Energy Technology Data Exchange (ETDEWEB)
Behjat, E.; Aminmansoor, F.; Abbasi, H. [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)
2015-08-15
Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.
Vlasov fluid model with electron pressure
International Nuclear Information System (INIS)
Gerwin, R.
1975-11-01
The Vlasov-ion, fluid-electron model of Freidberg for studying the linear stability of hot-ion pinch configurations is here extended to include electron pressure. Within the framework of an adiabatic electron-gas picture, it is shown that this model is still amenable to the numerical methods described by Lewis and Freidberg
Energy Technology Data Exchange (ETDEWEB)
Aminmansoor, F.; Abbasi, H., E-mail: abbasi@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)
2015-08-15
The present paper is devoted to simulation of nonlinear disintegration of a localized perturbation into ion-acoustic solitons train in a plasma with hot electrons and cold ions. A Gaussian initial perturbation is used to model the localized perturbation. For this purpose, first, we reduce fluid system of equations to a Korteweg de-Vries equation by the following well-known assumptions. (i) On the ion-acoustic evolution time-scale, the electron velocity distribution function (EVDF) is assumed to be stationary. (ii) The calculation is restricted to small amplitude cases. Next, in order to generalize the model to finite amplitudes cases, the evolution of EVDF is included. To this end, a hybrid code is designed to simulate the case, in which electrons dynamics is governed by Vlasov equation, while cold ions dynamics is, like before, studied by the fluid equations. A comparison between the two models shows that although the fluid model is capable of demonstrating the general features of the process, to have a better insight into the relevant physics resulting from the evolution of EVDF, the use of kinetic treatment is of great importance.
Stability analysis of sharp-boundary Vlasov-fluid screw-pinch equilibria
International Nuclear Information System (INIS)
Lewis, H.R.; Turner, L.
1975-01-01
The Vlasov-fluid model is being used to study the linear stability of sharp-boundary screw pinches numerically. The numerical method appears to work well, and some preliminary results are reported. The sharp-boundary calculation is useful for gaining insight and for comparing with known MHD results. (auth)
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
International Nuclear Information System (INIS)
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null
Numerical simulation of collision-free plasma using Vlasov hybrid simulation
International Nuclear Information System (INIS)
Nunn, D.
1990-01-01
A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required
Linear kinetic stability of a field-reversed configuration with two ion components
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Barnes, D.C.; Lewis, H.R.
1990-01-01
It has been suggested that a small fraction of non-axis encircling high energy ions may be sufficient to stabilize the tilt mode in a large s FRC. Experimental alteration of the ion distribution function in this manner might be achieved by rf heating the tail of the distribution function or by neutral beam injection. A linear Vlasov-fluid eigenfunction-eigenfrequency approach was used to investigate possible stabilization of the tilt mode by a high energy component. The ion distribution function is modeled as the sum of two Maxwellians with separate temperatures and no ion flow velocity. The cold component has a thermal s = 7, where s is the approximate number of ion gyroradii contained between the field null and the separatrix. The temperature ratio of the hot component to the cold component (T H /T T ) was varied from 2 to 100. Global hot particle fractions (n H ) up to ∼ .5 were used in the computations
Expeditious 3D poisson vlasov algorithm applied to ion extraction from a plasma
International Nuclear Information System (INIS)
Whealton, J.H.; McGaffey, R.W.; Meszaros, P.S.
1983-01-01
A new 3D Poisson Vlasov algorithm is under development which differs from a previous algorithm, referenced in this paper, in two respects: the mesh lines are cartesian, and the Poisson equation is solved iteratively. The resulting algorithm has been used to examine the same boundary value problem as considered in the earlier algorithm except that the number of nodes is 2 times greater. The same physical results were obtained except the computational time was reduced by a factor of 60 and the memory requirement was reduced by a factor of 10. This algorithm at present restricts Neumann boundary conditions to orthogonal planes lying along mesh lines. No such restriction applies to Dirichlet boundaries. An emittance diagram is shown below where those points lying on the y = 0 line start on the axis of symmetry and those near the y = 1 line start near the slot end
Energy Technology Data Exchange (ETDEWEB)
Boussange, S
1995-09-15
In this thesis, heavy ions (Au+Au) collisions experiments are made at 150 AMeV.In the first part, a general study of the nuclear matter equation is presented. Then the used Landau-Vlasov theoretical model is describe. The third part presents the FOPI experience and the details of how to obtain this theoretical predictions (filter, cuts, corrections, possible centrality selections).At the end, experimental results and comparisons with the Landau-Vlasov model are presented. (TEC). 105 refs., 96 figs., 14 tabs.
International Nuclear Information System (INIS)
Omnes, P.
1999-01-01
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
Explosions in Landau Vlasov dynamics
International Nuclear Information System (INIS)
Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.
1988-01-01
A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed
Energy Technology Data Exchange (ETDEWEB)
Omnes, P
1999-01-25
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear,whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
Strongly enhanced flow effect from Landau-Vlasov versus Vlasov-Uehling-Uhlenbeck approach
International Nuclear Information System (INIS)
Gregoire, C.; Remaud, B.; Sebille, F.; Schuck, P.
1988-01-01
The simulation of the collision integral in the Landau-Vlasov approach for heavy ion collisions is examined. It turns out that quantities like the nucleon mean free path can be compared with parallel ensemble models. Convergency of results with time step and sampling is clearly established. Quadratic quantities, like the internal pressure, are found to be strongly underestimated in parallel ensemble models
Reduced Vlasov-Maxwell simulations
International Nuclear Information System (INIS)
Helluy, P.; Navoret, L.; Pham, N.; Crestetto, A.
2014-01-01
The Maxwell-Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution function, solution to the Vlasov equation. In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU). We obtained interesting speedups, but we also observe that the PIC method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to be a hyperbolic system of conservation laws written only in the (x,t) space. We can thus adapt very easily our DG solver to the reduced model
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
Vlasov simulations of parallel potential drops
Directory of Open Access Journals (Sweden)
H. Gunell
2013-07-01
Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by clindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
Directory of Open Access Journals (Sweden)
H Abbasi
2012-12-01
Full Text Available In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.
Action principles for the Vlasov equation
International Nuclear Information System (INIS)
Ye, H.; Morrison, P.J.
1992-01-01
Five action principles for the Vlasov--Poisson and Vlasov--Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov--Maxwell equations are altered so as to produce the Vlasov--Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov--Poisson equation is altered to produce the Vlasov--Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables
Numerical simulation of Vlasov equation with parallel tools
International Nuclear Information System (INIS)
Peyroux, J.
2005-11-01
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.
2014-10-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.; Parker, Joseph T.
2014-01-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Vlasov analysis of microbunching instability for magnetized beams
Directory of Open Access Journals (Sweden)
C.-Y. Tsai
2017-05-01
Full Text Available For a high-brightness electron beam with high bunch charge traversing a recirculation beam line, coherent synchrotron radiation and space charge effects may result in microbunching instability (MBI. Both tracking simulation and Vlasov analysis for an early design of a circulator cooler ring (CCR for the Jefferson Lab Electron Ion Collider (JLEIC reveal significant MBI [Ya. Derbenev and Y. Zhang, Proceedings of the Workshop on Beam Cooling and Related Topics, COOL’09, Lanzhou, China, 2009 (2009, FRM2MCCO01]. It is envisioned that the MBI could be substantially suppressed by using a magnetized beam. In this paper we have generalized the existing Vlasov analysis, originally developed for a nonmagnetized beam (or transversely uncoupled beam, to the description of transport of a magnetized beam including relevant collective effects. The new formulation is then employed to confirm prediction of microbunching suppression for a magnetized beam transport in the recirculation arc of a recent JLEIC energy recovery linac (ERL based cooler design for electron cooling. It is found that the smearing effect in the longitudinal beam phase space originates from the large transverse beam size as a nature of the magnetized beams and becomes effective through the x-z correlation when the correlated distance is larger than the microbunched scale. As a comparison, MBI analysis of the early design of JLEIC CCR is also presented in this paper.
Cosmology in one dimension: Vlasov dynamics.
Manfredi, Giovanni; Rouet, Jean-Louis; Miller, Bruce; Shiozawa, Yui
2016-04-01
Numerical simulations of self-gravitating systems are generally based on N-body codes, which solve the equations of motion of a large number of interacting particles. This approach suffers from poor statistical sampling in regions of low density. In contrast, Vlasov codes, by meshing the entire phase space, can reach higher accuracy irrespective of the density. Here, we perform one-dimensional Vlasov simulations of a long-standing cosmological problem, namely, the fractal properties of an expanding Einstein-de Sitter universe in Newtonian gravity. The N-body results are confirmed for high-density regions and extended to regions of low matter density, where the N-body approach usually fails.
The energy of perturbations for Vlasov plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1994-02-01
The energy content of electrostatic perturbations about homogeneous equilibria is discussed. The calculation leading to the well-known dielectric (or as it is sometimes called the wave) energy is revisited and interpreted in light of Vlasov theory. It is argued that this quantity is deficient because resonant particles are not correctly handled. A linear integral transform is presented that solves the linear Vlasov-Poisson equation. This solution together with the Kruskal-Oberman energy [Phys. Fluids 1, 275 (1958)] is used to obtain an energy expression in terms of the electric field [Phys. Fluids B 4, 3038 (1992)]. It is described how the integral transform amounts to a change to normal coordinates in an infinite dimensional Hamiltonian system
Vlasov dynamics of periodically driven systems
Banerjee, Soumyadip; Shah, Kushal
2018-04-01
Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.
Vlasov modelling of parallel transport in a tokamak scrape-off layer
International Nuclear Information System (INIS)
Manfredi, G; Hirstoaga, S; Devaux, S
2011-01-01
A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak scrape-off layer. Thanks to a recently developed 'asymptotic-preserving' numerical scheme, it is possible to lift numerical constraints on the time step and grid spacing, which are no longer limited by, respectively, the electron plasma period and Debye length. The Vlasov approach provides a good velocity-space resolution even in regions of low density. The model is applied to the study of parallel transport during edge-localized modes, with particular emphasis on the particles and energy fluxes on the divertor plates. The numerical results are compared with analytical estimates based on a free-streaming model, with good general agreement. An interesting feature is the observation of an early electron energy flux, due to suprathermal electrons escaping the ions' attraction. In contrast, the long-time evolution is essentially quasi-neutral and dominated by the ion dynamics.
Kinetic stability of field-reversed configurations
International Nuclear Information System (INIS)
Staudenmeier, J.L.; Hsiao, M.-Y.
1991-01-01
The internal tilt mode is considered to be the biggest threat to Field-Reversed Configuration (FRC) global stability. The tilt stability of the FRC is studied using the MHD, Hall MHD, and the Vlasov-fluid (Vlasov ions, cold massless fluid electrons) models. Nonlinear Hall MHD calculations showed that the FRC was stable to the tilt mode when the s value of the FRC was below a critical value that was dependent on plasma length. The critical s value is larger for longer plasma equilibria. The stability of FRC's with toroidal field was studied with a linear initial value MHD code. The calculations showed an axial perturbation wavelength of the most unstable eigenfunction that was consistent with internal probe measurements made on translated FRC's. Linear Vlasov-fluid eigenvalue calculations showed that kinetic ion effects can change both the growth rate and the structure of the eigenfunctions when compared to the corresponding MHD modes. Calculations on short FRC equilibria indicate that MHD is not the appropriate small gyroradius limit of the Vlasov-fluid model because the axial transit time of a thermal ion is approximately equal to an MHD growth time for the tilt mode. Calculations were done using a small number of unstable MHD eigenfunctions as basis functions in order to reduce the dimensionality of the stability problem. The results indicated that this basis set can produce inaccurate growth rates at large value for s for some equilibria
Comparison of free-streaming ELM formulae to a Vlasov simulation
Energy Technology Data Exchange (ETDEWEB)
Moulton, D., E-mail: david.moulton@cea.fr [CEA, IRFM, F-13108 Saint-Paul Lez Durance (France); Fundamenski, W. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Manfredi, G. [Institut de Physique et Chimie des Matériaux, CNRS and Université de Strasbourg, BP 43, F-67034 Strasbourg (France); Hirstoaga, S. [INRIA Nancy Grand-Est and Institut de Recherche en Mathématiques Avancées, 7 rue René Descartes, F-67084 Strasbourg (France); Tskhakaya, D. [Association EURATOM-ÖAW, University of Innsbruck, A-6020 Innsbruck (Austria)
2013-07-15
The main drawbacks of the original free-streaming equations for edge localised mode transport in the scrape-off layer [W. Fundamenski, R.A. Pitts, Plasma Phys. Control Fusion 48 (2006) 109] are that the plasma potential is not accounted for and that only solutions for ion quantities are considered. In this work, the equations are modified and augmented in order to address these two issues. The new equations are benchmarked against (and justified by) a numerical simulation which solves the Vlasov equation in 1d1v. When the source function due to an edge localised mode is instantaneous, the modified free-streaming ‘impulse response’ equations agree closely with the Vlasov simulation results. When the source has a finite duration in time, the agreement worsens. However, in all cases the match is encouragingly good, thus justifying the applicability of the free-streaming approach.
Energy Technology Data Exchange (ETDEWEB)
Peyroux, J
2005-11-15
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Energy Technology Data Exchange (ETDEWEB)
Peyroux, J
2005-11-15
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Weakly Collisional and Collisionless Astrophysical Plasmas
DEFF Research Database (Denmark)
Berlok, Thomas
are used to study weakly collisional, stratified atmospheres which offer a useful model of the intracluster medium of galaxy clusters. Using linear theory and computer simulations, we study instabilities that feed off thermal and compositional gradients. We find that these instabilities lead to vigorous...... investigate helium mixing in the weakly collisional intracluster medium of galaxy clusters using Braginskii MHD. Secondly, we present a newly developed Vlasov-fluid code which can be used for studying fully collisionless plasmas such as the solar wind and hot accretions flows. The equations of Braginskii MHD...... associated with the ions and is thus well suited for studying collisionless plasmas. We have developed a new 2D-3V Vlasov-fluid code which works by evolving the phase-space density distribution of the ions while treating the electrons as an inertialess fluid. The code uses the particle-incell (PIC) method...
Multi-scale approximation of Vlasov equation
International Nuclear Information System (INIS)
Mouton, A.
2009-09-01
One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite
Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations
International Nuclear Information System (INIS)
Brizard, Alain J.
2000-01-01
A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated
Numerical solutions of the Vlasov equation
International Nuclear Information System (INIS)
Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi
1985-01-01
A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)
Vlasov-Fokker-Planck modeling of magnetized plasma
International Nuclear Information System (INIS)
Thomas, Alexander
2016-01-01
Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm's law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.
Vlasov-Fokker-Planck modeling of magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)
2016-08-01
Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.
Development of a global toroidal gyrokinetic Vlasov code with new real space field solver
International Nuclear Information System (INIS)
Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki
2015-01-01
This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)
Longitudinal traveling waves bifurcating from Vlasov plasma equilibria
International Nuclear Information System (INIS)
Holloway, J.P.
1989-01-01
The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves
Vlasov modelling of parallel transport in a tokamak scrape-off layer
Energy Technology Data Exchange (ETDEWEB)
Manfredi, G [Institut de Physique et Chimie des Materiaux, CNRS and Universite de Strasbourg, BP 43, F-67034 Strasbourg (France); Hirstoaga, S [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France); Devaux, S, E-mail: Giovanni.Manfredi@ipcms.u-strasbg.f, E-mail: hirstoaga@math.unistra.f, E-mail: Stephane.Devaux@ccfe.ac.u [JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)
2011-01-15
A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak scrape-off layer. Thanks to a recently developed 'asymptotic-preserving' numerical scheme, it is possible to lift numerical constraints on the time step and grid spacing, which are no longer limited by, respectively, the electron plasma period and Debye length. The Vlasov approach provides a good velocity-space resolution even in regions of low density. The model is applied to the study of parallel transport during edge-localized modes, with particular emphasis on the particles and energy fluxes on the divertor plates. The numerical results are compared with analytical estimates based on a free-streaming model, with good general agreement. An interesting feature is the observation of an early electron energy flux, due to suprathermal electrons escaping the ions' attraction. In contrast, the long-time evolution is essentially quasi-neutral and dominated by the ion dynamics.
Global Vlasov simulation on magnetospheres of astronomical objects
International Nuclear Information System (INIS)
Umeda, Takayuki; Ito, Yosuke; Fukazawa, Keiichiro
2013-01-01
Space plasma is a collisionless, multi-scale, and highly nonlinear medium. There are various types of self-consistent computer simulations that treat space plasma according to various approximations. We develop numerical schemes for solving the Vlasov (collisionless Boltzmann) equation, which is the first-principle kinetic equation for collisionless plasma. The weak-scaling benchmark test shows that our parallel Vlasov code achieves a high performance and a high scalability. Currently, we use more than 1000 cores for parallel computations and apply the present parallel Vlasov code to various cross-scale processes in space plasma, such as a global simulation on the interaction between solar/stellar wind and magnetospheres of astronomical objects
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
Modeling Microbunching from Shot Noise Using Vlasov Solvers
International Nuclear Information System (INIS)
Venturini, Marco; Venturini, Marco; Zholents, Alexander
2008-01-01
Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching
Connection between hydrodynamic, water bag and Vlasov models
International Nuclear Information System (INIS)
Gros, M.; Bertrand, P.; Feix, M.R.
1978-01-01
The connection between hydrodynamic, water bag and Vlasov models is still under consideration with numerical experiments. For long wavelength, slightly non linear excitations and initial preparations such as the usual adiabatic invariant Pn -3 is space independent, the hydrodynamic model is equivalent to the water bag, and for long wavelengths a nice agreement is found with the full numerical solution of the Vlasov equation. For other initial conditions when the water bag cannot be defined, the hydrodynamic approach does not represent the correct behaviour. (author)
The free energy of Maxwell-Vlasov equilibria
International Nuclear Information System (INIS)
Morrison, P.J.; Pfirsch, D.
1989-10-01
A previously derived expression for the energy of arbitrary perturbations about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact form. The new form is also obtained by a canonical transformation method for solving Vlasov's equation, which is based on Lie group theory. This method is simpler than the one used before and provides better physical insight. Finally a procedure is presented for determining the existence of negative-energy modes. In this context the question of why there is an accessibility constraint for the particles, but not for the fields, is discussed. 16 refs
Simple collision operators for direct Vlasov simulations of laser plasma interaction and transport
International Nuclear Information System (INIS)
Arber, T D; Sircombe, N J
2010-01-01
Non-local electron transport effects have a direct influence on the compression of cryogenic targets in laser driven ICF and target heating in high energy density experiments. There is a growing need for self-consistent models of laser plasma interactions coupled to nonlocal transport. We present a direct Vlasov solver that includes multiple species and a simple collision operator. This BGK model operator - which conserves particle density, energy and momentum - is fully implicit. For collisionless plasmas it has been shown that a double layer may be formed in which an accelerated, kinetic ion population satisfies the zero current condition. Here we extend this result to collisionalities of interest to laser driven ignition to assess the validity of nonlocal electron transport models based on fluid ions.
Gyrokinetic Vlasov code including full three-dimensional geometry of experiments
International Nuclear Information System (INIS)
Nunami, Masanori; Watanabe, Tomohiko; Sugama, Hideo
2010-03-01
A new gyrokinetic Vlasov simulation code, GKV-X, is developed for investigating the turbulent transport in magnetic confinement devices with non-axisymmetric configurations. Effects of the magnetic surface shapes in a three-dimensional equilibrium obtained from the VMEC code are accurately incorporated. Linear simulations of the ion temperature gradient instabilities and the zonal flows in the Large Helical Device (LHD) configuration are carried out by the GKV-X code for a benchmark test against the GKV code. The frequency, the growth rate, and the mode structure of the ion temperature gradient instability are influenced by the VMEC geometrical data such as the metric tensor components of the Boozer coordinates for high poloidal wave numbers, while the difference between the zonal flow responses obtained by the GKV and GKV-X codes is found to be small in the core LHD region. (author)
Linear Vlasov plasma oscillations in the Fourier transformed velocity space
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk; Nocera, L.
2002-01-01
Roč. 296, - (2002), s. 117-124 ISSN 0375-9601 Institutional research plan: CEZ:AV0Z2043910 Keywords : linear Vlasov plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.483, year: 2002
Non-linear free streaming in Vlasov plasma
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk
2004-01-01
Roč. 54, suppl.C (2004), C82-C88 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/21th./. Prague, 14.06.2004-17.06.2004] Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma oscillations * Vlasov equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004
Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems
International Nuclear Information System (INIS)
Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.
2011-01-01
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.
The Einstein-Vlasov System/Kinetic Theory
Directory of Open Access Journals (Sweden)
Håkan Andréasson
2002-12-01
Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
Maxwell-Vlasov equations as a continuous Hamiltonian system
International Nuclear Information System (INIS)
Morrison, P.J.
1980-09-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
On the relativistic Vlasov equation in guiding-center coordinates
International Nuclear Information System (INIS)
Salimullah, M.; Chaudhry, M.B.; Hassan, M.H.A.
1989-11-01
The relativistic Vlasov equation has been expressed in terms of the guiding-center coordinates in a hot magnetized plasma. It is noted that the relativistic effect reduces the cyclotron resonance frequency for electrostatic and electromagnetic waves propagating transverse to the direction of the static magnetic field in the plasma. (author). 4 refs
From the Hartree dynamics to the Vlasov equation
DEFF Research Database (Denmark)
Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara
2016-01-01
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...
On Landau Vlasov simulations of giant resonances
International Nuclear Information System (INIS)
Pi, M.; Schuck, P.; Suraud, E.; Gregoire, C.; Remaud, B.; Sebille, F.
1987-05-01
We present VUU calculations of giant resonances obtained in energetic heavy ion collisions. Also is considered the case of the giant dipole in 40 Ca and the possibility of studying the effects of rotation on such collective modes
Comparing the line broadened quasilinear model to Vlasov code
International Nuclear Information System (INIS)
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-01-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations
Comparing the line broadened quasilinear model to Vlasov code
Energy Technology Data Exchange (ETDEWEB)
Ghantous, K. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Berk, H. L. [Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd, Austin, Texas 78712-1047 (United States); Gorelenkov, N. N. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)
2014-03-15
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Comparing the line broadened quasilinear model to Vlasov code
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-03-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits
International Nuclear Information System (INIS)
Warnock, R.; Bassi, G.; Ellison, J.A.
2006-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp
Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates
International Nuclear Information System (INIS)
Brizard, A.
1988-09-01
A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs
International Nuclear Information System (INIS)
Fu, W.-Z.; Hau, L.-N.
2005-01-01
An exact solution of the steady-state, one-dimensional Vlasov-Maxwell equations for a plasma current sheet with oppositely directed magnetic field was found by Harris in 1962. The so-called Harris magnetic field model assumes Maxwellian velocity distributions for oppositely drifting ions and electrons and has been widely used for plasma stability studies. This paper extends Harris solutions by using more general κ distribution functions that incorporate Maxwellian distribution in the limit of κ→∞. A new functional form for the plasma pressure as a function of the magnetic vector potential p(A) is found and the magnetic field is a modified tanh z function. In the extended solutions the effective temperature is no longer spatially uniform like in the Harris model and the thickness of the current layer decreases with decreasing κ
Action principles for the Vlasov equation: Four old, one new
International Nuclear Information System (INIS)
Ye, Huanchun; Morrison, P.J.
1991-01-01
Action principles for the Vlasov equation are presented. Four previously known action principles, which differ by the choice of dynamical variables, are described and the interrelationship between them discussed. A new action principle called the leaf action, which manifestly preserves the Casimir invariants and possess a single function as the dynamical variable, is presented. The relationship to the noncanonical Hamiltonian formalism is also explored. 21 refs
Yang-Mills-Vlasov system in the temporal gauge
International Nuclear Information System (INIS)
Choquet-Bruhat, Y.; Noutchegueme, N.
1991-01-01
We prove a local in time existence theorem of a solution of the Cauchy problem for the Yang-Mills-Vlasov integrodifferential system. Such equations govern the evolution of plasmas, for instance of quarks and gluons (quagmas), where non abelian gauge fields and Yang-Mills charges replace the usual electromagnetic field and electric charge. We work with the temporal gauge and use functional spaces with appropriate weight on the momenta, but no fall off is required in the space direction [fr
Global well posedness of the relativistic Vlasov-Yukawa system with small data
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Lee, Ho
2007-01-01
In this paper, we present an existence theory and uniform L 1 -stability estimate for classical solutions with small data to the Vlasov-Yukawa system. The Vlasov-Yukawa system corresponds to a short-range correction of the Vlasov-Poisson system appearing in plasma physics and astrophysics. For the existence and stability of classical solutions, we crucially use dispersion estimates due to the smallness of data
Finite Larmor radius effects on the stability properties of internal modes of a z-pinch
International Nuclear Information System (INIS)
Aakerstedt, H.O.
1987-01-01
From the Vlasov-fluid model a set of approximate stability equations describing the stability of a cylindrically symmetric z-pinch is derived. The equations are derived in the limit of small gyroradius and include first order kinetic effects such as finite ion Larmor radius effects and resonant ion effects. Neglecting the resonant ion terms, we explicitly solve this set of equations for a constant current density profile leading to a dispersion relation. FLR effects are shown for the case of m=1 internal mode to be stabilizing and for large wavenumbers k, using a trial function approach, absolute stabilization is found. (author)
Vogman, Genia
Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space
Guthrey, Pierson Tyler
The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
International Nuclear Information System (INIS)
Ono, Akira; Horiuchi, Hisashi.
1996-01-01
The first purpose of this report is to present an extended AMD model which can generally describe such minor branching processes by removing the restriction on the one-body distribution function. This is done not by generalizing the wave packets to arbitrary single-particle wave functions but by representing the diffused and/or deformed wave packet as an ensemble of Gaussian wave packets. In other words, stochastic displacements are given to the wave packets in phase space so that the ensemble-average of the time evolution of the one-body distribution function is essentially equivalent to the solution of Vlasov equation which does not have any restriction on the shape of wave packets. This new model is called AMD-V. Although AMD-V is equivalent to Vlasov equation in the instantaneous time evolution of the one-body distribution function for an AMD wave function, AMD-V describes the branching into channels and the fluctuation of the mean field which are caused by the spreading or the splitting of the single-particle wave function. The second purpose of this report is to show the drastic effect of this new stochastic process of wave packet splitting on the dynamics of heavy ion collisions, especially in the fragmentation mechanism. We take the 40 Ca + 40 Ca system at the incident energy 35 MeV/nucleon. It will be shown that the reproduction of data by the AMD-V calculation is surprisingly good. We will see that the effect of the wave packet diffusion is crucially important to remove the spurious binary feature of the AMD calculation and to enable the multi-fragment final state. (J.P.N.)
Numerical study of the evolution of a magnetized plasma by means of a hybrid model
Energy Technology Data Exchange (ETDEWEB)
Dinu, L [Institutul de Matematica, Bucharest (Romania); Vlad, M [Institutul de Fizica si Tehnologia Aparatelor cu Radiatii, Bucharest (Romania)
1979-01-01
A numerical solution of the Vlasov-fluid model describing a time and space plasma evolution is presented. This should be compared with J.P. Frjedberg's analysis (1), (2) which provides growth rates for instabilities and some stability criteria.
Nonadiabatic quantum Vlasov equation for Schwinger pair production
International Nuclear Information System (INIS)
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
Large Time Behavior of the Vlasov-Poisson-Boltzmann System
Directory of Open Access Journals (Sweden)
Li Li
2013-01-01
Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.
Local WKB dispersion relation for the Vlasov-Maxwell equations
International Nuclear Information System (INIS)
Berk, H.L.; Dominguez, R.R.
1982-10-01
A formalism for analyzing systems of integral equations, based on the Wentzel-Kramers-Brillouin (WKB) approximation, is applied to the Vlasov-Maxwell integral equations in an arbitrary-β, spatially inhomogenous plasma model. It is shown that when treating frequencies comparable with and larger than the cyclotron frequency, relevant new terms must be accounted for to treat waves that depend upon local spatial gradients. For a specific model, the response for very short wavelength and high frequency is shown to reduce to the straight-line orbit approximation when the WKB rules are correctly followed
Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation
Energy Technology Data Exchange (ETDEWEB)
Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2016-08-10
A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.
Continuum Vlasov Simulation in Four Phase-space Dimensions
Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.
2010-11-01
In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).
Numerical Integration of the Vlasov Equation of Two Colliding Beams
Zorzano-Mier, M P
2000-01-01
In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...
Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits
International Nuclear Information System (INIS)
Warnock, R
2004-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
International Nuclear Information System (INIS)
Aunai, N.; Belmont, G.; Smets, R.; Chandre, C.; Tassi, E.; Morrison, P.J.; Back, A.; Guillebon, L. de; Qin, H.; Squire, J.; Tang, W.M.; Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.; Hervieux, P.A.; Manfredi, G.; Jasiak, R.; Kraus, M.; Mora, P.; Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Morrison, P.J.; Negulescu, C.; Pegoraro, F.; Bulanov, S.V.; Califano, F.; Fedeli, L.; Grassi, A.; Macchi, A.; Petri, J.; Pezzi, O.; Valentini, F.; Perrone, D.; Veltri, P.; Taccogna, F.; Minelli, P.; Thide, B.; Tamburini, F.; Throumoulopoulos, G.; Tasso, H.
2014-01-01
The Vlasov equation is used for the modelling of a wide range of phenomena occurring in natural and man-made plasmas, as well as in other many-particle systems displaying a collective behaviour. The purpose of this workshop is to bring together scientists to discuss the latest results on Vlasov theory and related applications. The topics discussed include: space plasmas, inertial confinement plasmas, magnetic confinement plasmas, quantum effects in collisionless plasmas, gravitational systems, Hamiltonian Vlasov dynamics, and computational and numerical approaches. This document gathers the slides of the presentations.
Numerical study of non-ideal Vlasov-BGK plasmas
International Nuclear Information System (INIS)
Levchenko, V.D.; Sigov, Y.S.; Premuda, F.
1995-01-01
A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code
Instability of the filtering method for Vlasov's equation
International Nuclear Information System (INIS)
Figua, H.; Bouchut, F.; Fijalkow, E.
1999-01-01
Klimas has introduced a smoothed Fourier-Fourier method. This method consists in convolving the original distribution function with a Gaussian distribution function, and, next, in solving the new system with a transformed splitting algorithm. Unfortunately, a second-order term appears in the new equation. In this work, it is studied how this term affects the numerical equation. In particular it is proven that instability occurs in the linear version of the Vlasov equation obtained by considering only free non-interacting particles. It is proved that the use of Fourier-Fourier transform is a fundamental requirement to solve this new equation. An important property is pointed out concerning the filtered distribution function in the transformed space. (K.A.)
On the Magnetic Shield for a Vlasov-Poisson Plasma
Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo
2017-12-01
We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.
Appearance of eigen modes for the linearized Vlasov-Poisson equation
International Nuclear Information System (INIS)
Degond, P.
1983-01-01
In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr
application of the galerkin-vlasov method to the flexural analysis
African Journals Online (AJOL)
user
In this research, the Galerkin-Vlasov variational method was used to present a general formulation of the Kirchhoff plate problem with simply supported edges and under distributed ..... analysed for elastic, dynamic and stability behaviour,.
On invariant measures for the Vlasov equation with a regular potential
International Nuclear Information System (INIS)
Zhidkov, P.E.
2003-01-01
We consider a Vlasov equation with a smooth bounded potential of interaction between particles in a class of measure-valued solutions and construct a measure which is invariant for this problem in a sense
Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining
International Nuclear Information System (INIS)
Assous, F.; Chaskalovic, J.
2014-01-01
There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)
Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas
Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.
2012-01-01
Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.
International Nuclear Information System (INIS)
Silin, I.; Buechner, J.
2003-01-01
Nonlinear triggering of the instability of thin current sheets is investigated by two-and-one-half- dimensional Vlasov code simulations. A global drift-resonant instability (DRI) is found, which results from the lower-hybrid-drift waves penetrating from the current sheet edges to the center where they resonantly interact with unmagnetized ions. This resonant nonlinear instability grows faster than a Kelvin-Helmholtz instability obtained in previous studies. The DRI is either asymmetric or symmetric mode or a combination of the two, depending on the relative phase of the lower-hybrid-drift waves at the edges of the current sheet. With increasing particle mass ratio the wavenumber of the fastest-growing mode increases as kL z ∼(m i /m e ) 1/2 /2 and the growth rate of the DRI saturates at a finite level
Integral propagator solvers for Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Donoso, J M; Rio, E del
2007-01-01
We briefly discuss the use of short-time integral propagators on solving the so-called Vlasov-Fokker-Planck equation for the dynamics of a distribution function. For this equation, the diffusion tensor is singular and the usual Gaussian representation of the short-time propagator is no longer valid. However, we prove that the path-integral approach on solving the equation is, in fact, reliable by means of our generalized propagator, which is obtained through the construction of an auxiliary solvable Fokker-Planck equation. The new representation of the grid-free advancing scheme describes the inherent cross- and self-diffusion processes, in both velocity and configuration spaces, in a natural manner, although these processes are not explicitly depicted in the differential equation. We also show that some splitting methods, as well as some finite-difference schemes, could fail in describing the aforementioned diffusion processes, governed in the whole phase space only by the velocity diffusion tensor. The short-time transition probability offers a stable and robust numerical algorithm that preserves the distribution positiveness and its norm, ensuring the smoothness of the evolving solution at any time step. (fast track communication)
Explicit analytical solution of the nonlinear Vlasov Poisson system
International Nuclear Information System (INIS)
Skarka, V.; Mahajan, S.M.; Fijalkow, E.
1993-10-01
In order to describe the time evolution of an inhomogeneous collisionless plasma the nonlinear Vlasov equation is solved perturbatively, using the subdynamics approach and the diagrammatic techniques. The solution is given in terms of a double perturbation series, one with respect to the nonlinearities and the other with respect to the interaction between particles. The infinite sum of interaction terms can be performed exactly due to the property of dynamical factorization. Following the methodology, the exact solution in each order with respect to nonlinearities is computed. For a choice of initial perturbation the first order exact solution is numerically integrated in order to find the local density excess. The approximate analytical solution is found to be in excellent agreement with exact numerical integration as well as with ab initio numerical simulations. Analytical computation gives a better insight into the problem and it has the advantage to be simpler, and also accessible in some range of parameters where it is difficult to find numerical solutions. (author). 27 refs, 12 figs
2D accelerator design for SITEX negative ion source
International Nuclear Information System (INIS)
Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.
1983-01-01
Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined
International Nuclear Information System (INIS)
Besse, Nicolas
2003-01-01
This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr
A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation
International Nuclear Information System (INIS)
Banks, J.W.; Hittinger, J.A.
2010-01-01
Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria
2016-12-17
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria; Samtaney, Ravi
2016-01-01
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Study of Vlasov instabilities of a gravitational plasma in realistic cosmology
International Nuclear Information System (INIS)
Baptista, J.P.
1982-11-01
A description is given of the cosmological model in which the perturbations will evolve and a bref survey relating to the evolution of the perturbations such as they have been described in recent works. The role of heavy neutrinos in the evolution of baryon perturbations is recalled. Vlasov's linearized system is established for a gravitational plasma. The classification of the gravitational field according to its components of helicity is given. The method of two timescales is introduced in order to solve Vlasov's linearized system. The standard solutions in helicity modes +-2, +-1, and 0 are studied successively [fr
Integration of the three-dimensional Vlasov equation for a magnetized plasma
International Nuclear Information System (INIS)
Cheng, C.Z.
1976-04-01
A second order splitting scheme is developed to integrate the three dimensional Vlasov equation for a plasma in a magnetic field. The integration of the Vlasov equation is divided into a series of intermediate steps and Fourier interpolation and the ASD method with a third order Taylor expansion are used to integrate the fractional equations. Numerical experiments related to cyclotron waves in 2 and 2 1 / 2 D are demonstrated with high accuracy and efficiency. The computer storage requirements are modest; for example, a typical 2D nonlinear electron plasma simulation requires only 4000 ''particles.''
New variational formulation of Maxwell-Vlasov and guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.
1983-07-01
A new variational formulation of Maxwell-Vlasov and related theories is given in terms of a common Lagrangian density for both the 'Vlasov particles' and the Maxwell fields. This formulation is used to derive in a consistent way, on the one hand, correct charge and current densities and, on the other, corresponding energy and energy flux densities. All of these densities generally show in addition to particle like contributions electric polarization and magnetization terms. By some limiting procedure collisionless guiding center theories with polarization drifts included are also treated. In this way local energy conservation laws are formulated for such theories, which has not been possible up to now. (orig.)
Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk; Nocera, L.
2002-01-01
Roč. 52, supplement D (2002), s. 65-69 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : Vlasov plasma, oscillator Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002
Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Frank, T.D.
2003-01-01
Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model
Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
2002-01-01
The Landau (exponentially) damped solutions of the Vlasov-Poisson equation Fourier transformed with respect to velocity are genuine eigenmodes corresponding to complex eigenvalues. In addition there exist solutions decaying faster than exponentially which exhibit no oscillatory behaviour. A new characterization is given of the initial conditions that give rise to these solutions together with a numerical demonstration
Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis
International Nuclear Information System (INIS)
Cary, J.R.
1979-08-01
Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples
Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1978-01-01
The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given
Numerical study of a Vlasov equation for systems with interacting particles
Energy Technology Data Exchange (ETDEWEB)
Herrera, Dianela; Curilef, Sergio [Departamento de Física, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta (Chile)
2015-03-10
We solve numerically the Vlasov equation for the self-gravitating sheet model. We used the method introduced by Cheng and Knorr [Comput Phys 22, 330-351 (1976)]. We discuss the quasi-stationary state for some thermodynamical observables, specifically the kinetic energy, whose trend is depicted for early evolution.
Wave Propagation in an Ion Beam-Plasma System
DEFF Research Database (Denmark)
Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens
1979-01-01
The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...
Ion Acoustic Waves in the Presence of Langmuir Oscillations
DEFF Research Database (Denmark)
Pécseli, Hans
1976-01-01
The dielectric function for long-wavelength, low-frequency ion acoustic waves in the presence of short-wavelength, high-frequency electron oscillations is presented, where the ions are described by the collision-free Vlasov equation. The effect of the electron oscillations can be appropriately...
Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL
Directory of Open Access Journals (Sweden)
Crestetto Anaïs
2013-01-01
Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.
Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field
Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton
2017-04-01
Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In
International Nuclear Information System (INIS)
Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward
2001-01-01
This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs
Progress on a Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits
Bassi, Gabriele; Warnock, Robert L
2005-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding). The time evolution of the phase space distribution is determined by solving the Vlasov-Maxwell equations in the time domain. This provides lower numerical noise than the macroparticle method, and allows the study of emittance degradation and microbunching in bunch compressors. We calculate the fields excited by the bunch in the lab frame using a formula simpler than that based on retarded potentials.* We have developed an algorithm for solving the Vlasov equation in the beam frame using arc length as the independent variable and our method of local characteristics (discretized Perron-Frobenius operator).We integrate in the interaction picture in the hope that we can adopt a fixed grid. The distribution function will be represented by B-splines, in a scheme preserving positivity and normalization of the distribution. The transformation between l...
One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet
International Nuclear Information System (INIS)
Harrison, Michael G.; Neukirch, Thomas
2009-01-01
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet
Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics
International Nuclear Information System (INIS)
Morrison, P. J.; Vittot, M.; Guillebon, L. de
2013-01-01
Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.
Energy loss of heavy ion beams in plasma
Energy Technology Data Exchange (ETDEWEB)
Okada, T; Hotta, T [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology
1997-12-31
The energy loss of heavy-ion beams (HIB) is studied by means of Vlasov theory and Particle-in-Cell (PIC) simulations in a plasma. The interaction of HIB with a plasma is of central importance for inertial confinement fusion (ICF). A number of studies on the HIB interaction with target plasma have been published. It is important for heavy-ion stopping that the effects of the non-linear interaction of HIB within the Vlasov theory are included. Reported are results of a numerical study of nonlinear effects to the stopping power for HIB in plasma. It is shown that the PIC simulations of collective effects of the stopping power are in a good agreement with the Vlasov theory. (author). 2 tabs., 1 fig., 5 refs.
On classical solutions of the relativistic Vlasov-Klein-Gordon system
Directory of Open Access Journals (Sweden)
Michael Kunzinger
2005-01-01
Full Text Available We consider a collisionless ensemble of classical particles coupled with a Klein-Gordon field. For the resulting nonlinear system of partial differential equations, the relativistic Vlasov-Klein-Gordon system, we prove local-in-time existence of classical solutions and a continuation criterion which says that a solution can blow up only if the particle momenta become large. We also show that classical solutions are global in time in the one-dimensional case.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)
2016-12-15
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
Energy Technology Data Exchange (ETDEWEB)
Squire, J.; Tang, W. M. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, H. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-08-15
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
Solving the Vlasov equation in two spatial dimensions with the Schrödinger method
Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos
2017-12-01
We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment
De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur
2018-06-01
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
International Nuclear Information System (INIS)
Pham, Huyên; Wei, Xiaoli
2016-01-01
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1987-10-01
The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs
Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations
Athanassoulis, Agissilaos
2018-03-01
We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1 + 1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.
L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang
2013-01-01
We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions
Siminos, Evangelos; Bénisti, Didier; Gremillet, Laurent
2011-05-01
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, N. When the advection term in the Vlasov equation is dominant, the convergence with N of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced by Crawford and Hislop [Ann. Phys. (NY) 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase-space vortices, compare our results with numerical simulations of the Vlasov-Poisson system, and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed. © 2011 American Physical Society
Formation of large-amplitude dust ion-acoustic shocks in dusty plasmas
International Nuclear Information System (INIS)
Eliasson, B.; Shukla, P.K.
2005-01-01
Theoretical and numerical studies of self-steepening and shock formation of large-amplitude dust ion-acoustic waves in dusty plasmas are presented. A comparison is made between the nondispersive two fluid model, which predicts the formation of large-amplitude compressive and rarefactive dust ion-acoustic shocks, Vlasov simulations, and recent laboratory experiments
Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna
International Nuclear Information System (INIS)
Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.
1984-12-01
Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated
Dynamical simulation of heavy ion collisions; VUU and QMD method
International Nuclear Information System (INIS)
Niita, Koji
1992-01-01
We review two simulation methods based on the Vlasov-Uehling-Uhlenbeck (VUU) equation and Quantum Molecular Dynamics (QMD), which are the most widely accepted theoretical framework for the description of intermediate-energy heavy-ion reactions. We show some results of the calculations and compare them with the experimental data. (author)
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
International Nuclear Information System (INIS)
Morrison, P.J.
1992-04-01
Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form
Hamiltonian field description of the one-dimensional Poisson-Vlasov equations
International Nuclear Information System (INIS)
Morrison, P.J.
1981-07-01
The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian form. A Poisson Bracket in terms of the phase space density, as sole dynamical variable, is presented. This Poisson bracket is not of the usual form, but possesses the commutator properties of antisymmetry, bilinearity, and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials are seen to yield a conventional (canonical) formulation. This formulation is discretized by expansion in terms of an arbitrary complete set of basis functions. In particular, a wave field representation is obtained
Vlasov equation for photons and quasi-particles in a plasma
International Nuclear Information System (INIS)
Mendonca, J.T.
2014-01-01
We show that, in quite general conditions, a Vlasov equation can be derived for photons in a medium. The same is true for other quasi-particles, such as plasmons, phonons or driftons, associated with other wave modes in a plasma. The range of validity of this equation is discussed. We also discuss the Landau resonance, and its relation with photon acceleration. Exact and approximate expressions for photon and quasi-particle Landau damping are stated. Photon and quasi-particle acceleration and trapping is also discussed. Specific applications to laser-plasma interaction, and to magnetic fusion turbulence, are considered as illustrations of the general approach. (author)
Trapped Electron Instability of Electron Plasma Waves: Vlasov simulations and theory
Berger, Richard; Chapman, Thomas; Brunner, Stephan
2013-10-01
The growth of sidebands of a large-amplitude electron plasma wave is studied with Vlasov simulations for a range of amplitudes (. 001 vph = +/-ωbe , where vph =ω0 /k0 and ωbe is the bounce frequency of a deeply trapped electron. In 2D simulations, we find that the instability persists and co-exists with the filamentation instability. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD.
Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O
2003-01-01
The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.
Non-modal stability analysis and transient growth in a magnetized Vlasov plasma
Ratushnaya, V.
2014-12-01
Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a 3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma and examine its evolution with an electrostatic approximation. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the emergence and development of plasma instabilities on the kinetic scale.
Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics
International Nuclear Information System (INIS)
Le Bourdiec, S.
2007-03-01
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Non-modal stability analysis and transient growth in a magnetized Vlasov plasma
Ratushnaya, V.; Samtaney, Ravi
2014-01-01
Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of instabilities. The physical origin, triggering mechanisms and fundamental understanding of many plasma instabilities, however, are still open problems. We investigate the stability properties of a 3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow the scope of our investigation to the case of Maxwellian plasma and examine its evolution with an electrostatic approximation. For the first time using a fully kinetic approach we show the emergence of the local instability, a transient growth, followed by classical Landau damping in a stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading to the algebraic growth of the perturbations using non-modal stability theory. The typical time scales of the obtained instabilities are of the order of several plasma periods. The first-order distribution function and the corresponding electric field are calculated and the dependence on the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the emergence and development of plasma instabilities on the kinetic scale.
Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism
International Nuclear Information System (INIS)
Back, A.
2011-11-01
A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)
Czech Academy of Sciences Publication Activity Database
Valentini, F.; Trávníček, Pavel; Califano, F.; Hellinger, Petr; Mangeney, A.
2007-01-01
Roč. 225, č. 1 (2007), s. 753-770 ISSN 0021-9991 Institutional research plan: CEZ:AV0Z30420517 Keywords : numerical simulations * hybrid simulations * Vlasov simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.372, year: 2007
A study of the disintegration of highly excited nuclei with the Vlasov-Uehling-Uhlenbeck equation
International Nuclear Information System (INIS)
Vinet, L.; Gregoire, C.; Schuck, P.; Remaud, B.; Sebille, F.
1987-01-01
The disintegration of hot and/or compressed nuclei is studied using (i) the Vlasov equation (VE) with imposed spherical symmetry, (ii) the VE in three dimensions (3D) and (iii) the VE in three dimensions supplemented by the Uehling-Uhlenbeck collision term (VUU). We find that case (ii) is slightly more unstable with respect to disintegration compared to case (i) whereas (iii) tends to make nuclei more stable. In all cases the thermal energies (15-20 MeV per nucleon) needed to totally disintegrate a nucleus seem to be higher than those found in static and hydrodynamic calculation. On the contrary, compressional energy very much helps disintegration. Some comments on the introduction of fluctuations and corresponding fragmentation are added. (orig.)
Second order oscillations of a Vlasov-Poisson plasma in the Fourier transformed space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
1991-05-01
The Vlasov-Poisson system of equations in the Fourier-transformed velocity space is studied. At first some results of the linear theory are reformulated: in the new representation the Van Kampen eigenmodes and their adjoint are found to be ordinary functions with convenient piece-wise continuity properties. A transparent derivation is given of the free-streaming temporal echo in terms of the kinematics of wave packets in the Fourier-transformed velocity space. This analysis is further extended to include Coulomb interactions which allows to establish a connection between the echo theory, the second order oscillations of Best and the phenomenon of linear sidebands. The calculation of the time evolution of the global second order electric field is performed in detail in the case of a Maxwellian equilibrium distribution function. It is concluded that the phenomenon of linear sidebands may be properly explained in terms of the intrinsic features of the equilibrium distribution function. (author) 5 figs., 32 refs
Fully nonlinear phenomenology of the Berk-Breizman augmentation of the Vlasov-Maxwell system
International Nuclear Information System (INIS)
Vann, R.G.L.; Dendy, R.O.; Rowlands, G.; Arber, T.D.; D'Ambrumenil, N.
2003-01-01
The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-consistent resonant excitation and damping of wave fields by evolving energetic particle populations in magnetic fusion plasmas. The key model parameters are the particle annihilation rate ν a , which drives bump-on-tail structure, and the linear wave damping rate γ d . A code, based on the piecewise parabolic method, is used to integrate the fully nonlinear Berk-Breizman system of equations across the whole (ν a ,γ d ) parameter space. The results of this code show that the system's behavior can be classified into one of four types, each of which occurs in a well-defined region of parameter space: chaotic, periodic, steady state, and damped. The corresponding evolution in (x,v) phase space is also examined
Asymptotic solution of the Vlasov and Poisson equations for an inhomogeneous plasma
International Nuclear Information System (INIS)
Croci, R.
1991-01-01
The asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter η goes to zero (the kernel becoming proportional to a Dirac δ function) are derived. This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on ηx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter. (Author)
Vlasov simulation of the relativistic effect on the breaking of large amplitude plasma waves
International Nuclear Information System (INIS)
Xu Hui; Sheng Zhengming; Zhang Jie
2007-01-01
The influence of relativistic and thermal effects on plasma wave breaking has been studied by solving the coupled Vlasov-Poisson equations. When the relativistic effect is not considered, the wave breaking will not occur, provided the initial perturbation is less than certain value as predicted previously, and the largest amplitude of the plasma wave will decrease with the increase of the initial temperature. When the relativistic effect is considered, wave breaking always occurs during the time evolution, irrespective of the initial perturbation amplitude. Yet the smaller the initial perturbation amplitude is, the longer is the time for wave breaking to occur. With large initial perturbations, wave breaking can always occur with the without the relativistic effect. However, the results are significantly different in the two cases. The thermal effects of electrons decrease the threshold value to initial amplitude for wave breaking and large phase velocity makes the nonlinear phenomenon occur more easily. (authors)
Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics
International Nuclear Information System (INIS)
Mashnik, S.G.; Maino, G.
1996-01-01
A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
Vlasov simulations of kinetic Alfvén waves at proton kinetic scales
Energy Technology Data Exchange (ETDEWEB)
Vásconez, C. L. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Quito (Ecuador); Valentini, F.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Camporeale, E. [Centrum Wiskunde and Informatica, Amsterdam (Netherlands)
2014-11-15
Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρ{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta β{sub p} = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and β{sub p} ≃ 1 (for which ρ{sub p} ≃ d{sub p}) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.
Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.
2018-02-01
Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.
Ozgan, Korhan; Daloglu, Ayse T.
2009-01-01
The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...
Directory of Open Access Journals (Sweden)
Emmanuel Frenod
2002-01-01
Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.
The Vlasov-Navier-Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria
Glass, Olivier; Han-Kwan, Daniel; Moussa, Ayman
2018-05-01
In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.
Rein, Gerhard; Rendall, Alan D.
1993-01-01
The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newtonian model of the universe. These homogeneous states can be constructed explicitly, and we consider d...
Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator
Directory of Open Access Journals (Sweden)
D. Pokhotelov
2013-12-01
Full Text Available A novel hybrid-Vlasov code, Vlasiator, is developed for global simulations of magnetospheric plasma kinetics. The code is applied to model the collisionless bow shock on scales of the Earth's magnetosphere in two spatial dimensions and three dimensions in velocity space retrieving ion distribution functions over the entire foreshock and magnetosheath regions with unprecedented detail. The hybrid-Vlasov approach produces noise-free uniformly discretized ion distribution functions comparable to those measured in situ by spacecraft. Vlasiator can reproduce features of the ion foreshock and magnetosheath well known from spacecraft observations, such as compressional magnetosonic waves generated by backstreaming ion populations in the foreshock and mirror modes in the magnetosheath. An overview of ion distributions from various regions of the bow shock is presented, demonstrating the great opportunities for comparison with multi-spacecraft observations.
Fully kinetic simulation of ion acoustic and dust-ion acoustic waves
International Nuclear Information System (INIS)
Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.
2011-01-01
A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
International Nuclear Information System (INIS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre
2008-01-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji-Ali, Abdul-Lateef
2017-09-12
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.
Mathematic study and numerical implantation of the Vlasov-Darwin model
International Nuclear Information System (INIS)
Sonnendrucker, E.
1994-12-01
Numerical simulation of some phenomena in plasma physics, or more generally in electromagnetism, can be more easily done using approximate models of Maxwell equations such as the Darwin model in which the transverse part of the displacement current in the Ampere equation is neglected, or such as the static model in which the time derivatives are neglected. In this note, the Darwin model is presented first, and then an asymptotic analysis of Maxwell equations is given with limit conditions of perfect conductor on one part of the side, and Silver-Muller absorbing conditions on the other part. This allows to obtain a variational formulation for the Darwin model which is a good approximation of Maxwell equations. A variational formulation for the quasi-static model is also obtained. In a second part this implantation is described using a 2-D finite element method coupled with a particulate method for the Vlasov equations which leads to numerical results allowing a determination of the different models application. (J.S.). 2 refs
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.
2017-08-01
Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of kFeng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.
Study of energy deposition in heavy-ion reactions
International Nuclear Information System (INIS)
Mota, V. De La; Abgrall, P.; Sebille, F.; Haddad, F.
1993-01-01
An investigation of energy deposition mechanisms in heavy-ion reactions at intermediate energies is presented. Theoretical simulations are performed in the framework of the semi-classical Landau-Vlasov model. They emphasize the influence of the initial non-equilibrium conditions, and the connection with the incident energy is discussed. Characteristic times involved in the energy thermalization process and finite size effects are analyzed. (authors) 20 refs., 4 figs
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas
Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu
2017-02-01
Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
Investigation of Ion Acoustic Waves in Collisionless Plasmas
DEFF Research Database (Denmark)
Christoffersen, G. B.; Jensen, Vagn Orla; Michelsen, Poul
1974-01-01
The Green's functions for the linearized ion Vlasov equation with a given boundary value are derived. The propagation properties of ion acoustic waves are calculated by performing convolution integrals over the Green's functions. For Te/Ti less than about 3 it is concluded that the collective...... interaction is very weak and that the propagation properties are determined almost completely by freely streaming ions. The wave damping, being due to phase mixing, is determined by the width of the perturbed distribution function rather than by the slope of the undisturbed distribution function at the phase...
Taitano, W. T.; Chacón, L.; Simakov, A. N.
2018-07-01
We consider a 1D-2V Vlasov-Fokker-Planck multi-species ionic description coupled to fluid electrons. We address temporal stiffness with implicit time stepping, suitably preconditioned. To address temperature disparity in time and space, we extend the conservative adaptive velocity-space discretization scheme proposed in [Taitano et al., J. Comput. Phys., 318, 391-420, (2016)] to a spatially inhomogeneous system. In this approach, we normalize the velocity-space coordinate to a temporally and spatially varying local characteristic speed per species. We explicitly consider the resulting inertial terms in the Vlasov equation, and derive a discrete formulation that conserves mass, momentum, and energy up to a prescribed nonlinear tolerance upon convergence. Our conservation strategy employs nonlinear constraints to enforce these properties discretely for both the Vlasov operator and the Fokker-Planck collision operator. Numerical examples of varying degrees of complexity, including shock-wave propagation, demonstrate the favorable efficiency and accuracy properties of the scheme.
Energy Technology Data Exchange (ETDEWEB)
Le Bourdiec, S
2007-03-15
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
2004-02-01
Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r
International Nuclear Information System (INIS)
Winter, J.
1985-01-01
A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established
Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.
2018-01-01
The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.
Nonrelativistic theory of heavy-ion collisions
International Nuclear Information System (INIS)
Bertsch, G.
1984-01-01
A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures
Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations
International Nuclear Information System (INIS)
Finn, J.M.; Sudan, R.N.
We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed
International Nuclear Information System (INIS)
Davidson, R.C.; Chen, C.
1997-08-01
A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
1999-05-01
Full Text Available The present analysis makes use of the Vlasov-Maxwell equations to develop a fully kinetic description of the electrostatic, electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating in the z direction with average axial momentum γ_{b}m_{b}β_{b}c through a stationary population of background electrons. The ion beam has characteristic radius r_{b} and is treated as continuous in the z direction, and the applied transverse focusing force on the beam ions is modeled by F_{foc}^{b}=-γ_{b}m_{b}ω_{βb}^{0^{2}}x_{⊥} in the smooth-focusing approximation. Here, ω_{βb}^{0}=const is the effective betatron frequency associated with the applied focusing field, x_{⊥} is the transverse displacement from the beam axis, (γ_{b}-1m_{b}c^{2} is the ion kinetic energy, and V_{b}=β_{b}c is the average axial velocity, where γ_{b}=(1-β_{b}^{2}^{-1/2}. Furthermore, the ion motion in the beam frame is assumed to be nonrelativistic, and the electron motion in the laboratory frame is assumed to be nonrelativistic. The ion charge and number density are denoted by +Z_{b}e and n_{b}, and the electron charge and number density by -e and n_{e}. For Z_{b}n_{b}>n_{e}, the electrons are electrostatically confined in the transverse direction by the space-charge potential φ produced by the excess ion charge. The equilibrium and stability analysis retains the effects of finite radial geometry transverse to the beam propagation direction, including the presence of a perfectly conducting cylindrical wall located at radius r=r_{w}. In addition, the analysis assumes perturbations with long axial wavelength, k_{z}^{2}r_{b}^{2}≪1, and sufficiently high frequency that |ω/k_{z}|≫v_{Tez} and |ω/k_{z}-V_{b}|≫v_{Tbz}, where v_{Tez} and v_{Tbz} are the characteristic axial thermal speeds of the background electrons and beam ions. In this regime, Landau damping (in axial velocity space v_{z} by resonant ions and
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
Energy Technology Data Exchange (ETDEWEB)
Perin, M.; Chandre, C.; Tassi, E. [Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille (France); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.
Ghorbanpour Arani, A.; Zamani, M. H.
2018-06-01
The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2009-01-01
Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.
Magnetic fusion with high energy self-colliding ion beams
International Nuclear Information System (INIS)
Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.
1992-06-01
Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams
Magnetic fusion with high energy self-colliding ion beams
International Nuclear Information System (INIS)
Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.
1993-01-01
Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams
Nonlinear localized dust acoustic waves in a charge varying dusty plasma with nonthermal ions
International Nuclear Information System (INIS)
Tribeche, Mouloud; Amour, Rabia
2007-01-01
A numerical investigation is presented to show the existence, formation, and possible realization of large-amplitude dust acoustic (DA) solitary waves in a charge varying dusty plasma with nonthermal ions. These nonlinear localized structures are self-consistent solutions of the collisionless Vlasov equation with a population of fast particles. The spatial patterns of the variable charge DA solitary wave are significantly modified by the nonthermal effects. The results complement and provide new insights into previously published results on this problem
Afeyan, Bedros; Larson, David; Shadwick, Bradley; Sydora, Richard
2017-10-01
We compare various ways of solving the Vlasov-Poisson and Vlasov-Maxwell equations on rather demanding nonlinear kinetic phenomena associated with KEEN and KEEPN waves. KEEN stands for Kinetic, Electrostatic, Electron Nonlinear, and KEEPN, for electron-positron or pair plasmas analogs. Because these self-organized phase space structures are not steady-state, or single mode, or fluid or low order moment equation limited, typical techniques with low resolution or too much noise will distort the answer too much, too soon, and fail. This will be shown via Penrose criteria triggers for instability at the formation stage as well as particle orbit statistics in fully formed KEEN waves and KEEN-KEEN and KEEN-EPW interacting states. We will argue that PASTEL is a viable alternative to traditional methods with reasonable chances of success in higher dimensions. Work supported by a Grant from AFOSR PEEP.
International Nuclear Information System (INIS)
Skarka, V.; Coveney, P.V.
1990-01-01
We solve perturbatively the linearised Vlasov equation describing inhomogeneous collisionless plasmas evolving in time-dependent external fields. The method employs an explicitly time-dependent formalism and is facilitated by the used of diagrammatic techniques. It leads to a straightforward algorithm for computing the contribution to the solution, order by order in the external field. In the previous paper we provided the solution to first order; higher orders are described in the present paper. (author)
Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L
1986-01-06
The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
International Nuclear Information System (INIS)
Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan
2015-01-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave
Herda, Maxime; Rodrigues, L. Miguel
2018-03-01
The present contribution investigates the dynamics generated by the two-dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady inhomogeneous background of opposite charges. We provide global in time estimates that are uniform with respect to initial data taken in a bounded set of a weighted L^2 space, and where dependencies on the mean-free path τ and the Debye length δ are made explicit. In our analysis the mean free path covers the full range of possible values: from the regime of evanescent collisions τ → ∞ to the strongly collisional regime τ → 0. As a counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is used to close our nonlinear estimates. Accordingly we pay a special attention to relax as much as possible the τ -dependent constraint on δ ensuring exponential decay with explicit τ -dependent rates towards the stationary solution. In the strongly collisional limit τ → 0, we also examine all possible asymptotic regimes selected by a choice of observation time scale. Here also, our emphasis is on strong convergence, uniformity with respect to time and to initial data in bounded sets of a L^2 space. Our proofs rely on a detailed study of the nonlinear elliptic equation defining stationary solutions and a careful tracking and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.
Turbulent transport of energetic ions
International Nuclear Information System (INIS)
Dannert, Tilman; Hauff, Thilo; Jenko, Frank; Guenter, Sibylle
2006-01-01
Approaching ITER operation, the issue of anomalous transport of fast particles becomes more and more important. This is partly because the ITER heating and current drive system relies heavily on neutral beam injection. Moreover burning plasmas are heated by fast fusion α particles.Fusion α particles are characterised by a fixed energy and an isotropic velocity distribution. Therefore they have gyroradii one magnitude larger than the thermal ions. The dependency of the particle diffusion of α test particles on the Kubo number K = VExBτc/λc (VExB mean E x B velocity, τc, λc correlation time and length of the turbulent potential) is presented. For different turbulent regimes, different dependency of the diffusion on the gyroradius is found. For large Kubo numbers, the transport is found to remain constant for gyroradii up to the correlation length of the potential, whereas it is drastically reduced in the small Kubo number regime.In the second part, a model for beam ions injected along the equilibrium magnetic field is described. The beam ions are treated gyrokinetically in a self-consistent way with the equilibrium distribution function taken as a shifted Maxwellian. The implications of such a model for the Vlasov equation, the field equations, and the calculation of moments and fluxes are discussed. Linear and nonlinear results, obtained with the gyrokinetic flux tube code GENE show the existence of a new instability driven by fast beam ions. The instability has a maximum growth rate at perpendicular wave numbers of kyρs ∼ 0.15 and depends mainly on the beam velocity and the density gradient of the beam ions. This instability leads to a replacement of bulk ion particle transport by fast ion particle transport, connected to a strongly enhanced heat flux. In the presence of this instability, the turbulent particle and heat transport is dominated by fast ions
Direct measurement of the plasma response to electrostatic ion waves
International Nuclear Information System (INIS)
Sarfaty, M.; DeSouza-Machado, S.; Skiff, F.
1995-01-01
Plasma wave-wave and wave-particle interactions are studied in a linear magnetized plasma. The relatively quiet plasma is produced by an argon gas-discharge. The plasma density is n e ≅ 10 9 cm -3 and the electron/ion temperatures are T e ≅ 5eV and T i = 0.05eV. A grid and a four ring antenna, both mounted on a scanning carriage, are used to launch electrostatic ion waves in the plasma. Laser Induced Fluorescence measurements of both the linear and the nonlinear plasma response to the wave fields are presented. The Vlasov-Poisson equations are used to explain the measured zero, first and second order terms of the ion distribution function in the presence of wave fields. In addition to the broadening (heating) of the ion distribution as the authors increase the wave amplitudes, induced plasma flows are observed both along and across the magnetic field
Ion species stratification within strong shocks in two-ion plasmas
Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis
2018-03-01
Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.
New Insight into Short-Wavelength Solar Wind Fluctuations from Vlasov Theory
Sahraoui, Fouad; Belmont, G.; Goldstein, M. L.
2012-01-01
The nature of solar wind (SW) turbulence below the proton gyroscale is a topic that is being investigated extensively nowadays, both theoretically and observationally. Although recent observations gave evidence of the dominance of kinetic Alfven waves (KAWs) at sub-ion scales with omega omega (sub ci)) is more relevant. Here, we study key properties of the short-wavelength plasma modes under limited, but realistic, SW conditions, Typically Beta(sub i) approx. > Beta (sub e) 1 and for high oblique angles of propagation 80 deg theory, we discuss the relevance of each plasma mode (fast, Bernstein, KAW, whistler) in carrying the energy cascade down to electron scales. We show, in particular, that the shear Alfven mode (known in the magnetohydrodynamic limit) extends at scales kappa rho (sub i) approx. > 1 to frequencies either larger or smaller than omega (sub ci), depending on the anisotropy kappa (parallel )/ kappa(perpendicular). This extension into small scales is more readily called whistler (omega > omega (sub ci)) or KAW (omega < omega (sub ci)) although the mode is essentially the same. This contrasts with the well-accepted idea that the whistler branch always develops as a continuation at high frequencies of the fast magnetosonic mode. We show, furthermore, that the whistler branch is more damped than the KAW one, which makes the latter the more relevant candidate to carry the energy cascade down to electron scales. We discuss how these new findings may facilitate resolution of the controversy concerning the nature of the small-scale turbulence, and we discuss the implications for present and future spacecraft wave measurements in the SW.
Vlasov equilibrium and nonlocal stability properties of an inhomogeneous plasma column
International Nuclear Information System (INIS)
Davidson, R.C.
1976-01-01
A fully kinetic, nonlocal, matrix dispersion equation is derived for electrostatic perturbations about a spatially nonuniform cylindrical plasma equilibrium. The analysis is carried out for the class of radially confined rigid-rotor equilibria described by f 0 /subj/(x,v) = (n/subj/m/subj//2πT/subj/) F (H/sub perpendicular//T/subj/- ω/subj/P/sub theta//T/subj/,v/subz/), where P/sub theta/ is the canonical angular momentum, v/subz/ is the axial velocity, H/sub perpendicular/ is the perpendicular energy, and n/subj/, T/subj/, and ω/subj/ are constants. Assuming equilibrium charge neutrality and negligible spatial variation in the axial magnetic field B 0 e/subz/, it is shown that the particle trajectories (in the equilibrium electric and magnetic fields) and the orbit integrals required in the stability analysis can be evaluated in closed form. Expanding the perturbed electrostatic potential in terms of the vacuum eigenfunctions ]J/subl/(lambda/subn/r) closing-brace for the conducting cylinder leads to a matrix dispersion equation of the form det[delta/subn//sub prime//subn+ Σ/subj/chi/subj//subn//sub prime//subn(ω)]=0, where the susceptibility chi/subj//subn//sub prime//subn(ω) is expressed as a phase-space integral over f 0 /subj/(x,v) and known functions of ω, r lambda/subn/, etc. The limiting case of strongly magnetized electrons and unmagnetized ions is considered together with a preliminary application to the lower-hyprid-drift instability
Experimental program based on a High Beta Q Machine. Final report, 1 May 1978-30 September 1980
International Nuclear Information System (INIS)
Ribe, F.L.
1980-07-01
This report summarizes work done in designing and constructing the High Beta Q Machine from the inception of the work in May 1978 until the present time. It is a 3-m long, low-compression theta pinch with a 22-cm-diameter segmented compression coil with a minimum axial periodicity length of 10 cm. This capability of driving the machine as a simple, low-density theta pinch, and also of independently applying periodic magnetic fields before or after formation of the plasma column, gives the device considerable flexibility. Reported here is the construction and testing of the machine, development of its diagnostics and initial measurements of the plasma at early times in the duration of the crowbarred magnetic field. The experimental effort has been paralleled by theoretical work to model the diffuse profile, collisionless plasma in its response to the periodic RF magnetic fields. The model chosen is the Freidberg-Pearlstein Vlasov-fluid model which provides an MHD-like description but with accounting of ion kinetic effects over diffuse equilibrium profiles. A computer code has been developed to accurately calculate the resistive response of the plasma column, giving the power absorption by ion Landau damping and more recently, ion-cyclotron damping
Colombo, Maria
2017-01-01
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
The theory and simulation of relativistic electron beam transport in the ion-focused regime
International Nuclear Information System (INIS)
Swanekamp, S.B.; Holloway, J.P.; Kammash, T.; Gilgenbach, R.M.
1992-01-01
Several recent experiments involving relativistic electron beam (REB) transport in plasma channels show two density regimes for efficient transport; a low-density regime known as the ion-focused regime (IFR) and a high-pressure regime. The results obtained in this paper use three separate models to explain the dependency of REB transport efficiency on the plasma density in the IFR. Conditions for efficient beam transport are determined by examining equilibrium solutions of the Vlasov--Maxwell equations under conditions relevant to IFR transport. The dynamic force balance required for efficient IFR transport is studied using the particle-in-cell (PIC) method. These simulations provide new insight into the transient beam front physics as well as the dynamic approach to IFR equilibrium. Nonlinear solutions to the beam envelope are constructed to explain oscillations in the beam envelope observed in the PIC simulations but not contained in the Vlasov equilibrium analysis. A test particle analysis is also developed as a method to visualize equilibrium solutions of the Vlasov equation. This not only provides further insight into the transport mechanism but also illustrates the connections between the three theories used to describe IFR transport. Separately these models provide valuable information about transverse beam confinement; together they provide a clear physical understanding of REB transport in the IFR
Coherent state methods for semi-classical heavy-ion physics
International Nuclear Information System (INIS)
Remaud, B.; Sebille, F.; Raffray, Y.
1985-01-01
A semi-classical model of many fermion systems is developed in view of solving the Vlasov equation; it provides an unified description of both static and dynamic properties of the system. The phase space distribution functions are written as convolution products of generalized coherent state distributions with semi-probabilistic weight functions. The generalized coherent states are defined from the local constants of motion of the dynamical system; they may reduce to the usuel ones (eigen states of the annihilation operator) only at the harmonic limit. Solving the Vlasov equation consists in two steps: (i) search for weight functions which properly describe the initial density distributions (ii) calculation of the evolutions of the coherent state set which acts as a moving basis for the Vlasov equation solutions. Sample applications to statics are analyzed: fermions in a harmonic field, self-consistent nuclear slabs. Outlooks of dynamical applications are discussed with a special attention to the fast nucleon emission in heavy-ion reactions
Stimulated ion Compton scattering instability of whistlers in plasmas
International Nuclear Information System (INIS)
Shukla, P. K.; Shukla, Nitin; Stenflo, L.
2006-01-01
The nonlinear interactions between magnetic field-aligned broadband whistler wave packets (hereafter referred to as whistlerons) and ion quasimodes in magnetized plasmas are considered. By treating the whistlerons as quasiparticles, their nonlinear propagation in a slowly varying medium supported by ion quasimode density perturbations is studied. A nonlinear dispersion relation within the framework of the wave-kinetic (for the whistlerons) and Vlasov (for the ion quasimodes) descriptions is derived. The dispersion relation admits a kinetic modulational instability. The growth rate of the latter is presented. The present result can improve our understanding of the nonlinear propagation of incoherent whistlers, which have been frequently observed in the Earth's magnetosphere as well as in laboratory plasmas
International Nuclear Information System (INIS)
Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas
2013-01-01
We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ 1D 2 ) 3/2 remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ J = (5π/G) 1/2 Q −1/3 ρ dm −1/6 . The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10 −6 M ⊙
Central collisions of heavy ion physics
International Nuclear Information System (INIS)
Fung, S.Y.
1985-09-01
The research program concentrates on correlation studies in central collisions. The investigation includes: multi-pion production, total event structure, application of the Vlasov-Uehling-Uhlenbeck model (VUU) to the data and energy dependence of thermalization and nuclear stopping power. The initial analysis on the Uranium-Uranium exposure at 960 MeV/nucleon is completed. In place of the conventional sphericity analysis, global transverse momentum as a function of rapidity and azimuthal angle is a more appropriate parameter for these data in the total event analysis. This transverse momentum analysis is extended to other projectile/target systems with initial results for Ar on KCl, BaI 2 , Pb, and U on U. In the area of pion production, results for Kr on RbBr at the Darmstadt Heavy Ion Study are reported. Early findings that the source size is related to the emitted pion momentum is confirmed. 17 refs
Kinetic description of a wiggler pumped ion-channel free electron laser
International Nuclear Information System (INIS)
Mehdian, H; Raghavi, A
2006-01-01
The wiggler pumped ion-channel free electron laser (WPIC-FEL) is treated and the classes of possible single-particle electron trajectories in this configuration are discussed in the paper. A new region of orbital stability is seen in the negative mass regime. A kinetic description of WPIC-FEL is given. Vlasov-Maxwell equations are solved to get the linear gain in a tenuous-beam limit, where the beam plasma frequency is much less than the radiation frequency and the self-field effects can be ignored
Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos
2017-09-01
The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.
Low Mach-number collisionless electrostatic shocks and associated ion acceleration
Pusztai, I.; TenBarge, J. M.; Csapó, A. N.; Juno, J.; Hakim, A.; Yi, L.; Fülöp, T.
2018-03-01
The existence and properties of low Mach-number (M≳ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. Using this semi-analytical model, we study the effect of the electron-to-ion temperature ratio and the presence of impurities on both the maximum shock potential and the Mach number. We find that even a small amount of impurities can influence the shock properties significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.
International Nuclear Information System (INIS)
Rostoker, Norman; Qerushi, Artan
2002-01-01
Self-consistent solutions of the Vlasov-Maxwell equations are obtained. They involve rigid rotor distributions. This selection is justified on physical grounds. For this selection the Vlasov equation can be replaced by moment equations which terminate without any additional assumptions. For one-dimensional equilibria with one type of ion these equations have exact solutions. A complete equilibrium solution appropriate to a field reversed configuration with rotation can be obtained by solving a generalized Grad-Shafranov equation for the flux function. From this solution all other physical quantities can be determined. A Green's function method is developed to solve this equation, which provides a basis for an iterative solution. This method has the advantage that at every iteration the boundary conditions are satisfied. In this paper cylindrical geometry with one space dimension and one type of ion is considered, where analytic solutions are available. The convergence of the Green's function method is established. For this nonlinear problem there is usually more than one solution for completely specified boundary conditions (bifurcation). The present method selects one solution. It is applicable to equilibria with many ion species and to two dimensions
The dynamics of electron and ion holes in a collisionless plasma
Directory of Open Access Journals (Sweden)
B. Eliasson
2005-01-01
Full Text Available We present a review of recent analytical and numerical studies of the dynamics of electron and ion holes in a collisionless plasma. The new results are based on the class of analytic solutions which were found by Schamel more than three decades ago, and which here work as initial conditions to numerical simulations of the dynamics of ion and electron holes and their interaction with radiation and the background plasma. Our analytic and numerical studies reveal that ion holes in an electron-ion plasma can trap Langmuir waves, due the local electron density depletion associated with the negative ion hole potential. Since the scale-length of the ion holes are on a relatively small Debye scale, the trapped Langmuir waves are Landau damped. We also find that colliding ion holes accelerate electron streams by the negative ion hole potentials, and that these streams of electrons excite Langmuir waves due to a streaming instability. In our Vlasov simulation of two colliding ion holes, the holes survive the collision and after the collision, the electron distribution becomes flat-topped between the two ion holes due to the ion hole potentials which work as potential barriers for low-energy electrons. Our study of the dynamics between electron holes and the ion background reveals that standing electron holes can be accelerated by the self-created ion cavity owing to the positive electron hole potential. Vlasov simulations show that electron holes are repelled by ion density minima and attracted by ion density maxima. We also present an extension of Schamel's theory to relativistically hot plasmas, where the relativistic mass increase of the accelerated electrons have a dramatic effect on the electron hole, with an increase in the electron hole potential and in the width of the electron hole. A study of the interaction between electromagnetic waves with relativistic electron holes shows that electromagnetic waves can be both linearly and nonlinearly
Stability of the magnetosonic wave in a cometary multi-ion plasma
Sreekala, G.; Varghese, Anu; Jayakumar, Neethu; Michael, Manesh; Sebastian, Sijo; Venugopal, Chandu
2017-05-01
A generalized dispersion relation of the magnetosonic wave in a four component plasma consisting of electrons and hydrogen ions of solar origin and positively and negatively charged oxygen ions of cometary origin has been derived by using the Vlasov-Maxwell kinetic model. Parallel to the magnetic field, the hydrogen and electron components are modeled by a drifting Maxwellian distribution; perpendicular to the magnetic field, we use a loss cone type distribution obtained by the subtraction of two Maxwellian distributions having different temperatures. The effect of change in the drift velocity of streaming components and number densities and temperatures of each species in driving the instability has been analyzed both analytically and numerically. For typical parameters at comet Halley, we find that both positively and negatively charged oxygen ions can drive the wave unstable.
Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U
Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team
2017-10-01
Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.
International Nuclear Information System (INIS)
Salzborn, Erhard; Melchert, Frank
2000-01-01
Collisions between ions belong to the elementary processes occurring in all types of plasmas. In this article we give a short overview about collisions involving one-electron systems. For collisions involving multiply-charged ions we limit the discussion to one specific quasi-one-electron system. (author)
Effect of pion mean-field on properties of pions and kaons from heavy-ion collisions
International Nuclear Information System (INIS)
Zheng Yuming; Chu Zili; Wang Hui; Sa Benhao
1996-01-01
The Relativistic Vlasov-Uehling-Uhlenbeck (RVUU) model is used to study the properties of pions and kaons produced in heavy ion collisions. We include the nuclear medium effect on kaon and pion in the model, and simulate pion production and subthreshold kaon production in Kr + Zr reactions at 1 GeV/u. The calculated results show that the attractive pion optical potential changes the final-state pion momentum spectrum, enhancing the yield of pions with low transverse momenta. At the same time it also increases the kaon abundance and modifies the kaon momentum distribution
Semi-classical approach of heavy ion physics at intermediate energies
International Nuclear Information System (INIS)
Vinet, L.
1986-01-01
The study of heavy ion collisions at intermediate energies (10 to 100 MeV/A), can be undertaken by a semi-classical approach: the nuclear Vlasov equation. It is possible to decompose the one body distribution function over a suitable coherent state basis for dynamical studies. This method is applied for colliding slabs, and the results are compared with those of TDHF. With imposed spherical symmetry, the isoscalar monopole resonance, evaporation, formation of bubble nuclei and total evaporation, are obtained. The extension to three dimensions and to the Landau-Vlasov equation through the residual interaction included in the Uehling-Uhlenbeck collision term, permits a general study of the dynamical instability of highly excited nuclei. The application to heavy ion collisions gives a description of both the main mechanisms of reaction, and the ineffective fusion for the system 40 Ar (35 MeV/A) + 27 Al. Alpha particle multiplicities in correlation with evaporated residues in the experience 40 Ar (27 MeV/A) + 27 Al, have been extracted. From theoretical results, different scenari are proposed (entrance channel limitation and exit channel disintegration), in order to explain the disappearance of the fusion component observed for this system at energies above 32 MeV/A [fr
Drift Compression and Final Focus Options for Heavy Ion Fusion
International Nuclear Information System (INIS)
Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.
2005-01-01
A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot
Giant dipole modes in heavy-ion reactions
International Nuclear Information System (INIS)
Suraud, E.; Schuck, P.
1988-07-01
A detailed study of the excitation of giant dipole modes (GDR) in intermediate energy heavy-ion collisions is presented in the framework of a full (non linearized) Landau-Vlasov equation. After having recalled the basic inputs of this dynamical formalism, within insisting upon the limitations of the Uehling-Uhlenbeck collision integral and upon the introduction of a realistic (isospin dependant) effective interaction, we present our tools for analysing the GDR in the simple case of isolated nuclei. We then pass on to simulations of collisions and discuss in some detail isospin modes in the model 12 Be + 12 C reaction. Results obtained for the energy of the excited dipole mode are in agreement with what is expected for excited, rotating, giant dipole oscillations in deformed nuclei
Modelling RF-plasma interaction in ECR ion sources
Directory of Open Access Journals (Sweden)
Mascali David
2017-01-01
Full Text Available This paper describes three-dimensional self-consistent numerical simulations of wave propagation in magnetoplasmas of Electron cyclotron resonance ion sources (ECRIS. Numerical results can give useful information on the distribution of the absorbed RF power and/or efficiency of RF heating, especially in the case of alternative schemes such as mode-conversion based heating scenarios. Ray-tracing approximation is allowed only for small wavelength compared to the system scale lengths: as a consequence, full-wave solutions of Maxwell-Vlasov equation must be taken into account in compact and strongly inhomogeneous ECRIS plasmas. This contribution presents a multi-scale temporal domains approach for simultaneously including RF dynamics and plasma kinetics in a “cold-plasma”, and some perspectives for “hot-plasma” implementation. The presented results rely with the attempt to establish a modal-conversion scenario of OXB-type in double frequency heating inside an ECRIS testbench.
Delzanno, G. L.
2015-11-01
A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.
Fast-ion stabilization of tokamak plasma turbulence
Di Siena, A.; Görler, T.; Doerk, H.; Poli, E.; Bilato, R.
2018-05-01
A significant reduction of the turbulence-induced anomalous heat transport has been observed in recent studies of magnetically confined plasmas in the presence of a significant fast-ion fractions. Therefore, the control of fast-ion populations with external heating might open the way to more optimistic scenarios for future fusion devices. However, little is known about the parameter range of relevance of these fast-ion effects which are often only highlighted in correlation with substantial electromagnetic fluctuations. Here, a significant fast ion induced stabilization is also found in both linear and nonlinear electrostatic gyrokinetic simulations which cannot be explained with the conventional assumptions based on pressure profile and dilution effects. Strong wave-fast particle resonant interactions are observed for realistic parameters where the fast particle trace approximation clearly failed and explained with the help of a reduced Vlasov model. In contrast to previous interpretations, fast particles can actively modify the Poisson field equation—even at low fast particle densities where dilution tends to be negligible and at relatively high temperatures, i.e. T < 30T e . Further key parameters controlling the role of the fast ions are identified in the following and various ways of further optimizing their beneficial impact are explored. Finally, possible extensions into the electromagnetic regime are briefly discussed and the relevance of these findings for ITER standard scenarios is highlighted.
International Nuclear Information System (INIS)
Dearnaley, Geoffrey
1975-01-01
First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals
Speedy motions of a body immersed in an infinitely extended medium
Buttà, P.; Ferrari, G.; Marchioro, C.
2009-01-01
We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Psi. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound "runaway effect". Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a he...
International Nuclear Information System (INIS)
Ivanov, Alexei
2000-08-01
A model system, described by the consistent Vlasov-Poisson equations under periodical boundary conditions, has been studied numerically near the point of a marginal stability. The power laws, typical for a system, undergoing a second-order phase transition, hold in a vicinity of the critical point: (i) A ∝ -θ β , β=1.907±0.006 for θ ≤ 0, where A is the saturated amplitude of the marginally-stable mode; (ii) χ ∝ θ -γ as θ → 0, γ=γ - =1.020±0.008 for θ + =0.995±0.020 for θ > 0, where χ=∂A/∂F 1 at F 1 → 0 is the susceptibility to external drive of the strain F 1 ; (iii) at θ=0 the system responds to external drive as A ∝ F 1 1/δ , and δ=1.544±0.002. θ=( 2 >- cr 2 >)/ cr 2 > is the dimensionless reduced velocity dispersion. Within the error of computation these critical exponents satisfy to equality γ=β(δ-1), known in thermodynamics as the Widom equality, which is direct consequence of scaling invariance of the Fourier components f m of the distribution function f at |θ| m (λ at t, λ av v, λ aθ θ, λ aA0 A 0 , λ aF F 1 )=λf m (t, v, θ, A 0 , F 1 ) at θ approx. = 0. On the contrary to thermodynamics these critical indices indicate to a very wide critical area. In turn, it means that critical phenomena may determine macroscopic dynamics of a large fraction of systems. (author)
Tamrakar, Radha; Varma, P.; Tiwari, M. S.
2018-05-01
Kinetic Alfven wave (KAW) generation due to variation of loss-cone index J and density of multi-ions (H+, He+ and O+) in the plasma sheet boundary layer region (PSBL) is investigated. Kinetic approach is used to derive dispersion relation of wave using Vlasov equation. Variation of frequency with respect to wide range of k⊥ρi (where k⊥ is wave vector across the magnetic field, ρi is gyroradius of ions and i denotes H+, He+ and O+ ions) is analyzed. It is found that each ion gyroradius and number density shows different effect on wave generation with varying width of loss-cone. KAW is generated with multi-ions (H+, He+ and O+) over wide regime for J=1 and shows dissimilar effect for J=2. Frequency is reduced with increasing density of gyrating He+ and O+ ions. Wave frequency is obtained within the reported range which strongly supports generation of kinetic Alfven waves. A sudden drop of frequency is also observed for H+ and He+ ion which may be due to heavy penetration of these ions through the loss-cone. The parameters of PSBL region are used for numerical calculation. The application of these results are in understanding the effect of gyrating multi-ions in transfer of energy and Poynting flux losses from PSBL region towards ionosphere and also describing the generation of aurora.
Energy Technology Data Exchange (ETDEWEB)
Lvanov, Alexei [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)
2000-08-01
A model system, described by the consistent Vlasov-Poisson equations under periodical boundary conditions, has been studied numerically near the point of a marginal stability. The power laws, typical for a system, undergoing a second-order phase transition, hold in a vicinity of the critical point: (i) A {proportional_to} -{theta}{sup {beta}}, {beta}=1.907{+-}0.006 for {theta} {<=} 0, where A is the saturated amplitude of the marginally-stable mode; (ii) {chi} {proportional_to} {theta}{sup -{gamma}} as {theta} {yields} 0, {gamma}={gamma}{sub -}=1.020{+-}0.008 for {theta} < 0, and {gamma}={gamma}{sub +}=0.995{+-}0.020 for {theta} > 0, where {chi}={partial_derivative}A/{partial_derivative}F{sub 1} at F{sub 1} {yields} 0 is the susceptibility to external drive of the strain F{sub 1}; (iii) at {theta}=0 the system responds to external drive as A {proportional_to} F{sub 1}{sup 1/{delta}}, and {delta}=1.544{+-}0.002. {theta}=(
Tunneling process in heavy-ion fusion and fission
Energy Technology Data Exchange (ETDEWEB)
Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kondratyev, V.; Bonasera, A.
1998-10-01
We present a model towards the many-body description of sub-barrier fusion and spontaneous fission based on the semiclassical Vlasov equation and the Feynman path integral method. We define suitable collective variables from the Vlasov solution and use the imaginary time technique for the dynamics below the Coulomb barrier. (author)
Proton and heavy ion acceleration by stochastic fluctuations in the Earth's magnetotail
Energy Technology Data Exchange (ETDEWEB)
Catapano, Filomena; Zimbardo, Gaetano; Perri, Silvia; Greco, Antonella [Calabria Univ., Rende (Italy). Dept. of Physics; Artemyev, Anton V. [Russian Academy of Science, Moscow (Russian Federation). Space Research Inst.; California Univ., Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Science and Inst. of Geophysics and Planetary Physics
2016-07-01
Spacecraft observations show that energetic ions are found in the Earth's magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015). These configurations represent solutions of a generalized Harris model, which well describes the observed profiles in the magnetotail. In addition, three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied while varying the equilibrium magnetic field profile and the ion species. We find that proton energies of the order of 100 keV are reached with simulation parameters typical of the Earth's magnetotail. By changing the ion mass and charge, we can study the acceleration of heavy ions such as He{sup ++} and O{sup +}, and it is found that energies of the order of 100-200 keV are reached in a few seconds for He{sup ++}, and about 100 keV for O{sup +}.
Proton and heavy ion acceleration by stochastic fluctuations in the Earth's magnetotail
Directory of Open Access Journals (Sweden)
F. Catapano
2016-10-01
Full Text Available Spacecraft observations show that energetic ions are found in the Earth's magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015. These configurations represent solutions of a generalized Harris model, which well describes the observed profiles in the magnetotail. In addition, three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied while varying the equilibrium magnetic field profile and the ion species. We find that proton energies of the order of 100 keV are reached with simulation parameters typical of the Earth's magnetotail. By changing the ion mass and charge, we can study the acceleration of heavy ions such as He+ + and O+, and it is found that energies of the order of 100–200 keV are reached in a few seconds for He+ + , and about 100 keV for O+.
Fischer, W
2014-01-01
High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.
International Nuclear Information System (INIS)
Cocke, C.L.; Olson, R.E.
1991-01-01
The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)
The role of collision terms for nucleon emission in intermediate energy heavy ion reactions
International Nuclear Information System (INIS)
Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.
1984-01-01
A semi-classical description of heavy ion collisions is developed with a particular attention to the nucleon flux from one partner through the other one. The phase-space extension of the nucleons is explicitly treated by means of the Wigner transform of the density matrix. Its dynamical evolution is obtained by solving the Landau-Vlasov equation, where collision terms are explicitely introduced. As a matter of fact, the experimental nucleon spectra usually described by a thermal source with an intermediate velocity (around vsub(beam)/2) are interpreted in our framework by the coexistence of one-and two-body dissipation. Multi-differential cross-sections d 2 σ/dEdΩ are computed for the 12 C(86MeV/u) + 12 C system and are compared with the experimental data. Comparisons are also given for the 16 O (20 MeV/u) + 197 Au system
Semi-classical approaches for the proton emission in intermediate energy heavy ion reactions
International Nuclear Information System (INIS)
Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.
1984-05-01
Semi-classical approaches are proposed to study the transition between the one- and two-body processes in intermediate energy heavy ion collisions. The Landau-Vlasov equation is used as a transport equation for nucleons in the nuclear matter. We apply our formalism to the fast proton ejection. On the one hand, the effects of the nucleon-nucleon collisions are studied for the particles which travel through the nucleus cores. On the other hand, the inertial emission turns out to be an important proton emission mechanism. Our results conflict the interpretation of the proton spectra in terms of moving sources. Reasonable agreements with the experimental data are found without reference to any thermal equilibrium
International Nuclear Information System (INIS)
Fischer, W.
2010-01-01
Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions (77Asb1, 81Bou1). The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the
Energy Technology Data Exchange (ETDEWEB)
Fischer, W.
2011-12-01
Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the
Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection
Directory of Open Access Journals (Sweden)
Y. Pfau-Kempf
2016-11-01
Full Text Available We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi. We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the foreshock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks.
Indian Academy of Sciences (India)
Swift heavy ions interact predominantly through inelastic scattering while traversing any polymer medium and produce excited/ionized atoms. Here samples of the polycarbonate Makrofol of approximate thickness 20 m, spin coated on GaAs substrate were irradiated with 50 MeV Li ion (+3 charge state). Build-in ...
International Nuclear Information System (INIS)
Coles, J.N.; Long, J.V.P.
1977-01-01
An ion microprobe is described that has an ion extraction arrangement comprising two separate paths for ions and electrons diverging from a common point. A cone shaped or pyramidal guard electrode surrounds each path the apex angles being equal and coinciding with the said point. The guard electrodes are positioned to lie tangentially to each other and to a planar surface including the said point. An aperture is provided for the two paths at the apexes of both guard electrodes, and electrical connections between the guard electrodes enable the same potential to be applied to both guard electrodes. Means are provided for generating oppositely polarised electric fields within the guard electrodes, together with means for causing a focused ion beam to strike the common point without suffering astigmatism. The means for causing a focused ion beam to strike the said point includes an ion gun for directing an ion beam along one of the paths and means to provide an axial accelerating field there along. Optical viewing means are also provided. Existing designs enable only ions or electrons, but not both, to be extracted at any one time. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Eudes, Ph
2000-09-22
The first part concerns the features of emitted charged particles in heavy ions reactions that have been studied in the framework of the semi classical Landau-Vlasov approach for the light system Ar + Al at 65 MeV/nucleon incident energy. The second part is devoted to the radioactive waste management (transmutation), but it was necessary to increase the data banks evaluated in neutrons up to 150-200 MeV and to create a data bank in protons. In the European framework it was decide to focus on three representative elements: lead (spallation target), iron (structure material) and uranium (actinide). (N.C.)
Energy Technology Data Exchange (ETDEWEB)
Eudes, Ph
2000-09-22
The first part concerns the features of emitted charged particles in heavy ions reactions that have been studied in the framework of the semi classical Landau-Vlasov approach for the light system Ar + Al at 65 MeV/nucleon incident energy. The second part is devoted to the radioactive waste management (transmutation), but it was necessary to increase the data banks evaluated in neutrons up to 150-200 MeV and to create a data bank in protons. In the European framework it was decide to focus on three representative elements: lead (spallation target), iron (structure material) and uranium (actinide). (N.C.)
International Nuclear Information System (INIS)
Johnson, E.
1986-01-01
It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)
International Nuclear Information System (INIS)
Eudes, Ph.
2000-01-01
The first part concerns the features of emitted charged particles in heavy ions reactions that have been studied in the framework of the semi classical Landau-Vlasov approach for the light system Ar + Al at 65 MeV/nucleon incident energy. The second part is devoted to the radioactive waste management (transmutation), but it was necessary to increase the data banks evaluated in neutrons up to 150-200 MeV and to create a data bank in protons. In the European framework it was decide to focus on three representative elements: lead (spallation target), iron (structure material) and uranium (actinide). (N.C.)
International Nuclear Information System (INIS)
Neuffer, D.
1979-03-01
Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived
Ion acoustic eigenmodes in a collisionless bounded plasma:
International Nuclear Information System (INIS)
Kuhn, S.; Schupfer, N.; Santiago, M.A.M.; Assis, A.S. de
1990-01-01
This paper is based on an integral-equation method developed for solving the general linearized perturbation problem for a one-dimensional, uniform collisionless plasma with thin sheats, bounded by two planar electrodes. The underlying system of equations consists of a) the Vlasov equations for all particle species involved; b) Poisson's equation; c) the equation of total-current conservation; d) the particle boundary conditions at the left and right hand electrodes and e) the external-circuit equation. The method allows for very general equilibrium, boundary and external-circuit conditions. Using Laplace transformations in both time and space, it is set up to handle the complete initial value problem but also yields, as a by-product, the solution to the eigenmode problem. The only application to date of this method was to the Pierce Diode with a non-trivial external circuit, in which case the equation determining the complex eigenfrequencies ω n was found in analytic form. The said method is applied to ion-acoustic eigenmodes in a one-dimensional, collisionless bounded plasma consisting of non-drifting thermal electrons and a cold ion beam propagating through them. In this case, which is of relevance in the context of both Q- and DP-machines, the eigenfrequencies can no longer be obtained as solutions of an analytically explicit homogeneous system of linear integral equations. Via appropriate basis- set expansions of all perturbation functions involved, this system is transformed into a system of linear algebraic equations for the ω-dependent expansion coefficients, from which the eigenfrequencies can be obtained as the zeros of the'system determinant'. The results include studies on how the eigenfrequencies depend on plasma, boundary, as well as a comparison between these bounded-system ion-acoustic eigenmodes and their infinite-plasma counter-parts. (Author)
On the stability of pick-up ion ring distributions in the outer heliosheath
International Nuclear Information System (INIS)
Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.
2014-01-01
The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to
International Nuclear Information System (INIS)
Erramli, H.; Blondiaux, G.
1994-01-01
Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)
International Nuclear Information System (INIS)
1977-01-01
The specifications of a set of point-shape electrodes of non-corrodable material that can hold a film of liquid material of equal thickness is described. Contained in a jacket, this set forms an ion source. The electrode is made of tungsten with a glassy carbon layer for insulation and an outer layer of aluminium-oxide ceramic material
International Nuclear Information System (INIS)
Mascali, D.; Neri, L.; Castro, G.; Celona, L.; Gammino, S.; Torrisi, G.; Sorbello, G.
2015-01-01
Electron Cyclotron Resonance (ECR) ion Sources are the most performing machines for the production of intense beams of multi-charged ions in fundamental science, applied physics and industry. Investigation of plasma dynamics in ECRIS still remains a challenge. A better comprehension of electron heating, ionization and diffusion processes, ion confinement and ion beam formation is mandatory in order to increase ECRIS performances both in terms of output beams currents, charge states, beam quality (emittance minimization, beam halos suppression, etc.). Numerical solution of Vlasov equation via kinetic codes coupled to FEM solvers is ongoing at INFN-LNS, based on a PIC strategy. Preliminary results of the modeling will be shown about wave-plasma interaction and electron-ion confinement: the obtained results are very helpful to better understand the influence of the different parameters (especially RF frequency and power) on the ion beam formation mechanism. The most important clues coming out from the simulations are that although vacuum field RF field distribution (that is a cavity, modal field distribution) is perturbed by the plasma medium, the non-uniformity in the electric field amplitude still persists in the plasma filled cavity. This non-uniformity can be correlated with non-uniform plasma distribution, explaining a number of experimental observations
International Nuclear Information System (INIS)
Lee, W.W.; Kolesnikov, R.A.
2009-01-01
We show in this Response that the nonlinear Poisson's equation in our original paper derived from the drift kinetic approach can be verified by using the nonlinear gyrokinetic Poisson's equation of Dubin et al. (Phys. Fluids 26, 3524 (1983)). This nonlinear contribution in φ 2 is indeed of the order of k # perpendicular# 4 in the long wavelength limit and remains finite for zero ion temperature, in contrast to the nonlinear term by Parra and Catto (Plasma Phys. Control. Fusion 50, 065014 (2008)), which is of the order of k # perpendicular# 2 and diverges for T i → 0. For comparison, the leading term for the gyrokinetic Poisson's equation in this limit is of the order of k # perpendicular# 2 φ.
Ion-ion collisions and ion storage rings
International Nuclear Information System (INIS)
Mowat, J.R.
1988-01-01
Improved understanding of fundamental ion-ion interactions is expected to emerge from research carried out with ion storage rings. In this short survey the significant advantages and unique features that make stored ions useful targets for collision experiments are reviewed and discussed. It is pointed out that improvements to existing ion-ion experiments, as well as qualitatively new experiments, should occur over the next few years as ion storage rings become available for atomic physics. Some new experiments are suggested which are difficult if not impossible with present-day technology, but which seem feasible at storage rings facilities. (orig.)
Ion Beam Extraction by Discrete Ion Focusing
DEFF Research Database (Denmark)
2010-01-01
An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fracti...
Dandl, R.A.
1961-10-24
An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)
CERN. Geneva; Antinori, Federico
2001-01-01
Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...
CERN. Geneva. Audiovisual Unit
2002-01-01
Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...
International Nuclear Information System (INIS)
McKinney, C.R.
1980-01-01
An ion beam analyzer is specified, having an ion source for generating ions of a sample to be analyzed, means for extracting the sample ions, means for focusing the sample ions into a beam, separation means positioned along the ion beam for selectively deflecting species of ions, and means for detecting the selected species of ions. According to the specification, the analyzer further comprises (a) means for disabling at least a portion of the separation means, such that the ion beam from the source remains undeflected; (b) means located along the path of the undeflected ion beam for sensing the sample ions; and (c) enabling means responsive to the sensing means for automatically re-enabling the separation means when the sample ions reach a predetermined intensity level. (author)
On the Stability of Pick-up Ion Ring Distributions in the Outer Heliosheath
Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F.
2014-10-01
The "secondary energetic neutral atom (ENA)" hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of distributions necessary to produce the observed IBEX ENA flux via the secondary ENA hypothesis will be unstable to their own self-generated turbulence.
Effects of ion and electron screening on thermonuclear reaction rates
International Nuclear Information System (INIS)
Brady, L.R. Jr.
1977-01-01
The effects of screening by ions and electrons on thermonuclear reaction rates in stellar plasmas are considered. The enhancement of the reaction rate ranges from negligible to extremely large (on the order of 10 26 or greater). In order to calculate these effects, the potential about a given reacting nucleus is determined. First, Boltzmann-Vlasov and Poisson-Boltzmann equations are solved to yield a Yukawa potential. A suitable approximation to this potential is integrated in the action integral to give the barrier penetration. The screened reaction rate is then found by the saddle-point method. In developing a general formalism to calculate the screened reaction rate and the screening factor, effects due to the finite size of the nucleus are considered and found to be negligible. An expression for the screening factor for resonant reaction rates is also derived. A different and relatively simple approach, based on work of Stewart and Pyatt (1966), is used to find the barrier penetration from the action integral in two approximations: a modified Coulomb potential and a constant-shift potential. Screening factors are calculated for carbon burning at T 6 = 100 and T 6 = 400 for a wide range of densities and also for several examples in late stellar evolution. These screening factors are, for the most part, greater than those given by most others by a few percent at low density to 4 or more orders of magnitude at T 6 = 100 and rho = 10 10 g/cm 3 . Near the edge of the crystalline lattice region, however, they are significantly lower than those of some others. The increase in reaction rates for carbon burning indicates that carbon ignition may occur at lower densities than previously thought and may affect the density at which a supernova shock may occur
Recoil ion spectroscopy with heavy ions
International Nuclear Information System (INIS)
Beyer, H.F.; Mann, R.
1984-01-01
This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC
Surface negative ion production in ion sources
International Nuclear Information System (INIS)
Belchenko, Y.
1993-01-01
Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail
International Nuclear Information System (INIS)
Karas, V.I.; Karas, I.V.; Levchenko, V.D.; Sigov, Yu.S.; Fainberg, Ya.B.
1997-01-01
Results of numerical simulations of the excitation of wake fields in high- and low-density plasmas are presented. The propagation of relativistic electron bunches in a plasma is described by a closed set of relativistic Vlasov equations for two spatial coordinates and three velocity coordinates for each plasma component and the nonlinear Maxwell equations for self-consistent electromagnetic fields. Numerical modeling shows that, under ordinary experimental conditions (when the length and radius of the bunch are much less than the skin depth), the radius of the bunches propagating in a plasma varies over a wide range. In this case, the dynamics of both the plasma and the bunches is nonlinear. The radial redistribution of the plasma ions in self-consistent fields leads to the formation of a plasma channel. Incorporating this phenomenon is important for studying the propagation of relativistic electron bunches in a plasma
Bowers, Michael T
1979-01-01
Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well
Energy Technology Data Exchange (ETDEWEB)
Bykovskij, Yu
1979-02-01
The characteristics a laser source of multiply-ionized ions are described with regard to the interaction of laser radiation and matter, ion energy spectrum, angular ion distribution. The amount of multiple-ionization ions is evaluated. Out of laser source applications a laser injector of multiple-ionization ions and nuclei, laser mass spectrometry, laser X-ray microradiography, and a laser neutron generators are described.
2008-01-01
The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.
International Nuclear Information System (INIS)
Ishikawa, Junzo; Takagi, Toshinori
1983-01-01
Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)
Ion sources for heavy ion fusion
International Nuclear Information System (INIS)
Yu, S.S.; Eylon, S.; Chupp, W.
1995-09-01
The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K + ions of 950 mA peak from a 6.7 inch curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 micros. The measured normalized edge emittance of less than 1 π mm-mr is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described
Zschornacka, G.; Thorn, A.
2013-12-16
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.
Identification of low-frequency kinetic wave modes in the Earth's ion foreshock
Directory of Open Access Journals (Sweden)
X. Blanco-Cano
1997-03-01
Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when other properties can diverge from those of the
Identification of low-frequency kinetic wave modes in the Earth's ion foreshock
Directory of Open Access Journals (Sweden)
X. Blanco-Cano
Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ω_{r} « Ω_{p} waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when
Bowers, Michael T
2013-01-01
Gas Phase Ion Chemistry, Volume 3: Ions and Light discusses how ions are formed by electron impact, ion-molecule reactions, or electrical discharge. This book discusses the use of light emitted by excited molecules to characterize either the chemistry that formed the excited ion, the structure of the excited ion, or both.Organized into 10 chapters, this volume begins with an overview of the extension of the classical flowing afterglow technique to include infrared and chemiluminescence and laser-induced fluorescence detection. This text then examines the experiments involving molecules that ar
International Nuclear Information System (INIS)
Compton, R.N.
1982-01-01
In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures
Indian Academy of Sciences (India)
to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.
Negative ion detachment processes
International Nuclear Information System (INIS)
Champion, R.L.; Doverspike, L.D.
1990-10-01
This paper discusses the following topics: H - and D - collisions with atomic hydrogen; collisional decomposition of SF 6 - ; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces
International Nuclear Information System (INIS)
Iyer, Indira S.
1997-01-01
Accelerator Mass Spectrometry (AMS) entails the sputtering of various samples in an ion source followed by high precision mass analysis of the sputtered ion species in a Tandem Electrostatic Accelerator. A brief account is given
National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...
Applications of decelerated ions
International Nuclear Information System (INIS)
Johnson, B.M.
1985-03-01
Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed
International Nuclear Information System (INIS)
Townsend, R.P.
1993-01-01
In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)
Bowers, Michael T
1979-01-01
Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation
Eiceman, GA
2005-01-01
Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly
International Nuclear Information System (INIS)
Humphries, S. Jr.; Sudan, R.N.
1977-01-01
Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation
International Nuclear Information System (INIS)
Alton, G.D.
1974-01-01
A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process
International Nuclear Information System (INIS)
Igor Kaganovich
2000-01-01
Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas
Schmidt, B.
Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.
Enhanced ion acoustic fluctuations and ion outflows
Directory of Open Access Journals (Sweden)
F. R. E. Forme
1999-02-01
Full Text Available A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m-2 s-1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.Key words. Ionosphere (auroral ionosphere; ionosphere · magnetosphere interactions; plasma waves and instabilities.
Brown, I.
2013-12-16
The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.
International Nuclear Information System (INIS)
Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.; Woodruff, K.H.; MacFarland, E.W.
1983-01-01
High energy, heavy-ion beams offer superior discrimination of tissue electron densities at very low radiation doses. This characteristic has potential for diagnostic medical imaging of neoplasms arising in the soft tissues and organs because it can detect smaller inhomogeneities than x rays. Heavy-ion imaging may also increase the accuracy of cancer radiotherapy planning involving use of accelerated charged particles. In the current physics research program of passive heavy-ion imaging, critical modulation transfer function tests are being carried out in heavy-ion projection radiography and heavy-ion computerized tomography. The research goal is to improve the heavy-ion imaging method until it reaches the limits of its theoretical resolution defined by range straggling, multiple scattering, and other factors involved in the beam quality characteristics. Clinical uses of the imaging method include the application of heavy-ion computerized tomography to heavy-ion radiotherapy planning, to the study of brain tumors and other structures of the head, and to low-dose heavy-ion projection mammography, particularly for women with dense breasts where other methods of diagnosis fail. The ions used are primarily 300 to 570 MeV/amu carbon and neon ions accelerated at the Lawrence Berkeley Laboratory Bevalac
International Nuclear Information System (INIS)
Iwaki, Masaya
1978-01-01
The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)
Crater formation by single ions, cluster ions and ion "showers"
Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter
2011-01-01
The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...
Optical effects of ion implantation
International Nuclear Information System (INIS)
Townsend, P.D.
1987-01-01
The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)
Nuclear de-excitation processes following medium energy heavy ion collisions
International Nuclear Information System (INIS)
Blann, M.
1986-09-01
As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, γ-rays with energies in excess of 100 MeV, and π 0 production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs
Ion beam stabilization in ion implantation equipment
International Nuclear Information System (INIS)
Pina, L.
1973-01-01
The results are presented of experimental efforts aimed at ion beam current stabilization in an equipment for ion implantation in solids. The related problems of power supplies are discussed. Measured characteristics of laboratory equipment served the determination of the parameters to be required of the supplies as well as the design and the construction of the supplies. The respective wiring diagram is presented. (J.K.)
Calculation of ion storage in electron beams with account of ion-ion interactions
International Nuclear Information System (INIS)
Perel'shtejn, Eh.A.; Shirkov, G.D.
1979-01-01
Ion storage in relativistic electron beams was calculated taking account of ion-ion charge exchange and ionization. The calculations were made for nitrogen ion storage from residual gas during the compression of electron rings in the adhezator of the JINR heavy ion accelerator. The calculations were made for rings of various parameters and for various pressures of the residual gas. The results are compared with analogous calculations made without account of ion-ion processes. It is shown that at heavy loading of a ring by ions ion-ion collisions play a significant part, and they should be taken into account while calculating ion storage
Duopigatron ion source studies
International Nuclear Information System (INIS)
Bacon, F.M.; Bickes, R.W. Jr.; O'Hagan, J.B.
1978-07-01
Ion source performance characteristics consisting of total ion current, ion energy distribution, mass distribution, and ion current density distribution were measured for several models of a duopigatron. Variations on the duopigatron design involved plasma expansion cup material and dimensions, secondary cathode material, and interelectrode spacings. Of the designs tested, the one with a copper and molybdenum secondary cathode and a mild steel plasma expansion cup proved to give the best results. The ion current density distribution was peaked at the center of the plasma expansion cup and fell off to 80 percent of the peak value at the cup wall for a cup 15.2 mm deep. A total ion current of 180 mA consisting of 60 to 70 percent atomic ions was produced with an arc current of 20 A and source pressure of 9.3 Pa. More shallow cups produced a larger beam current and a more sharply peaked ion current density distribution. Typical ion energy distributions were bell-shaped curves with a peak 10 to 20 V below anode potential and with ion energies extending 30 to 40 V on either side of the peak
International Nuclear Information System (INIS)
Gries, W.H.
1976-06-01
This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields
Heating tokamaks via the ion-cyclotron and ion-ion hybrid resonances
International Nuclear Information System (INIS)
Perkins, F.W.
1977-04-01
For the ion-ion hybrid resonance it is shown that: (1) the energy absorption occurs via a sequence of mode conversions; (2) a poloidal field component normal to the ion-ion hybrid mode conversion surface strongly influences the mode conversion process so that roughly equal electron and ion heating occurs in the present proton-deuterium experiments, while solely electron heating is predicted to prevail in deuterium-tritium reactors; (3) the ion-ion hybrid resonance suppresses toroidal eigenmodes; and (4) wave absorption in minority fundamental ion-cyclotron heating experiments will be dominated by ion-ion hybrid mode conversion absorption for minority concentrations exceeding roughly 1 percent. For the ion-cyclotron resonance, it is shown that: (1) ion-cyclotron mode conversion leads to surface electron heating; and (2) ion-cyclotron mode conversion absorption dominates fundamental ion-cyclotron absorption thereby preventing efficient ion heating
Atmospheric ions and pollution
International Nuclear Information System (INIS)
Renoux, A.
1977-01-01
The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr
Denker, A; Rauschenberg, J; Röhrich, J; Strub, E
2006-01-01
Materials analysis with ion beams exploits the interaction of ions with the electrons and nuclei in the sample. Among the vast variety of possible analytical techniques available with ion beams we will restrain to ion beam analysis with ion beams in the energy range from one to several MeV per mass unit. It is possible to use either the back-scattered projectiles (RBS – Rutherford Back Scattering) or the recoiled atoms itself (ERDA – Elastic Recoil Detection Analysis) from the elastic scattering processes. These techniques allow the simultaneous and absolute determination of stoichiometry and depth profiles of the detected elements. The interaction of the ions with the electrons in the sample produces holes in the inner electronic shells of the sample atoms, which recombine and emit X-rays characteristic for the element in question. Particle Induced X-ray Emission (PIXE) has shown to be a fast technique for the analysis of elements with an atomic number above 11.
Ion thruster performance model
International Nuclear Information System (INIS)
Brophy, J.R.
1984-01-01
A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature
Ion emission microscope microanalyzer
International Nuclear Information System (INIS)
Cherepin, V.T.; Olckovsky, V.L.
1977-01-01
In the ion microanalyzer (microprobe) the object is exposed to the bombardment of a highly focused ion beam, the secondary ions emitted from the object being analyzed by means of a mass filter. In order to be able to control the position of an analysis synchronous to the local analysis of an object an ion-optical converter (electron image with a fluorescent screen) is placed behind the aperture diaphragm in the direction of the secondary ion beam. The converter allows to make visible in front of the mass filter a non-split ion image characterizing the surface of the surface investigated. Then a certain section may be selected for performing chemical and isotope analyses. (DG) [de
International Nuclear Information System (INIS)
Kunin, R.
1977-01-01
This paper presents the history and theory of ion exchange technology and discusses the usefulness of ion exchange resins which found broad applications in chemical operations. It is demonstrated that the theory of ion exchange technology seems to be moving away from the physical chemist back to the polymer chemist where it started originally. This but confronted the polymer chemists with some knotty problems. It is pointed out that one has still to learn how to use ion exchange materials as efficiently as possible in terms of the waste load that is being pumped into the environment. It is interesting to note that, whereas ion exchange is used for abating pollution, it is also a polluter. One must learn how to use ion exchange as an antipollution device, and at the same time minimize its polluting properties
Van Atta, C.M.; Beringer, R.; Smith, L.
1959-01-01
A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.
International Nuclear Information System (INIS)
Davidson, Ronald C.; Logan, B. Grant
2011-01-01
Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called 'wobblers'. Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.
International Nuclear Information System (INIS)
Crandall, D.H.
1982-01-01
This discussion concentrates on basic physics aspects of inelastic processes of excitation, ionization, and recombination that occur during electron-ion collisions. Except for cases of illustration along isoelectronic sequences, only multicharged (at least +2) ions will be specifically discussed with some emphasis of unique physics aspects associated with ionic charge. The material presented will be discussed from a primarily experimental viewpoint with most attention to electron-ion interacting beams experiments
Ion implantation in semiconductors
International Nuclear Information System (INIS)
Gusev, V.; Gusevova, M.
1980-01-01
The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)
Ion implantation in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Gusev, V; Gusevova, M
1980-06-01
The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.
International Nuclear Information System (INIS)
Vook, F.L.
1977-02-01
The application of ion beams to metals is rapidly emerging as a promising area of research and technology. This report briefly describes some of the recent advances in the modification and study of the basic properties of metals by ion implantation techniques. Most of the research discussed illustrates some of the new and exciting applications of ion beams to metals which are under active investigation at Sandia Laboratories, Albuquerque
International Nuclear Information System (INIS)
Adair, H.L.; Kobisk, E.H.
1985-01-01
This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods
International Nuclear Information System (INIS)
Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.
2001-01-01
A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown
Neutron ion temperature measurement
International Nuclear Information System (INIS)
Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.
1986-11-01
One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n) 3 He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques
International Nuclear Information System (INIS)
Ho, D.D.M.; Kulsrud, R.M.
1985-09-01
Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived
Ion optics in an ion source system
Energy Technology Data Exchange (ETDEWEB)
Abdel-Salam, F W; Moustafa, O A; El-Khabeary, H [Accelerators Dept, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1997-12-31
An analysis of ion beams from an ion source which consisted of a hemispherical anode, a plane earthed cathode, and a focusing electrode has been carried out. The focal properties of such electrode arrangement were studied using axially symmetric fields. Axial and radial electric fields were obtained as functions of the axial distance. It was found that the radial component of the gradient of potential pushes the ions towards the axis, which indicates the convergent action of the system. The effect of voltage variation between the boundary and the focusing electrode on the position of the plasma boundary are given using the experimental data of the ion source characteristics and its geometrical parameters. The advantages of plasma diffusing outside the source through a small aperture were used by applying a potential to the focusing electrode. It was possible to extract a large ion current from the expanded plasma. The system constituted a lens with a focal length of 29.4 mm. 7 figs.
International Nuclear Information System (INIS)
Smithe, D.N.; Colestock, P.L.; Kashuba, R.J.; Kammash, T.
1987-04-01
A computational scheme is developed which permits tractable calculation of three-dimensional full-wave solutions to the Maxwell-Vlasov equations under typical Ion Cyclotron Range of Frequencies (ICRF) experimental conditions. The method is unique in that power deposition to the plasma is determined via the anti-Hermitian part of a truncated warm-plasma dielectric operator, rather than as the result of an assumed phenomenological collision frequency. The resulting computer code allows arbitrary variation of density, temperature, magnetic field, and minority concentration in the poloidal plane by performing a convolution of poloidal modes to produce a coupled system of differential equations in the radial variable. By assuming no inhomogeneity along the toroidal axis, an inverse transform over k/sub parallel/ is performed to yield the full three-dimensional field solutions. The application of the code to TFTR-like plasmas shows a mild resonance structure in antenna loading related to the changing number of wavelengths between antenna and the resonance layer. 48 figs
Dynamical effects in heavy ion collisions: neck emission in the Pb + Au system at 29 A.MeV
International Nuclear Information System (INIS)
Aboufirassi, M; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Genoux-Lubain, A.; Horn, D.; Kerambrun, A.; Laville, J.L.; Le Brun, C.; Lecolley, J.F.; Lefebvres, F.; Lopez, O.; Louvel, M.; Meslin, C.; Metivier, V.; Nakagawa, T.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Wieloch, A.; Yuasa-Nakagawa, K.
1998-01-01
In the study of the Pb + Au system with the assembly NAUTILUS a special class of events were made evident. Three body complete events have allowed observing a dynamical behavior in the fragment emission. A plot of the correlation between the emission angle and the charges Z 1 and Z 2 of the two fragments associated to the event shows a contribution of an intermediate mass third fragment reflecting a dynamical emission subsequent to the interaction phase between the two partners of the deep inelastic scattering (a phenomenon featuring the neck emission). Such a process has been observed in the Kr + Au at 60 MeV/nucleon and Xe + Cu at 50 MeV/nucleon. The on-going analysis of the Xe + Sn at 50 MeV/nucleon reveals the existence of a similar mechanism. A complete kinematical analysis of this class of events has permitted making evident the impact parameter window, here implied; it is situated for the associated collisions to an reduced impact parameter around 0.8 b max , corresponding to an excitation energy for the bi-nucleus system of the order of 2 MeV/nucleon. This phenomenon may allow to constrain more strongly the models describing the dynamics of the heavy ion collisions, particularly the kinetic models of Landau-Vlasov type. Then, the different mean field potential prescriptions my be tested by comparison with the experimental data
Ibrahim, Yehia M.; Smith, Richard D.
2016-01-26
An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.
Doppler ion program description
International Nuclear Information System (INIS)
Henline, P.
1980-12-01
The Doppler spectrometer is a conventional Czerny-Turner grating spectrometer with a 1024 channel multiple detector. Light is dispersed across the detector, and its output yields a spectrum covering approximately 200 A. The width of the spectral peak is directly proportional to the temperature of the emitting ions, and determination of the impurity ion temperature allows one to infer the plasma ion temperature. The Doppler ion software system developed at General Atomic uses a TRACOR Northern 1710-31 and an LSI-11/2. The exact configuration of Doublet III is different from TRACOR Northern systems at other facilities
Yoshio, Masaki; Kozawa, Akiya
2010-01-01
This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica
Correlation ion mobility spectroscopy
Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM
2008-08-26
Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.
International Nuclear Information System (INIS)
Schuch, R.
1987-01-01
A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs
International Nuclear Information System (INIS)
Brown, I.G.
1989-06-01
The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper
Ion mobilities and ion-atom interaction potentials
International Nuclear Information System (INIS)
Gatland, I.R.
1982-01-01
The techniques for measuring the mobilities of ions in gases, relating interaction potentials to mobilities, and determining potentials from experimental mobilities are reviewed. Applications are presented for positive alkali ions and negative halogen ions in inert gases. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Fenske, G.R. [Argonne National Lab., IL (United States)
1993-01-01
This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.
International Nuclear Information System (INIS)
Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.
1977-04-01
A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)
Indian Academy of Sciences (India)
We study a simple model of ionic solvation inside a water cluster. The cluster is modeled as a spherical dielectric continuum. It is found that unpolarizable ions always prefer the bulk solvation. On the other hand, for polarizable ions, there exists a critical value of polarization above which surface solvation becomes ...
International Nuclear Information System (INIS)
Dearnaley, G.
1976-01-01
In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)
International Nuclear Information System (INIS)
Bangerter, R.O.
1986-01-01
This report on the International Symposium on Heavy Ion Fusion held May 27-29, 1986 summarizes the problems and achievements in the areas of targets, accelerators, focussing, reactor studies, and system studies. The symposium participants recognize that there are large uncertainties in Heavy Ion Fusion but many of them are also optimistic that HIF may ultimately be the best approach to fusion
International Nuclear Information System (INIS)
Dreyfus, R.W.; Hodgson, R.T.
1975-01-01
A high brightness ion beam is obtainable by using lasers to excite atoms or molecules from the ground state to an ionized state in increments, rather than in one step. The spectroscopic resonances of the atom or molecule are used so that relatively long wavelength, low power lasers can be used to obtain such ion beam
International Nuclear Information System (INIS)
Fessenden, T.J.; Friedman, A.
1991-01-01
This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab
Xu, Jun; Watson, David B.; Whitten, William B.
2013-01-22
An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.
International Nuclear Information System (INIS)
Niedermayr, M.
2015-01-01
Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de
Molecular ion photofragment spectroscopy
International Nuclear Information System (INIS)
Bustamente, S.W.
1983-11-01
A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O 2 + ( 4 π/sub u/) metastable state which is found to consist of two main components: the 4 π/sub 5/2/ and 4 π/sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the 4 π/sub 3/2/ and 4 π/sub 1/2/ spin components having a short lifetime (approx. 6 ms)
DEFF Research Database (Denmark)
Popok, Vladimir
2012-01-01
The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....
A novel ion imager for secondary ion mass spectrometry
International Nuclear Information System (INIS)
Matsumoto, Kazuya; Miyata, Kenji; Nakamura, Tsutomu
1993-01-01
This paper describes a new area detector for secondary ion mass spectrometry (SIMS) ion microscope, and its performance. The operational principle is based on detecting the change in potential of a floating photodiode caused by the ion-induced secondary-electron emission and the incoming ion itself. The experiments demonstrated that 10 1 -10 5 aluminum ions per pixel can be detected with good linear response. Moreover, relative ion sensitivities from hydrogen to lead were constant within a factor of 2. The performance of this area detector provides the potential for detection of kiloelectronvolt ion images with current ion microscopy
Ion thermometers - nuclear reactor applications
International Nuclear Information System (INIS)
Rosenkranz, J.; Jakes, D.
The principle is briefly described of ion thermometers and the effects are reported of radiation on the ion crystal properties. The results show that ion thermometers are applicable for in-core measurements. (J.P.)
Plasma source ion implantation
International Nuclear Information System (INIS)
Conrad, J.R.; Forest, C.
1986-01-01
The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques
Laser-cooled atomic ions as probes of molecular ions
Energy Technology Data Exchange (ETDEWEB)
Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2015-01-22
Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.
Ion-Ion Plasmas Produced by Electron Beams
Fernsler, R. F.; Leonhardt, D.; Walton, S. G.; Meger, R. A.
2001-10-01
The ability of plasmas to etch deep, small-scale features in materials is limited by localized charging of the features. The features charge because of the difference in electron and ion anisotropy, and thus one solution now being explored is to use ion-ion plasmas in place of electron-ion plasmas. Ion-ion plasmas are effectively electron-free and consist mainly of positive and negative ions. Since the two ion species behave similarly, localized charging is largely eliminated. However, the only way to produce ion-ion plasmas at low gas pressure is to convert electrons into negative ions through two-body attachment to neutrals. While the electron attachment rate is large at low electron temperatures (Te < 1 eV) in many of the halogen gases used for processing, these temperatures occur in most reactors only during the afterglow when the heating fields are turned off and the plasma is decaying. By contrast, Te is low nearly all the time in plasmas produced by electron beams, and therefore electron beams can potentially produce ion-ion plasmas continuously. The theory of ion-ion plasmas formed by pulsed electron beams is examined in this talk and compared with experimental results presented elsewhere [1]. Some general limitations of ion-ion plasmas, including relatively low flux levels, are discussed as well. [1] See the presentation by D. Leonhardt et al. at this conference.
International Nuclear Information System (INIS)
Schimmerling, W.
1980-03-01
This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained
Downey, DF; Jones, KS; Ryding, G
1993-01-01
Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach
Directory of Open Access Journals (Sweden)
S.P. Palii
2012-12-01
Full Text Available A dreamer in his creative solitude, an objective and lucid analyst of history and contemporaneity, an energetic and decisive leader with an uncanny ability for crisis management – all these describe Ion Vatamanu. His wife Elena and daughters Mihaela, Mariana, Leontina treasure a personal universe in which the magical spark of Ion Vatamanu’s love and joy of life meld the everyday in and out of poetry. Ion Vatamanu’s instantaneous connection to the audiences and deeply felt words still touch the hearts of his many colleagues and friends. Downloads: 2
Ion implantation for microelectronics
International Nuclear Information System (INIS)
Dearnaley, G.
1977-01-01
Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)
Multivalent ion conducting solids
Energy Technology Data Exchange (ETDEWEB)
Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry
2008-07-01
Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.
International Nuclear Information System (INIS)
Kalpakchieva, R.; Cherepanov, E.A.
1993-01-01
The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication
International Nuclear Information System (INIS)
Leung, K.N.; Walther, S.; Owren, H.W.
1985-05-01
A small microwave ion source has been fabricated from a quartz tube with one end enclosed by a two grid accelerator. The source is also enclosed by a cavity operated at a frequency of 2.45 GHz. Microwave power as high as 500 W can be coupled to the source plasma. The source has been operated with and without multicusp fields for different gases. In the case of hydrogen, ion current density of 200 mA/cm -2 with atomic ion species concentration as high as 80% has been extracted from the source
International Nuclear Information System (INIS)
Dem'yanov, A.V.; Sidorov, S.V.
1994-01-01
External laser injector of multicharged ions (MCI) is developed in which wide-aperture aberration-free wire gauze spherical shape electrodes are applied for effective MCI extraction from laser plasma and beam focusing. Axial plasma compression by solenoid magnetic field is used to reduce ion losses due to transverse movement of the scattering laser plasma. Transverse magnetic field created by another solenoid facilitates the effective laser plasma braking and consequently, leads to the narrowing of energy spectrum of plasma ions and its shift towards lower energies. 2 refs.; 3 figs
DEFF Research Database (Denmark)
Bassler, Niels; Hansen, David Christoffer; Herrmann, Rochus
On the importance of choice of target size for selective boosting of hypoxic tumor subvolumina in carbon ion therapy Purpose: Functional imaging methods in radiotherapy are maturing and can to some extent uncover radio resistant structures found within a tumour entity. Selective boost of identified...... effect. All cell lines investigated here did not reach an OER of 1, even for the smaller structures, which may indicate that the achievable dose average LET of carbon ions is too low, and heavier ions than carbon may be considered for functional LET-painting....
Energy Technology Data Exchange (ETDEWEB)
Fraboulet, D.
1996-09-17
Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.
International Nuclear Information System (INIS)
Brage, T.
1991-01-01
We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given
Energy Technology Data Exchange (ETDEWEB)
Bourg, I.C.; Sposito, G.
2011-05-01
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).
Ion implantation control system
International Nuclear Information System (INIS)
Gault, R. B.; Keutzer, L. L.
1985-01-01
A control system is disclosed for an ion implantation system of the type in which the wafers to be implanted are mounted around the periphery of a disk which rotates and also moves in a radial direction relative to an ion beam to expose successive sections of each wafer to the radiation. The control system senses beam current which passes through one or more apertures in the disk and is collected by a Faraday cup. This current is integrated to obtain a measure of charge which is compared with a calculated value based upon the desired ion dosage and other parameters. The resultant controls the number of incremental steps the rotating disk moves radially to expose the adjacent sections of each wafer. This process is continued usually with two or more traverses until the entire surface of each wafer has been implanted with the proper ion dosage
Martinac, Boris
2008-01-01
All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.
International Nuclear Information System (INIS)
Forneris, J.L.; Hicks, W.W.; Keller, J.H.; McKenna, C.M.; Siermarco, J.A.; Mueller, W.F.
1981-01-01
The invention relates to ion bombardment or implantation apparatus. It comprises an apparatus for bombarding a target with a beam of ions, including an arrangement for measuring the ion beam current and controlling the surface potential of the target. This comprises a Faraday cage formed, at least in part, by the target and by walls adjacent to, and electrically insulated from, the target and surrounding the beam. There is at least one electron source for supplying electrons to the interior of the Faraday cage and means within the cage for blocking direct rectilinear radiation from the source to the target. The target current is measured and combined with the wall currents to provide a measurement of the ion beam current. The quantity of electrons supplied to the interior of the cage can be varied to control the target current and thereby the target surface potential. (U.K.)
Electrostatic ion acoustic waves
International Nuclear Information System (INIS)
Hasegawa, A.
1983-01-01
In this paper, certain aspects of plasma physics are illustrated through a study of electrostatic ion acoustic waves. The paper consists of three Sections. Section II deals with linear properties of the ion acoustic wave including derivation of the dispersions relation with the effect of Landau damping and of an ambient magnetic field. The section also introduces the excitation processes of the ion acoustic wave due to an electron drift or to a stimulated Brillouin scattering. The nonlinear properties are introduced in Section III and IV. In Section III, incoherent nonlinear effects such as quasilinear and mode-coupling saturations of the instability are discussed. The coherent nonlinear effects such as the generation of ion acoustic solitons, shocks and weak double layers are presented in Section IV. (Auth.)
Kluge, Heinz-Jürgen
2004-01-01
Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.
International Nuclear Information System (INIS)
Wakalopulos, G.
1976-01-01
In the disclosed electron gun positive ions generated by a hollow cathode plasma discharge in a first chamber are accelerated through control and shield grids into a second chamber containing a high voltage cold cathode. These positive ions bombard a surface of the cathode causing the cathode to emit secondary electrons which form an electron beam having a distribution adjacent to the cathode emissive surface substantially the same as the distribution of the ion beam impinging upon the cathode. After passing through the grids and the plasma discharge chamber, the electron beam exits from the electron gun via a foil window. Control of the generated electron beam is achieved by applying a relatively low control voltage between the control grid and the electron gun housing (which resides at ground potential) to control the density of the positive ions bombarding the cathode
Smith, Richard Harding; Martin, Glenn Brian
2004-05-18
The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.
International Nuclear Information System (INIS)
Ursu, I.; Lupei, V.
1984-02-01
A review of the electron paramagnetic resonance data on the uranium ions is given. After a general account of the electronic structure of the uranium free atoms and ions, the influence of the external fields (magnetic field, crystal fields) is discussed. The main information obtained from EPR studies on the uranium ions in crystals are emphasized: identification of the valence and of the ground electronic state, determination of the structure of the centers, crystal field effects, role of the intermediate coupling and of the J-mixing, role of the covalency, determination of the nuclear spin, maqnetic dipole moment and electric quadrupole moment of the odd isotopes of uranium. These data emphasize the fact that the actinide group has its own identity and this is accutely manifested at the beginning of the 5fsup(n) series encompassed by the uranium ions. (authors)
International Nuclear Information System (INIS)
Kluge, H.-J.; Blaum, K.
2004-01-01
Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
International Nuclear Information System (INIS)
Schmelzer, C.
1974-01-01
This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)
DEFF Research Database (Denmark)
2010-01-01
An apparatus (100) is described for determining the mass of ions, the apparatus configured to hold a plasma (101 ) having a plasma potential. The apparatus (100) comprises an electrode (102) having a surface extending in a surface plane and an insulator (104) interfacing with the electrode (102......, and a processing unit (108) configured to interpret the detected impact locations in terms of the mass of the impacting ions....
International Nuclear Information System (INIS)
Strehl, P.
1994-04-01
This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)
Ion implantation - an introduction
International Nuclear Information System (INIS)
Townsend, P.D.
1986-01-01
Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)
CERN Bulletin
2010-01-01
After a very fast switchover from protons to lead ions, the LHC has achieved performances that allowed the machine to exceed both peak and integrated luminosity by a factor of three. Thanks to this, experiments have been able to produce high-profile results on ion physics almost immediately, confirming that the LHC was able to keep its promises for ions as well as for protons. First direct observation of jet quenching. A seminar on 2 December was the opportunity for the ALICE, ATLAS and CMS collaborations to present their first results on ion physics in front of a packed auditorium. These results are important and are already having a major impact on the understanding of the physics processes that involve the basic constituents of matter at high energies. In the ion-ion collisions, the temperature is so high that partons (quarks and gluons), which are usually constrained inside the nucleons, are deconfined to form a highly dense and hot soup known as quark-gluon plasma (QGP). The existence of ...
Collective focusing ion accelerator
International Nuclear Information System (INIS)
Goldin, F.J.
1986-01-01
The principal subject of this dissertation is the trapping confinement of pure electron plasmas in bumpy toroidal magnetic fields, with particular attention given to the trapping procedure and the behavior of the plasma during the final equilibrium. The most important aspects of the equilibrium studied were the qualitative nature of the plasma configuration and motion and its density, distribution and stability. The motivation for this study was that an unneutralized cloud of electrons contained in a toroidal system, sufficiently dense and stable, may serve to electrostatically focus ions (against centrifugal and self space charge forces) in a cyclic ion accelerator. Such an accelerator, known as a Collective Focusing Ion Accelerator (CFIA) could be far smaller than conventional designs (which use external magnetic fields directly to focus the ions) due to the smaller gyro-radium of an electron in a magnetic field of given strength. The electron cloud generally drifted poloidally at a finite radius from the toroidal minor axis. As this would preclude focusing ions with such clouds, damping this motion was investigated. Finite resistance in the normally perfectly conductive vessel wall did this. In further preparation for a working CFIA, additional experiments studied the effect of ions on the stability of the electron cloud
Ion mixing and numerical simulation of different ions produced in the ECR ion source
International Nuclear Information System (INIS)
Shirkov, G.D.
1996-01-01
This paper is to continue theoretical investigations and numerical simulations in the physics of ECR ion sources within the CERN program on heavy ion acceleration. The gas (ion) mixing effect in ECR sources is considered here. It is shown that the addition of light ions to the ECR plasma has three different mechanisms to improve highly charged ion production: the increase of confinement time and charge state of highly ions as the result of ion cooling; the concentration of highly charged ions in the central region of the source with high energy and density of electrons; the increase of electron production rate and density of plasma. The numerical simulations of lead ion production in the mixture with different light ions and different heavy and intermediate ions in the mixture with oxygen, are carried out to predict the principal ECR source possibilities for LHC applications. 18 refs., 23 refs
Biomaterials modification by ion beam
International Nuclear Information System (INIS)
Zhang Tonghe; Yi Zhongzhen; Zhang Xu; Wu Yuguang
2001-01-01
Ion beam technology is one of best ways for the modification of biomaterials. The results of ion beam modification of biomaterials are given. The method and results of improved biocompatibility are indicated by ion beam technology. The future development of ion beam modification of biomaterials is discussed
Ion-selective electrode reviews
Thomas, J D R
1983-01-01
Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.
Energy Technology Data Exchange (ETDEWEB)
Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.
2011-09-10
RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.
International Nuclear Information System (INIS)
Bangerter, R.O.
1995-01-01
About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise
Ion-selective electrode reviews
Thomas, J D R
1985-01-01
Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.
Kohler, Susanna
2016-05-01
Nearly a year ago, in July 2015, the New Horizons spacecraft passed by the Pluto system. The wealth of data amassed from that flyby is still being analyzed including data from the Solar Wind Around Pluto (SWAP) instrument. Recent examination of this data has revealedinteresting new information about Plutos atmosphere and how the solar wind interacts with it.A Heavy Ion TailThe solar wind is a constant stream of charged particles released by the Sun at speeds of around 400 km/s (thats 1 million mph!). This wind travels out to the far reaches of the solar system, interacting with the bodies it encounters along the way.By modeling the SWAP detections, the authors determine the directions of the IMF that could produce the heavy ions detected. Red pixels represent IMF directions permitted. No possible IMF could reproduce the detections if the ions are nitrogen (bottom panels), and only retrograde IMF directions can produce the detections if the ions are methane. [Adapted from Zirnstein et al. 2016]New Horizons data has revealed that Plutos atmosphere leaks neutral nitrogen, methane, and carbon monoxide molecules that sometimes escape its weak gravitational pull. These molecules become ionized and are subsequently picked up by the passing solar wind, forming a tail of heavy ions behind Pluto. The details of the geometry and composition of this tail, however, had not yet been determined.Escaping MethaneIn a recent study led by Eric Zirnstein (Southwest Research Institute), the latest analysis of data from the SWAP instrument on board New Horizons is reported. The team used SWAPs ion detections from just after New Horizons closest approach to Pluto to better understand how the heavy ions around Pluto behave, and how the solar wind interacts with Plutos atmosphere.In the process of analyzing the SWAP data, Zirnstein and collaborators first establish what the majority of the heavy ions picked up by the solar wind are. Models of the SWAP detections indicate they are unlikely
Study of ion exchange equilibrium and determination of heat of ion exchange by ion chromatography
International Nuclear Information System (INIS)
Liu Kailu; Yang Wenying
1996-01-01
Ion chromatography using pellicularia ion exchange resins and dilute solution can be devoted to the study of ion exchange thermodynamics and kinetics. Ion exchange equilibrium equation was obtained, and examined by the experiments. Based on ion exchange equilibrium, the influence of eluent concentration and resin capacity on adjusted retention volumes was examined. The effect of temperature on adjusted retention volumes was investigated and heats of ion exchange of seven anions were determined by ion chromatography. The interaction between anions and skeleton structure of resins were observed
International Nuclear Information System (INIS)
Fitz, T.
2002-09-01
The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Minaya Ramirez, Enrique [GSI Helmholtzzentrum, Darmstadt (Germany); Lunney, David [CSNSM- IN2P3/CNRS, Universite de Paris-Sud, Orsay (France)
2010-07-01
The ability to prepare radioactive beams for experiments in nuclear structure has seen important developments in recent years. The use of ion traps and buffer-gas cooling now enables the accumulation and purification of even short-lived nuclides. This is a key point for future installations since higher intensity also brings increased isobaric contamination which can be disastrous for background. Until now, the development of beam cooler/bunchers has relied on linear (radiofrequency quadrupole) Paul traps. In this contribution we describe the progress in developing a novel circular Paul trap. The ion circus, so named for its ability to trap ions at different positions along the ring circumference and to eject them in either perpendicular or tangential direction, has also been designed to cool and mass separate the ions over a longer flight path. The resolving power is increased as the ions orbit in the ring and are cooled with buffer gas at a much lower pressure. The first prototype is now under test in Orsay. We report results of the first tests and the future program.
International Nuclear Information System (INIS)
Singh, B.; Boyarsky, D.
1985-01-01
The present invention provides, in a preferred embodiment, a cylindrical stainless steel cathode with end pieces thereon to form a cathode chamber within. In addition, in a preferred embodiment, there is a stainless steel rod which passes axially through the cathode chamber and which is electrically insulated therefrom at the end pieces. The stainless steel cathode has first and second apertures formed therein with the first to be connected to a source of ionizable gas and the second to act as the opening through which there passes a stream of ions to an ion beam target. A magnetic flux source is coupled to the cathode chamber to pass magnetic flux therethrough and a voltage source is connected between the anode and the cathode to provide an electrostatic field therebetween whereby when ionizable gas is fed into the cathode chamber, it is ionized and a stream of ions emanates from the second aperture. In a preferred embodiment there is further provided an electrostatic ion focusing means to focus the ion stream emanating from the second aperture
Majority ion heating near the ion-ion hybrid layer in tokamaks
International Nuclear Information System (INIS)
Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.
1995-08-01
Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas
Ion channels versus ion pumps: the principal difference, in principle.
Gadsby, David C
2009-05-01
The incessant traffic of ions across cell membranes is controlled by two kinds of border guards: ion channels and ion pumps. Open channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients by consuming energy to slowly move ions thermodynamically uphill. Because of the diametrically opposed tasks and the divergent speeds of channels and pumps, they have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both of these classes of molecular machines challenges this comfortable separation and forces its re-evaluation.
International Nuclear Information System (INIS)
Fabrikant, J.I.; Tobias, C.A.; Holley, W.R.; Benton, E.V.
1981-01-01
Heavy-particle radiography has clinical potential as a newly developed noninvasive low-dose imaging procedure that provides increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high-energy ions, primarily carbon and neon, at the Bevalac accelerator at the Lawrence Berkeley Laboratory. The research program for medicine utilizes heavy-ion radiography for low-dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures, brain and spinal neoplasms, and the heart. The potential of heavy-ion imaging, and particularly reconstruction tomography, is now proving to be an adjunct to existing diagnostic imaging procedures in medicine, both for applications to the diagnosis, management and treatment of clinical cancer in man, and for the early detection of small soft-tissue tumors at low radiation dose
International Nuclear Information System (INIS)
Keefe, D.; Sessler, A.M.
1980-01-01
Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)
Acceleration of radioactive ions
International Nuclear Information System (INIS)
Laxdal, R.E.
2003-01-01
There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented
International Nuclear Information System (INIS)
Slobodrian, R.J.; Potvin, L.
1991-01-01
The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space
International Nuclear Information System (INIS)
Keefe, D.; Sessler, A.M.
1980-07-01
Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at
Ion cyclotron resonance heating
International Nuclear Information System (INIS)
Tajima, T.
1982-01-01
Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)
Energy Technology Data Exchange (ETDEWEB)
Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory
2013-06-01
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.
Hudson, W. R.
1977-01-01
A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.
Stevens, K W
2014-01-01
There have been many demonstrations, particularly for magnetic impurity ions in crystals, that spin-Hamiltonians are able to account for a wide range of experimental results in terms of much smaller numbers of parameters. Yet they were originally derived from crystal field theory, which contains a logical flaw; electrons on the magnetic ions are distinguished from those on the ligands. Thus there is a challenge: to replace crystal field theory with one of equal or greater predictive power that is based on a surer footing. The theory developed in this book begins with a generic Hamiltonian, on
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1990-01-01
At Brookhaven National Laboratory, participation in the E802 Experiment, which is the first major heavy-ion experiment at the BNL-AGS, was the main focus of the group during the past four years. The emphases of the E802 experiment were on (a) accurate particle identification and measurements of spectra over a wide kinematical domain (5 degree LAB < 55 degree, p < 20 GeV/c); and (b) measurements of small-angle two-particle correlations, with event characterization tools: multiplicity array, forward and large-angle calorimeters. This experiment and other heavy ion collision experiments are discussed in this report
International Nuclear Information System (INIS)
Krohn, V.E.
1976-01-01
The Saha-Langmuir equation that describes the equilibrium emission process, surface ionization, has also been used to describe ion yields observed in the non-equilibrium emission process, sputtering. In describing sputtering, it is probably best to include the potential due to an image charge in the expression for negative as well as positive ion yield and to treat the work function and the temperature as parameters having limited physical significance. Arguments are presented to suggest that sputtered material is not emitted from a plasma. (Auth.)
International Nuclear Information System (INIS)
Jacak, B.V.
1994-01-01
Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions
Mikhelson, Konstantin N
2013-01-01
Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I
International Nuclear Information System (INIS)
Uman, M.F.; Winnard, J.R.; Winters, H.F.
1978-01-01
The ion source is comprised of two discharge chambers one of which is provided with a filament and an aperture leading into the other chamber which in turn has an extraction orifice. A low voltage arc discharge is operated in an inert gas atmosphere in the filament chamber while an arc of higher voltage is operated in the second ionization chamber which contains a vapor which will give the desired dopant ion species. The entire source is immersed in an axial magnetic field parallel to a line connecting the filament, the aperture between the two chambers and the extraction orifice. (author)
Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.
1997-01-01
An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
International Nuclear Information System (INIS)
Huff, Thomas
2010-01-01
Small Column Ion Exchange (SCIX) leverages a suite of technologies developed by DOE across the complex to achieve lifecycle savings. Technologies are applicable to multiple sites. Early testing supported multiple sites. Balance of SRS SCIX testing supports SRS deployment. A forma Systems Engineering Evaluation (SEE) was performed and selected Small Column Ion Exchange columns containing Crystalline Silicotitanate (CST) in a 2-column lead/lag configuration. SEE considered use of Spherical Resorcinol-Formaldehyde (sRF). Advantages of approach at SRS include: (1) no new buildings, (2) low volume of Cs waste in solid form compared to aqueous strip effluent; and availability of downstream processing facilities for immediate processing of spent resin.
Electron capture in ion atom and ion-ion collisions
International Nuclear Information System (INIS)
Barat, M.
1986-01-01
Electron capture (EC) by positive ions in collision with various targets has remained one of the most important subjects of research since the early 30's. From a theoretical point of view, EC is obviously a coupled 3-body problem: at least two cores and an active electron that jumps between them. Practical interest in EC arose in a variety of fields. Recently a renewed interest arose from the physics of thermonuclear fusion, where capture by highly charged ionic impurities were found to be an important process in tokamak devices. For that reasons, a number of reviews were devoted to this subject during the past years, including lectures given in various NATO advanced science institutes. The aim of this lecture is not at all to add a new review to this list, but (i) to summarize the very basis of the present theoretical approaches at low and moderate collision energy, (ii) to pinpoint some crucial difficulties in the theoretical treatment, (iii) to select specific examples which, to the taste of the author, reflect some present practical interest, or some significant advances. 48 references, 38 figures, 1 table
Ion-selective electrode reviews
Thomas, J D R
1982-01-01
Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d
Cooling of molecular ion beams
International Nuclear Information System (INIS)
Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.
2004-01-01
An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions
Analytical applications of ion exchangers
Inczédy, J
1966-01-01
Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th
Development of focused ion beam systems with various ion species
International Nuclear Information System (INIS)
Ji Qing; Leung, K.-N.; King, Tsu-Jae; Jiang Ximan; Appleton, Bill R.
2005-01-01
Conventional focused ion beam systems employ a liquid-metal ion source (LMIS) to generate high-brightness beams, such as Ga + beams. Recently there has been an increased need for focused ion beams in areas like biological studies, advanced magnetic-film manufacturing and secondary-ion mass spectroscopy (SIMS). In this article, status of development on focused ion beam systems with ion species such as O 2 + , P + , and B + will be reviewed. Compact columns for forming focused ion beams from low energy (∼3keV), to intermediate energy (∼35keV) are discussed. By using focused ion beams, a SOI MOSFET is fabricated entirely without any masks or resist
Energy landscapes for mobile ions in ion conducting solids
Indian Academy of Sciences (India)
molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.
An RF ion source based primary ion gun for secondary ion mass spectroscopy
International Nuclear Information System (INIS)
Menon, Ranjini; Nabhiraj, P.Y.; Bhandari, R.K.
2011-01-01
In this article we present the design, development and characterization of an RF plasma based ion gun as a primary ion gun for SIMS application. RF ion sources, in particular Inductively Coupled Plasma (ICP) ion sources are superior compared to LMIS and duoplasmtron ion sources since they are filamentless, can produce ions of gaseous elements. At the same time, ICP ion sources offer high angular current density which is an important factor in producing high current in small spot size on the target. These high current microprobes improve the signal to noise ratio by three orders as compared to low current ion sources such as LMIS. In addition, the high current microprobes have higher surface and depth profiling speeds. In this article we describe a simple ion source in its very basic form, two lens optical column and characteristics of microprobe
Polyatomic ions from a high current ion implanter driven by a liquid metal ion source
Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.
2017-12-01
High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.
International Nuclear Information System (INIS)
Weisser, D.C.
1977-06-01
To complement discussions on the role of γ rays in heavy ion induced reactions, the author discusses the role played by particle detection. Transfer reactions are part of this subject and are among those in which one infers the properties of the residual nucleus in a reaction by observing the emerging light nucleus. Inelastic scattering ought not be excluded from this subject, although no particles are transferred, because of the role it plays in multistep reactions and in fixing O.M. parameters describing the entrance channel of the reaction. Heavy ion transfer reaction studies have been under study for some years and yet this research is still in its infancy. The experimental techniques are difficult and the demands on theory rigorous. One of the main products of heavy ion research has been the thrust to re-examine the assumptions of reaction theory and now include many effects neglected for light ion analysis. This research has spurred the addition of multistep processes to simple direct processes and coupled channel calculations. (J.R.)
International Nuclear Information System (INIS)
1975-04-01
This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr
International Nuclear Information System (INIS)
Scrivens, R
2013-01-01
Ion sources produce beams for a large variety of different physical experiments, industrial processes and medical applications. In order to characterize the beam delivered by them, a list of requirements is necessary. In this chapter the list of principal requirements is specified and definitions for them are given. (author)
International Nuclear Information System (INIS)
Hofmann, Ingo
1993-01-01
With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time
Industrial ion source technology
Kaufman, H. R.; Robinson, R. S.
1978-01-01
An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.
International Nuclear Information System (INIS)
Sato, Susumu
1994-01-01
The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)
International Nuclear Information System (INIS)
Markhol, M.
1985-01-01
Existing methods of multi-element separation for radiochemical analysis are considered. The majority of existing methods is noted to be based on application of organic and inorganic ion exchangers. Distillation, coprecipitation, extraction as well as combination of the above methods are also used. Concrete flowsheets of multi-element separation are presented
International Nuclear Information System (INIS)
Kraft, G.; Yang, T.C.H.; Richards, T.; Tobias, C.A.
1980-01-01
This chapter briefly describes the techniques of optical microscopy, scanning and transmission electron microscopy, soft x-ray microscopy and compares these latter techniques with heavy-ion microscopy. The resolution obtained with these various types of microscopy are compared and the influence of the etching procedure on total resolution is discussed. Several micrographs of mammalian cells are included
International Nuclear Information System (INIS)
Ramanathan, D.
1975-01-01
The basic features of the Field-Ion Microscope (FIM) and the theory of image formation are explained. Design parameters of the FIM, factors limiting its resolution, interpretation of the image, etc are briefly outlined. Relative merits of the various imaging gases and the applications of the FIM are also covered. (K.B.)
Relativisitic heavy ion collisions
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1987-01-01
Some of the objectives and observables of Relativistic Heavy Ion Physics are presented. The first experimental results from oxygen interactions at CERN, 200 GeV/c per nucleon, and BNL, 14.5 GeV/c per nucleon are shown. The data indicate more energy emission than was originally predicted. 25 refs., 19 figs
Ion-Beam-Excited Electrostatic Ion Cyclotron Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1976-01-01
Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....
Compact RF ion source for industrial electrostatic ion accelerator
Energy Technology Data Exchange (ETDEWEB)
Kwon, Hyeok-Jung, E-mail: hjkwon@kaeri.re.kr; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub [Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongsangbukdo 38180 (Korea, Republic of)
2016-02-15
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
Compact RF ion source for industrial electrostatic ion accelerator
Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub
2016-02-01
Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.
Negative ion sources for tandem accelerator
International Nuclear Information System (INIS)
Minehara, Eisuke
1980-08-01
Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)
Heavy-ion radiography and heavy-ion computed tomography
International Nuclear Information System (INIS)
Fabrikant, J.I.; Holley, W.R.; McFarland, E.W.; Tobias, C.a.
1982-02-01
Heavy-ion projection and CT radiography is being developed into a safe, low-dose, noninvasive radiological procedure that can quantitate and image small density differences in human tissues. The applications to heavy-ion mammography and heavy-ion CT imaging of the brain in clinical patients suggest their potential value in cancer diagnosis
Using Ion Exchange Chromatography to Separate and Quantify Complex Ions
Johnson, Brian J.
2014-01-01
Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…
Recharging of a screened ion on the molecular ion
International Nuclear Information System (INIS)
Karbovanets, M.I.; Lazur, V.Yu.; Yudin, G.L.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.)
1987-01-01
Charge exchange of a screened ion on a molecular ion is studied in the Oppenheimer-Brinkman-Cramers approximation. To calculate ion exchange probabilities and cross sections summed over the final degenerated electron states method of Green functions analogous to that applied earlier in the direct Coulomb excitation theory and atomic ionization is developed
Cs+ ion source for secondary ion mass spectrometry
International Nuclear Information System (INIS)
Bentz, B.L.; Weiss, H.; Liebl, H.
1981-12-01
Various types of cesium ionization sources currently used in secondary ion mass spectrometry are briefly reviewed, followed by a description of the design and performance of a novel, thermal surface ionization Cs + source developed in this laboratory. The source was evaluated for secondary ion mass spectrometry applications using the COALA ion microprobe mass analyzer. (orig.)
ECR ion source based low energy ion beam facility
Indian Academy of Sciences (India)
Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion ...
Hidden ion population: Revisited
International Nuclear Information System (INIS)
Olsen, R.C.; Chappell, C.R.; Gallagher, D.L.; Green, J.L.; Gurnett, D.A.
1985-01-01
Satellite potentials in the outer plasmasphere range from near zero to +5 to +10 V. Under such conditions ion measurements may not include the low energy core of the plasma population. In eclipse, the photoelectron current drops to zero, and the spacecraft potential can drop to near zero volts. In regions where the ambient plasma density is below 100 cm -3 , previously unobserved portions of the ambient plasma distribution function can become visible in eclipse. A survey of the data obtained from the retarding ion mass spectrometer (RIMS) on Dynamics Explorer 1 shows that the RIMS detector generally measured the isotropic background in both sunlight and eclipse in the plasma-sphere. Absolute density measurements for the ''hidden'' ion population are obtained for the first time using the plasma wave instrument observations of the upper hybrid resonance. Agreement in total density is found in sunlight and eclipse measurements at densities above 80 cm -3 . In eclipse, agreement is found at densities as low as 20 cm -3 . The isotropic plasma composition is primarily H + , with approx.10% He + , and 0.1 to 1.0% O + . A low energy field-aligned ion population appears in eclipse measurements outside the plasmasphere, which is obscured in sunlight. These field-aligned ions can be interpreted as field-aligned flows with densities of a few particles per cubic centimeter, flowing at 5-20 km/s. The problem in measuring these field-aligned flows in sunlight is the masking of the high energy tail of the field-aligned distribution by the isotropic background. Effective measurement of the core of the magnetospheric plasma distribution awaits satellites with active means of controlling the satellite potential
International Nuclear Information System (INIS)
Bethge, K.
1995-01-01
Full text: Ion beam analysis is an accelerator application area for the study of materials and the structure of matter; electrostatic accelerators of the Van de Graaff or Dynamitron type are often used for energies up to a few MeV. Two types of machines are available - the single-ended accelerator type with higher beam currents and greater flexibility of beam management, or the tandem accelerator, limited to atomic species with negative ions. The accelerators are not generally installed at specialist accelerator laboratories and have to be easy to maintain and simple to operate. The most common technique for industrial research is Rutherford Back Scattering Spectrometry (RBS). Helium ions are the preferred projectiles, since at elevated energies (above 3 MeV) nuclear resonance scattering can be used to detect photons associated with target molecules containing elements such as carbon, nitrogen or oxygen. Due to the large amount of available data on nuclear reactions in this energy range, activation analysis (detecting trace elements by irradiating the sample) can be performed with charged particles from accelerators over a wider range of atoms than with the conventional use of neutrons, which is more suited to light elements. Resonance reactions have been used to detect trace metals such as aluminium, titanium and vanadium. Hydrogen atoms are vital to the material performance of several classes of materials, such as semiconductors, insulators and ceramics. Prudent selection of the projectile ion aids the analysis of hydrogen composition; the technique is then a simple measurement of the emitted gamma radiation. Solar cell material and glass can be analysed in this way. On a world-wide basis, numerous laboratories perform ion beam analysis for research purposes; considerable work is carried out in cooperation between scientific laboratories and industry, but only a few laboratories provide a completely commercial service
Design and simulation of ion optics for ion sources for production of singly charged ions
Zelenak, A.; Bogomolov, S. L.
2004-05-01
During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments.
Design and simulation of ion optics for ion sources for production of singly charged ions
International Nuclear Information System (INIS)
Zelenak, A.; Bogomolov, S.L.
2004-01-01
During the last 2 years different types of the singly charged ion sources were developed for FLNR (JINR) new projects such as Dubna radioactive ion beams, (Phase I and Phase II), the production of the tritium ion beam and the MASHA mass separator. The ion optics simulations for 2.45 GHz electron cyclotron resonance source, rf source, and the plasma ion source were performed. In this article the design and simulation results of the optics of new ion sources are presented. The results of simulation are compared with measurements obtained during the experiments
Prolonging coherence in trapped ions
CSIR Research Space (South Africa)
Uys, H
2010-09-01
Full Text Available The authors study pulse sequences that dynamically decouple 9Be+ ions from their decohering environment. The noise environment the ions see is artificially synthesized to emulate a variety of physical systems. By incorporating measurement feedback...
Low-altitude ion heating with downflowing and upflowing ions
Shen, Y.; Knudsen, D. J.; Burchill, J. K.; Howarth, A. D.; Yau, A. W.; James, G.; Miles, D.; Cogger, L. L.; Perry, G. W.
2017-12-01
Mechanisms that energize ions at the initial stage of ion upflow are still not well understood. We statistically investigate ionospheric ion energization and field-aligned motion at very low altitudes (330-730 km) using simultaneous plasma, magnetic field, wave electric field and optical data from the e-POP satellite. The high-time-resolution (10 ms) dataset enables us to study the micro-structures of ion heating and field-aligned ion motion. The ion temperature and field-aligned bulk flow velocity are derived from 2-D ion distribution functions measured by the SEI instrument. From March 2015 to March 2016, we've found 17 orbits (in total 24 ion heating periods) with clear ion heating signatures passing across the dayside cleft or the nightside auroral regions. Most of these events have consistent ion heating and flow velocity characteristics observed from both the SEI and IRM instruments. The perpendicular ion temperature goes up to 4.5 eV within a 2 km-wide region in some cases, in which the Radio Receiver Instrument (RRI) sees broadband extremely low frequency (BBELF) waves, demonstrating significant wave-ion heating down to as low as 350 km. The e-POP Fast Auroral Imager (FAI) and Magnetic Field (MGF) instruments show that many events are associated with active aurora and are within downward current regions. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with the core ion downflow rather than upflow. These statistical results provide us with new sights into ion heating and field-aligned flow processes at very low altitudes.
Metal ion transporters and homeostasis.
Nelson, N
1999-01-01
Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...
Ion sources for industrial use
International Nuclear Information System (INIS)
Sakudo, Noriyuki
1994-01-01
Industrial applications of ion beams began in the 1970's with their application in fabrication of semiconductor devices. Since then, various improvements have been carried out for source lifetimes, current levels and diversification of ion species. Nowadays, ion beams are expected to be used for surface modification of materials as well as semiconductor fabrication. In this report, some of the typical ion sources are reviewed from the viewpoint of future industrial use. (author)
Membranes in Lithium Ion Batteries
Yang, Min; Hou, Junbo
2012-01-01
Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286
Membranes in Lithium Ion Batteries
Directory of Open Access Journals (Sweden)
Junbo Hou
2012-07-01
Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.
Numerical simulation of ion temperature gradient driven modes in the presence of ion-ion collisions
International Nuclear Information System (INIS)
Xu, X.Q.
1990-08-01
Ion temperature gradient driven modes in the presence of ion-ion collisions in a toroidal geometry with trapped ions have been studied by using a 1 2/2 d linearized gyro-kinetic particle simulation code in the electrostatic limit. The purpose of the investigation is to try to understand the physics of flat density discharges, in order to test the marginal stability hypothesis. Results giving threshold conditions of L Ti /R 0 , an upper bound on k χ , and linear growth rates and mode frequencies over all wavelengths for the collisionless ion temperature gradient driven modes are obtained. The behavior of ion temperature gradient driven instabilities in the transition from slab to toroidal geometry, with trapped ions, is shown. A Monte Carlo scheme for the inclusion of ion-ion collisions, in which ions can undergo Coulomb collisional dynamical friction, velocity space diffusion and random walk of guiding centers, has been constructed. The effects of ion-ion collisions on the long wave length limit of the ion modes is discussed. 44 refs., 12 figs
Ion temperature via laser scattering on ion Bernstein waves
International Nuclear Information System (INIS)
Wurden, G.A.; Ono, M.; Wong, K.L.
1981-10-01
Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement
Photochemical reactions of actinide ions
International Nuclear Information System (INIS)
Tomiyasu, Hiroshi
1995-01-01
This paper reviews the results of photochemical studies of actinide ions, which have been performed in our research group for past several years as follows: I) behavior of the excited uranyl(VI) ion; II) photo-reductions of the uranyl ion with organic and inorganic compounds; III) photo-oxidations of uranium(IV) and plutonium(III) in nitric acid solutions. (author)
High current vacuum arc ion source for heavy ion fusion
International Nuclear Information System (INIS)
Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.
1999-01-01
Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported
Production of highly charged ion beams from ECR ion sources
International Nuclear Information System (INIS)
Xie, Z.Q.
1997-09-01
Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams
Scanning ion microscopy with low energy lithium ions
International Nuclear Information System (INIS)
Twedt, Kevin A.; Chen, Lei; McClelland, Jabez J.
2014-01-01
Using an ion source based on photoionization of laser-cooled lithium atoms, we have developed a scanning ion microscope with probe sizes of a few tens of nanometers and beam energies from 500 eV to 5 keV. These beam energies are much lower than the typical operating energies of the helium ion microscope or gallium focused ion beam systems. We demonstrate how low energy can be advantageous in ion microscopy when detecting backscattered ions, due to a decreased interaction volume and the potential for surface sensitive composition analysis. As an example application that demonstrates these advantages, we non-destructively image the removal of a thin residual resist layer during plasma etching in a nano-imprint lithography process. - Highlights: • We use an ion source based on photoionization of laser-cooled lithium atoms. • The ion source makes possible a low energy (500 eV to 5 keV) scanning ion microscope. • Low energy is preferred for ion microscopy with backscattered ions. • We use the microscope to image a thin resist used in nano-imprint lithography
Production of highly ionized recoil ions in heavy ion impact
International Nuclear Information System (INIS)
Tawara, H.; Tonuma, T.; Be, S.H.; Shibata, H.; Kase, M.; Kambara, T.; Kumagai, H.; Kohno, I.
1985-01-01
The production mechanisms of highly ionized recoil ions in energetic, highly charged heavy ion impact are compared with those in photon and electron impact. In addition to the innershell ionization processes which are important in photon and electron impact, the electron transfer processes are found to play a key role in heavy ion impact. In molecular targets are also observed highly ionized monoatomic ions which are believed to be produced through production of highly ionized molecular ions followed by prompt dissociation. The observed N 6+ ions produced in 1.05MeV/amu Ar 12+ ions on N 2 molecules are produced through, for example, N 2 12+ *→N 6+ +N 6+ process. (author)
Fusion at counterstreaming ion beams - ion optic fusion (IOF)
International Nuclear Information System (INIS)
Gryzinski, M.
1981-01-01
The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)
Ion microtomography using ion time-of-flight
International Nuclear Information System (INIS)
Roberts, M.L.; Heikkinen, D.W.; Proctor, I.D.; Pontau, A.E.; Olona, G.T.; Felter, T.E.; Morse, D.H.; Hess, B.V.
1992-01-01
We have developed and are in the process of testing an ion time-of-flight (TOF) detector system for use in our ion microtomography measurements. Using TOF, ion energy is determined by measurement of the ion's flight time over a certain path length. For ion microtomography, the principle advantage of TOF analysis is that ion count rates of several hundred thousand counts per second can be achieved as compared to a limit of about ten thousand ions per second when using a solid-state silicon surface barrier detector and associated electronics. This greater than 10 fold increase in count rate correspondingly shortens sample analysis time or increases the amount of data that can be collected on a given sample. Details of the system and progress to date are described
A laser ablation ion source for the FRS ion catcher
Energy Technology Data Exchange (ETDEWEB)
Rink, Ann-Kathrin; Ebert, Jens; Petrick, Martin; Reiter, Pascal [Justus Liebig Universitaet Giessen (Germany); Dickel, Timo; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus Liebig Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Purushothamen, Sivaji [GSI, Darmstadt (Germany)
2013-07-01
The FRS Ion Catcher was developed to serve as test bench for the low energy branch of the Super FRS to slow down exotic nuclei and prepare them for further measurements/ experiments. It consists of a cryogenic stopping cell to thermalise the ions, a diagnostic unit for stopping cell characterisation and various radiofrequency quadrupole structures to guide the ions to the Multiple-Reflection Time-of-Flight Mass Spectrometer for mass measurements, α spectroscopy and isobar separation. To characterise the extraction times of the stopping cell, which is one of the main performance parameters of such a cell, a laser ablation ion source has been develped and tested. This ion source provides a sharply defined starting point of the ions for the extraction time measurement. In the future this source will provide reference ions to calibrate the mass spectrometer for accurate mass measurements.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver
International Nuclear Information System (INIS)
Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.
2004-01-01
Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source
Energy Technology Data Exchange (ETDEWEB)
Maunz, Peter Lukas Wilhelm
2017-04-01
Qubits can be encoded in clock states of trapped ions. These states are well isolated from the environment resulting in long coherence times [1] while enabling efficient high-fidelity qubit interactions mediated by the Coulomb coupled motion of the ions in the trap. Quantum states can be prepared with high fidelity and measured efficiently using fluorescence detection. State preparation and detection with 99.93% fidelity have been realized in multiple systems [1,2]. Single qubit gates have been demonstrated below rigorous fault-tolerance thresholds [1,3]. Two qubit gates have been realized with more than 99.9% fidelity [4,5]. Quantum algorithms have been demonstrated on systems of 5 to 15 qubits [6–8].
International Nuclear Information System (INIS)
Os, C.F.A. van.
1989-01-01
The work described in this thesis is involved by current research programs in the field of nuclear-fusion. A brief introduction to fusion is given, anticipated problems related to current drive of the fusion plasma are pinpointed and probable suggestions to overcome these problems are described. One probable means for current drive is highlighted; Neutral Beam Injection (NBI). This is based on injecting a 1 MeV neutral hydrogen or deuterium beam into a fusion plasma. Negative ions are needed as primary particles because they can easily be neutralized at 1 MeV. The two current schemes for production of negative ions are described, volume production and negative surface ionization. The latter method is extensively studied in this thesis. (author). 171 refs.; 55 figs.; 7 tabs
International Nuclear Information System (INIS)
Hammer, D.; Max, C.; Perkins, F.; Rosenbluth, M.
1987-03-01
This report updates Heavy Ion Fusion, JSR-82-302, dated January, 1983. During the last four years, program management and direction has been changed and the overall Inertial Confinement Program has been reviewed. This report therefore concentrates on accelerator physics issues, how the program has addressed those issues during the last four years, and how it will be addressing them in the future. 8 refs., 3 figs
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, Yehia M.; Chen, Tsung-Chi; Harrer, Marques B.; Tang, Keqi; Smith, Richard D.
2017-11-21
An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.
Johnsen, Rainer
1993-01-01
Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.
International Nuclear Information System (INIS)
Mandrillon, P.
1993-01-01
The treatment of tumours with charged particles, ranging from protons to 'light ions' (Carbon, Oxygen, Neon) has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. The rationale for this new radiotherapy, the accelerators and the beam delivery systems needed are presented in this paper. (orig.)
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
International Nuclear Information System (INIS)
Enge, H.A.
1974-01-01
A review is given of ion-optic devices used in particle accelerators, including electrostatic lenses, magnetic quadrupoles, and deflecting magnets. Tube focusing in dc accelerators is also treated, and a novel scheme for shaping the electrodes to produce strong focusing is described. The concepts of emittance (phase space) and emittance conservation are briefly discussed. Chromatic and spatial aberrations are introduced, and it is shown how they can be calculated and sometimes substantially reduced. Some examples are given
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hansen, O.
1985-01-01
In the fall of 1986 beams of heavy ions up to A ∼ 40 at total energies up to E ∼ 225 GeV/-nucleon will become available for experiments at CERN (60 and 225 GeV/nucleon) and at Brookhaven (15.5 GeV/nucleon). Are these energies interesting in relation to the ideas of creating quark deconfinement? An energy consideration of the planned experiments is presented, as well as a description of the experimental arrangement. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Somers, E
1961-01-01
The in vitro fungistatic activity of some twenty-four metal cations has been determine against Alternaria tenuis and Botrytis fabae. The metal salts, mainly nitrates, were tested in aqueous solution without added spore germination stimulant. The logarithm of the metal ion concentration at the ED 50 value has been found to conform to the exponenttial relationship with electronegativity proposed by Danielli and Davies (1951). These results are discussed in relation to the site of action of metal cations on the fungal cell.
International Nuclear Information System (INIS)
Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.
1975-06-01
Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
International Nuclear Information System (INIS)
Cyranski, R.; Kiliszek, Cz.R.; Marks, J.; Sobolewski, A.; Magielko, H.
2001-01-01
This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs
2011-12-01
variations of ion traps, including (1) the cylindrically symmetric 3D ring trap; (2) the linear trap with a combination of cavity QED; (#) the symmetric...concepts of quantum information. The major demonstration has been the test of a Bell inequality as demonstrated by Rowe et al. [50] and a decoherence...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic- parabolic
Investigation on Ion Source Parameters
M. Cheikh Mhamed, S. Essabaa, C. Lau
The EURISOL multi-mega-watt target station requires dedicated radioactive ion sources. Notably, they must be capable of operating under extremely hard radiations and with a larger fission target producing over 1014 fissions/s. The realisation of next-generation ion sources suitable for such operating conditions needs exhaustive studies and developments. In order to take up such a challenge, a review on radioactive ion sources was achieved and the investigation on ion source parameters was in particular focused on a plasma ion source through a R&D program.
Ion sources for medical accelerators
Barletta, W. A.; Chu, W. T.; Leung, K. N.
1998-02-01
Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.
Ion-acoustic plasma turbulence
International Nuclear Information System (INIS)
Bychenkov, V.Y.; Silin, V.P.
1982-01-01
A theory is developed of the nonlinear state that is established in a plasma as a result of development of ion-acoustic instability. Account is taken simultaneously of the linear induced scattering of the waves by the ions and of the quasilinear relaxation of the electrons by the ion-acoustic pulsations. The distribution of the ion-acoustic turbulence in frequency and in angle is obtained. An Ohm's law is established and expressions are obtained for the electronic heat flux and for the relaxation time of the electron temperature in a turbulent plasma. Anomalously large absorption and scattering of the electromagnetic waves by the ion-acoustic pulsations is predicted
International Nuclear Information System (INIS)
Leroy, Renan
1999-01-01
The proceedings of the GANIL Workshop on Ion Sources held at GANIL - Caen on 18-19 March 1999 contains 13 papers aiming at improving the old source operation and developing new types of sources for nuclear research and studies of ion physics. A number of reports are devoted to applications like surface treatment, ion implantation or fusion injection. The 1+→n+ transformation, charged particle transport in ECR sources, addition of cesium and xenon in negative ion sources and other basic issues in ion sources are also addressed
Energy Technology Data Exchange (ETDEWEB)
Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for
International Nuclear Information System (INIS)
Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.
1977-01-01
Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed
Ion temperature gradient instability
International Nuclear Information System (INIS)
1989-01-01
Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc
International Nuclear Information System (INIS)
Yamamura, Yasumichi; Shimizu, Ryuichi; Shimizu, Hazime; Ito, Noriaki.
1983-01-01
The research on ion-induced sputtering has been continued for a long time, since a hundred or more years ago. However, it was only in 1969 by Sigmund that the sputtering phenomena were theoretically arranged into the present form. The reason why the importance of sputtering phenomena have been given a new look recently is the application over wide range. This paper is a review centering around the mechanism of causing sputtering and its characteristics. Sputtering is such a phenomenon that the atoms in the vicinity of a solid surface are emitted into vacuum by receiving a part of ion energy, or in other words, it is a kind of irradiation damage in the vicinity of a solid surface. In this meaning, it can be considered that the sputtering based on the ions located on the clean surface of a single element metal is simple, and has already been basically understood. On the contrary, the phenomena can not be considered to be fully understood in the case of alloys and compounds, because these surface conditions under irradiation are not always clear due to segregation and others. In the paper, the physical of sputtering, single element sputtering, the sputtering in alloys and compounds, and the behaviour of emitted particles are explained. Finally, some recent topics of the sputtering measurement by laser resonant excitation, the sputtering by electron excitation, chemical sputtering, and the sputtering in nuclear fusion reactors are described. (Wakatsuki, Y.)
Ion source with plasma cathode
International Nuclear Information System (INIS)
Yabe, E.
1987-01-01
A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production
Energy Technology Data Exchange (ETDEWEB)
Enchevich, I.B. [TRIUMF, Cyclotron Div., Vancouver, British Columbia (Canada); Korenev, S.A. [JINR, Hihg Energy Physics Lab., Dubna, Moscow (Russian Federation)
1992-07-01
A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm{sup 2}; ions of Cl, F, C, H; residual gas pressure P = 10{sup -6} Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)
International Nuclear Information System (INIS)
Enchevich, I.B.; Korenev, S.A.
1992-07-01
A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm 2 ; ions of Cl, F, C, H; residual gas pressure P = 10 -6 Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)
Resonance Ionization Laser Ion Sources
Marsh, B
2013-01-01
The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...
A review of polarized ion sources
International Nuclear Information System (INIS)
Schmor, P.W.
1995-06-01
The two main types of polarized ion sources in use on accelerators today are the Atomic Beam Polarized Ion Source (ABIS) source and the Optically Pumped Polarized Ion Source (OPPIS). Both types can provide beams of nuclearly polarized light ions which are either positively or negatively charged. Heavy ion polarized ion sources for accelerators are being developed. (author). 35 refs., 1 tab
Unimolecular and collisionally induced ion reactions
International Nuclear Information System (INIS)
Beynon, J.H.; Boyd, R.K.
1978-01-01
The subject is reviewed under the following headings: introduction (mass spectroscopy and the study of fragmentation reactions of gaseous positive ions); techniques and methods (ion sources, detection systems, analysis of ions, data reduction); collision-induced reactions of ions and unimolecular fragmentations of metastable ions; applications (ion structure, energetic measurements, analytical applications, other applications). 305 references. (U.K.)
Electron string ion sources for carbon ion cancer therapy accelerators
Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.
2015-08-01
The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.
Diffuse ions produced by electromagnetic ion beam instabilities
International Nuclear Information System (INIS)
Winske, D.; Leroy, M.M.
1984-01-01
The evolution of the electromagnetic ions beam instability driven by the reflected ion component backstreaming away from the earth's how shock into the foreshock region is studied by means computer simulation. The linear the quasi-linear states of the instability are found to be in good agreement with known results for the resonant model propagating parallel to the beam along the magnetic field and with theory developed in this paper for the nonresonant mode, which propagates antiparallel to the beam direction. The quasi-linear stage, which produces large amplitude 8Bapprox.B, sinusoidal transverse waves and ''intermediate'' ion distribution, is terminated by a nonlinear phase in which strongly nonlinear, compressive waves and ''diffuse'' ion distributions are produced. Additional processes by which the diffuse ions are accelerated to observed high energies are not addressed. The results are discussed in terms of the ion distributions and hydromagnetic waves observed in the foreshock of the earth's bow shock and of interplanetary shocks
International Nuclear Information System (INIS)
Oaks, E.; Yushkov, G.
1996-01-01
The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of ∼ 10 17 cm -2 in some tens of minutes. So the average ion current density at the surface under treatment should be over 10 -5 A/cm 2 . The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from ∼1 kV (for the ion source used for surface sputtering) to ∼100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation)
Cobalt alloy ion sources for focused ion beam implantation
Energy Technology Data Exchange (ETDEWEB)
Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)
1997-09-01
Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.
Ion structure and sequence of ion formation in acetylene flames
Energy Technology Data Exchange (ETDEWEB)
Larionova, I.A.; Fialkov, B.S.; Kalinich, K.YA.; Fialkov, A.B.; Ospanov, B.S.
1993-06-01
Results of a study of the ion composition of acetylene-air flames burning at low pressures are reported. Data on ion formation are compared for flames of saturated hydrocarbons, oxygen-containing fuels, and acetylene. It is shown that the characteristics of ion formation in the flame front and directly ahead of it are similar to those observed in flames of other fuels. These characteristics, however, are different in the low-temperature region. 9 refs.
Hedrich, Rainer
2012-10-01
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Positive ion irradiation facility
International Nuclear Information System (INIS)
Braby, L.A.
1985-01-01
Many questions about the mechanisms of the response of cells to ionizing radiation can best be investigated using monoenergetic heavy charged particle beams. Questions of the role of different types of damage in the LET effect, for example, are being answered by comparing repair kinetics for damage induced by electrons with that produced by helium ions. However, as the models become more sophicated, the differences between models can be detected only with more precise measurements, or by combining high- and low-LET irradiations in split-dose experiments. The design of the authors present cell irradiation beam line has limited the authors to irradiating cells in a partial vacuum. A new way to mount the dishes and bring the beam to the cells was required. Several means of irradiating cells in mylar-bottom dishes have been used at other laboratories. For example at the RARAF Facility, the dual ion experiments are done with the dish bottom serving as the beam exit window but the cells are in a partial vacuum to prevent breaking the window. These researchers have chosen instead to use the dish bottom as the beam window and to irradiate the entire dish in a single exposure. A special, very fast pumping system will be installed at the end of the beam line. This system will make it possible to irradiate cells within two minutes of installing them in the irradiation chamber. In this way, the interaction of electron and ion-induced damage in Chlamydomonas can be studied with time between doses as short as 5 minutes
Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices
March, Raymond E
2009-01-01
Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.
International Nuclear Information System (INIS)
Ziegler, J.F.
1985-01-01
High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)
International Nuclear Information System (INIS)
Robinson, M.T.
1984-04-01
The ejection of atoms by the ion bombardment of solids is discussed in terms of linear collision cascade theory. A simple argument describes the energies of the ejecta, but elaborate models are required to obtain accurate sputtering yields and related quantities. These include transport theoretical models based on linearized Boltzmann equations, computer simulation models based on the binary collision approximation, and classical many-body dynamical models. The role of each kind of model is discussed. Several aspects of sputtering are illustrated by results from the simulation code MARLOWE. 20 references, 6 figures
Ion implantation for semiconductors
International Nuclear Information System (INIS)
Grey-Morgan, T.
1995-01-01
Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the
Compact ion accelerator source
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali
2014-04-29
An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
Molenaar, Remco J
2011-01-01
Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
International Nuclear Information System (INIS)
Hashmi, N.; Van Der Houven Van Oordt, A.J.
1975-01-01
An ion source in which an apertured or foraminous electrode having a multiplicity of openings is spaced from one or more active surfaces of an ionisation electrode, the active surfaces comprising a material capable of ionising by contact ionization a substance to be ionized supplied during operation to the active surface or surfaces comprises means for producing during operation a magnetic field which enables a stable plasma to be formed in the space between the active surface or surfaces and the apertured electrode, the field strength of the magnetic field being preferably in the range between 2 and 8 kilogauss. (U.S.)
International Nuclear Information System (INIS)
Valbusa, U.; Boragno, C.; Buatier de Mongeot, F.
2003-01-01
In metals, the surface curvature dependence of the sputtering yield and the presence of an extra energy barrier whenever diffusing adatoms try to descend step edges, produce a similar surface instability, which builds up regular patterns. By tuning the competition between these two mechanisms, it is possible to create self-organized structures of the size of few nanometers. Height, lateral distance and order of the structures change with the deposition parameters like ion energy, dose, incident angle and substrate temperature. The paper offers an overview of the experiments carried out and foresees possible applications of these results in the area of material science
Sympathetic cooling of ions in a hybrid atom ion trap
Energy Technology Data Exchange (ETDEWEB)
Hoeltkemeier, Bastian
2016-10-27
In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.
Heavy ion beams from the new Hungarian ECR ion source
International Nuclear Information System (INIS)
Biri, S.; Valek, A.; Ditroi, F.; Koivisto, H.; Arje, J.; Stiebing, K.; Schmidt, L.
1998-01-01
The first beams of highly charged ions in Hungary were obtained in fall of 1996. The new 14.5 GHz ECR ion source of ATOMKI produced beams of multiply charged ions with remarkable intensities at first experiments. Since then, numerous further developments were carried out. An external electrondonor electrode drastically increased the plasma density and, consequently, the intensity of highly charged ions. These upgrades concentrated mainly on beams from gaseous elements and were carried out by the ECRIS team of ATOMKI. Another series of experiments - ionising from solids - however, was done in the framework of an international collaboration. The first metal ion beam has been extracted from the ECRIS in November 1997 using the known method of Metal Ions from Volatile Compounds (MIVOC). The possibility to put the MIVOC chamber inside the ion source was also tested and the dosing regulation problem of metal vapours inside the ion source was solved. As a result, beams of more than 10 μA of highly charged Fe and Ni ions were produced. (author)
Note: Ion source design for ion trap systems
Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.
2013-06-01
A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.
Fundamental processes in ion plating
International Nuclear Information System (INIS)
Mattox, D.M.
1980-01-01
Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process
Lomax, Tony
2013-01-01
Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art...
Ion exchange technology assessment report
International Nuclear Information System (INIS)
Duhn, E.F.
1992-01-01
In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team
Mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-09-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
Negative hydrogen ion production mechanisms
Energy Technology Data Exchange (ETDEWEB)
Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)
2015-06-15
Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.
Ion detection in mass spectrometry
International Nuclear Information System (INIS)
Bolbach, Gerard
2016-03-01
This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials
International Nuclear Information System (INIS)
Tammet, H.
1996-01-01
Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4 endash 1.8 nm. copyright 1996 American Institute of Physics
Ion climate and radon concentration
International Nuclear Information System (INIS)
Busbarna, L.
1981-01-01
Characteristic values of radon concentration in natural ion climate and in open air were compared and the effect of artificially produced negative ion excess on the radon concentration of air was studied. The results show that the radon concentration measurable at the rise of negative ion excess is smaller than that in the case of natural equilibrium. This effect can be utilized lowering the background of the scintillation chambers, thus increasing their sensitivity. The negative ions of the artificial ion climate lower radon concentration in closed space. The question arises whether only the ion climate is responsible for the effects on the organism and on the nervous system or the radon concentration of the air also contributes to them. (author)
An ion displacement membrame model.
Hladky, S B; Harris, J D
1967-09-01
The usual assumption in treating the diffusion of ions in an electric field has been that the movement of each ion is independent of the movement of the others. The resulting equation for diffusion by a succession of spontaneous jumps has been well stated by Parlin and Eyring. This paper will consider one simple case in which a different assumption is reasonable. Diffusion of monovalent positive ions is considered as a series of jumps from one fixed negative site to another. The sites are assumed to be full (electrical neutrality). Interaction occurs by the displacement of one ion by another. An ion leaves a site if and only if another ion, not necessarily of the same species, attempts to occupy the same site. Flux ratios and net fluxes are given as functions of the electrical potential, concentration ratios, and number of sites encountered in crossing the membrane. Quantitative comparisons with observations of Hodgkin and Keynes are presented.
Ion implantation: an annotated bibliography
International Nuclear Information System (INIS)
Ting, R.N.; Subramanyam, K.
1975-10-01
Ion implantation is a technique for introducing controlled amounts of dopants into target substrates, and has been successfully used for the manufacture of silicon semiconductor devices. Ion implantation is superior to other methods of doping such as thermal diffusion and epitaxy, in view of its advantages such as high degree of control, flexibility, and amenability to automation. This annotated bibliography of 416 references consists of journal articles, books, and conference papers in English and foreign languages published during 1973-74, on all aspects of ion implantation including range distribution and concentration profile, channeling, radiation damage and annealing, compound semiconductors, structural and electrical characterization, applications, equipment and ion sources. Earlier bibliographies on ion implantation, and national and international conferences in which papers on ion implantation were presented have also been listed separately
Electrohydrodynamic emitters of ion beams
International Nuclear Information System (INIS)
Dudnikov, V.G.; Shabalin, A.L.
1990-01-01
Physical processes determining generation of ion beams with high emission current density in electrohydrodynamic emitters are considered. Electrohydrodynamic effects developing in ion emission features and kinetics of ion interaction in beams with high density are discussed. Factors determining the size of the emission zone, emission stability at high and low currents, cluster generation, increase of energy spread and decrease of brightness are analyzed. Problems on practical provision of stable EHD emitter functioning are considered. 94 refs.; 8 figs.; 1 tab
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
Other applications of ion microbeams
International Nuclear Information System (INIS)
Cookson, J.A.
1987-01-01
The paper concerns the analytical and non-analytical applications of ion microbeams. The analytical applications considered include:-fusion research, environmental studies, ion implantations and criminology, and each is briefly discussed. Non-analytical applications in which nuclear microprobes have been used include:-thickness and uniformity measurements, energy loss radiography, channelling contrast, tomography, topography, ion implantation, and detector testing, and these are also discussed. (UK)
Heavy ion medical accelerator, HIMAC
International Nuclear Information System (INIS)
Yamada, Satoru
1993-01-01
The heavy ion beam is undoutedly suitable for the cancer treatment. The supriority of the heavy ions over the conventional radiations including protons and neutrons comes mainly from physical characteristics of a heavy particle with multiple charges. A straggling angle due to a multiple Coulomb scattering process in a human body is small for heavy ions, and the small scattering angle results in a good dose localization in a transverse direction. An ionization ratio of the heavy ion beam makes a very sharp peak at the ends of their range. The height of the peak is higher for the heavier ions and shows excellent biomedical effects around Ne ions. In order to apply heavy ion beams to cancer treatment, Heavy Ion Medical Accelerator in Chiba (HIMAC) has been constructed at National Institute of Radiological Sciences. The accelerator complex consists of two ion sources, two successive linac tanks, a pair of synchrotron rings, a beam transport system and an irradiation system. An operation frequency is 100 MHz for two linacs, and the ion energy is 6.0 MeV/u at the output end of the linac. The other four experimental rooms are prepared for basic experiments. The synchrotron accelerates ions up to 800 MeV/u for a charge to mass ratio of 1/2. The long beam transport line provides two vertical beams in addition with two horizontal beams for the treatment. The three treatment rooms are prepared one of which is equipped with both horizontal and vertical beam lines. The whole facility will be open for all scientists who have interests in the heavy ion science as well as the biophysics. The conceptual design study of HIMAC started in 1984, and the construction of the accelerator complex was begun in March 1988. The beam acceleration tests of the injector system was successfully completed in March of this year, and tests of the whole system will be finished throughout this fyscal year. (author)
International Nuclear Information System (INIS)
Hughes, J.; Luther-Davies, B.; Hora, H.; Kelly, J.
1978-01-01
Apparatus for generating energetic ions of a target material from a cold plasma of the material is described. A pulsed laser beam is directed onto the target to produce the cold plasma. Laser beam pulses are short in relation to the collision time in the plasma. Non-linear elctrodynamic forces within the plasma act to accelerate and eject ions from the plasma. The apparatus can be used to separate ions of isotopes of an element
Cornell electron beam ion source
International Nuclear Information System (INIS)
Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.
1981-01-01
An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies
Ion induced Auger spectroscopy
International Nuclear Information System (INIS)
Thomas, E.W.; Legg, K.O.; Metz, W.A.
1980-01-01
Auger electron spectra are induced by impact of heavy ions (e.g. Ar + ) on surfaces; it has been suggested that analysis of such spectra would be a useful technique for surface analysis. We have examined the Auger spectra for various projectile-target combinations and present as representative data the spectra for 100 keV Ar + impact on Al, Cr, Mn, Fe and Co. For a projectile incident on a species of higher nuclear charge the spectrum is dominated by Auger lines from the projectile, broadened considerably by the Doppler effect due to the projectile's motion. The spectra are not characteristic of the target and therefore offer no opportunity for surface analysis. For a projectile incident on a target of lower nuclear charge the spectrum is that of the target species but the spectrum is consistent with the source being sputtered excited atoms; the Auger electrons do not come from the surface. We conclude that the ion induced Auger spectra are in general not a convenient method for surface analysis. (orig.)
Electrically switched ion exchange
Energy Technology Data Exchange (ETDEWEB)
Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.
1997-10-01
A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.