi suggested a highly variable plasmid part. The frequent occurrence of duplicated sequence stretches, the observed plasmid redundancy, as well as the mainly unknown function and variability of plasmid encoded genes rendered the relationships between plasmids within and between species largely unresolvable. Results To gain further insight into Borreliae genome properties we completed the plasmid sequences of B. garinii PBi, added the genome of a further species, B. afzelii PKo, to our analysis, and compared for both species the genomes of pathogenic and apathogenic strains. The core of all Bbsl genomes consists of the chromosome and two plasmids collinear between all species. We also found additional groups of plasmids, which share large parts of their sequences. This makes it very likely that these plasmids are relatively stable and share common ancestors before the diversification of Borrelia species. The analysis of the differences between B. garinii PBi and B. afzelii PKo genomes of low and high passages revealed that the loss of infectivity is accompanied in both species by a loss of similar genetic material. Whereas B. garinii PBi suffered only from the break-off of a plasmid end, B. afzelii PKo lost more material, probably an entire plasmid. In both cases the vls gene locus encoding for variable surface proteins is affected. Conclusion The complete genome sequences of a B. garinii and a B. afzelii strain facilitate further comparative studies within the genus Borrellia. Our study shows that loss of infectivity can be traced back to only one single event in B. garinii PBi: the loss of the vls cassettes possibly due to error prone gene conversion. Similar albeit extended losses in B. afzelii PKo support the hypothesis that infectivity of Borrelia

  18. Single-photon emission from InAsP quantum dots embedded in density-controlled InP nanowires

    Science.gov (United States)

    Yanase, Shougo; Sasakura, Hirotaka; Hara, Shinjiro; Motohisa, Junichi

    2017-04-01

    We attempted to control the density and size of InP-based nanowires (NWs) and nanowire quantum dots (NW-QDs) during selective-area metalorganic vapor phase epitaxy. InP nanowire arrays with a 5 µm pitch and an average NW diameter d of 67 nm were successfully grown by optimization of growth conditions. InAsP quantum dots were embedded in these density-controlled InP NW arrays, and clear single-photon emission and exciton-biexciton cascaded emission were confirmed by excitation-dependent photoluminescence and photon correlation measurements.

  19. High-performance, bare silver nanowire network transparent heaters.

    Science.gov (United States)

    Ergun, Orcun; Coskun, Sahin; Yusufoglu, Yusuf; Unalan, Husnu Emrah

    2016-11-04

    Silver nanowire (Ag NW) networks are one of the most promising candidates for the replacement of indium tin oxide (ITO) thin films in many different applications. Recently, Ag-NW-based transparent heaters (THs) showed excellent heating performance. In order to overcome the instability issues of Ag NW networks, researchers have offered different hybrid structures. However, these approaches not only require extra processing, but also decrease the optical performance of Ag NW networks. So, it is important to investigate and determine the thermal performance limits of bare-Ag-NW-network-based THs. Herein, we report on the effect of NW density, contact geometry, applied bias, flexing and incremental bias application on the TH performance of Ag NW networks. Ag-NW-network-based THs with a sheet resistance and percentage transmittance of 4.3 Ω sq(-1) and 83.3%, respectively, and a NW density of 1.6 NW μm(-2) reached a maximum temperature of 275 °C under incremental bias application (5 V maximum). With this performance, our results provide a different perspective on bare-Ag-NW-network-based transparent heaters.

  20. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  1. Nanowire Lasers

    OpenAIRE

    Couteau C.; Larrue A.; Wilhelm C.; Soci C.

    2015-01-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, fl...

  2. Amperometric Determination of Indole-3-acetic Acid Based on Platinum Nanowires and Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ruo Zhong WANG; Lang Tao XIAO; Ming Hui YANG; Jun Hui DING; Feng Li QU; Guo Li SHEN

    2006-01-01

    Platinum nanowire (PtNW) can be grown by electrodeposition in polycarbonate membrane, with the average diameter of the nanowires about 250 nm. The PtNW and multiwalled carbon nanotubes (CNT) are then dispersed into chitosan (CHIT) solution. The resulting PtNW-CNT-CHIT material brings new capabilities for electrochemical devices by using the synergistic action of the electrocatalytic activity of PtNW and CNT. By dropping the PtNW-CNT-CHIT film onto the glassy carbon (GC) electrode surface, and after evaporationan amperometric sensor for the determination of indole-3-acetic acid (IAA) was developed. The oxidation current of IAA increased significantly at the PtNW-CNT-CHIT film coated GC electrode,in contrast to that at the CNT-CHIT modified GC. The linear response of the sensor is from 50ng/ml to 50 μg/ml with a detection limit of 25 ng/mL.

  3. IC Compatible Wafer Level Fabrication of Silicon Nanowire Field Effect Transistors for Biosensing Applications

    NARCIS (Netherlands)

    Moh, T.S.Y.

    2013-01-01

    In biosensing, nano-devices such as Silicon Nanowire Field Effect Transistors (SiNW FETs) are promising components/sensors for ultra-high sensitive detection, especially when samples are low in concentration or a limited volume is available. Current processing of SiNW FETs often relies on expensive

  4. IC Compatible Wafer Level Fabrication of Silicon Nanowire Field Effect Transistors for Biosensing Applications

    NARCIS (Netherlands)

    Moh, T.S.Y.

    2013-01-01

    In biosensing, nano-devices such as Silicon Nanowire Field Effect Transistors (SiNW FETs) are promising components/sensors for ultra-high sensitive detection, especially when samples are low in concentration or a limited volume is available. Current processing of SiNW FETs often relies on expensive

  5. Molecular beam epitaxy of GaAs nanowires and their sustainability for optoelectronic applications. Comparing Au- and self-assisted growth methods

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Steffen

    2011-09-28

    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1 % is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

  6. Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase.

    Directory of Open Access Journals (Sweden)

    Ashley R Dresser

    2009-12-01

    Full Text Available Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et

  7. Chiral transformation: From single nanowire to double helix

    KAUST Repository

    Wang, Yong

    2011-12-21

    We report a new type of water-soluble ultrathin Au-Ag alloy nanowire (NW), which exhibits unprecedented behavior in a colloidal solution. Upon growth of a thin metal (Pd, Pt, or Au) layer, the NW winds around itself to give a metallic double helix. We propose that the winding originates from the chirality within the as-synthesized Au-Ag NWs, which were induced to untwist upon metal deposition. © 2011 American Chemical Society.

  8. ZnO nanowire arrays with and without cavity tops

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyu; Quan Baogang; Tang Haoying; Guo Chuanfei [National Center for Nanoscience and Technology, Beijing 100190 (China); Jiang Peng, E-mail: pjiang@nanoctr.cn [National Center for Nanoscience and Technology, Beijing 100190 (China); Yu Aifang [National Center for Nanoscience and Technology, Beijing 100190 (China); Xie Sishen, E-mail: ssxie@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190 (China); Wang Zhonglin, E-mail: zhong.wang@mse.gatech.edu [National Center for Nanoscience and Technology, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2011-10-03

    Highlights: {yields} ZnO NW array structure was formed on a ZnO-seed-layer-patterned Si substrate. {yields} Both e-beam lithography and a wet chemical method were employed. {yields} A bubble-assisted method was used for constructing ZnO nanowire arrays with cavity tops. {yields} ZnO NW array structures with different morphologies exhibited different photoluminescence properties. - Abstract: We report a new bubble-assisted growing and etching method for constructing ZnO nanowire (NW) arrays with cavity tops. Firstly, a ZnO NW array structure was formed on a ZnO-seed-layer-patterned Si substrate by combining e-beam lithography and a wet chemical method. Secondly, a new kind of ZnO NW array with cavity tops could be formed by a subsequent bubble-assisted growing and etching. These ZnO NW array structures with different morphologies exhibited different photoluminescence properties, showing their potential applications in lasing cavities, stimulated emitters, nanogenerator, photocatalysis and light-emitting diodes. The bubble-assisted etching method will open a new door for morphology design of ZnO and other semiconductor nanowire arrays at special sites.

  9. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  10. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal;

    for planar growth, many new materials combinations can be grown in a single NW. This opens up exciting opportunities for NW-based high-performance solar cells, where previously inaccessible materials combinations can now be chosen to match the solar spectrum. A key component of a multi-junction solar cell......Semiconductor nanowires (NWs) have emerged as a promising technology for future electronic and optoelectronic devices. Epitaxial growth of III-V materials on Si substrates have been demonstrated, allowing for low-cost production. As the lattice matching requirements are much less strict than...

  11. TiO₂ nanowire dispersions in viscous polymer matrix: electrophoretic alignment and optical properties.

    Science.gov (United States)

    Šutka, Andris; Saal, Kristjan; Kisand, Vambola; Lõhmus, Rünno; Joost, Urmas; Timusk, Martin

    2014-10-17

    The changes in optical properties during TiO₂ nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

  12. Mechanical behaviors of nanowires

    Science.gov (United States)

    Chen, Yujie; An, Xianghai; Liao, Xiaozhou

    2017-09-01

    The mechanical behaviors of nanowires (NWs) are significantly different from those of their bulk materials because of their small dimensions. Determining the mechanical performance of NWs and understanding their deformation behavior are crucial for designing and manufacturing NW-based devices with predictable and reproducible operation. Owing to the difficulties to manipulate these nanoscale materials, nanomechanical testing of NWs is always challenging, and errors can be readily introduced in the measured mechanical data. Here, we survey the techniques that have been developed to quantify the mechanical properties and to understand the deformation mechanisms of NWs. We also provide a general review of the mechanical properties and deformation behaviors of NWs and discuss possible sources responsible for the discrepancy of measured mechanical properties. The effects of planar defects on the mechanical behavior of NWs are also reviewed.

  13. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    Energy Technology Data Exchange (ETDEWEB)

    Barick, B. K., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in; Dhar, S., E-mail: bkbarick@gmail.com, E-mail: subho-dh@yahoo.co.in [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400076 (India); Rodríguez-Fernández, Carlos; Cantarero, Andres [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain)

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  14. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics.

    Science.gov (United States)

    Han, Seungyong; Hong, Sukjoon; Ham, Jooyeun; Yeo, Junyeob; Lee, Jinhwan; Kang, Bongchul; Lee, Phillip; Kwon, Jinhyeong; Lee, Seung S; Yang, Min-Yang; Ko, Seung Hwan

    2014-09-01

    A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form Cu-nanowire networks on heat-sensitive, flexible or even stretchable substrates.

  15. ON current enhancement of nanowire Schottky barrier tunnel field effect transistors

    Science.gov (United States)

    Takei, Kohei; Hashimoto, Shuichiro; Sun, Jing; Zhang, Xu; Asada, Shuhei; Xu, Taiyu; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2016-04-01

    Silicon nanowire Schottky barrier tunnel field effect transistors (NW-SBTFETs) are promising structures for high performance devices. In this study, we fabricated NW-SBTFETs to investigate the effect of nanowire structure on the device characteristics. The NW-SBTFETs were operated with a backgate bias, and the experimental results demonstrate that the ON current density is enhanced by narrowing the width of the nanowire. We confirmed using the Fowler-Nordheim plot that the drain current in the ON state mainly comprises the quantum tunneling component through the Schottky barrier. Comparison with a technology computer aided design (TCAD) simulation revealed that the enhancement is attributed to the electric field concentration at the corners of cross-section of the NW. The study findings suggest an effective approach to securing the ON current by Schottky barrier width modulation.

  16. Ivestigation of an InGaN - GaN nanowire heterstructure

    Energy Technology Data Exchange (ETDEWEB)

    Limbach, Friederich; Gotschke, Tobias; Stoica, Toma; Calarco, Raffaella; Gruetzmacher, Detlev [Institute of Bio- and Nanosystems (IBN-1), Research Center Juelich GmbH, Juelich (Germany); JARA-Fundamentals of Future Information Technology, Juelich (Germany); Sutter, Eli; Ciston, Jim [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY (United States); Cusco, Ramon; Artus, Luis [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Barcelona, Catalonia (Spain); Kremling, Stefan; Hoefling, Sven; Worschech, Lukas [University Wurzburg, Wilhelm Conrad Rontgen Research Centre Complex Matter Systems, Wuerzburg (Germany)

    2011-07-01

    InGaN/GaN nanowire (NW) heterostructures grown by molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multi-faceted InGaN cap wrapping the top part of the GaN NW. Transmission electron microscopy images taken from different parts of a InGaN/GaN nanowire show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it. Photoluminescence spectra of these heterostructure NW ensembles show an emission peak at 2.1 eV. However, {mu}-PL spectra measured on single nanowires reveal much sharper luminescence peaks. A Raman analysis reveals a variation of the In content between 20 % and 30 %, in agreement with PL and TEM investigations.

  17. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens.

    Science.gov (United States)

    Bankhead, Troy; Chaconas, George

    2007-09-01

    The linear plasmid, lp28-1, is required for persistent infection by the Lyme disease spirochete, Borrelia burgdorferi. This plasmid contains the vls antigenic variation locus, which has long been thought to be important for immune evasion. However, the role of the vls locus as a virulence factor during mammalian infection has not been clearly defined. We report the successful removal of the vls locus through telomere resolvase-mediated targeted deletion, and demonstrate the absolute requirement of this lp28-1 component for persistence in the mouse host. Moreover, successful infection of C3H/HeN mice with an lp28-1 plasmid in which the left portion was deleted excludes participation of other lp28-1 non-vls genes in spirochete virulence, persistence and the process of recombinational switching at vlsE. Data are also presented that cast doubt on an immune evasion mechanism whereby VlsE directly masks other surface antigens similar to what has been observed for several other pathogens that undergo recombinational antigenic variation.

  18. Lithium ion beam impact on selenium nanowires

    Science.gov (United States)

    Panchal, Suresh; Chauhan, R. P.

    2017-03-01

    This study is structured on Li3+ ion irradiation effect on the different properties of selenium (Se) nanowires (NW's) (80 nm). Template technique was employed for the synthesis of Se nanowires. Exploration of the effect of 10 MeV Li3+ ions on Se NW's was done for structural and electrical analysis with the help of characterization tools. X-ray diffraction revealed the variation in peak intensity only, with no peak shifting. The grain size and texture coefficients of various planes were also found to vary. Current-Voltage characteristics (IVC) show an increment in the conductivity up to a fluence of 1×1012 ions/cm2 and a decrease at the next two fluences. The effects of irradiation are presented in this paper and possible reasons for the variation in properties are also discussed in this study.

  19. Fabrication and Characterization of ZnO Nanowire Arrays with an Investigation into Electrochemical Sensing Capabilities

    Directory of Open Access Journals (Sweden)

    Jessica Weber

    2008-01-01

    Full Text Available ZnO nanowire arrays were grown on a Si (100 substrate using the vapor-liquid-solid (VLS method. ZnO nanowires were characterized by XRD, SEM, bright field TEM, and EDS. They were found to have a preferential orientation along the c-axis. The as-prepared sample was functionalized with glucose oxidase by physical adsorption. FTIR was taken before and after functionalization to verify the presence of the attached enzyme. Electrochemical measurements were performed on the nanowire array by differential pulse voltammetry in the range of −0.6 to 0.4 V. The nanoarray sensor displayed high sensitivity to glucose in the range of 1.0 ×10−4 to 1.0 ×10−2 mol L−1.

  20. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  1. Structural, optical and ethanol sensing properties of Cu-doped SnO{sub 2} nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Anima, E-mail: animajohari@gmail.com; Sharma, Manish [Center for Applied Research in Electronics (CARE), IIT Delhi, Hauz khas, New Delhi-110016 (India); Johari, Anoopshi [THDC Institute of Hydropower Institute of Engineering and Technology, Tehri-249124 (India); Bhatnagar, M. C. [Physics Department, IIT Delhi, Hauz khas, New Delhi-110016 (India)

    2014-04-24

    In present work, one-dimensional nanostructure of Cu-doped Tin oxide (SnO{sub 2}) was synthesized by using thermal evaporation method in a tubular furnace under Nitrogen (N{sub 2}) ambience. The growth was carried out at atmospheric pressure. SEM and TEM images reveal the growth of wire-like nanostructures of Cu-doped SnO{sub 2} on Si substrate. The XRD analysis confirms that the synthesized SnO{sub 2} nanowires have tetragonal rutile structure with polycrystalline nature and X-ray diffraction pattern also showed that Cu gets incorporated into the SnO{sub 2} lattice. EDX spectra confirm the doping of Cu into SnO{sub 2} nanowires and atomic fraction of Cu in nanowires is ∼ 0.5 at%. The Vapor Liquid Solid (VLS) growth mechanism for Cu-doped SnO{sub 2} nanowires was also confirmed by EDX spectra. The optical properties of as grown Cu-doped SnO{sub 2} nanowires were studied by using UV-vis spectra which concludes the band gap of about 3.7 eV. As synthesized single Cu-doped SnO{sub 2} nanowire based gas sensor exhibit relatively good performance to ethanol gas. This sensing behaviour offers a suitable application of the Cu-doped SnO{sub 2} nanowire sensor for detection of ethanol gas.

  2. Nanowire photonics

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  3. The influence of covering a germanium nanowire with a single wall carbon nanotube on mechanical properties: A molecular dynamics study

    Science.gov (United States)

    Abdollahi, M.; Davoodi, J.

    2017-07-01

    Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions, and field-effect transistors. Therefore, this study focused on the effects of covering a germanium nanowire (GeNW) with a single wall carbon nanotube (CNT) on the stress-strain diagram, failure points, and Young's modulus using molecular dynamics simulations. To describe the interactions between atoms in the system, we used Tersoff potential. Also, a Nose-Hoover thermostat was employed to control temperature of the system. The stress-strain curves of GeNW and GeNW inside CNT (CNT-GeNW) were obtained at various temperatures, radii, and strain velocities. It was found that coverage of GeNW with CNT led to 2-6 fold improved Young's modulus. It was also determined that a significant part of the Young's modulus in CNT-GeNW is due to the presence of CNT. Moreover, we defined the behavior of Young's modulus of GeNW as well as CNT-GeNW in the [100], [110], and [111] crystallography direction and found that Young's modulus decreased with increasing temperature. In addition, by increasing strain velocity, Young's modulus decreased for GeNW but increased for CNT-GeNW. Finally, we observed that when a GeNW is covered by a CNT, its failure point increased as compared with GeNW.

  4. Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries

    Science.gov (United States)

    Hardin, G. R.; Zhang, Y.; Fincher, C. D.; Pharr, M.

    2017-06-01

    Nanowires (NW) have emerged as a promising design for high power-density lithium-ion battery (LIB) electrodes. However, volume changes during cycling can lead to fracture of the NWs. In this paper, we investigate a particularly detrimental form of fracture: interfacial detachment of the NW from the current collector (CC). We perform finite element simulations to calculate the energy release rates of NWs during lithiation as a function of geometric parameters and mechanical properties. The simulations show that the energy release rate of a surface crack decreases as it propagates along the NW/CC interface toward the center of the NW. Moreover, this paper demonstrates that plastic deformation in the NWs drastically reduces stresses and thus crack-driving forces, thereby mitigating interfacial fracture. Overall, the results in this paper provide design guidelines for averting NW/CC interfacial fractures during operation of LIBs.

  5. Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries

    Science.gov (United States)

    Hardin, G. R.; Zhang, Y.; Fincher, C. D.; Pharr, M.

    2017-09-01

    Nanowires (NW) have emerged as a promising design for high power-density lithium-ion battery (LIB) electrodes. However, volume changes during cycling can lead to fracture of the NWs. In this paper, we investigate a particularly detrimental form of fracture: interfacial detachment of the NW from the current collector (CC). We perform finite element simulations to calculate the energy release rates of NWs during lithiation as a function of geometric parameters and mechanical properties. The simulations show that the energy release rate of a surface crack decreases as it propagates along the NW/CC interface toward the center of the NW. Moreover, this paper demonstrates that plastic deformation in the NWs drastically reduces stresses and thus crack-driving forces, thereby mitigating interfacial fracture. Overall, the results in this paper provide design guidelines for averting NW/CC interfacial fractures during operation of LIBs.

  6. RECONSTRUCTION OF 3D VECTOR MODELS OF BUILDINGS BY COMBINATION OF ALS, TLS AND VLS DATA

    Directory of Open Access Journals (Sweden)

    H. Boulaassal

    2012-09-01

    Full Text Available Airborne Laser Scanning (ALS, Terrestrial Laser Scanning (TLS and Vehicle based Laser Scanning (VLS are widely used as data acquisition methods for 3D building modelling. ALS data is often used to generate, among others, roof models. TLS data has proven its effectiveness in the geometric reconstruction of building façades. Although the operating algorithms used in the processing chain of these two kinds of data are quite similar, their combination should be more investigated. This study explores the possibility of combining ALS and TLS data for simultaneously producing 3D building models from bird point of view and pedestrian point of view. The geometric accuracy of roofs and façades models is different due to the acquisition techniques. In order to take these differences into account, the surfaces composing roofs and façades are extracted with the same algorithm of segmentation. Nevertheless the segmentation algorithm must be adapted to the properties of the different point clouds. It is based on the RANSAC algorithm, but has been applied in a sequential way in order to extract all potential planar clusters from airborne and terrestrial datasets. Surfaces are fitted to planar clusters, allowing edge detection and reconstruction of vector polygons. Models resulting from TLS data are obviously more accurate than those generated from ALS data. Therefore, the geometry of the roofs is corrected and adapted according to the geometry of the corresponding façades. Finally, the effects of the differences between raw ALS and TLS data on the results of the modeling process are analyzed. It is shown that such combination could be used to produce reliable 3D building models.

  7. Elaboration and characterization of boron doping during SiC growth by VLS mechanism

    Science.gov (United States)

    Soueidan, Maher; Ferro, Gabriel; Nsouli, Bilal; Roumié, Mohamad; Habka, Nada; Souliere, Véronique; Bluet, Jean-Marie; Kazan, Michel

    2011-07-01

    VLS mechanism was used for growing boron doped homoepitaxial SiC layers on 4H-SiC(0 0 0 1) 8° off substrate. Si-based melts were fed by propane in the temperature range 1450-1500 °C. Two main approaches were studied to incorporate boron during growth: (1) adding elemental B in the initial melt, with two different compositions: Si 90B 10 and Si 27Ge 68B 5; the growth was performed at 1500 °C; (2) adding B 2H 6 to the gas phase during growth with a melt composition of Si 25Ge 75; the growth was performed at 1450 °C. In most cases, the growth time was limited by liquid loss. The longest growth duration (1 h) was obtained when adding B 2H 6 to the gas phase. In the case of Si 90B 10 melt, the surface morphology exhibits large and parallel terraces whereas the step front is more undulated when adding Ge. Raman and photoluminescence characterizations performed on these layers confirmed the 4H polytype of the layers in addition to the presence of B, which results in a strong B-N donor-acceptor band. The thickness and the growth rate were determined by micro-Infrared spectroscopy. Particle Induced γ-ray Emission (PIGE) was tentatively used to detect B incorporation inside the grown layers. These results were compared to SIMS measurements from which B concentration was found to vary from 10 18 to 10 19 at cm -3.

  8. Electrically Conductive Metal Nanowire Polymer Nanocomposites

    Science.gov (United States)

    Luo, Xiaoxiong

    This thesis investigates electrically conductive polymer nanocomposites formulated with metal nanowires for electrostatic discharge and electromagnetic interference shielding. Copper nanowires (CuNWs) of an average length of 1.98 mum and diameter of 25 +/- 4 nm were synthesized. The oxidation reaction of the CuNWs in air can be divided into two stages at weight of 111.2% on TGA curves. The isoconversional activation energies determined by Starink method were used to fit the different master plots. Johnson-Mehl-Avrami (JMA) equation gave the best fit. The surface atoms of the CuNWs are the sites for the random nucleation and the crystallite strain in the CuNWs is the driving force for the growth of nuclei mechanism during the oxidation process. To improve the anti-oxidation properties of the CuNWs, silver was coated onto the surface of the CuNWs in Ag-amine solution. The prepared silver coated CuNWs (AgCuNWs) with silver content of 66.52 wt. %, diameter of 28--33 nm exhibited improved anti-oxidation behavior. The electrical resistivity of the AgCuNW/low density polyethylene (LDPE) nanocomposites is lower than that of the CuNW/LDPE nanocomposites with the same volume percentage of fillers. The nanocomposites formulated with CuNWs and polyethylenes (PEs) were compared to study the different interaction between the CuNWs and the different types of PE matrices. The electrical conductivity of the different PE matrices filled with the same concentrations of CuNWs correlated well with the level of the CuNW dispersion. The intermolecular force and entanglement resulting from the different macromolecular structures such as molecular weight and branching played an important role in the dispersion, electrical properties and rheological behaviour of the CuNW/PE nanocomposites. Ferromagnetic polycrystalline nickel nanowires (NiNWs) were synthesized with uniform diameter of ca. 38 nm and an average length of 2.68 mum. The NiNW linear low density polyethylene (LLDPE

  9. Electrical limit of silver nanowire electrodes: Direct measurement of the nanowire junction resistance

    KAUST Repository

    Selzer, Franz

    2016-04-19

    We measure basic network parameters of silvernanowire (AgNW) networks commonly used as transparent conductingelectrodes in organic optoelectronic devices. By means of four point probing with nanoprobes, the wire-to-wire junction resistance and the resistance of single nanowires are measured. The resistanceRNW of a single nanowire shows a value of RNW=(4.96±0.18) Ω/μm. The junction resistanceRJ differs for annealed and non-annealed NW networks, exhibiting values of RJ=(25.2±1.9) Ω (annealed) and RJ=(529±239) Ω (non-annealed), respectively. Our simulation achieves a good agreement between the measured network parameters and the sheet resistanceRS of the entire network. Extrapolating RJ to zero, our study show that we are close to the electrical limit of the conductivity of our AgNW system: We obtain a possible RS reduction by only ≈20% (common RS≈10 Ω/sq). Therefore, we expect further performance improvements in AgNW systems mainly by increasing NW length or by utilizing novel network geometries.

  10. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  11. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    Directory of Open Access Journals (Sweden)

    Wen-Chung Chang

    2016-06-01

    Full Text Available Vertically aligned p-type silicon nanowire (SiNW arrays were fabricated through metal-assisted chemical etching (MACE of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM, X-ray diffraction (XRD, and current−voltage (I−V measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  12. Nanowire Lasers

    Science.gov (United States)

    Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C.

    2015-05-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  13. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.

    2015-05-01

    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  14. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    Science.gov (United States)

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  15. Rotating Au nanorod and nanowire driven by circularly polarized light.

    Science.gov (United States)

    Liaw, Jiunn-Woei; Chen, Ying-Syuan; Kuo, Mao-Kuen

    2014-10-20

    The wavelength-dependent optical torques provided by a circularly polarized (CP) plane wave driving Au nanorod (NR) and nanowire (NW) to rotate constantly were studied theoretically. Using the multiple multipole method, the resultant torque in terms of Maxwell's stress tensor was analyzed. Numerical results show that the optical torque spectrum is in accordance with the absorption spectrum of Au NR/NW. Under the same fluence, the maximum optical torque occurs at the longitudinal surface plasmon resonance (LSPR) of Au NR/NW, accompanied by a severe plasmonic heating. The rotation direction of the light-driven NR/NW depends on the handedness of CP light. In contrast, the optical torque exerted on Au NR/NW illuminated by a linearly polarized light is null at LSPR. Due to the plasmonic effect, the optical torque on Au NR/NW by CP light is two orders of magnitude larger than that on a dielectric NR/NW of the same size. The steady-state rotation of NR/NW in water, resulting from the balance of optical torque and viscous torque, was also discussed. Our finding shed some light on manipulating a CP light-driven Au NR/NW as a rotating nanomotor for a variety of applications in optofluidics and biophysics.

  16. High Throughput Nanofabrication of Silicon Nanowire and Carbon Nanotube Tips on AFM Probes by Stencil-Deposited Catalysts

    DEFF Research Database (Denmark)

    Engstrøm, Daniel Southcott; Savu, Veronica; Zhu, Xueni;

    2011-01-01

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer...

  17. Investigation of functionalized silicon nanowires by self-assembled monolayer

    Science.gov (United States)

    Hemed, Nofar Mintz; Convertino, Annalisa; Shacham-Diamand, Yosi

    2016-03-01

    The functionalization using self assembled monolayer (SAM) of silicon nanowires (SiNW) fabricated by plasma enhanced chemical vapor deposition (PECVD) is reported here. The SAM is being utilized as the first building block in the functionalization process. The morphology of the SiNW comprises a polycrystalline core wrapped by an hydrogenated amorphous silicon (α-Si:H) shell. Since most of the available methods for SAM verification and characterization are suitable only for flat substrates; therefore, in addition to the SiNW α-Si:H on flat samples were produced in the same system as the SiNWs. First we confirmed the SAM's presence on the flat α-Si:H samples using the following methods: contact angle measurement to determine the change in surface energy; atomic force microscopy (AFM) to determine uniformity and molecular coverage. Spectroscopic ellipsometry and X-ray reflectivity (XRR) were performed to measure SAM layer thickness and density. X-ray photoelectron spectroscopy (XPS) was applied to study the chemical states of the surface. Next, SiNW/SAM were tested by electrochemical impedance spectroscopy (EIS), and the results were compared to α-Si:H/SAM. The SAM electrical coverage on SiNW and α-Si:H was found to be ∼37% and ∼65 ± 3%, respectively. A model, based on transmission line theory for the nanowires is presented to explain the disparity in results between the nanowires and flat surface of the same materials.

  18. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties.

    Science.gov (United States)

    Kiran, Vankayala; Sampath, Srinivasan

    2013-11-07

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.

  19. New porcine test-model reveals remarkable differences between algorithms for spectrophotometrical haemoglobin saturation measurements with VLS

    DEFF Research Database (Denmark)

    Gade, John; Greisen, Gorm

    2016-01-01

    The study created an 'ex vivo' model to test different algorithms for measurements of mucosal haemoglobin saturation with visible light spectrophotometry (VLS). The model allowed comparison between algorithms, but it also allowed comparison with co-oximetry using a 'gold standard' method. This has......  -32.8 to  +29.9 percentage points and from  -5.0 to  +9.2 percentage points, respectively. CONCLUSION: the algorithms showed remarkable in-between differences when tested on raw-spectra from an 'ex vivo' model. All algorithms had bias, more marked at high oxygenation than low oxygenation. Three...

  20. Engineering scale development of the Vapor-Liquid-Solid (VLS) process for the production of silicon carbide fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Hollar, W.E. Jr. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Mills, W.H. [BP America, Inc., Cleveland, OH (United States)

    1993-09-01

    Vapor-liquid-solid (VLS)SiC fibrils are used as reinforcement in ceramic matrix composites (CMC). A program has been completed for determining process scaleup parameters and to produce material for evaluation in a CMC. The scaleup is necessary to lower production cost and increase material availability. Scaleup parameters were evaluated in a reactor with a vertical dimension twice that of the LANL reactor. Results indicate that the scaleup will be possible. Feasibility of recycling process gas was demonstrated and the impact of postprocessing on yields determined.

  1. Fabrication of SiC Composites with Synergistic Toughening of Carbon Whisker and In Situ 3C-SiC Nanowire

    Directory of Open Access Journals (Sweden)

    Zhang Yunlong

    2016-01-01

    Full Text Available The SiC composites with synergistic toughening of carbon whisker and in situ 3C-SiC nanowire have been fabricated by hot press sinter technology and annealed treatment technology. Effect of annealed time on the morphology of SiC nanowires and mechanical properties of the Cw/SiC composites was surveyed in detail. The appropriate annealed time improved mechanical properties of the Cw/SiC composites. The synergistic effect of carbon whisker and SiC nanowire can improve the fracture toughness for Cw/SiC composites. The vapor-liquid-solid growth (VLS mechanism was proposed. TEM photo showed that 3C-SiC nanowire can be obtained with preferential growth plane ({111}, which corresponded to interplanar spacing about 0.25 nm.

  2. Enhanced fabrication process of zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    García Núñez, C., E-mail: carlos.garcia@uam.es [Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Pau, J.L.; Ruíz, E.; García Marín, A.; García, B.J.; Piqueras, J. [Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Shen, G.; Wilbert, D.S.; Kim, S.M.; Kung, P. [Department of Electrical and Computer Engineering, the University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-03-31

    Zinc oxide (ZnO) nanowires (NWs) based ultraviolet (UV) sensors have been fabricated using different assembly techniques to form functional structures, aiming at the improvement of the performance of NW-based sensors for optoelectronic applications. NWs with diameters and lengths varying between 90–870 nm and 2–20 μm, respectively, were synthesized by controlling the growth conditions in a chemical vapor transport system. Optical properties of NWs were studied by means of transmission spectroscopy. Electrical properties of single ZnO NW-based sensors were analyzed in dark and under UV illumination (at photon wavelength of λ < 370 nm) as a function of the NW diameter. Results of the study indicate that reduction of the NW diameter below 200 nm leads to an improvement of the photocurrent (at λ < 370 nm) up to 10{sup 2} μA and a decrease of the decay time around 150 s. These enhancements may help to improve the performance of ZnO-based optoelectronic devices. - Highlights: • ZnO nanowires (NWs) with diameters 90–870 nm were grown by chemical vapor transport. • ZnO NWs showed strong absorption in the UV range. • Different assembly techniques were tested for preparing ZnO NW-based UV sensors. • Sensor photoresponses were around 10{sup 3} A/W. • Reducing NW diameter below 200 nm improved sensor photosensitivity.

  3. A room temperature light source based on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lo Faro, M.J. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Andrea, C. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Messina, E.; Fazio, B. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Musumeci, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Franzò, G. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Gucciardi, P.G.; Vasi, C. [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy); Priolo, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via Santa Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Via Valdisavoia 9, 95123 Catania (Italy); Iacona, F. [MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123 Catania (Italy); Irrera, A., E-mail: irrera@me.cnr.it [CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D' Alcontres 37, 98158 Messina (Italy)

    2016-08-31

    We synthesized ultrathin Si nanowires (NWs) by metal assisted chemical wet etching, using a very thin discontinuous Au layer as precursor for the process. A bright room temperature emission in the visible range due to electron–hole recombination in quantum confined Si NWs is reported. A single walled carbon nanotube (CNT) suspension was prepared and dispersed in Si NW samples. The hybrid Si NW/CNT system exhibits a double emission at room temperature, both in the visible (due to Si NWs) and the IR (due to CNTs) range, thus demonstrating the realization of a low-cost material with promising perspectives for applications in Si-based photonics. - Highlights: • Synthesis of ultrathin Si nanowires (NWs) by metal-assisted chemical etching • Synthesis of NW/carbon nanotube (CNT) hybrid systems • Structural characterization of Si NWs and Si NW/CNT • Room temperature photoluminescence (PL) properties of Si NWs and of Si NW/CNT • Tuning of the PL properties of the Si NW/CNT hybrid system.

  4. Compact Nanowire Sensors Probe Microdroplets.

    Science.gov (United States)

    Schütt, Julian; Ibarlucea, Bergoi; Illing, Rico; Zörgiebel, Felix; Pregl, Sebastian; Nozaki, Daijiro; Weber, Walter M; Mikolajick, Thomas; Baraban, Larysa; Cuniberti, Gianaurelio

    2016-08-10

    The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.

  5. On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation.

    Science.gov (United States)

    Cao, Huaxiang; Li, Xinhua; Zhou, Bukang; Chen, Tao; Shi, Tongfei; Zheng, Jianqiang; Liu, Guangqiang; Wang, Yuqi

    2017-12-01

    We demonstrate the fabrication of the large-area arrays of vertically aligned Si/SiO2 nanowires with full tunability of the geometry of the single nanowires by the metal-assisted chemical etching technique and the following thermal oxidation process. To fabricate the geometry controllable Si/SiO2 nanowire (NW) arrays, two critical issues relating with the size control of polystyrene reduction and oxide thickness evolution are investigated. Through analyzing the morphology evolutions of polystyrene particles, we give a quantitative description on the diameter variations of polystyrene particles with the etching time of plasma etching. Based on this, pure Si NW arrays with controllable geometry are generated. Then the oxide dynamic of Si NW is analyzed by the extended Deal-Grove model. By control, the initial Si NWs and the thermal oxidation time, the well-aligned Si/SiO2 composite NW arrays with controllable geometry are obtained.

  6. On-Demand Fabrication of Si/SiO2 Nanowire Arrays by Nanosphere Lithography and Subsequent Thermal Oxidation

    Science.gov (United States)

    Cao, Huaxiang; Li, Xinhua; Zhou, Bukang; Chen, Tao; Shi, Tongfei; Zheng, Jianqiang; Liu, Guangqiang; Wang, Yuqi

    2017-02-01

    We demonstrate the fabrication of the large-area arrays of vertically aligned Si/SiO2 nanowires with full tunability of the geometry of the single nanowires by the metal-assisted chemical etching technique and the following thermal oxidation process. To fabricate the geometry controllable Si/SiO2 nanowire (NW) arrays, two critical issues relating with the size control of polystyrene reduction and oxide thickness evolution are investigated. Through analyzing the morphology evolutions of polystyrene particles, we give a quantitative description on the diameter variations of polystyrene particles with the etching time of plasma etching. Based on this, pure Si NW arrays with controllable geometry are generated. Then the oxide dynamic of Si NW is analyzed by the extended Deal-Grove model. By control, the initial Si NWs and the thermal oxidation time, the well-aligned Si/SiO2 composite NW arrays with controllable geometry are obtained.

  7. Phase diagrams for understanding gold-seeded growth of GaAs and InAs nanowires

    Science.gov (United States)

    Ghasemi, Masoomeh; Johansson, Jonas

    2017-04-01

    Phase diagrams are useful tools to study the phase equilibria of nanowire materials systems because the growth of nanowires is accompanied by phase formation and phase transition. We have modeled the phase equilibria of the As–Au–Ga ternary system by means of the CALPHAD method. This method is a well-established semi-empirical technique for thermodynamic modeling in which Gibbs energy functions with free parameters are defined for all phases in a system followed by adjusting these parameters to the experimental data. Using the resulting As–Au–Ga thermodynamic database, four vertical cuts of this ternary system are calculated and all show good agreement with experiments. This ternary system is particularly useful for predicting the state of the Au seed alloys when growing GaAs nanowires and we discuss such predictions. Similar calculations are performed for Au-seeded InAs nanowires. We show that the vapor–liquid–solid (VLS) growth fails for InAs nanowires, while GaAs nanowires can grow from a liquid particle. Our calculations are in agreement with experimental data on the growth of Au-seeded GaAs and InAs nanowires.

  8. A Vertically Integrated Junctionless Nanowire Transistor.

    Science.gov (United States)

    Lee, Byung-Hyun; Hur, Jae; Kang, Min-Ho; Bang, Tewook; Ahn, Dae-Chul; Lee, Dongil; Kim, Kwang-Hee; Choi, Yang-Kyu

    2016-03-09

    A vertically integrated junctionless field-effect transistor (VJ-FET), which is composed of vertically stacked multiple silicon nanowires (SiNWs) with a gate-all-around (GAA) structure, is demonstrated on a bulk silicon wafer for the first time. The proposed VJ-FET mitigates the issues of variability and fabrication complexity that are encountered in the vertically integrated multi-NW FET (VM-FET) based on an identical structure in which the VM-FET, as recently reported, harnesses a source and drain (S/D) junction for its operation and is thus based on the inversion mode. Variability is alleviated by bulk conduction in a junctionless FET (JL-FET), where current flows through the core of the SiNW, whereas it is not mitigated by surface conduction in an inversion mode FET (IM-FET), where current flows via the surface of the SiNW. The fabrication complexity is reduced by the inherent JL structure of the JL-FET because S/D formation is not required. In contrast, it is very difficult to dope the S/D when it is positioned at each floor of a tall SiNW with greater uniformity and with less damage to the crystalline structure of the SiNW in a VM-FET. Moreover, when the proposed VJ-FET is used as nonvolatile flash memory, the endurance and retention characteristics are improved due to the above-mentioned bulk conduction.

  9. Photoluminescence Properties of Silicon Nanowires and Carbon Nanotube-Silicon Nanowire Composite Arrays

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 孔令斌; 王成伟; 郭新勇; 力虎林

    2002-01-01

    Composite arrays of multi-wall carbon nanotubes (MWNTs) and silicon nanowires (SiNWs) are fabricated by means of the chemical vapour deposition method in porous anodic aluminium oxide (AAO) templates. The results of the scanning electron microscopy, high-resolution transmission electron microscopy, and transmission electron microscopy have shown that SiNWs are successful nested or filled in the hollow cavities of synthesized MWNT arrays in AAO templates to form MWNT-SiNW composite arrays. The photoluminescence (PL) intensity degradation and a blueshift of PL peak position, usually created from the chemical instability of the SiNW surfaces, are decreased and eliminated clearly in the composite arrays. The composite arrays of MWNTs-SiNWs exhibit more enhanced intensity and stability of PL performance than the SiNW arrays deposited in AAO templates.

  10. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    Indian Academy of Sciences (India)

    B SANTHIBHUSHAN; MAHESH SONI; ANURAG SRIVASTAVA

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group Velement. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  11. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    Science.gov (United States)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  12. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications

    Institute of Scientific and Technical Information of China (English)

    YANG Cheng; ZHANG Gang; LEE Dae-Young; LI Hua-Min; LIM Young-Dae; Y00 Won Jong; PARK Young-Jun; KIM Jong-Min

    2011-01-01

    Self-assembly of silicon nanowire(SiNW)arrays is studied using SF6/02 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200-1100nm is obtained. The conducting transparent indium-tin-oxide(ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments.

  13. Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future.

    Science.gov (United States)

    Fennell, John F; Liu, Sophie F; Azzarelli, Joseph M; Weis, Jonathan G; Rochat, Sébastien; Mirica, Katherine A; Ravnsbæk, Jens B; Swager, Timothy M

    2016-01-22

    Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications.

  14. Ballistic Performance Study of Nanowire FET: Effect of Channel Materials and Phonon Scattering

    Science.gov (United States)

    Iztihad, Hossain Md.; Khan, Touhid; Sufian, Abu; Alam, Md. Nur Kutubul; Mollah, Md. Nurunnabi; Islam, Md. Rafiqul

    2016-02-01

    The ballistic performance of Si and Ge nanowire (NW) is compared in this study. Current-voltage characteristic is obtained by self-consistently solving the nonequilibrium Green’s function (NEGF) transport equation with Poisson’s equation. The result is obtained at ⟨001⟩ channel orientation. Simulation result shows Ge NW gives higher ON-state current than Si NW, when OFF-state current is made equal by gate metal work function engineering. However, at subthreshold region, performance of NW FET for both material is almost identical. The intravalley and intervalley electron-phonon scattering effect is also calculated using the deformation potential theory and the self-consistent Born approximation. It is found that electron-phonon scattering effect is more pronounced at ON-state of Si NW FET. The ballistic current decreases with the decrease in diameter of the Si NW FET due to electron-phonon scattering.

  15. Alumina Template-Dependant Growth of Cobalt Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    L. Malferrari

    2009-01-01

    Full Text Available Different electrochemical regimes and porous alumina were applied for template synthesis of cobalt nanowire (nw arrays, revealing several peculiar cases. In contrast to quite uniform filling of sulfuric acid alumina templates by alternating current deposition, nonuniform growth of the Co nw tufts and mushrooms was obtained for the case of oxalic acid templates. We showed herein for the first time that such configurations arise from the spontaneous growth of cobalt nw groups evolving from the cobalt balls at the Al/alumina interface. Nevertheless, the uniform growth of densely packed cobalt nw arrays, up to tens of micrometers in length, was obtained via long-term direct current galvanostatic deposition at low current density using oxalic acid templates one-side coated by conducting layer. The unique point of this regime is the formation of hexagonal lattice Co nws with a preferred (100 growth direction.

  16. Carrier transport in Ge nanowires / Si substrate heterojunction

    Science.gov (United States)

    Lee, E.-K.; Kamenev, B.; Tsybeskov, L.; Sharma, S.; Kamins, T. I.

    2006-03-01

    Semiconductor nanowires (NWs) attached to lattice-mismatched single-crystal substrates form quasi-one-dimensional (QOD) heterojunctions (HJs) where efficient structural relaxation might occur due to high surface-to-volume ratio. Current-voltage characteristics in Ge NW/(p+)Si samples with nearly micron-long Ge NWs exhibit metal-type conductivity with ohmic behavior and little conductivity temperature dependence. In contrast, Ge NW/(n+)Si samples display significant change in conductivity as a function of temperature with an activation energy up to 200 meV. In a narrow temperature interval near 150 K we observed current instabilities and oscillations for Ge NW/(n+)Si. At higher temperatures we find negative differential photoconductivity at low forward biases. Our experimental results are explained using a model of nearly ideal Si substrate/Ge NW hetero-interfaces.

  17. Bipolar resistive switching behaviors of ITO nanowire networks

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-02-01

    Full Text Available We have fabricated indium tin oxide (ITO nanowire (NW networks on aluminum electrodes using electron beam evaporation. The Ag/ITO-NW networks/Al capacitor exhibits bipolar resistive switching behavior. The resistive switching characteristics of ITO-NW networks are related to the morphology of NWs. The x-ray photoelectron spectroscopy was used to obtain the chemical nature from the NWs surface, investigating the oxygen vacancy state. A stable switching voltages and a clear memory window were observed in needle-shaped NWs. The ITO-NW networks can be used as a new two-dimensional metal oxide material for the fabrication of high-density memory devices.

  18. Quantification of nanowire uptake by live cells

    KAUST Repository

    Margineanu, Michael B.

    2015-05-01

    Nanostructures fabricated by different methods have become increasingly important for various applications at the cellular level. In order to understand how these nanostructures “behave” and for studying their internalization kinetics, several attempts have been made at tagging and investigating their interaction with living cells. In this study, magnetic iron nanowires with an iron oxide layer are coated with (3-Aminopropyl)triethoxysilane (APTES), and subsequently labeled with a fluorogenic pH-dependent dye pHrodo™ Red, covalently bound to the aminosilane surface. Time-lapse live imaging of human colon carcinoma HCT 116 cells interacting with the labeled iron nanowires is performed for 24 hours. As the pHrodo™ Red conjugated nanowires are non-fluorescent outside the cells but fluoresce brightly inside, internalized nanowires are distinguished from non-internalized ones and their behavior inside the cells can be tracked for the respective time length. A machine learning-based computational framework dedicated to automatic analysis of live cell imaging data, Cell Cognition, is adapted and used to classify cells with internalized and non-internalized nanowires and subsequently determine the uptake percentage by cells at different time points. An uptake of 85 % by HCT 116 cells is observed after 24 hours incubation at NW-to-cell ratios of 200. While the approach of using pHrodo™ Red for internalization studies is not novel in the literature, this study reports for the first time the utilization of a machine-learning based time-resolved automatic analysis pipeline for quantification of nanowire uptake by cells. This pipeline has also been used for comparison studies with nickel nanowires coated with APTES and labeled with pHrodo™ Red, and another cell line derived from the cervix carcinoma, HeLa. It has thus the potential to be used for studying the interaction of different types of nanostructures with potentially any live cell types.

  19. Realization of metal-insulator transition and oxidation in silver nanowire percolating networks by terahertz reflection spectroscopy.

    Science.gov (United States)

    Tsai, Yao-Jiun; Chang, Chi-Ying; Lai, Yi-Chun; Yu, Pei-Chen; Ahn, Hyeyoung

    2014-01-08

    Metal nanowires (NWs) enable versatile applications in printed electronics and optoelectronics by serving as thin and flexible transparent electrodes. The performance of metal NWs as thin electrodes is highly correlated to the connectivity of NW meshes. The percolation threshold of metal NW films corresponds to the minimum density of NWs to form the transparent, yet conductive metal NW networks. Here, we determine the percolation threshold of silver NW (AgNW) networks by using morphological analysis and terahertz (THz) reflection spectroscopy. From the divergent behavior of carrier scattering time and the increase of carrier backscattering factor, the critical NW density at which crossover from Drude to non-Drude behavior of THz conductivity occurs can be unambiguously determined for AgNW thin films. Furthermore, the natural oxidation of AgNWs which causes the gradual reduction of the connectivity of the AgNW network is also realized by the THz spectroscopy. The selective oxidation of NW-to-NW junctions weakens the ohmic contact, and for AgNWs near a critical density, it can even lead to metal-insulator transition. The presented results offer invaluable information to accelerate the deployment of metal nanowires for next-generation electronics and optoelectronics on flexible substrates.

  20. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires.

    Science.gov (United States)

    Feng, Xinjian; Zhu, Kai; Frank, Arthur J; Grimes, Craig A; Mallouk, Thomas E

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO(2) nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport and a factor four lower defect state density than conventional rutile nanoparticle films.

  1. Magnetic optical bifunctional CoPt3/Co multilayered nanowire arrays

    Institute of Scientific and Technical Information of China (English)

    苏轶坤; 闫志龙; 吴喜明; 刘欢; 任肖; 杨海涛

    2015-01-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic ( f cc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies.

  2. Step Flow Model of Radial Growth and Shape Evolution of Semiconductor Nanowires

    Science.gov (United States)

    Filimonov, S. N.; Hervieu, Yu. Yu.

    2016-12-01

    A model of radial growth of vertically aligned nanowires (NW) via formation and propagation of monoatomic steps at nanowire sidewalls is developed. The model allows to describe self-consistently the step dynamics and the axial growth of the NW. It is shown that formation of NWs with an abrupt change of wire diameter and a non-tapered section at the top might be explained by the bunching of sidewall steps due to the presence of a strong sink for adatoms at the NW top. The Ehrlich-Schwoebel barrier for the attachment of adatoms to the descending step favors the step bunching at the beginning of the radial growth and promotes the decay of the bunch at a later time of the NW growth.

  3. Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays

    Science.gov (United States)

    Zhang, Xiangyu; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin

    2016-05-01

    Well-ordered, one-dimensional silver-doped anatase TiO2 nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO2 nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  4. Oxide-assisted Synthesis and Properties of Semiconductor Nanowires

    Institute of Scientific and Technical Information of China (English)

    Lee S. T.

    2001-01-01

    @@ We introduce a new synthetic approach, called oxide-assisted growth method, which can produce bulk-quantity synthesis of high-purity (no metal contamination) onedimensional semiconductor nanomaterials. In contrast to the conventional metalcatalyst VLS approach, the oxide-assisted growth method uses oxides instead of metal catalysis in a laser ablation, thermal evaporation or CVD process. Using this new approach, we have synthesized various high-purity, one-dimensional semiconductor nanomaterials, including nanowires of Si, Ge, C, SiC, Si3N4, GaN, GaAs, GaP and CdS. Notably, silicon nanomaterials of controlled diameter, desired orientation or pattern, and morphologies (wire, chain, ribbons, cable) are attainable. We have characterized the morphology, microstructure, and optical and field-emission properties of silicon nanowires. The atomic structure and electronic properties of Si nanowires have been measured by STM and STS, which are correlated to the transport measurements. The effect of quantum confinement has been manifested. The results are important for developing nanoelectronic devices and offer exciting opportunities for research and applications in nanoscience and nanotechnology.

  5. Oxide-assisted Synthesis and Properties of Semiconductor Nanowires

    Institute of Scientific and Technical Information of China (English)

    Lee; S.; T.

    2001-01-01

    We introduce a new synthetic approach, called oxide-assisted growth method, which can produce bulk-quantity synthesis of high-purity (no metal contamination) onedimensional semiconductor nanomaterials. In contrast to the conventional metalcatalyst VLS approach, the oxide-assisted growth method uses oxides instead of metal catalysis in a laser ablation, thermal evaporation or CVD process. Using this new approach, we have synthesized various high-purity, one-dimensional semiconductor nanomaterials, including nanowires of Si, Ge, C, SiC, Si3N4, GaN, GaAs, GaP and CdS. Notably, silicon nanomaterials of controlled diameter, desired orientation or pattern, and morphologies (wire, chain, ribbons, cable) are attainable. We have characterized the morphology, microstructure, and optical and field-emission properties of silicon nanowires. The atomic structure and electronic properties of Si nanowires have been measured by STM and STS, which are correlated to the transport measurements. The effect of quantum confinement has been manifested. The results are important for developing nanoelectronic devices and offer exciting opportunities for research and applications in nanoscience and nanotechnology.  ……

  6. Gold as an intruder in ZnO nanowires.

    Science.gov (United States)

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-07

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications.

  7. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  8. Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ya-Hui; Duan, Yu, E-mail: duanyu@jlu.edu.cn; Wang, Xiao; Yang, Dan; Yang, Yong-Qiang; Chen, Ping; Sun, Feng-Bo; Xue, Kai-Wen; Zhao, Yi

    2015-10-01

    Graphical abstract: - Highlights: • An ultra-smooth AgNW film on a flexible photopolymer substrate has been fabricated. • The AgNW film has a low sheet resistance with high transparency and flexibility. • OLEDs based on AgNW:NOA63 substrate can be bent at a radius of curvature of 2 mm. - Abstract: Materials to replace indium tin oxide (ITO) for high transmittance and electrical conductivity are urgently needed. In this paper, we adopted a silver nanowire (AgNW)-photopolymer (NOA63) film as a new platform for flexible optoelectronic devices. This design combined a transparent electrode and a flexible substrate. We utilized this application to obtain flexible organic light-emitting devices (FOLEDs). A peel-off process combined with a spin-coating process created an ultra-smooth silver nanowire anode on a photopolymer substrate. The performance of the device was achieved via the perfect morphology of the AgNW anode, the optimal 5 mg/ml concentration of AgNW solution, and the 45.7 Ω/□ sheet resistance of the AgNW film. The maximum current efficiency of the FOLED is 13 cd/A with stable mechanical flexibility even when bent to a radius of curvature of 2 mm. The outstanding performance of the FOLED with peeled off AgNW anode shows that this approach is a promising alternative to ITO for FOLEDs.

  9. Optical characteristics of silicon nanowires grown from tin catalyst layers on silicon coated glass

    KAUST Repository

    Ball, Jeremy

    2012-08-20

    The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption, reflectance and transmittance spectra have been investigated as a function of the thickness of the underlying Si layer and the initial catalyst layer, the latter having a strong influence on wire density. High levels of absorption (>90% in the visible wavelength range) and good agreement between the modeling and experiment have been observed when the nanowires have a relatively high density of ∼4 wires/μ m2. The experimental and modeled results diverge for samples with a lower density of wire growth. The results are discussed along with some implications for solar cell fabrication. © 2012 Optical Society of America.

  10. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy.

    Science.gov (United States)

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro

    2012-01-01

    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  11. Design High-Efficiency III–V Nanowire/Si Two-Junction Solar Cell

    OpenAIRE

    Wang, Y; Zhang, Y.; Zhang, D; He, S.; Li, X.

    2015-01-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Cons...

  12. Investigation the absorption efficiency of GaAs/InGaAs nanowire solar cells

    Science.gov (United States)

    Ali, Latef M.; Abed, Farah A.

    2017-10-01

    This study investigated the absorption efficiency of GaAs/In0.2Ga0.8As cylindrical core-shell nanowire (NW) solar cells with a circular cross-section for normal incident light. Numerical results obtained through finite-difference time-domain simulation showed that NW dimensions influenced the absorption efficiency of the solar cells. The band structure of the wires was also investigated.

  13. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    OpenAIRE

    2014-01-01

    The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW) in the metal–semiconductor–metal (M–S–M) nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased...

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: UV DISINFECTION FOR REUSE APPLICATIONS, ONDEO DEGREMONT, INC., AQUARAY® 40 HO VLS DISINFECTION SYSTEM

    Science.gov (United States)

    Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...

  15. Growth and structural characterization of III-V nanowires grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dheeraj, D.L.

    2010-10-15

    Heterostructured semiconductor nanowires (NWs) have attracted considerable attention in recent years because of their potential in future nano-electronic and nano-photonic device applications. NWs are usually grown by vapor-liquid-solid (VLS) growth mechanism using techniques such as metal-organic vapor phase epitaxy, chemical beam epitaxy and molecular beam epitaxy (MBE). Of all the available techniques, MBE is known to be the technique which yields highest purity materials. In this study, the growth of GaAs NWs, GaAsSb NWs, as well as GaAs/GaAsSb axial and GaAs/AlGaAs radial heterostructured NWs on GaAs(111)B substrates by MBE is demonstrated. The structural and optical properties of the NWs grown are characterized by electron microscopy techniques such as scanning and transmission electron microscopy, and micro-photoluminescence, respectively. Firstly, the optimum growth conditions to obtain rod shaped GaAs NWs on GaAs(111)B substrates by MBE is determined. It has been found that in-addition to the V/III ratio and substrate temperature, buffer growth conditions also play an important role on the orientation of the NWs. The effect of V/III ratio, substrate temperature, and the arsenic species (As{sub 2}/As{sub 4}) on the morphology of GaAs NWs has been determined. Transmission electron microscopy (TEM) characterization of NWs revealed that GaAs in NW form exhibit wurtzite (WZ) crystal phase in contrast to zinc blende (ZB) phase adapted in its bulk form. Since WZ crystal phase is a metastable phase of GaAs, the WZ GaAs NWs often exhibit stacking faults. The stacking faults are known to be a detrimental problem, if not properly controlled. To gain more insight on the growth kinetics of GaAs NWs grown by MBE, several samples such as GaAs NWs grown for different time durations, and GaAs NWs with three GaAsSb inserts, where GaAsSb inserts acts as markers, have been grown. Interestingly, the growth rates of the GaAs segments and GaAsSb inserts were observed to vary

  16. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device.

    Science.gov (United States)

    Kaur, N; Comini, E; Zappa, D; Poli, N; Sberveglieri, G

    2016-05-20

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  17. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10

    Science.gov (United States)

    Sekhar, Praveen K.; Ramgir, Niranjan S.; Joshi, Rakesh K.; Bhansali, Shekhar

    2008-06-01

    The vapor-liquid-solid (VLS) growth procedure has been extended for the selective growth of silica nanowires on SiO2 layer by using Au as a catalyst. The nanowires were grown in an open tube furnace at 1100 °C for 60 min using Ar as a carrier gas. The average diameter of these bottom-up nucleated wires was found to be 200 nm. Transmission electron microscopy analysis indicates the amorphous nature of these nanoscale wires and suggests an Si-silica heterostructure. The localized silica nanowires have been used as an immunoassay template in the detection of interleukin-10 which is a lung cancer biomarker. Such a nanostructured platform offered a tenfold enhancement in the optical response, aiding the recognition of IL-10 in comparison to a bare silica substrate. The role of nanowires in the immunoassay was verified through the quenching behavior in the photoluminescence (PL) spectra. Two orders of reduction in PL intensity have been observed after completion of the immunoassay with significant quenching after executing every step of the protocol. The potential of this site-specific growth of silica nanowires on SiO2 as a multi-modal biosensing platform has been discussed.

  18. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10

    Energy Technology Data Exchange (ETDEWEB)

    Sekhar, Praveen K; Ramgir, Niranjan S; Joshi, Rakesh K; Bhansali, Shekhar [Bio-MEMS and Microfabrication Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL 33620 (United States)], E-mail: bhansali@eng.usf.edu

    2008-06-18

    The vapor-liquid-solid (VLS) growth procedure has been extended for the selective growth of silica nanowires on SiO{sub 2} layer by using Au as a catalyst. The nanowires were grown in an open tube furnace at 1100 deg. C for 60 min using Ar as a carrier gas. The average diameter of these bottom-up nucleated wires was found to be 200 nm. Transmission electron microscopy analysis indicates the amorphous nature of these nanoscale wires and suggests an Si-silica heterostructure. The localized silica nanowires have been used as an immunoassay template in the detection of interleukin-10 which is a lung cancer biomarker. Such a nanostructured platform offered a tenfold enhancement in the optical response, aiding the recognition of IL-10 in comparison to a bare silica substrate. The role of nanowires in the immunoassay was verified through the quenching behavior in the photoluminescence (PL) spectra. Two orders of reduction in PL intensity have been observed after completion of the immunoassay with significant quenching after executing every step of the protocol. The potential of this site-specific growth of silica nanowires on SiO{sub 2} as a multi-modal biosensing platform has been discussed.

  19. Quantitative measurements of C-reactive protein using silicon nanowire arrays

    Directory of Open Access Journals (Sweden)

    Min-Ho Lee

    2008-03-01

    Full Text Available Min-Ho Lee, Kuk-Nyung Lee, Suk-Won Jung, Won-Hyo Kim, Kyu-Sik Shin, Woo-Kyeong SeongKorea Electronics Technology Institute, Gyeonggi, KoreaAbstract: A silicon nanowire-based sensor for biological application showed highly desirable electrical responses to either pH changes or receptor-ligand interactions such as protein disease markers, viruses, and DNA hybridization. Furthermore, because the silicon nanowire can display results in real-time, it may possess superior characteristics for biosensing than those demonstrated in previously studied methods. However, despite its promising potential and advantages, certain process-related limitations of the device, due to its size and material characteristics, need to be addressed. In this article, we suggest possible solutions. We fabricated silicon nanowire using a top-down and low cost micromachining method, and evaluate the sensing of molecules after transfer and surface modifications. Our newly designed method can be used to attach highly ordered nanowires to various substrates, to form a nanowire array device, which needs to follow a series of repetitive steps in conventional fabrication technology based on a vapor-liquid-solid (VLS method. For evaluation, we demonstrated that our newly fabricated silicon nanowire arrays could detect pH changes as well as streptavidin-biotin binding events. As well as the initial proof-of-principle studies, C-reactive protein binding was measured: electrical signals were changed in a linear fashion with the concentration (1 fM to 1 nM in PBS containing 1.37 mM of salts. Finally, to address the effects of Debye length, silicon nanowires coupled with antigen proteins underwent electrical signal changes as the salt concentration changed.Keywords: silicon nanowire array, C-reactive protein, vapor-liquid-solid method

  20. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    Directory of Open Access Journals (Sweden)

    Zahra Ostadmahmoodi Do

    2016-06-01

    Full Text Available Nanowires (NWs are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW, is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method for producing nanowires of the same substrate material. The process conditions are adjusted to find the best quality of Si NWs. Morphology of Si NWs is studied using a field emission scanning electron microscopic technique. An energy dispersive X-Ray analyzer is also used to provide elemental identification and quantitative compositional information. Subsequently, Schottky type solar cell samples are fabricated on Si and Si NWs using ITO and Ag contacts. The junction properties are calculated using I-V curves in dark condition and the solar cell I-V characteristics are obtained under incident of the standardized light of AM1.5. The results for the two mentioned Schottky solar cell samples are compared and discussed. An improvement in short circuit current and efficiency of Schottky solar cell is found when Si nanowires are employed.

  1. A vertical tip-tip contact silicon nanowire array for gas sensing.

    Science.gov (United States)

    Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Zhou, Hongzhi; Wu, Jianmin

    2016-10-20

    Novel chemiresistive gas sensors based on a vertical tip-tip contact silicon nanowire (TTC-SiNW) array were constructed. The welding of TTC-SiNWs after joule heating treatment was confirmed by a current-voltage curve (I-V curve). The TTC-SiNW structure not only resolved the problem of electrode contact encountered in conventional nanowire sensors, but also elongated the nanowire length to increase the void space for fast gas diffusion. The TTC-SiNW sensor comprising the same two types of SiNW arrays responded to NO2 very sensitively. The LOD for the p-p and n-n contact SiNW arrays is around 150 ppb and 3 ppb (S/N = 3), respectively. Furthermore, the highly oriented nano-junction formed on the TTC structure provided solid evidence to clarify the contribution of the nanojunction to gas sensing behavior. The TTC-SiNW sensor with a p-n junction displays a significant rectification effect. The sensitive response towards NO2 (LOD is about 18 ppb) was observed at a reverse bias voltage, whereas the response at a forward bias voltage was insignificant. Finally, the mechanism of gas sensing behavior on different types of TTC structures was proposed.

  2. Surface functionalization of HF-treated silicon nanowires

    Indian Academy of Sciences (India)

    Ming-Wang Shao; Hong Wang; Yan Fu; Jun Hua; Dorothy-Duo-Duo Ma

    2009-05-01

    Versatile methods were employed to investigate the chemical reactivity of hydrogenterminated surface of silicon nanowires. The experimental results showed that coupling reaction took place when silicon nanowires reacted with 2,2,2-trifluoroethyl acrylate, and reductive deposition reaction occurred in the presence of inorganic salt such as HgCl2, and also co-reduction reaction took place in a solution containing both AuCl3 and PdCl2. The possible reaction mechanisms were studied and this study would be expected to favour the homogeneity, selectivity, reproducibility, and stability of SiNW devices or sensors.

  3. Electronic structure and optical properties of III-N nanowires

    OpenAIRE

    2011-01-01

    The term III-N nanowire (NW) will refer throughout this work to the free-standing nanowires made of group-III-nitrides semiconductors, namely InN, GaN and AlN. These nanostructures have a large length/diameter ratio, of the order of 100 (sev- eral micrometers versus tenths of nanometers). The term free-standing highlights the fact that the NWs are not embedded in another material. The improvement of the epitaxial techniques, and in particular, those based on III-N semiconductor...

  4. Joule heating in nanowires

    OpenAIRE

    Fangohr, H.; Chernyshenko, D.; Franchin, Matteo; Fischbacher, Thomas; Meier, G.

    2011-01-01

    We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat is simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) ...

  5. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes.

    Science.gov (United States)

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films.

  6. Fabrication of patterned polymer nanowire arrays.

    Science.gov (United States)

    Fang, Hao; Yuan, Dajun; Guo, Rui; Zhang, Su; Han, Ray P S; Das, Suman; Wang, Zhong Lin

    2011-02-22

    A method for the large-scale fabrication of patterned organic nanowire (NW) arrays is demonstrated by the use of laser interference patterning (LIP) in conjunction with inductively coupled plasma (ICP) etching. The NW arrays can be fabricated after a short ICP etching of periodic patterns produced through LIP. Arrays of NWs have been fabricated in UV-absorbent polymers, such as PET (polyethylene terephthalate) and Dura film (76% polyethylene and 24% polycarbonate), through laser interference photon ablation and in UV transparent polymers such as PVA (polyvinyl acetate) and PP (polypropylene) through laser interference lithography of a thin layer of photoresist coated atop the polymer surface. The dependence of the structure and morphology of NWs as a function of initial pattern created by LIP and the laser energy dose in LIP is discussed. The absence of residual photoresist atop the NWs in UV-transparent polymers is confirmed through Raman spectroscopy.

  7. GaAs-MnAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, Janusz [MAX-Lab, Lund University, P.O. Box 118, 221 00 Lund (Sweden); Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Siusys, Aloyzas; Wojciechowski, Tomasz; Reszka, Anna; Kowalski, Bogdan [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warszawa (Poland); Kovacs, Andras; Kasama, Takeshi [Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby 2800 (Denmark); Dunin-Borkowski, Rafal E. [Center for Electron Nanoscopy, Technical University of Denmark, Kgs. Lyngby 2800 (Denmark); Institute for Microstructure Research, Peter Gruenberg Institute, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2011-07-15

    Different strategies for obtaining nanowires (NWs) with ferromagnetic properties using the molecular beam epitaxy (MBE) grown nanostructures combining GaAs and Mn were investigated. Four types of structures have been studied: (i) self-catalyzed GaAs:Mn NWs grown at low temperatures on GaAs(100) substrates; (ii) GaAs:Mn NWs grown at high temperatures on Si(100) substrates; (iii) GaAs-GaMnAs core-shell NW structures; (iv) GaAs-MnAs core-shell NW structures grown on Si(100). Structures of types (i), (iii), and (iv) exhibit ferromagnetic properties. Right: Scanning electron microscopy image of Mn doped GaAs NWs with Ga droplets at the tops, grown by MBE on oxidized Si(100) substrate in the autocatalytic growth mode. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Better Buildings NW Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Kevin [Toledo-Lucas County Port Authority, Toledo, OH (United States)

    2015-03-04

    Districts or ESIDs and what is nationally known as Property Assessed Clean Energy or PACE districts and PACE financing. The project methodology followed the identify, develop, implement, monitor and measure format. These districts began in Toledo and adjoining areas and are expanding to TLCPA’s 28 county financing agency geographic footprint. What began as the Toledo Ohio Advanced Energy Improvement Corporation is now doing business as the Northwest Ohio Advanced Energy Improvement District recognizing it expansion into creating and financing other districts in NW Ohio. The program has been sought out as an advisor by major communities and states in the process of developing similar legislation and programs and has become one of the largest most successful PACE energy improvement and financing districts in the US. The program and the energy district focused on transforming energy use, delivery, conservation and renewable energy as “options of first choice”. The significant energy savings paid for many of the improvements and created a financially viable program well beyond the grant period. The program has become a model within the State of Ohio and Nationally on how to implement and finance projects in broad energy districts including how to evolve and integrate several financing methodologies. It is a unique utilization of revolving loan funds and energy bond pooling with revenue backing primarily from energy improvement special assessments on commercial properties along with some power purchase agreement (PPA) and loan agreement revenue. The program has also incorporated Qualified Energy Conservation Bonds, State of Ohio Energy Loans (SEP), utility rebates, solar and renewable energy certificates, renewable tax incentives and grants, and owner funded equity as additional program leverage and funding. Other keys to this success have been a continual simplification and refinement of the application and documentation process to make funding available easily and

  9. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction

    CERN Document Server

    Singh, Danveer; G., Aswathy V; Tripathi, Ravi; Kumar, G V Pavan

    2015-01-01

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  10. Directional out-coupling of light from a plasmonic nanowire-nanoparticle junction.

    Science.gov (United States)

    Singh, Danveer; Dasgupta, Arindam; Aswathy, V G; Tripathi, Ravi P N; Pavan Kumar, G V

    2015-03-15

    We experimentally show how a single Ag nanoparticle (NP) coupled to an Ag nanowire (NW) can convert propagating surface plasmon polaritons to directional photons. By employing dual-excitation Fourier microscopy with spatially filtered collection-optics, we show single- and dual-directional out-coupling of light from NW-NP junction for plasmons excited through glass-substrate and air-superstrate. Furthermore, we show NW-NP junction can influence the directionality of molecular-fluorescence emission, thus functioning as an optical antenna. The results discussed herein may have implications in realizing directional single-photon sources and quantum plasmon circuitry.

  11. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles.

    Science.gov (United States)

    Liu, Kong; Qu, Shengchun; Zhang, Xinhui; Tan, Furui; Wang, Zhanguo

    2013-02-18

    Silicon nanowire (SiNW) arrays show an excellent light-trapping characteristic and high mobility for carriers. Surface plasmon resonance of silver nanoparticles (AgNPs) can be used to increase light scattering and absorption in solar cells. We fabricated a new kind of SiNW/organic hybrid solar cell by introducing AgNPs. Reflection spectra confirm the improved light scattering of AgNP-decorated SiNW arrays. A double-junction tandem structure was designed to manufacture our hybrid cells. Both short-circuit current and external quantum efficiency measurements show an enhancement in optical absorption of organic layer, especially at lower wavelengths.

  12. Chemical Sensing with Nanowires

    Science.gov (United States)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  13. Nanowire Optoelectronics

    Directory of Open Access Journals (Sweden)

    Wang Zhihuan

    2015-12-01

    Full Text Available Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs, lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in “volumetric modes,”which have so far been presented in terms of Fabry–Perot (FP, and helical resonance modes. We report on finite-difference timedomain (FDTD simulations with the aim of identifying the dependence of these modes on geometry (length, width, tapering, shape (cylindrical, hexagonal, core–shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption and downward transitions (emission of light inNWs; rather, the electronic transition rates should be considered. We discuss this “rate management” scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  14. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors

    KAUST Repository

    Huang, Ruo-Gu

    2011-06-24

    We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV) and low subthreshold swing (~80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  15. Development of Biodegradable Zinc Oxide Nanowires Targeting Breast Cancer Metastasis

    Science.gov (United States)

    2013-09-01

    diagnosis, and personalized treatment of cancer. Herein we report the synthesis of green/red fluorescent ZnO nanoplatforms (including both NWs and NPs) and...is to develop a biodegradable ZnO nanomaterial platform (mainly focusing on the nanowire [NW] morphology) for efficient vasculature targeting of BCa...hypothesis is that suitably functionalized ZnO NWs can have long circulation lifetime and efficient tumor targeting for future drug delivery

  16. The influence of Mg doping on the nucleation of self-induced GaN nanowires

    Directory of Open Access Journals (Sweden)

    F. Limbach

    2012-03-01

    Full Text Available GaN nanowires were grown without any catalyst by plasma-assisted molecular beam epitaxy. Under supply of Mg, nanowire nucleation is faster, the areal density of wires increases to a higher value, and nanowire coalescence is more pronounced than without Mg. During nanowire nucleation the Ga desorption was monitored in-situ by line-of-sight quadrupole mass spectrometry for various substrate temperatures. Nucleation energies of 4.0±0.3 eV and 3.2±0.3 eV without and with Mg supply were deduced, respectively. This effect has to be taken into account for the fabrication of nanowire devices and could be employed to tune the NW areal density.

  17. Dynamical theory and experiments on GaAs nanowire growth for photovoltaic applications

    DEFF Research Database (Denmark)

    Krogstrup, Peter

    The geometry of nanowire solar cells provides many potential advantages compared to planar solar cells, such as reduced reflection, built-in light concentration due to absorption resonances, improved band gap tuning for multi-junction devices and an increased defect tolerance. Moreover, the use...... cells, as it requires control and an in-depth understanding of complex growth kinetics controlling the nanowire crystal formation and dopant incorporation. This thesis is concerned with the growth of self catalyzed GaAs based semiconductor nanowires on silicon substrates in a molecular beam epitaxy...... such as in-situ x-ray characterization of growing nanowires and growth of advanced photovoltaic structures and finally photovoltaic characterization of both lying and standing single nanowire devices are presented. All the different kind of single NW solar cell devices show an enormous potential as light...

  18. Functionalization of nickel nanowires with a fluorophore aiming at new probes for multimodal bioanalysis.

    Science.gov (United States)

    Pinheiro, Paula C; Sousa, Célia T; Araújo, João P; Guiomar, António J; Trindade, Tito

    2013-11-15

    This work reports research on the development of bimodal magnetic and fluorescent 1D nanoprobes. First, ferromagnetic nickel nanowires (NiNW) have been prepared by Ni electrodeposition in an anodic aluminum oxide (AAO) template. The highly ordered self-assembled AAO nanoporous templates were fabricated using a two-step anodization method of aluminum foil. The surface of the NiNW were then modified with polyethyleneimine (PEI) which was previously labeled with an organic dye (fluorescein isothiocyanate: FITC) via covalent bonding. The ensuing functionalized NiNW exhibited the characteristic green fluorescence of FITC and could be magnetically separated from aqueous solutions by using a NdFeB magnet. Finally, the interest of these bimodal NiNW as nanoprobes for in vitro cell separation and biolabeling was preliminary assessed in a proof of principle experiment that involved the attachment of biofunctionalized NiNW to blood cells.

  19. Magnetic and Magnetoresistive Properties of 3D Interconnected NiCo Nanowire Networks

    Science.gov (United States)

    da Câmara Santa Clara Gomes, Tristan; De La Torre Medina, Joaquín; Lemaitre, Matthieu; Piraux, Luc

    2016-10-01

    Track-etched polymer membranes with crossed nanochannels have been revealed to be most suitable as templates to produce large surface area and mechanically stable 3D interconnected nanowire (NW) networks by electrodeposition. Geometrically controlled NW superstructures made of NiCo ferromagnetic alloys exhibit appealing magnetoresistive properties. The combination of exact alloy compositions with the spatial arrangement of NWs in the 3D network is decisive to obtain specific magnetic and magneto-transport behavior. A proposed simple model based on topological aspects of the 3D NW networks is used to accurately determine the anisotropic magnetoresistance ratios. Despite of their complex topology, the microstructure of Co-rich NiCo NW networks display mixed fcc-hcp phases with the c-axis of the hcp phase oriented perpendicular to their axis. These interconnected NW networks have high potential as reliable and stable magnetic field sensors.

  20. Single nanowire green InGaN/GaN light emitting diodes

    Science.gov (United States)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  1. Preparation and Properties of Silver Nanowire-Based Transparent Conductive Composite Films

    Science.gov (United States)

    Tian, Ji-Li; Zhang, Hua-Yu; Wang, Hai-Jun

    2016-06-01

    Silver nanowire-based transparent conductive composite films with different structures were successfully prepared using various methods, including liquid polyol, magnetron sputtering and spin coating. The experimental results revealed that the optical transmittance of all different structural composite films decreased slightly (1-3%) compared to pure films. However, the electrical conductivity of all composite films had a great improvement. Under the condition that the optical transmittance was greater than 78% over the wavelength range of 400-800 nm, the AgNW/PVA/AgNW film became a conductor, while the AZO/AgNW/AZO film and the ITO/AgNW/ITO film showed 88.9% and 94% reductions, respectively, for the sheet resistance compared with pure films. In addition, applying a suitable mechanical pressure can improve the conductivity of AgNW-based composite films.

  2. Hybrid Quantum Point Contact-Superconductor Devices Using InSb Nanowires

    Science.gov (United States)

    Gill, Stephen; Damasco, John Jeffrey; Car, Diana; Bakkers, Erik; Mason, Nadya

    Recent experiments using hybrid nanowire (NW)-superconductor (SC) devices have provided evidence for Majorana quasiparticles in tunneling experiments. However, these tunneling experiments are marked by a soft superconducting gap, which likely originates from disorder at the NW-SC interface. Hence, clean NW-SC interfaces are important for future Majorana studies. By carefully processing the NW-SC interface, we have realized quantized conductance steps in quantum point contacts fabricated from InSb NWs and superconducting contacts. We study the length dependence of ballistic behavior and the induced superconductivity in InSb NWs by quantum point contact spectroscopy. Additionally, we discuss how the transport in InSb NW-SC quantum point contacts evolves in magnetic field.

  3. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties

    Science.gov (United States)

    Kiran, Vankayala; Sampath, Srinivasan

    2013-10-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the

  4. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal-semiconductor-metal nanostructure

    Institute of Scientific and Technical Information of China (English)

    Yu Tan; Yanguo Wang

    2014-01-01

    The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW) in the metal-semiconductor-metal (M-S-M) nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M-S-M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  5. Bias polarity-sensitive electrical failure characteristics of ZnSe nanowire in metal–semiconductor–metal nanostructure

    Directory of Open Access Journals (Sweden)

    Yu Tan

    2014-04-01

    Full Text Available The effect of bias polarity on the electrical breakdown behavior of the single ZnSe nanowire (NW in the metal–semiconductor–metal (M–S–M nanostructure under high current density and high bias conditions has been studied in the present paper. The experimental results show that the failure of the ZnSe NW in M–S–M nanostructure was sensitive to bias polarity since the NW commonly collapsed at the negatively biased Au metal electrode due to high Joule heat produced in NW at the reversely biased Schottky barrier. Thus, the electrical breakdown behavior of the ZnSe NW was highly dominated by the cathode-controlled mode due to the high resistance of the depletion region of ZnSe NW at the reversely biased Schottky contact.

  6. Contact-enhanced transparent silver nanowire network for all solution-based top-contact metal-oxide thin-film transistors.

    Science.gov (United States)

    Kim, Yong-Hoon; Kim, Tae-Hyoung; Lee, Yeji; Kim, Jong-Woong; Kim, Jaekyun; Park, Sung Kyu

    2014-11-01

    In this paper, we investigate contact-enhanced transparent silver nanowire (Ag NW) network for solution-processed metal-oxide thin-film transistors (TFTs). Mechanical roll pressing was applied to a bar-coated Ag NW film to enhance the inter-nanowire connectivity. As a result, the sheet resistance of the Ag NW film was decreased from 119.5 ψ/square to 92.4 ψ/square, and more stable and enhanced TFT characteristics were achieved when the roll-pressed Ag NW was employed as source/drain electrodes. In addition, a non-acidic wet etching method was developed to pattern the Ag NW electrodes to construct top-contact geometry indium-gallium-zinc oxide TFTs. From the results, it is believed that the mechanical roll pressing and non-acidic wet etching method may be utilized in realizing all solution-based transparent metal-oxide TFTs.

  7. Crystalline Nanojoining Silver Nanowire Percolated Networks on Flexible Substrate.

    Science.gov (United States)

    Nian, Qiong; Saei, Mojib; Xu, Yang; Sabyasachi, Ganguli; Deng, Biwei; Chen, Yong P; Cheng, Gary J

    2015-10-27

    Optoelectronic performance of metal nanowire networks are dominated by junction microstructure and network configuration. Although metal nanowire printings, such as silver nanowires (AgNWs) or AgNWs/semiconductor oxide bilayer, have great potential to replace traditional ITO, efficient and selective nanoscale integration of nanowires is still challenging owing to high cross nanowire junction resistance. Herein, pulsed laser irradiation under controlled conditions is used to generate local crystalline nanojoining of AgNWs without affecting other regions of the network, resulting in significantly improved optoelectronic performance. The method, laser-induced plasmonic welding (LPW), can be applied to roll-to-roll printed AgNWs percolating networks on PET substrate. First principle simulations and experimental characterizations reveal the mechanism of crystalline nanojoining originated from thermal activated isolated metal atom flow over nanowire junctions. Molecular dynamic simulation results show an angle-dependent recrystallization process during LPW. The excellent optoelectronic performance of AgNW/PET has achieved Rs ∼ 5 Ω/sq at high transparency (91% @λ = 550 nm).

  8. Gated Si nanowires for large thermoelectric power factors

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Kosina, Hans [Institute for Microelectronics, Vienna University of Technology, Gusshausstrasse 27-29/E360, Vienna A-1040 (Austria)

    2014-08-18

    We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20 nm in diameter in the [100], [110], and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients. We show that gated NW structures can provide ∼5× larger thermoelectric power factor compared to doped channels, attributed to their high hole phonon-limited mobility, as well as gating induced bandstructure modifications which further improve mobility. Despite the fact that gating shifts the charge carriers near the NW surface, surface roughness scattering is not strong enough to degrade the transport properties of the accumulated hole layer. The highest power factor is achieved for the [111] NW, followed by the [110], and finally by the [100] NW. As the NW diameter increases, the advantage of the gated channel is reduced. We show, however, that even at 20 nm diameters (the largest ones that we were able to simulate), a ∼3× higher power factor for gated channels is observed. Our simulations suggest that the advantage of gating could still be present in NWs with diameters of up to ∼40 nm.

  9. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, Muhammad Nasir; Carlen, Edwin T.; Berg, van den Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  10. Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires

    DEFF Research Database (Denmark)

    Liu, Yi-Chi; Rieben, Nathalie Ines; Iversen, Lars;

    2010-01-01

    Silicon nanowire (Si NW)-based field effect transistors (FETs) have shown great potential as biosensors (bioFETs) for ultra-sensitive and label-free detection of biomolecular interactions. Their sensitivity depends not only on the device properties, but also on the function of the biological reco...

  11. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, Songyue; Nieuwkasteele, van Jan W.; Berg, van den Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  12. Enhanced Response Speed of ZnO Nanowire Photodetector by Coating with Photoresist

    Directory of Open Access Journals (Sweden)

    Xing Yang

    2016-01-01

    Full Text Available Spin-coating photoresist film on ZnO nanowire (NW was introduced into the fabrication procedure to improve photoresponse and recovery speed of a ZnO NW ultraviolet photoelectric detector. A ZnO NW was first assembled on prefabricated electrodes by dielectrophoresis. Then, photoresist was spin-coated on the nanowire. Finally, a metal layer was electrodeposited on the nanowire-electrode contacts. The response properties and I-V characteristics of ZnO NW photodetector were investigated by measuring the electrical current under different conditions. Measurement results demonstrated that the detector has an enhanced photoresponse and recovery speed after coating the nanowire with photoresist. The photoresponse and recovery characteristics of detectors with and without spin-coating were compared to demonstrate the effects of photoresist and the enhancement of response and recovery speed of the photodetector is ascribed to the reduced surface absorbed oxygen molecules and binding effect on the residual oxygen molecules after photoresist spin-coating. The results demonstrated that surface coating may be an effective and simple way to improve the response speed of the photoelectric device.

  13. Controlled Coupling of a Single Nitrogen-Vacancy Center to a Silver Nanowire

    DEFF Research Database (Denmark)

    Huck, Alexander; Kumar, Shailesh; Shakoor, Abdul

    2011-01-01

    We report on the controlled coupling of a single nitrogen-vacancy (NV) center to a surface plasmon mode propagating along a chemically grown silver nanowire (NW). We locate and optically characterize a single NV center in a uniform dielectric environment before we controllably position this emitter...

  14. Metal-organic polyhedra-coated si nanowires for the sensitive detection of trace explosives

    NARCIS (Netherlands)

    Cao, Anping; Zhu, Wei; Shang, Jin; Klootwijk, Johan H.; Sudhölter, Ernst J.R.; Huskens, Jurriaan; Smet, de Louis

    2017-01-01

    Surface-modified silicon nanowire-based field-effect transistors (SiNW-FETs) have proven to be a promising platform for molecular recognition in miniature sensors. In this work, we present a novel nanoFET/device for the sensitive and selective detection of explosives based on affinity layers of

  15. Large area metal nanowire arrays with tunable sub-20 nm nanogaps.

    Science.gov (United States)

    Le Thi Ngoc, Loan; Jin, Mingliang; Wiedemair, Justyna; van den Berg, Albert; Carlen, Edwin T

    2013-06-25

    We report a new top-down nanofabrication technology to realize large area metal nanowire (m-NW) arrays with tunable sub-20 nm separation nanogaps without the use of chemical etching or milling of the metal layer. The m-NW array nanofabrication technology is based on a self-regulating metal deposition process that is facilitated by closely spaced and isolated heterogeneous template surfaces that confine the metal deposition into two dimensions, and therefore, electrically isolated parallel arrays of m-NW can be realized with uniform and controllable nanogaps. Au-NW and Ag-NW arrays are presented with high-density ~10(5) NWs cm(-1), variable NW diameters down to ~50 nm, variable nanogaps down to ~5 nm, and very large nanogap length density ~1 km cm(-2). The m-NW arrays are designed and implemented as interdigitated nanoelectrodes for electrochemical applications and as plasmonic substrates where the coupled-mode localized surface plasmon resonance (LSPR) wavelength in the nanogaps between adjacent m-NW dimers can be precisely tuned to match any excitation source in the range from 500 to 1000 nm, thus providing optimal local electromagnetic field enhancement. A spatially averaged (n = 2500) surface-enhanced Raman scattering (SERS) analytical enhancement factor of (1.2 ± 0.1) × 10(7) is demonstrated from a benzenethiol monolayer chemisorbed on a Au-NW array substrate with LSPR wavelength matched to a He-Ne laser source.

  16. A Facile Method for Preparing Transparent, Conductive, and Paper-Like Silver Nanowire Films

    Directory of Open Access Journals (Sweden)

    Yajie Wang

    2011-01-01

    Full Text Available Transparent, conductive, and flexible silver nanowire (AgNW films have been fabricated by a facile two-step method. Firstly, the well-dispersed AgNW suspension is vacuum filtered using mixed esters of cellulose (MCE membranes as filters. Then, the AgNW-MCE films are treated with acetone vapor. After the infiltration of acetone vapor, the white and porous MCE membranes change into transparent and pore-free, and AgNW-MCE films are obtained with extraordinary optical, conductive, and mechanical properties. An optimal result is obtained with transmittance of 85% at 550 nm and sheet resistance about 50 Ohm/sq. The flexibility of AgNW-MCE films is remarkable, which is comparable to that of the AgNW film on flexible polyethylene terephthalate (PET. More important, AgNW-MCE films show an excellent adhesion to the substrate, which causes a stable electrical conductivity even after scotch tape test and finger friction test. As a result of improved adhesion to the substrate, the sheet resistance of AgNW-MCE films is about 20% smaller than that of AgNW-PET films.

  17. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    Science.gov (United States)

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  18. Auger Recombination in III-Nitride Nanowires and Its Effect on Nanowire Light-Emitting Diode Characteristics

    KAUST Repository

    Guo, Wei

    2011-04-13

    We have measured the Auger recombination coefficients in defect-free InGaN nanowires (NW) and InGaN/GaN dot-in-nanowire (DNW) samples grown on (001) silicon by plasma-assisted molecular beam epitaxy. The nanowires have a density of ∼1×1011 cm-2 and exhibit photoluminescence emission peak at λ ∼ 500 nm. The Auger coefficients as a function of excitation power have been derived from excitation dependent and time-resolved photoluminescence measurements over a wide range of optical excitation power density. The values of C0, defined as the Auger coefficient at low excitation, are 6.1 × 10-32 and 4.1×10-33 cm6·s-1 in the NW and DNW samples, respectively, which are in reasonably good agreement with theoretical predictions for InGaN alloy semiconductors. Light-emitting diodes made with the NW and DNW samples exhibit no efficiency droop up to an injection current density of 400 A/cm 2. © 2011 American Chemical Society.

  19. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  20. Vertical nanowire architectures

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfl-Tempfli, M.; Piraux, L.

    2010-01-01

    Nanowires and statistics: A statistical process for reading ultradense arrays of nanostructured materials is presented (see image). The experimental realization is achieved through selective nanowire growth using porous alumina templates. The statistical patterning approach is found to provide ri...

  1. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K. [Carborundum Co., Niagara Falls, NY (United States). Technology Div.; Ko, F.K.; Schatz, K. [Advanced Product Development, Bristol, PA (United States)

    1995-04-01

    As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processes such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.

  2. Nanoscale elemental quantification in heterostructured SiGe nanowires.

    Science.gov (United States)

    Hourani, W; Periwal, P; Bassani, F; Baron, T; Patriarche, G; Martinez, E

    2015-05-14

    The nanoscale chemical characterization of axial heterostructured Si1-xGex nanowires (NWs) has been performed using scanning Auger microscopy (SAM) through local spectroscopy, line-scan and depth profile measurements. Local Auger profiles are realized with sufficient lateral resolution to resolve individual nanowires. Axial and radial composition heterogeneities are highlighted. Our results confirm the phenomenon of Ge radial growth forming a Ge shell around the nanowire. Moreover, quantification is performed after verifying the absence of preferential sputtering of Si or Ge on a bulk SiGe sample. Hence, reliable results are obtained for heterostructured NW diameters higher than 100 nm. However, for smaller sizes, we have noticed that the sensitivity factors evaluated from bulk samples cannot be used because of edge effects occurring for highly topographical features and a modified contribution of backscattered electrons.

  3. Polarized Rayleigh back-scattering from individual semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Duming; Wu Jian; Lu Qiujie; Gutierrez, Humberto R; Eklund, Peter C, E-mail: hur3@psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-08-06

    A complete understanding of the interaction between electromagnetic radiation and semiconductor nanowires (NWs) is required in order to further develop a new generation of opto-electronic and photonic devices based on these nanosystems. The reduced dimensionality and high aspect ratio of nanofilaments can induce strong polarization dependence of the light absorption, emission and scattering, leading in some cases to the observation of optical antenna effects. In this work we present the first systematic study of polarized Rayleigh back-scattering from individual crystalline semiconductor NWs with known crystalline structure, orientation and diameters. To explain our experimental Rayleigh polar patterns, we propose a simple theory that relies on a secondary calculation of the volume-averaged internal electromagnetic fields inside the NW. These results revealed that the internal and emitted field can be enhanced depending on the polarization with respect to the NW axis; we also show that this effect strongly depends on the NW diameter.

  4. Rainbow radiating single-crystal Ag nanowire nanoantenna.

    Science.gov (United States)

    Kang, Taejoon; Choi, Wonjun; Yoon, Ilsun; Lee, Hyoban; Seo, Min-Kyo; Park, Q-Han; Kim, Bongsoo

    2012-05-09

    Optical antennas interface an object with optical radiation and boost the absorption and emission of light by the objects through the antenna modes. It has been much desired to enhance both excitation and emission processes of the quantum emitters as well as to interface multiwavelength channels for many nano-optical applications. Here we report the experimental implementation of an optical antenna operating in the full visible range via surface plasmon currents induced in a defect-free single-crystalline Ag nanowire (NW). With its atomically flat surface, the long Ag NW reliably establishes multiple plasmonic resonances and produces a unique rainbow antenna radiation in the Fresnel region. Detailed antenna radiation properties, such as radiating near-field patterns and polarization states, were experimentally examined and precisely analyzed by numerical simulations and antenna theory. The multiresonant Ag NW nanoantenna will find superb applications in nano-optical spectroscopy, high-resolution nanoimaging, photovoltaics, and nonlinear signal conversion.

  5. Preparation and specific properties of single crystalline metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, Achim Walter; Milenkovic, Srdjan [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany); Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Linz (Austria); Bello-Rodriguez, Belen; Smith, Andrew Jonathan; Chen, Ying [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2010-10-15

    Directional solidification of eutectics is a route to produce iso-oriented metallic single crystalline nanowires (NWs). Etching or electrochemical oxidation allows selective dissolution of either of the phases to produce NW arrays, isolated NWs, nanopore arrays and also derived structures by combining various process steps. A good understanding of the thermodynamics and the kinetics of the phase transformation and chemical reactions including electrodissolution, passivation, selective etching, complexing of reaction products and electrodeposition in the systems NiAl-X (X=Re, W, Mo), Ag-Cu and Fe-Au was reached. Functional devices based on these NWs, like high aspect ratio NW based STM tips, nanoelectromechanical systems (NEMS), NW pH sensors and sensor arrays were constructed. Array of rhenium single crystalline NWs embedded in the NiAl matrix after partial dissolution of the matrix. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  6. Growth strategies to control tapering in Ge nanowires

    Directory of Open Access Journals (Sweden)

    P. Periwal

    2014-04-01

    Full Text Available We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs. Ge NWs were grown on Si (111 substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  7. Spontaneous formation of GaN/AlN core-shell nanowires on sapphire by hydride vapor phase epitaxy

    Science.gov (United States)

    Trassoudaine, Agnès; Roche, Elissa; Bougerol, Catherine; André, Yamina; Avit, Geoffrey; Monier, Guillaume; Ramdani, Mohammed Réda; Gil, Evelyne; Castelluci, Dominique; Dubrovskii, Vladimir G.

    2016-11-01

    Spontaneous GaN/AlN core-shell nanowires with high crystal quality were synthesized on sapphire substrates by vapor-liquid-solid hydride vapor phase epitaxy (VLS-HVPE) without any voluntary aluminum source. Deposition of aluminum is difficult to achieve in this growth technique which uses metal-chloride gaseous precursors: the strong interaction between the AlCl gaseous molecules and the quartz reactor yields a huge parasitic nucleation on the walls of the reactor upstream the substrate. We open up an innovative method to produce GaN/AlN structures by HVPE, thanks to aluminum etching from the sapphire substrate followed by redeposition onto the sidewalls of the GaN core. The paper presents the structural characterization of GaN/AlN core-shell nanowires, speculates on the growth mechanism and discusses a model which describes this unexpected behavior.

  8. A new approach of the synthesis of SiO2 nanowires by using bulk copper foils as catalyst

    Science.gov (United States)

    Gomez-Martinez, A.; Márquez, F.; Morant, C.

    2016-11-01

    A novel procedure for the growth of SiO2 nanowires (SiO2NWs) directly from polycrystalline copper foils is reported. The single-step synthesis procedure consists of a thermal treatment at 900 °C without the need for additional catalysts. As a result, nanowires with an average diameter of 100 nm are synthesized. A systematic study undertaken at different stages of the SiO2NWs growth confirmed the generation of nucleation centers on the Cu surface, as well as revealed the existence of an intermediate gaseous SiO species at the synthesis temperature. On the basis of these evidences, the vapor-liquid-solid (VLS) route has been proposed as the mechanism responsible for the growth.

  9. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  10. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells

    Science.gov (United States)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-01

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ~80% at 550 nm and sheet resistance of 18 Ω sq-1. Perovskite solar cells fabricated using a fully solution

  11. Photoresponsive properties of ultrathin silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Duy P.; Macdonald, Thomas J.; Nann, Thomas; Thierry, Benjamin, E-mail: a.offenhaeusser@fz-juelich.de, E-mail: benjamin.thierry@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, MM Bldg., Mawson Lakes Blvd., Mawson Lakes, South Australia 5095 (Australia); Wolfrum, Bernhard; Stockmann, Regina; Offenhäusser, Andreas, E-mail: a.offenhaeusser@fz-juelich.de, E-mail: benjamin.thierry@unisa.edu.au [Peter Grünberg Institute, Forschungszentrum Jülich GmbH, 2.4v Bldg., Wilhelm-Johnen St., Jülich 52428 (Germany)

    2014-12-08

    Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20 nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (∼1 pW/array), good time response, and high photoresponsivity (R ∼ 2.5 × 10{sup 4 }A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40 nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices.

  12. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  13. Biaxially stretchable silver nanowire conductive film embedded in a taro leaf-templated PDMS surface

    Science.gov (United States)

    Wu, Chunhui; Jiu, Jinting; Araki, Teppei; Koga, Hirotaka; Sekitani, Tsuyoshi; Wang, Hao; Suganuma, Katsuaki

    2017-01-01

    A biaxially wave-shaped polydimethylsiloxane (PDMS) surface was developed simply by using a taro leaf as the template. The resulting leaf-templated PDMS (L-PDMS) possesses a micro-sized curved interface structure, which is greatly beneficial for the exact embedding of a silver nanowire (AgNW) network conductive film covering the L-PDMS surface. The intrinsically curved AgNW/L-PDMS film surface, without any dangling nanowire, could prevent the fracture of AgNWs due to stretching stress even after cyclic stretching. More importantly, it also exhibited a biaxial stretchability, which showed ultra-stable resistance after continuous stretching for 100 cycles each in X- and Y-directions. This biaxially stretchable AgNW/L-PDMS film could extend the application fields in stretchable electronics.

  14. [SOI-nanowire biosensor for the detection of D-NFAT 1 protein].

    Science.gov (United States)

    Malsagova, K A; Ivanov, Yu D; Pleshakova, T O; Kozlov, A F; Krohin, N V; Kaysheva, A L; Shumov, I D; Popov, V P; Naumova, O V; Fomin, B I; Nasimov, D A

    2015-01-01

    The nanowire (NW) detection is one of fast-acting and high-sensitive methods allowing to reveal potentially relevant protein molecules. A NW biosensor based on the silicon-on-insulator (SOI)-structures was used for biospecific label-free detection of NFAT 1 (D-NFAT 1) oncomarker in real time. For this purpose, SOI-nanowires (NWs) were modified with aptamers against NFAT 1 used as molecular probes. It was shown that using this biosensor it is possible to reach the sensitivity of ~10(-15) M. This sensitivity was comparable with that of the NW biosensor with immobilized antibodies used as macromolecular probes. The results demonstrate promising approaches used to form the sensor elements for high-sensitive disease diagnostics.

  15. Formation of aligned silicon nanowire on silicon by electroless etching in HF solution

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, N.; Douani, R. [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Hadjersi, T., E-mail: hadjersi@yahoo.co [Unite de Developpement de la Technologie du Silicium (UDTS), 2, Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Boukherroub, R. [Institut de Recherche Interdisciplinaire (IRI, FRE 2963), Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France)

    2009-12-15

    It was demonstrated that the etching in HF-based aqueous solution containing AgNO{sub 3} and Na{sub 2}S{sub 2}O{sub 8} as oxidizing agents or by Au-assisted electroless etching in HF/H{sub 2}O{sub 2} solution at 50 deg. C yields films composed of aligned Si nanowire (SiNW). SiNW of diameters {approx}10 nm were formed. The morphology and the photoluminescence (PL) of the etched layer as a function of etching solution composition were studied. The SiNW layers formed on silicon were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and photoluminescence. It was demonstrated that the morphology and the photoluminescence of the etched layers strongly depends on the type of etching solution. Finally, a discussion on the formation process of the silicon nanowires is presented.

  16. Electrochemical fabrication and characterization of lepidocrocite ({gamma}-FeOOH) nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, A., E-mail: jagmin@ktl.mii.lt [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Mazeika, K. [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania); Juska, E. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Reklaitis, J.; Baltrunas, D. [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania)

    2010-04-01

    We report on the fabrication of {gamma}-phase iron oxyhydroxide ({gamma}-FeOOH, lepidocrocite) nanowire (nw) arrays within the alumina pores by electrodeposition. An aqueous solution, friendly to alumina matrix, was generated and applied in this study for uniform deposition of {gamma}-FeOOH nw arrays directly through the alumina barrier layer using an alternating current (ac) mode. As-deposited nanowired products were characterized using {sup 57}Fe Moessbauer spectroscopy (MS), atomic absorption spectrophotometry analysis, field-emission scanning electron microscopy, UV-vis transmission spectroscopy, transmission electron microscopy and X-ray diffraction. The formation of pure lepidocrocite nw arrays in the alumina pores with the average O{sub pore} of 45 and 150 nm was verified by transmission MS at cryogenic temperatures.

  17. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters

    Science.gov (United States)

    Kim, A.-Young; Kim, Min Kyu; Hudaya, Chairul; Park, Ji Hun; Byun, Dongjin; Lim, Jong Choo; Lee, Joong Kee

    2016-02-01

    Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films (~20 nm) electrically bridge the nanowire junctions leading to a decreased sheet resistance and uniform temperature profiles. The hybrid transparent heater shows excellent optical transmittance (>90%) and high saturation temperature (162 °C) at low applied DC voltage (6 V). Moreover, the FTO/NiCr/AgNW heater exhibits a stable sheet resistance in a hostile environment, hence highlighting the excellent oxidation-resistance of the heating materials. These results indicate that the proposed hybrid transparent heaters could be a promising approach to combat the inherent problems associated with AgNW-based transparent heaters for various functional applications.Despite its excellent optical, electrical, mechanical, and thermal performances, a silver nanowire (AgNW)-based transparent conducting heater (TCH) still demonstrates several drawbacks such as facile nanowire breakdown on application of a high DC voltage, easy oxidation when exposed to harsh environments, leading to increased surface resistivity, and high resistance among wire junctions causing nonhomogeneous temperature profiles. To overcome these issues, the AgNW was hybridized with other transparent heating materials made of fluorine-doped tin oxide (FTO) thin films and NiCr nanodots (FTO/NiCr/AgNW). The dispersed NiCr nanodots (~50 nm) and FTO thin films

  18. Antibacterial activity of single crystalline silver-doped anatase TiO{sub 2} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangyu, E-mail: zhangxiangyu@tyut.edu.cn; Li, Meng; He, Xiaojing; Hang, Ruiqiang; Huang, Xiaobo; Wang, Yueyue; Yao, Xiaohong; Tang, Bin, E-mail: tangbin@tyut.edu.cn

    2016-05-30

    Graphical abstract: The silver-doped TiO{sub 2} nanowire arrays on titanium foil substrate were synthesized via a two-step process. It includes: deposition of AgTi films on titanium foil by magnetron sputtering; preparation of AgNW arrays on AgTi films via alkali (NaOH) hydrothermal treatment and ion-exchange with HCl, followed by calcinations. - Highlights: • Ag-doped TiO{sub 2} nanowire arrays have been prepared by a duplex-treatment. • The duplex-treatment consisted of magnetron sputtering and hydrothermal growth. • Ag-doped nanowire arrays show excellent antibacterial activity against E. coli. - Abstract: Well-ordered, one-dimensional silver-doped anatase TiO{sub 2} nanowire (AgNW) arrays have been prepared through a hydrothermal growth process on the sputtering-deposited AgTi layers. Electron microscope analyses reveal that the as-synthesized AgNW arrays exhibit a single crystalline phase with highly uniform morphologies, diameters ranging from 85 to 95 nm, and lengths of about 11 μm. Silver is found to be doped into TiO{sub 2} nanowire evenly and mainly exists in the zerovalent state. The AgNW arrays show excellent efficient antibacterial activity against Escherichia coli (E. coli), and all of the bacteria can be killed within 1 h. Additionally, the AgNW arrays can still kill E. coli after immersion for 60 days, suggesting the long-term antibacterial property. The technique reported here is environmental friendly for formation of silver-containing nanostructure without using any toxic organic solvents.

  19. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    Science.gov (United States)

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  20. Surface states and conductivity of silicon nano-wires

    Science.gov (United States)

    Kumar Bhaskar, Umesh; Pardoen, Thomas; Passi, Vikram; Raskin, Jean-Pierre

    2013-04-01

    The transport characteristics of low dimensional semiconductors like silicon nano-wires (SiNWs) rarely conform to expectations from geometry and dopant density, exhibiting significant variations as a function of different surface terminations/conditions. The association of these mechanisms with surface states and their exact influence on practical SiNW devices still remains largely unclear. Herein, we report on the influence of surface state charge distributions on SiNW transport characteristics. For this study, p-type SiNW devices with widths of 50, 100, and 2000 nm are fabricated from 25, 50, and 200 nm-thick SOI wafers. A ˜five order difference in effective carrier concentration was observed in the initial SiNWs characteristics, when comparing SiNWs fabricated with and without a thermal oxide. The removal of the surface oxide by a hydrogen fluoride (HF) treatment results in a SiNW conductance drop up to ˜six orders of magnitude. This effect is from a surface depletion of holes in the SiNW induced by positive surface charges deposited as a result of the HF treatment. However, it is observed that this charge density is transient and is dissipated with the re-growth of an oxide layer. In summary, the SiNW conductance is shown to vary by several orders of magnitude, while comparing its characteristics for the three most studied surface conditions: with a native oxide, thermal oxide and HF induced H-terminations. These results emphasize the necessity to interpret the transport characteristics of SiNWs with respect to its surface condition, during future investigations pertaining to the physical properties of SiNWs, like its piezo-resistance. As a sequel, prospects for efficiently sensing an elementary reduction/oxidation chemical process by monitoring the variation of SiNW surface potential, or in practice the SiNW conductance, is demonstrated.

  1. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    Solar cells commercial success is based on an efficiency/cost calculation. Nanowire solar cells is one of the foremost candidates to implement third generation photo voltaics, which are both very efficient and cheap to produce. This thesis is about our progress towards commercial nanowire solar...... cells. Resonance effects between the light and nanowire causes an inherent concentration of the sunlight into the nanowires, and means that a sparse array of nanowires (less than 5% of the area) can absorb all the incoming light. The resonance effects, as well as a graded index of refraction, also traps...... the light. The concentration and light trapping means that single junction nanowire solar cells have a higher theoretical maximum efficiency than equivalent planar solar cells. We have demonstrated the built-in light concentration of nanowires, by growing, contacting and characterizing a solar cell...

  2. Stability of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, F.; Schiek, M.; Wallmann, I.;

    2011-01-01

    The morphological stability of organic nanowires over time and under thermal load is of major importance for their use in any device. In this study the growth and stability of organic nanowires from a naphthyl end-capped thiophene grown by organic molecular beam deposition is investigated via...... atomic force microscopy (AFM). Aging experiments under ambient conditions already show substantial morphological changes. Nanoscopic organic clusters, which initially coexist with the nanowires, vanish within hours. Thermal annealing of nanowire samples leads to even more pronounced morphology changes......, such as a strong decrease in nanowire number density, a strong increase in nanowire height, and the formation of new types of crystallites. This happens even before sublimation of organic material starts. These experiments also shine new light on the formation process of the nanowires....

  3. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors

    Science.gov (United States)

    Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan

    2015-01-01

    Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827

  4. Solution-Processed Nanowire Coating for Light Management in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    K. Tsuboi

    2012-01-01

    Full Text Available We report a novel light management approach based on solution-processed nanowire (NW coating for enhancing organic solar cell efficiency. A titanium dioxide (TiO2 NW dispersion was produced by electrospinning. The coatings with various coverage fractions were fabricated by a simple solution casting of a TiO2 NW dispersion. Reduced reflectivity was observed for the NW-coated glass slide. The bulk-heterojunction organic solar cells with the NW coating showed improved power conversion efficiencies (PCEs due to their antireflection and light trapping effects in the active layer. In addition, the PCE of the cell with the NW coating was improved compared with that without the NW coating for incident angles above 70° (increased by a maximum of 51.6% at an incident angle of 85°. These results indicate that solution-processed NW coating is a promising light management approach easily scalable and applicable to a wide range of devices, including solar cells.

  5. Pulmonary Toxicity, Distribution, and Clearance of Intratracheally Instilled Silicon Nanowires in Rats

    Directory of Open Access Journals (Sweden)

    Jenny R. Roberts

    2012-01-01

    Full Text Available Silicon nanowires (Si NWs are being manufactured for use as sensors and transistors for circuit applications. The goal was to assess pulmonary toxicity and fate of Si NW using an in vivo experimental model. Male Sprague-Dawley rats were intratracheally instilled with 10, 25, 50, 100, or 250 μg of Si NW (~20–30 nm diameter; ~2–15 μm length. Lung damage and the pulmonary distribution and clearance of Si NW were assessed at 1, 3, 7, 28, and 91 days after-treatment. Si NW treatment resulted in dose-dependent increases in lung injury and inflammation that resolved over time. At day 91 after treatment with the highest doses, lung collagen was increased. Approximately 70% of deposited Si NW was cleared by 28 days with most of the Si NW localized exclusively in macrophages. In conclusion, Si NW induced transient lung toxicity which may be associated with an early rapid particle clearance; however, persistence of Si NW over time related to dose or wire length may lead to increased collagen deposition in the lung.

  6. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    Science.gov (United States)

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  7. Pulmonary Toxicity, Distribution, and Clearance of Intratracheally Instilled Silicon Nanowires in Rats.

    Science.gov (United States)

    Roberts, Jenny R; Mercer, Robert R; Chapman, Rebecca S; Cohen, Guy M; Bangsaruntip, Sarunya; Schwegler-Berry, Diane; Scabilloni, James F; Castranova, Vincent; Antonini, James M; Leonard, Stephen S

    Silicon nanowires (Si NWs) are being manufactured for use as sensors and transistors for circuit applications. The goal was to assess pulmonary toxicity and fate of Si NW using an in vivo experimental model. Male Sprague-Dawley rats were intratracheally instilled with 10, 25, 50, 100, or 250 μg of Si NW (~20-30 nm diameter; ~2-15 μm length). Lung damage and the pulmonary distribution and clearance of Si NW were assessed at 1, 3, 7, 28, and 91 days after-treatment. Si NW treatment resulted in dose-dependent increases in lung injury and inflammation that resolved over time. At day 91 after treatment with the highest doses, lung collagen was increased. Approximately 70% of deposited Si NW was cleared by 28 days with most of the Si NW localized exclusively in macrophages. In conclusion, Si NW induced transient lung toxicity which may be associated with an early rapid particle clearance; however, persistence of Si NW over time related to dose or wire length may lead to increased collagen deposition in the lung.

  8. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    Science.gov (United States)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  9. Photoelectric probing of the interfacial trap density-of-states in ZnO nanowire field-effect transistors.

    Science.gov (United States)

    Raza, Syed Raza Ali; Lee, Young Tack; Chang, Youn-Gyoung; Jeon, Pyo Jin; Kim, Jae Hoon; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-02-28

    We have fabricated transparent top-gate ZnO nanowire (NW) field effect transistors (FETs) on glass and measured their trap density-of-states (DOS) at the dielectric/ZnO NW interface with monochromatic photon beams during their operation. Our photon-probe method showed clear signatures of charge trap DOS at the interface, located near 2.3, 2.7, and 2.9 eV below the conduction band edge. The DOS information was utilized for the photo-detecting application of our transparent NW-FETs, which demonstrated fast and sensitive photo-detection of visible lights.

  10. Chitosan-assisted buffer layer incorporated with hydroxypropyl methylcellulose-coated silver nanowires for paper-based sensors

    Science.gov (United States)

    Xu, Duohua; Qiu, Jingshen; Wang, Yucheng; Yan, Jiajun; Liu, Gui-Shi; Yang, Bo-Ru

    2017-06-01

    Fabricating flexible sensors on paper is intriguing. Here, we exploited chitosan as a buffer layer to facilitate the fabrication of silver nanowire (AgNW) networks and flexible devices on commercial paper. We found that the AgNW networks exhibited uniform distribution, smooth surface, and strong adhesion. The enhanced adhesion of AgNWs was attributed to the intermolecular hydrogen bonding between chitosan and hydroxypropyl methylcellulose (HPMC), which can be tailored by tuning the pH of the chitosan aqueous solution. This facile fabrication method utilizing biodegradable polymers and cost-effective AgNW ink holds great promise for portable, wearable, and disposable paper-based electronics.

  11. Efficiency Enhancement Mechanism for Poly(3, 4-ethylenedioxythiophene):Poly(styrenesulfonate)/Silicon Nanowires Hybrid Solar Cells Using Alkali Treatment

    Science.gov (United States)

    Jiang, Yurong; Gong, Xiu; Qin, Ruiping; Liu, Hairui; Xia, Congxin; Ma, Heng

    2016-05-01

    The efficiency enhancement mechanism of the alkali-treated Si nanowire (SiNW) solar cells is discussed and analyzed in detail, which is important to control the useful photovoltaic process. All the results demonstrate that the photovoltaic performance enhancement of alkali-treated SiNW device steps from the formation of the good core-shell heterojunction, which consequently enhances the junction area, promotes fast separating and transporting of electron and hole pairs, and reduces the carrier surface combination. It also indicates that alkali treatment for SiNWs is a promising processing as an economical method for the formation of good core-shell SiNW/polymer heterojunction.

  12. Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Marta Agati

    2017-02-01

    Full Text Available Scanning transmission electron microscopy (STEM was successfully applied to the analysis of silicon nanowires (SiNWs that were self-assembled during an inductively coupled plasma (ICP process. The ICP-synthesized SiNWs were found to present a Si–SiO2 core–shell structure and length varying from ≈100 nm to 2–3 μm. The shorter SiNWs (maximum length ≈300 nm were generally found to possess a nanoparticle at their tip. STEM energy dispersive X-ray (EDX spectroscopy combined with electron tomography performed on these nanostructures revealed that they contain iron, clearly demonstrating that the short ICP-synthesized SiNWs grew via an iron-catalyzed vapor–liquid–solid (VLS mechanism within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up approaches used for the production of thin SiNWs.

  13. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  14. III–V Nanowires: Synthesis, Property Manipulations, and Device Applications

    Directory of Open Access Journals (Sweden)

    Ming Fang

    2014-01-01

    Full Text Available III–V semiconductor nanowire (NW materials possess a combination of fascinating properties, including their tunable direct bandgap, high carrier mobility, excellent mechanical flexibility, and extraordinarily large surface-to-volume ratio, making them superior candidates for next generation electronics, photonics, and sensors, even possibly on flexible substrates. Understanding the synthesis, property manipulation, and device integration of these III–V NW materials is therefore crucial for their practical implementations. In this review, we present a comprehensive overview of the recent development in III–V NWs with the focus on their cost-effective synthesis, corresponding property control, and the relevant low-operating-power device applications. We will first introduce the synthesis methods and growth mechanisms of III–V NWs, emphasizing the low-cost solid-source chemical vapor deposition (SSCVD technique, and then discuss the physical properties of III–V NWs with special attention on their dependences on several typical factors including the choice of catalysts, NW diameters, surface roughness, and surface decorations. After that, we present several different examples in the area of high-performance photovoltaics and low-power electronic circuit prototypes to further demonstrate the potential applications of these NW materials. Towards the end, we also make some remarks on the progress made and challenges remaining in the III–V NW research field.

  15. Electrostatically Gated Graphene-Zinc Oxide Nanowire Heterojunction.

    Science.gov (United States)

    You, Xueqiu; Pak, James Jungho

    2015-03-01

    This paper presents an electrostatically gated graphene-ZnO nanowire (NW) heterojunction for the purpose of device applications for the first time. A sub-nanometer-thick energy barrier width was formed between a monatomic graphene layer and electrochemically grown ZnO NWs. Because of the narrow energy barrier, electrons can tunnel through the barrier when a voltage is applied across the junction. A near-ohmic current-voltage (I-V) curve was obtained from the graphene-electrochemically grown ZnO NW heterojunction. This near-ohmic contact changed to asymmetric I-V Schottky contact when the samples were exposed to an oxygen environment. It is believed that the adsorbed oxygen atoms or molecules on the ZnO NW surface capture free electrons of the ZnO NWs, thereby creating a depletion region in the ZnO NWs. Consequentially, the electron concentration in the ZnO NWs is dramatically reduced, and the energy barrier width of the graphene-ZnO NW heterojunction increases greatly. This increased energy barrier width reduces the electron tunneling probability, resulting in a typical Schottky contact. By adjusting the back-gate voltage to control the graphene-ZnO NW Schottky energy barrier height, a large modulation on the junction current (on/off ratio of 10(3)) was achieved.

  16. Intrinsic quantum dots in InAs nanowires; Intrinsische Quantenpunkte in InAs-Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Karl Martin Darius

    2013-07-22

    This work deals with InAs nanowire field effect transistors in back gate configuration. In such devices, quantum dots can form at low temperatures in the order of magnitude of a few Kelvin. These dots are henceforth referred to as intrinsic as they are not intentionally defined by electrodes. For the interpretation of their stability diagrams, a thorough knowledge of the structure and transport properties of the nanowires is required. Therefore, first of all, the influence of growth method and doping on the transport properties is studied at room temperature. The wires are grown by two types of metal-organic vapour phase epitaxy: a selective-area (SA-MOVPE) and an Au-catalyzed vapour-liquid-solid method (VLS-MOVPE). Transport data shows that the background doping of VLS-MOVPE wires is higher than for SA-MOVPE wires, but the variability of the transport properties is lower. The polytypism of the SA-MOVPE wires (they are composed of wurtzite and zinc blende segments) is a possible explanation for the second observation. Furthermore, it is shown that the measured transport properties significantly depend on the dielectric environment of the nanowires and on the way the electrical measurements are done (two- or four-terminal configuration). The conductivity is tunable via doping and the gate voltage. Conductivity measurements in the temperature range from 10 K to 300 K show that different transport regimes can occur (partially metallic behaviour for sufficiently high conductivity, otherwise purely semiconducting behaviour). This is attributed to different positions of the Fermi level and thus, a different effect of potential fluctuations. If conductivity and temperature are sufficiently low, the onset of Coulomb blockade is observed for semiconducting samples. It is even possible to tune the very same sample to different regimes via the gate voltage. The semiconducting behaviour observed in many samples contradicts the Thomas-Fermi theory. This is attributed to the

  17. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  18. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells

    Science.gov (United States)

    Wu, Jih-Jen; Chen, Guan-Ren; Yang, Hung-Hsien; Ku, Chen-Hao; Lai-Yuan, Jr.

    2007-05-01

    Mercurochrome and N3 dyes are employed to be the sensitizers in the ZnO-nanowire (NW) dye-sensitized solar cells (DSSCs). A lower fill factor is obtained in the N3-sensitized cell which results in comparable efficiencies in both ZnO-NW DSSCs although the N3 molecules possess a wider absorptive range for light harvesting. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements are employed to investigate the electron transport properties in both ZnO-NW DSSCs. The results indicate that more abundant electron interfacial recombination occurs in the N3-sensitized ZnO-NW DSSC due to the higher surface trap density in the ZnO-NW photoanode after N3 dye adsorption.

  19. ZnO nanowire network transistors based on a self-assembly method

    Institute of Scientific and Technical Information of China (English)

    Dai Zhenqing; Chen Changxin; Zhang Yaozhong; Wei Liangming; Zhang Jing; Xu Dong; Zhang Yafei

    2012-01-01

    Dense,uniform ZnO nanowire (NW) networks are prepared by using a simple and sufficient selfassembly method.In this method,ZnO NWs are modified with aminopropyltriethoxysilane (APTES) to form positively charged amine-terminated surfaces.The modified ZnO NWs are adsorbed on negatively charged SiO2/Si substrates to form ZnO NW networks by the electrostatic interaction in an aqueous solution.Field-effect transistors (FETs) are fabricated and studied based on the ZnO NW networks.For a typical device with an NW density of 2.8 μm-2,it exhibits a current on/off ratio of 2.4 × 105,a transconductance of 336 nS,and a field-effect mobility of 27.4 cm2/(V·s).

  20. Modeling of a Silicon Nanowire pH Sensor with Nanoscale Side Gate Voltage

    Institute of Scientific and Technical Information of China (English)

    Alireza Kargar

    2009-01-01

    A silicon nanowire (Si-NW) sensor for pH detection is presented.The conductance of the device is analytically obtained,demonstrating that the conductance increases with decreasing oxide thickness.To calculate the electrical conductance of the sensor,the diffusion-drift model and nonlinear Poisson-Boltzmann equation are applied.To improve the conductance and sensitivity,a Si-NW sensor with nanoscale side gate voltage is offered and its characteristics are theoretically achieved.It is revealed that the conductance and sensor sensitivity can be enhanced by adding appropriate side gate voltages.This effect is compared to a similar fabricated structure in the literature,which has a wire with a rectangular cross section.Finally,the effect of NW length on sensor performance is investigated and an inverse relation between sensor sensitivity and NW length is achieved.

  1. Investigation of drift effect on silicon nanowire field effect transistor based pH sensor

    Science.gov (United States)

    Kim, Sihyun; Kwon, Dae Woong; Lee, Ryoongbin; Kim, Dae Hwan; Park, Byung-Gook

    2016-06-01

    It is widely accepted that the operation mechanism of pH-sensitive ion sensitive field effect transistor (ISFET) can be divided into three categories; reaction of surface sites, chemical modification of insulator surface, and ionic diffusion into the bulk of insulator. The first mechanism is considered as the main operation mechanism of pH sensors due to fast response, while the others with relatively slow responses disturb accurate pH detection. In this study, the slow responses (often called drift effects) are investigated in silicon nanowire (SiNW) pH-sensitive ISFETs. Based on the dependence on the channel type of SiNW, liquid gate bias, and pH, it is clearly revealed that the drift of n-type SiNW results from H+ diffusion into the insulator whereas that of p-type SiNW is caused by chemical modification (hydration) of the insulator.

  2. Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Dalchiele, E.A., E-mail: dalchiel@fing.edu.u [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Martin, F.; Leinen, D. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga, Campus de Teatinos s/n, E29071 Malaga (Spain); Marotti, R.E. [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga, Campus de Teatinos s/n, E29071 Malaga (Spain)

    2010-01-31

    In the present work, n-type silicon nanowire (n-SiNW) arrays have been synthesized by self-assembly electroless metal deposition (EMD) nanoelectrochemistry. The synthesized n-SiNW arrays have been submitted to scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and optical studies. Initial probes of the solar device conversion properties and the photovoltaic parameters such as short-circuit current, open-circuit potential, and fill factor of the n-SiNW arrays have been explored using a liquid-junction in a photoelectrochemical (PEC) system under white light. Moreover, a direct comparison between the PEC performance of a polished n-Si(100) and the synthesized n-SiNW array photoelectrodes has been done. The PEC performance was significantly enhanced on the n-SiNWs photoelectrodes compared with that on polished n-Si(100).

  3. Temperature and directional dependences of the infrared dielectric function of free standing silicon nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kazan, M.; Bruyant, A.; Sedaghat, Z.; Arnaud, L.; Blaize, S.; Royer, P. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, Universite de Technologie de Troyes, CNRS FRE 2848, 12 Rue Marie Curie, 10010 Troyes, Cedex (France)

    2011-03-15

    An approach to calculate the infrared dielectric function of semiconductor nanostructures is presented and applied to silicon (Si) nanowires (NW's). The phonon modes symmetries and frequencies are calculated by means of the elastic continuum medium theory. The modes strengths and damping are calculated from a model for lattice dynamics and perturbation theory. The data are used in anisotropic Lorentz oscillator model to generate the temperature and directional dependences of the infrared dielectric function of free standing Si NW's. Our results showed that in the direction perpendicular to the NW axis, the complex dielectric function is identical to that of bulk Si. However, along the NW axis, the infrared dielectric function is a strong function of the wavelength. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays

    KAUST Repository

    Lu, Ming-Pei

    2009-03-11

    Using phosphorus-doped ZnO nanowire (NW) arrays grown on silicon substrate, energy conversion using the p-type ZnO NWs has been demonstrated for the first time. The p-type ZnO NWs produce positive output voltage pulses when scanned by a conductive atomic force microscope (AFM) in contact mode. The output voltage pulse is generated when the tip contacts the stretched side (positive piezoelectric potential side) of the NW. In contrast, the n-type ZnO NW produces negative output voltage when scanned by the AFM tip, and the output voltage pulse is generated when the tip contacts the compressed side (negative potential side) of the NW. In reference to theoretical simulation, these experimentally observed phenomena have been systematically explained based on the mechanism proposed for a nanogenerator. © 2009 American Chemical Society.

  5. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    C N R Rao; A Govindaraj

    2001-10-01

    Synthesis and characterization of nanotubes and nanowires constitute an important part of nanoscience since these materials are essential bui lding units for several devices. We have prepared aligned carbon nanotube bundles and Y-junction nanotubes by the pyrolysis of appropriate organic precursors. The aligned bundles are useful for field emission display while the Y-junction nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have be en obt a ined. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with the aspect ratio. GaN nanowires show excellent photoluminescence characteristics. It has been possible to synthesise nanotubes and nanowires of metal chalcogenides by employing different strategies.

  6. Advances in nanowire bioelectronics

    Science.gov (United States)

    Zhou, Wei; Dai, Xiaochuan; Lieber, Charles M.

    2017-01-01

    Semiconductor nanowires represent powerful building blocks for next generation bioelectronics given their attractive properties, including nanometer-scale footprint comparable to subcellular structures and bio-molecules, configurable in nonstandard device geometries readily interfaced with biological systems, high surface-to-volume ratios, fast signal responses, and minimum consumption of energy. In this review article, we summarize recent progress in the field of nanowire bioelectronics with a focus primarily on silicon nanowire field-effect transistor biosensors. First, the synthesis and assembly of semiconductor nanowires will be described, including the basics of nanowire FETs crucial to their configuration as biosensors. Second, we will introduce and review recent results in nanowire bioelectronics for biomedical applications ranging from label-free sensing of biomolecules, to extracellular and intracellular electrophysiological recording.

  7. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    Science.gov (United States)

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  8. Joule heating in nanowires

    Science.gov (United States)

    Fangohr, Hans; Chernyshenko, Dmitri S.; Franchin, Matteo; Fischbacher, Thomas; Meier, Guido

    2011-08-01

    We study the effect of Joule heating from electric currents flowing through ferromagnetic nanowires on the temperature of the nanowires and on the temperature of the substrate on which the nanowires are grown. The spatial current density distribution, the associated heat generation, and diffusion of heat are simulated within the nanowire and the substrate. We study several different nanowire and constriction geometries as well as different substrates: (thin) silicon nitride membranes, (thick) silicon wafers, and (thick) diamond wafers. The spatially resolved increase in temperature as a function of time is computed. For effectively three-dimensional substrates (where the substrate thickness greatly exceeds the nanowire length), we identify three different regimes of heat propagation through the substrate: regime (i), where the nanowire temperature increases approximately logarithmically as a function of time. In this regime, the nanowire temperature is well described analytically by You [Appl. Phys. Lett.APPLAB0003-695110.1063/1.2399441 89, 222513 (2006)]. We provide an analytical expression for the time tc that marks the upper applicability limit of the You model. After tc, the heat flow enters regime (ii), where the nanowire temperature stays constant while a hemispherical heat front carries the heat away from the wire and into the substrate. As the heat front reaches the boundary of the substrate, regime (iii) is entered, where the nanowire and substrate temperature start to increase rapidly. For effectively two-dimensional substrates (where the nanowire length greatly exceeds the substrate thickness), there is only one regime in which the temperature increases logarithmically with time for large times, before the heat front reaches the substrate boundary. We provide an analytical expression, valid for all pulse durations, that allows one to accurately compute this temperature increase in the nanowire on thin substrates.

  9. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors

    Science.gov (United States)

    van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-01

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (high voltage gain (~6) and ultralow static power dissipation (high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (high voltage gain (~6) and ultralow static power dissipation (high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01040g

  10. Engineering scale development of the vapor-liquid-solid (VLS) process for the production of silicon carbide fibrils and linear fibril assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Tenhover, M.; Biernacki, J. [Carborundum Co., Niagara Falls, NY (United States); Schatz, K.; Ko, F. [Advanced Product Development, Inc., Bristol, PA (United States)

    1995-08-01

    In order to exploit the superior thermomechanical properties of the VLS fibril, the feasibility of scaled-up production of the SiC fibril is demonstrated in this study. Through time series study and computer simulation, the parameters affecting the growth process and properties of the fibrils were examined. To facilitate translation of the superior mechanical properties into higher level preform structures, conventional and unconventional processing methods were evaluated. As revealed by scanning electron microscopic examination and X-ray diffractometry, high level alignment of the fibrils was achieved by the wet-laid process.

  11. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-05

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  12. The morphology of silicon nanowires grown in the presence of trimethylaluminium

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, F; Gentile, P; Hertog, M Den; Rouviere, J [CEA, INAC, Minatec, F-38054 Grenoble (France); Baron, T [LTM/CNRS/UJF/Grenoble-INP, 17 Rue des Martyrs, F-38054 Grenoble (France); Ferret, P [CEA, LETI, F-38054 Grenoble (France)], E-mail: fabrice.oehler@cea.fr, E-mail: pascal.gentile@cea.fr

    2009-06-17

    The effects of trimethylaluminium (TMA) on silicon nanowires grown by chemical vapour deposition (CVD) were investigated in the 650-850 deg. C growth temperature range. Gold was used as the growth catalyst and SiH{sub 4} in H{sub 2} carrier gas as the Si precursor. Depending on substrate temperature and TMA partial pressure, the structure's morphology evolves from wires to tapered needles, pyramids or nanotrees. The TMA presence was linked to two specific growth modes: an enhanced surface growth which forms Si needles and a branched growth leading to Si nanotrees. We suggest that competition between these two specific growth modes and the usual Au-catalyzed VLS growth is responsible for the observed morphology changes.

  13. Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates.

    Science.gov (United States)

    Bacon, Rendi Murphree; Biggerstaff, Brad J; Schriefer, Martin E; Gilmore, Robert D; Philipp, Mario T; Steere, Allen C; Wormser, Gary P; Marques, Adriana R; Johnson, Barbara J B

    2003-04-15

    In a study of US patients with Lyme disease, immunoglobulin (Ig) G and IgM antibody responses to recombinant Borrelia burgdorferi antigen VlsE1 (rVlsE1), IgG responses to a synthetic peptide homologous to a conserved internal sequence of VlsE (C6), and IgM responses to a synthetic peptide comprising the C-terminal 10 amino acid residues of a B. burgdorferi outer-surface protein C (pepC10) were evaluated by kinetic enzyme-linked immunoassay. At 99% specificity, the overall sensitivities for detecting IgG antibody to rVlsE1 or C6 in samples from patients with diverse manifestations of Lyme disease were equivalent to that of 2-tiered testing. When data were considered in parallel, 2 combinations (IgG responses to either rVlsE1 or C6 in parallel with IgM responses to pepC10) maintained high specificity (98%) and were significantly more sensitive than 2-tiered analysis in detecting antibodies to B. burgdorferi in patients with acute erythema migrans. In later stages of Lyme disease, the sensitivities of the in parallel tests and 2-tiered testing were high and statistically equivalent.

  14. Fabrication and simulation of single crystal p-type Si nanowire using SOI technology

    Energy Technology Data Exchange (ETDEWEB)

    Dehzangi, Arash, E-mail: arashd53@hotmail.com [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Larki, Farhad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Naseri, Mahmud G. [Department of Physics, Faculty of Science, Malayer University, Malayer, Hamedan (Iran, Islamic Republic of); Navasery, Manizheh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Majlis, Burhanuddin Y.; Razip Wee, Mohd F. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Halimah, M.K. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Islam, Md. Shabiul; Md Ali, Sawal H. [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Saion, Elias [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2015-04-15

    Highlights: • Single crystal silicon nanowire is fabricated on Si on insulator substrate, using atomic force microscope (AFM) nanolithography and KOH + IPA chemical wet etching. • Some of major parameters in fabrication process, such as writing speed and applied voltage along with KOH etching depth are investigated, and then the I–V characteristic of Si nanowires is measured. • For better understanding of the charge transmission through the nanowire, 3D-TCAD simulation is performed to simulate the Si nanowires with the same size of the fabricated ones, and variation of majority and minority carriers, hole quasi-Fermi level and generation/recombination rate are investigated. - Abstract: Si nanowires (SiNWs) as building blocks for nanostructured materials and nanoelectronics have attracted much attention due to their major role in device fabrication. In the present work a top-down fabrication approach as atomic force microscope (AFM) nanolithography was performed on Si on insulator (SOI) substrate to fabricate a single crystal p-type SiNW. To draw oxide patterns on top of the SOI substrate local anodic oxidation was carried out by AFM in contact mode. After the oxidation procedure, an optimized solution of 30 wt.% KOH with 10 vol.% IPA for wet etching at 63 °C was applied to extract the nanostructure. The fabricated SiNW had 70–85 nm full width at half maximum width, 90 nm thickness and 4 μm length. The SiNW was simulated using Sentaurus 3D software with the exact same size of the fabricated device. I–V characterization of the SiNW was measured and compared with simulation results. Using simulation results variation of carrier's concentrations, valence band edge energy and recombination generation rate for different applied voltage were investigated.

  15. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires.

    Science.gov (United States)

    Sayar Irani, Farid; Tunaboylu, Bahadir

    2016-11-30

    In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW) humidity sensors. Silver nanowires, with poly(vinylpyrrolidone) (PVP), which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs) using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz) in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices.

  16. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Farid Sayar Irani

    2016-11-01

    Full Text Available In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW humidity sensors. Silver nanowires, with poly(vinylpyrrolidone (PVP, which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices.

  17. Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Navin K. [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland); Conroy, Jennifer [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Lyons, Philip E.; Coleman, Jonathan [Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland); O' Sullivan, Mary P. [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Kornfeld, Hardy [University of Massachusetts Medical School, Massachusetts (United States); Kelleher, Dermot [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Volkov, Yuri, E-mail: yvolkov@tcd.ie [Institute of Molecular Medicine, Trinity College Dublin (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices, Trinity College Dublin (Ireland)

    2012-11-01

    Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure. Highlights: ► Thin films containing nanomaterials are subject to increasing contact with humans. ► This

  18. Synthesis of transparent metallic Sn-doped In{sub 2}O{sub 3} nanowires: Effects of doping concentration on photoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Cheng-Hsiang; Chang, Po-Yu; Chen, Wei-Hao; Lin, Su-Jien [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu (China)

    2014-02-15

    Degenerately Sn-doped In{sub 2}O{sub 3} (ITO) nanowires were synthesized via an Au-catalyzed vapor-liquid-solid (VLS) method at 750 C. The Au seed layer provided sites with a high surface energy for the selected-area growth of ITO nanowires. Morphology and crystal structures confirmed by field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) was employed to obtain the chemical compositions of the ITO nanowires as well as the ratio of Sn/In and oxygen concentrations. Under the photo-excitation the ITO nanowires emit ultraviolet light, which can be ascribed to transitions related to donor levels. Moreover, photoluminescence (PL) spectrophotometer and UV-VIS spectrum analysis revealed a blue shift peaks in the degenerately ITO nanowires. This phenomenon can be explained by Burstein-Moss effect. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S S; Song, J H; Wang, Z L [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Lu, Y F, E-mail: zlwang@gatech.ed [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027 (China)

    2009-09-09

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS.

  20. Identifying individual n- and p-type ZnO nanowires by the output voltage sign of piezoelectric nanogenerator

    KAUST Repository

    Lin, S S

    2009-08-18

    Based on a comparative study between the piezoelectric outputs of n-type nanowires (NWs) and n-core/p-shell NWs along with the previous study (Lu et al 2009 Nano. Lett. 9 1223), we demonstrate a one-step technique for identifying the conductivity type of individual ZnO nanowires (NWs) based on the output of a piezoelectric nanogenerator without destroying the sample. A negative piezoelectric output voltage indicates an NW is n-type and it appears after the tip scans across the center of the NW, while a positive output voltage reveals p-type conductivity and it appears before the tip scans across the central line of the NW. This atomic force microscopy based technique is reliable for statistically mapping the majority carrier type in ZnO NWs arrays. The technique may also be applied to other wurtzite semiconductors, such as GaN, CdS and ZnS. © 2009 IOP Publishing Ltd.

  1. Remote-excitation and remote-detection of single quantum dot using propagating surface plasmons on silver nanowire

    CERN Document Server

    Li, Qiang; Xu, Hong-Xing

    2014-01-01

    Using propagating surface plasmons (SPs) on silver nanowire (NW), we demonstrate that focused laser light at the end of silver nanowire can excite single quantum dot (QD) microns away from the excitation spot. The QD-NW interaction allows the excited QD convert part of its energy into propagating SPs which then can be detected at the remote sites. Simultaneous multi-QDs remote-excitation and detection are also realized. Furthermore, the tight confinement of propagating SPs around the NW surface enables selective excitation of QDs very close in space, which cannot be realized under conventional excitation condition. This remote excitation and detection approach may find applications in optical imaging and sensing of chemical and biological systems.

  2. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet

    Science.gov (United States)

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-01-01

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 103 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two–beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices. PMID:28150712

  3. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet

    Science.gov (United States)

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-01

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 103 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  4. Technology demonstration of a novel poly-Si nanowire thin film transistor

    Science.gov (United States)

    Liu, Libin; Liang, Renrong; Shan, Bolin; Xu, Jun; Wang, Jing

    2016-11-01

    A simple process flow method for the fabrication of poly-Si nanowire thin film transistors (NW-TFTs) without advanced lithographic tools is introduced in this paper. The cross section of the nanowire channel was manipulated to have a parallelogram shape by combining a two-step etching process and a spacer formation technique. The electrical and temperature characteristics of the developed NW-TFTs are measured in detail and compared with those of conventional planar TFTs (used as a control). The as-demonstrated NW-TFT exhibits a small subthreshold swing (191 mV/dec), a high ON/OFF ratio (8.5 × 107), a low threshold voltage (1.12 V), a decreased OFF-state current, and a low drain-induced-barrier lowering value (70.11 mV/V). The effective trap densities both at the interface and grain boundaries are also significantly reduced in the NW-TFT. The results show that all improvements of the NW-TFT originate from the enhanced gate controllability of the multi-gate over the channel. Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302300 and 2016YFA0200404), the National Natural Science Foundation of China (Grant No. 61306105), the National Science and Technology Major Project of China (Grant No. 2011ZX02708-002), the Tsinghua University Initiative Scientific Research Program, China and the Tsinghua National Laboratory for Information Science and Technology (TNList) Cross-discipline Foundation, China.

  5. High frequency top-down junction-less silicon nanowire resonators

    Science.gov (United States)

    Koumela, Alexandra; Hentz, Sébastien; Mercier, Denis; Dupré, Cécilia; Ollier, Eric; X-L Feng, Philip; Purcell, Stephen T.; Duraffourg, Laurent

    2013-11-01

    We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ˜20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σA ˜ 20 ppm for the FET detection and σA ˜ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

  6. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.

    Science.gov (United States)

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-02

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10(3) V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  7. Proton radiation hardness of single-nanowire transistors using robust organic gate nanodielectrics

    Science.gov (United States)

    Ju, Sanghyun; Lee, Kangho; Janes, David B.; Dwivedi, Ramesh C.; Baffour-Awuah, Habibah; Wilkins, R.; Yoon, Myung-Han; Facchetti, Antonio; Mark, Tobin J.

    2006-08-01

    In this contribution, the radiation tolerance of single ZnO nanowire field-effect transistors (NW-FETs) fabricated with a self-assembled superlattice (SAS) gate insulator is investigated and compared with that of ZnO NW-FETs fabricated with a 60nm SiO2 gate insulator. A total-radiation dose study was performed using 10MeV protons at doses of 5.71 and 285krad(Si ). The threshold voltage (Vth) of the SAS-based ZnO NW-FETs is not shifted significantly following irradiation at these doses. In contrast, Vth parameters of the SiO2-based ZnO NW-FETs display average shifts of ˜-4.0 and ˜-10.9V for 5.71 and 285krad(Si ) H+ irradiation, respectively. In addition, little change is observed in the subthreshold characteristics (off current, subthreshold slope) of the SAS-based ZnO NW-FETs following H+ irradiation. These results strongly argue that the bulk oxide trap density and interface trap density formed within the SAS and/or at the SAS-ZnO NW interface during H+ irradiation are significantly lower than those for the corresponding SiO2 gate dielectrics. The radiation-robust SAS-based ZnO NW-FETs are thus promising candidates for future space-based applications in electronics and flexible displays.

  8. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks.

    Science.gov (United States)

    Kim, Byoung Soo; Shin, Keun-Young; Pyo, Jun Beom; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2016-02-01

    We report a facile approach for producing reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire (NW) networks. The wavy configuration of Ag NWs is obtained by floating the NW networks on the surface of water, followed by compression. Stretchable antennas are prepared by transferring the compressed NW networks onto elastomeric substrates. The resulting antennas show excellent performance under mechanical deformation due to the wavy configuration, which allows the release of stress applied to the NWs and an increase in the contact area between NWs. The antennas formed from the wavy NW networks exhibit a smaller return loss and a higher radiation efficiency when strained than the antennas formed from the straight NW networks, as well as an improved stability in cyclic deformation tests. Moreover, the wavy NW antennas require a relatively small quantity of NWs, which leads to low production costs and provides an optical transparency. These results demonstrate the potential of these wavy Ag NW antennas in applications of wireless communications for wearable systems.

  9. Evaluation of metal-nanowire electrical contacts by measuring contact end resistance.

    Science.gov (United States)

    Park, Hongsik; Beresford, Roderic; Ha, Ryong; Choi, Heon-Jin; Shin, Hyunjung; Xu, Jimmy

    2012-06-22

    It is known, but often unappreciated, that the performance of nanowire (NW)-based electrical devices can be significantly affected by electrical contacts between electrodes and NWs, sometimes to the extent that it is really the contacts that determine the performance. To correctly understand and design NW device operation, it is thus important to carefully measure the contact resistance and evaluate the contact parameters, specific contact resistance and transfer length. A four-terminal pattern or a transmission line model (TLM) pattern has been widely used to measure contact resistance of NW devices and the TLM has been typically used to extract contact parameters of NW devices. However, the conventional method assumes that the electrical properties of semiconducting NW regions covered by a metal are not changed after electrode formation. In this study, we report that the conventional methods for contact evaluation can give rise to considerable errors because of an altered property of the NW under the electrodes. We demonstrate that more correct contact resistance can be measured from the TLM pattern rather than the four-terminal pattern and correct contact parameters including the effects of changed NW properties under electrodes can be evaluated by using the contact end resistance measurement method.

  10. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes.

    Science.gov (United States)

    Tian, Bozhi; Lieber, Charles M

    2011-01-01

    Semiconductor nanowires (NWs) represent a unique system for exploring phenomena at the nanoscale and are expected to play a critical role in future electronic, optoelectronic, and miniaturized biomedical devices. Modulation of the composition and geometry of nanostructures during growth could encode information or function, and realize novel applications beyond the conventional lithographical limits. This review focuses on the fundamental science aspects of the bottom-up paradigm, which are synthesis and physical property characterization of semiconductor NWs and NW heterostructures, as well as proof-of-concept device concept demonstrations, including solar energy conversion and intracellular probes. A new NW materials synthesis is discussed and, in particular, a new "nanotectonic" approach is introduced that provides iterative control over the NW nucleation and growth for constructing 2D kinked NW superstructures. The use of radial and axial p-type/intrinsic/n-type (p-i-n) silicon NW (Si-NW) building blocks for solar cells and nanoscale power source applications is then discussed. The critical benefits of such structures and recent results are described and critically analyzed, together with some of the diverse challenges and opportunities in the near future. Finally, results are presented on several new directions, which have recently been exploited in interfacing biological systems with NW devices.

  11. Photoconductive study and carrier dynamics of vertically aligned GaAs nanowires

    Institute of Scientific and Technical Information of China (English)

    Hui Xia; Bimu Yao; Zhenyu Lu; Pingping Chen; Tianxin Li

    2013-01-01

    Single wire devices are generally fabricated to study the electrical and photoelectric behaviors of semiconductor nanowires (NWs);however detriment or contamination can hardly be avoided during manipulation of NWs under focused ion and electron beams. This could not be a trivial factor for III-V NWs which are candidates for high efficiency solar energy harvesting and sensitive photodetection. In this study an alternative way to probe the photoconductive property of individual epitaxial GaAs NWs is presented. For the sample preparation, a uniform spin-coated layer of polymer was selected to be the supporting medium for the vertically aligned NWs structure;then the adequate thinning and polishing of the sample exposed the NW tip and also achieved the required height of NW. An external power adjustable laser was introduced as the excitation source, and the dark and photoconductive current-voltage properties of individual NW were measured by the conductive atomic force microscopy. The typical Schottky style photoconductive behavior was observed in the vertically aligned GaAs NW, and its photoresponsivity has been found to be much higher than that of the reported for single NW photodetector. Finally, a numerical model based on the experimental setup was established to simulate the photoelectric behavior of individual NW. The minority hole lifetime has been found to dominate the photoconductive current-voltage properties of NW under the positive sample bias, and can be derived from the quantitative fitting of experimental photo-IV curves.

  12. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics.

    Science.gov (United States)

    Javey, Ali; Nam, SungWoo; Friedman, Robin S; Yan, Hao; Lieber, Charles M

    2007-03-01

    We report a general approach for three-dimensional (3D) multifunctional electronics based on the layer-by-layer assembly of nanowire (NW) building blocks. Using germanium/silicon (Ge/Si) core/shell NWs as a representative example, ten vertically stacked layers of multi-NW field-effect transistors (FETs) were fabricated. Transport measurements demonstrate that the Ge/Si NW FETs have reproducible high-performance device characteristics within a given device layer, that the FET characteristics are not affected by sequential stacking, and importantly, that uniform performance is achieved in sequential layers 1 through 10 of the 3D structure. Five-layer single-NW FET structures were also prepared by printing Ge/Si NWs from lower density growth substrates, and transport measurements showed similar high-performance characteristics for the FETs in layers 1 and 5. In addition, 3D multifunctional circuitry was demonstrated on plastic substrates with sequential layers of inverter logical gates and floating gate memory elements. Notably, electrical characterization studies show stable writing and erasing of the NW floating gate memory elements and demonstrate signal inversion with larger than unity gain for frequencies up to at least 50 MHz. The ability to assemble reproducibly sequential layers of distinct types of NW-based devices coupled with the breadth of NW building blocks should enable the assembly of increasing complex multilayer and multifunctional 3D electronics in the future.

  13. Nanowire Photovoltaic Devices

    Science.gov (United States)

    Forbes, David

    2015-01-01

    Firefly Technologies, in collaboration with the Rochester Institute of Technology and the University of Wisconsin-Madison, developed synthesis methods for highly strained nanowires. Two synthesis routes resulted in successful nanowire epitaxy: direct nucleation and growth on the substrate and a novel selective-epitaxy route based on nanolithography using diblock copolymers. The indium-arsenide (InAs) nanowires are implemented in situ within the epitaxy environment-a significant innovation relative to conventional semiconductor nanowire generation using ex situ gold nanoparticles. The introduction of these nanoscale features may enable an intermediate band solar cell while simultaneously increasing the effective absorption volume that can otherwise limit short-circuit current generated by thin quantized layers. The use of nanowires for photovoltaics decouples the absorption process from the current extraction process by virtue of the high aspect ratio. While no functional solar cells resulted from this effort, considerable fundamental understanding of the nanowire epitaxy kinetics and nanopatterning process was developed. This approach could, in principle, be an enabling technology for heterointegration of dissimilar materials. The technology also is applicable to virtual substrates. Incorporating nanowires onto a recrystallized germanium/metal foil substrate would potentially solve the problem of grain boundary shunting of generated carriers by restricting the cross-sectional area of the nanowire (tens of nanometers in diameter) to sizes smaller than the recrystallized grains (0.5 to 1 micron(exp 2).

  14. Nanowire Growth for Photovoltaics

    DEFF Research Database (Denmark)

    Holm, Jeppe Vilstrup

    -catalyzed nanowire growth, and grown GaAs1−xPx nanowires with different inclusions of P(x) directly on silicon. The incorporation of P was generally higher in nanowires than for planar growth at identical P flux percentage. More interestingly, the percentage of P in the nanowire was found to be a concave function...... of the percentage of P in the flux, while for planar growth it was a convex function. We have demonstrated GaAs0.8P0.2 nanowires and further grown a shell surrounding the core with the same composition. The lattice matched GaAsP core-shell nanowire were doped to produce radial p-i-n junctions in each...... of the nanowires, some of which were removed from their growth substrate and turned into single nanowire solar cells (SNWSC). The best device showed a conversion efficiency of 6.8% under 1.5AMG 1-sun illumination. In order to improve the efficiency a surface passivating shell consisting of highly doped, wide...

  15. Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5 Nanowires.

    Science.gov (United States)

    Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk

    2016-10-12

    A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge2Sb2Te5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.

  16. Low-power resistive switching in Au/NiO/Au nanowire arrays

    Science.gov (United States)

    Brivio, S.; Tallarida, G.; Perego, D.; Franz, S.; Deleruyelle, D.; Muller, C.; Spiga, S.

    2012-11-01

    Arrays of vertical nanowires structured in Au/NiO/Au segments with 50 nm diameter are characterized by conductive atomic force microscopy to investigate unipolar resistive switching in NiO at the nanoscale. The switching cycles are characterized by extremely low power consumption down to 1.3 nW, which constitutes a significant improvement in nanowire-based resistive switching memory devices. The trend of the reset current as a function of the set resistance, typical of unipolar memories, is extended to a much wider current range than what is reported in literature, confirming the role of Joule heating in the reset process for very low reset currents.

  17. Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching

    Energy Technology Data Exchange (ETDEWEB)

    Fellahi, Ouarda, E-mail: fellahi_warda@yahoo.fr [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria); Hadjersi, Toufik [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria); Maamache, Mustapha [Laboratoire de Physique Quantique et Systemes Dynamiques, Universite Ferhat Abbas de Setif (Algeria); Bouanik, Sihem; Manseri, Amar [Silicon Technology Development Unit, 02 Bd Frantz Fanon, BP 140 Alger-7 Merveilles, Algiers (Algeria)

    2010-11-01

    The morphology of silicon nanowire (SiNW) layers formed by Ag-assisted electroless etching in HF/H{sub 2}O{sub 2} solution was studied. Prior to the etching, the Ag nanoparticles were deposited on p-type Si(1 0 0) wafers by electroless metal deposition (EMD) in HF/AgNO{sub 3} solution at room temperature. The effect of etching temperature and silicon resistivity on the formation process of nanowires was studied. The secondary ion mass spectra (SIMS) technique is used to study the penetration of silver in the etched layers. The morphology of etched layers was investigated by scanning electron microscope (SEM).

  18. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting.

    Science.gov (United States)

    Zhou, Zhi; Tang, Haixiong; Sodano, Henry A

    2014-12-03

    Lead zirconium titanate (PZT) nanowires are synthesized using a scalable two-step hydrothermal reaction. The piezo-electric coupling coefficient of the PZT NWs shows the highest value for PZT nano-wires in the literature (80 ± 5 pm/V). A PZT-NW-based nanocomposite is fabri-cated to demonstrate an energy-harvesting application with an open-circuit voltage up to 7 V and a power density up to 2.4 μW/cm(3) .

  19. Deterministic radiative coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots

    CERN Document Server

    Jeannin, Mathieu; Bellet-Amalric, Edith; Kheng, Kuntheak; Nogues, Gilles

    2016-01-01

    We report on the deterministic coupling between single semiconducting nanowire quantum dots emitting in the visible and plasmonic Au nanoantennas. Both systems are separately carefully characterized through microphotoluminescence and cathodoluminescence. A two-step realignment process using cathodoluminescence allows for electron beam lithography of Au antennas near individual nanowire quantum dots with a precision of 50 nm. A complete set of optical properties are measured before and after antenna fabrication. They evidence both an increase of the NW absorption, and an improvement of the quantum dot emission rate up to a factor two in presence of the antenna.

  20. Amplified optical transduction of proteins derived from Mo6S9-xIx nanowires

    Institute of Scientific and Technical Information of China (English)

    Nijuan Sun; Martin McMullan; Pagona Papakonstantinou; Dragan Mihailovic; Meixian Li

    2013-01-01

    We demonstrate that Mo6S9-xIx nanowires (MoSI NWs) enable the detection of proteins with cytochrome c as a model protein using UV-vis spectrometry. The association of cytochrome c with the nanowires was verified by scanning electroctron microscopy, X-ray photoelectron, light scattering and micro-FTIR spectroscopies. Our results show that MoSI NWs is a promising nanostructure material for the development of ultrasensitive sensors for detecting proteins. The new MoSI NW derived amplification bioassay is expected to provide a straightforward and effective strategy for protein analysis and biosensor construction.

  1. Double-sided tin nanowire arrays for advanced thermal interface materials

    Science.gov (United States)

    Feng, Bo; Faruque, Fardin; Bao, Peng; Chien, An-Ting; Kumar, Satish; Peterson, G. P.

    2013-03-01

    This investigation examines a type of thermal interface material (TIM) based on a double-sided array of tin nanowires (NWs) prepared using a hot-pressing approach with the assistance of anodic aluminum oxide templates. The metal based TIM effectively reduces the contact resistance, while the flexible nanowires show excellent mechanical compliance to increase the actual contact area with the mating rough surfaces. The results indicate that the overall thermal contact resistance of the two rough copper surfaces assisted by the tin NW array, can reduce the overall resistance to 29 mm2KW-1 at 0.25 MPa and 20 mm2KW-1 at 1.0 MPa.

  2. Single-InN-Nanowire Nanogenerator with Upto 1 V Output Voltage

    KAUST Repository

    Huang, Chi-Te

    2010-07-30

    Piezoelectric potential of a InN nanowire (NW) growing along [011̄0] can be positive, negative, and zero depending on the direction of the applied transverse force. By measuring the output voltage of a InN-NW-based nanogenerator, about 40% to 55% of output voltages are within the range of ?1 and ?20 mV, and 25% to 30% of output voltages would exceed ?100 mV. Some output voltages could reach the magnitude of ?1000 mV, showing its great potential for fabricating high-output nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays.

    Science.gov (United States)

    Xie, W Q; Oh, J I; Shen, W Z

    2011-02-11

    We have successfully fabricated well-ordered silicon nanowire (SiNW) arrays of smooth surface by using a low-cost and facile Ag-assisted chemical etching technique. We have experimentally found that the reflectance can be significantly suppressed (absorption in SiNW arrays, we have obtained a photocurrent enhancement of up to 425% per unit volume of material as compared to crystalline Si, implying that effective light trapping can be realized in the as-grown samples. In addition, we have demonstrated experimentally and theoretically that the as-grown samples have an omnidirectional high-efficiency antireflection property.

  4. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells

    Science.gov (United States)

    Williams, B. L.; Taylor, A. A.; Mendis, B. G.; Phillips, L.; Bowen, L.; Major, J. D.; Durose, K.

    2014-02-01

    Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was η = 2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (ϕB = 0.52 eV) and low shunt resistances (RSH < 500 Ω.cm2).

  5. Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers

    Science.gov (United States)

    Unalan, Husnu Emrah; Wei, Di; Suzuki, Kenichi; Dalal, Sharvari; Hiralal, Pritesh; Matsumoto, Hidetoshi; Imaizumi, Shinji; Minagawa, Mie; Tanioka, Akihiko; Flewitt, Andrew J.; Milne, William I.; Amaratunga, Gehan A. J.

    2008-09-01

    Zinc oxide (ZnO) nanowires (NWs) grown on carbon fibers using a vapor transport and condensation approach are used as the cathode of a photoelectrochemical cell. The carbon fibers were obtained by electrospray deposition and take the form of a flexible carbon fabric. The ZnO NW on carbon fiber anode is combined with a "black dye" photoabsorber, an electrolyte, and a platinum (Pt) counterelectrode to complete the cell. The results show that ZnO NW and carbon fibers can be used for photoinduced charge separation/charge transport and current collection, respectively, in a photoelectrochemical cell.

  6. Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.

    Science.gov (United States)

    Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian

    2016-01-13

    We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.

  7. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet......-dependent properties to minimize passivation layer removal for electrical contacting is demonstrated. Thorough electrical characterization and analysis of the cell is reported. The electrostatic potential distribution across the radial p-i-n junction GaAs NW is investigated by off-axis electron holography....

  8. In situ forming, characterization, and transduction of nanowire memristors

    Science.gov (United States)

    Fan, Zheng; Fan, Xudong; Li, Alex; Dong, Lixin

    2013-11-01

    We report the nanorobotic in situ formation and characterization of memristors based on individual copper oxide nanowires (CuO NWs) and their potential applications as nanosensors with memory function (memristic sensors or ``memsensors''). A series of in situ techniques for the experimental investigations of memristors are developed including nanorobotic manipulation, electro-beam-based forming, and electron energy loss spectroscopy (EELS) enabled correlation of transport properties and dopant distribution. All experimental investigations are performed inside a transmission electron microscope (TEM). The initial CuO NW memristors are formed by localized electron-beam irradiation to generate oxygen vacancies as dopants. Current-voltage properties show distinctive hysteresis characteristics of memristors. The mechanism of such memristic behavior is explained with an oxygen vacancy migration model. The presence and migration of the oxygen vacancies is identified with EELS. Investigations also reveal that the memristic behavior can be influenced by the deformation of the nanowire, showing that the nanowire memristor can serve as a deformation/force memorable sensor. The CuO NW-based memristors will enrich the binary transition oxide family but hold a simpler and more compact design than the conventional thin-film version. With these advantages, the CuO NW-based memristors will not only facilitate their applications in nanoelectronics but play a unique role in micro-/nano-electromechanical systems (MEMS/NEMS) as well.We report the nanorobotic in situ formation and characterization of memristors based on individual copper oxide nanowires (CuO NWs) and their potential applications as nanosensors with memory function (memristic sensors or ``memsensors''). A series of in situ techniques for the experimental investigations of memristors are developed including nanorobotic manipulation, electro-beam-based forming, and electron energy loss spectroscopy (EELS) enabled

  9. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  10. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  11. Material characterisation of nanowires with intrinsic stress

    Science.gov (United States)

    Mills, S.; Sader, J. E.; Boland, J. J.

    2017-09-01

    When fabricating nanowires (NWs) in a doubly-clamped beam configuration it is possible for a residual axial stress to be generated. Here, we show that material characterisation of metal and semiconductor NWs subjected to residual axial stress can be problematic. Benchmark measurements of the Young’s modulus of NWs are performed by sectioning a doubly-clamped NW into two cantilevered wires, eliminating residual axial stress. Use of models for doubly-clamped beams that incorporate the effects of residual stress are found to lead to ambiguity in the extracted Young’s modulus as a function of displacement fit range, even for NWs with no residual stress. This is due to coupling of bending and axial stress effects at small displacements, and the limited displacement range of force curves prior to fracture or plastic deformation. This study highlights the importance of fabricating metal and semiconductor NWs that exhibit little or no residual axial stress for materials characterisation.

  12. Mechanical characteristics of individual TiO{sub 2} nanowire and TiO{sub 2} nanowire bundle on micro-manipulator nanoprobe system

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenqiang; Zhu, Huijuan [Center for Optoelectronics Materials and Devices, Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zheng, Yingying, E-mail: zhengyy1718@zstu.edu.cn [Center for Optoelectronics Materials and Devices, Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Dong, Wenjun [Center for Optoelectronics Materials and Devices, Department of Physics, Key Laboratory of ATMMT Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Chen, Benyong [Nanometer Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-08-12

    The individual TiO{sub 2} nanowire and TiO{sub 2} nanowire bundle were prepared through a simple hydrothermal reaction of alkali with the titanium (Ti) metal and with TiO{sub 2} powder, respectively. A newly developed test platform which contained the MM3A micro-manipulator nanoprobe system installed in the scanning electron microscope (SEM) chamber was then introduced for the test of the mechanical properties of titanium dioxide nanowires (TiO{sub 2} NWs), either an individual or a bundle. The mechanical characteristics of the individual TiO{sub 2} NW and the TiO{sub 2} NW bundle were determined using a micro-cantilever model and a three-point bending model, respectively. In the tests, a nanoprobe tip was used to apply lateral force and deflect NWs. The load and deflection were measured simultaneously by Spring Table and SEM. And then Young's modulus were calculated based on their respective theoretical formula. The average value of Young's modulus for an individual TiO{sub 2} NW and a bundle of TiO{sub 2} NWs were found to be 120.39 GPa and 92.01 GPa, respectively. The TiO{sub 2} NW Young's modulus exhibits no obvious size effect while the scale of TiO{sub 2} NW was in the range of 100 nm−100 μm. The bending method in this new test platform could be widely applied to measure the mechanical properties of all 1D nanostructures under different scale conveniently and accurately, which is helpful for the feasibility of replacing current electrical and optical devices with NWs integrated devices.

  13. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    Science.gov (United States)

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  14. Young’s modulus of [111] germanium nanowires

    Directory of Open Access Journals (Sweden)

    M. Maksud

    2015-11-01

    Full Text Available This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs. When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  15. Young’s modulus of [111] germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  16. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  17. Silicon nanowires for biosensing, energy storage, and conversion.

    Science.gov (United States)

    Wang, Yanli; Wang, Tianyu; Da, Peimei; Xu, Ming; Wu, Hao; Zheng, Gengfeng

    2013-10-04

    Semiconducting silicon nanowires (SiNWs) represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, structure, morphology, doping, and assembly of SiNWs, in both individual and array format, as well as incorporation with other materials, offers a nanoscale building block with unique electronic, optoelectronic, and catalytic properties, thus allowing for a variety of exciting opportunities in the fields of life sciences and renewable energy. This review provides a brief summary of SiNW research in the past decade, from the SiNW synthesis by both the top-down approaches and the bottom-up approaches, to several important biological and energy applications including biomolecule sensing, interfacing with cells and tissues, lithium-ion batteries, solar cells, and photoelectrochemical conversion.

  18. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material.

  19. Electrical and Magnetic Properties of FeSi2 Nanowires

    Institute of Scientific and Technical Information of China (English)

    PENG Zu-Lin; S. Liang

    2008-01-01

    We report the characterization of serf-assembled epitaxially grown FeSi2 nanowires (NWs) in terms of electrical and magnetic properties. NWs grown by reactive deposition epitaxy (RDE) on silicon (110) show dimensions of 1Onm×5nm, and several micrometres in length. By using conductive-AFM (c-AFM), electron transport properties of one single NW is measured, resistivity of a single crystalline FeSi2 NW is estimated to be 225 μΩ·cm.Using superconducting quantum interference device (SQUID), we measure a magnetic moment of 0.3±0.1 Bohr magneton per iron atom for these FeSi2 NWs.

  20. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  1. Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2010-01-01

    Full Text Available Abstract Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS, these porous nanowires also show excellent photoluminescence (PL properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A “red-shift” of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices.

  2. Ferromagnetism in undoped One-dimensional GaN Nanowires

    Directory of Open Access Journals (Sweden)

    K. Jeganathan

    2014-05-01

    Full Text Available We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10−8 mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  3. Two-beam laser fabrication technique and the application for fabricating conductive silver nanowire on flexible substrate

    Science.gov (United States)

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-03-01

    In this study, a two-beam laser fabrication technique is proposed to fabricate silver nanowire (AgNW) on the polyethylene terephthalate (PET) substrate. The femtosecond pulse laser in the technique plays a role in generating Ag nanoparticles from the silver aqueous solution by multiphoton photoreduction. The continuous wave (CW) laser of the technique works as optical tweezers, and make the Ag nanoparticles gather to a continuous AgNW by the optical trapping force. The optical trapping force of the CW laser was calculated under our experimental condition. The flexibility and the resistance stability of the AgNW that fabricated by this technique are very excellent. Compared to the resistance of the AgNW without bending, the decreasing rate of the AgNW resistance is about 16% under compressed bending condition at the radius of 1 mm, and the increasing rate of the AgNW resistance is only 1.3% after the AgNW bended about 3500 times at the bending radius of 1 mm. The study indicates that the AgNW is promising for achieving flexible device and would promote the development of the flexible electronics.

  4. Two-beam laser fabrication technique and the application for fabricating conductive silver nanowire on flexible substrate

    Directory of Open Access Journals (Sweden)

    Gui-Cang He

    2017-03-01

    Full Text Available In this study, a two-beam laser fabrication technique is proposed to fabricate silver nanowire (AgNW on the polyethylene terephthalate (PET substrate. The femtosecond pulse laser in the technique plays a role in generating Ag nanoparticles from the silver aqueous solution by multiphoton photoreduction. The continuous wave (CW laser of the technique works as optical tweezers, and make the Ag nanoparticles gather to a continuous AgNW by the optical trapping force. The optical trapping force of the CW laser was calculated under our experimental condition. The flexibility and the resistance stability of the AgNW that fabricated by this technique are very excellent. Compared to the resistance of the AgNW without bending, the decreasing rate of the AgNW resistance is about 16% under compressed bending condition at the radius of 1 mm, and the increasing rate of the AgNW resistance is only 1.3% after the AgNW bended about 3500 times at the bending radius of 1 mm. The study indicates that the AgNW is promising for achieving flexible device and would promote the development of the flexible electronics.

  5. Metal-catalyzed electroless etching and nanoimprinting silicon nanowire-based solar cells: Silicon nanowire defect reduction and efficiency enhancement by two-step H2 annealing

    Science.gov (United States)

    Jevasuwan, Wipakorn; Nakajima, Kiyomi; Sugimoto, Yoshimasa; Fukata, Naoki

    2016-06-01

    The effects of H2 annealing on material properties including defects of silicon nanowire (SiNW) surface and Si film layer for solar cell application were investigated. Single-junction solar cells consisting of n-SiNWs and chemical vapor deposition grown p-Si matrix were demonstrated using two-step H2 annealing. n-SiNWs formed by two different methods of metal-catalyzed electroless etching and nanoimprinting followed by the Bosch process were compared. Two-step H2 annealing at 900 °C for 10 min after both n-SiNW formations and subsequent p-Si matrix deposition effectively improved SiNW surface and p-Si crystallinity, resulting in higher solar cell efficiency.

  6. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in

  7. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    OpenAIRE

    Dong-Ju Kim; Hae-In Shin; Eun-Hye Ko; Ki-Hyun Kim; Tae-Woong Kim; Han-Ki Kim

    2016-01-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30?70?Ohm/square), optical transmittance values (89?90%), and haze (0.5?1%) percentages. Outer/inn...

  8. Nanowire-based thermoelectrics

    Science.gov (United States)

    Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram

    2017-07-01

    Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.

  9. The Analysis of Characteristics in Dry and Wet Environments of Silicon Nanowire-Biosensor.

    Science.gov (United States)

    Choi, Hyoun Mo; Shin, Dong Jae; Lee, Jung Han; Mo, Hyun-Sun; Park, Tae Jung; Park, Byung-Gook; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan; Park, Jisun

    2016-05-01

    Our study investigates differences in sensitivity of dry and wet environment in the field of biosensing experiment in detail and depth. The sensitivity of biosensing varies by means of surrounding conditions of silicon nanowire field effect transistor (SiNW FET). By examining charged polymer reaction in the silicon nanowire transistor (SiNW), we have discovered that the threshold voltage (V(T)) shift and change of subthreshold slope (SS) in wet environment are smaller than that of the air. Furthermore, we analyzed the sensitivity through modifying electrolyte concentration in the wet condition, and confirmed that V(T) shift increases in low concentration condition of phosphate buffered saline (PBS) due to the Debye length. We believe that the results we have found in this study would be the cornerstone in contributing to advanced biosensing experiment in the future.

  10. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    Science.gov (United States)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  11. Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches.

    Science.gov (United States)

    Lee, Daeho; Rho, Yoonsoo; Allen, Frances I; Minor, Andrew M; Ko, Seung Hwan; Grigoropoulos, Costas P

    2013-11-21

    In this study, a hierarchical TiO2 nanostructure with densely-packed and omnidirectional branches grown by a hydrothermal method is introduced. This morphology is achieved via high-concentration TiCl4 treatment of upright backbone nanowires (NWs) followed by hydrothermal growth. Secondary nanobranches grow in all directions from densely distributed, needle-like seeds on the jagged round surface of the backbone NWs. In addition, hierarchical, flower-like branches grow on the top surface of each NW, greatly increasing the surface area. For dye-sensitized solar cell (DSSC) applications, the TiO2 nanostructure demonstrated a photoconversion efficiency of up to 6.2%. A parametric study of the DSSC efficiency showed that branched TiO2 DSSCs can achieve nearly four times the efficiency of non-branched TiO2 nanowire DSSCs, and up to 170% the efficiency of previously-reported sparsely-branched TiO2 NW DSSCs.

  12. In-situ doped junctionless polysilicon nanowires field effect transistors for low-cost biosensors

    DEFF Research Database (Denmark)

    Zulfiqar, Azeem; Patou, François; Pfreundt, Andrea

    2017-01-01

    Silicon nanowire (SiNW) field effect transistor based biosensors have already been proven to be a promising tool to detect biomolecules. However, the most commonly used fabrication techniques involve expensive Silicon-On-Insulator (SOI) wafers, E-beam lithography and ion-implantation steps....... In the work presented here, a top down approach to fabricate SiNW junctionless field effect biosensors using novel in-situ doped polysilicon is demonstrated. The p-type polysilicon is grown with an optimum boron concentration that gives a good metal-silicon electrical contact while maintaining the doping...... level at a low enough level to provide a good sensitivity for the biosensor. The silicon nanowires are patterned using standard photolithography and a wet etch method. The metal contacts are made from magnetron sputtered TiW and e-beam evaporation of gold. The passivation of electrodes has been done...

  13. Multiple tunnel junctions based nanowire photodetector model for single charge detection

    Science.gov (United States)

    Chatbouri, Samir; Touati, A.; Troudi, M.; Sghaier, N.; Kalboussi, A.

    2013-07-01

    In this paper we propose a new silicon nanowire photodetector model based on a single-electron transistor for single charge detection (photo-NWSET). In the first part of this work we present the two blocks of the device structure (reading and detection blocks). The presented model is consisting of two blocks capacitively coupled. The first SET (SET1) is supposed to read the charge whereas the detection block is represented by the nanowire (NW) system associated to an optical source. We modeled the NW by a series of seven islands separated by eight tunnel junctions (8TJs). In the second part of this work, we investigate the effects of photoexcitation on Id-Vg curves and we present results obtained on the output (photo-NWSET) characteristics after variation of power illumination and response time.

  14. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    Science.gov (United States)

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  15. Semiconductor nanowire optical antenna solar absorbers.

    Science.gov (United States)

    Cao, Linyou; Fan, Pengyu; Vasudev, Alok P; White, Justin S; Yu, Zongfu; Cai, Wenshan; Schuller, Jon A; Fan, Shanhui; Brongersma, Mark L

    2010-02-10

    Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NW's optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.

  16. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  17. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  18. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts

    OpenAIRE

    Habicht, S.; Zhao, Q. T.; Feste, S. F.; Knoll, L.; Trellenkamp, S.; Ghyselen, B.; Mantl, S

    2010-01-01

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon...

  19. Characterization of group III–nitride nanowires for bio–electrochemical sensors

    OpenAIRE

    Wallys, Jens Matthias Emil

    2014-01-01

    In the present work, the potential of group III–nitride nanowire (NW) ensembles for application as bio–chemical sensors with optical readout was evaluated. The sample analysis was divided into two main parts. At first, an electrochemical analysis with impedance spectroscopy and cyclic voltammetry was conducted. The second part comprises a photoelectrochemical examination by means of photoluminescence spectroscopy at room temperature. In the electrochemical characterization by impedance spe...

  20. Nanowire electrodes for high-density stimulation and measurement of neural circuits

    OpenAIRE

    Robinson, Jacob T.; Jorgolli, Marsela; Park, Hongkun

    2013-01-01

    Brain-machine interfaces (BMIs) that can precisely monitor and control neural activity will likely require new hardware with improved resolution and specificity. New nanofabricated electrodes with feature sizes and densities comparable to neural circuits may lead to such improvements. In this perspective, we review the recent development of vertical nanowire (NW) electrodes that could provide highly parallel single-cell recording and stimulation for future BMIs. We compare the advantages of t...

  1. Sub-15 nm gate-all-around field effect transistors on vertical silicon nanowires

    Science.gov (United States)

    Larrieu, G.; Guerfi, Y.; Han, X. L.; Clément, N.

    2017-04-01

    A vertical MOS architecture implemented on Si nanowire (NW) array with a scaled Gate-All-Around (14 nm) and symmetrical diffusive S/D contacts is presented with noteworthy demonstrations in both processing (layer engineering at nanoscale), and in electrical properties (high electrostatic control, low defect level, multi-Vt platform). Furthermore, the versatility and reliability of this technology is evidenced with a CMOS inverter, providing bright perspectives for ultimate scaling.

  2. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    Science.gov (United States)

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  3. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  4. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Chang; Chiang, Pei-Ling; Lin, Tsung-Wu; Chen, Yit-Tsong [Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan (China); Sun, Chih-Jung; Tsai, Ming-Hsueh [Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Chang, Yun-Chorng, E-mail: ychang6@mail.ncku.edu.tw, E-mail: ytcchem@ntu.edu.tw [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2011-04-01

    Using a silicon nanowire field-effect transistor (SiNW-FET) for biomolecule detections, we selected 3-(mercaptopropyl)trimethoxysilane (MPTMS), N-[6-(biotinamido)hexyl]-3{sup '}-(2{sup '}-pyridyldithio) propionamide (biotin-HPDP), and avidin, respectively, as the designated linker, receptor, and target molecules as a study model, where the biotin molecules were modified on the SiNW-FET to act as a receptor for avidin. We applied high-resolution scanning Kelvin probe force microscopy (KPFM) to detect the modified/bound biomolecules by measuring the induced change of the surface potential ({Delta}{Phi}{sup s}) on the SiNW-FET under ambient conditions. After biotin-immobilization and avidin-binding, the {Delta}{Phi}{sup s} on the SiNW-FET characterized by KPFM was demonstrated to correlate to the conductance change inside the SiNW-FET acquired in aqueous solution. The {Delta}{Phi}{sup s} values on the SiNW-FET caused by the same biotin-immobilization and avidin-binding were also measured from drain current versus gate voltage curves (I{sub d}-V{sub g}) in both aqueous condition and dried state. For comparison, we also study the {Delta}{Phi}{sup s} values on a Si wafer caused by the same biotin-immobilization and avidin-binding through KPFM and {zeta} potential measurements. This study has demonstrated that the surface potential measurement on a SiNW-FET by KPFM can be applied as a diagnostic tool that complements the electrical detection with a SiNW-FET sensor. Although the KPFM experiments were carried out under ambient conditions, the measured surface properties of a SiNW-FET are qualitatively valid compared with those obtained by other biosensory techniques performed in liquid environment.

  5. Investigation of CuInSe2 nanowire arrays with core-shell structure electrodeposited at various duty cycles into anodic alumina templates

    Science.gov (United States)

    Cheng, Yu-Song; Wang, Na-Fu; Tsai, Yu-Zen; Lin, Jia-Jun; Houng, Mau-Phon

    2017-02-01

    Copper indium selenide (CuInSe2) nanowire (NW) arrays were prepared at various electrolyte duty cycles by filling anodic alumina templates through the pulsed electrodeposition technique. X-ray diffraction and scanning electron microscopy (SEM) images showed that the nucleation mechanism of CuInSe2 NW arrays was affected by the electrodeposition duty cycle. Moreover, SEM images showed that the diameter and length of the NWs were 80 nm and 2 μm, respectively. Furthermore, PEDOT/CuInSe2 NW core-shell arrays were fabricated using surfactant-modified CuInSe2 NW surfaces showing the lotus effect. Transmission electron microscopy images confirmed that a core-shell structure was achieved. Current-voltage plots revealed that the CuInSe2 NW arrays were p-type semiconductors; moreover, the core-shell structure improved the diode ideality factor from 3.91 to 2.63.

  6. Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

    Science.gov (United States)

    Zettler, J K; Corfdir, P; Geelhaar, L; Riechert, H; Brandt, O; Fernández-Garrido, S

    2015-11-06

    We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires (NWs) on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased during the nucleation stage, is an efficient method to gain control over the area coverage, average diameter, and coalescence degree of GaN NW ensembles. Furthermore, we also demonstrate that the growth conditions employed during the incubation time that precedes nanowire nucleation do not influence the properties of the final nanowire ensemble. Therefore, when growing GaN NWs at elevated temperatures or with low Ga/N ratios, the total growth time can be reduced significantly by using more favorable growth conditions for nanowire nucleation during the incubation time.

  7. Multiplex immunoassay for Lyme disease using VlsE1-IgG and pepC10-IgM antibodies: improving test performance through bioinformatics.

    Science.gov (United States)

    Porwancher, Richard B; Hagerty, C Greg; Fan, Jianqing; Landsberg, Lisa; Johnson, Barbara J B; Kopnitsky, Mark; Steere, Allen C; Kulas, Karen; Wong, Susan J

    2011-05-01

    The Centers for Disease Control and Prevention currently recommends a 2-tier serologic approach to Lyme disease laboratory diagnosis, comprised of an initial serum enzyme immunoassay (EIA) for antibody to Borrelia burgdorferi followed by supplementary IgG and IgM Western blotting of EIA-positive or -equivocal samples. Western blot accuracy is limited by subjective interpretation of weakly positive bands, false-positive IgM immunoblots, and low sensitivity for detection of early disease. We developed an objective alternative second-tier immunoassay using a multiplex microsphere system that measures VlsE1-IgG and pepC10-IgM antibodies simultaneously in the same sample. Our study population comprised 79 patients with early acute Lyme disease, 82 patients with early-convalescent-phase disease, 47 patients with stage II and III disease, 34 patients post-antibiotic treatment, and 794 controls. A bioinformatic technique called partial receiver-operator characteristic (ROC) regression was used to combine individual antibody levels into a single diagnostic score with a single cutoff; this technique enhances test performance when a high specificity is required (e.g., ≥ 95%). Compared to Western blotting, the multiplex assay was equally specific (95.6%) but 20.7% more sensitive for early-convalescent-phase disease (89.0% versus 68.3%, respectively; 95% confidence interval [95% CI] for difference, 12.1% to 30.9%) and 12.5% more sensitive overall (75.0% versus 62.5%, respectively; 95% CI for difference, 8.1% to 17.1%). As a second-tier test, a multiplex assay for VlsE1-IgG and pepC10-IgM antibodies performed as well as or better than Western blotting for Lyme disease diagnosis. Prospective validation studies appear to be warranted.

  8. Multiplex Immunoassay for Lyme Disease Using VlsE1-IgG and pepC10-IgM Antibodies: Improving Test Performance through Bioinformatics ▿

    Science.gov (United States)

    Porwancher, Richard B.; Hagerty, C. Greg; Fan, Jianqing; Landsberg, Lisa; Johnson, Barbara J. B.; Kopnitsky, Mark; Steere, Allen C.; Kulas, Karen; Wong, Susan J.

    2011-01-01

    The Centers for Disease Control and Prevention currently recommends a 2-tier serologic approach to Lyme disease laboratory diagnosis, comprised of an initial serum enzyme immunoassay (EIA) for antibody to Borrelia burgdorferi followed by supplementary IgG and IgM Western blotting of EIA-positive or -equivocal samples. Western blot accuracy is limited by subjective interpretation of weakly positive bands, false-positive IgM immunoblots, and low sensitivity for detection of early disease. We developed an objective alternative second-tier immunoassay using a multiplex microsphere system that measures VlsE1-IgG and pepC10-IgM antibodies simultaneously in the same sample. Our study population comprised 79 patients with early acute Lyme disease, 82 patients with early-convalescent-phase disease, 47 patients with stage II and III disease, 34 patients post-antibiotic treatment, and 794 controls. A bioinformatic technique called partial receiver-operator characteristic (ROC) regression was used to combine individual antibody levels into a single diagnostic score with a single cutoff; this technique enhances test performance when a high specificity is required (e.g., ≥95%). Compared to Western blotting, the multiplex assay was equally specific (95.6%) but 20.7% more sensitive for early-convalescent-phase disease (89.0% versus 68.3%, respectively; 95% confidence interval [95% CI] for difference, 12.1% to 30.9%) and 12.5% more sensitive overall (75.0% versus 62.5%, respectively; 95% CI for difference, 8.1% to 17.1%). As a second-tier test, a multiplex assay for VlsE1-IgG and pepC10-IgM antibodies performed as well as or better than Western blotting for Lyme disease diagnosis. Prospective validation studies appear to be warranted. PMID:21367982

  9. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Diego, E-mail: diegorepet@gmail.com; Giordano, Maria Caterina, E-mail: marinagiordano88@gmail.com; Martella, Christian, E-mail: christian.martella@gmail.com; Buatier de Mongeot, Francesco, E-mail: buatier@fisica.unige.it

    2015-02-01

    Highlights: • Self-organized Al nanowires were grown on glass substrates by ion beam sputtering. • Al nanowire pattern exhibit electrical and optical anisotropy. • Al NW pattern can be used as transparent electrodes for optoelectronic devices. - Abstract: Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  10. Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices.

    Science.gov (United States)

    Liu, Huan-Shen; Pan, Bo-Cheng; Liou, Guey-Sheng

    2017-02-16

    Stretchable conductors based on silver nanowires (AgNWs) and polydimethylsiloxane (PDMS) have been studied extensively for many years. However, it is still difficult to achieve high transparency with low resistance due to the low attractive force between AgNWs and PDMS. In this paper, we report an effective method to transfer AgNWs into PDMS by using substrates which have a hydrophobic surface, and successfully prepared stretchable AgNW/PDMS electrodes having high transparency and low sheet resistance at the same time. The obtained electrodes can be stretched, twisted, and folded without significant loss of conductivity. Furthermore, a novel elastomeric HV electrochromic device (ECD) fabricated based on these stretchable AgNW/PDMS hybrid electrodes exhibited excellent electrochromic behavior in the full AgNW electrode system and could change color between colorless and blue even after 100 switching cycles. As most existing electrochromic devices are based on ITO and other rigid conductors, elastomeric conductors demonstrate advantages for next-generation electronics such as stretchable, wearable, and flexible optoelectronic applications.

  11. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy

    Science.gov (United States)

    Kolíbal, Miroslav; Novák, Libor; Shanley, Toby; Toth, Milos; Šikola, Tomáš

    2015-12-01

    contradictory results reported in prior studies. We also show that under wet atmospheres the Ga droplets can be mobile and promote nanowire growth as they traverse the silicon substrate. Electronic supplementary information (ESI) available: Additional nanowire analysis (Fig. S1-S4), real-time EDX analysis of the Si content in the Ga droplet (Fig. S5), image sequence S6 showing crack formation and further evolution of the catalyst droplet morphology, determination of the activation energy of NW formation (Fig. S7), and a demonstration of Ga droplet migration (Fig. S8). See DOI: 10.1039/c5nr05152e

  12. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    Science.gov (United States)

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  13. Biofunctionalized Magnetic Nanowires

    KAUST Repository

    Kosel, Jurgen

    2013-12-19

    Magnetic nanowires can be used as an alternative method overcoming the limitations of current cancer treatments that lack specificity and are highly cytotoxic. Nanowires are developed so that they selectively attach to cancer cells via antibodies, potentially destroying them when a magnetic field induces their vibration. This will transmit a mechanical force to the targeted cells, which is expected to induce apoptosis on the cancer cells.

  14. SYNTHESIS OF COPPER NANOWIRES

    OpenAIRE

    POLAT, Sevim; Tigan, Doğancan

    2015-01-01

    Nanotechnology is the science and engineering of functional systems conducted at nanoscale that is between 1 and 100 nanometers. In the past years, it has been demonstrated that nanowires can be used in many areas, increasing their popularity. These areas primarily include ap-plications related to energy, environment and electronics. In these applications, many prototype products have been demonstrated with nan-owires, such as solar cells, flexible displays, transistors and light emitting dio...

  15. Electrically robust silver nanowire patterns transferrable onto various substrates

    Science.gov (United States)

    Liu, Gui-Shi; Liu, Chuan; Chen, Hui-Jiuan; Cao, Wu; Qiu, Jing-Shen; Shieh, Han-Ping D.; Yang, Bo-Ru

    2016-03-01

    We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene glycol terephthalate (PET) exhibits remarkable durability under the bending test, tape test, ultrasonic treatment in water, and immersion of chemical solvents. In addition, we demonstrate that the AgNW-EPR composite work well as conductive patterns on the oxidized PDMS, polyvinyl alcohol (PVA), paper, and curved glass. The facile technique extends the applicability of AgNWs in the field of electronics, and it is potentially applicable to other nanomaterials.We report a facile technique for patterning and transferring silver nanowires (AgNWs) onto various substrates. By employing only UV/O3 and vapor treatment of hexamethyldisilazane (HMDS), we are able to accurately manipulate the surface energy via alternating the terminal groups of a polydimethylsiloxane (PDMS) substrate, so as to assist selective formation and exfoliation of AgNW films. A simple UV/O3 treatment on PDMS enables uniform, well-defined, and highly conductive patterns of AgNWs after spin-coating. A vapor treatment of HMDS lowers the surface energy of the oxidized PDMS so that the patterned AgNWs embedded in an epoxy resin (EPR) are cleanly transferred from the PDMS to the target substrate. It is found that the AgNW-EPR composite on polyethylene

  16. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function.

    Science.gov (United States)

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M

    2011-07-26

    Branched nanostructures represent unique, 3D building blocks for the "bottom-up" paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III-V, and II-VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future.

  17. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  18. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.

    Science.gov (United States)

    Paska, Yair; Stelzner, Thomas; Christiansen, Silke; Haick, Hossam

    2011-07-26

    Silicon nanowire field effect transistors (Si NW FETs) are emerging as powerful sensors for direct detection of biological and chemical species. However, the low sensitivity of the Si NW FET sensors toward nonpolar volatile organic compounds (VOCs) is problematic for many applications. In this study, we show that modifying Si NW FETs with a silane monolayer having a low fraction of Si-O-Si bonds between the adjacent molecules greatly enhances the sensitivity toward nonpolar VOCs. This can be explained in terms of an indirect sensor-VOC interaction, whereby the nonpolar VOC molecules induce conformational changes in the organic monolayer, affecting (i) the dielectric constant and/or effective dipole moment of the organic monolayer and/or (ii) the density of charged surface states at the SiO(2)/monolayer interface. In contrast, polar VOCs are sensed directly via VOC-induced changes in the Si NW charge carriers, most probably due to electrostatic interaction between the Si NW and polar VOCs. A semiempirical model for the VOC-induced conductivity changes in the Si NW FETs is presented and discussed.

  19. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-24

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  20. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  1. Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy

    Science.gov (United States)

    Halder, Nripendra N.; Kelrich, Alexander; Kauffmann, Yaron; Cohen, Shimon; Ritter, Dan

    2017-04-01

    We report on the selective area vapor-liquid-solid (SA-VLS) growth of InP/GaP core shell nano-wires (NWs) by metal organic molecular beam epitaxy. Wurtzite crystal structure of the core InP was transferred to the GaP shell through layer by layer radial growth which eliminated bending of the NWs in random directions. Low growth temperature restricted surface segregation and kept the shell free from indium. Strain in the GaP shell was partially relaxed through formation of periodic misfit dislocations. From the periodicity of Moiré fringes and splitting of the fast-Fourier-transform of the transmission electron micrographs, the radial and axial strain were determined as 4.5% and 6.2%, respectively.

  2. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  3. MBE growth of self-assisted InAs nanowires on graphene

    Science.gov (United States)

    Kang, Jung-Hyun; Ronen, Yuval; Cohen, Yonatan; Convertino, Domenica; Rossi, Antonio; Coletti, Camilla; Heun, Stefan; Sorba, Lucia; Kacman, Perla; Shtrikman, Hadas

    2016-11-01

    Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ∼50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studied by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30° orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, multiple Andreev reflections were observed, and an inelastic scattering length of about 900 nm was derived.

  4. Probing electronic properties of molecular engineered zinc oxide nanowires with photoelectron spectroscopy.

    Science.gov (United States)

    Aguilar, Carlos A; Haight, Richard; Mavrokefalos, Anastassios; Korgel, Brian A; Chen, Shaochen

    2009-10-27

    ZnO nanowires (NWs) are emerging as key elements for new lasing, photovoltaic and sensing applications but elucidation of their fundamental electronic properties has been hampered by a dearth of characterization tools capable of probing single nanowires. Herein, ZnO NWs were synthesized in solution and integrated into a low energy photoelectron spectroscopy system, where quantitative optical measurements of the NW work function and Fermi level location within the band gap were collected. Next, the NWs were decorated with several dipolar self-assembled monolayers (SAMs) and control over the electronic properties is demonstrated, yielding a completely tunable hybrid electronic material. Using this new metrology approach, a host of other extraordinary interfacial phenomena could be explored on nanowires such as spatial dopant profiling or heterostructures.

  5. MBE growth of self-assisted InAs nanowires on graphene

    CERN Document Server

    Kang, Jung-Hyun; Cohen, Yonatan; Convertino, Domenica; Rossi, Antonio; Coletti, Camilla; Heun, Stefan; Sorba, Lucia; Kacman, Perla; Shtrikman, Hadas

    2016-01-01

    Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ~50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studied by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30{\\deg} orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, Multiple Andreev Reflections were observed, and an inelastic scattering length of about 900 nm was derived.

  6. Control growth of silicon nanocolumns' epitaxy on silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Su Kong, E-mail: sukong1985@yahoo.com.my [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia); Dee, Chang Fu [Universiti Kebangsaan Malaysia (UKM), Institute of Microengineering and Nanoelectronics (IMEN) (Malaysia); Yahya, Noorhana [Universiti Teknologi PETRONAS, Faculty of Science and Information Technology (Malaysia); Rahman, Saadah Abdul [University of Malaya, Low Dimensional Materials Research Centre, Department of Physics (Malaysia)

    2013-04-15

    The epitaxial growth of Si nanocolumns on Si nanowires was studied using hot-wire chemical vapor deposition. A single-crystalline and surface oxide-free Si nanowire core (core radius {approx}21 {+-} 5 nm) induced by indium crystal seed was used as a substance for the vapor phase epitaxial growth. The growth process is initiated by sidewall facets, which then nucleate upon certain thickness to form Si islands and further grow to form nanocolumns. The Si nanocolumns with diameter of 10-20 nm and aspect ratio up to 10 can be epitaxially grown on the surface of nanowires. The results showed that the radial growth rate of the Si nanocolumns remains constant with the increase of deposition time. Meanwhile, the radial growth rates are controllable by manipulating the hydrogen to silane gas flow rate ratio. The optical antireflection properties of the Si nanocolumns' decorated SiNW arrays are discussed in the text.

  7. Magnetization and electric transport properties of single-crystal MgB2 nanowires.

    Science.gov (United States)

    Wu, Cen-Shawn; Chang, Yu-Cheng; Chen, Weimeng; Chen, Chinping; Feng, Qingrong

    2012-11-23

    High quality single-crystal magnesium diboride (MgB(2)) nanowires with lengths exceeding 10 μm were successfully synthesized by hybrid physical chemical vapor deposition. The magnetization and electrical transport properties of single-crystal MgB(2) nanowires (NWs) were measured. The superconducting transition temperature of the NWs was 37 K, as confirmed by magnetization measurements. The disordered behavior of the nanowires was observed by four-terminal current-voltage characteristic measurements of an individual NW from T = 10 to 300 K. The temperature-dependent resistivity curves for seven NWs collapsed into a universal curve described by the variable range hopping model, showing intrinsic nonmetallic transport properties. This implies that the granular superconducting defect states are critical to the superconductivity of the individual MgB(2) NWs.

  8. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

    Science.gov (United States)

    Elnathan, Roey; Isa, Lucio; Brodoceanu, Daniel; Nelson, Adrienne; Harding, Frances J; Delalat, Bahman; Kraus, Tobias; Voelcker, Nicolas H

    2015-10-28

    Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.

  9. Optical design of a mid-wavelength infrared InSb nanowire photodetector

    Science.gov (United States)

    Azizur-Rahman, K. M.; LaPierre, R. R.

    2016-08-01

    A periodic array of vertical InSb nanowires (nws) was designed for photodetectors in the mid-wavelength infrared (MWIR) region (λ = 3-5 μm). Simulations, using the finite element method, were implemented to optimize the nw array geometrical parameters (diameter (D), period (P), and length (L)) for high optical absorptance, which exceeded that of a thin film of equal thickness. Our results showed HE1n resonances in InSb nw arrays can be tuned by adjusting D and P, thus enabling multispectral absorption throughout the near infrared to MWIR region. Optical absorptance was investigated for a practical photodetector consisting of a vertical InSb nw array embedded in bisbenzocyclobutene (BCB) as a support layer for an ultrathin Ni contact layer. Polarization sensitivity of the photodetector is examined.

  10. Probing the sensitivity of nanowire-based biosensors using liquid-gating

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ming-Pei; Yang, Yuh-Shyong [National Nano Device Laboratories, Hsinchu 300, Taiwan (China); Hsiao, Cheng-Yun; Lai, Wen-Tsan, E-mail: mingpei.lu@gmail.com, E-mail: ysyang@faculty.nctu.edu.tw [Institute of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2010-10-22

    We have used liquid-gating to investigate the sensitivity of nanowire (NW)-based biosensors for application in the field of ultrasensitive biodetection. We developed an equivalent capacitance model of the biosensor system to explore the dependence of the sensitivity on the liquid-gate voltage (V{sub lg}), which was influenced by capacitive competition between the NW capacitance and the thin oxide capacitance. NW biosensors with highest sensitivity were obtained when we operated the device in the subthreshold regime while applying an appropriate value of V{sub lg}; the influence of leakage paths through the ionic solutions led, however, to significant sensitivity degradation and narrowed the operating window in the subthreshold regime.

  11. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning

    Science.gov (United States)

    Han, Ming-Chu; He, Hong-Wei; Zhang, Bin; Wang, Xiao-Xiong; Zhang, Jun; You, Ming-Hao; Yan, Shi-Ying; Long, Yun-Ze

    2017-07-01

    1D nanocables consisting of metal core with high conductivity and protective polymer shell are promising for electronic devices. In this paper, silver nanowire/polyvinylidene fluoride (AgNW/PVDF) composite nanocables with excellent thermal stability were successfully fabricated by facile direct electrospinning (e-spinning), in which a slurry of AgNWs were uniformly dispersed into N,N-dimethylformamide/acetone solution containing 20% PVDF to form the e-spinning precursor solution. The decomposed temperature of resultant AgNW/PVDF nanocables is up to 460 °C. Interestingly, the as-spun nanocables exhibit more β phase of PVDF than that of pure PVDF nanofibers. The as-spun AgNW/PVDF nanocables could be applied in fields of antibacterial, ultrathin cables and optoelectronic devices.

  12. Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method.

    Science.gov (United States)

    Wang, Wei-Li; Zou, Xian-Shao; Zhang, Bin; Dong, Jun; Niu, Qiao-Li; Yin, Yi-An; Zhang, Yong

    2014-06-01

    A method has been developed to fabricate organic-inorganic hybrid heterojunction solar cells based on n-type silicon nanowire (SiNW) and poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) hybrid structures by evacuating the PEDOT:PSS solution with dip-dropping on the top of SiNWs before spin-coating (solution-evacuating). The coverage and contact interface between PEDOT:PSS and SiNW arrays can be dramatically enhanced by optimizing the solution-evacuated time. The maximum power conversion efficiency (PCE) reaches 9.22% for a solution-evacuated time of 2 min compared with 5.17% for the untreated pristine device. The improvement photovoltaic performance is mainly attributed to better organic coverage and contact with an n-type SiNW surface.

  13. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  14. Growth of Horizonatal ZnO Nanowire Arrays on Any Substrate

    KAUST Repository

    Qin, Yong

    2008-12-04

    A general method is presented for growing laterally aligned and patterned ZnO nanowire (NW) arrays on any substrate as long as it is flat. The orientation control is achieved using the combined effect from ZnO seed layer and the catalytically inactive Cr (or Sn) layer for NW growth. The growth temperature (< 100 °C) is so low that the method can be applied to a wide range of substrates that can be inorganic, organic, single crystal, polycrystal, or amorphous. The laterally aligned ZnO NW arrays can be employed for various applications, such as gas sensor, field effect transistor, nanogenerator, and flexible electronics. © 2008 American Chemical Society.

  15. Experimental demonstration of improved analog device performance of nanowire-TFETs

    Science.gov (United States)

    Schulte-Braucks, Christian; Richter, Simon; Knoll, Lars; Selmi, Luca; Zhao, Qing-Tai; Mantl, Siegfried

    2015-11-01

    We present experimental data on analog device performance of p-type planar- and gate all around (GAA) nanowire (NW) Tunnel-FETs (TFETs) as well as on n-type Tri-Gate-TFETs. A significant improvement of the analog performance by enhancing the electrostatics from planar TFETs to GAA-NW-TFETs with diameters of 20 nm and 10 nm is demonstrated. A maximum transconductance of 122 μS/μm and on-currents up to 23 μA/μm at a gate overdrive of Vgt = Vd = -1 V were achieved for the GAA NW-pTFETs. Furthermore, a good output current-saturation is observed leading to high intrinsic gain up to 217. The Tri-Gate nTFETs beat the fundamental MOSFET limit for the subthreshold slope of 60 mV/dec and by that also reach extremely high transconductance efficiencies up to 82 V-1.

  16. Development of Au-Ag nanowire mesh fabrication by UV-induced approach

    Energy Technology Data Exchange (ETDEWEB)

    Saggar, Siddhartha [Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut, Kerala, India and School of Nanoscience and Technology, National Institute of Technology, Calicut, Kerala (India); Predeep, Padmanabhan, E-mail: predeep@nitc.ac.in

    2014-10-15

    In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.

  17. Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells

    Science.gov (United States)

    Shahraki, Mojtaba; Salehi, Mohammad Reza; Abiri, Ebrahim

    2015-11-01

    Design approaches to carry out broadband absorption in laterally assembled hexagonal silicon nanowire (NW) solar cells are investigated. Two different methods are proposed to improve the current density of silicon NW solar cells. It is observed that the key to the broadband absorption is disorder and irregularity. The first approach to reach the broadband absorption is using multiple NWs with different geometries. Nevertheless, the maximum enhancement is obtained by introducing irregular NWs. They can support more cavity modes, while scattering by NWs leads to broadening of the absorption spectra. An array of optimized irregular NWs also has preferable features compared to other broadband structures. Using irregular NW arrays, it is possible to improve the absorption enhancement of solar cells without introducing more absorbing material.

  18. Photonic nanowire-based single-photon source with polarization control

    CERN Document Server

    Gregersen, Niels

    2016-01-01

    This document describes a modal method for optical simulations of structures with elliptical cross sections and its application to the design of the photonic nanowire (NW)-based single-photon source (SPS). The work was carried out in the framework of the EMRP SIQUTE project ending May 31st 2016. The document summarizes the new method used to treat the elliptical cross section in an efficient manner and additionally presents design parameters for the photonic NW SPS with elliptical cross section for polarization control. The document does not introduce the new method and the elliptical photonic NW SPS design in the context of existing literature but instead dives directly into the equations. Additionally, the document assumes that the reader possess expert knowledge of general modal expansion techniques. The presented formalism does not implement Li's factorization rules nor the recently proposed open boundary geometry formalism with fast convergence towards the open geometry limit but instead relies on (older...

  19. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  20. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes

    KAUST Repository

    Misra, Sumohan

    2012-06-26

    Figure Persented: Silicon is a promising anode material for Li-ion batteries due to its high theoretical specific capacity. From previous work, silicon nanowires (SiNWs) are known to undergo amorphorization during lithiation, and no crystalline Li-Si product has been observed. In this work, we use an X-ray transparent battery cell to perform in situ synchrotron X-ray diffraction on SiNWs in real time during electrochemical cycling. At deep lithiation voltages the known metastable Li 15Si 4 phase forms, and we show that avoiding the formation of this phase, by modifying the SiNW growth temperature, improves the cycling performance of SiNW anodes. Our results provide insight on the (de)lithiation mechanism and a correlation between phase evolution and electrochemical performance for SiNW anodes. © 2012 American Chemical Society.

  1. Accelerated Sedimentation Velocity Assessment for Nanowires Stabilized in a Non-Newtonian Fluid.

    Science.gov (United States)

    Chang, Chia-Wei; Liao, Ying-Chih

    2016-12-27

    In this work, the long-term stability of titanium oxide nanowire suspensions was accessed by an accelerated sedimentation with centrifugal forces. Titanium oxide (TiO2) nanoparticle (NP) and nanowire (NW) dispersions were prepared, and their sizes were carefully characterized. To replace the time-consuming visual observation, sedimentation velocities of the TiO2 NP and NW suspensions were measured using an analytical centrifuge. For an aqueous TiO2 NP suspension, the measured sedimentation velocities were linearly dependent on the relative centrifugal forces (RCF), as predicted by the classical Stokes law. A similar linear relationship was also found in the case of TiO2 NW aqueous suspensions. However, NWs preferred to settle parallel to the centrifugal direction under high RCF because of the lower flow resistance along the long axis. Thus, the extrapolated sedimentation velocity under regular gravity can be overestimated. Finally, a stable TiO2 NW suspension was formulated with a shear thinning fluid and showed great stability for weeks using visual observation. A theoretical analysis was deduced with rheological shear-thinning parameters to describe the nonlinear power-law dependence between the measured sedimentation velocities and RCF. The good agreement between the theoretical predictions and measurements suggested that the sedimentation velocity can be properly extrapolated to regular gravity. In summary, this accelerated assessment on a theoretical basis can yield quantitative information about long-term stability within a short time (a few hours) and can be further extended to other suspension systems.

  2. Molybdenum oxide nanowires: synthesis & properties

    Directory of Open Access Journals (Sweden)

    Liqiang Mai

    2011-07-01

    Full Text Available Molybdenum oxide nanowires have been found to show promise in a diverse range of applications, ranging from electronics to energy storage and micromechanics. This review focuses on recent research on molybdenum oxide nanowires: from synthesis and device assembly to fundamental properties. The synthesis of molybdenum oxide nanowires will be reviewed, followed by a discussion of recent progress on molybdenum oxide nanowire based devices and an examination of their properties. Finally, we conclude by considering future developments.

  3. Lipid nanotube or nanowire sensor

    Science.gov (United States)

    Noy, Aleksandr; Bakajin, Olgica; Letant, Sonia; Stadermann, Michael; Artyukhin, Alexander B.

    2009-06-09

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  4. The effects of substrates on the geometry and optical properties of aluminum nitride nanowires.

    Science.gov (United States)

    Gharavi, Mohammad Amin; Haratizadeh, Hamid; Kitai, Adrian; Moafi, Ali

    2012-12-01

    Based on a Chemical Vapor Deposition (CVD) process, an alumina tube electric furnace was assembled to synthesize different one dimensional aluminum nitride (AIN) nanostructures via aluminum powder and nitrogen gas flow. The products obtained where nanowires, nanorods, a unique chain-linked nanocage structure made from an entanglement of AIN nanowires and an interesting micro-sized spherical architecture. The different growth parameters dictated to the system result the product variety, making structure tuning possible. The incorporation of different substrates (silicon and alumina) not only leads to the formation of different shaped structures, but also results different optical emissions ranging from 450 nm (blue) to 650 nm (red), indicating the high potential of AIN nanostructures in LED fabrication. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selective Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Photoluminescence (PL) and Energy Dispersive X-ray (EDX) analysis results are discussed and a Vapor-Liquid-Solid (VLS)/Vapor-Solid (VS) based growth mechanism is proposed for the mentioned structures.

  5. Self-assembled nanowire arrays as three-dimensional nanopores for filtration of DNA molecules.

    Science.gov (United States)

    Rahong, Sakon; Yasui, Takao; Yanagida, Takeshi; Nagashima, Kazuki; Kanai, Masaki; Meng, Gang; He, Yong; Zhuge, Fuwei; Kaji, Noritada; Kawai, Tomoji; Baba, Yoshinobu

    2015-01-01

    Molecular filtration and purification play important roles for biomolecule analysis. However, it is still necessary to improve efficiency and reduce the filtration time. Here, we show self-assembled nanowire arrays as three-dimensional (3D) nanopores embedded in a microfluidic channel for ultrafast DNA filtration. The 3D nanopore structure was formed by a vapor-liquid-solid (VLS) nanowire growth technique, which allowed us to control pore size of the filtration material by varying the number of growth cycles. λ DNA molecules (48.5 kbp) were filtrated from a mixture of T4 DNA (166 kbp) at the entrance of the 3D nanopore structure within 1 s under an applied electric field. Moreover, we observed single DNA molecule migration of T4 and λ DNA molecules to clarify the filtration mechanism. The 3D nanopore structure has simplicity of fabrication, flexibility of pore size control and reusability for biomolecule filtration. Consequently it is an excellent material for biomolecular filtration.

  6. Large-scale electrohydrodynamic organic nanowire printing, lithography, and electronics

    Science.gov (United States)

    Lee, Tae-Woo

    2014-03-01

    Although the many merits of organic nanowires (NWs), a reliable process for controllable and large-scale assembly of highly-aligned NW parallel arrays based on ``individual control (IC)'' of NWs must be developed since inorganic NWs are mainly grown vertically on substrates and thus have been transferred to the target substrates by any of several non-individually controlled (non-IC) methods such as contact-printing technologies with unidirectional massive alignment, and the random dispersion method with disordered alignment. Controlled alignment and patterning of individual semiconducting NWs at a desired position in a large area is a major requirement for practical electronic device applications. Large-area, high-speed printing of highly-aligned individual NWs that allows control of the exact numbers of wires, and dimensions and their orientations, and its use in high-speed large-area nanolithography is a significant challenge for practical applications. Here we use a high-speed electrohydrodynamic organic nanowire printer to print large-area organic semiconducting nanowire arrays directly on device substrates in an accurately individually-controlled manner; this method also enables sophisticated large-area nanowire lithography for nano-electronics. We achieve an unprecedented high maximum field-effect mobility up to 9.7 cm2 .V-1 .s-1 with extremely low contact resistance (<5.53 Ω . cm) even in nano-channel transistors based on single-stranded semiconducting NWs. We also demonstrate complementary inverter circuit arrays consist of well-aligned p-type and n-type organic semiconducting NWs. Extremely fast nanolithography using printed semiconducting nanowire arrays provide a very simple, reliable method of fabricating large-area and flexible nano-electronics.

  7. 直流电弧自催化合成β-SiC纳米线%Self-catalytic Synthesis of β-SiC Nanowires by Direct Current Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    王峰; 王秋实; 崔启良; 张剑; 邹广田

    2009-01-01

    采用C,Si和SiO2为反应原料,利用直流电弧法制备出长直的β-SiC纳米线.纳米线的直径为100~200 nm,长度为10~20 μm,并且沿着方向生长.通过X射线衍射(XRD)、扫描电子显微术(SEM)、透射电子显微术(TEM)、拉曼光谱等手段,对β-SiC纳米线进行表征.探讨了β-SiC纳米线自催化气-液-固(VLS)生长机制.%Straight and long β-SiC nanowires were synthesized in direct current arc discharge using a mixture of graphite, silicon, and silicon dioxide as the precursor. The diameter of the nanowires is 100~200 nm, and the length is about 10~20 μm. The axis of the nanowire is preferentially along the direction. The morphology and structure of the nanowires were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and Raman spectroscopy. The β-SiC nanowires are suggested to be formed via a self-catalyzed vapor-liquid-solid growth mechanism.

  8. Thermal Rectification by Design in Telescopic Si Nanowires.

    Science.gov (United States)

    Cartoixà, Xavier; Colombo, Luciano; Rurali, Riccardo

    2015-12-01

    We show that thermal rectification by design is possible by joining/growing Si nanowires (SiNWs) with sections of appropriately selected diameters (i.e., telescopic nanowires). This is done, first, by showing that the heat equation can be applied at the nanoscale (NW diameters down to 5 nm). We (a) obtain thermal conductivity versus temperature, κ(T), curves from molecular dynamics (MD) simulations for SiNWs of three different diameters, then (b) we conduct MD simulations of a telescopic NW built as the junction of two segments with different diameters, and afterward (c) we verify that the MD results for thermal rectification in telescopic NWs are very well reproduced by the heat equation with κ(T) of the segments from MD. Second, we apply the heat equation to predict the amount of thermal rectification in a variety of telescopic SiNWs with segments made from SiNWs where κ(T) has been experimentally measured, obtaining r values up to 50%. This methodology can be applied to predict the thermal rectification of arbitrary heterojunctions as long as the κ(T) data of the constituents are available.

  9. Electronic structure tuning via surface modification in semimetallic nanowires

    Science.gov (United States)

    Sanchez-Soares, Alfonso; O'Donnell, Conor; Greer, James C.

    2016-12-01

    Electronic structure properties of nanowires (NWs) with diameters of 1.5 and 3 nm based on semimetallic α -Sn are investigated by employing density functional theory and perturbative GW methods. We explore the dependence of electron affinity, band structure, and band-gap values with crystallographic orientation, NW cross-sectional size, and surface passivants of varying electronegativity. We consider four chemical terminations in our study: methyl (CH3), hydrogen (H ), hydroxyl (OH ), and fluorine (F ). Results suggest a high degree of elasticity of Sn-Sn bonds within the Sn NWs' cores with no significant structural variations for nanowires with different surface passivants. Direct band gaps at Brillouin-zone centers are found for most studied structures with quasiparticle corrected band-gap magnitudes ranging from 0.25 to 3.54 eV in 1.5-nm-diameter structures, indicating an exceptional range of properties for semimetal NWs below the semimetal-to-semiconductor transition. Band-gap variations induced by changes in surface passivants indicate the possibility of realizing semimetal-semiconductor interfaces in NWs with constant cross-section and crystallographic orientation, allowing the design of novel dopant-free NW-based electronic devices.

  10. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  11. Enhancement of Capture Sensitivity for Circulating Tumor Cells in a Breast Cancer Patient's Blood by Silicon Nanowire Platform.

    Science.gov (United States)

    Kim, Dong-Joo; Choi, Mun-Ki; Jeong, Jin-Tak; Lim, Jung-Taek; Lee, Han-Byoel; Han, Wonshik; Lee, Sang-Kwon

    2016-04-01

    The separation of circulating tumor cells (CTCs) from the blood of cancer patients with high sensitivity is an essential technique for selecting chemotherapeutic agents at a patient-by-patient level. Recently, various research groups have reported a nanostructure-based platform for rare cell capture due to its high surface area and 3D nanotopographic features. However, evaluation of capture sensitivity based on chemical modification of the nanostructure surface has not yet been performed. Here, we evaluated the capture sensitivity for CTCs from the blood of three patients diagnosed with stage IV metastatic breast cancer by using the following three platforms: streptavidin-conjugated silicon nanowire (STR-SiNW), poly-l-lysine-coated silicon nanowire (PLL-SiNW), and poly-l-lysine-coated glass (PLL-glass). The number of evaluated CTCs on STR-SiNW, PLL-SiNW, and PLL-glass were 16.2 ± 5.5 cells, 7.3 ± 2.9 cells, and 4.7 ± 1.5 cells, respectively, per 0.5 ml. Therefore, we suggest that the STR-SiNW platform is highly adaptable for the quantitative evaluation of CTCs from the blood of cancer patients in the clinical setting.

  12. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel

    Science.gov (United States)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-01

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  13. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel.

    Science.gov (United States)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-22

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  14. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  15. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    Science.gov (United States)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  16. Impedance spectroscopy characterization of GaAs nanowire bundles grown by metal-catalyzed molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tirado, M., E-mail: mtirado@herrera.unt.edu.a [Laboratorio de Propiedades Dielectricas de la Materia, Dep. Fisica, FACET, Universidad Nacional de Tucuman, Avda. Independencia 1800, 4000 Tucuman (Argentina); Comedi, D. [Laboratorio de Fisica del Solido, Dep. Fisica, FACET, Universidad Nacional de Tucuman, Avda. Independencia 1800, 4000 Tucuman (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); LaPierre, R.R. [Dep. Eng. Physics, McMaster University, 1280 Main W, Hamilton L8S 4L7, ON (Canada)

    2010-04-16

    Vertically aligned GaAs nanowire (NW) bundles grown by gas-source molecular beam epitaxy on an n-doped GaAs substrate by a metal catalysis method and embedded in an insulating matrix (SU8-2) were studied by impedance spectroscopy. The DC current-voltage characteristics measured between Au dot contacts to the NW tips and the substrate exhibited Schottky behavior. A detailed analysis of the impedance data measured in reverse bias conditions is presented, which enables the elimination of the stray capacitance due to the insulating matrix, and the separation of the different contributions to the total admittance from the metal/NW Schottky interface and from the NW region beyond the barrier region. The observed NW conductances and capacitances are shown to be consistent with rough estimates based on the GaAs conductivity and permittivity data and the NW dimensions, and the NW conductance increases as a power law of the frequency. Possible charge transport mechanisms to explain this result are discussed.

  17. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection.

    Science.gov (United States)

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-07-01

    Novel silver nanowire (AgNW) - carbon fiber cloth (CC) nanocomposites were synthesized by a rapid and facile method. Acting as filter in an electrical gravity filtration device, the AgNW-CC nanocomposites were applied to electrochemical point-of-use water disinfection. AgNW-CC nanocomposites were characterized by FESEM, XRD, and FTIR. Their disinfection performance toward Escherichia coli and bacteriophage MS2 was evaluated by inhibition zone tests, optical density growth curve tests, and flow tests. The results showed that complex 3D AgNW networks with controllable silver release (nanocomposites exhibited excellent intrinsic antibacterial activities against E. coli. The concentration of AgNWs and UV adhesive controlled the released silver and hence led to the change in antibacterial activity. The external electric field significantly enhanced the disinfection efficiency of AgNW-CC nanocomposites. Over 99.999% removal of E. coli and MS2 could be achieved. More complex AgNW networks contributed to higher disinfection efficiency under 10 V and 10(6) CFU (PFU) mL(-1) of microorganism. UV adhesive could keep the disinfection performance from being affected by flow rate. The convenient synthesis and outstanding disinfection performance offer AgNW-CC nanocomposites opportunities in the application of electrochemical point-of-use drinking water disinfection.

  18. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    Science.gov (United States)

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites.

  19. NW CSC annual report fiscal year 2013

    Science.gov (United States)

    Bisbal, Gustavo A.

    2013-01-01

    The Northwest Climate Science Center (NW CSC) was established in 2010 as one of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC encompasses Washing-ton, Oregon, Idaho, and western Montana and has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. With guidance from its Executive Stakeholder Advisory Committee (ESAC), the NW CSC and its partner LCCs are addressing the highest priority regional climate science needs of Northwest natural and cultural resource managers. Climate Science Centers tap into the scientific expertise of both the U.S. Geological Survey (USGS) and academic institutions. The NW CSC is supported by an academic consortium with the capacity to generate climate science and tools in a coordinated fashion, serving stakeholders across the Northwest region. This consortium is primarily represented by Oregon State University (OSU), the University of Id-ho (UI), and the University of Washington (UW). The academic consortium and USGS provide capabilities in climate science, ecology, impacts and vulnerability assessment, modeling, adaptation planning, and advanced information technology, all necessary to address and respond to climate change in the Northwest. University members also recruit and train graduate students and early-career scientists. This Annual Report summarizes progress for the goals set out in the NW CSC Strategic Plan for 2012-2015 (http://www.doi.gov/csc/northwest/upload/Northwest-CSC-Strategic-Plan.cfm) and the NW CSC Work-plan for Fiscal Year (FY) 2013 (October 1, 2012 through September 30, 2013). The report follows the structure of the Strategic Plan, which describes the five core services (Executive, Science, Data, Communications, and Education and Training) provided by the NW CSC in support of the stated vision: Our Vision: To become nationally recognized as a best-practice model for the provision

  20. Double-gated Si NW FET sensors: Low-frequency noise and photoelectric properties

    Science.gov (United States)

    Gasparyan, F.; Khondkaryan, H.; Arakelyan, A.; Zadorozhnyi, I.; Pud, S.; Vitusevich, S.

    2016-08-01

    The transport, noise, and photosensitivity properties of an array of silicon nanowire (NW) p+-p-p+ field-effect transistors (FETs) are investigated. The peculiarities of photosensitivity and detectivity are analyzed over a wide spectrum range. The absorbance of p-Si NW shifts to the short wavelength region compared with bulk Si. The photocurrent and photosensitivity reach increased values in the UV range of the spectrum at 300 K. It is shown that sensitivity values can be tuned by the drain-source voltage and may reach record values of up to 2-4 A/W at a wavelength of 300 nm at room temperature. Low-frequency noise studies allow calculating the photodetectivity values, which increase with decreasing wavelength down to 300 nm. We show that the drain current of Si NW biochemical sensors substantially depends on pH value and the signal-to-noise ratio reaches the high value of 105. Increasing pH sensitivity with gate voltage is revealed for certain source-drain currents of pH-sensors based on Si NW FETs. The noise characteristic index decreases from 1.1 to 0.7 with the growth of the liquid gate voltage. Noise behavior is successfully explained in the framework of the correlated number-mobility unified fluctuation model. pH sensitivity increases as a result of the increase in liquid gate voltage, thus giving the opportunity to measure very low proton concentrations in the electrolyte medium at certain values of the liquid gate voltage.

  1. Solution-processed Ag-nanowire/ZnO-nanoparticle composite transparent electrode for flexible organic solar cells.

    Science.gov (United States)

    Wei, Bin; Pan, Saihu; Wang, Taohong; Tian, Zhenghao; Chen, Guo; Xu, Tao

    2016-12-16

    This paper demonstrates a hybrid transparent electrode composed of a solution-processed silver-nanowire (AgNW) film coated by zinc oxide nanoparticles (ZnO-NPs) acting as a modified buffer layer. The effect of the ZnO-NPs' coating ratio on the performances of indium tin oxide (ITO)-free organic solar cells (OSCs) has been systematically investigated. The optimized ITO-free OSCs achieved a power conversion efficiency (PCE) of 2.85%, while flexible OSCs using the AgNW/ZnO-NP composite transparent electrode grown on a polyethylene terephthalate (PET) substrate showed a PCE of 2.2%.

  2. Solution-processed Ag-nanowire/ZnO-nanoparticle composite transparent electrode for flexible organic solar cells

    Science.gov (United States)

    Wei, Bin; Pan, Saihu; Wang, Taohong; Tian, Zhenghao; Chen, Guo; Xu, Tao

    2016-12-01

    This paper demonstrates a hybrid transparent electrode composed of a solution-processed silver-nanowire (AgNW) film coated by zinc oxide nanoparticles (ZnO-NPs) acting as a modified buffer layer. The effect of the ZnO-NPs’ coating ratio on the performances of indium tin oxide (ITO)-free organic solar cells (OSCs) has been systematically investigated. The optimized ITO-free OSCs achieved a power conversion efficiency (PCE) of 2.85%, while flexible OSCs using the AgNW/ZnO-NP composite transparent electrode grown on a polyethylene terephthalate (PET) substrate showed a PCE of 2.2%.

  3. Roll-to-Roll Printed Silver Nanowire Semitransparent Electrodes for Fully Ambient Solution-Processed Tandem Polymer Solar Cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Andersen, Thomas Rieks; Bentzen, Janet Jonna

    2015-01-01

    Silver nanowires (AgNWs) and zinc oxide (ZnO) are deposited on flexible substrates using fast roll-to-roll (R2R) processing. The AgNW film on polyethylene terephthalate (PET) shows >80% uniform optical transmission in the range of 550-900 nm. This electrode is compared to the previously reported...... and currently widely produced indium-tin-oxide (ITO) replacement comprising polyethylene terephthalate (PET)|silver grid|poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)|ZnO known as Flextrode. The AgNW/ZnO electrode shows higher transmission than Flextrode above 490 nm in the electromagnetic...

  4. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells

    KAUST Repository

    Hardin, Brian E.

    2011-06-01

    Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.

  5. The Novel Semiconductor Nanowire Heterostructures

    Institute of Scientific and Technical Information of China (English)

    J.Q.Hu; Y.Bando; J.H.Zhan; D.Golberg

    2007-01-01

    1 Results If one-dimensional heterostructures with a well-defined compositional profile along the wire radial or axial direction can be realized within semiconductor nanowires, new nano-electronic devices,such as nano-waveguide and nano-capcipator, might be obtained. Here,we report the novel semiconducting nanowire heterostructures:(1) Si/ZnS side-to-side biaxial nanowires and ZnS/Si/ZnS sandwich-like triaxial nanowires[1],(2) Ga-Mg3N2 and Ga-ZnS metal-semiconductor nanowire heterojunctions[2-3]and (3) ...

  6. Nanowire mesh solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  7. Piezoresistive boron doped diamond nanowire

    Science.gov (United States)

    Sumant, Anirudha V.; Wang, Xinpeng

    2016-09-13

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  8. Piezoresistive boron doped diamond nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Sumant, Anirudha V.; Wang, Xinpeng

    2017-07-04

    A UNCD nanowire comprises a first end electrically coupled to a first contact pad which is disposed on a substrate. A second end is electrically coupled to a second contact pad also disposed on the substrate. The UNCD nanowire is doped with a dopant and disposed over the substrate. The UNCD nanowire is movable between a first configuration in which no force is exerted on the UNCD nanowire and a second configuration in which the UNCD nanowire bends about the first end and the second end in response to a force. The UNCD nanowire has a first resistance in the first configuration and a second resistance in the second configuration which is different from the first resistance. The UNCD nanowire is structured to have a gauge factor of at least about 70, for example, in the range of about 70 to about 1,800.

  9. Magnetoimpedance of Permalloy nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Getlawi, Saleh; Gao, Haibin; Koblischka, Michael; Hartmann, Uwe [Inst. of Experimental Physics, Saarland University, P.O. Box 151150, 66041 Saarbruecken (Germany)

    2011-07-01

    The magneto-impedance (MI) effect was studied extensively on amorphous wires, ribbons, and on multilayer thin films. This effect involves huge changes of the complex impedance of soft magnetic materials upon applying an external magnetic field. In this contribution we explore the MI effect on Permalloy nanowires. Nanowires of lengths of 40-60 mu and widths of 200-400 nm were prepared by electron beam lithography (EBL) and a lift-off process. Electrodes for the transport measurements and platinum contacts were fabricated by focused-ion-beam(FIB)-based methods. Magnetic force microscopy (MFM) was employed to observe the magnetic domain structures of the nanowires. For high frequency measurement, the sample was placed on a microwave transmission line consisting of two gold microstrip lines. MI measurements were performed in the range from 10 MHz to 3 GHz.

  10. Effective antireflection properties of porous silicon nanowires for photovoltaic applications

    KAUST Repository

    Najar, Adel

    2013-01-01

    Porous silicon nanowires (PSiNWs) have been prepared by metal-assisted chemical etching method on the n-Si substrate. The presence of nano-pores with pore size ranging between 10-50nm in SiNWs was confirmed by electron tomography (ET) in the transmission electron microscope (TEM). The PSiNWs give strong photoluminescence peak at red wavelength. Ultra-low reflectance of <5% span over wavelength 250 nm to 1050 nm has been measured. The finite-difference time-domain (FDTD) method has been employed to model the optical reflectance for both Si wafer and PSiNWs. Our calculation results are in agreement with the measured reflectance from nanowires length of 6 µm and 60% porosity. The low reflectance is attributed to the effective graded index of PSiNWs and enhancement of multiple optical scattering from the pores and nanowires. PSiNW structures with low surface reflectance can potentially serve as an antireflection layer for Si-based photovoltaic devices.

  11. Fabrication and optical simulation of vertically aligned silicon nanowires

    Science.gov (United States)

    Hossain, M. K.; Salhi, B.; Mukhaimer, A. W.; Al-Sulaiman, F. A.

    2016-10-01

    Silicon nanowires (Si-NWs) have been considered widely as a perfect light absorber with strong evidence of enhanced optical functionalities. Here we report finite-difference time-domain simulations for Si-NWs to elucidate the key factors that determine enhanced light absorption, energy flow behavior, electric field profile, and excitons generation rate distribution. To avoid further complexity, a single Si-NW of cylindrical shape was modeled on c-Si and optimized to elucidate the aforementioned characteristics. Light absorption and energy flow distribution confirmed that Si-NW facilitates to confine photon absorption of several orders of enhancement whereas the energy flow is also distributed along the wire itself. With reference to electric field and excitons generation distribution it was revealed that Si-NW possesses the sites of strongest field distributions compared to those of flat silicon wafer. To realize the potential of Si-NWs-based thin film solar cell, a simple process was adopted to acquire vertically aligned Si-NWs grown on c-Si wafer. Further topographic characterizations were conducted through scanning electron microscope and tunneling electron microscope-coupled energy-dispersive spectroscopy.

  12. Magnetic domain wall motion in notch patterned permalloy nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Chieh; Kuo, Cheng-Yi; Mishra, Amit K.; Das, Bipul; Wu, Jong-Ching, E-mail: phjcwu@cc.ncue.edu.tw

    2015-11-01

    We report a study of magnetization reversal process of notch-patterned permalloy (Py) nanowires (NWs) by using an in-situ magnetic force microscopy (MFM). Three neighboring straight NWs and an individual straight NW with discs connected to the wires ends are fabricated by standard electron beam lithography through a lift-off technique. MFM images are taken in the presence of an in-plane magnetic field applied along the wires length. As a result, the nucleation, pinning and depinning of domain walls (DWs) along the NW are observed. The artificial constraints (notch) in such symmetrical geometry of NWs indeed serve as pinning sites to pin the DWs. The nature of magnetization reversal, pinning field and depinning field for the DWs that are observed in these permalloy NWs, indicate the key roles of notch depth, the terminal connection structure of NW end and the inter-wire interaction among the NWs. The in-situ MFM measurements are examined with the micromagnetic simulations. Consequently, good agreements are obtained for the DW structures and the effect of DWs pining/depinning, however a dissimilarity in experimental and simulation observations for the direction of propagation of DWs in NWs needs further investigation.

  13. Microstructure evolution and development of annealed Ni/Au contacts to GaN nanowires.

    Science.gov (United States)

    Herrero, Andrew M; Blanchard, Paul T; Sanders, Aric; Brubaker, Matt D; Sanford, Norman A; Roshko, Alexana; Bertness, Kris A

    2012-09-14

    The development of Ni/Au contacts to Mg-doped GaN nanowires (NWs) is examined. Unlike Ni/Au contacts to planar GaN, current-voltage (I-V) measurements of Mg-doped nanowire devices frequently exhibit a strong degradation after annealing in N(2)/O(2). This degradation originates from the poor wetting behavior of Ni and Au on SiO(2) and the excessive void formation that occurs at the metal/NW and metal/oxide interfaces. The void formation can cause cracking and delamination of the metal film as well as reduce the contact area at the metal/NW interface, which increases the resistance. The morphology and composition of the annealed Ni/Au contacts on SiO(2) and the p-GaN films were investigated by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD) measurements. Adhesion experiments were performed in order to determine the degree of adhesion of the Ni/Au films to the SiO(2) as well as observe and analyze the morphology of the film's underside by SEM. Device degradation from annealing was prevented through the use of a specific adhesion layer of Ti/Al/Ni deposited prior to the nanowire dispersal and Ni/Au deposition. I-V measurements of NW devices fabricated using this adhesion layer showed a decrease in resistance after annealing, whereas all others showed an increase in resistance. Transmission electron microscopy (TEM) on a cross-section of a NW with Ni/Au contacts and a Ti/Al/Ni adhesion layer showed a lack of void formation at the contact/NW interface. Results of the XRD and TEM analysis of the NW contact structure using a Ti/Al/Ni adhesion layer suggests Al alloying of the Ni/Au contact increases the adhesion and stability of the metal film as well as prevents excessive void formation at the contact/NW interface.

  14. Electrodeposition of Cobalt Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sungbok; Hong, Kimin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-03-15

    We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of CoSO{sub 4} and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/cm{sup 2} and DAESA concentration was 1 mL/L.

  15. EDITORIAL: Nanowires for energy Nanowires for energy

    Science.gov (United States)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  16. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    Science.gov (United States)

    Aseev, P.; Gačević, Ž.; Torres-Pardo, A.; González-Calbet, J. M.; Calleja, E.

    2016-06-01

    Series of GaN nanowires (NW) with controlled diameters (160-500 nm) and heights (420-1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagation of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.

  17. Electrical properties of flexible multi-channel Si nanowire field-effect transistors depending on the number of Si nanowires.

    Science.gov (United States)

    Kim, Do Hoon; Lee, Su Jeong; Lee, Sang Hoon; Myoung, Jae-Min

    2016-05-25

    Flexible multi-channel Si nanowire (NW) field-effect transistors (FETs) were investigated to determine the effect of the number of Si NWs. The Langmuir-Blodgett method was applied for the formation of well-aligned Si NW monolayers, and an ion-gel with a high dielectric constant was used as a gate insulator in a top-gate TFT structure to secure flexibility. Like typical nanoelectronic devices, the drain current changed with the number of Si NWs. However, unlike previous reports, the mobility of the multi-channel Si NW FETs increased from 42.8 to 124.6 cm(2) V(-1) s(-1) as the number of Si NWs was increased from 1 to 58. To verify the feasibility of our approach, the electrical performance of the TFTs fabricated on a flexible polyimide (PI) substrate was analyzed in respect of the bending strain (0.08-1.51%) and bending cycle (up to 12 000 cycles). As the number of Si NWs was increased, the trade-off between electrical and mechanical properties during bending tests was confirmed, and the appropriate number of Si NWs was optimized for a flexible FET with excellent performance.

  18. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Aseev, P., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Gačević, Ž., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Calleja, E. [ISOM-ETSIT, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Torres-Pardo, A.; González-Calbet, J. M. [Departamento de Química Inorgánica, Facultad de Químicas, Universidad Complutense (UCM), CEI Moncloa, 28040 Madrid (Spain)

    2016-06-20

    Series of GaN nanowires (NW) with controlled diameters (160–500 nm) and heights (420–1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagation of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.

  19. Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors

    Science.gov (United States)

    Li, Fajun; Li, Ziyuan; Tan, Liying; Zhou, Yanping; Ma, Jing; Lysevych, Mykhaylo; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-01

    With the recent advances in nanowire (NW) growth and fabrication, there has been rapid development and application of GaAs NWs in optoelectronics. It is also of importance to study the radiation tolerance of optoelectronic nano-devices for atomic energy and space-based applications. Here, photoluminescence (PL) and time-resolved photoluminescence measurements were carried out on GaAs/AlGaAs core/shell NWs at room temperature before and after 1 MeV proton irradiation with fluences ranging from 1.0 × 1012–3.0 × 1013 cm‑2. It is found that the GaAs/AlGaAs core/shell NWs with smaller diameter show much less PL degradation compared with the ones with larger diameters. The increased radiation hardness is mainly attributed to the improvement of a room temperature dynamic-annealing mechanism near the surface of the NWs. We also found that the minority carrier lifetime is closely related to both the PL intensity and defect density induced by irradiation. Finally, GaAs/AlGaAs ensemble NW photodetectors operating in the near-infrared spectral regime have been demonstrated. The influence of proton irradiation on light and dark current characteristics also indicates that NW structures are a good potential candidate for radiation harsh-environment applications.

  20. Lithographically patterned nanowire electrodeposition

    Science.gov (United States)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  1. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Chehata, Nadia, E-mail: nadiachehata2@gmail.com [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ltaief, Adnen [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ilahi, Bouraoui [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Salem, Bassem [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouazizi, Abdelaziz [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Maaref, Hassen [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Baron, Thierry [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); and others

    2014-12-15

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J{sub sc} value is about 0.39 µA/cm{sup 2}. - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32.

  2. An Sb-doped p-type ZnO nanowire based random laser diode.

    Science.gov (United States)

    Bashar, Sunayna B; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-12

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  3. Reduction of nanowire diameter beyond lithography limits by controlled catalyst dewetting

    Science.gov (United States)

    Calahorra, Yonatan; Kerlich, Alexander; Amram, Dor; Gavrilov, Arkady; Cohen, Shimon; Ritter, Dan

    2016-04-01

    Catalyst assisted vapour-liquid-solid is the most common method to realize bottom-up nanowire growth; establishing a parallel process for obtaining nanoscale catalysts at pre-defined locations is paramount for further advancement towards commercial nanowire applications. Herein, the effect of a selective area mask on the dewetting of metallic nanowire catalysts, deposited within lithography-defined mask pinholes, is reported. It was found that thin disc-like catalysts, with diameters of 120-450 nm, were transformed through dewetting into hemisphere-like catalysts, having diameters 2-3 fold smaller; the process was optimized to about 95% yield in preventing catalyst splitting, as would otherwise be expected due to their thickness-to-diameter ratio, which was as low as 1/60. The catalysts subsequently facilitated InP and InAs nanowire growth. We suggest that the mask edges prevent surface migration mediated spreading of the dewetted metal, and therefore induce its agglomeration into a single particle. This result presents a general strategy to diminish lithography-set dimensions for NW growth, and may answer a fundamental challenge faced by bottom-up nanowire technology.

  4. Diffusion-driven growth of nanowires by low-temperature molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Rueda-Fonseca, P.; Orrù, M. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Bellet-Amalric, E.; Robin, E. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC, F-38000 Grenoble (France); Den Hertog, M.; Genuist, Y.; André, R.; Tatarenko, S.; Cibert, J., E-mail: joel.cibert@neel.cnrs.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut NEEL, F-38000 Grenoble (France)

    2016-04-28

    With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires (NWs) by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nanowires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.

  5. Surface optical phonons in GaAs nanowires grown by Ga-assisted chemical beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    García Núñez, C., E-mail: carlos.garcia@uam.es; Braña, A. F.; Pau, J. L.; Ghita, D.; García, B. J. [Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Shen, G.; Wilbert, D. S.; Kim, S. M.; Kung, P. [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States)

    2014-01-21

    Surface optical (SO) phonons were studied by Raman spectroscopy in GaAs nanowires (NWs) grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates. NW diameters and lengths ranging between 40 and 65 nm and between 0.3 and 1.3 μm, respectively, were observed under different growth conditions. The analysis of the Raman peak shape associated to either longitudinal or surface optical modes gave important information about the crystal quality of grown NWs. Phonon confinement model was used to calculate the density of defects as a function of the NW diameter resulting in values between 0.02 and 0.03 defects/nm, indicating the high uniformity obtained on NWs cross section size during growth. SO mode shows frequency downshifting as NW diameter decreases, this shift being sensitive to NW sidewall oxidation. The wavevector necessary to activate SO phonon was used to estimate the NW facet roughness responsible for SO shift.

  6. Low temperature solid-state wetting and formation of nanowelds in silver nanowires

    Science.gov (United States)

    Radmilović, Vuk V.; Göbelt, Manuela; Ophus, Colin; Christiansen, Silke; Spiecker, Erdmann; Radmilović, Velimir R.

    2017-09-01

    This article focuses on the microscopic mechanism of thermally induced nanoweld formation between silver nanowires (AgNWs) which is a key process for improving electrical conductivity in NW networks employed for transparent electrodes. Focused ion beam sectioning and transmission electron microscopy were applied in order to elucidate the atomic structure of a welded NW including measurement of the wetting contact angle and characterization of defect structure with atomic accuracy, which provides fundamental information on the welding mechanism. Crystal lattice strain, obtained by direct evaluation of atomic column displacements in high resolution scanning transmission electron microscopy images, was shown to be non-uniform among the five twin segments of the AgNW pentagonal structure. It was found that the pentagonal cross-sectional morphology of AgNWs has a dominant effect on the formation of nanowelds by controlling initial wetting as well as diffusion of Ag atoms between the NWs. Due to complete solid-state wetting, at an angle of ∼4.8°, the welding process starts with homoepitaxial nucleation of an initial Ag layer on (100) surface facets, considered to have an infinitely large radius of curvature. However, the strong driving force for this process due to the Gibbs–Thomson effect, requires the NW contact to occur through the corner of the pentagonal cross-section of the second NW providing a small radius of curvature. After the initial layer is formed, the welded zone continues to grow and extends out epitaxially to the neighboring twin segments.

  7. Observation of diameter dependent carrier distribution in nanowire-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, A; Hantschel, T; Eyben, P; Verhulst, A S; Rooyackers, R; Vandooren, A; Mody, J; Nazir, A; Leonelli, D; Vandervorst, W, E-mail: Andreas.Schulze@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2011-05-06

    The successful implementation of nanowire (NW) based field-effect transistors (FET) critically depends on quantitative information about the carrier distribution inside such devices. Therefore, we have developed a method based on high-vacuum scanning spreading resistance microscopy (HV-SSRM) which allows two-dimensional (2D) quantitative carrier profiling of fully integrated silicon NW-based tunnel-FETs (TFETs) with 2 nm spatial resolution. The key elements of our characterization procedure are optimized NW cleaving and polishing steps, the use of in-house fabricated ultra-sharp diamond tips, measurements in high vacuum and a dedicated quantification procedure accounting for the Schottky-like tip-sample contact affected by surface states. In the case of the implanted TFET source regions we find a strong NW diameter dependence of conformality, junction abruptness and gate overlap, quantitatively in agreement with process simulations. In contrast, the arsenic doped drain regions reveal an unexpected NW diameter dependent dopant deactivation. The observed lower drain doping for smaller diameters is reflected in the device characteristics by lower TFET off-currents, as measured experimentally and confirmed by device simulations.

  8. Full thermoelectric characterization of InAs nanowires using MEMS heater/sensors.

    Science.gov (United States)

    Karg, S F; Troncale, V; Drechsler, U; Mensch, P; Das Kanungo, P; Schmid, H; Schmidt, V; Gignac, L; Riel, H; Gotsmann, B

    2014-08-01

    Precise measurements of a complete set of thermoelectric parameters on a single indium-arsenide nanowire (NW) have been performed using highly sensitive, micro-fabricated sensing devices based on the heater/sensor principle. The devices were fabricated as micro electro-mechanical systems consisting of silicon nitride membranes structured with resistive gold heaters/sensors. Preparation, operation and characterization of the devices are described in detail. Thermal decoupling of the heater/sensor platforms has been optimized reaching thermal conductances as low as 20 nW K(-1) with a measurements sensitivity below 20 nW K(-1). The InAs NWs were characterized in terms of thermal conductance, four-probe electrical conductance and thermopower (Seebeck coefficient), all measured on a single NW. The temperature dependence of the parameters determining the thermoelectric figure-of-merit of an InAs NW was acquired in the range 200-350 K featuring a minor decrease of the thermal conductivity from 2.7 W (m K)(-1) to 2.3 W (m K)(-1).

  9. Silicon nanowire heterostructures for advanced energy and environmental applications: a review.

    Science.gov (United States)

    Ghosh, Ramesh; Giri, P K

    2017-01-06

    Semiconductor nanowires (NWs), in particular Si NWs, have attracted much attention in the last decade for their unique electronic properties and potential applications in several emerging areas. With the introduction of heterostructures (HSs) on NWs, new functionalities are obtained and the device performance is improved significantly in many cases. Due to the easy fabrication techniques, excellent optoelectronic properties and compatibility of forming HSs with different inorganic/organic materials, Si NW HSs have been utilized in various configurations and device architectures. Herein, we review the recent developments in Si NW HS-based devices including the fabrication techniques, properties (e.g., light emitting, antireflective, photocatalytic, electrical, photovoltaic, sensing etc) and related emerging applications in energy generation, conversion, storage, and environmental cleaning and monitoring. In particular, recent advances in Si NW HS-based solar photovoltaics, light-emitting devices, thermoelectrics, Li-ion batteries, supercapacitors, hydrogen generation, artificial photosynthesis, photocatalytic degradation of organic dyes in water treatment, chemical and gas sensors, biomolecular sensors for microbial monitoring etc have been addressed in detail. The problems and challenges in utilizing Si NW HSs in device applications and the key parameters to improve the device performance are pointed out. The recent trends in the commercial applications of Si NW HS-based devices and future outlook of the field are presented at the end.

  10. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    Science.gov (United States)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-07

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  11. Serotype-specific identification of Dengue virus by silicon nanowire array biosensor.

    Science.gov (United States)

    Huang, Min Joon; Xie, Hui; Wan, Qiangqiang; Zhang, Li; Ning, Yong; Zhang, Guo-Jun

    2013-06-01

    In this work, we demonstrated a silicon nanowire (SiNW) biosensing platform capable of simultaneously identifying different Dengue serotypes on a single sensing chip. Four peptide nucleic acids (PNAs), specific to each Dengue serotypes (DENV-1 to DENV-4), were spotted on different areas of the SiNW array surface, and the covalently immobilized PNA probes were then interacted with different Dengue serotypes target to establish the specificity of detection. Detection scheme is based on the changes in resistances due to accumulation of negative charges contributed by the hybridized DNA target. The results show that resistance changes only occur in regions where the Dengue target hybridizes with its complementary probe. What is more, a mixture of two different Dengue serotypes obtained from a one-step duplex RT-PCR was applied to the multiplex SiNW surface to validate SiNW capability to identify multiple Dengue serotypes on a single sensing platform. Through this study, we have established the multiplex SiNW biosensor as a promising device to detect multiple Dengue infections with high specificity.

  12. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    Science.gov (United States)

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used.

  13. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.

    Science.gov (United States)

    Duan, Xuexin; Rajan, Nitin K; Izadi, Mohammad Hadi; Reed, Mark A

    2013-11-01

    Affinity biosensors use biorecognition elements and transducers to convert a biochemical event into a recordable signal. They provides the molecule binding information, which includes the dynamics of biomolecular association and dissociation, and the equilibrium association constant. Complementary metal oxide semiconductor-compatible silicon (Si) nanowires configured as a field-effect transistor (NW FET) have shown significant advantages for real-time, label-free and highly sensitive detection of a wide range of biomolecules. Most research has focused on reducing the detection limit of Si-NW FETs but has provided less information about the real binding parameters of the biomolecular interactions. Recently, Si-NW FETs have been demonstrated as affinity biosensors to quantify biomolecular binding affinities and kinetics. They open new applications for NW FETs in the nanomedicine field and will bring such sensor technology a step closer to commercial point-of-care applications. This article summarizes the recent advances in bioaffinity measurement using Si-NW FETs, with an emphasis on the different approaches used to address the issues of sensor calibration, regeneration, binding kinetic measurements, limit of detection, sensor surface modification, biomolecule charge screening, reference electrode integration and nonspecific molecular binding.

  14. Graphene quantum dots modified silicon nanowire array for ultrasensitive detection in the gas phase

    Science.gov (United States)

    Li, T. Y.; Duan, C. Y.; Zhu, Y. X.; Chen, Y. F.; Wang, Y.

    2017-03-01

    Si nanostructure-based gas detectors have attracted much attention due to their huge surface areas, relatively high carrier mobility, maneuverability for surface functionalization and compatibility to modern electronic industry. However, the unstable surface of Si, especially for the nanostructures in a corrosive atmosphere, hinders their sensitivity and reproducibility when used for detection in the gas phase. In this study, we proposed a novel strategy to fabricate a Si-based gas detector by using the vertically aligned Si nanowire (SiNW) array as a skeleton and platform, and decorated chemically inert graphene quantum dots (GQDs) to protect the SiNWs from oxidation and promote the carriers’ interaction with the analytes. The radial core–shell structures of the GQDs/SiNW array were then assembled into a resistor-based gas detection system and evaluated by using nitrogen dioxide (NO2) as the model analyte. Compared to the bare SiNW array, our novel sensor exhibited ultrahigh sensitivity for detecting trace amounts of NO2 with the concentration as low as 10 ppm in room temperature and an immensely reduced recovery time, which is of significant importance for their practical application. Meanwhile, strikingly, reproducibility and stability could also be achieved by showing no sensitivity decline after storing the GQDs/SiNW array in air for two weeks. Our results demonstrate that protecting the surface of the SiNW array with chemically inert GQDs is a feasible strategy to realize ultrasensitive detection in the gas phase.

  15. Silicon nanowire heterostructures for advanced energy and environmental applications: a review

    Science.gov (United States)

    Ghosh, Ramesh; Giri, P. K.

    2017-01-01

    Semiconductor nanowires (NWs), in particular Si NWs, have attracted much attention in the last decade for their unique electronic properties and potential applications in several emerging areas. With the introduction of heterostructures (HSs) on NWs, new functionalities are obtained and the device performance is improved significantly in many cases. Due to the easy fabrication techniques, excellent optoelectronic properties and compatibility of forming HSs with different inorganic/organic materials, Si NW HSs have been utilized in various configurations and device architectures. Herein, we review the recent developments in Si NW HS-based devices including the fabrication techniques, properties (e.g., light emitting, antireflective, photocatalytic, electrical, photovoltaic, sensing etc) and related emerging applications in energy generation, conversion, storage, and environmental cleaning and monitoring. In particular, recent advances in Si NW HS-based solar photovoltaics, light-emitting devices, thermoelectrics, Li-ion batteries, supercapacitors, hydrogen generation, artificial photosynthesis, photocatalytic degradation of organic dyes in water treatment, chemical and gas sensors, biomolecular sensors for microbial monitoring etc have been addressed in detail. The problems and challenges in utilizing Si NW HSs in device applications and the key parameters to improve the device performance are pointed out. The recent trends in the commercial applications of Si NW HS-based devices and future outlook of the field are presented at the end.

  16. Tunable magnetocrystalline easy axis in cobalt nanowire arrays by zinc additive

    Energy Technology Data Exchange (ETDEWEB)

    Manouchehri, A. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Ramazani, A., E-mail: rmzn@kashanu.ac.ir [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Kashi, M. Almasi [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Department of Physics, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of); Montazer, A.H. [Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 87317-51167 (Iran, Islamic Republic of)

    2016-05-15

    Graphical abstract: - Highlights: • Pure Co and Co-rich CoZn NW arrays were fabricated into AAO templates. • Effect of Zn additive on magnetic properties and crystal structure was investigated. • Coercivity and squareness of Co NWs increased up to 2150 Oe and 0.93 by Zn additive. • Incorporation of Zn rotated Co c-axis from perpendicular to parallel to NW axis. - Abstract: A new approach to tuning the crystalline characteristics and magnetic properties of cobalt nanowire (NW) arrays embedded in AAO templates is reported using zinc additive. This is realized by adding low concentrations of Zn when pulse-electrodepositing cobalt NWs while also increasing the solution pH from 3 to 5. Using hysteresis loop measurements with a magnetic field applied parallel to the NW axis, coercivity and squareness of pure cobalt NWs increased from 890 Oe and 0.45 to 2150 Oe and 0.93 in Co{sub 97}Zn{sub 3} NWs, respectively, using a Zn concentration of 0.01 M at pH = 4. XRD patterns obtained from the cobalt-rich CoZn NWs revealed that the crystalline texture of cobalt changes from [1 0 0] direction to [1 0 1] and [0 0 2] at pH = 3 and 4, respectively. For the latter, the magnetocrystalline easy axis of cobalt rotates from nearly perpendicular to parallel to the NW axis, induced by the incorporation of zinc into the hcp structure of cobalt.

  17. Double heterojunction nanowire photocatalysts for hydrogen generation

    Science.gov (United States)

    Tongying, P.; Vietmeyer, F.; Aleksiuk, D.; Ferraudi, G. J.; Krylova, G.; Kuno, M.

    2014-03-01

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ~434.29 +/- 27.40 μmol h-1 g-1 under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core

  18. Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel.

    Science.gov (United States)

    Xie, Xiaobing; Zeng, Xiangbo; Yang, Ping; Li, Hao; Li, Jingyan; Zhang, Xiaodong; Wang, Qiming

    2012-11-12

    Radial n-i-p structure silicon nanowire (SiNW)-based microcrystalline silicon thin-film solar cells on stainless steel foil was fabricated by plasma-enhanced chemical vapor deposition. The SiNW solar cell displays very low optical reflectance (approximately 15% on average) over a broad range of wavelengths (400 to 1,100 nm). The initial SiNW-based microcrystalline (μc-Si:H) thin-film solar cell has an open-circuit voltage of 0.37 V, short-circuit current density of 13.36 mA/cm2, fill factor of 0.3, and conversion efficiency of 1.48%. After acid treatment, the performance of the modified SiNW-based μc-Si:H thin-film solar cell has been improved remarkably with an open-circuit voltage of 0.48 V, short-circuit current density of 13.42 mA/cm2, fill factor of 0.35, and conversion efficiency of 2.25%. The external quantum efficiency measurements show that the external quantum efficiency response of SiNW solar cells is improved greatly in the wavelength range of 630 to 900 nm compared to the corresponding planar film solar cells.

  19. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes.

    Science.gov (United States)

    Yin, Zhenxing; Lee, Chaedong; Cho, Sanghun; Yoo, Jeeyoung; Piao, Yuanzhe; Kim, Youn Sang

    2014-12-29

    Oxidation-resistant copper nanowires (Cu NWs) are synthesized by a polyol reduction method. These Cu NWs show excellent oxidation resistance, good dispersibility, and have a low sintering temperature. A Cu NW-based flexible, foldable, and free-standing electrode is fabricated by filtration and a sintering process. The electrode also exhibits high electrical conductivity even bending, folding, and free-standing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids.

    Science.gov (United States)

    He, Lining; Lai, Donny; Wang, Hao; Jiang, Changyun; Rusli

    2012-06-11

    An efficient Si/PEDOT:PSS hybrid solar cell using synergistic surface texturing of Si nanowires (SiNWs) on pyramids is demonstrated. A power conversion efficiency (PCE) of 9.9% is achieved from the cells using the SiNW/pyramid binary structure, which is much higher than similar cells based on planar Si, pyramid-textured Si, and SiNWs. The PCE is the highest reported to-date for hybrid cells based on Si nanostructures and PEDOT.

  1. Investigation of III-V Nanowires by Plan-View Transmission Electron Microscopy: InN Case Study

    OpenAIRE

    Luna, E; Grandal, J.; Gallardo, E; Calleja, J.M.; Sánchez-García, M A; Calleja, E.; Trampert, A

    2013-01-01

    We discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initia...

  2. Structural and electronic properties of the adsorbed and defected Cu nanowires: A density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Ying-Ni [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Zhang, Jian-Min, E-mail: jianm_zhang@yahoo.com [College of Physics and Information Technology, Shaanxi Normal University, Xian 710062, Shaanxi (China); Fan, Xiao-Xi [Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830011, Xinjiang (China); Xu, Ke-Wei [College of Physics and Mechanical and Electronic Engineering, Xian University of Arts and Science, Xian 710065, Shaanxi (China)

    2014-12-01

    Using first-principles calculations based on density-functional theory, we systematically investigate the influence of adsorbates (CO molecule and O atom) and defects (adsorb one extra Cu atom and monovacancy) on the structural and electronic properties of Cu{sub 5-1}NW and Cu{sub 6-1}NW. For both nanowires, CO molecule prefers to adsorb on the top site, while O atom prefers to adsorb on the center site. The hybridization between the CO and Cu states is dominated by the donation–backdonation process, which leads to the formation of bonding/antibonding pairs, 5σ{sub b}/5σ{sub a} and 2π{sub b}{sup ⁎}/2π{sub a}{sup ⁎}. The larger adsorption energies, larger charge transfers to O adatom and larger decrease in quantum conductance 3G{sub 0} for an O atom adsorbed on the Cu{sub 5-1}NW and Cu{sub 6-1}NW show both Cu{sub 5-1}NW and Cu{sub 6-1}NW can be used as an O sensor. Furthermore, the decrease in quantum conductance 1G{sub 0} for a CO molecule adsorbed on the Cu{sub 6-1}NW also shows the Cu{sub 6-1}NW can be used to detect CO molecule. So we expect these results may have implications for CuNW based chemical sensing. High adsorption energy of one extra Cu atom and relatively low formation energy of a monovacancy suggest that these two types of defects are likely to occur in the fabrication of CuNWs. One extra Cu atom does not decrease the quantum conductance, while a Cu monovacancy leads to a drop of the quantum conductance.

  3. Nanowire Photonic Systems

    Science.gov (United States)

    2009-12-22

    analogy with the etching technique used to delineate the axial p-i-n diode regions, an SEM image of the cross-section of a radial p-i-n Si-nanowire...on Adaptive Nanostructures and Nanodevices (CRANN), Dublin, Ireland Plenary Address: “The Opportunities & Challenges Facing Nanotechnology” 7

  4. Ion/Ioff ratio enhancement and scalability of gate-all-around nanowire negative-capacitance FET with ferroelectric HfO2

    Science.gov (United States)

    Jang, Kyungmin; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2017-10-01

    We have investigated the energy efficiency and scalability of ferroelectric HfO2 (FE:HfO2)-based negative-capacitance field-effect-transistor (NCFET) with gate-all-around (GAA) nanowire (NW) channel structure. Analytic simulation is conducted to characterize NW-NCFET by varying NW diameter and/or thickness of gate insulator as device structural parameters. Due to the negative-capacitance effect and GAA NW channel structure, NW-NCFET is found to have 5× higher Ion/Ioff ratio than classical NW-MOSFET and 2× higher than double-gate (DG) NCFET, which results in wider design window for high Ion/Ioff ratio. To analyze these obtained results from the viewpoint of the device scalability, we have considered constraints regarding very limited device structural spaces to fit by the gate insulator and NW channel for aggresively scaled gate length (Lg) and/or very tight NW pitch. NW-NCFET still has design point with very thinned gate insulator and/or narrowed NW. Therefore, FE:HfO2-based NW-NCFET is applicable to the aggressively scaled technology node of sub-10 nm Lg and to the very tight NW integration of sub-30 nm NW pitch for beyond 7 nm technology. From 2011 to 2014, he engaged in developing high-speed optical transceiver module as an alternative military service in Republic of Korea. His research interest includes the development of steep slope MOSFETs for high energy-efficient operation and ferroelectric HfO2-based semiconductor devices, and fabrication of nanostructured devices. He joined the IBM T.J. Watson Research Center, Yorktown Heights, NY, in 2010, where he worked on advanced CMOS technologies such as FinFET, nanowire FET, SiGe channel and III-V channel. He was also engaged in launching 14 nm SOI FinFET and RMG technology development. Since 2014, he has been an Associate Professor in Institute of Industrial Science, University of Tokyo, Tokyo, Japan, where he has been working on ultralow power transistor and memory technology. Dr. Kobayashi is a member of IEEE

  5. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection.

    Science.gov (United States)

    Jiang, Chengming; Tang, Chaolong; Song, Jinhui

    2015-02-11

    A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution.

  6. Controllable hydrothermal synthesis of ZnO nanowires arrays on Al-doped ZnO seed layer and patterning of ZnO nanowires arrays via surface modification of substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Que Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Jia Qiaoying [Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Ye Xiangdong; Ding Yucheng [State Key Laboratory of Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2011-09-15

    ZnO nanowire (NW) arrays are assembled on the Al-doped ZnO (AZO) seed layer by a hydrothermal process. Effects of the temperature and growth time of the hydrothermal process on morphological and photoluminescence properties of the as-assembled ZnO NW arrays are characterized and studied. Results indicate that the length and diameter of the ZnO NWs increase with a lengthening of the growth time at 80 deg. C and the hydrothermal temperature has a significant effect on the growth rate and the photoluminescence properties of the ZnO NW arrays. The patterned AZO seed layer is fabricated on a silicon substrate by combining a sol-gel process with an electron-beam lithography process, as well as a surface fluorination technique, and then the ZnO NW arrays are selectively grown on those patterned regions of the AZO seed layer by the hydrothermal process. Room-temperature photoluminescence spectra of the patterned ZnO NW arrays shows that only a strong UV emission at about 380 nm is observed, which implies that few crystal defects exist inside the as-grown ZnO NW arrays.

  7. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials.

    Science.gov (United States)

    Wang, Baoyu; Zhang, Min; Li, Weizhen; Wang, Linlin; Zheng, Jing; Gan, Wenjun; Xu, Jingli

    2015-05-07

    In this work, we report a large scale synthetic procedure that allows attachment of magnetite nanoparticles onto Ag NWs in situ, which was conducted in a triethylene glycol (TREG) solution with iron acetylacetonate and Ag NWs as starting materials. The as-prepared Ag NW/Fe3O4 NP composites are well characterized by SEM, TEM, XRD, XPS, FT-IR, and VSM techniques. It was found that the mass ratio of iron acetylacetonate to Ag NWs plays a crucial role in controlling the amount of magnetite nanoparticles decorated on the Ag NWs. The resulting Ag NW/Fe3O4 NP composites exhibit superparamagnetic properties at room temperature, and can be well dispersed in aqueous and organic solutions, which is greatly beneficial for their application and functionality. Thus, the as-prepared magnetic silver nanowires show good catalytic activity, using the catalytic reduction of methylene blue (MB) as a model reaction. Furthermore, the Ag NW/Fe3O4 NP composites can be functionalized with polydopamine (Pdop), resorcinol-formaldehyde resin (PFR), and SiO2, respectively, in aqueous/ethanol solution. Meanwhile they can also be coated with polyphosphazene (PZS) in organic solution, resulting in a unique nanocable with well-defined core shell structures. Besides, taking Ag NW/Fe3O4@SiO2 as an example, a hollow magnetic silica nanotube can be obtained with the use of Ag NWs as physical templates and a solution of ammonium and H2O2. These can greatly improve the application of the Ag NW/Fe3O4 NP composites. The as-synthesized above nanocomposites have high potential for applications in the fields of polymers, wastewater treatment, sensors, and biomaterials.

  8. Finite-size scaling in silver nanowire films: design considerations for practical devices

    Science.gov (United States)

    Large, Matthew J.; Cann, Maria; Ogilvie, Sean P.; King, Alice A. K.; Jurewicz, Izabela; Dalton, Alan B.

    2016-07-01

    We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels.We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of

  9. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G

    Science.gov (United States)

    Zhang, Chao; Zhang, Jing; Su, Yanjie; Xu, Minghan; Yang, Zhi; Zhang, Yafei

    2014-02-01

    We have demonstrated a facile and low-cost approach to synthesize ZnO nanowire (NW)/reduced graphene oxide (RGO) nanocomposites, in which ZnO NWs and graphene oxide (GO) were produced in large scale separately and then hybridized into ZnO NW/RGO nanocomposites by mechanical mixing and low-temperature thermal reduction. Rhodamine 6G (Rh6G) was used as a model dye to evaluate the photocatalytic properties of ZnO NW/RGO nanocomposites. The obtained nanocomposites show significantly enhanced photocatalytic performance, which took only 10 min to decompose over 98% Rh6G. Finally the mechanism of the great enhancement about photocatalytic activity of ZnO NW/RGO nanocomposites is studied. It is mainly attributed to that RGO nanosheets can transfer the electrons of ZnO NWs excited by ultraviolet (UV) irradiation, increase electron migration efficiency, and then longer the lifetime of the holes in ZnO NWs. The high charge separation efficiency of photo-generated electron-hole pairs directly leads to the lower recombination rate of ZnO NW/RGO nanocomposites, makes more effective electrons and holes to participate the radical reactions with Rh6G, thus significantly improving the photocatalytic properties. The high degradation efficiency makes the ZnO NW/RGO nanocomposites promising candidates in the application of environmental pollutant and wastewater treatment.

  10. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    Science.gov (United States)

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  11. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method

    Science.gov (United States)

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C.

    2016-04-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  12. Growth mechanism and photoluminescence of the SnO2 nanotwists on thin film and the SnO2 short nanowires on nanorods

    Institute of Scientific and Technical Information of China (English)

    Wang Bing; Xu Ping

    2009-01-01

    SnO2 nanotwists on thin film and SnO2 short nanowires on nanorods have been grown on single silicon substrates by using Au-Ag alloying catalyst assisted carbothermal evaporation of SnO2 and active carbon powders. The morphology and the structure of the prepared nanostructures are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electronic diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD), Raman and photoluminescence (PL) spectra analysis. The new peaks at 356, 450, and 489 nm in the measured PL spectra of two kinds of SnO2 nanostructures are observed, implying that more luminescence centres exist in these SnO2 nanostructures due to nanocrystals and defects. The growth mechanism of these nanostructures belongs to the vapour-liquid-solid (VLS) mechanism.

  13. Electric Conductivity of Phosphorus Nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing-Xiang; LI Hui; ZHANG Xue-Qing; LIEW Kim-Meow

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them,the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I - V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures.

  14. SnCo nanowire array as negative electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Germano; Inguanta, Rosalinda; Piazza, Salvatore; Sunseri, Carmelo [Universita degli Studi di Palermo, Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Viale delle Scienze Ed. 6, 90128 Palermo (Italy); Damen, Libero; Arbizzani, Catia; Mastragostino, Marina [Universita degli Studi di Bologna, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, Via San Donato 15, 40127 Bologna (Italy)

    2011-02-01

    Amorphous SnCo alloy nanowires (NWs) grown inside the channels of polycarbonate membranes by potentiostatic codeposition of the two metals (SnCo-PM) were tested vs. Li by repeated galvanostatic cycles in ethylene carbonate-dimethylcarbonate - LiPF{sub 6} for use as negative electrode in lithium ion batteries. These SnCo electrodes delivered an almost constant capacity value, near to the theoretical for an atomic ratio Li/Sn of 4.4 over more than 35 lithiation-delithiation cycles at 1 C. SEM images of fresh and cycled electrodes showed that nanowires remain partially intact after repeated lithiation-delithiation cycles; indeed, several wires expanded and became porous. Results of amorphous SnCo nanowires grown inside anodic alumina membranes (SnCo-AM) are also reported. The comparison of the two types of NW electrodes demonstrates that the morphology of the SnCo-PM is more suitable than that of the SnCo-AM for electrode stability over cycling. Optimization of NW technology should thus be a promising route to enhancing the mechanical strength and durability of tin-based electrodes. (author)

  15. Metal-Organic Polyhedra-Coated Si Nanowires for the Sensitive Detection of Trace Explosives.

    Science.gov (United States)

    Cao, Anping; Zhu, Wei; Shang, Jin; Klootwijk, Johan H; Sudhölter, Ernst J R; Huskens, Jurriaan; de Smet, Louis C P M

    2017-01-11

    Surface-modified silicon nanowire-based field-effect transistors (SiNW-FETs) have proven to be a promising platform for molecular recognition in miniature sensors. In this work, we present a novel nanoFET device for the sensitive and selective detection of explosives based on affinity layers of metal-organic polyhedra (MOPs). The judicious selection of the geometric and electronic characteristics of the assembly units (organic ligands and unsaturated metal site) embedded within the MOP cage allowed for the formation of multiple charge-transfer (CT) interactions to facilitate the selective explosive inclusion. Meanwhile, the host-stabilized CT complex inside the cage acted as an effective molecular gating element to strongly modulate the electrical conductance of the silicon nanowires. By grafting the MOP cages onto a SiNW-FET device, the resulting sensor showed a good electrical sensing capability to various explosives, especially 2,4,6-trinitrotoluene (TNT), with a detection limit below the nanomolar level. Importantly, coupling MOPs-which have tunable structures and properties-to SiNW-based devices may open up new avenues for a wide range of sensing applications, addressing various target analytes.

  16. Role of Contact and Contact Mo dification on Photo-resp onse in a Charge Transfer Complex Single Nanowire Device

    Institute of Scientific and Technical Information of China (English)

    Rabaya Basori∗; A. K. Raychaudhuri

    2014-01-01

    We investigated the feasibility of obtaining large photoresponse in metal-semiconductor-metal (MSM) type single nanowire device where one contact can be blocking type. We showed that suitable modifi-cation of the blocking contact by deposition of a capping metal using focused electron beam (FEB) can lead to considerable enhancement of the photoresponse. The work was done in a single Cu:TCNQ nanowire device fabricated by direct growth of nanowires (NW) from pre-patterned Cu electrode which makes the contact ohmic with the other contact made from Au. Analysis of the data shows that the large photoresponse of the devices arises predominantly due to reduction of the barriers at the Au/NW blocking contact on illumination. This is caused by the diffusion of the photo generated carriers from the nanowires to the contact region. When the barrier height is further reduced by treating the contact with FEB deposited Pt, this results in a large enhancement in the device photoresponse.

  17. Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.

    Science.gov (United States)

    Zhang, Yunyan; Aagesen, Martin; Holm, Jeppe V; Jørgensen, Henrik I; Wu, Jiang; Liu, Huiyun

    2013-08-14

    We realize the growth of self-catalyzed GaAsP nanowires (NWs) on silicon (111) substrates using solid-source molecular beam epitaxy. By optimizing the V/III and P/As flux ratios, as well as the Ga flux, high-crystal-quality GaAsP NWs have been demonstrated with almost pure zinc-blende phase. Comparing the growth of GaAsP NWs with that of the conventional GaAs NWs indicates that the incorporation of P has significant effects on catalyst nucleation energy, and hence the nanowire morphology and crystal quality. In addition, the incorporation ratio of P/As between vapor-liquid-solid NW growth and the vapor-solid thin film growth has been compared, and the difference between these two growth modes is explained through growth kinetics. The vapor-solid epitaxial growth of radial GaAsP shell on core GaAsP NWs is further demonstrated with room-temperature emission at ~710 nm. These results give valuable new information into the NW nucleation mechanisms and open up new perspectives for integrating III-V nanowire photovoltaics and visible light emitters on a silicon platform by using self-catalyzed GaAsP core-shell nanowires.

  18. Study of magnetoelastic and magnetocrystalline anisotropies in Co{sub x}Ni{sub 1−x} nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Moskaltsova, Anastasiia, E-mail: amoskaltsova@inesc-mn.pt [National Technical University Kharkiv Polytechnic Institute, 21, Frunze Str., 61002 Kharkiv (Ukraine); INESC-MN, Rua Alves Redol, 9-1, 1000-029 Lisbon (Portugal); Proenca, Mariana P. [IFIMUP and IN Institute of Nanoscience and Nanotechnology and Dep. Física e Astronomia, Univ. Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Nedukh, Sergey V. [O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Proskura str., 61085 Kharkov (Ukraine); Sousa, Célia T. [IFIMUP and IN Institute of Nanoscience and Nanotechnology and Dep. Física e Astronomia, Univ. Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Vakula, Arthur [O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Proskura str., 61085 Kharkov (Ukraine); Kakazei, Gleb N. [IFIMUP and IN Institute of Nanoscience and Nanotechnology and Dep. Física e Astronomia, Univ. Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Institute of Magnetism National Academy of Sciences of Ukraine, 36b Vernadskogo Blvd., 03142 Kiev (Ukraine); Tarapov, Sergey I. [O. Ya. Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine, 12, Proskura str., 61085 Kharkov (Ukraine); Araujo, Joao P. [IFIMUP and IN Institute of Nanoscience and Nanotechnology and Dep. Física e Astronomia, Univ. Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2015-01-15

    Highly ordered Co{sub x}Ni{sub 1−x} nanowire (NW) arrays were electrodeposited inside nanoporous anodic aluminum oxide membranes. The control of the applied potential during the electrodeposition process allowed us to easily tune the Co% in the alloy. Systematic studies on the morphological and crystallographic properties together with static and dynamic magnetic characterizations were performed. In this work we focus on the study of the dynamic magnetic properties of CoNi NW arrays using the ferromagnetic resonance method at both room (RT) and low (LT) temperatures. The careful comparison analysis performed between the magnetic anisotropy fields obtained at RT and LT, allowed us to extract for the first time the magnetocrystalline anisotropy effect of the Co component and, most importantly, the magnetoelastic anisotropy effect of Ni. - Highlights: • Ordered hexagonal arrays of Co{sub x}Ni{sub 1−x} nanowires were grown by DC electrodeposition. • The Co:Ni ratio in the nanowires was tuned by varying the deposition potential. • We studied magnetic anisotropies using ferromagnetic resonance method. • The experiments were performed at room and low temperatures. • We extracted the magnetoelastic contribution of Ni in the fabricated nanowires.

  19. Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths

    Science.gov (United States)

    Anufriev, R.; Chauvin, N.; Khmissi, H.; Naji, K.; Barakat, J.-B.; Penuelas, J.; Patriarche, G.; Gendry, M.; Bru-Chevallier, C.

    2013-05-01

    The absorption and emission polarization properties of InAs quantum rods embedded in InP nanowires (NWs) are investigated by mean of (micro-)photoluminescence spectroscopy. It is shown that the degree of linear polarization of emission (0.94) and absorption (0.5) of a single NW can be explained by the photonic nature of the NW structure. Knowing these parameters, optical properties of single NWs and ordered ensembles of these NWs can be correlated one to another via proposed model, so that polarization properties of NWs can be studied using ordered ensembles on as-grown samples. As an example, the polarization anisotropy is investigated as a function of the excitation wavelength on a NW ensemble and found to be in agreement with theoretical prediction.

  20. Design for ultrahigh-Q position-controlled nanocavities of single semiconductor nanowires in 2D photonic crystals

    CERN Document Server

    Birowosuto, M D; Taniyama, H; Kuramochi, E; Takiguchi, M; Notomi, M

    2012-01-01

    Using Finite-Difference Time-Domain (FDTD) simulation, we show that ultrahigh- Q nanocavities can be obtained through the manipulation of a single semiconductor nanowire (NW) inside a slot in a line defect of a two-dimensional (2D) photonic crystal. By controlling the design and its lattice parameters of the photonic crystal, we have achieved a quality factor Q larger than 106 and a mode volume Vc smaller than 0.11 {\\mu}m3 (1.25 of a cubic wavelength in the NW) for a cavity peak in the telecommunication band. This design is useful for realizing a position-controlled cavity in a photonic crystal. Here we also discuss the small dependence of the Qfactor, the Vc, and the cavity peak in relation to the position of the NWinside the slot and the potential application to the cavity quantum electrodynamics (QED) using the embedded-emitter NW.

  1. Effect of nanohole size on selective area growth of InAs nanowire arrays on Si substrates

    Science.gov (United States)

    Wang, Xiaoye; Yang, Wenyuan; Wang, Baojun; Ji, Xianghai; Xu, Shengyong; Wang, Wei; Chen, Qing; Yang, Tao

    2017-02-01

    We have investigated the influence of nanohole size on selective-area growth (SAG) of InAs nanowire (NW) arrays on Si(111) substrates by metal-organic chemical vapor deposition. The growth of well-defined and position-controlled InAs NW arrays with united vertical orientation can be achieved on the patterned substrates with a certain range of nanohole size, which paves the way for the fabrication of high-electron-mobility and surrounding-gate transistor arrays using NWs as channels. Moreover, it is found that more than one NW are increasingly likely grown per nanohole as the nanohole size increases, and the NWs become increasingly thin and short. This is considered to be due to the supersaturation of adsorbed species in the nanohole and the intense competition for adatoms among multiple NWs per nanohole.

  2. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement.

    Science.gov (United States)

    Shin, Jae Cheol; Mohseni, Parsian K; Yu, Ki Jun; Tomasulo, Stephanie; Montgomery, Kyle H; Lee, Minjoo L; Rogers, John A; Li, Xiuling

    2012-12-21

    We demonstrate energy-conversion-efficiency (η) enhancement of silicon (Si) solar cells by the heterogeneous integration of an In(x)Ga(1-x)As nanowire (NW) array on the rear surface. The NWs are grown via a catalyst-free, self-assembled method on Si(111) substrates using metalorganic chemical vapor deposition (MOCVD). Heavily p-doped In(x)Ga(1-x)As (x ≈ 0.7) NW arrays are utilized as not only back-reflectors but also low bandgap rear-point-contacts of the Si solar cells. External quantum efficiency of the hybrid In(x)Ga(1-x)As NW-Si solar cell is increased over the entire solar response wavelength range; and η is enhanced by 36% in comparison to Si solar cells processed under the same condition without the NWs.

  3. Solution-processed silver nanowires as a transparent conducting electrode for air-stable inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myungkwan; Kim, Jong-Kuk [Surface Technology Division, Korea Institute of Materials Science, Changwon 641-831 (Korea, Republic of); Yang, Shi-Young, E-mail: yangsy@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kang, Jae-Wook, E-mail: jwkang@jbnu.ac.kr [The Graduate School of Flexible and Printable Electronics, Polymer BIN Fusion Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-12-31

    Highly efficient and air-stable inverted organic solar cells (IOSCs) were fabricated using solution-processed silver nanowire electrodes. The electrodes showed a low sheet resistance of ∼ 16 Ω sq{sup −1} and a high transmittance of ∼ 95% at a wavelength of 550 nm. A solution-processed ZnO buffer layer is typically used for electron transport and effective passivation of the surface of Ag NW electrodes. The device performance of the IOSCs that used these Ag NW electrodes, which were fabricated on a glass or plastic substrate, was > 94% of that of devices containing indium tin oxide (ITO) electrodes. This indicates that solution-processed Ag NW electrode can replace commercialized ITO and can be utilized in roll-to-roll and large-area fabrication processes. - Highlights: • Solution-processed silver nanowires (Ag NWs) as a transparent conducting electrode • Ag NW-based high-performance inverted organic solar cell (IOSCs) • IOSC performance > 94% of that of devices with indium tin oxide electrodes.

  4. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    Science.gov (United States)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  5. Superconductor-insulator transition in nanowires and nanowire arrays

    NARCIS (Netherlands)

    Mooij, J.E.; Schön, G.; Shnirman, A.; Fuse, T.; Harmans, C.J.P.M.; Rotzinger, H.; Verbruggen, A.H.

    2015-01-01

    Superconducting nanowires are the dual elements to Josephson junctions, with quantum phase-slip (QPS) processes replacing the tunneling of Cooper pairs. When the QPS amplitude ES is much smaller than the inductive energy EL, the nanowire responds as a superconducting inductor. When the inductive ene

  6. Electroactive biomimetic collagen-silver nanowire composite scaffolds

    Science.gov (United States)

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-07-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2 and a charge injection capacity of 0.3 mC cm-2, which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications.Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2

  7. Nanowire Field-Effect Transistors: Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  8. Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi vlsE.

    Science.gov (United States)

    Liang, F T; Steere, A C; Marques, A R; Johnson, B J; Miller, J N; Philipp, M T

    1999-12-01

    VlsE, the variable surface antigen of Borrelia burgdorferi, contains an immunodominant conserved region named IR(6). In the present study, the diagnostic performance of a peptide enzyme-linked immunosorbent assay (ELISA) based on a 26-mer synthetic peptide (C(6)) with the IR(6) sequence was explored. Sensitivity was assessed with serum samples (n = 210) collected from patients with clinically defined Lyme disease at the acute (early localized or early disseminated disease), convalescent, or late disease phase. The sensitivities for acute-, convalescent-, and late-phase specimens were 74% (29 of 39), 85 to 90% (34 of 40 to 35 of 39), and 100% (59 of 59), respectively. Serum specimens from early neuroborreliosis patients were 95% positive (19 of 20), and those from an additional group of patients with posttreatment Lyme disease syndrome yielded a sensitivity of 62% (8 of 13). To assess the specificity of the peptide ELISA, 77 serum samples from patients with other spirochetal or chronic infections, autoimmune diseases, or neurologic diseases and 99 serum specimens from hospitalized patients in an area where Lyme disease is not endemic were examined. Only two potential false positives from the hospitalized patients were found, and the overall specificity was 99% (174 of 176). Precision, which was assessed with a panel of positive and negative serum specimens arranged in blinded duplicates, was 100%. Four serum samples with very high anti-OspA antibody titers obtained from four monkeys given the OspA vaccine did not react with the C(6) peptide. This simple, sensitive, specific, and precise ELISA may contribute to alleviate some of the remaining problems in Lyme disease serodiagnosis. Because of its synthetic peptide base, it will be inexpensive to manufacture. It also will be applicable to serum specimens from OspA-vaccinated subjects.

  9. Graphene/Si-nanowire heterostructure molecular sensors

    Science.gov (United States)

    Kim, Jungkil; Oh, Si Duk; Kim, Ju Hwan; Shin, Dong Hee; Kim, Sung; Choi, Suk-Ho

    2014-06-01

    Wafer-scale graphene/Si-nanowire (Si-NW) array heterostructures for molecular sensing have been fabricated by vertically contacting single-layer graphene with high-density Si NWs. Graphene is grown in large scale by chemical vapour deposition and Si NWs are vertically aligned by metal-assisted chemical etching of Si wafer. Graphene plays a key role in preventing tips of vertical Si NWs from being bundled, thereby making Si NWs stand on Si wafer separately from each other under graphene, a critical structural feature for the uniform Schottky-type junction between Si NWs and graphene. The molecular sensors respond very sensitively to gas molecules by showing 37 and 1280% resistance changes within 3.5/0.15 and 12/0.15 s response/recovery times under O2 and H2 exposures in air, respectively, highest performances ever reported. These results together with the sensor responses in vacuum are discussed based on the surface-transfer doping mechanism.

  10. Features of Random Metal Nanowire Networks with

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  11. Indium Antimonide Nanowires: Synthesis and Properties

    Science.gov (United States)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  12. Aging of Organic Nanowires

    DEFF Research Database (Denmark)

    Balzer, Frank; Schiek, Manuela; Osadnik, Andreas

    2012-01-01

    attribute, making them especially interesting for light generation in OLEDs and for light-harvesting devices such as solar cells. Functionalization of the molecules allows the customization of optical and electrical properties. However, aging of the wires might lead to a considerable decrease in device...... performance over time. In this study the morphological stability of organic nanoclusters and nanowires from the methoxy functionalized quaterphenylene, 4,4'''dimethoxy-1,1':4',1''4'',1'''-quaterphenylene (MOP4), is investigated in detail. Aging experiments conducted by atomic force microscopy under ambient...... conditions already expose substantial changes in sample morphology within hours. Clusters show Ostwald ripening, whereas nanowires reveal strong faceting and even fragmentation. All these aging effects are ascribed to the influence of water vapor. Decay curves (cluster number vs. time) for clusters...

  13. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  14. Enhancement of programming speed on gate-all-around poly-silicon nanowire nonvolatile memory using self-aligned NiSi Schottky barrier source/drain

    Science.gov (United States)

    Ho, Ching-Yuan; Chang, Yaw-Jen; Chiou, Y. L.

    2013-08-01

    The programming characteristics of gate-all-around silicon-oxide-nitride-oxide silicon (SONOS) nonvolatile memories are presented using NiSi/poly-Si nanowires (SiNW) Schottky barrier (SB) heterojunctions. The non-uniform thermal stress distribution on SiNW channels due to joule heating affected the carrier transport behavior. Under a high drain voltage, impact ionization was found as a large lateral field enhances carrier velocity. As gate voltage (Vg) increased, the difference in the drain current within a range of various temperature conditions can be mitigated because a high gate field lowers the SB height of a NiSi source/SiNW/NiSi drain junction to ensure efficient hot-carrier generation. By applying the Fowler-Nordheim programming voltage to the SONOS nanowire memory, the SB height (Φn = 0.34 eV) could be reduced by image force; thus, hot electrons could be injected from SB source/drain electrodes into the SiN storage node. To compare both SiNW and Si nanocrystal SONOS devices, the SB SiNW SONOS device was characterized experimentally to propose a wider threshold-voltage window, exhibiting efficient programming characteristics.

  15. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination

    KAUST Repository

    Zhao, Chao

    2015-07-24

    We present a detailed study on the effects of dangling bond passivation and the comparison of different sulfides passivation process on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency, and higher peak efficiency. Our results highlighted the research opportunity in employing this technique for further design and realization of high performance NW-LEDs and NW-lasers.

  16. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.

    Science.gov (United States)

    Ding, Su; Jiu, Jinting; Gao, Yue; Tian, Yanhong; Araki, Teppei; Sugahara, Tohru; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Suganuma, Katsuaki; Uchida, Hiroshi

    2016-03-09

    Copper nanowire (CuNW) conductors have been considered to have a promising perspective in the area of stretchable electronics due to the low price and high conductivity. However, the fabrication of CuNW conductors suffers from harsh conditions, such as high temperature, reducing atmosphere, and time-consuming transfer step. Here, a simple and rapid one-step photonic sintering technique was developed to fabricate stretchable CuNW conductors on polyurethane (PU) at room temperature in air environment. It was observed that CuNWs were instantaneously deoxidized, welded and simultaneously embedded into the soft surface of PU through the one-step photonic sintering technique, after which highly conductive network and strong adhesion between CuNWs and PU substrates were achieved. The CuNW/PU conductor with sheet resistance of 22.1 Ohm/sq and transmittance of 78% was achieved by the one-step photonic sintering technique within only 20 μs in air. Besides, the CuNW/PU conductor could remain a low sheet resistance even after 1000 cycles of stretching/releasing under 10% strain. Two flexible electronic devices, wearable sensor and glove-shaped heater, were fabricated using the stretchable CuNW/PU conductor, demonstrating that our CuNW/PU conductor could be integrated into various wearable electronic devices for applications in food, clothes, and medical supplies fields.

  17. A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications.

    Science.gov (United States)

    Yun, Jeonghoon; Jin, Chun Yan; Ahn, Jae-Hyuk; Jeon, Seokwoo; Park, Inkyu

    2013-08-07

    We demonstrated novel methods for selective surface modification of silicon nanowire (SiNW) devices with catalytic metal nanoparticles by nanoscale Joule heating and local chemical reaction. The Joule heating of a SiNW generated a localized heat along the SiNW and produced endothermic reactions such as hydrothermal synthesis of nanoparticles or thermal decomposition of polymer thin films. In the first method, palladium (Pd) nanoparticles could be selectively synthesized and directly coated on a SiNW by the reduction of the Pd precursor via Joule heating of the SiNW. In the second method, a sequential process composed of thermal decomposition of a polymer, evaporation of a Pd thin film, and a lift-off process was utilized. The selective decoration of Pd nanoparticles on SiNW was successfully accomplished by using both methods. Finally, we demonstrated the applications of SiNWs decorated with Pd nanoparticles as hydrogen detectors. We also investigated the effect of self-heating of the SiNW sensor on its sensing performance.

  18. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    Science.gov (United States)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30–70 Ohm/square), optical transmittance values (89–90%), and haze (0.5–1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  19. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  20. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the

  1. A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires

    OpenAIRE

    2015-01-01

    We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n ...

  2. Do Twin Boundaries Always Strengthen Metal Nanowires?

    OpenAIRE

    Zhang Yongfeng; Huang Hanchen

    2008-01-01

    Abstract It has been widely reported that twin boundaries strengthen nanowires regardless of their morphology—that is, the strength of nanowires goes up as twin spacing goes down. This article shows that twin boundaries do not always strengthen nanowires. Using classical molecular dynamics simulations, the authors show that whether twin boundaries strengthen nanowires depends on the necessary stress for dislocation nucleation, which in turn depends on surface morphologies. When nanowire...

  3. Vertically integrated nanogenerator based on ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Aifang; Li, Hongyu; Tang, Haoying; Liu, Tengjiao; Jiang, Peng [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); Wang, Zhong Lin [National Center for Nanoscience and Technology, No.11, Beiyitiao Zhongguancun, Beijing 100190 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2011-04-15

    We report a technique to construct a vertically integrated nanogenerator (VI-NG) based on ZnO nanowire (NW) arrays. The VI-NG consists of nine single NGs connected mixed parallel and serial by a layer-by-layer stacking. For the single layer NG, the peak output voltage and current are 0.045 V and 2.5 nA, respectively. The VI-NG produces an output power density of 2.8 nW/cm{sup 2} with a peak output voltage of 0.15 V and output current of 7.2 nA. The vertical integration of the multi-NG provides a feasible technique for effectively converting mechanical energies to electricity from environment. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires

    Science.gov (United States)

    Patil, Sunil; Bahrami-Samani, M.; Melnik, R. V. N.; Toropova, M.; Zu, Jean

    2010-01-01

    We report thermopiezoelectric (TPE) and nonlinear electromechanical (NEM) effects in quantum dots (QD) and nanowires (NW) analyzed with a model based on coupled thermal, electric and mechanical balance equations. Several representative examples of low dimensional semiconductor structures (LDSNs) are studied. We focus mainly on GaN/AlN QDs and CdTe/ZnTe NWs which we analyze for different geometries. GaN/AlN nano systems are observed to be more sensitive to thermopiezoelectric effects than those of CdTe/ZnTe. Furthermore, noticeable qualitative and quantitative variations in electromechanical fields are observed as a consequence of taking into account NEM effects, in particular in GaN/AlN QDs.

  5. A Wearable Hydration Sensor with Conformal Nanowire Electrodes.

    Science.gov (United States)

    Yao, Shanshan; Myers, Amanda; Malhotra, Abhishek; Lin, Feiyan; Bozkurt, Alper; Muth, John F; Zhu, Yong

    2017-01-27

    A wearable skin hydration sensor in the form of a capacitor is demonstrated based on skin impedance measurement. The capacitor consists of two interdigitated or parallel electrodes that are made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix. The flexible and stretchable nature of the AgNW/PDMS electrode allows conformal contact to the skin. The hydration sensor is insensitive to the external humidity change and is calibrated against a commercial skin hydration system on an artificial skin over a wide hydration range. The hydration sensor is packaged into a flexible wristband, together with a network analyzer chip, a button cell battery, and an ultralow power microprocessor with Bluetooth. In addition, a chest patch consisting of a strain sensor, three electrocardiography electrodes, and a skin hydration sensor is developed for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless, and continuous monitoring of skin hydration and other health parameters.

  6. Template synthesis, characterization and transformations of iron nanowires while aging

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, Arunas [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)], E-mail: jagmin@ktl.mii.lt; Mazeika, Kestutis; Reklaitis, Jonas [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania); Kurtinaitiene, Marija [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Baltrunas, Dalis [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania)

    2008-05-15

    Densely packed arrays of various materials demonstrating enhanced magnetic properties remain of great interest nowadays. In this study, transmission electron microscopy (TEM), Moessbauer spectroscopy (MS) and powder X-ray diffraction (XRD) were used to characterize the morphology, composition and phase of iron nanowires (nws) deposited from the developed solution within alumina template pores of the average diameter of ca.15 nm by the alternating current (ac) electrolysis protocol. The same investigations were performed after Fe nws storage in the air for several months. Characterization of the as-grown product shows the formation of the crystalline {alpha}-Fe nws array with a preferred [1 1 0] nw growth direction. The aging of samples leads to the corrosion of Fe nws mainly from the template top side while aging of Fe nws liberated from the template and kept for several months under ambient conditions results in the corrosion of nws along their full length producing catkin-twig shapes.

  7. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    Science.gov (United States)

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  8. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes

    Directory of Open Access Journals (Sweden)

    Hsueh Ting-Jen

    2011-01-01

    Full Text Available Abstract This study reports the deposition of cuprous oxide [Cu2O] onto titanium dioxide [TiO2] nanowires [NWs] prepared on TiO2/glass templates. The average length and average diameter of these thermally oxidized and evaporated TiO2 NWs are 0.1 to 0.4 μm and 30 to 100 nm, respectively. The deposited Cu2O fills gaps between the TiO2 NWs with good step coverage to form nanoshells surrounding the TiO2 cores. The p-Cu2O/n-TiO2 NW heterostructure exhibits a rectifying behavior with a sharp turn-on at approximately 0.9 V. Furthermore, the fabricated p-Cu2O-shell/n-TiO2-nanowire-core photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratios and fast responses.

  9. Measurement of the electrostatic edge effect in wurtzite GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Alex; Rosenwaks, Yossi [Department of Physical Electronics, School of Electrical Engineering, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Klein, Benjamin [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bertness, Kris A.; Blanchard, Paul T.; Sanford, Norman A. [NIST, Physical Measurement Laboratory, Division 686, 325 Broadway, Boulder, Colorado 80305 (United States)

    2014-11-24

    The electrostatic effect of the hexagonal corner on the electronic structure in wurtzite GaN nanowires (NWs) was directly measured using Kelvin probe force microscopy (KPFM). By correlating electrostatic simulations with the measured potential difference between the nanowire face and the hexagonal vertices, the surface state concentration and band bending of GaN NWs were estimated. The surface band bending is important for an efficient design of high electron mobility transistors and for opto-electronic devices based on GaN NWs. This methodology provides a way to extract NW parameters without making assumptions concerning the electron affinity. We are taking advantage of electrostatic modeling and the high precision that KPFM offers to circumvent a major source of uncertainty in determining the surface band bending.

  10. Study of electrical properties of single GaN nanowires grown by molecular beam epitaxy

    Science.gov (United States)

    Mozharov, A. M.; Komissarenko, F. E.; Vasiliev, A. A.; Bolshakov, A. D.; Moiseev, E. I.; Mukhin, M. S.; Cirlin, G. E.; Mukhin, I. S.

    2016-08-01

    Electrical properties of single GaN nanowires grown by means of molecular beam epitaxy with N-plasma source were studied. Ohmic contacts connected to single n-type GaN wires were produced by the combination of electron beam lithography, metal vacuum evaporation and rapid thermal annealing technique. The optimal annealing temperature to produce ohmic contacts implemented in the form of Ti/Al/Ti/Au stack has been determined. By means of 2-terminal measurement wiring diagram the conductivity of single NW has been obtained for NWs with different growth parameters. The method of MESFET measurement circuit layout of single GaN nanowires (NWs) has been developed. In accordance with performed numerical calculation, free carriers' concentration and mobility of single NWs could be independently estimated using MESFET structure.

  11. Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent S.; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2014-10-01

    High aspect-ratio ultra-long (> 70 μm) and thin (< 50 nm) copper nanowires (Cu-NW) were synthesized in large quantities using a solution-based approach. The nanowires, along with reduced graphene-oxide sheets, were coated onto glass as well as plastic substrates, thus producing transparent conducting electrodes. Our fabricated transparent electrodes achieved high optical transmittance and low sheet resistance, comparable to those of existing Indium Tin Oxide (ITO) electrodes. Furthermore, our electrodes show no notable loss of performance under high temperature and high humidity conditions. Adaptations of such nano-materials into smooth and ultrathin films lead to potential alternatives for the conventional tin-doped indium oxide, with applications in a wide range of solar cells, flexible displays, and other opto-electronic devices.

  12. Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, Roman; Chauvin, Nicolas; Bru-Chevallier, Catherine [Universite de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, INSA-Lyon, Villeurbanne (France); Khmissi, Hammadi [Universite de Monastir, Laboratoire de Micro-Optoelectronique et Nanostructures (LMON), Faculte des Sciences, Monastir (Tunisia); Naji, Khalid; Gendry, Michel [Universite de Lyon, Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, Ecole Centrale de Lyon, Ecully (France); Patriarche, Gilles [Laboratoire de Photonique et de Nanostructures (LPN), UPR20-CNRS, Marcoussis (France)

    2013-10-15

    Photoluminescence (PL) quantum efficiency (QE) is experimentally investigated, using an integrating sphere, as a function of excitation power on both InAs/InP quantum rod nanowires (QRod-NWs) and radial quantum well nanowires (QWell-NWs) grown on silicon substrates. The measured values of the QE are compared with those of the planar analogues such as quantum dash and quantum well samples, and found to be comparable for the quantum well structures at relatively low power density. Further studies reveal that the values of QE of the QRod-NWs and QWell-NWs are limited by the low quality of the InP NW structure and the quality of radial quantum well, respectively. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Orientation effect on the giant stress field induced in a single Ni nanowire by mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Clochard, M.-C.; Wegrowe, J.-E.

    2015-09-01

    The change of magnetization (i.e. using the inverse magnetostriction effect) allows to investigate at the nanoscale the effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW). The magnetization state is measured locally by anisotropic magnetoresitance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. Due to the inverse magnetostriction, a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≍ 10 K has been evidenced. The coplanarity of the vectors between the magnetization and the magnetic field is broken. A way of studying the effect of the geometry on such a system, is to fabricate oriented polymer templates. Track-etched polymer membranes were thus irradiated at various angles (αirrad) leading, after electrodeposition, to embedded Ni NWs of different orientations. With cylindrical Ni NW oriented normally to the template surface, the induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification results in three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. When the Ni NWs are tilted from the polymer template surface normality, the induced stress field is reduced and the amplification phenomenon is less important.

  14. Flexible, low-voltage, and low-hysteresis PbSe nanowire field-effect transistors.

    Science.gov (United States)

    Kim, David K; Lai, Yuming; Vemulkar, Tarun R; Kagan, Cherie R

    2011-12-27

    We report low-hysteresis, ambipolar bottom gold contact, colloidal PbSe nanowire (NW) field-effect transistors (FETs) by chemically modifying the silicon dioxide (SiO(2)) gate dielectric surface to overcome carrier trapping at the NW-gate dielectric interface. While water bound to silanol groups at the SiO(2) surface are believed to give rise to hysteresis in FETs of a wide range of nanoscale materials, we show that dehydration and silanization are insufficient in reducing PbSe NW FET hysteresis. Encapsulating PbSe NW FETs in cured poly(methyl) methacrylate (PMMA), dehydrates and uniquely passivates the SiO(2) surface, to form low-hysteresis FETs. Annealing predominantly p-type ambipolar PbSe NW FETs switches the FET behavior to predominantly n-type ambipolar, both with and without PMMA passivation. Heating the PbSe NW devices desorbs surface bound oxygen, even present in the atmosphere of an inert glovebox. Upon cooling, overtime oxygen readsorption switches the FET polarity to predominantly p-type ambipolar behavior, but PMMA encapsulation maintains low hysteresis. Unfortunately PMMA is sensitive to most solvents and heat treatments and therefore its application for nanostructured material deposition and doping is limited. Seeking a robust, general platform for low-hysteresis FETs we explored a variety of hydroxyl-free substrate surfaces, including silicon nitride, polyimide, and parylene, which show reduced electron trapping, but still large hysteresis. We identified a robust dielectric stack by assembling octadecylphosphonic acid (ODPA) on aluminum oxide (Al(2)O(3)) to form low-hysteresis FETs. We further integrated the ODPA/Al(2)O(3) gate dielectric stack on flexible substrates to demonstrate low-hysteresis, low-voltage FETs, and the promise of these nanostructured materials in flexible, electronic circuitry.

  15. Label-free SnO2 nanowire FET biosensor for protein detection

    Science.gov (United States)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  16. Silicon nanowires as field-effect transducers for biosensor development: A review

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca

    2014-05-01

    Highlights: • Nanoscale field-effect transducers interrogate surface charge by conductivity changes. • The nanometer dimensions of SiNWs facilitate sensitive detection of biomolecules. • SiNWs can be fabricated by bottom–up or top–down approaches. • Device parameters and solution-phase conditions strongly influence analytical performance. - Abstract: The unique electronic properties and miniaturized dimensions of silicon nanowires (SiNWs) are attractive for label-free, real-time and sensitive detection of biomolecules. Sensors based on SiNWs operate as field effect transistors (FETs) and can be fabricated either by top–down or bottom–up approaches. Advances in fabrication methods have allowed for the control of physicochemical and electronic properties of SiNWs, providing opportunity for interfacing of SiNW-FET probes with intracellular environments. The Debye screening length is an important consideration that determines the performance and detection limits of SiNW-FET sensors, especially at physiologically relevant conditions of ionic strength (>100 mM). In this review, we discuss the construction and application of SiNW-FET sensors for detection of ions, nucleic acids and protein markers. Advantages and disadvantages of the top–down and bottom–up approaches for synthesis of SiNWs are discussed. An overview of various methods for surface functionalization of SiNWs for immobilization of selective chemistry is provided in the context of impact on the analytical performance of SiNW-FET sensors. In addition to in vitro examples, an overview of the progress of use of SiNW-FET sensors for ex vivo studies is also presented. This review concludes with a discussion of the future prospects of SiNW-FET sensors.

  17. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications

    Science.gov (United States)

    Namdari, Pooria; Daraee, Hadis; Eatemadi, Ali

    2016-09-01

    The application of silicon nanowire (SiNW) biosensor as a subtle, label-free, and electrical tool has been extensively demonstrated by several researchers over the past few decades. Human ability to delicately fabricate and control its chemical configuration, morphology, and arrangement either separately or in combination with other materials as lead to the development of a nanomaterial with specific and efficient electronic and catalytic properties useful in the fields of biological sciences and renewable energy. This review illuminates on the various synthetic methods of SiNW, with its optical and electrical properties that make them one of the most applicable nanomaterials in the field of biomolecule sensing, photoelectrochemical conversion, and diseases diagnostics.

  18. Fabrication of SiC nanowire thin-film transistors using dielectrophoresis

    Institute of Scientific and Technical Information of China (English)

    Dai Zhenqing; Zhang Liying; Chen Changxin; Qian Bingjian; Xu Dong; Chen Haiyan; Wei Liangming; Zhang Yafei

    2012-01-01

    The selection of solvents for SiC nanowires (NWs) in a dielectrophoretic process is discussed theoretically and experimentally.From the viewpoints of dielectrophoresis force and torque,volatility,as well as toxicity,isopropanol (IPA) is considered as a proper candidate.By using the dielectrophoretic process,SiC NWs are aligned and NW thin films are prepared.The densities of the aligned SiC NWs are 2 μm-1,4 μm-1,6 μm-1,which corresponds to SiC NW concentrations of 0.1 μg/μL,0.3μg/μL and 0.5 μg/μL,respectively.Thin-film transistors are fabricated based on the aligned SiC NWs of 6 μm-1.The mobility of a typical device is estimated to be 13.4 cm2/(V.s).

  19. Monte Carlo simulation of phonon transport in variable cross-section nanowires

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A dedicated Monte Carlo (MC) model is proposed to investigate the mechanism of phonon transport in variable cross-section silicon nanowires (NWs). Emphasis is placed on understanding the thermal rectification effect and thermal conduction in tapered cross-section and incremental cross-section NWs. In the simulations, both equal and unequal heat input conditions are discussed. Under the latter condition, the tapered cross-section NW has a more prominent thermal rectification effect. Additionally, the capacity of heat conduction in the tapered cross-section NW is always higher than that of the incremental one. Two reasons may be attributed to these behaviors: one is their different boundary conditions and the other is their different volume distribution. Although boundary scattering plays an important role in nanoscale structures, the results suggest the influence of boundary scattering on heat conduction is less obvious than that of volume distribution in NWs with variable cross-sections.

  20. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    Science.gov (United States)

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  1. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.

    Science.gov (United States)

    Dong, Angang; Tang, Rui; Buhro, William E

    2007-10-10

    Colloidal homobranched ZnSe nanowires (NWs) and heterobranched CdSe-ZnSe NWs are successfully synthesized by combining a sequential seeding strategy with the solution-liquid-solid (SLS) growth process. We have developed an efficient approach to deposit secondary bismuth nanoparticles onto the NW backbone to induce the subsequent SLS branch growth. The density, length, and diameter of branches are rationally controlled by varying reaction conditions. Structural characterization reveals that crystalline branches grow epitaxially from the backbone in both homo- and heterobranched NWs. Two different branching structures are observed in the CdSe-ZnSe heterobranched NWs, owing to the phase admixture, i.e., cubic and hexagonal crystal structures, coexisting in the CdSe NW backbones. These branched NWs with well-designed architectures are expected to have potential as three-dimensional building blocks in the fabrication of nanoscale electronics and photonics.

  2. Fabrication of Ag nanowire and Al-doped ZnO hybrid transparent electrodes

    Science.gov (United States)

    You, Sslimsearom; Park, Yong Seo; Choi, Hyung Wook; Kim, Kyung Hwan

    2016-01-01

    Among the materials used as transparent electrodes, silver nanowires (AgNWs) have attracted attention because of their high transmittance and excellent conductivity. However, AgNWs have shortcomings, including their poor adhesion, oxidation by atmospheric oxygen, and unstable characteristics at high temperature. To overcome these shortcomings, multi-layer thin films with an aluminum-doped zinc oxide (AZO)/AgNW/AZO structure were fabricated using facing targets sputtering. The samples heated to 350 °C exhibited stable electrical characteristics. In addition, the adhesion to the substrate was improved compared with AgNWs layer. The AZO/AgNW/AZO thin films with multilayer structure overcame the shortcomings of AgNWs, and we propose their use as transparent electrodes with excellent properties for optoelectronic applications.

  3. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  4. Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B. L.; Phillips, L.; Major, J. D.; Durose, K. [Stephenson Institute for Renewable Energy, University of Liverpool, Chadwick Building, Peach St., Liverpool L69 7ZF (United Kingdom); Taylor, A. A.; Mendis, B. G.; Bowen, L. [G. J. Russell Microscopy Facility, University of Durham, South Road, Durham DH1 3LE (United Kingdom)

    2014-02-03

    Radial p-n junction nanowire (NW) solar cells with high densities of CdTe NWs coated with indium tin oxide (ITO)/ZnO/CdS triple shells were grown with excellent heterointerfaces. The optical reflectance of the devices was lower than for equivalent planar films by a factor of 100. The best efficiency for the NW solar cells was η = 2.49%, with current transport being dominated by recombination, and the conversion efficiencies being limited by a back contact barrier (ϕ{sub B} = 0.52 eV) and low shunt resistances (R{sub SH} < 500 Ω·cm{sup 2})

  5. Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires

    Science.gov (United States)

    Dhawan, Punit Kumar; Wan, Meher; Verma, S. K.; Pandey, D. K.; Yadav, R. R.

    2015-02-01

    Second and third order elastic constants of GaAs Nanowires (NWs) are calculated using the many-body interaction potential model. The velocities of ultrasonic waves at different orientations of propagation with unique axis are evaluated using the second order elastic constants. The ultrasonic attenuation and thermal relaxation times of the single crystalline GaAs-NW are determined as a function of diameter and surface roughness by means of Mason theoretical approach using the thermal conductivity and higher order elastic constants. The diameter variation of ultrasonic attenuation and thermal relaxation exhibit second order polynomial function of diameter. It is also found that ultrasonic attenuation and thermal relaxation follow the exponential decay with the surface roughness for GaAs-NW due to reduction in thermal conductivity caused by dominance of surface asperities. Finally, the correlations among ultrasonic parameters, thermal conductivity, surface roughness, and diameter for GaAs-NWs are established leading towards potential applications.

  6. Self-assembly of conductive Cu nanowires on Si(111)'5 × 5 '-Cu surface.

    Science.gov (United States)

    Tsukanov, Dmitry A; Ryzhkova, Maria V; Gruznev, Dimitry V; Utas, Oleg A; Kotlyar, Vasily G; Zotov, Andrey V; Saranin, Alexander A

    2008-06-18

    Upon room-temperature deposition onto a Cu/Si(111)'5 × 5' surface in ultra-high vacuum, Cu atoms migrate over extended distances to become trapped at the step edges, where they form Cu nanowires (NWs). The formed NWs are 20-80 nm wide, 1-3 nm high and characterized by a resistivity of ∼8 µΩ cm. The surface conductance of the NW array is anisotropic, with the conductivity along the NWs being about three times greater than that in the perpendicular direction. Using a similar growth technique, not only the straight NWs but also other types of NW-based structures (e.g. nanorings) can be fabricated.

  7. Noise thermometry applied to thermoelectric measurements in InAs nanowires

    Science.gov (United States)

    Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S.

    2016-10-01

    We apply noise thermometry to characterize charge and thermoelectric transport in single InAs nanowires (NWs) at a bath temperature of 4.2 K. Shot noise measurements identify elastic diffusive transport in our NWs with negligible electron-phonon interaction. This enables us to set up a measurement of the diffusion thermopower. Unlike previous approaches, we make use of a primary electronic noise thermometry to calibrate a thermal bias across the NW. In particular, this enables us to apply a contact heating scheme, which is much more efficient in creating the thermal bias as compared to conventional substrate heating. The measured thermoelectric Seebeck coefficient exhibits strong mesoscopic fluctuations in dependence on the back-gate voltage that is used to tune the NW carrier density. We analyze the transport and thermoelectric data in terms of an approximate Mott's thermopower relation and evaluate a gate-voltage to the Fermi energy conversion factor.

  8. InAs nanowire growth modes on Si (111) by gas source molecular beam epitaxy

    Science.gov (United States)

    Robson, M. T.; LaPierre, R. R.

    2016-02-01

    InAs nanowires (NWs) were grown on silicon substrates by gas source molecular beam epitaxy using five different growth modes: (1) Au-assisted growth, (2) positioned (patterned) Au-assisted growth, (3) Au-free growth, (4) positioned Au-assisted growth using a patterned oxide mask, and (5) Au-free selective-area epitaxy (SAE) using a patterned oxide mask. Optimal growth conditions (temperature, V/III flux ratio) were identified for each growth mode for control of NW morphology and vertical NW yield. The highest yield (72%) was achieved with the SAE method at a growth temperature of 440 °C and a V/III flux ratio of 4. Growth mechanisms are discussed for each of the growth modes.

  9. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell

    Science.gov (United States)

    Wang, Y.; Zhang, Y.; Zhang, D.; He, S.; Li, X.

    2015-06-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.

  10. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  11. Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires

    Science.gov (United States)

    Lubk, A.; Wolf, D.; Simon, P.; Wang, C.; Sturm, S.; Felser, C.

    2014-10-01

    Static electromagnetic stray fields around nanowires (NWs) are characteristic for a number of important physical effects such as field emission or magnetic force microscopy. Consequently, an accurate characterization of these fields is of high interest and electron holographic tomography (EHT) is unique in providing tomographic 3D reconstructions at nm spatial resolution. However, several limitations of the experimental setup and the specimen itself are influencing EHT. Here, we show how a deliberate restriction of the tomographic reconstruction to the exterior of the NWs can be used to mitigate these limitations facilitating a quantitative 3D tomographic reconstruction of static electromagnetic stray fields at the nanoscale. As an example, we reconstruct the electrostatic stray field around a GaAs-AlGaAs core shell NW and the magnetic stray field around a Co2FeGa Heusler compound NW.

  12. Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Lubk, A.; Wolf, D.; Sturm, S. [Triebenberg Laboratory, Institute for Structure Physics, Technische Universität Dresden, 01062 Dresden (Germany); Simon, P.; Wang, C.; Felser, C. [Max Planck Institut for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany)

    2014-10-27

    Static electromagnetic stray fields around nanowires (NWs) are characteristic for a number of important physical effects such as field emission or magnetic force microscopy. Consequently, an accurate characterization of these fields is of high interest and electron holographic tomography (EHT) is unique in providing tomographic 3D reconstructions at nm spatial resolution. However, several limitations of the experimental setup and the specimen itself are influencing EHT. Here, we show how a deliberate restriction of the tomographic reconstruction to the exterior of the NWs can be used to mitigate these limitations facilitating a quantitative 3D tomographic reconstruction of static electromagnetic stray fields at the nanoscale. As an example, we reconstruct the electrostatic stray field around a GaAs-AlGaAs core shell NW and the magnetic stray field around a Co{sub 2}FeGa Heusler compound NW.

  13. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

    Science.gov (United States)

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-09-01

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices.

  14. InP nanowire p-type doping via Zinc indiffusion

    Science.gov (United States)

    Haggren, Tuomas; Otnes, Gaute; Mourão, Renato; Dagyte, Vilgaile; Hultin, Olof; Lindelöw, Fredrik; Borgström, Magnus; Samuelson, Lars

    2016-10-01

    We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350-500 °C for 5-20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm-3 for NWs without post-annealing, and up to 1018 cm-3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.

  15. H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism

    Institute of Scientific and Technical Information of China (English)

    QIU Ming-Xia; RUAN Shuang-Chen; GAO Biao; HUO Kai-Fu; ZHAI Jian-Pang; LI Ling; LIAO Hui; XU Xin-Tong

    2011-01-01

    Large-scale nanowires are grown on Si wafers by the catalyst-free one-step thermal reaction method in Ar/H2 mixture atmosphere at 1000℃. The x-ray diffraction and energy dispersive x-ray spectroscopy results reveal that the final nanowires are of silicon nanostructures. The Held emission scanning electron microscopy shows that these self-organized Si nanowires (SiNWs) possess curly crowns with diameters varying from 10 to 300 nm and lengths of up to several hundreds of micrometers. The transmission electron microscopy indicates that the nanowires are pure Si with amorphous structures. All the measurement results show that no silicon oxide is generated in our products. The growth mechanism is proposed tentatively. Silicon oxide is reduced into Si nanoparticles under the Ar/H2 mixture, which is the main reason for the formation of such SiNWs. Our experiments offer a method of preparing Si nanostructures by simply reducing silicon oxide at high temperature.%Large-scale nanowires are grown on Si wafers by the catalyst-free one-step thermal reaction method in Ar/H2 mixture atmosphere at 1000℃.The x-ray diffraction and energy dispersive x-ray spectroscopy results reveal that the final nanowires are of silicon nanostructures.The field emission scanning electron microscopy shows that these self-organized Si nanowires (SiNWs) possess curly crowns with diameters varying from 10 to 300nm and lengths of up to several hundreds of micrometers.The transmission electron microscopy indicates that the nanowires are pure Si with amorphous structures.All the measurement results show that no silicon oxide is generated in our products.The growth mechanism is proposed tentatively.Silicon oxide is reduced into Si nanoparticles under the Ar/H2 mixture,which is the main reason for the formation of such SiNWs.Our experiments offer a method of preparing Si nanostructures by simply reducing silicon oxide at high temperature.Silicon nanowires (SiNWs) have higher carrier mobility,a larger

  16. Design of a plasmonic back reflector for silicon nanowire decorated solar cells.

    Science.gov (United States)

    Ren, Rui; Guo, Yongxin; Zhu, Rihong

    2012-10-15

    This Letter presents a crystalline silicon thin film solar cell model with Si nanowire arrays surface decoration and metallic nanostructure patterns on the back reflector. The nanostructured Ag back reflector can significantly enhance the absorption in the near-infrared spectrum. Furthermore, by inserting a ZnO:Al layer between the silicon substrate and nanostructured Ag back reflector, the absorption loss in the Ag back reflector can be clearly depressed, contributing to a maximum J(sc) of 28.4 mA/cm(2). A photocurrent enhancement of 22% is achieved compared with a SiNW solar cell with a planar Ag back reflector.

  17. A quasi-analytical model for nanowire FETs with arbitrary polygonal cross section

    Science.gov (United States)

    De Michielis, L.; Selmi, L.; Ionescu, A. M.

    2010-09-01

    In this work a quasi-analytical physical model has been developed for the prediction of the potential in SiNW devices with arbitrary polygonal cross section. The model is then extended to the transport direction; a method for the calculation of the natural channel length has been proposed and validated by means of 2D and 3D numerical device simulations. With the results based on the proposed model it is possible to compare nanowires with cross sections of different shape and predict the minimum technological gate length able to assure immunity to the SCEs.

  18. Te-doping of self-catalyzed GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Suomalainen, S., E-mail: soile.suomalainen@tut.fi; Hakkarainen, T. V.; Salminen, T.; Koskinen, R.; Guina, Mircea [Optoelectronics Research Centre, Tampere University of Technology, FI-33101 Tampere (Finland); Honkanen, M. [Department of Material Science, Tampere University of Technology, FI-33101 Tampere (Finland); Luna, E. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2015-07-06

    Tellurium (Te)-doping of self-catalyzed GaAs nanowires (NWs) grown by molecular beam epitaxy is reported. The effect of Te-doping on the morphological and crystal structure of the NWs is investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The study reveals that the lateral growth rate increases and axial growth rate decreases with increasing Te doping level. The changes in the NW morphology can be reverted to some extent by changing the growth temperature. At high doping levels, formation of twinning superlattice is observed alongside with the (111)-facetted sidewalls. Finally, the incorporation of Te is confirmed by Raman spectroscopy.

  19. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method

    Science.gov (United States)

    Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2015-06-01

    We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.

  20. A double-strip plasmonic waveguide coupled to an electrically driven nanowire LED.

    Science.gov (United States)

    No, You-Shin; Choi, Jae-Hyuck; Ee, Ho-Seok; Hwang, Min-Soo; Jeong, Kwang-Yong; Lee, Eun-Khwang; Seo, Min-Kyo; Kwon, Soon-Hong; Park, Hong-Gyu

    2013-02-13

    We demonstrate the efficient integration of an electrically driven nanowire (NW) light source with a double-strip plasmonic waveguide. A top-down-fabricated GaAs NW light-emitting diode (LED) is placed between two straight gold strip waveguides with the gap distance decreasing to 30 nm at the end of the waveguide and operated by current injection through the p-contact electrode acting as a plasmonic waveguide. Measurements of polarization-resolved images and spectra show that the light emission from the NW LED was coupled to a plasmonic waveguide mode, propagated through the waveguide, and was focused onto a subwavelength-sized spot of surface plasmon polaritons at the tapered end of the waveguide. Numerical simulation agreed well with these experimental results, confirming that a symmetric plasmonic waveguide mode was excited on the top surface of the waveguide. Our demonstration of a plasmonic waveguide coupled to an electrically driven NW LED represents important progress toward further miniaturization and practical implementation of ultracompact photonic integrated circuits.