Vlasov dynamics of periodically driven systems
Banerjee, Soumyadip; Shah, Kushal
2018-04-01
Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.
The Einstein-Vlasov System/Kinetic Theory.
Andréasson, Håkan
2011-01-01
The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.
The Einstein-Vlasov System/Kinetic Theory
Directory of Open Access Journals (Sweden)
Håkan Andréasson
2002-12-01
Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.
Yang-Mills-Vlasov system in the temporal gauge
International Nuclear Information System (INIS)
Choquet-Bruhat, Y.; Noutchegueme, N.
1991-01-01
We prove a local in time existence theorem of a solution of the Cauchy problem for the Yang-Mills-Vlasov integrodifferential system. Such equations govern the evolution of plasmas, for instance of quarks and gluons (quagmas), where non abelian gauge fields and Yang-Mills charges replace the usual electromagnetic field and electric charge. We work with the temporal gauge and use functional spaces with appropriate weight on the momenta, but no fall off is required in the space direction [fr
Global well posedness of the relativistic Vlasov-Yukawa system with small data
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Lee, Ho
2007-01-01
In this paper, we present an existence theory and uniform L 1 -stability estimate for classical solutions with small data to the Vlasov-Yukawa system. The Vlasov-Yukawa system corresponds to a short-range correction of the Vlasov-Poisson system appearing in plasma physics and astrophysics. For the existence and stability of classical solutions, we crucially use dispersion estimates due to the smallness of data
Large Time Behavior of the Vlasov-Poisson-Boltzmann System
Directory of Open Access Journals (Sweden)
Li Li
2013-01-01
Full Text Available The motion of dilute charged particles can be modeled by Vlasov-Poisson-Boltzmann system. We study the large time stability of the VPB system. To be precise, we prove that when time goes to infinity, the solution of VPB system tends to global Maxwellian state in a rate Ot−∞, by using a method developed for Boltzmann equation without force in the work of Desvillettes and Villani (2005. The improvement of the present paper is the removal of condition on parameter λ as in the work of Li (2008.
Petrie, L. E.
1986-03-01
Some antenna fundamentals as well as definitions of the principal terms used in antenna engineering are described. Methods are presented for determining the desired antenna radiation patterns for HF communication circuit or service area. Sources for obtaining or computing radiation pattern information are outlined. Comparisons are presented between the measured and computed radiation patterns. The effect of the properties of the ground on the antenna gain and the pattern are illustrated for several types of antennas. Numerous examples are given of the radiation patterns for typical antennas used on short, intermediate and long distance circuits for both mobile and fixed service operations. The application of adaptive antenna arrays and active antennas in modern HF communication systems are briefly reviewed.
Hamiltonian dynamics of spatially-homogeneous Vlasov-Einstein systems
International Nuclear Information System (INIS)
Okabe, Takahide; Morrison, P. J.; Friedrichsen, J. E. III; Shepley, L. C.
2011-01-01
We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter. The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter potentials analogous to the curvature potentials of corresponding vacuum models.
Maxwell-Vlasov equations as a continuous Hamiltonian system
International Nuclear Information System (INIS)
Morrison, P.J.
1980-09-01
The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion
Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Frank, T.D.
2003-01-01
Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model
Explicit analytical solution of the nonlinear Vlasov Poisson system
International Nuclear Information System (INIS)
Skarka, V.; Mahajan, S.M.; Fijalkow, E.
1993-10-01
In order to describe the time evolution of an inhomogeneous collisionless plasma the nonlinear Vlasov equation is solved perturbatively, using the subdynamics approach and the diagrammatic techniques. The solution is given in terms of a double perturbation series, one with respect to the nonlinearities and the other with respect to the interaction between particles. The infinite sum of interaction terms can be performed exactly due to the property of dynamical factorization. Following the methodology, the exact solution in each order with respect to nonlinearities is computed. For a choice of initial perturbation the first order exact solution is numerically integrated in order to find the local density excess. The approximate analytical solution is found to be in excellent agreement with exact numerical integration as well as with ab initio numerical simulations. Analytical computation gives a better insight into the problem and it has the advantage to be simpler, and also accessible in some range of parameters where it is difficult to find numerical solutions. (author). 27 refs, 12 figs
Resolution of the Vlasov-Maxwell system by PIC discontinuous Galerkin method on GPU with OpenCL
Directory of Open Access Journals (Sweden)
Crestetto Anaïs
2013-01-01
Full Text Available We present an implementation of a Vlasov-Maxwell solver for multicore processors. The Vlasov equation describes the evolution of charged particles in an electromagnetic field, solution of the Maxwell equations. The Vlasov equation is solved by a Particle-In-Cell method (PIC, while the Maxwell system is computed by a Discontinuous Galerkin method. We use the OpenCL framework, which allows our code to run on multicore processors or recent Graphic Processing Units (GPU. We present several numerical applications to two-dimensional test cases.
On classical solutions of the relativistic Vlasov-Klein-Gordon system
Directory of Open Access Journals (Sweden)
Michael Kunzinger
2005-01-01
Full Text Available We consider a collisionless ensemble of classical particles coupled with a Klein-Gordon field. For the resulting nonlinear system of partial differential equations, the relativistic Vlasov-Klein-Gordon system, we prove local-in-time existence of classical solutions and a continuation criterion which says that a solution can blow up only if the particle momenta become large. We also show that classical solutions are global in time in the one-dimensional case.
Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1987-10-01
The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs
Stability analysis of a Vlasov-Wave system describing particles interacting with their environment
De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur
2018-06-01
We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.
L2-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians
International Nuclear Information System (INIS)
Ha, Seung-Yeal; Xiao, Qinghua; Xiong, Linjie; Zhao, Huijiang
2013-01-01
We present a L 2 -stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L 2 -distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L 2 -stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L 2 stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on the L 2 -stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L 2 -stability estimate. This is the first result on the L 2 -stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions
Multiple Antenna Systems with Inherently Decoupled Radiators
DEFF Research Database (Denmark)
Pelosi, Mauro; Knudsen, Mikael B.; Pedersen, Gert Frølund
2012-01-01
In multiple antenna systems mutual coupling needs to be minimized. We propose an alternative novel decoupling technique, investigating several multiple antenna configurations for small handsets through measurements and numerical simulations. The influence of different novel designs on performance...... metrics such as total loss, antenna isolation and envelope correlation coefficient are investigated. By varying antenna impedance bandwidth and antenna location with respect to the handset, both Planar Inverted F Antenna (PIFA) and Inverted F Antennas (IFA) were investigated in different UMTS frequency...
National Research Council Canada - National Science Library
Gerhard, Erich M
2008-01-01
.... For instance, in one embodiment two oppositely extending curves each float and each are pressed by the water in a balanced manner to provide a stable platform for one or more antennas which can be...
Hinson, W. F.; Keafer, L. S.
1984-01-01
It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.
47 CFR 73.510 - Antenna systems.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.510 Section 73.510... Noncommercial Educational FM Broadcast Stations § 73.510 Antenna systems. (a) All noncommercial educational... § 73.316 concerning antenna systems contained in subpart B of this part. (b) Directional antenna. No...
Fully nonlinear phenomenology of the Berk-Breizman augmentation of the Vlasov-Maxwell system
International Nuclear Information System (INIS)
Vann, R.G.L.; Dendy, R.O.; Rowlands, G.; Arber, T.D.; D'Ambrumenil, N.
2003-01-01
The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-consistent resonant excitation and damping of wave fields by evolving energetic particle populations in magnetic fusion plasmas. The key model parameters are the particle annihilation rate ν a , which drives bump-on-tail structure, and the linear wave damping rate γ d . A code, based on the piecewise parabolic method, is used to integrate the fully nonlinear Berk-Breizman system of equations across the whole (ν a ,γ d ) parameter space. The results of this code show that the system's behavior can be classified into one of four types, each of which occurs in a well-defined region of parameter space: chaotic, periodic, steady state, and damped. The corresponding evolution in (x,v) phase space is also examined
Reduced Vlasov-Maxwell simulations
International Nuclear Information System (INIS)
Helluy, P.; Navoret, L.; Pham, N.; Crestetto, A.
2014-01-01
The Maxwell-Vlasov system is a fundamental model in physics. It can be applied to plasma simulations, charged particles beam, astrophysics, etc. The unknowns are the electromagnetic field, solution to the Maxwell equations and the distribution function, solution to the Vlasov equation. In this paper we review two different numerical methods for Vlasov-Maxwell simulations. The first method is based on a coupling between a Discontinuous Galerkin (DG) Maxwell solver and a Particle-In-Cell (PIC) Vlasov solver. The second method only uses a DG approach for the Vlasov and Maxwell equations. The Vlasov equation is first reduced to a space-only hyperbolic system thanks to the finite-element method. The two numerical methods are implemented using OpenCL in order to achieve high performance on recent Graphic Processing Units (GPU). We obtained interesting speedups, but we also observe that the PIC method is the most expensive part of the computation. Therefore we propose another fully Eulerian approach. Thanks to a decomposition of the distribution function on velocity basis functions, we obtain a reduced Vlasov model, which appears to be a hyperbolic system of conservation laws written only in the (x,t) space. We can thus adapt very easily our DG solver to the reduced model
47 CFR 78.105 - Antenna systems.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 78.105 Section 78.105... SERVICE Technical Regulations § 78.105 Antenna systems. (a) For fixed stations operating in the 12.7-13.2... planes. (2) New periscope antenna systems will be authorized upon a certification that the radiation, in...
47 CFR 74.641 - Antenna systems.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 74.641 Section 74.641... Stations § 74.641 Antenna systems. (a) For fixed stations operating above 2025 MHz, the following standards... elevation planes. (2) New periscope antenna systems will be authorized upon a certification that the...
System and circuit models for microwave antennas
Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.
2007-01-01
This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...
The Vlasov-Navier-Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria
Glass, Olivier; Han-Kwan, Daniel; Moussa, Ayman
2018-05-01
In this paper, we study the Vlasov-Navier-Stokes system in a 2D pipe with partially absorbing boundary conditions. We show the existence of stationary states for this system near small Poiseuille flows for the fluid phase, for which the kinetic phase is not trivial. We prove the asymptotic stability of these states with respect to appropriately compactly supported perturbations. The analysis relies on geometric control conditions which help to avoid any concentration phenomenon for the kinetic phase.
Rein, Gerhard; Rendall, Alan D.
1993-01-01
The initial value problem for the Vlasov-Poisson system is by now well understood in the case of an isolated system where, by definition, the distribution function of the particles as well as the gravitational potential vanish at spatial infinity. Here we start with homogeneous solutions, which have a spatially constant, non-zero mass density and which describe the mass distribution in a Newtonian model of the universe. These homogeneous states can be constructed explicitly, and we consider d...
Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying
2018-04-01
The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.
COMWIN Antenna System Fiscal Year 2000 Report
National Research Council Canada - National Science Library
Adams, R
2000-01-01
.... The Joint Tactical Radio (JTR) requires this frequency. The figure of merit to determine whether the radio is efficient in the band is a Standing Wave Ratio (VSWR) of less than 3:1. The COMWIN antenna system would consist of three antennas. The first antenna, in the form of a vest, would operate in the 30- to 500-MHz band. The helmet antenna would operate in the 500- to 2000 MHz band. An antenna that runs down the edges would operate in the 2- to 30-MHz band.
Improvement of antenna decoupling in radar systems
Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban
2015-02-01
In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.
Numerical study of a Vlasov equation for systems with interacting particles
Energy Technology Data Exchange (ETDEWEB)
Herrera, Dianela; Curilef, Sergio [Departamento de Física, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta (Chile)
2015-03-10
We solve numerically the Vlasov equation for the self-gravitating sheet model. We used the method introduced by Cheng and Knorr [Comput Phys 22, 330-351 (1976)]. We discuss the quasi-stationary state for some thermodynamical observables, specifically the kinetic energy, whose trend is depicted for early evolution.
A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system
International Nuclear Information System (INIS)
Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre
2008-01-01
In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to
Guthrey, Pierson Tyler
The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL
Handbook of smart antennas for RFID systems
2010-01-01
The Handbook of Smart Antennas for RFID Systems is a single comprehensive reference on the smart antenna technologies applied to RFID. This book will provide a timely reference book for researchers and students in the areas of both smart antennas and RFID technologies. It is the first book to combine two of the most important wireless technologies together in one book. The handbook will feature chapters by leading experts in both academia and industry offering an in-depth description of terminologies and concepts related to smart antennas in various RFID systems applications.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
Energy Technology Data Exchange (ETDEWEB)
Squire, J.; Tang, W. M. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, H. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-08-15
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
47 CFR 73.753 - Antenna systems.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna systems. 73.753 Section 73.753 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES International Broadcast Stations § 73.753 Antenna systems. All international broadcasting stations shall operate...
Scalable Notch Antenna System for Multiport Applications
Directory of Open Access Journals (Sweden)
Abdurrahim Toktas
2016-01-01
Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.
International Nuclear Information System (INIS)
Winter, J.
1985-01-01
A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established
Slot Antenna for Wireless Temperature Measurement Systems
DEFF Research Database (Denmark)
Acar, Öncel; Jakobsen, Kaj Bjarne
2016-01-01
This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....
A Fast Adaptive Receive Antenna Selection Method in MIMO System
Directory of Open Access Journals (Sweden)
Chaowei Wang
2013-01-01
Full Text Available Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.
A Case Study on Distributed Antenna Systems
DEFF Research Database (Denmark)
Sørensen, Troels Bundgaard
2007-01-01
Passive distributed antenna systems (DASs) consisting of distributed feeder lines or single point antennas are now often installed in large office buildings where they provide efficient coverage throughout the building. More sophisticated DASs with intelligent reuse and the ability to adapt...... is described in terms of algorithms for power allocation and access port assignment, as well as algorithms for (dynamic) channel assignment. After an outline of simulation assumptions, system capacity comparisons are given between the adaptive DAS and a system with fixed channel and access port assignment...
Action principles for the Vlasov equation
International Nuclear Information System (INIS)
Ye, H.; Morrison, P.J.
1992-01-01
Five action principles for the Vlasov--Poisson and Vlasov--Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov--Maxwell equations are altered so as to produce the Vlasov--Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov--Poisson equation is altered to produce the Vlasov--Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
International Nuclear Information System (INIS)
Xiao, Jianyuan; Liu, Jian; He, Yang; Zhang, Ruili; Qin, Hong; Sun, Yajuan
2015-01-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint http://arxiv.org/abs/arXiv:1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianyuan [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA; Liu, Jian [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; He, Yang [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Zhang, Ruili [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026, China; Sun, Yajuan [LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, China
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces five exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.
Multiport antenna systems for space-time communications
DEFF Research Database (Denmark)
Tsakalaki, Elpiniki; Alrabadi, Osama; Pelosi, Mauro
2013-01-01
The paper presents the concept of multiport antenna systems where multiple active and passive ports are deployed. The passive ports, implemented via tunable reactance-assisted (parasitic) antennas, can alter the far-field and near-field properties of the antenna system expressed by the antenna...... efficiency, electromagnetic coupling and spatial correlation. The system can be optimized in order to enhance the spatial multiplexing performance whereas the performance gains come at no significant additional cost and hardware complexity...
Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O
2003-01-01
The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.
47 CFR 73.6025 - Antenna system and station location.
2010-10-01
... RADIO BROADCAST SERVICES Class A Television Broadcast Stations § 73.6025 Antenna system and station... clearly the radiation characteristics of the antenna above and below the horizontal plane. In cases where...
Explosions in Landau Vlasov dynamics
International Nuclear Information System (INIS)
Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.
1988-01-01
A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed
Space vehicle electromechanical system and helical antenna winding fixture
Judd, Stephen; Dallmann, Nicholas; Guenther, David; Enemark, Donald; Seitz, Daniel; Martinez, John; Storms, Steven
2017-12-26
A space vehicle electromechanical system may employ an architecture that enables convenient and practical testing, reset, and retesting of solar panel and antenna deployment on the ground. A helical antenna winding fixture may facilitate winding and binding of the helical antenna.
Utilization of antenna arrays in HF systems
Directory of Open Access Journals (Sweden)
Louis Bertel
2009-06-01
Full Text Available
Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction
finding operates with a multi channel receiving system connected to an array of receiving antennas. More
recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna
arrays at both the transmitter and receiver.
The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying
MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety
of different antenna array configurations is presented. The second section of the paper also deals with HF
MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity
analysis of different antenna array structures for HF direction finding applications. The results demonstrate
that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures
1972-01-01
The development of a facsimile camera to serve as the antenna aspect system for the second generation Radio Astronomy Explorer Satellite designated RAE-B is summarized. The camera system consists of two cameras and a data encoder. The program deliverables were two flight cameras, a flight encoder and one spare flight encoder. The RAE-B satellite was originally intended for an earth orbit mission and the facsimile subsystem characteristics were specified with this in mind. Subsequently the flight mission was changed to orbit the moon; however the change occurred too late to significantly influence the facsimile system design. Therefore, this report considers only compliance of the system to earth orbit requirements.
Colombo, Maria
2017-01-01
The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.
Full-duplex MIMO system based on antenna cancellation technique
DEFF Research Database (Denmark)
Foroozanfard, Ehsan; Franek, Ondrej; Tatomirescu, Alexandru
2014-01-01
The performance of an antenna cancellation technique for a multiple-input– multiple-output (MIMO) full-duplex system that is based on null-steering beamforming and antenna polarization diversity is investigated. A practical implementation of a symmetric antenna topology comprising three dual......-polarized patch antennas operating at 2.4 GHz is described. The measurement results show an average of 60 dB self-interference cancellation over 200 MHz bandwidth. Moreover, a decoupling level of up to 22 dB is achieved for MIMO multiplexing using antenna polarization diversity. The performance evaluation...
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Antenna concepts for interstellar search systems
International Nuclear Information System (INIS)
Basler, R.P.; Johnson, G.L.; Vondrak, R.R.
1977-01-01
An evaluation is made of microwave receiving systems designed to search for signals from extraterrestrial intelligence. Specific design concepts are analyzed parametrically to determine whether the optimum antenna system location is on earth, in space, or on the moon. Parameters considered include the hypothesized number of transmitting civilizations, the number of stars that must be searched to give any desired probability of receiving a signal, the antenna collecting area, the search time, the search range, and the cost. This analysis suggests that search systems based on the moon are not cost-competitive, if the search is extended only a few hundred light years from the earth, a Cyclops-type array on earth may be the most cost-effective system, for a search extending to 500 light years or more, a substantial cost and search-time advantage can be achieved with a large spherical reflector in space with multiple feeds, radio frequency interference shields can be provided for space systems, and cost can range from a few hundred million to tens of billions of dollars, depending on the parameter values assumed
Inflatable antenna for earth observing systems
Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min
2010-09-01
This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.
Low-cost Antenna Positioning System Designed with Axiomatic Design
Directory of Open Access Journals (Sweden)
Timothy Foley Joseph
2017-01-01
Full Text Available The Engineering Optimization and Modeling Center at Reykjavik University has been carrying out research on antenna CAD, including the simulation-driven design of novel antenna topologies. However, simulation is not enough to validate a design: a custom RF anechoic chamber has been built to quantify antenna performance, particularly in terms of field properties such as radiation patterns. Such experiments require careful positioning of the antenna in the chamber accurately in 3-axis with a short development time, challenging material constraints, and minimal funding. Axiomatic Design Theory principles were applied to develop an automated 3-axis positioner system for a reference antenna and the antenna to be calibrated. Each axis can be individually controlled with a repeatability of 1 degree. This 3000 USD device can be fabricated using easily available components and rapid prototyping tools.
Impact of Antenna Placement on Frequency Domain Adaptive Antenna Array in Hybrid FRF Cellular System
Directory of Open Access Journals (Sweden)
Sri Maldia Hari Asti
2012-01-01
Full Text Available Frequency domain adaptive antenna array (FDAAA is an effective method to suppress interference caused by frequency selective fading and multiple-access interference (MAI in single-carrier (SC transmission. However, the performance of FDAAA receiver will be affected by the antenna placement parameters such as antenna separation and spread of angle of arrival (AOA. On the other hand, hybrid frequency reuse can be adopted in cellular system to improve the cellular capacity. However, optimal frequency reuse factor (FRF depends on the channel propagation and transceiver scheme as well. In this paper, we analyze the impact of antenna separation and AOA spread on FDAAA receiver and optimize the cellular capacity by using hybrid FRF.
Hussain, Rifaqat; Sharawi, Mohammad S.
2015-01-01
. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm^{2}. The proposed sensing antenna is used to cover a wide range
Multiple-Active Multiple-Passive Antenna Systems and Applications
DEFF Research Database (Denmark)
Tsakalaki, Elpiniki
2013-01-01
-passive (MAMP) antenna topologies, as explained in Sect. 8.1. Then, Sect. 8.2 proposes MAMP antenna structures with application to reconfigurable MIMO transmission in the presence of antenna mutual coupling under poor scattering channel conditions. For this purpose, the section presents an adaptive MAMP antenna...... system capable of changing its transmission parameters via passive radiators attached to tunable loads, according to the structure of the RF propagation channel. The hybrid MAMP array structure can be tractably analyzed using the active element response vector (instead of the classical steering vector...... adaptive MAMP system can be limited to practical dimensions whereas the passive antennas require no extra RF hardware, thus meeting the cost, space, and power constrains of the users’ mobile terminals. The simulation results show that the adaptive MAMP system, thanks to its “adaptivity”, is able to achieve...
1982-03-03
arc csch csch - 1 Russian English rot curl lg log !i FIVE-METER SPHERICAL MILLIMETER-BAND ANTENNA P.M. Geruni This article presents the basic...rlpe’ I operating band, MHz elliptical Xk, mm X , m fk, MHz z wavgudeeg MHz f =1.2f f =0.95f waegid H X B rip = E40 104.5 56.4 2872 5410 3446 5141 E48...aperture In order to do this, we expand (30) into a series with respect to y. Limiting ourselves to the first three terms of the expansion, we obtain r
Beraldo e Silva, Leandro; de Siqueira Pedra, Walter; Sodré, Laerte; Perico, Eder L. D.; Lima, Marcos
2017-09-01
The collapse of a collisionless self-gravitating system, with the fast achievement of a quasi-stationary state, is driven by violent relaxation, with a typical particle interacting with the time-changing collective potential. It is traditionally assumed that this evolution is governed by the Vlasov-Poisson equation, in which case entropy must be conserved. We run N-body simulations of isolated self-gravitating systems, using three simulation codes, NBODY-6 (direct summation without softening), NBODY-2 (direct summation with softening), and GADGET-2 (tree code with softening), for different numbers of particles and initial conditions. At each snapshot, we estimate the Shannon entropy of the distribution function with three different techniques: Kernel, Nearest Neighbor, and EnBiD. For all simulation codes and estimators, the entropy evolution converges to the same limit as N increases. During violent relaxation, the entropy has a fast increase followed by damping oscillations, indicating that violent relaxation must be described by a kinetic equation other than the Vlasov-Poisson equation, even for N as large as that of astronomical structures. This indicates that violent relaxation cannot be described by a time-reversible equation, shedding some light on the so-called “fundamental paradox of stellar dynamics.” The long-term evolution is well-described by the orbit-averaged Fokker-Planck model, with Coulomb logarithm values in the expected range 10{--}12. By means of NBODY-2, we also study the dependence of the two-body relaxation timescale on the softening length. The approach presented in the current work can potentially provide a general method for testing any kinetic equation intended to describe the macroscopic evolution of N-body systems.
Smart Antenna UKM Testbed for Digital Beamforming System
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.
Hussain, Rifaqat
2015-06-18
© The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm^{2}. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.
Design of energy conscious antenna system for WLAN frequency band
CSIR Research Space (South Africa)
Bembe, MJ
2009-08-01
Full Text Available . The modification can be achieved by loading the antenna elements with lumped circuits and a matching network system. This will be done by using the genetic algorithm optimisation technique....
Cosmology in one dimension: Vlasov dynamics.
Manfredi, Giovanni; Rouet, Jean-Louis; Miller, Bruce; Shiozawa, Yui
2016-04-01
Numerical simulations of self-gravitating systems are generally based on N-body codes, which solve the equations of motion of a large number of interacting particles. This approach suffers from poor statistical sampling in regions of low density. In contrast, Vlasov codes, by meshing the entire phase space, can reach higher accuracy irrespective of the density. Here, we perform one-dimensional Vlasov simulations of a long-standing cosmological problem, namely, the fractal properties of an expanding Einstein-de Sitter universe in Newtonian gravity. The N-body results are confirmed for high-density regions and extended to regions of low matter density, where the N-body approach usually fails.
The energy of perturbations for Vlasov plasmas
International Nuclear Information System (INIS)
Morrison, P.J.
1994-02-01
The energy content of electrostatic perturbations about homogeneous equilibria is discussed. The calculation leading to the well-known dielectric (or as it is sometimes called the wave) energy is revisited and interpreted in light of Vlasov theory. It is argued that this quantity is deficient because resonant particles are not correctly handled. A linear integral transform is presented that solves the linear Vlasov-Poisson equation. This solution together with the Kruskal-Oberman energy [Phys. Fluids 1, 275 (1958)] is used to obtain an energy expression in terms of the electric field [Phys. Fluids B 4, 3038 (1992)]. It is described how the integral transform amounts to a change to normal coordinates in an infinite dimensional Hamiltonian system
60 GHz Milimeter-Wave Antennas for Point-to-Point 5G Communication System
Directory of Open Access Journals (Sweden)
Aishah A.S.
2017-01-01
Full Text Available In this paper microstrip patch antenna for millimeter-wave is proposed. Evolution of shape microstrip antenna are designed which is from rectangular antenna to triangle antenna and changed to triangle with slot. The proposed antenna configuration achieved for covering 5G wireless system. The lowest return loss of the antenna is -29.23dB which is triangle with slot and the maximum gain obtained is 8 db at the 61.93 GHz for the triangle antenna. This antenna are suitable for the 5G wireless application for short range and high rate communication system.
Precision Antenna Measurement System (PAMS) Engineering Services
1978-04-01
8217) = receiving antenna gain for vertical polarization. The total direct signal power is Following Beck /narn and Spizzachino , the specular component...method may be valid for the problem. Very often, however, the physical optics 92 approach baaed on a solution of the wave equation will have to
Self Configurable Intelligent Distributed Antenna System
DEFF Research Database (Denmark)
Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee
2016-01-01
with their respective base stations, spectrum pooling and management at antenna end is not efficient. The situation worsens in Heterogeneous and Dense-net conditions in an Area of Interest (AoI). In this paper, we propose a DAS based intelligent architecture referred to as Self Configurable Intelligent Distributed...
Antenna array geometry optimization for a passive coherent localisation system
Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel
2012-11-01
Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.
Electromagnetics of body area networks antennas, propagation, and RF systems
Werner, Douglas H
2016-01-01
The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyo...
A Design of Dual Broadband Antenna in Mobile Communication System
Directory of Open Access Journals (Sweden)
Jianming Zhou
2015-01-01
Full Text Available A design of dual broadband antenna is proposed in this paper; it consists of one low frequency unit and two high frequency units. The low frequency unit consists of a pair of printing vibrators; the high frequency unit consists of a pair of printing oscillators, which is bent at its end, and high frequency unit and low frequency unit are set on the same dielectric substrate. Through adding a parasitic unit on antenna, it can enhance frequency bandwidth without affecting the bandwidth. In the high frequency unit, it adopts gap-coupled microstrip line feeding method in order to get enough bandwidth. Through the test of dual broadband antenna, it can be found that, in the low frequency part, the antenna covers 20% bandwidth of the total bandwidth, and it covers the frequency from 800 MHz to 980 MHz. In the high frequency, the antenna covers 60% of total bandwidth and its frequency is from 1540 MHz to 2860 MHz, so the designed antenna can satisfy the frequency requirements of 2G/3G/LTE (4G communication system.
Highly Compact MIMO Antenna System for LTE/ISM Applications
Directory of Open Access Journals (Sweden)
Lingsheng Yang
2015-01-01
Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.
FTTA System Demo Using Optical Fiber-Coupled Active Antennas
Directory of Open Access Journals (Sweden)
Niels Neumann
2014-08-01
Full Text Available The convergence of optical and wireless systems such as Radio-over-Fiber (RoF networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed.
DEFF Research Database (Denmark)
Cappellin, Cecilia; Frandsen, A.; Pivnenko, Sergey
2007-01-01
The recently developed Spherical Wave Expansion-to-Plane Wave Expansion (SWE-to-PWE) antenna diagnostics technique is employed in an investigation of the antenna system in the Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) for ESA’s Soil Moisture and Ocean Salinity (SMOS) mission...
Active Probing Feedback based Self Configurable Intelligent Distributed Antenna System
DEFF Research Database (Denmark)
Kumar, Ambuj
collectively as Place Time Coverage & Capacity (PTC2). The dissertation proves through the concept of the PTC2 that the network performance can severely be degraded by the excessive and unrealistic site demands, the network management inefficiency, and the consequence of the accumulation of subscribers...... challenge through a viable solution that is based on injecting intelligence and services in parallel layers through a Distributed Antenna Systems (DAS) network. This approach would enable the remote sites to acquire intelligence and a resource pool at the same time, thereby managing the network dynamics...... promptly and aptly to absorb the PTC2 wobble. An Active Probing Management System (APMS) is proposed as a supporting architecture, to assist the intelligent system to keep a check on the variations at each and every site by either deploying the additional antenna or by utilising the service antenna...
UE Antenna Properties and Their Influence on Massive MIMO System Performance
Bengtsson, Erik; Tufvesson, Fredrik; Edfors, Ove
2015-01-01
The use of large-scale antenna arrays can bring substantial improvements both in energy and spectral efficiency. This paper presents an initial study of user equipment (UE) antenna performance based on prototypes for a massive MIMO test bed. Most publications in the massive MIMO area have assumed isotropic or dipole antenna behavior at the UE side. It is, however, of greatest interest to evaluate the impact of realistic antenna implementations and user loading on such systems. Antennas are in...
A broadband helical saline water liquid antenna for wearable systems
Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei
2018-04-01
A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.
Wireless OAM transmission system based on elliptical microstrip patch antenna.
Chen, Jia Jia; Lu, Qian Nan; Dong, Fei Fei; Yang, Jing Jing; Huang, Ming
2016-05-30
The multiplexing transmission has always been a focus of attention for communication technology. In this paper, the radiation characteristics of circular microstrip patch antenna was firstly analyzed based on cavity model theory, and then spiral beams carrying orbital angular momentum (OAM) were generated, using elliptical microstrip patch antenna, with a single feed probe instead of a standard circular patch with two feedpoints. Moreover, by combining the proposed elliptic microstrip patch antenna with Universal Software Radio Peripheral (USRP), a wireless OAM transmission system was established and the real-time transmission of text, image and video in a real channel environment was realized. Since the wireless OAM transmission has the advantage of good safety and high spectrum utilization efficiency, this work has theoretical significance and potential application.
Worst-case tolerance optimization of antenna systems
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
1980-01-01
The application of recently developed algorithms to antenna systems design is demonstrated by the worst-case tolerance optimization of linear broadside arrays, using both spacings and excitation coefficients as design parameters. The resulting arrays are optimally immunized against deviations...... of the design parameters from their nominal values....
Modeling Microbunching from Shot Noise Using Vlasov Solvers
International Nuclear Information System (INIS)
Venturini, Marco; Venturini, Marco; Zholents, Alexander
2008-01-01
Unlike macroparticle simulations, which are sensitive to unphysical statistical fluctuations when the number of macroparticles is smaller than the bunch population, direct methods for solving the Vlasov equation are free from sampling noise and are ideally suited for studying microbunching instabilities evolving from shot noise. We review a 2D (longitudinal dynamics) Vlasov solver we have recently developed to study the microbunching instability in the beam delivery systems for x-ray FELs and present an application to FERMI(at)Elettra. We discuss, in particular, the impact of the spreader design on microbunching
Current Monitoring System for ITER Like ICRH Antenna
International Nuclear Information System (INIS)
Argouarch, A.
2006-01-01
On TS antennas, the power transfer optimization from ICRH antenna to Plasma load is performed using feedback internal matching system. Experimental handling is required to mach the reactive impedance accordingly to the fluctuant plasma loading. As part of the development of the new ICRH prototype antenna, an additional measurement system based on Rogowski coils was developed to monitor the current distribution in antenna straps. The objective is to control module and phase of the antenna current straps with measurement provided by the coil system. Matching capacitors values, generators power and phase can also be controlled using the output of the devices, improving the real time matching control of the array. This paper details the new measurement layout, the Rogowski coil, and the whole system connected on each strap design for RF currents measurement between 40 MHz - 60 MHz for maximum amplitude of 1 kA. On the new ICRH prototype antenna, the measurement coils are coupled to the point where the strap currents are short circuited to the frame. The module and phase measurements are performed with the coils by direct magnetic induction in a vacuum and high temperature environment. Also, the Rogowski coils were characterized at low level power with vector network analyzer and the design adapted in order to obtain a controlled and reproducible gain in the desire bandwidth. The transconductive function is established with an experimental gain near -80 dB between primary circuit and inductive signal generated by the Rogowski coil. In a second step, the system with its associated electronic was qualified under high RF power. First results with high RF current (closed to 500 A at 57 MHz) match the desire Rogowski coil response. Compromises with electrical response at low power level and the coil under thermal/RF stresses were the most challenging part of the development. The overall response of the system and the current module/phase measurements are promising. A proper
On the performance of spectrum sharing systems with multiple antennas
Yang, Liang
2012-01-01
In this paper, we study the capacity of spectrum sharing (SS) multiple-input multiple-output (MIMO) systems over Rayleigh fading channels. More specifically, we present closed-form capacity formulas for such systems with and without optimal power and rate adaptation. A lower bound on the capacity is also derived to characterize the scaling law of the capacity. Results show that increasing the number of antennas has a negative effect on the system capacity in the low signal-to-noise (SNR) regime and the scaling law at high SNR is similar to the conventional MIMO systems. In addition, a lower bound on the capacity of the SS keyhole MIMO channels is analyzed. We also present a capacity analysis of SS MIMO maximal ratio combining (MRC) systems and the results show that the capacity of such systems always decreases with the increase of the number of antennas. Numerical results are finally given to illustrate our analysis. © 2012 ICST.
Turbulence in unmagnetized Vlasov plasmas
International Nuclear Information System (INIS)
Kuo, S.P.
1985-01-01
The classical technique of transformation and characteristics is employed to analyze the problem of strong turbulence in unmagnetized plasmas. The effect of resonance broadening and perturbation expansion are treated simultaneously, without time secularities. The renormalization procedure of Dupree and Tetreault is used in the transformed Vlasov equation to analyze the turbulence and to derive explicitly a diffusion equation. Analyses are extended to inhomogeneous plasmas and the relationship between the transformation and ponderomotive force is obtained. (author)
International Nuclear Information System (INIS)
Omnes, P.
1999-01-01
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
An Antenna Measurement System Based on Optical Feeding
Directory of Open Access Journals (Sweden)
Ryohei Hosono
2013-01-01
the advantage of the system is demonstrated by measuring an ultra-wideband (UWB antenna both by the optical and electrical feeding systems and comparing with a calculated result. Ripples in radiation pattern due to the electrical feeding are successfully suppressed by the optical feeding. For example, in a radiation measurement on the azimuth plane at 3 GHz, ripple amplitude of 1.0 dB that appeared in the electrical feeding is reduced to 0.3 dB. In addition, a circularly polarized (CP antenna is successfully measured by the proposed system to show that the system is available not only for amplitude but also phase measurements.
The Digital Motion Control System for the Submillimeter Array Antennas
Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.
2013-09-01
We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.
TLM modeling and system identification of optimized antenna structures
Directory of Open Access Journals (Sweden)
N. Fichtner
2008-05-01
Full Text Available The transmission line matrix (TLM method in conjunction with the genetic algorithm (GA is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction.
International Nuclear Information System (INIS)
Aunai, N.; Belmont, G.; Smets, R.; Chandre, C.; Tassi, E.; Morrison, P.J.; Back, A.; Guillebon, L. de; Qin, H.; Squire, J.; Tang, W.M.; Garbet, X.; Esteve, D.; Sarazin, Y.; Abiteboul, J.; Bourdelle, C.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.; Hervieux, P.A.; Manfredi, G.; Jasiak, R.; Kraus, M.; Mora, P.; Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Morrison, P.J.; Negulescu, C.; Pegoraro, F.; Bulanov, S.V.; Califano, F.; Fedeli, L.; Grassi, A.; Macchi, A.; Petri, J.; Pezzi, O.; Valentini, F.; Perrone, D.; Veltri, P.; Taccogna, F.; Minelli, P.; Thide, B.; Tamburini, F.; Throumoulopoulos, G.; Tasso, H.
2014-01-01
The Vlasov equation is used for the modelling of a wide range of phenomena occurring in natural and man-made plasmas, as well as in other many-particle systems displaying a collective behaviour. The purpose of this workshop is to bring together scientists to discuss the latest results on Vlasov theory and related applications. The topics discussed include: space plasmas, inertial confinement plasmas, magnetic confinement plasmas, quantum effects in collisionless plasmas, gravitational systems, Hamiltonian Vlasov dynamics, and computational and numerical approaches. This document gathers the slides of the presentations.
Factors that Influence RF Breakdown in Antenna Systems
Caughman, J. B. O.; Baity, F. W.; Rasmussen, D. A.; Aghazarian, M.; Castano Giraldo, C. H.; Ruzic, David
2007-11-01
One of the main power-limiting factors in antenna systems is the maximum voltage that the antenna or vacuum transmission line can sustain before breaking down. The factors that influence RF breakdown are being studied in a resonant 1/4-wavelength section of vacuum transmission line terminated with an open circuit electrode structure. Breakdown can be initiated via electron emission by high electric fields and by plasma formation in the structure, depending on the gas pressure. Recent experiments have shown that a 1 kG magnetic field can influence plasma formation at pressures as low as 8x10-5 Torr at moderate voltage levels (LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. Work supported by USDOE with grant DE-FG02-04ER54765
On Secure NOMA Systems with Transmit Antenna Selection Schemes
Lei, Hongjiang; Zhang, Jianming; Park, Kihong; Xu, Peng; Ansari, Imran Shafique; Pan, Gaofeng; Alomair, Basel; Alouini, Mohamed-Slim
2017-01-01
This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.
On Secure NOMA Systems with Transmit Antenna Selection Schemes
Lei, Hongjiang
2017-08-09
This paper investigates the secrecy performance of a two-user downlink non-orthogonal multiple access systems. Both single-input and single-output and multiple-input and singleoutput systems with different transmit antenna selection (TAS) strategies are considered. Depending on whether the base station has the global channel state information of both the main and wiretap channels, the exact closed-form expressions for the secrecy outage probability (SOP) with suboptimal antenna selection and optimal antenna selection schemes are obtained and compared with the traditional space-time transmission scheme. To obtain further insights, the asymptotic analysis of the SOP in high average channel power gains regime is presented and it is found that the secrecy diversity order for all the TAS schemes with fixed power allocation is zero. Furthermore, an effective power allocation scheme is proposed to obtain the nonzero diversity order with all the TAS schemes. Monte-Carlo simulations are performed to verify the proposed analytical results.
Energy Technology Data Exchange (ETDEWEB)
Omnes, P
1999-01-25
This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear,whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)
Experimental Study on RFID Antenna Reading Areas in a Tunnel System
Directory of Open Access Journals (Sweden)
Kai Kordelin
2017-01-01
Full Text Available We study optimized antenna reading area mappings for a radiofrequency identification- (RFID- based access monitoring system, used in an underground nuclear waste storage facility. We shortly introduce the access monitoring system developed for the ONKALO tunnel in Finland and describe the antenna mounting points as well as the research area. Finally, we study the measurement results of the antenna reading areas and factors that affect the reading area size. Based on our results, in addition to antenna location and direction, absorption to obstacles, reflections, diffraction, scattering, and refraction affect the antenna reading area.
Numerical solutions of the Vlasov equation
International Nuclear Information System (INIS)
Satofuka, Nobuyuki; Morinishi, Koji; Nishida, Hidetoshi
1985-01-01
A numerical procedure is derived for the solutions of the one- and two-dimensional Vlasov-Poisson system equations. This numerical procedure consists of the phase space discretization and the integration of the resulting set of ordinary differential equations. In the phase space discretization, derivatives with respect to the phase space variable are approximated by a weighted sum of the values of the distribution function at properly chosen neighboring points. Then, the resulting set of ordinary differential equations is solved by using an appropriate time integration scheme. The results for linear Landau damping, nonlinear Landau damping and counter-streaming plasmas are investigated and compared with those of the splitting scheme. The proposed method is found to be very accurate and efficient. (author)
Modelling and performance assessment of an antenna-control system
Burrows, C. R.
1982-03-01
An assessment is made of a surveillance-radar control system designed to provide a sector-search capability and continuous control of antenna speed without unwanted torque-reaction on the supporting mast. These objectives are attained by utilizing regenerative braking, and control is exercised through Perbury CVTs. A detailed analysis of the system is given. The models derived for the Perbury CVTs supplement the qualitative data contained in earlier papers. Some results from a computer simulation are presented. Although the paper is concerned with a particular problem, the analysis of the CVTs, and the concept of using energy transfer to control large inertial loads, are of more general interest.
Adaptive algorithm based on antenna arrays for radio communication systems
Directory of Open Access Journals (Sweden)
Fedosov Valentin
2017-01-01
Full Text Available Trends in the modern world increasingly lead to the growing popularity of wireless technologies. This is possible due to the rapid development of mobile communications, the Internet gaining high popularity, using wireless networks at enterprises, offices, buildings, etc. It requires advanced network technologies with high throughput capacity to meet the needs of users. To date, a popular destination is the development of spatial signal processing techniques allowing to increase spatial bandwidth of communication channels. The most popular method is spatial coding MIMO to increase data transmission speed which is carried out due to several spatial streams emitted by several antennas. Another advantage of this technology is the bandwidth increase to be achieved without expanding the specified frequency range. Spatial coding methods are even more attractive due to a limited frequency resource. Currently, there is an increasing use of wireless communications (for example, WiFi and WiMAX in information transmission networks. One of the main problems of evolving wireless systems is the need to increase bandwidth and improve the quality of service (reducing the error probability. Bandwidth can be increased by expanding the bandwidth or increasing the radiated power. Nevertheless, the application of these methods has some drawbacks, due to the requirements of biological protection and electromagnetic compatibility, the increase of power and the expansion of the frequency band is limited. This problem is especially relevant in mobile (cellular communication systems and wireless networks operating in difficult signal propagation conditions. One of the most effective ways to solve this problem is to use adaptive antenna arrays with weakly correlated antenna elements. Communication systems using such antennas are called MIMO systems (Multiple Input Multiple Output multiple input - multiple outputs. At the moment, existing MIMO-idea implementations do not
Adaptive Antenna System for Both 4G LTE and 5G Cellular Systems
Henderson, Kendrick Q. T.
Given the steep increase in the use of mobile communication systems, the current 4G/LTE (Long Term Evolution), cellular system will not be able to handle the increase in data. It is estimated that by 2020 the bandwidth requirements will be 10 times greater than what LTE can sustain. A new 5th generation (5G) communication system has been proposed to meet this demand. The physical layer or the antenna is the most critical part of any wireless communication systems as it is the interface between the free space medium and an electrical circuit. It sets the margin for almost all design parameters in the system such as the system noise and bandwidth. Several interactions of antennas have been proposed over the years for cellular services. These antennas are of various geometries, bandwidths, and radiation patterns with almost all having linear polarization. This thesis attempts to solve the multiple LTE antenna problem by creating a simple antenna that covers most of the LTE bands (850-2700 MHz) as well as introducing an antenna system at the 28 GHz 5G band. This allows for a greater educated hypothesis into what 5G can offer at the physical layer. The proposed concept will provide a solution to the co-existence problem of upcoming 5G wireless systems to be interoperable with existing 4G/LTE system.
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by cylindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Stability analysis of cylindrical Vlasov equilibria
International Nuclear Information System (INIS)
Short, R.W.
1979-01-01
A general method of stability analysis is described which may be applied to a large class of such problems, namely those which are described dynamically by the Vlasov equation, and geometrically by clindrical symmetry. The method is presented for the simple case of the Vlasov-Poisson (electrostatic) equations, and the results are applied to a calculation of the lower-hybrid-drift instability in a plasma with a rigid rotor distribution function. The method is extended to the full Vlasov-Maxwell (electromagnetic) equations. These results are applied to a calculation of the instability of the extraordinary electromagnetic mode in a relativistic E-layer interacting with a background plasma
Design and Simulation of Horn Antenna Using CST Software for GPR System
Joret, Ariffuddin; Sulong, M. S.; Abdullah, M. F. L.; Madun, Aziman; Haimi Dahlan, Samsul
2018-04-01
Detection of underground object can be made using a GPR system. This system is classified as a non-destructive technique (NDT) where the ground areas need not to be excavated. The technique used by the GPR system is by measuring the reflection of electromagnetic wave signal produced and detected by antenna which is known as the transmitter and the receiver antenna. In this study, a GPR system was studied by means of simulation using a Horn antenna as a transceiver antenna. The electromagnetic wave signal in this simulation is produced by current signal of an antenna which having a shape of modulation of Gaussian pulse which is having spectrum from 8 GHz until 12 GHz. CST and MATLAB Software are used in this GPR system simulation. A model of a Horn antenna has been designed using the CST software before the GPR’s system simulation modeled by adding a model of background in front of the Horn antenna. The simulation results show that the output signal of the Horn antenna can be used in detecting embedded object which are made from material of wood and iron. In addition, the simulation result has successfully developed a 3D model image of the GPR system using output signal of the Horn antenna. The embedded iron object in the GPR system simulation can be seen clearly by using this 3D image.
Design and development of a unit element microstrip antenna for aircraft collision avoidance system
De, Debajit; Sahu, Prasanna Kumar
2017-10-01
Aircraft/traffic alert and collision avoidance system (ACAS/TCAS) is an airborne system which is designed to provide the service as a last defense equipment for avoiding mid-air collisions between the aircraft. In the existing system, four monopole stub-elements are used as ACAS directional antenna and one blade type element is used as ACAS omnidirectional antenna. The existing ACAS antenna has some drawbacks such as low gain, large beamwidth, frequency and beam tuning/scanning issues etc. Antenna issues like unwanted signals reception may create difficulties to identify the possible threats. In this paper, the focus is on the design and development of a unit element microstrip antenna which can be used for ACAS application and to overcome the possible limitations associated with the existing techniques. Two proposed antenna models are presented here, which are single feed and dual feed microstrip dual patch slotted antenna. These are designed and simulated in CST Microwave Studio tool. The performance and other antenna characteristics have been explored from the simulation results followed by the antenna fabrication and measurement. A good reflection coefficient, Voltage Standing Wave Ratio (VSWR), narrow beamwidth, perfect directional radiation pattern, high gain and directivity make this proposed antenna a good candidate for this application.
3D inkjet printed flexible and wearable antenna systems
Shamim, Atif
2017-12-22
With the advent of wearable sensors and internet of things (IoT), there is a new focus on electronics which can be bent so that they can be worn or mounted on non-planar objects. Moreover, there is a requirement that these electronics become extremely low cost, to the extent that they become disposable. The flexible and low cost aspects can be addressed by adapting additive manufacturing technologies such as inkjet printing and 3D printing. This paper presents inkjet printing as an emerging new technique to realize low cost, flexible and wearable antenna systems. The ability of inkjet printing to realize electronics on unconventional mediums such as plastics, papers, and textiles has opened up a plethora of new applications. A variety of antennas such as wide-band, multiband, and wearable, etc, which have been realized through additive manufacturing techniques are shown. Many system level examples are also shown, primarily for wireless sensing applications. The promising results of these designs indicate that the day when electronics can be printed like newspapers and magazines through roll-to-roll and reel-to-reel printing is not far away.
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak
International Nuclear Information System (INIS)
Tan Yi; Gao Zhe; He Yexi
2009-01-01
Analysis and design of the Alfven wave antenna system for the SUNIST spherical tokamak are presented. Two candidate antenna concepts, folded and unfolded, are analyzed and compared with each other. In the frequency range of Alfven resonance the impedance spectrums of both two concept antennas for major modes are numerically calculated in a 1-D MHD framework. The folded concept is chosen for engineering design. The antenna system is designed to be simple and requires least modification to the vacuum vessel. The definition of the antenna shape is guided by the analyses with constraints of existing hardware layouts. Each antenna unit consists of two stainless steel straps with a thickness of 1 mm. A number of boron nitride tiles are assembled together as the side limiters for plasma shielding. Estimation shows that the structure is robust enough to withstand the electromagnetic force and the heat load for typical discharge duty cycles.
Spectrum Sensing in relation to Distributed Antenna System for Coverage Predictions
DEFF Research Database (Denmark)
Kumar, Ambuj; Mihovska, Albena D.; Prasad, Ramjee
2014-01-01
Distributed Antenna Systems (DAS) is one of the most promising ways of network deployment now-a-days. Mostly it is used in indoor environment for shopping areas and office locations. Here the Outdoor application of DAS, where multiple service providers can install their Base Transceiver Station...... (BTS)/Nodes at one location known as BTS hotel and the antennas are distributed all over target area by fiber optic network, is discussed. The very concept of splitting Base Station (BS) from its antenna system and putting it at one location (BS Hotel) and distributing antenna as nodes (Remote Unit...
MIMO channel capacity versus mutual coupling in multi antenna element system
DEFF Research Database (Denmark)
Thaysen, Jesper; Jakobsen, Kaj Bjarne
2004-01-01
In this paper the influence of mutual coupling on the capacity of a multiple-input multiple-output (MIMO) antenna system is demonstrated. No direct relation between the envelope correlation and the actual location and orientation of the antennas is found. Even though being essential for high MIMO...... capacity, configurations with the lowest envelope correlations are not necessarily the most suitable for a MIMO system. A certain bandwidth is required as well. Three planar inverted F-antennas (PIFA) located on the same 40 mm x 100 mm ground plane. The antennas that haves a resonant frequency of 1.8 GHz...
Interpretation of PISCES -- A RF antenna system experimental results
International Nuclear Information System (INIS)
Rothweil, D.A.; Phelps, D.A.; Doerner, R.
1995-10-01
The paper describes experimental data from rf coupling experiments using one to four coil antenna arrays that encircle a linear magnetized plasma column. Experimental results using single turn coil that produce symmetric (i.e. m = 0), dipole (m = 1), and radial rf magnetic fields for coupling to ion waves are compared. By operating without a Faraday shield, it was observed for the first time that the plasma resistive load seen by these different antenna types tends to increase with the number of turns to at least the second power. A four-turn m = 0 coil experienced a record 3--5 Ω loading, corresponding to over 90% power coupling to the plasma. A four-turn m = 1 coil experienced up to 1--1.5 Ω loading, also higher than previous observations. First time observations using a two coil array of m = 0 coil are also reported. As predicted, the loading decreases with increasing phase between coil from 0 degree to 180 degree. Experiments using four coil arrays were difficult to optimize and interpret primarily due to complexity of the manual tuning. To facilitate this optimization in the future, a proposed feedback control system that automatically matches load variations between 0.2 and 10 Ω is described
Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems
2016-06-01
GPS antenna, the Novatel GAJT-700M/ L CRPA is currently being considered, as shown in Fig. 6. Fig. 6 A basic 7-element CRPA (right) compared with a...ARL-TR-7670 ● JUNE 2016 US Army Research Laboratory Anti-Jam GPS Antennas for Wearable Dismounted Soldier Navigation Systems...longer needed. Do not return it to the originator. ARL-TR-7670 ● JUNE 2016 US Army Research Laboratory Anti-Jam GPS Antennas for
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates
International Nuclear Information System (INIS)
Brizard, A.
1988-09-01
A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs
Cirlularly Polarized Proximity- Fed Microstrip Array Antenna for LAPAN TUBSAT Micro Satellite System
Directory of Open Access Journals (Sweden)
Endra Wijaya
2013-11-01
Full Text Available The design microstrip of array antenna circular polarization characteristic developed for support LAPAN TUBSAT micro satellite system. The antenna on the micro satellite systems transmit data to ground stations operating at S band frequencies.The antenna is designed for impedance matching at frequencies of 2:25 GHz.The four elements of the square patch antenna array composed using linear methods, where the design of the transmission lines used by federal corporate structure model network consisting of three elements of the quarter wave transformer of a power divider. The feeding techniques for antenna designed using proximity coupling method, which for the type of substrate material used is similar. Circularly polarized antenna characteristics are influenced by the truncated corner pieces on the patch. To design the overall antenna used simulated method of moments in microwave office software applications. The results of measurements and simulations obtained antenna parameters, such as: bandwidth of return loss under 10 dB is 200 MHz (shifted 35%, bandwidth of axial ratio under 3dB is 1.7% and maximum gain directivity is 9 dB. Overall results obtained antenna parameters to meet the specifications of LAPAN TUBSAT micro satellite system.
An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms
Hussain, Rifaqat; Sharawi, Mohammad S.; Shamim, Atif
2017-01-01
This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.
An Integrated 4-element Slot-Based MIMO and an UWB Sensing Antenna System for CR Platforms
Hussain, Rifaqat
2017-12-08
This paper presents a novel integrated antenna system for cognitive radio (CR) applications. The design consists of a compact 4- element reconfigurable annular slot based multiple-input-multiple-output (MIMO) antenna system integrated within an ultra-wide-band (UWB) sensing antenna. All the antenna elements are planar in structure and designed on a single substrate (RO-4350) with dimensions 60×120×1.5 mm3. The frequency reconfigurable slot based MIMO antenna system is tuned over a wide frequency band from 1.77 GHz to 2.51 GHz while the UWB sensing antenna is covering from 0.75~7.65 GHz The proposed antenna system is suitable for CR enabled wireless devices. The envelope correlation coefficient (ECC) did not exceed 0.248 in the entire operating band of the MIMO antenna part. The maximum measured gain of the MIMO antenna is 3.2 dBi with maximum efficiency of 81%.
Low complexity transmit antenna selection with power balancing in OFDM systems
Park, Kihong
2010-10-01
In this paper, we consider multi-carrier systems with multiple transmit antennas under the power balancing constraint, which is defined as the constraint that the power on each antenna should be limited under a certain level due to the linearity of the power amplifier of the RF chain. Applying transmit antenna selection and fixed-power variable-rate transmission per subcarrier as a function of channel variations, we propose an implementation-friendly antenna selection method which offers a reduced complexity in comparison with the optimal antenna selection scheme. More specifically, in order to solve the subcarrier imbalance across the antennas, we operate a two-step reallocation procedure to minimize the loss of spectral efficiency. We also provide an analytic lower bound on the spectral efficiency for the proposed scheme. From selected numerical results, we show that our suboptimal scheme offers almost the same spectral efficiency as the optimal one. © 2010 IEEE.
Directory of Open Access Journals (Sweden)
Jianfeng Zheng
2012-01-01
Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.
Diversity and MIMO Performance Evaluation of Common Phase Center Multi Element Antenna Systems
Directory of Open Access Journals (Sweden)
V. Papamichael
2008-06-01
Full Text Available The diversity and Multiple Input Multiple Output (MIMO performance provided by common phase center multi element antenna (CPCMEA systems is evaluated using two practical methods which make use of the realized active element antenna patterns. These patterns include both the impact of the mutual coupling and the mismatch power loss at antenna ports. As a case study, two and four printed Inverted F Antenna (IFA systems are evaluated by means of Effective Diversity Gain (EDG and Capacity (C. EDG is measured in terms of the signal-to-noise ratio (SNR enhancement at a specific outage probability and in terms of the SNR reduction for achieving a desired average bit error rate (BER. The concept of receive antenna selection in MIMO systems is also investigated and the simulation results show a 43% improvement in the 1% outage C of a reconfigurable 2x2 MIMO system over a fixed 2x2 one.
Deep convolutional neural network based antenna selection in multiple-input multiple-output system
Cai, Jiaxin; Li, Yan; Hu, Ying
2018-03-01
Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.
Directory of Open Access Journals (Sweden)
Anuj Singal
2018-01-01
Full Text Available In massive multiple-input multiple-output (M-MIMO systems, a large number of antennas increase system complexity as well as the cost of hardware. In this paper, we propose an M-MIMO-OFDM model using per-subcarrier antenna selection and bulk antenna selection schemes to mitigate these problems. Also, we derive a new uplink and downlink energy efficiency (EE equation for the M-MIMO-OFDM system by taking into consideration the antenna selection schemes, power scaling factor (g=0.25, 0.5, and a range of hardware impairments {κBS, κUEϵ (0, 0.052, 0.12}. In addition, we investigate a trend of EE by varying various parameters like number of base station antennas (BSAs, SNR, level of hardware impairments, total circuit power consumption, power optimization, antenna selection schemes, and power scaling factor in the proposed M-MIMO-OFDM model. The simulation results thus obtained show that the EE increases with increase in the value of SNR. Also, it increases abruptly up to 100 number of BSA. However, the increase in the EE is not significant in the range of 125 to 400 number of BSA. Further, the bulk antenna selection technique has comparatively more EE than the per-subcarrier antenna selection. Moreover, EE gaps between antenna selection schemes decrease with increase in the value of hardware impairments and power scaling factor. However, as the hardware degradation effect increases, the EE of the bulk antenna selection scheme suffers more degradation as compared to the Per-subcarrier antenna selection scheme. It has also been observed that EE performance is inversely proportional to the total circuit power consumption (λ+γ and it increases with the power optimization.
Information-Theoretic Limits on Broadband Multi-Antenna Systems in the Presence of Mutual Coupling
Taluja, Pawandeep Singh
2011-12-01
Multiple-input, multiple-output (MIMO) systems have received considerable attention over the last decade due to their ability to provide high throughputs and mitigate multipath fading effects. While most of these benefits are obtained for ideal arrays with large separation between the antennas, practical devices are often constrained in physical dimensions. With smaller inter-element spacings, signal correlation and mutual coupling between the antennas start to degrade the system performance, thereby limiting the deployment of a large number of antennas. Various studies have proposed transceiver designs based on optimal matching networks to compensate for this loss. However, such networks are considered impractical due to their multiport structure and sensitivity to the RF bandwidth of the system. In this dissertation, we investigate two aspects of compact transceiver design. First, we consider simpler architectures that exploit coupling between the antennas, and second, we establish information-theoretic limits of broadband communication systems with closely-spaced antennas. We begin with a receiver model of a diversity antenna selection system and propose novel strategies that make use of inactive elements by virtue of mutual coupling. We then examine the limits on the matching efficiency of a single antenna system using broadband matching theory. Next, we present an extension to this theory for coupled MIMO systems to elucidate the impact of coupling on the RF bandwidth of the system, and derive optimal transceiver designs. Lastly, we summarize the main findings of this dissertation and suggest open problems for future work.
Vlasov simulations of parallel potential drops
Directory of Open Access Journals (Sweden)
H. Gunell
2013-07-01
Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.
Kinetic Boltzmann, Vlasov and Related Equations
Sinitsyn, Alexander; Vedenyapin, Victor
2011-01-01
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in
Antenna-load interactions at optical frequencies: impedance matching to quantum systems.
Olmon, R L; Raschke, M B
2012-11-09
resonance, (ii) subsequent transformation of that mode into a nanoscale spatial localization, and (iii) near-field coupling via an enhanced local density of states to a quantum load. These three steps define the goal of efficient transformation of incident radiation into a quantum excitation in an impedance-matched fashion. We review the physical basis of the light-matter interaction at the transition from the RF to optical regime, discuss the extension of antenna theory as needed for the design of impedance-matched optical antenna-load coupled systems, and provide several examples of the state of the art in design strategies and suggest future extensions. We furthermore suggest new performance metrics based on the combination of electric vector field, field enhancement and capture cross section measurement to aid in comparison between different antenna designs and optimization of optical antenna performance within the physical parameter space.
Electrical alignment of antenna coordinate system in a planar near-field setup
DEFF Research Database (Denmark)
Mynster, Anders P.; Nielsen, Jeppe Majlund; Pivnenko, Sergey
2011-01-01
In this paper, a simple and efficient electrical alignment procedure known as flip-test is adapted and applied to check and correct two errors in the mechanical setup of a planar near-field system: the mis-pointing of the z-axis of the antenna coordinate system with respect to the scan plane...... and the displacement of the center point of the scan plane with respect to the z-axis of the antenna coordinate system. Simulations of the errors and their correction algorithms were carried out with different models of antennas composed of Hertzian dipoles and an optimum algorithm was then selected. The proposed...
The design of RFID convey or belt gate systems using an antenna control unit.
Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan
2011-01-01
This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.
The Design of RFID Conveyor Belt Gate Systems Using an Antenna Control Unit
Directory of Open Access Journals (Sweden)
Ki Hwan Eom
2011-09-01
Full Text Available This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPCglobal for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.
Tri Band Dual Polarized Patch Antenna System For Next Generation Cellular Networks
Directory of Open Access Journals (Sweden)
Syed Daniyal Ali Shah
2017-12-01
Full Text Available In fifth generation networks much emphasis is given to reduce the handset and base station sizes while incorporating even more features for ubiquitous connectivity. Polarization diversity is one of the methods in which a single multi-polarized antenna brings the advantages of antenna diversity. The multiband handset antennas can be made dual-polarized for improved compensation of fading effects of propagation environment especially in terrestrial bands. This paper focuses on the outcomes of the development of a horizontal and vertical polarized patch antenna scheme that operates on 3 bands 900 MHz 1.8 GHz and 2.4 GHz. The antenna system is tested for gain directivity reflection loss polarization radiation pattern and other parameters. The results are published and found are found to satisfy the requirements of cellular and data communication networks in the specified bands.
A New Agile Radiating System Called Electromagnetic Band Gap Matrix Antenna
Directory of Open Access Journals (Sweden)
Hussein Abou Taam
2014-01-01
Full Text Available Civil and military applications are increasingly in need for agile antenna devices which respond to wireless telecommunications, radars, and electronic warfare requirements. The objective of this paper is to design a new agile antenna system called electromagnetic band gap (EBG matrix. The working principle of this antenna is based on the radiating aperture theory and constitutes the subject of an accepted CNRS patent. In order to highlight the interest and the originality of this antenna, we present a comparison between it and a classical patch array only for the (one-dimensional 1D configuration by using a rigorous full wave simulation (CST Microwave software. In addition, EBG matrix antenna can be controlled by specific synthesis algorithms. These algorithms use inside their; optimization loop an analysis procedure to evaluate the radiation pattern. The analysis procedure is described and validated at the end of this paper.
PhantomNet: Exploring Optimal Multicellular Multiple Antenna Systems
Directory of Open Access Journals (Sweden)
Foschini Gerard J
2004-01-01
Full Text Available We present a network framework for evaluating the theoretical performance limits of wireless data communication. We address the problem of providing the best possible service to new users joining the system without affecting existing users. Since, interference-wise, new users are required to be invisible to existing users, the network is dubbed PhantomNet. The novelty is the generality obtained in this context. Namely, we can deal with multiple users, multiple antennas, and multiple cells on both the uplink and the downlink. The solution for the uplink is effectively the same as for a single cell system since all the base stations (BSs simply amount to one composite BS with centralized processing. The optimum strategy, following directly from known results, is successive decoding (SD, where the new user is decoded before the existing users so that the new users' signal can be subtracted out to meet its invisibility requirement. Only the BS needs to modify its decoding scheme in the handling of new users, since existing users continue to transmit their data exactly as they did before the new arrivals. The downlink, even with the BSs operating as one composite BS, is more problematic. With multiple antennas at each BS site, the optimal coding scheme and the capacity region for this channel are unsolved problems. SD and dirty paper (DP are two schemes previously reported to achieve capacity in special cases. For PhantomNet, we show that DP coding at the BS is equal to or better than SD. The new user is encoded before the existing users so that the interference caused by his signal to existing users is known to the transmitter. Thus the BS modifies its encoding scheme to accommodate new users so that existing users continue to operate as before: they achieve the same rates as before and they decode their signal in precisely the same way as before. The solutions for the uplink and the downlink are particularly interesting in the way they exhibit a
Method of steering the gain of a multiple antenna global positioning system receiver
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
International Nuclear Information System (INIS)
Besse, Nicolas
2003-01-01
This work is dedicated to the mathematical and numerical studies of the Vlasov equation on phase-space unstructured meshes. In the first part, new semi-Lagrangian methods are developed to solve the Vlasov equation on unstructured meshes of phase space. As the Vlasov equation describes multi-scale phenomena, we also propose original methods based on a wavelet multi-resolution analysis. The resulting algorithm leads to an adaptive mesh-refinement strategy. The new massively-parallel computers allow to use these methods with several phase-space dimensions. Particularly, these numerical schemes are applied to plasma physics and charged particle beams in the case of two-, three-, and four-dimensional Vlasov-Poisson systems. In the second part we prove the convergence and give error estimates for several numerical schemes applied to the Vlasov-Poisson system when strong and classical solutions are considered. First we show the convergence of a semi-Lagrangian scheme on an unstructured mesh of phase space, when the regularity hypotheses for the initial data are minimal. Then we demonstrate the convergence of classes of high-order semi-Lagrangian schemes in the framework of the regular classical solution. In order to reconstruct the distribution function, we consider symmetrical Lagrange polynomials, B-Splines and wavelets bases. Finally we prove the convergence of a semi-Lagrangian scheme with propagation of gradients yielding a high-order and stable reconstruction of the solution. (author) [fr
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.
2014-10-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.; Parker, Joseph T.
2014-01-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Vlasov fluid model with electron pressure
International Nuclear Information System (INIS)
Gerwin, R.
1975-11-01
The Vlasov-ion, fluid-electron model of Freidberg for studying the linear stability of hot-ion pinch configurations is here extended to include electron pressure. Within the framework of an adiabatic electron-gas picture, it is shown that this model is still amenable to the numerical methods described by Lewis and Freidberg
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
Wearable Antennas for Remote Health Care Monitoring Systems
Directory of Open Access Journals (Sweden)
Laura Corchia
2017-01-01
Full Text Available Remote monitoring of the elderly in telehealth applications requires that the monitoring must not affect the elderly’s regular habits. To ensure this requirement, the components (i.e., sensor and antenna necessary to carry out such monitoring should blend in with the elderly’s daily routine. To this end, an effective strategy relies on employing wearable antennas that can be fully integrated with clothes and that can be used for remotely transmitting/receiving the sensor data. Starting from these considerations, in this work, two different methods for wearable antenna fabrication are described in detail: the first resorts to the combined use of nonwoven conductive fabrics and of a cutting plotter for shaping the fabric, whereas the second considered fabrication method resorts to the embroidery of conductive threads. To demonstrate the suitability of the considered fabrication techniques and to highlight their pros and cons, numerical and experimental results related to different wearable antennas are also reported and commented on. Results demonstrate that the presented fabrication techniques and strategies are very flexible and can be used to obtain low-cost wearable antennas with performance tailored for the specific application at hand.
Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.
Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza
2016-01-01
In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
AFRL-AFOSR-JP-TR-2016-0088 Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications Sheng-Kwang Hwang NATIONAL CHENG KUNG...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 May 2016 4. TITLE AND SUBTITLE Nonlinear Photonic Systems for V- and W-Band...TERMS nonlinear, photonic , antenna, remote, microwave, amplification, bandwith, modulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR
Advanced antenna system for Alfven wave plasma heating and current drive in TCABR tokamak
International Nuclear Information System (INIS)
Ruchko, L.F.; Ozono, E.; Galvao, R.M.O.; Nascimento, I.C.; Degasperi, F.T.; Lerche, E.
1998-01-01
An advanced antenna system that has been developed for investigation of Alfven wave plasma heating and current drive in the TCABR tokamak is described. The main goal was the development of such a system that could insure the excitation of travelling single helicity modes with predefined wave mode numbers M and N. The system consists of four similar modules with poloidal windings. The required spatial spectrum is formed by proper phasing of the RF feeding currents. The impedance matching of the antenna with the four-phase oscillator is accomplished by resonant circuits which form one assembly unit with the RF feeders. The characteristics of the antenna system design with respect to the antenna-plasma coupling and plasma wave excitation, for different phasing of the feeding currents, are summarised. The antenna complex impedance Z=Z R +Z I is calculated taking into account both the plasma response to resonant excitation of fast Alfven waves and the nonresonant excitation of vacuum magnetic fields in conducting shell. The matching of the RF generator with the antenna system during plasma heating is simulated numerically, modelling the plasma response with mutually coupled effective inductances with corresponding active Z R and reactive Z I impedances. The results of the numerical simulation of the RF system performance, including both the RF magnetic field spectrum analysis and the modeling of the RF generator operation with plasma load, are presented. (orig.)
Tuning of JET transmission line/antenna system during ICRH
International Nuclear Information System (INIS)
Oeberg, J.
1993-05-01
The launched toroidal wave spectrum for ICRH and ICRH current drive is controlled by the phasing of the antenna currents. This causes imbalance in the transmission lines, which makes it more difficult to use the full power of the ICRH generators. Further, the generators are sensitive to the amount of reflected power. To reduce the amount of reflected power the transmission lines have to be constantly tuned. To study the tuning three models of the antenna are developed and compared with experimental results. A method is suggested which enables better usage of the generated power using a power correction unit to evenly distribute the power load between the generators. 4 refs, 24 figs
Local WKB dispersion relation for the Vlasov-Maxwell equations
International Nuclear Information System (INIS)
Berk, H.L.; Dominguez, R.R.
1982-10-01
A formalism for analyzing systems of integral equations, based on the Wentzel-Kramers-Brillouin (WKB) approximation, is applied to the Vlasov-Maxwell integral equations in an arbitrary-β, spatially inhomogenous plasma model. It is shown that when treating frequencies comparable with and larger than the cyclotron frequency, relevant new terms must be accounted for to treat waves that depend upon local spatial gradients. For a specific model, the response for very short wavelength and high frequency is shown to reduce to the straight-line orbit approximation when the WKB rules are correctly followed
Study of Vlasov instabilities of a gravitational plasma in realistic cosmology
International Nuclear Information System (INIS)
Baptista, J.P.
1982-11-01
A description is given of the cosmological model in which the perturbations will evolve and a bref survey relating to the evolution of the perturbations such as they have been described in recent works. The role of heavy neutrinos in the evolution of baryon perturbations is recalled. Vlasov's linearized system is established for a gravitational plasma. The classification of the gravitational field according to its components of helicity is given. The method of two timescales is introduced in order to solve Vlasov's linearized system. The standard solutions in helicity modes +-2, +-1, and 0 are studied successively [fr
Directory of Open Access Journals (Sweden)
M. Waqas A. Khan
2017-01-01
Full Text Available Minimally invasive approach to intracranial pressure monitoring is desired for long-term diagnostics. The monitored pressure is transmitted outside the skull through an implant antenna. We present a new miniature (6 mm × 5 mm coplanar implant antenna and its integration on a sensor platform to establish a far-field data link for the sensor readout at distances of 0.5 to 1 meter. The implant antenna was developed using full-wave electromagnetic simulator and measured in a liquid phantom mimicking the dielectric properties of the human head. It achieved impedance reflection coefficient better than −10 dB from 2.38 GHz to 2.54 GHz which covers the targeted industrial, scientific, and medical band. Experiments resulted in an acceptable peak gain of approximately −23 dBi. The implant antenna was submerged in the liquid phantom and interfaced to a 0.5 mW voltage controlled oscillator. To verify the implant antenna performance as a part of the ICP monitoring system, we recorded the radiated signal strength using a spectrum analyzer. Using a half-wavelength dipole as the receiving antenna, we captured approximately −58.7 dBm signal at a distance of 1 m from the implant antenna which is well above for the reader with sensitivity of −80 dBm.
Antenna System for Nano-satelite Mission GOMX-3
DEFF Research Database (Denmark)
Tatomirescu, Alexandru; Pedersen, Gert F.; Christiansen, J.
2016-01-01
In this paper, we present the antenna design for a nano-satellite mission launched in September, the GOMX-3 mission. Some of the key design challenges are discussed and the chosen solutions are presented. In an effort to minimize development and manufacturing costs for future missions, this study...
MIMO H∞ control of three-axis ship-mounted mobile antenna systems
Kuseyri, İ. Sina
2018-02-01
The need for on-line information in any environment has led to the development of mobile satellite communication terminals. These high data-rate terminals require inertial antenna pointing error tolerance within fractions of a degree. However, the base motion of the antenna platform in mobile applications complicates this pointing problem and must be accounted for. Gimbaled motorised pedestals are used to eliminate the effect of disturbance and maintain uninterrupted communication. In this paper, a three-axis ship-mounted antenna on a pedestal gimbal system is studied. Based on the derived dynamic model of the antenna pedestal multi input-multi output PID and H∞ linear controllers are designed to stabilise the antenna to keep its orientation unaltered towards the satellite while the sea waves disturb the antenna. Simulation results are presented to show the stabilisation performance of the system with the synthesised controllers. It is shown through performance comparison and analysis that the proposed H∞ control structure is preferable over PID controlled system in terms of system stability and the disturbance rejection.
A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation
International Nuclear Information System (INIS)
Banks, J.W.; Hittinger, J.A.
2010-01-01
Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria
2016-12-17
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Transient growth of a Vlasov plasma in a weakly inhomogeneous magnetic field
Ratushnaya, Valeria; Samtaney, Ravi
2016-01-01
We investigate the stability properties of a collisionless Vlasov plasma in a weakly inhomogeneous magnetic field using non-modal stability analysis. This is an important topic in a physics of tokamak plasma rich in various types of instabilities. We consider a thin tokamak plasma in a Maxwellian equilibrium, subjected to a small arbitrary perturbation. Within the framework of kinetic theory, we demonstrate the emergence of short time scale algebraic instabilities evolving in a stable magnetized plasma. We show that the linearized governing operator (Vlasov operator) is non-normal leading to the transient growth of the perturbations on the time scale of several plasma periods that is subsequently followed by Landau damping. We calculate the first-order distribution function and the electric field and study the dependence of the transient growth characteristics on the magnetic field strength and perturbation parameters of the system. We compare our results with uniformly magnetized plasma and field-free Vlasov plasma.
Development of a Log-Periodic antenna system | Tyona | Nigerian ...
African Journals Online (AJOL)
... with a standard deviation of 2.6. A gain of 20.33 ± 0.69 dB was achieved at a signal-to-noise ratio of 104.77 ± 1.04dB. The efficiency at frequencies above 500MHz is 97% and drops to 65% at frequencies below 200MHz. Keywords: Dipole antenna, radio communication and space loss. Nigerian Journal of Physics Vol.
Harari, Colin M; Magagna, Michelle; Bedoya, Mariajose; Lee, Fred T; Lubner, Meghan G; Hinshaw, J Louis; Ziemlewicz, Timothy; Brace, Christopher L
2016-01-01
To compare microwave ablation zones created by using sequential or simultaneous power delivery in ex vivo and in vivo liver tissue. All procedures were approved by the institutional animal care and use committee. Microwave ablations were performed in both ex vivo and in vivo liver models with a 2.45-GHz system capable of powering up to three antennas simultaneously. Two- and three-antenna arrays were evaluated in each model. Sequential and simultaneous ablations were created by delivering power (50 W ex vivo, 65 W in vivo) for 5 minutes per antenna (10 and 15 minutes total ablation time for sequential ablations, 5 minutes for simultaneous ablations). Thirty-two ablations were performed in ex vivo bovine livers (eight per group) and 28 in the livers of eight swine in vivo (seven per group). Ablation zone size and circularity metrics were determined from ablations excised postmortem. Mixed effects modeling was used to evaluate the influence of power delivery, number of antennas, and tissue type. On average, ablations created by using the simultaneous power delivery technique were larger than those with the sequential technique (P Simultaneous ablations were also more circular than sequential ablations (P = .0001). Larger and more circular ablations were achieved with three antennas compared with two antennas (P simultaneous power delivery creates larger, more confluent ablations with greater temperatures than those created with sequential power delivery. © RSNA, 2015.
Adaptive antenna system by ESP32-PICO-D4 and its application to web radio system
Directory of Open Access Journals (Sweden)
Toshiro Kodera
2018-04-01
Full Text Available Adaptive antenna technique has an important role in the IoT environment in order to establish reliable and stable wireless communication in high congestion situation. Even if knowing antenna characteristics in advance, electromagnetic wave propagation in non-line-of-sight environment is very complex and unpredictable, therefore, the adjustment the antenna radiation for the optimum signal reception is important for the better wireless link. This article presents a simple but effective adaptive antenna system for Wi-Fi utilizing the function of a highly integrated component, ESP32-PICO-D4. This chip is a system-in-chip containing all components for Wi-Fi and Bluetooth application except for antenna. Together with SP3T RF switch and dielectric antennas and high-resolution audio DAC, completed web-radio system is made in the size of 50 × 50 mm. Keywords: Beam switching, Adaptive antenna, System-in-chip, ESP32, Web-radio
Directory of Open Access Journals (Sweden)
Tommy Hult
2010-01-01
Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.
Performance of Antenna Selection in MIMO System Using Channel Reciprocity with Measured Data
Directory of Open Access Journals (Sweden)
Peerapong Uthansakul
2011-01-01
Full Text Available The channel capacity of MIMO system increases as a function of antenna pairs between transmitter and receiver but it suffers from multiple expensive RF chains. To reduce cost of RF chains, antenna selection (AS method can offer a good tradeoff between expense and performance. For a transmitting AS system, channel state information (CSI feedback is required to choose the best subset of available antennas. However, the delay and error in feedback channel are the most dominant factors to degrade performances. In this paper, the concept of AS method using reciprocal CSI instead of feedback channel is proposed. The capacity performance of proposed system is investigated by own developing Testbed. The obtained results indicate that the reciprocity technique offers a capacity close to a system with perfect CSI and gains a higher capacity than a system without AS method. This benefit is from 0.9 to 2.2 bps/Hz at SNR 10 dB.
Numerical Integration of the Vlasov Equation of Two Colliding Beams
Zorzano-Mier, M P
2000-01-01
In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...
Highly miniaturised semi-loop meandered dual-band MIMO antenna system
Jehangir, Syed S.; Sharawi, Mohammad S.; Shamim, Atif
2017-01-01
A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.
Highly miniaturised semi-loop meandered dual-band MIMO antenna system
Jehangir, Syed S.
2017-12-05
A novel dual-band two-element directional multiple-input-multiple-output (MIMO) antenna system is presented with 68% miniaturisation, which is achieved using a semi-loop meandered driven element and a small ground plane. The centre frequency of operation is 2 GHz. The antenna system covers two bands: the telemetry L-band 1.27-1.43 GHz and the global system for mobile communications/long-term evolution band 1.8-2.133 GHz. The simulation and measurement results are in good agreement. The proposed antenna system mimics the quasi-Yagi antenna configuration with a measured front-to-back ratio of around 15 dB at 1.35 GHz and 17 dB at 2 GHz, which is achieved without using a large ground plane, extra metallic structures, multiple reflector elements, or any complex technique. A gain of more than 5 dBi is measured for the single element with a total radiation efficiency of around 85% in both bands. The measured isolation of the proposed MIMO antenna is more than 15 dB with < 0.0785 measured envelope correlation coefficient values in both bands.
Single-user MIMO versus multi-user MIMO in distributed antenna systems with limited feedback
Schwarz, Stefan; Heath, Robert W.; Rupp, Markus
2013-12-01
This article investigates the performance of cellular networks employing distributed antennas in addition to the central antennas of the base station. Distributed antennas are likely to be implemented using remote radio units, which is enabled by a low latency and high bandwidth dedicated link to the base station. This facilitates coherent transmission from potentially all available antennas at the same time. Such distributed antenna system (DAS) is an effective way to deal with path loss and large-scale fading in cellular systems. DAS can apply precoding across multiple transmission points to implement single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO) transmission. The throughput performance of various SU-MIMO and MU-MIMO transmission strategies is investigated in this article, employing a Long-Term evolution (LTE) standard compliant simulation framework. The previously theoretically established cell-capacity improvement of MU-MIMO in comparison to SU-MIMO in DASs is confirmed under the practical constraints imposed by the LTE standard, even under the assumption of imperfect channel state information (CSI) at the base station. Because practical systems will use quantized feedback, the performance of different CSI feedback algorithms for DASs is investigated. It is shown that significant gains in the CSI quantization accuracy and in the throughput of especially MU-MIMO systems can be achieved with relatively simple quantization codebook constructions that exploit the available temporal correlation and channel gain differences.
Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis
International Nuclear Information System (INIS)
Cary, J.R.
1979-08-01
Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples
Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma
International Nuclear Information System (INIS)
Shoucri, M.M.; Gagne, R.R.J.
1978-01-01
The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given
Beam Tracking in Switched-Beam Antenna System for V2V Communication
Directory of Open Access Journals (Sweden)
Settawit Poochaya
2016-01-01
Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.
Contribution of LPP/ERM-KMS to the modern developments of ICRH antenna systems
Energy Technology Data Exchange (ETDEWEB)
Messiaen, A., E-mail: a.messiaen@fz-juelich.de; Ongena, J.; Dumortier, P.; Durodié, F.; Louche, F.; Ragona, R.; Vervier, M.
2016-11-15
Highlights: • Overview of ICRF antenna coupling physics, showing from first principles how to develop a state of the art ICRF system for ITER and DEMO. • Physics of conceptual solutions for the compact ITER antenna array, intended to radiate ∼10 MW/m2. • Implementing novel ideas into the matching-decoupling network of the ITER antenna array to avoid cross-coupling and to control the RF current distribution in the array. • Experimental tests of the theoretical predictions using scaled mock-ups of the ICRF antenna, including a dielectric dummy load to mimick the plasma. • Demonstrating an operational feedback control of the matching-decoupling network for the ITER antenna array, with 23 simultaneously active actuators. - Abstract: The paper gives an overview of the coupling physics of an ICRF antenna array to the plasma and of the original conceptual solutions proposed by the LPP/ERM-KMS group for the compact ITER antenna array and its matching to the RF power sources. The main contributions are (i) the use of an array of short straps grouped in triplets, (ii) the triplet feed by a four port junction and the use of a service stub to enlarge its frequency response, (iii) the multistep prematching to decrease the VSWR and minimise the voltage in the feeding transmission lines, (iv) the use of a decoupler network to neutralize the mutual coupling effects between different RF power sources and to simultaneously control the current distribution of the antenna array, (v) the various options to connect the decouplers and 3 dB hybrids for different array phasing cases in order to maintain the correct functioning of the decouplers together with load resiliency to fast variations of the plasma density in the edge (caused by e.g. pellet injection or Edge Localized Modes), (vi) the solution of the grounding problem of the ITER antenna plug-in, (vii) the test on mock-ups in front of a dielectric dummy load of the performance of the different solutions and particularly
Bryant, Donald A.; Canniffe, Daniel P.
2018-02-01
Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light
Strongly enhanced flow effect from Landau-Vlasov versus Vlasov-Uehling-Uhlenbeck approach
International Nuclear Information System (INIS)
Gregoire, C.; Remaud, B.; Sebille, F.; Schuck, P.
1988-01-01
The simulation of the collision integral in the Landau-Vlasov approach for heavy ion collisions is examined. It turns out that quantities like the nucleon mean free path can be compared with parallel ensemble models. Convergency of results with time step and sampling is clearly established. Quadratic quantities, like the internal pressure, are found to be strongly underestimated in parallel ensemble models
Improved Reception of In-Body Signals by Means of a Wearable Multi-Antenna System
Directory of Open Access Journals (Sweden)
Thijs Castel
2013-01-01
Full Text Available High data-rate wireless communication for in-body human implants is mainly performed in the 402–405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body.
Directory of Open Access Journals (Sweden)
Hassibi Babak
2002-01-01
Full Text Available Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due to high computational complexity (exponential in number of antennas and channel memory. Therefore, in practice, one often settles for a less complex suboptimal receiver structure, typically with an equalizer meant to suppress both the intersymbol and interuser interference, followed by the decoder. We propose a sphere decoding for the sequence detection in multiple antenna communication systems over dispersive channels. The sphere decoding provides the maximum-likelihood estimate with computational complexity comparable to the standard space-time decision-feedback equalizing (DFE algorithms. The performance and complexity of the sphere decoding are compared with the DFE algorithm by means of simulations.
Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System
Directory of Open Access Journals (Sweden)
Yao Kung
2002-01-01
Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.
DEFF Research Database (Denmark)
Prince, Kamau; Chiuchiarelli, A; Presi, M
2008-01-01
We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency.......We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency....
Photonic integration and components development for a Ku-band phased array antenna system
Marpaung, D.A.I.; Zhuang, L.; Burla, M.; Roeloffzen, C.G.H.; Noharet, Bertrand; Wang, Qin; Beeker, W.P.; Beeker, Willem; Leinse, Arne; Heideman, Rene
2011-01-01
In this paper the development of a phased array antenna system using a photonic beamformer is reported. The paper emphasizes on the photonic integration between two main components of the beamformer, namely the photonic beamformer chip and the electroabsorption modulator array. System level
Gibson, S. W.
This book is concerned with providing an explanation of the function of an antenna without delving too deeply into the mathematics or theory. The characteristics of an antenna are examined, taking into account aspects of antenna radiation, wave motion on the antenna, resistance in the antenna, impedance, the resonant antenna, the effect of the ground, polarization, radiation patterns, coupling effects between antenna elements, and receiving vs. transmitting. Aspects of propagation are considered along with the types of antennas, transmission lines, matching devices, questions of antenna design, antennas for the lower frequency bands, antennas for more than one band, limited space antennas, VHF antennas, and antennas for 20, 15, and 10 meters. Attention is given to devices for measuring antenna parameters, approaches for evaluating the antenna, questions of safety, and legal aspects.
A Multiband Proximity-Coupled-Fed Flexible Microstrip Antenna for Wireless Systems
Directory of Open Access Journals (Sweden)
Giovanni Andrea Casula
2016-01-01
Full Text Available A multiband printed microstrip antenna for wireless communications is presented. The antenna is fed by a proximity-coupled microstrip line, and it is printed on a flexible substrate. The antenna has been designed using a general-purpose 3D computer-aided design software (CAD, CST Microwave Studio, and then realized. The comparison between simulated and measured results shows that the proposed antenna can be used for wireless communications for WLAN systems, covering both the WLAN S-band (2.45 GHz and C-band (5.2 GHz, and the Wi-Max 3.5 GHz band, with satisfactory input matching and broadside radiation pattern. Moreover, it has a compact size, is very easy to realize, and presents a discrete out-of-band rejection, without requiring the use of stop-band filters. The proposed structure can be used also as a conformal antenna, and its frequency response and radiated field are satisfactory for curvatures up to 65°.
Suppression of EM Fields using Active Control Algorithms and MIMO Antenna System
Directory of Open Access Journals (Sweden)
A. Mohammed
2004-09-01
Full Text Available Active methods for attenuating acoustic pressure fields have beensuccessfully used in many applications. In this paper we investigatesome of these active control methods in combination with a MIMO antennasystem in order to assess their validity and performance when appliedto electromagnetic fields. The application that we evaluated in thispaper is a model of a mobile phone equipped with one ordinarytransmitting antenna and two actuator-antennas which purpose is toreduce the electromagnetic field at a specific area in space (e.g. atthe human head. Simulation results show the promise of using theadaptive active control algorithms and MIMO system to attenuate theelectromagnetic field power density.
Directory of Open Access Journals (Sweden)
Alessandra Costanzo
2014-08-01
Full Text Available In this paper, we describe some promising solutions to the modern need for wearable, energy-aware, miniaturized, wireless systems, whose typical envisaged application is a body area network (BAN. To reach this goal, novel materials are adopted, such as fabrics, in place of standard substrates and metallizations, which require a systematic procedure for their electromagnetic characterization. Indeed, the design of such sub-systems represents a big issue, since approximate approaches could result in strong deviations from the actual system performance. To face this problem, we demonstrate our design procedure, which is based on the concurrent use of electromagnetic software tools and nonlinear circuit-level techniques, able to simultaneously predict the actual system behavior of an antenna system, consisting of the radiating and of the nonlinear blocks, at the component level. This approach is demonstrated for the design of a fully-wearable tri-band rectifying antenna (rectenna and of a button-shaped, electrically-small antenna deploying a novel magneto-dielectric substrate. Simulations are supported by measurements, both in terms of antenna port parameters and far-field results.
Simulation of a ring resonator-based optical beamformer system for phased array receive antennas
Tijmes, M.R.; Meijerink, Arjan; Roeloffzen, C.G.H.; Bentum, Marinus Jan
2009-01-01
A new simulator tool is described that can be used in the field of RF photonics. It has been developed on the basis of a broadband, continuously tunable optical beamformer system for phased array receive antennas. The application that is considered in this paper is airborne satellite reception of
The 20 and 30 GHz MMIC technology for future space communication antenna system
Anzic, G.; Connolly, D. J.
1984-10-01
The development of fully monolithic gallium arsenide receive and transmit modules is described. These modules are slated for phased array antenna applications in future 30/20 gigahertz communications satellite systems. Performance goals and various approaches to achieve them are discussed. The latest design and performance results of components, submodules and modules are presented.
Control System and Tests for the 13.2-m RAEGE Antenna at Yebes
de Vicente, P.; Bolaño, R.; Barbas, L.
2014-12-01
The RAEGE network is being deployed. The antenna at the Yebes Observatory is the first one in the network, and its construction finished in October 2013. During the construction phase, the remote control system for the antenna and the receivers was developed, and during the commisioning time the software was tested by MT-Mechatronics. As a result, both the control system from MT-Mechatronics and the remote control system by the IGN-CDT were debugged. We have tested the basic functionality of the antenna operated as a single dish telescope. First light at S, X, and Ka band was achieved on February 10^{th}. Afterwards a pointing model for the whole sky was determined, together with an optimum focus position as a function of elevation. Commisioning is not finished yet, and the antenna will be totally delivered to the IGN-CDT in the next weeks. VLBI equipment will be installed within three months, and VLBI observations are foreseen by the end of 2014. In this paper, we provide an overview of the control system and of the main results achieved.
Instability of the filtering method for Vlasov's equation
International Nuclear Information System (INIS)
Figua, H.; Bouchut, F.; Fijalkow, E.
1999-01-01
Klimas has introduced a smoothed Fourier-Fourier method. This method consists in convolving the original distribution function with a Gaussian distribution function, and, next, in solving the new system with a transformed splitting algorithm. Unfortunately, a second-order term appears in the new equation. In this work, it is studied how this term affects the numerical equation. In particular it is proven that instability occurs in the linear version of the Vlasov equation obtained by considering only free non-interacting particles. It is proved that the use of Fourier-Fourier transform is a fundamental requirement to solve this new equation. An important property is pointed out concerning the filtered distribution function in the transformed space. (K.A.)
On the Magnetic Shield for a Vlasov-Poisson Plasma
Caprino, Silvia; Cavallaro, Guido; Marchioro, Carlo
2017-12-01
We study the screening of a bounded body Γ against the effect of a wind of charged particles, by means of a shield produced by a magnetic field which becomes infinite on the border of Γ . The charged wind is modeled by a Vlasov-Poisson plasma, the bounded body by a torus, and the external magnetic field is taken close to the border of Γ . We study two models: a plasma composed by different species with positive or negative charges, and finite total mass of each species, and another made of many species of the same sign, each having infinite mass. We investigate the time evolution of both systems, showing in particular that the plasma particles cannot reach the body. Finally we discuss possible extensions to more general initial data. We show also that when the magnetic lines are straight lines, (that imposes an unbounded body), the previous results can be improved.
Design of books inventory with RFID antenna in library management system
Directory of Open Access Journals (Sweden)
Cheng Ching-Chien
2017-01-01
Full Text Available A 915 MHz printed radio-frequency-identification (RFID antennas with the characteristics of good gain and omnidirectional beam wave is constructed and evaluated in this study. The objective is to find out their best reading rates for providing effective wireless communications among RFID antenna during the library book inventory process. And an optimal library inventory system which is based on electromagnetic identification (EMID technology is proposed, which is constructed to find the optimal tag location for a book, test the tag readability for bookshelves, and connect a couple of multi-layer bookshelves with multiplexers and updat the tag reading status in the database of the computer terminal. The fabricated antenna reader and the proposed system are embedded into different locations of bookshelves and tested at the library of Cheng Shiu University in Taiwan. According to the experimental results, the designed prototype of the antenna reader has the characteristics of the directional radiation pattern, good gain, simple shape, low cost and is easy to be integrated into the bookshelf. And the designed library inventory system can authenticate the location of a book automatically. They can benefit administrating librarians with the capabilities of decreasing the library inventory processing time and reducing the possibility of the books being misplaced.
A UHF RFID system with on-chip-antenna tag for short range communication
International Nuclear Information System (INIS)
Peng Qi; Zhang Chun; Zhao Xijin; Wang Zhihua
2015-01-01
A UHF RF identification system based on the 0.18 μm CMOS process has been developed for short range and harsh size requirement applications, which is composed of a fully integrated tag and a special reader. The whole tag chip with the antenna takes up an area of 0.36 mm 2 , which is smaller than other reported tags with an on-chip antenna (OCA) using the standard CMOS process. A self-defined protocol is proposed to reduce the power consumption, and minimize the size of the tag. The specialized SOC reader system consists of the RF transceiver, digital baseband, MCU and host interface. Its power consumption is about 500 mW. Measurement results show that the system's reading range is 2 mm with 20 dBm reader output power. With an inductive antenna printed on a paper substrate around the OCA tag, the reading range can be extended from several centimeters to meters, depending on the shape and size of the inductive antenna. (paper)
Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.
1983-01-01
The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.
CSIR Research Space (South Africa)
Bembe, MJ
2010-11-01
Full Text Available single device. In this study the focus is on the modification of the antenna designs for dual-band functionality which is limited on the ESPAR antenna’s structural parameter. This modification should result in an antenna system which operates in both 2...
Multi-scale approximation of Vlasov equation
International Nuclear Information System (INIS)
Mouton, A.
2009-09-01
One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite
Fan, Yuting; Aighobahi, Anthony E; Gomes, Nathan J; Xu, Kun; Li, Jianqiang
2015-03-23
In this paper, we experimentally investigate the throughput of IEEE 802.11n 2x2 multiple-input-multiple-output (MIMO) signals in a radio-over-fiber-based distributed antenna system (DAS) with different fiber lengths and power imbalance. Both a MIMO-supported access point (AP) and a spatial-diversity-supported AP were separately employed in the experiments. Throughput measurements were carried out with wireless users at different locations in a typical office environment. For the different fiber length effect, the results indicate that MIMO signals can maintain high throughput when the fiber length difference between the two remote antenna units (RAUs) is under 100 m and falls quickly when the length difference is greater. For the spatial diversity signals, high throughput can be maintained even when the difference is 150 m. On the other hand, the separation of the MIMO antennas allows additional freedom in placing the antennas in strategic locations for overall improved system performance, although it may also lead to received power imbalance problems. The results show that the throughput performance drops in specific positions when the received power imbalance is above around 13 dB. Hence, there is a trade-off between the extent of the wireless coverage for moderate bit-rates and the area over which peak bit-rates can be achieved.
Plasma antennas: dynamically configurable antennas for communications
International Nuclear Information System (INIS)
Borg, G.; Harris, J.
1999-01-01
In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. In this paper we describe the theory of the low frequency plasma antenna and present a few experimental results
On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System
Makki, Behrooz; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim
2015-01-01
In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.
On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System
Makki, Behrooz
2015-11-12
In this paper, we investigate the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. We study the effect of the spatial correlation between the antennas on the system performance. Also, the required number of antennas are obtained for different fading conditions. Our results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 2015 IEEE.
E. Camporeale (Enrico); G.L. Delzanno; B.K. Bergen; J.D. Moulton
2016-01-01
htmlabstractWe describe a spectral method for the numerical solution of the Vlasov–Poisson system where the velocity space is decomposed by means of an Hermite basis, and the configuration space is discretized via a Fourier decomposition. The novelty of our approach is an implicit time
Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations
International Nuclear Information System (INIS)
Brizard, Alain J.
2000-01-01
A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated
Abutarboush, Hattan
2012-08-01
This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results. © 1963-2012 IEEE.
On the diversity enhancement and power balancing of per-subcarrier antenna selection in OFDM systems
Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2010-01-01
In this paper, we consider multi-carrier systems with multiple transmit antennas under a power balancing constraint. Applying transmit antenna selection and discrete rate adaptive modulation using M-ary quadrature amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal antenna selection scheme in terms of maximum spectral efficiency where all the possible grouping to send the same information bearing signals in a group of subcarriers are searched and the groups of subcarriers to provide the frequency diversity gain are formed. In addition, we propose a suboptimal method to reduce the computational complexity of the optimal method. The suboptimal scheme consider only the subcarriers under outage and those are combined sequentially until it meets a required SNR. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining introduced in [1], especially for low SNR region and offers the spectral efficiency close to that of the optimal method with diversity combining, while maintaining lower complexity. ©2010 IEEE.
On the diversity enhancement and power balancing of per-subcarrier antenna selection in OFDM systems
Park, Kihong
2010-09-01
In this paper, we consider multi-carrier systems with multiple transmit antennas under a power balancing constraint. Applying transmit antenna selection and discrete rate adaptive modulation using M-ary quadrature amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal antenna selection scheme in terms of maximum spectral efficiency where all the possible grouping to send the same information bearing signals in a group of subcarriers are searched and the groups of subcarriers to provide the frequency diversity gain are formed. In addition, we propose a suboptimal method to reduce the computational complexity of the optimal method. The suboptimal scheme consider only the subcarriers under outage and those are combined sequentially until it meets a required SNR. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining introduced in [1], especially for low SNR region and offers the spectral efficiency close to that of the optimal method with diversity combining, while maintaining lower complexity. ©2010 IEEE.
Abutarboush, Hattan; Nilavalan, Rajagopal; Cheung, Sing Wai; Nasr, Karim Medhat A
2012-01-01
This paper presents the design of a low-profile compact printed antenna for fixed frequency and reconfigurable frequency bands. The antenna consists of a main patch, four sub-patches, and a ground plane to generate five frequency bands, at 0.92, 1.73, 1.98, 2.4, and 2.9 GHz, for different wireless systems. For the fixed-frequency design, the five individual frequency bands can be adjusted and set independently over the wide ranges of 18.78%, 22.75%, 4.51%, 11%, and 8.21%, respectively, using just one parameter of the antenna. By putting a varactor (diode) at each of the sub-patch inputs, four of the frequency bands can be controlled independently over wide ranges and the antenna has a reconfigurable design. The tunability ranges for the four bands of 0.92, 1.73, 1.98, and 2.9 GHz are 23.5%, 10.30%, 13.5%, and 3%, respectively. The fixed and reconfigurable designs are studied using computer simulation. For verification of simulation results, the two designs are fabricated and the prototypes are measured. The results show a good agreement between simulated and measured results. © 1963-2012 IEEE.
A satellite-tracking millimeter-wave reflector antenna system for mobile satellite-tracking
Densmore, Arthur C.; Jamnejad, Vahraz; Woo, Kenneth E.
1995-03-01
A miniature dual-band two-way mobile satellite tracking antenna system mounted on a movable ground vehicle includes a miniature parabolic reflector dish having an elliptical aperture with major and minor elliptical axes aligned horizontally and vertically, respectively, to maximize azimuthal directionality and minimize elevational directionality to an extent corresponding to expected pitch excursions of the movable ground vehicle. A feed-horn has a back end and an open front end facing the reflector dish and has vertical side walls opening out from the back end to the front end at a lesser horn angle and horizontal top and bottom walls opening out from the back end to the front end at a greater horn angle. An RF circuit couples two different signal bands between the feed-horn and the user. An antenna attitude controller maintains an antenna azimuth direction relative to the satellite by rotating it in azimuth in response to sensed yaw motions of the movable ground vehicle so as to compensate for the yaw motions to within a pointing error angle. The controller sinusoidally dithers the antenna through a small azimuth dither angle greater than the pointing error angle while sensing a signal from the satellite received at the reflector dish, and deduces the pointing angle error from dither-induced fluctuations in the received signal.
Islam, Md. Matiqul; Kabir, M. Hasnat; Ullah, Sk. Enayet
2012-01-01
The impact of using wavelet based technique on the performance of a MC-CDMA wireless communication system has been investigated. The system under proposed study incorporates Walsh Hadamard codes to discriminate the message signal for individual user. A computer program written in Mathlab source code is developed and this simulation study is made with implementation of various antenna diversity schemes and fading (Rayleigh and Rician) channel. Computer simulation results demonstrate that the p...
Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET
Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.
2018-04-01
The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.
International Nuclear Information System (INIS)
Jain, Yogesh M.; Sharma, P.K.; Parmar, P.R.; Ambulkar, K.K.
2017-01-01
The Lower Hybrid Current Drive (LHCD) system of the ADITYA-Upgrade tokamak will employ a Passive Active Multijunction (PAM) antenna to launch 250 kW of RF power at 3.7 GHz to drive plasma current non inductively in the tokamak. To evaluate the RF performance of the designed PAM antenna, it is characterized with the help of VNA measurements. The performance of the PAM antenna is mainly decided by the integrated performance of the entire antenna (with a differential phase shift of 270° and equal power distribution between each of the output waveguides) and the performance of mode converter, which transforms input TE 10 mode to TE 30 mode (with a mode purity of 98.5% at the output). This poster thus reports the design and analysis of these testing kits. Also, the test results of PAM antenna obtained by using these test kits would also be presented and discussed in this poster
Kelly, Kenneth C.; Huang, John
2000-01-01
A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.
Directory of Open Access Journals (Sweden)
Xiaoyu Dang
2012-01-01
Full Text Available By combining adaptive modulation and automatic repeat request, a cross-layer design (CLD scheme for MIMO system with antenna selection (AS and imperfect feedback is presented, and the corresponding performance is studied. Subject to a target packet loss rate and fixed power constraint, the variable switching thresholds of fading gain are derived. According to these results, and using mathematical manipulation, the average spectrum efficiency (SE and packet error rate (PER of the system are further derived. As a result, closed-form expressions of the average SE and PER are obtained, respectively. These expressions include the expressions under perfect channel state information as special cases and provide good performance evaluation for the system. Numerical results show that the proposed CLD scheme with antenna selection has higher SE than the existing CLD scheme with space-time block coding, and the CLD scheme with variable switching thresholds outperforms that with conventional-fixed switching thresholds.
Millimeter Wave Imaging System Using Monopole Antenna with Cylindrical Reflector and Silicon Lens
Mizuno, Maya; Fukunaga, Kaori; Suzuki, Masaki; Saito, Shingo; Fujii, Katsumi; Hosako, Iwao; Yamanaka, Yukio
2011-04-01
We built a reflection imaging system that uses a monopole antenna with a cylindrical reflector and silicon semi-spherical lens for millimeter waves to identify detachments of alabaster from support material such as wood and stone, which can be subject to painting deterioration. Based on the electric field property near the monopole antenna in the system and the lens effect, the system was able to clearly image a test sample made of 2-mm width aluminium tape, which was placed within a range of approximately 10 mm from the lens. In practical imaging testing using a detachment model, which consists of alabaster and wood plating, the result also showed the possibility of observing slight detachment of the alabaster from the wood more easily than an imaging with large numerical aperture.
Joint switched multi-spectrum and transmit antenna diversity for spectrum sharing systems
Sayed, Mostafa M.
2013-10-01
In spectrum sharing systems, a secondary user (SU) is allowed to share the spectrum with a primary (licensed) network under the condition that the interference observed at the receivers of the primary users (PU-Rxs) is below a predetermined level. In this paper, we consider a secondary network comprised of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx) sharing the same spectrum with multiple primary users (PUs), each with a distinct spectrum. We develop transmit antenna diversity schemes at the SU-Tx that exploit the multi-spectrum diversity provided by the existence of multiple PUs so as to optimize the signal-to-noise ratio (SNR) at the SU-Rx. In particular, assuming bounded transmit power at the SU-Tx, we develop switched selection schemes that select the primary spectrum and the SU-Tx transmit antenna that maintain the SNR at the SU-Rx above a specific threshold. Assuming Rayleigh fading channels and binary phase-shift keying (BPSK) transmission, we derive the average bit-error-rate (BER) and average feedback load expressions for the proposed schemes. For the sake of comparison, we also derive a BER expression for the optimal selection scheme that selects the best antenna/spectrum pair that maximizes the SNR at the SU-Rx, in exchange of high feedback load and switching complexity. Finally, we show that our analytical results are in perfect agreement with the simulation results. © 2013 IEEE.
On the performance of spectrum sharing systems with multiple antennas
Yang, Liang; Alouini, Mohamed-Slim; Qaraqe, Khalid A.
2012-01-01
In this paper, we study the capacity of spectrum sharing (SS) multiple-input multiple-output (MIMO) systems over Rayleigh fading channels. More specifically, we present closed-form capacity formulas for such systems with and without optimal power
Integration of Antennas and Solar cells for Low Power Wireless Systems
O’Conchubhair, Oisin
2015-01-01
This thesis reports on design methods for enhanced integration of low-profile antennas for short-range wireless communications with solar voltaic systems. The need to transform to more sustainable energy sources arises from the excessive production of harmful carbon emissions from fossil fuels. The Internet of Things and the proliferation of battery powered devices makes energy harvesting from the environment more desirable in order to reduce dependency on the power grid and running costs. Wh...
Czech Academy of Sciences Publication Activity Database
Potocký, Štěpán; Babchenko, Oleg; Davydova, Marina; Ižák, Tibor; Čada, Martin; Kromka, Alexander
2014-01-01
Roč. 53, č. 5 (2014), "05FP04-1"-"05FP04-3" ISSN 0021-4922 R&D Projects: GA TA ČR TA01011740; GA ČR GAP205/12/0908 Grant - others:AVČR(CZ) M100100902 Institutional support: RVO:68378271 Keywords : antenna linear * CVD system * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.127, year: 2014
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
Energy Technology Data Exchange (ETDEWEB)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)
2016-12-15
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
International Nuclear Information System (INIS)
Pham, Huyên; Wei, Xiaoli
2016-01-01
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Moskalets, N. V.
2015-01-01
A possibility for efficient use of radio-frequency spectrum and of corresponding increase in productivity of mobile communication system with space-time multiple access obtained by use of multibeam antenna of base station is considered.
Operations of the External Conjugate-T Matching System for the A2 ICRH Antennas at JET
International Nuclear Information System (INIS)
Monakhov, I.; Graham, M.; Blackman, T.; Mayoral, M.-L.; Nightingale, M.; Sheikh, H.; Whitehurst, A.
2009-01-01
The External Conjugate-T (ECT) matching system was successfully commissioned on two A2 ICRH antennas at JET in 2009. The system allows trip-free injection of RF power into ELMy H-mode plasmas in the 32-52 MHz band without antenna phasing restrictions. The ECT demonstrates robust and predictable performance and high load-tolerance during routine operations, injecting up to 4 MW average power into H-mode plasma with Type-I ELMs. The total power coupled to ELMy plasma by all the A2 antennas using the ECT and 3dB systems has been increased to 7 MW. Antenna arcing during ELMs has been identified as a new challenge to high-power ICRH operations in H-mode plasma. The implemented Advanced Wave Amplitude Comparison System (AWACS) has proven to be an efficient protection tool for the ECT scheme.
Saveleiv, I. K.; Sharova, N. V.; Tarasenko, M. Yu; Yalunina, T. R.; Davydov, V. V.; Rud', V. Yu
2017-11-01
The results of the research of the developed fiber-optic transmission systems for analog high frequency signal are represented. On its basis, a new method to identify various structural defects in the active phased antenna arrays is elaborated.
Practical and Simple Wireless Channel Models for Use in Multipolarized Antenna Systems
Directory of Open Access Journals (Sweden)
KwangHyun Jeon
2014-01-01
Full Text Available The next-generation wireless systems are expected to support data rates of more than 100 Mbps in outdoor environments. In order to support such large payloads, a polarized antenna may be employed as one of the candidate technologies. Recently, the third generation partnership standards bodies (3GPP/3GPP2 have defined a cross-polarized channel model in SCM-E for MIMO systems; however, this model is quite complex since it considers a great many channel-related parameters. Furthermore, the SCM-E channel model combines the channel coefficients of all the polarization links into one complex output, making it impossible to exploit the MIMO spatial multiplexing or diversity gains in the case of employing polarized antenna at transmitter and receiver side. In this paper, we present practical and simple 2D and 3D multipolarized multipath channel models, which take into account both the cross-polarization discrimination (XPD and the Rician factor. After verifying the proposed channel models, the BER and PER performances and throughput using the EGC and MRC combining techniques are evaluated in multipolarized antenna systems.
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.; Texas Univ., Austin
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any kind of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated - which need not be the same for all particle species in a plasma - are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. (orig.)
The energy-momentum tensor for the linearized Maxwell-Vlasov and kinetic guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.; Morrison, P.J.
1990-02-01
A modified Hamilton-Jacobi formalism is introduced as a tool to obtain the energy-momentum and angular-momentum tensors for any king of nonlinear or linearized Maxwell-collisionless kinetic theories. The emphasis is on linearized theories, for which these tensors are derived for the first time. The kinetic theories treated --- which need not be the same for all particle species in a plasma --- are the Vlasov and kinetic guiding center theories. The Hamiltonian for the guiding center motion is taken in the form resulting from Dirac's constraint theory for non-standard Lagrangian systems. As an example of the Maxwell-kinetic guiding center theory, the second-order energy for a perturbed homogeneous magnetized plasma is calculated with initially vanishing field perturbations. The expression obtained is compared with the corresponding one of Maxwell-Vlasov theory. 11 refs
International Nuclear Information System (INIS)
Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.
2010-11-01
The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)
Simple ML Detector for Multiple Antennas Communication System
Directory of Open Access Journals (Sweden)
Ahmad Taqwa
2010-10-01
Full Text Available In order to support providing broadband wireless communication services against limited and expensive frequency bandwidth, we have to develop a bandwidth efficient system. Therefore, in this paper we propose a closed-loop MIMO (Multiple-Input-Multiple-Output system using ML (Maximum Likelihood detector to optimize capacity and to increase system performance. What is especially exciting about the benefits offered by MIMO is that a high capacity and performance can be attained without additional frequency-spectral resource. The grand scenario of this concept is the attained advantages of transformation matrices having capability to allocate transmitted signals power suit to the channel. Furthermore, product of these matrices forms parallel singular channels. Due to zero inter-channels correlation, thus we can design ML detector to increase the system performance. Finally, computer simulations validates that at 0 dB SNR our system can reach optimal capacity up to 1 bps/Hz and SER up to 0.2 higher than opened-loop MIMO.
EMC, RF, and Antenna Systems in Miniature Electronic Devices
DEFF Research Database (Denmark)
Ruaro, Andrea
Advanced techniques for the control of electromagnetic interference (EMI) and for the optimization of the electromagnetic compatibility (EMC) performance has been developed under the constraints typical of miniature electronic devices (MED). The electromagnetic coexistence of multiple systems....... The structure allows for effective suppression of radiation from the MED, while taking into consideration the integration and miniaturization aspects. To increase the sensitivity of the system, a compact LNA suitable for on-body applications has been developed. The LNA allows for an increase in the overall...
Excitation migration in fluctuating light-harvesting antenna systems
Chmeliov, J.; Trinkunas, G.; Amerongen, van H.; Valkunas, L.
2016-01-01
Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not
Value Engineering and Function Analysis: Frameworks for Innovation in Antenna Systems
Directory of Open Access Journals (Sweden)
Hamid Reza Fartookzadeh
2018-04-01
Full Text Available Value engineering (VE and function analysis (FA are technological tools for the functional enhancement and cost reduction of engineering projects. They also help to overcome mental inertia by acknowledging the voice of the customer in complicated systems. Antenna engineering, providing electromagnetic remote links, is an important area in engineering science, with a large number of innovative concepts. However, managing innovative ideas to improve performance, reliability, quality, safety, and reduce life cycle costs, is still a work in progress. This research was designed to apply VE and FA as frameworks for innovative ideas in antenna systems, especially with regard to imaging and radar systems. FA diagrams free a designers’ mind from tools to instead focus on purpose, which can help them to obtain better ideas for solutions to problems. It was identified that there were several options available for functionality enhancement and cost reduction. The required functionalities of the components of antenna systems, and their advantages and limitations were indicated. In addition, it was identified that some of the advantages and limitations appeared for combinations of the components. Alternative methods for applications, such as polarization conversion and the separation of outgoing and incoming electromagnetic waves, were studied. Circular polarization (CP is important for two-way communication, since left-handed circularly polarized waves usually return with right-handed CP from targets. Therefore, various methods for producing CP were discussed, such as metamaterial-based linear to circular polarization converters and waveguide polarizers. Also, potential extra applications for these systems were explained. Two examples were: (1 merging multiple systems with different operating frequencies using multiband components; and (2 applying a feeding system for multiple reflectors using surfaces that reflect half of the wave and transmit the other
Photosynthetic antennae systems: energy transport and optical absorption
International Nuclear Information System (INIS)
Reineker, P.; Supritz, Ch.; Warns, Ch.; Barvik, I.
2004-01-01
The energy transport and the optical line shape of molecular aggregates, modeling bacteria photosynthetic light-harvesting systems (chlorosomes in the case of Chlorobium tepidum or Chloroflexus aurantiacus and LH2 in the case of Rhodopseudomonas acidophila) is investigated theoretically. The molecular units are described by two-level systems with an average excitation energy ε and interacting with each other through nearest-neighbor interactions. For LH2 an elliptical deformation of the ring is also allowed. Furthermore, dynamic and in the case of LH2 also quasi-static fluctuations of the local excitation energies are taken into account, simulating fast molecular vibrations and slow motions of the protein backbone, respectively. The fluctuations are described by Gaussian Markov processes in the case of the chlorosomes and by colored dichotomic Markov processes, with exponentially decaying correlation functions, with small (λ s ) and large (λ) decay constants, in the case of LH2
Cost optimization of the dimensions of the antennas of a solar power satellite system
Energy Technology Data Exchange (ETDEWEB)
Vasilev, A.V.; Klassen, V.I.; Laskin, N.N.; Tobolev, A.K.
1983-05-01
The problem of the cost optimization of the dimensions of the antennas of a solar power satellite system is formulated. The optimization problem is twofold: (1) for a given power delivered to the microwave transmitting antenna (TA), to determine the dimensions Lt (the characteristic dimension of the TA) and Lr (the characteristic dimension of the rectenna) which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA, and (2) for a power delivered to the TA which is proportional to the aperture area, to determine the dimensions Lt and Lr which minimize the unit-power cost function for a given amplitude-phase distribution in the aperture of the TA. Two possible variants of the solution of this problem are considered: (1) the case of a linear antenna (the two-dimensional problem), and (2) the case of square apertures (the three-dimensional problem). A specific example of optimization is considered, where the cost of the TA is $1000/sq m and the cost of the rectenna is $12/sq m. 11 references.
Zichner, Ralf; Baumann, Reinhard R.
2013-05-01
Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.
Circular Microstrip Patch Array Antenna for C-Band Altimeter System
Directory of Open Access Journals (Sweden)
Asghar Keshtkar
2008-01-01
Full Text Available The purpose of this paper is to discuss the practical and experimental results obtained from the design, construction, and test of an array of circular microstrip elements. The aim of this antenna construction was to obtain a gain of 12 dB, an acceptable pattern, and a reasonable value of SWR for altimeter system application. In this paper, the cavity model was applied to analyze the patch and a proper combination of ordinary formulas; HPHFSS software and Microwave Office software were used. The array includes four circular elements with equal sizes and equal spacing and was planed on a substrate. The method of analysis, design, and development of this antenna array is explained completely here. The antenna is simulated and is completely analyzed by commercial HPHFSS software. Microwave Office 2006 software has been used to initially simulate and find the optimum design and results. Comparison between practical results and the results obtained from the simulation shows that we reached our goals by a great degree of validity.
Solving the Vlasov equation in two spatial dimensions with the Schrödinger method
Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos
2017-12-01
We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.
Efficient Smart Antenna Systems (4G) For CDMA Wireless Communication
Singla, Brahm Mohinder; Kumar, Ashish
2012-01-01
Today, mobile communications play a central role in the voice/data network arena. With the deployment of mass scale 3G just around the corner, new directions are already being researched. In this paper we address about the 4TH G mobile communications.The Fourth Generation (4G) Mobile Communications should not focus only on the data-rate increase and new air interface.4G Mobile should instead con-verge the advanced wireless mobile communications and high-speed wireless access systems into an O...
1973-01-01
The report contains data on antenna configurations for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS). It treats the coverage and mutual visibility considerations between the user satellites and the relay satellites and relates these considerations to requirements of antenna beamwidth and fractional user orbital coverage. A final section includes user/TDRS telecommunication link budgets and forward and return link data rate tradeoffs.
Siminos, Evangelos; Bénisti, Didier; Gremillet, Laurent
2011-05-01
We study the stability of spatially periodic, nonlinear Vlasov-Poisson equilibria as an eigenproblem in a Fourier-Hermite basis (in the space and velocity variables, respectively) of finite dimension, N. When the advection term in the Vlasov equation is dominant, the convergence with N of the eigenvalues is rather slow, limiting the applicability of the method. We use the method of spectral deformation introduced by Crawford and Hislop [Ann. Phys. (NY) 189, 265 (1989)] to selectively damp the continuum of neutral modes associated with the advection term, thus accelerating convergence. We validate and benchmark the performance of our method by reproducing the kinetic dispersion relation results for linear (spatially homogeneous) equilibria. Finally, we study the stability of a periodic Bernstein-Greene-Kruskal mode with multiple phase-space vortices, compare our results with numerical simulations of the Vlasov-Poisson system, and show that the initial unstable equilibrium may evolve to different asymptotic states depending on the way it was perturbed. © 2011 American Physical Society
Experiments with dipole antennas
International Nuclear Information System (INIS)
Kraftmakher, Yaakov
2009-01-01
Employment of a data-acquisition system for data collection and calculations makes experiments with antennas more convenient and less time consuming. The determined directional patterns of the dipole antennas of different lengths are in reasonable agreement with theory. The enhancement of the signal by using a reflector is demonstrated, and a variant of the Yagi-Uda antenna is explored. The experiments are suitable as laboratory works and classroom demonstrations, and are attractive for student projects.
Doppler Navigation System with a Non-Stabilized Antenna as a Sea-Surface Wind Sensor.
Nekrasov, Alexey; Khachaturian, Alena; Veremyev, Vladimir; Bogachev, Mikhail
2017-06-09
We propose a concept of the utilization of an aircraft Doppler Navigation System (DNS) as a sea-surface wind sensor complementary to its normal functionality. The DNS with an antenna, which is non-stabilized physically to the local horizontal with x -configured beams, is considered. We consider the wind measurements by the DNS configured in the multi-beam scatterometer mode for a rectilinear flight scenario. The system feasibility and the efficiency of the proposed wind algorithm retrieval are supported by computer simulations. Finally, the associated limitations of the proposed approach are considered.
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.
Protein-mediated efficient synergistic "antenna effect" in a ternary system in D₂O medium.
Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Ghosh, Sanjib
2012-08-16
A ternary system consisting of a protein, catechin (either + or - epimer), and Tb(III) in suitable aqueous buffer medium at physiological pH (= 6.8) has been shown to exhibit highly efficient "antenna effect". Steady state and time-resolved emission studies of each component in the binary complexes (protein with Tb(III) and (+)- or (-)-catechin with Tb(III)) and the ternary systems along with the molecular docking studies reveal that the efficient sensitization could be ascribed to the effective shielding of microenvironment of Tb(III) from O-H oscillator and increased Tb-C (+/-) interaction in the ternary systems in aqueous medium. The ternary system exhibits protein-mediated efficient antenna effect in D(2)O medium due to synergistic ET from both the lowest ππ* triplet state of Trp residue in protein and that of catechin apart from protection of the Tb(III) environment from matrix vibration. The simple system consisting of (+)- or (-)-catechin and Tb(III) in D(2)O buffer at pH 6.8 has been prescribed to be a useful biosensor.
Near Field UHF RFID Antenna System Enabling the Tracking of Small Laboratory Animals
Directory of Open Access Journals (Sweden)
Luca Catarinucci
2013-01-01
Full Text Available Radio frequency identification (RFID technology is more and more adopted in a wide range of applicative scenarios. In many cases, such as the tracking of small-size living animals for behaviour analysis purposes, the straightforward use of commercial solutions does not ensure adequate performance. Consequently, both RFID hardware and the control software should be tailored for the particular application. In this work, a novel RFID-based approach enabling an effective localization and tracking of small-sized laboratory animals is proposed. It is mainly based on a UHF Near Field RFID multiantenna system, to be placed under the animals’ cage, and able to rigorously identify the NF RFID tags implanted in laboratory animals (e.g., mice. Once the requirements of the reader antenna have been individuated, the antenna system has been designed and realized. Moreover, an algorithm based on the measured Received Signal Strength Indication (RSSI aiming at removing potential ambiguities in data captured by the multiantenna system has been developed and integrated. The animal tracking system has been largely tested on phantom mice in order to verify its ability to precisely localize each subject and to reconstruct its path. The achieved and discussed results demonstrate the effectiveness of the proposed tracking system.
Global Vlasov simulation on magnetospheres of astronomical objects
International Nuclear Information System (INIS)
Umeda, Takayuki; Ito, Yosuke; Fukazawa, Keiichiro
2013-01-01
Space plasma is a collisionless, multi-scale, and highly nonlinear medium. There are various types of self-consistent computer simulations that treat space plasma according to various approximations. We develop numerical schemes for solving the Vlasov (collisionless Boltzmann) equation, which is the first-principle kinetic equation for collisionless plasma. The weak-scaling benchmark test shows that our parallel Vlasov code achieves a high performance and a high scalability. Currently, we use more than 1000 cores for parallel computations and apply the present parallel Vlasov code to various cross-scale processes in space plasma, such as a global simulation on the interaction between solar/stellar wind and magnetospheres of astronomical objects
Hong, Y-W Peter; Kuo, C-C Jay
2013-01-01
This book introduces various signal processing approaches to enhance physical layer secrecy in multi-antenna wireless systems. Wireless physical layer secrecy has attracted much attention in recent years due to the broadcast nature of the wireless medium and its inherent vulnerability to eavesdropping. While most articles on physical layer secrecy focus on the information-theoretic aspect, we focus specifically on the signal processing aspects, including beamforming and precoding techniques for data transmission and discriminatory training schemes for channel estimation. The discussions will c
Parasitic excitation of ion Bernstein waves from a Faraday shielded fast wave loop antenna
International Nuclear Information System (INIS)
Skiff, F.; Ono, M.; Colestock, P.; Wong, K.L.
1984-12-01
Parasitic excitation of ion Bernstein waves is observed from a Faraday shielded fast wave loop antenna in the ion cyclotron frequency range. Local analysis of the Vlasov-Maxwell equations demonstrates the role of plasma density gradient in the coupling process. The effects of plasma density and of parallel wave number on the excitation process are investigated
Connection between hydrodynamic, water bag and Vlasov models
International Nuclear Information System (INIS)
Gros, M.; Bertrand, P.; Feix, M.R.
1978-01-01
The connection between hydrodynamic, water bag and Vlasov models is still under consideration with numerical experiments. For long wavelength, slightly non linear excitations and initial preparations such as the usual adiabatic invariant Pn -3 is space independent, the hydrodynamic model is equivalent to the water bag, and for long wavelengths a nice agreement is found with the full numerical solution of the Vlasov equation. For other initial conditions when the water bag cannot be defined, the hydrodynamic approach does not represent the correct behaviour. (author)
The free energy of Maxwell-Vlasov equilibria
International Nuclear Information System (INIS)
Morrison, P.J.; Pfirsch, D.
1989-10-01
A previously derived expression for the energy of arbitrary perturbations about arbitrary Vlasov-Maxwell equilibria is transformed into a very compact form. The new form is also obtained by a canonical transformation method for solving Vlasov's equation, which is based on Lie group theory. This method is simpler than the one used before and provides better physical insight. Finally a procedure is presented for determining the existence of negative-energy modes. In this context the question of why there is an accessibility constraint for the particles, but not for the fields, is discussed. 16 refs
Directory of Open Access Journals (Sweden)
Yu-Chun Liu
2015-08-01
Full Text Available An implantable wireless system with on-chip antenna for cardiovascular pressure monitor is studied. The implantable device is operated in a batteryless manner, powered by an external radio frequency (RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The integrated electronic system, consisting of a capacitance-to-voltage converter, an adaptive RF powering system, an RF transmitter and digital control circuitry, is simulated using a TSMC 0.18 μm CMOS technology. The implanted RF transmitter circuit is combined with a low power voltage-controlled oscillator resonating at 5.8 GHz and a power amplifier. For the design, the simulation model is setup using ADS and HFSS software. The dimension of the antenna is 1 × 0.6 × 4.8 mm3 with a 1 × 0.6 mm2 on-chip circuit which is small enough to place in human carotid artery.
Stroke Diagnosis using Microstrip Patch Antennas Based on Microwave Tomography Systems
Directory of Open Access Journals (Sweden)
Sakthisudhan K
2017-03-01
Full Text Available Microwave tomography (MT based on stroke diagnosis is one of the alternative methods for determinations of the haemorrhagic, ischemic and stroke in brain nervous systems. It is focusing on the brain imaging, continuous monitoring, and preclinical applications. It provides cost effective system and able to use the rural and urban medical clinics that lack the necessary resources in effective stroke diagnosis during emerging applications in road accident and pre-ambulance clinical treatment. In the early works, the design of microstrip patch antennas (MPAs involved the implementation of MT system. Consequently, the MT system presented a few limitations since it required an efficient MPA design with appropriate parameters. Moreover, there were no specific diagnosis modules and body centric features in it. The present research proposes the MPA designs in the forms of diagnosis modules and implements it on the MT system.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-07-19
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna's variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
Zhou, Ping; Lin, Hui; Zhang, Qi
2018-01-01
The reference source system is a key factor to ensure the successful location of the satellite interference source. Currently, the traditional system used a mechanical rotating antenna which leaded to the disadvantages of slow rotation and high failure-rate, which seriously restricted the system’s positioning-timeliness and became its obvious weaknesses. In this paper, a multi-beam antenna scheme based on the horn array was proposed as a reference source for the satellite interference location, which was used as an alternative to the traditional reference source antenna. The new scheme has designed a small circularly polarized horn antenna as an element and proposed a multi-beamforming algorithm based on planar array. Moreover, the simulation analysis of horn antenna pattern, multi-beam forming algorithm and simulated satellite link cross-ambiguity calculation have been carried out respectively. Finally, cross-ambiguity calculation of the traditional reference source system has also been tested. The comparison between the results of computer simulation and the actual test results shows that the scheme is scientific and feasible, obviously superior to the traditional reference source system.
International Nuclear Information System (INIS)
Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal
2016-01-01
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S_1_1) have been investigated. The antenna design is primarily focused on achieving a dual band operation.
Energy Technology Data Exchange (ETDEWEB)
Bhardwaj, Dheeraj, E-mail: dbhardwaj.bit@gmail.com [Department of Physics, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Saraswat, Shriti, E-mail: saraswat.srishti@gmail.com; Gulati, Gitansh, E-mail: gitanshgulati@gmail.com; Shekhar, Snehanshu, E-mail: snehanshushekhar.bit@gmail.com; Joshi, Kanika, E-mail: kanika.karesh@gmail.com [Department of Electronics & Communication, BIT-Mesra-Jaipur Campus, Jaipur 302017 (India); Sharma, Komal, E-mail: kbhardwaj18@gmail.com [Department of Physics, Swami Keshvanand Institute of Technology, Jaipur 302017 (India)
2016-03-09
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S{sub 11}) have been investigated. The antenna design is primarily focused on achieving a dual band operation.
Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal
2016-03-01
In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.
Directory of Open Access Journals (Sweden)
Lei Ge
2018-01-01
Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.
Zhang, Lingyun; Cheng, Dewen; Hu, Yuan; Song, Weitao; Wang, Yongtian
2014-11-01
Visible Light Communications (VLC) has become an emerging area of research since it can provide higher data transmission speed and wider bandwidth. The white LEDs are very important components of the VLC system, because it has the advantages of higher brightness, lower power consumption, and a longer lifetime. More importantly, their intensity and color are modulatable. Besides the light source, the optical antenna system also plays a very important role in the VLC system since it determines the optical gain, effective working area and transmission rate of the VLC system. In this paper, we propose to design an ultra-thin and multiple channels optical antenna system by tiling multiple off-axis lenses, each of which consists of two reflective and two refractive freeform surfaces. The tiling of multiple systems and detectors but with different band filters makes it possible to design a wavelength division multiplexing VLC system to highly improve the system capacity. The field of view of the designed antenna system is 30°, the entrance pupil diameter is 1.5mm, and the thickness of the system is under 4mm. The design methods are presented and the results are discussed in the last section of this paper. Besides the optical gain is analyzed and calculated. The antenna system can be tiled up to four channels but without the increase of thickness.
Electromagnetic reciprocity in antenna theory
Stumpf, Martin
2018-01-01
The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.
Linear Vlasov plasma oscillations in the Fourier transformed velocity space
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk; Nocera, L.
2002-01-01
Roč. 296, - (2002), s. 117-124 ISSN 0375-9601 Institutional research plan: CEZ:AV0Z2043910 Keywords : linear Vlasov plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.483, year: 2002
Non-linear free streaming in Vlasov plasma
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk
2004-01-01
Roč. 54, suppl.C (2004), C82-C88 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/21th./. Prague, 14.06.2004-17.06.2004] Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma oscillations * Vlasov equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004
On the relativistic Vlasov equation in guiding-center coordinates
International Nuclear Information System (INIS)
Salimullah, M.; Chaudhry, M.B.; Hassan, M.H.A.
1989-11-01
The relativistic Vlasov equation has been expressed in terms of the guiding-center coordinates in a hot magnetized plasma. It is noted that the relativistic effect reduces the cyclotron resonance frequency for electrostatic and electromagnetic waves propagating transverse to the direction of the static magnetic field in the plasma. (author). 4 refs
From the Hartree dynamics to the Vlasov equation
DEFF Research Database (Denmark)
Benedikter, Niels Patriz; Porta, Marcello; Saffirio, Chiara
2016-01-01
We consider the evolution of quasi-free states describing N fermions in the mean field limit, as governed by the nonlinear Hartree equation. In the limit of large N, we study the convergence towards the classical Vlasov equation. For a class of regular interaction potentials, we establish precise...
On the Security of Millimeter Wave Vehicular Communication Systems Using Random Antenna Subsets
Eltayeb, Mohammed E.
2017-03-20
Millimeter wave (mmWave) vehicular communication systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques.
On the Security of Millimeter Wave Vehicular Communication Systems Using Random Antenna Subsets
Eltayeb, Mohammed E.; Choi, Junil; Al-Naffouri, Tareq Y.; Heath, Robert W.
2017-01-01
Millimeter wave (mmWave) vehicular communication systems have the potential to improve traffic efficiency and safety. Lack of secure communication links, however, may lead to a formidable set of abuses and attacks. To secure communication links, a physical layer precoding technique for mmWave vehicular communication systems is proposed in this paper. The proposed technique exploits the large dimensional antenna arrays available at mmWave systems to produce direction dependent transmission. This results in coherent transmission to the legitimate receiver and artificial noise that jams eavesdroppers with sensitive receivers. Theoretical and numerical results demonstrate the validity and effectiveness of the proposed technique and show that the proposed technique provides high secrecy throughput when compared to conventional array and switched array transmission techniques.
Directional borehole antenna - Theory
International Nuclear Information System (INIS)
Falk, L.
1992-02-01
A directional antenna has been developed for the borehole radar constructed during phase 2 of the Stripa project. The new antenna can determine the azimuth of a strong reflector with an accuracy of about 3 degrees as confirmed during experiments in Stripa, although the ratio of borehole diameter to wavelength is small, about 0.03. The antenna synthesizes the effect of a loop antenna rotating in the borehole from four signals measured in turn by a stationary antenna. These signals are also used to calculate an electric dipole signal and a check sum which is used to examine the function of the system. The theory of directional antennas is reviewed and used to design an antenna consisting of four parallel wires. The radiation pattern of this antenna is calculated using transmission line theory with due regard to polarization, which is of fundamental importance for the analysis of directional data. In particular the multipole expansion of the field is calculated to describe the antenna radiation pattern. Various sources of error, e.g. the effect of the borehole, are discussed and the methods of calibrating the antenna are reviewed. The ambiguity inherent in a loop antenna can be removed by taking the phase of the signal into account. Typical reflectors in rock, e.g. fracture zones an tunnels, may be modelled as simple geometrical structures. The corresponding analysis is described and exemplified on measurements from Stripa. Radar data is nowadays usually analyzed directly on the computer screen using the program RADINTER developed within the Stripa project. An algorithm for automatic estimation of the parameters of a reflector have been tested with some success. The relation between measured radar data and external coordinates as determined by rotational indicators is finally expressed in terms of Euler angles. (au)
Timing-Free Blind Multiuser Detection for Multicarrier DS/CDMA Systems with Multiple Antennae
Directory of Open Access Journals (Sweden)
Stefano Buzzi
2004-05-01
Full Text Available The problem of blind multiuser detection for an asynchronous multicarrier DS-CDMA system employing multiple transmit and receive antennae over a Rayleigh fading channel is considered in this paper. The solutions that we develop require prior knowledge of the spreading code of the user to be decoded only, while no further information either on the user to be decoded or on the other active users is required. Several combining rules for the observables at the output of each receive antenna are proposed and assessed, and the implications of the different options are studied in depth in terms of both detection performance and computational complexity. A closed form expression is also derived for the conditional error probability and a lower bound for the near-far resistance is provided. Results confirm that the proposed blind receivers can cope with both multiple access interference suppression and channel estimation at the price of a limited performance loss as compared to the ideal linear receivers which assume perfect channel state information.
International Nuclear Information System (INIS)
Jin Da-Lin; Hong Jing-Song; Xiong Han
2012-01-01
A dual band planar antenna based on metamaterial transmission lines is presented for WLAN, WiMAX, and satellite system communication applications. This antenna is composed of an interdigital capacitor and a ground plane with triangular shaped slots on its top edges to broaden the impedance bandwidth. The measured bandwidth for 10 dB return loss is from 3.29 to 4.27 GHz and 5.04 to 9.8 GHz, covering the 5.2/5.8 GHz WLAN, 3.5/5.5 GHz WiMAX bands, and the X-band satellite communication systems at 7.4 GHz. The proposed antenna exhibits stable monopole-like radiation patterns and enough gains across the dual operating bands
Handbook of antenna technologies
Liu, Duixian; Nakano, Hisamatsu; Qing, Xianming; Zwick, Thomas
2016-01-01
The Handbook of Antenna Technologies aims to present the rapid development of antenna technologies, particularly in the past two decades, and also showcasing the newly developed technologies and the latest applications. The handbook will provide readers with the comprehensive updated reference information covering theory, modeling and optimization methods, design and measurement, new electromagnetic materials, and applications of antennas. The handbook will widely cover not only all key antenna design issues but also fundamentals, issues related to antennas (transmission, propagation, feeding structure, materials, fabrication, measurement, system, and unique design challenges in specific applications). This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications.
Laube, Samuel J. P.
1987-05-01
Application of the current GPS NAVSTAR system to civilian service requires that a right hand, circularly polarized, -160 dBW spread spectrum signal be received from an orbiting satellite, where the antenna environment is also moving. This presents a design challenge when inexpensive antennas are desired. The intent of this survey is to provide information on the antennas mentioned and to construct and test prototypes to determine whether the choice made by the industry, the quadrifilar helix, is the best. The helix antenna is currently the low cost standard for GPS. Prototype versions were constructed using 12 gauge wire and subminiature coaxial hardline. The constructed antennas were tested using a signal generator and a reference turnstile. A spectrum analyzer was used to measure the level of the received signal.
FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems
Directory of Open Access Journals (Sweden)
Millar James
2006-01-01
Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.
FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems
Directory of Open Access Journals (Sweden)
James Millar
2006-10-01
Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.
Improvement of the protection devices for JT-60U LHRF antenna system
International Nuclear Information System (INIS)
Suzuki, Sadaaki; Seki, Masami; Shinozaki, Shinichi; Sato, Fumiaki; Hiranai, Shinichi; Hasegawa, Koichi; Moriyama, Shinichi; Ishii, Kazuhiro
2007-09-01
In the experiments featuring lower hybrid range of frequency (LHRF) system in JT-60U, carbon grills were attached to the plasma-facing part of the antenna in order to avoid the damage by the excessive heat load from the plasma. However some electric discharge traces were found there in the observation after the experiments. To avoid such discharges, improvements of the arc detector and the protection interlock by visible picture detection were tackled. In the arc detector, the amplification circuit was improved in order to obtain shorter response time and higher resolution of optical detection. Moreover, in visible picture detection, a new function of RF-on/off control utilizing PC image processing was added to distinguish the light of the arc from one of the plasma. This report summarizes improvement of the protection interlock device in a LHRF heating system. (author)
Antenna Selection for Full-Duplex MIMO Two-Way Communication Systems
Wilson-Nunn, Daniel; Chaaban, Anas; Sezgin, Aydin; Alouini, Mohamed-Slim
2017-01-01
Antenna selection for full-duplex communication between two nodes, each equipped with a predefined number of antennae and transmit/receive chains, is studied. Selection algorithms are proposed based on magnitude, orthogonality, and determinant criteria. The algorithms are compared to optimal selection obtained by exhaustive search as well as random selection, and are shown to yield performance fairly close to optimal at a much lower complexity. Performance comparison for a Rayleigh fading symmetric channel reveals that selecting a single transmit antenna is best at low signal-to-noise ratio (SNR), while selecting an equal number of transmit and receive antennae is best at high SNR.
Antenna Selection for Full-Duplex MIMO Two-Way Communication Systems
Wilson-Nunn, Daniel
2017-03-11
Antenna selection for full-duplex communication between two nodes, each equipped with a predefined number of antennae and transmit/receive chains, is studied. Selection algorithms are proposed based on magnitude, orthogonality, and determinant criteria. The algorithms are compared to optimal selection obtained by exhaustive search as well as random selection, and are shown to yield performance fairly close to optimal at a much lower complexity. Performance comparison for a Rayleigh fading symmetric channel reveals that selecting a single transmit antenna is best at low signal-to-noise ratio (SNR), while selecting an equal number of transmit and receive antennae is best at high SNR.
Directory of Open Access Journals (Sweden)
Zhaoyu Chen
2018-01-01
Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.
Directory of Open Access Journals (Sweden)
Chia-Chang Hu
2005-04-01
Full Text Available A novel space-time adaptive near-far robust code-synchronization array detector for asynchronous DS-CDMA systems is developed in this paper. There are the same basic requirements that are needed by the conventional matched filter of an asynchronous DS-CDMA system. For the real-time applicability, a computationally efficient architecture of the proposed detector is developed that is based on the concept of the multistage Wiener filter (MWF of Goldstein and Reed. This multistage technique results in a self-synchronizing detection criterion that requires no inversion or eigendecomposition of a covariance matrix. As a consequence, this detector achieves a complexity that is only a linear function of the size of antenna array (J, the rank of the MWF (M, the system processing gain (N, and the number of samples in a chip interval (S, that is, Ã°ÂÂ’Âª(JMNS. The complexity of the equivalent detector based on the minimum mean-squared error (MMSE or the subspace-based eigenstructure analysis is a function of Ã°ÂÂ’Âª((JNS3. Moreover, this multistage scheme provides a rapid adaptive convergence under limited observation-data support. Simulations are conducted to evaluate the performance and convergence behavior of the proposed detector with the size of the J-element antenna array, the amount of the L-sample support, and the rank of the M-stage MWF. The performance advantage of the proposed detector over other DS-CDMA detectors is investigated as well.
International Nuclear Information System (INIS)
Morrison, P.J.
1992-04-01
Expressions for the energy content of one-dimensional electrostatic perturbations about homogeneous equilibria are revisited. The well-known dielectric energy, var-epsilon D , is compared with the exact plasma free energy expression, δ 2 F, that is conserved by the Vlasov-Poisson system. The former is an expression in terms of the perturbed electric field amplitude, while the latter is determined by a generating function, which describes perturbations of the distribution function that respect the important constraint of dynamical accessibility of the system. Thus the comparison requires solving the Vlasov equation for such a perturbations of the distribution function in terms of the electric field. This is done for neutral modes of oscillation that occur for equilibria with stationary inflection points, and it is seen that for these special modes δ 2 F = var-epsilon D . In the case of unstable and corresponding damped modes it is seen that δ 2 F ≠ var-epsilon D ; in fact δ 2 F ≡ 0. This failure of the dielectric energy expression persists even for arbitrarily small growth and damping rates since var-epsilon D is nonzero in this limit, whereas δ 2 F remains zero. The connection between the new exact energy expression and the at-best approximate var-epsilon D is described. The new expression motivates natural definitions of Hamiltonian action variables and signature. A general linear integral transform is introduced that maps the linear version of the noncanonical Hamiltonian structure, which describes the Vlasov equation, to action-angle (diagonal) form
Design of Electric Patrol UAVs Based on a Dual Antenna System
Directory of Open Access Journals (Sweden)
Yongjie Zhai
2018-04-01
Full Text Available China completed the construction of more than 1.15 million kilometers of transmission lines with conventional voltage levels spanning its vast territory in 2014. This large and complicated power grid structure relies mainly on manual operation and maintenance of lines. Unmanned aerial vehicles (UAVs equipped with high-definition digital video cameras and cameras and GPS positioning systems can conduct autonomous patrols along the grid. However, the presence of electromagnetic fields around high-voltage transmission lines can affect the UAV’s magnetometer, resulting in a wrong heading and thus unsafe flight. In this paper, the traditional method of UAV heading calculation using a magnetometer was analyzed, and a novel method for calculating UAV heading based on dual antennas was proposed. Experimental data showed that the proposed method improves the anti-magnetic interference characteristics of UAVs and increases UAV security and stability for power inspection applications.
Carr, Joseph
2006-01-01
Joe Carr has provided radio amateurs and short-wave listeners with the definitive design guide for sending and receiving radio signals with Antenna Toolkit 2nd edition.Together with the powerful suite of CD software, the reader will have a complete solution for constructing or using an antenna - bar the actual hardware! The software provides a simple Windows-based aid to carrying out the design calculations at the heart of successful antenna design. All the user needs to do is select the antenna type and set the frequency - a much more fun and less error prone method than using a con
Adaptation of antenna profiles for control of MR guided hyperthermia (HT) in a hybrid MR-HT system
International Nuclear Information System (INIS)
Weihrauch, Mirko; Wust, Peter; Weiser, Martin; Nadobny, Jacek; Eisenhardt, Steffen; Budach, Volker; Gellermann, Johanna
2007-01-01
A combined numerical-experimental iterative procedure, based on the Gauss-Newton algorithm, has been developed for control of magnetic resonance (MR)-guided hyperthermia (HT) applications in a hybrid MR-HT system BSD 2000 3D-MRI. In this MR-HT system, composed of a 3-D HT applicator Sigma-Eye placed inside a tunnel-type MR tomograph Siemens MAGNETOM Symphony (1.5 T), the temperature rise due to the HT radiation can be measured on-line in three dimensions by use of the proton resonance frequency shift (PRFS) method. The basic idea of our iterative procedure is the improvement of the system's characterization by a step-by-step modification of the theoretical HT antenna profiles (electric fields radiated by single antennas). The adaptation of antenna profiles is efficient if the initial estimates are radiation fields calculated from a good a priori electromagnetic model. Throughout the iterative procedure, the calculated antenna fields (FDTD) are step-by-step modified by comparing the calculated and experimental data, the latter obtained using the PRFS method. The procedure has been experimentally tested on homogeneous and inhomogeneous phantoms. It is shown that only few comparison steps are necessary for obtaining a dramatic improvement of the general predictability and quality of the specific absorption rate (SAR) inside the MR-HT hybrid system
Recent Advances on OTA Testing for 5G Antenna Systems in Multi-probe Anechoic Chamber Setups
DEFF Research Database (Denmark)
Fan, Wei; Pedersen, Gert F.; Kyösti, Pekka
2018-01-01
Over-the-air (OTA) testing is seen as an essential method for evaluating 5G antenna systems, since conventional cable testing are no longer applicable. In the paper, we discussed the similarities and discrepancies of OTA testing in the multiprobe anechoic chamber (MPAC) setups for 4G user equipment...
Directory of Open Access Journals (Sweden)
Marco Rossi
2016-07-01
Full Text Available The efficiency of a wireless power transfer (WPT system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500.
Rossi, Marco; Stockman, Gert-Jan; Rogier, Hendrik; Vande Ginste, Dries
2016-01-01
The efficiency of a wireless power transfer (WPT) system in the radiative near-field is inevitably affected by the variability in the design parameters of the deployed antennas and by uncertainties in their mutual position. Therefore, we propose a stochastic analysis that combines the generalized polynomial chaos (gPC) theory with an efficient model for the interaction between devices in the radiative near-field. This framework enables us to investigate the impact of random effects on the power transfer efficiency (PTE) of a WPT system. More specifically, the WPT system under study consists of a transmitting horn antenna and a receiving textile antenna operating in the Industrial, Scientific and Medical (ISM) band at 2.45 GHz. First, we model the impact of the textile antenna’s variability on the WPT system. Next, we include the position uncertainties of the antennas in the analysis in order to quantify the overall variations in the PTE. The analysis is carried out by means of polynomial-chaos-based macromodels, whereas a Monte Carlo simulation validates the complete technique. It is shown that the proposed approach is very accurate, more flexible and more efficient than a straightforward Monte Carlo analysis, with demonstrated speedup factors up to 2500. PMID:27447632
DEFF Research Database (Denmark)
Pelosi, Mauro; Alrabadi, Osama; Franek, Ondrej
2012-01-01
Recently, there has been a growing interest for evaluating the performance potential of multiple antenna systems on small terminals. This work focuses on Capacitive Coupling Elements (CCEs), which are expected to perform differently with respect to self-resonating elements. Several CCEs...
Taitano, W. T.; Chacón, L.; Simakov, A. N.
2018-07-01
We consider a 1D-2V Vlasov-Fokker-Planck multi-species ionic description coupled to fluid electrons. We address temporal stiffness with implicit time stepping, suitably preconditioned. To address temperature disparity in time and space, we extend the conservative adaptive velocity-space discretization scheme proposed in [Taitano et al., J. Comput. Phys., 318, 391-420, (2016)] to a spatially inhomogeneous system. In this approach, we normalize the velocity-space coordinate to a temporally and spatially varying local characteristic speed per species. We explicitly consider the resulting inertial terms in the Vlasov equation, and derive a discrete formulation that conserves mass, momentum, and energy up to a prescribed nonlinear tolerance upon convergence. Our conservation strategy employs nonlinear constraints to enforce these properties discretely for both the Vlasov operator and the Fokker-Planck collision operator. Numerical examples of varying degrees of complexity, including shock-wave propagation, demonstrate the favorable efficiency and accuracy properties of the scheme.
Microwave Imaging Using a Tunable Reflectarray Antenna and Superradiance in Open Quantum Systems
Tayebi, Amin
Theory, experiment, and computation are the three paradigms for scientific discoveries. This dissertation includes work in all three areas. The first part is dedicated to the practical design and development of a microwave imaging system, a problem mostly experimental and computational in nature. The second part discusses theoretical foundations of possible future advances in quantum signal transmission. In part one, a new active microwave imaging system is proposed. At the heart of this novel system lies an electronically reconfigurable beam-scanning reflectarray antenna. The high tuning capability of the reflectarray provides a broad steering range of +/- 60 degrees in two distinct frequency bands: S and F bands. The array, combined with an external source, dynamically steers the incoming beam across this range in order to generate multi-angle projection data for target detection. The collected data is then used for image reconstruction by means of time reversal signal processing technique. Our design significantly reduces cost and operational complexities compared to traditional imaging systems. In conventional systems, the region of interest is enclosed by a costly array of transceiver antennas which additionally requires a complicated switching circuitry. The inclusion of the beam scanning array and the utilization of a single source, eliminates the need for multiple antennas and the involved circuitry. In addition, unlike conventional setups, this system is not constrained by the dimensions of the object under test. Therefore the inspection of large objects, such as extended laminate structures, composite airplane wings and wind turbine blades becomes possible. Experimental results of detection of various dielectric targets as well as detecting anomalies within them, such as defects and metallic impurities, using the imaging prototype are presented. The second part includes the theoretical consideration of three different problems: quantum transport through
Low complexity transmit antenna selection with power balancing in OFDM systems
Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2010-01-01
of the power amplifier of the RF chain. Applying transmit antenna selection and fixed-power variable-rate transmission per subcarrier as a function of channel variations, we propose an implementation-friendly antenna selection method which offers a reduced
Joint switched multi-spectrum and transmit antenna diversity for spectrum sharing systems
Sayed, Mostafa M.; Abdallah, Mohamed M.; Qaraqe, Khalid A.; Alouini, Mohamed-Slim
2013-01-01
. In this paper, we consider a secondary network comprised of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx) sharing the same spectrum with multiple primary users (PUs), each with a distinct spectrum
Design of an electric power system with incorporation of a phased array antenna for OLFAR
Klein, J.M.; Budianu, A.; Bentum, Marinus Jan; Engelen, S.; Verhoeven, C.J.M.
2013-01-01
The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project is investigating the feasibility of an orbiting low frequency radio telescope. The radio telescope is formed using a swarm of nano-satellites equipped with astronomical antennas, conceivably orbiting the Moon or the second
Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.
2016-01-01
Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
Plastino, A. R.; Curado, E. M. F.; Nobre, F. D.; Tsallis, C.
2018-02-01
Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q -Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.
Ikram, M.; Sharawi, M. S.; Shamim, Atif; Sebak, A.
2018-01-01
In this work, a 4G/5G multiple-input multiple-output (MIMO) antenna system is presented for smart phone applications. The 4G antenna operates from 1900 to 3212 MHz and 3517 to 3712 MHz with 1312 (69%) and 195 (5.5%) MHz measured bandwidths
Microwave Ablation of Pulmonary Malignancies Using a Novel High-energy Antenna System
Energy Technology Data Exchange (ETDEWEB)
Little, Mark W.; Chung, Daniel; Boardman, Philip; Gleeson, Fergus V.; Anderson, Ewan M., E-mail: ewan.anderson@ouh.nhs.uk [Churchill Hospital, Department of Radiology (United Kingdom)
2013-04-15
To evaluate the technical success, safety, and imaging follow-up of malignant pulmonary nodules treated with a novel high-energy percutaneous microwave ablation (MWA) system. Between July 2010 and September 2011, a total of 23 patients, 12 men, mean age 68 (range 30-87) years with 29 pulmonary malignancies of median diameter 19 (range 8-57) mm, underwent computed tomography (CT)-guided MWA with a 16G microwave needle antenna enabling power up to 180 W. Technical success was defined as needle placement in the intended lesion without death or serious injury. Adequacy of ablation was assessed at 24 h on contrast-enhanced CT. Circumferential solid or ground glass opacification >5 mm was used to define an ideal ablation. Local tumor recurrence was assessed at 1, 3, and 6 months after ablation on contrast-enhanced CT. MWA was technically successful in 93 % (n = 27). Mean ablation duration was 3.6 (range 1-9) min. Ten patients (43 %) developed a pneumothorax as a result of the MWA; only 3 (13 %) required placement of a chest drain. Thirty-day mortality rate was 0 %. The mean hospital stay was 1.5 (range 1-7) days. A total of 22 lesions (75 %) were surrounded by {>=}5 mm ground glass or solid opacification after the procedure. At a median follow-up of 6 months, local recurrence was identified in 3 out of 26 lesions, giving a local control rate of 88 %. MWA using a high-power antenna of pulmonary malignancies is safe, technically achievable, and enables fast ablation times.
Comparing the line broadened quasilinear model to Vlasov code
International Nuclear Information System (INIS)
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-01-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations
Comparing the line broadened quasilinear model to Vlasov code
Energy Technology Data Exchange (ETDEWEB)
Ghantous, K. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Berk, H. L. [Institute for Fusion Studies, University of Texas, 2100 San Jacinto Blvd, Austin, Texas 78712-1047 (United States); Gorelenkov, N. N. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)
2014-03-15
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Comparing the line broadened quasilinear model to Vlasov code
Ghantous, K.; Berk, H. L.; Gorelenkov, N. N.
2014-03-01
The Line Broadened Quasilinear (LBQ) model is revisited to study its predicted saturation level as compared with predictions of a Vlasov solver BOT [Lilley et al., Phys. Rev. Lett. 102, 195003 (2009) and M. Lilley, BOT Manual. The parametric dependencies of the model are modified to achieve more accuracy compared to the results of the Vlasov solver both in regards to a mode amplitude's time evolution to a saturated state and its final steady state amplitude in the parameter space of the model's applicability. However, the regions of stability as predicted by LBQ model and BOT are found to significantly differ from each other. The solutions of the BOT simulations are found to have a larger region of instability than the LBQ simulations.
Vlasov treatment of coherent synchrotron radiation from arbitrary planar orbits
International Nuclear Information System (INIS)
Warnock, R.; Bassi, G.; Ellison, J.A.
2006-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates which represent the vacuum chamber. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This should provide simulations with lower numerical noise than the macro-particle method, and allow one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than usual methods. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. For application to a chicane bunch compressor we take steps to deal with energy chirp
Action principles for the Vlasov equation: Four old, one new
International Nuclear Information System (INIS)
Ye, Huanchun; Morrison, P.J.
1991-01-01
Action principles for the Vlasov equation are presented. Four previously known action principles, which differ by the choice of dynamical variables, are described and the interrelationship between them discussed. A new action principle called the leaf action, which manifestly preserves the Casimir invariants and possess a single function as the dynamical variable, is presented. The relationship to the noncanonical Hamiltonian formalism is also explored. 21 refs
Development of Novel Integrated Antennas for CubeSats
National Aeronautics and Space Administration — The antenna system on a small satellite is a critical component, as a failure of the antenna can lead to mission failure. Present antenna systems are typically wire...
Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System.
Hasan, Md Mehedi; Faruque, Mohammad Rashed Iqbal; Islam, Mohammad Tariqul
2018-01-19
A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm 2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems
Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; Sedky, Sherif; Soliman, Ezzeldin A.
2016-01-01
In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.
On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems
Sallam, Mai O.
2016-12-19
In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.
Ragona, R.; Messiaen, A.
2016-07-01
For the central heating of a fusion reactor ion cyclotron radio frequency heating (ICRH) is the first choice method as it is able to couple RF power to the ions without density limit. The drawback of this heating method is the problem of excitation of the magneto-sonic wave through the plasma boundary layer from the antenna located along the wall, without exceeding its voltage standoff. The amount of coupling depends on the antenna excitation and the surface admittance at the antenna output due to the plasma profile. The paper deals with the optimization of the antenna excitation by the use of sections of traveling-wave antennas (TWAs) distributed all along the reactor wall between the blanket modules. They are mounted and fed in resonant ring system(s). First, the physics of the coupling of a strap array is studied by simple models and the coupling code ANTITER II. Then, after the study of the basic properties of a TWA section, its feeding problem is solved by hybrids driving them in resonant ring circuit(s). The complete modeling is obtained from the matrices of the TWA sections connected to one of the feeding hybrid(s). The solution is iterated with the coupling code to determine the loading for a reference low-coupling ITER plasma profile. The resulting wave pattern up to the plasma bulk is derived. The proposed system is totally load resilient and allows us to obtain a very selective exciting wave spectrum. A discussion of some practical implementation problems is added.
Directory of Open Access Journals (Sweden)
Bhaskar D. Rao
2008-07-01
Full Text Available Transformed codebooks are obtained by a transformation of a given codebook to best match the statistical environment at hand. The procedure, though suboptimal, has recently been suggested for feedback of channel state information (CSI in multiple antenna systems with correlated channels because of their simplicity and effectiveness. In this paper, we first consider the general distortion analysis of vector quantizers with transformed codebooks. Bounds on the average system distortion of this class of quantizers are provided. It exposes the effects of two kinds of suboptimality introduced by the transformed codebook, namely, the loss caused by suboptimal point density and the loss caused by mismatched Voronoi shape. We then focus our attention on the application of the proposed general framework to providing capacity analysis of a feedback-based MISO system over spatially correlated fading channels. In particular, with capacity loss as an objective function, upper and lower bounds on the average distortion of MISO systems with transformed codebooks are provided and compared to that of the optimal channel quantizers. The expressions are examined to provide interesting insights in the high and low SNR regime. Numerical and simulation results are presented which confirm the tightness of the distortion bounds.
Antenna Parts and Waveguide Transmission Line of Short Pulse Radar System Design
Directory of Open Access Journals (Sweden)
M. E. Golubcov
2014-01-01
Full Text Available The main point of this research was работы являлось to create a stand to explore the application of short pulse radio signals in radar. The stand consists of antenna and waveguide elements. Each element out to guarantee operation in X-band with 10 percent working bank and 5 percent instantaneous bandwidth and the power output gotta be 1.5 kW. The form of the antenna beam patten need to be similar to cosecant pattern Side-lobe level need to be less than -25 dB. Background level got to be at least -30 dB. Wave friction, which is radiated from the antenna aperture, got to simultaneous formed in a space.As the most easily realizing variant of such antenna cutting parabolic mirror antenna with offset irradiator was chosen. The irradiator phase centre is shifted from the focal point of the paraboloid to form a cosecant pattern. Method of physical optics is used for the analysis of antennas. Calculating pattern of horn irradiator and mirror antenna which were met the requirements was received. The construction choice was limited by the preproduction possibilities, mass and dimensions. Mirror antenna consists of skeleton framing with mirroring elements which are fixing on it. Mirroring plane is multiplex and consists off rectangular planes made by hydroforming method. Antenna was tested and adjusted at the antenna darkroom after fabricating. The results were meted requirements.Besides the mirror antenna and the horn antenna waveguide elements, waveguide bends and rotating joints were calculated, manufactured and researched. All calculations included the manufacturers tolerances, technological corner R etc. As the construction base of rotating joint coaxial waveguide was chosen. The decision on the one hand: let keep the axial symmetry of excited wave at rotating part of the waveguide, on the other hand there’s no necessary to apply resonant rings, which are plug into dielectric beads for the transition from rotating ring part to
Liquid Crystal Polymer (LCP) based antenna for flexible system on package (SoP) applications
Marnat, Loic; Shamim, Atif
2012-01-01
The design, fabrication and measurement of a bowtie antenna on a flexible Liquid Crystal Polymer (LCP) substrate is reported in this paper. The antenna is fed by a balun transition which helps improve the gain up to 5.1 dB. The antenna performance is analyzed for both planar and curved substrates. The comparison between simulation and measurements shows a good agreement. This structure can either be used to sense the bending of the substrate or use the bending to tilt the beam. © 2012 IEEE.
Liquid Crystal Polymer (LCP) based antenna for flexible system on package (SoP) applications
Marnat, Loic
2012-06-01
The design, fabrication and measurement of a bowtie antenna on a flexible Liquid Crystal Polymer (LCP) substrate is reported in this paper. The antenna is fed by a balun transition which helps improve the gain up to 5.1 dB. The antenna performance is analyzed for both planar and curved substrates. The comparison between simulation and measurements shows a good agreement. This structure can either be used to sense the bending of the substrate or use the bending to tilt the beam. © 2012 IEEE.
Handbook of reflector antennas and feed systems v.3 applications of reflectors
Rao, Sudhakar; Sharma, Satish K
2013-01-01
This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume III focuses on the range of reflector antenna applications, including space, terrestrial, and radar. The intent of this book volume is to provide practical applications and design information on reflector antennas used fo
Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics
International Nuclear Information System (INIS)
Le Bourdiec, S.
2007-03-01
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Sayed, Mostafa
2012-12-01
In spectrum sharing systems, a secondary user (SU) is allowed to share the spectrum with a primary licensed user under the condition that the interference at the the primary user receiver (PU-Rx) is below a predetermined threshold. Joint primary spectrum and transmit antenna selection diversity schemes can be utilized as an efficient way to meet the quality of service (QoS) demands of the SUs while satisfying the interference constraint. In this paper, we consider a secondary link comprised of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx) sharing the same spectrum with a number of primary users (PUs) operating at distinct spectra. We present a performance analysis for two primary spectrum and transmit antenna switched selection schemes with different amount of feedback requirements. In particular, assuming Rayleigh fading and BPSK transmission, we derive approximate BER expressions for the presented schemes. For the sake of comparison, we also derive a closed-form BER expression for the optimal selection scheme that selects the best pair in terms of the SU-Rx signal-to-noise ratio (SNR) which has the disadvantage of high feedback requirements. Finally, our results are verified with numerical simulations. © 2012 IEEE.
Park, Kihong
2011-01-01
In this paper, we consider multicarrier systems with multiple transmit antennas under a power-balancing constraint. Applying transmit antenna selection and discrete rate-adaptive modulation using M-ary quadrature-amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal transmit antenna selection scheme in terms of the maximum spectral efficiency, where all the possible groupings for sending the same information-bearing signals in a group of subcarriers are searched, and the groups of subcarriers for providing the frequency diversity gain are formed. In addition, we propose a suboptimal method for reducing the computational complexity of the optimal method. The suboptimal scheme considers only the subcarriers under outage, and these subcarriers are sequentially combined until the required signal-to-noise ratio (SNR) is met. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining, as introduced in the work of Sandell and Coon, particularly for low-SNR regions, and offers the spectral efficiency close to the optimal method with diversity combining while maintaining lower complexity. © 2011 IEEE.
Directory of Open Access Journals (Sweden)
Bahador Pourhatami
2017-12-01
Full Text Available Regarding the progressive improvement in the territory of Space Technology in all developed countries and consequently developing countries including Islamic Republic of Iran, the optimization of design and utilization of the communication equipment has been paid more attention today. For instance, considering recent highly innovative methods, specifically in communication field, developed for design, manufacturing and exploiting dish antenna for specific cases, cooperation of other science and technology experts, like civil engineers, is also necessary. In this way, more delicate design procedure in order to satisfy communication requirement, is achieved. So far, no specific investigation about aforementioned subject, especially the effect of soil-structure interaction (SSI in analysing the seismic behaviour of communication large dish antennas has been conducted in Iran. In this paper, with the aim of investigating the effect of SSI on seismic behavior of pedestal, first an acceptable range for antenna displacement – as the most important parameter in pedestal structure for antenna – in both operational and survival states, has been calculated numerically based on generic formula. Secondly, the modelling of the whole pedestal-structure system has been modelled subjected to the associated loads and other primary conditions. This procedure has been performed once without considering the SSI and once more with it. Comparison of the obtained results shows that considering the SSI would impress the output results with a difference rate more than 50% and 600% respectively at survival and operational condition.
International Nuclear Information System (INIS)
Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young
2008-01-01
This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power
Uniform Circular Antenna Array Applications in Coded DS-CDMA Mobile Communication Systems
National Research Council Canada - National Science Library
Seow, Tian
2003-01-01
...) has greatly increased. This thesis examines the use of an equally spaced circular adaptive antenna array at the mobile station for a typical coded direct sequence code division multiple access (DS-CDMA...
Li, Xinying; Yu, Jianjun; Zhang, Junwen; Dong, Ze; Chi, Nan
2013-06-15
We experimentally demonstrate 2×56 Gb/s two-channel polarization-division-multiplexing quadrature-phase-shift-keying signal delivery over 80 km single-mode fiber-28 and 2 m Q-band (33-50 GHz) wireless link, adopting antenna horizontal- (H-) and vertical-polarization (V-polarization) multiplexing. At the wireless receiver, classic constant-modulus-algorithm equalization based on digital signal processing can realize polarization demultiplexing and remove the crosstalk at the same antenna polarization. By adopting antenna polarization multiplexing, the signal baud rate and performance requirements for optical and wireless devices can be reduced but at the cost of double antennas and devices, while wireless transmission capacity can also be increased but at the cost of stricter requirements for V-polarization. The isolation is only about 19 dB when V-polarization deviation approaches 10°, which will affect high-speed (>50 Gb/s) wireless delivery.
Placement insensitive antenna for RFID, sensing, and/or communication systems
Bernhard, Jennifer T.; Ruyle, Jessica E.
2014-06-10
An antenna includes a ground plane having a slot. The slot may be miniaturized using a meandered slot structure or other appropriate reactive loading method as an end load to one or both ends of the slot. An edge treatment may be included on one or more edges of the ground plane or a closely spaced reflecting plane. The antenna is structured to transmit or receive a signal independently or in response to electromagnetic radiation.
Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism
International Nuclear Information System (INIS)
Back, A.
2011-11-01
A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)
Fetherman, Eric R.; Avila, Brian W.; Winkelman, Dana L.
2016-01-01
Portable radio frequency identification (RFID) PIT tag antenna systems are increasingly being used in studies examining aquatic animal movement, survival, and habitat use, and their design flexibility permits application in a wide variety of settings. We describe the construction, use, and performance of two portable floating RFID PIT tag antenna systems designed to detect fish that were unavailable for recapture using stationary antennas or electrofishing. A raft antenna system was designed to detect and locate PIT-tagged fish in relatively long (i.e., ≥10 km) river reaches, and consisted of two antennas: (1) a horizontal antenna (4 × 1.2 m) installed on the bottom of the raft and used to detect fish in shallower river reaches (<1 m), and (2) a vertical antenna (2.7 × 1.2 m) for detecting fish in deeper pools (≥1 m). Detection distances of the horizontal antenna were between 0.7 and 1.0 m, and detection probability was 0.32 ± 0.02 (mean ± SE) in a field test using rocks marked with 32-mm PIT tags. Detection probability of PIT-tagged fish in the Cache la Poudre River, Colorado, using the raft antenna system, which covered 21% of the wetted area, was 0.14 ± 0.14. A shore-deployed floating antenna (14.6 × 0.6 m), which covered 100% of the wetted area, was designed for use by two operators for detecting and locating PIT-tagged fish in shorter (i.e., <2 km) river reaches. Detection distances of the shore-deployed floating antenna were between 0.7 and 0.8 m, and detection probabilities during field deployment in the St. Vrain River exceeded 0.52. The shore-deployed floating antenna was also used to estimate abundance of PIT-tagged fish. Results suggest that the shore-deployed floating antenna could be used as an alternative to estimating abundance using traditional sampling methods such as electrofishing.
Adaptive antenna system by ESP32-PICO-D4 and its application to web radio system
Kodera, Toshiro
2017-01-01
Adaptive antenna technique has an important role in the IoT environment in order to establish reliable and stable wireless communication in high congestion situation. Even if knowing antenna characteristics in advance, electromagnetic wave propagation in the non-line-of-sight environment is very complex and unpredictable, therefore, the adjustment the antenna radiation for the optimum signal reception is important for the better wireless link. This article presents a simple but effective adap...
Rectangular Ring Antenna Excited by Circular Disc Monopole for WiMAX System
Directory of Open Access Journals (Sweden)
Souphanna Vongsack
2014-01-01
Full Text Available This research presents a rectangular ring antenna excited by a circular disc monopole (CDM mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11| < −10 dB that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0° and ∅=90°. The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.
Directory of Open Access Journals (Sweden)
Shu-Kun Lin
2013-01-01
Full Text Available This comprehensive book serves as a one-stop resource for practical EW antenna system know-how. Supported with over 700 illustrations and nearly 1,700 equations, this authoritative reference offers you detailed explanations of all the important foundations and aspects of this technology. Moreover, you get an in-depth treatment of a wide range of antenna system applications.
Nonadiabatic quantum Vlasov equation for Schwinger pair production
International Nuclear Information System (INIS)
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
Numerical simulation of Vlasov equation with parallel tools
International Nuclear Information System (INIS)
Peyroux, J.
2005-11-01
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Vogman, Genia
Plasmas are made up of charged particles whose short-range and long-range interactions give rise to complex behavior that can be difficult to fully characterize experimentally. One of the most complete theoretical descriptions of a plasma is that of kinetic theory, which treats each particle species as a probability distribution function in a six-dimensional position-velocity phase space. Drawing on statistical mechanics, these distribution functions mathematically represent a system of interacting particles without tracking individual ions and electrons. The evolution of the distribution function(s) is governed by the Boltzmann equation coupled to Maxwell's equations, which together describe the dynamics of the plasma and the associated electromagnetic fields. When collisions can be neglected, the Boltzmann equation is reduced to the Vlasov equation. High-fidelity simulation of the rich physics in even a subset of the full six-dimensional phase space calls for low-noise high-accuracy numerical methods. To that end, this dissertation investigates a fourth-order finite-volume discretization of the Vlasov-Maxwell equation system, and addresses some of the fundamental challenges associated with applying these types of computationally intensive enhanced-accuracy numerical methods to phase space simulations. The governing equations of kinetic theory are described in detail, and their conservation-law weak form is derived for Cartesian and cylindrical phase space coordinates. This formulation is well known when it comes to Cartesian geometries, as it is used in finite-volume and finite-element discretizations to guarantee local conservation for numerical solutions. By contrast, the conservation-law weak form of the Vlasov equation in cylindrical phase space coordinates is largely unexplored, and to the author's knowledge has never previously been solved numerically. Thereby the methods described in this dissertation for simulating plasmas in cylindrical phase space
Energy Technology Data Exchange (ETDEWEB)
Kawamori, Eiichirou; Lin, Yu-Hsiang [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Mase, Atsushi [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga 816-8580 (Japan); Nishida, Yasushi; Cheng, C. Z. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Plasma and Space Science Center, National Cheng Kung University, Tainan 70101, Taiwan (China)
2014-02-15
This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.
Directory of Open Access Journals (Sweden)
Kim Yong-Seok
2005-01-01
Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.
Directory of Open Access Journals (Sweden)
Biguesh Mehrzad
2004-01-01
Full Text Available In mobile communication systems with multisensor antennas at base stations, downlink channel estimation plays a key role because accurate channel estimates are needed for transmit beamforming. One efficient approach to this problem is channel probing with feedback. In this method, the base station array transmits probing (training signals. The channel is then estimated from feedback reports provided by the users. This paper studies the performance of the channel probing method with feedback using a multisensor base station antenna array and single-sensor users. The least squares (LS, linear minimum mean square error (LMMSE, and a new scaled LS (SLS approaches to the channel estimation are studied. Optimal choice of probing signals is investigated for each of these techniques and their channel estimation performances are analyzed. In the case of multiple LS channel estimates, the best linear unbiased estimation (BLUE scheme for their linear combining is developed and studied.
Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don
1996-01-01
This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.
A novel very wideband integrated antenna system for 4G and 5G mm-wave applications
Ikram, M.
2017-09-22
In this work, a novel very wideband 4-element monopole based multiple-input multiple-output (MIMO) antenna system with single connected antenna array (CAA) is presented. The CAA is based on a single slot which is etched on the ground plane. A 2 × 1 power divider/combiner is used to excite the slot to act as a CAA. The proposed design covers the 4G bands between 1850 and 3700, and the 28 GHz 5G band. The covered bandwidths are 1462 and 240 MHz from 1843 to 3305 MHz and 3500 to 3740 MHz, respectively, for 4G applications. A bandwidth of 1.22 GHz from 27.5 to 28.72 GHz is obtained for 5G applications. The proposed antenna system is designed on a double layer RO4350B substrate with height of 0.76 mm and dielectric constant of 3.5. The total size of the design is 115 × 65 × 0.76 mm. It is compact, low profile and suitable for wireless handheld devices. The MIMO performance metrics such as isolation and ECC are evaluated and good agreement between simulations and measurements is achieved.
An Attitude Heading and Reference System For Marine Satellite Tracking Antenna
DEFF Research Database (Denmark)
Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar
2017-01-01
One of the most challenging problems for marine satellite tracking antennas (MSTAs) is to estimate the antenna attitude, which is affected by the ship motion, especially the ship vibration and rotational motions caused by ocean waves. To overcome this problem, an attitude heading and reference...... conditions, an attitude estimator based on virtual horizontal reference is introduced for situations of accelerometer malfunction, where the ship is suffering from wave shocks in high sea states. The performance of the designed AHRS for MSTA is assessed through hardware experiments using a Stewart platform...
Handbook of reflector antennas and feed systems v.1 theory and design of reflectors
Sharma, Satish K; Shafai, Lotfollah
2013-01-01
This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa
International Nuclear Information System (INIS)
Davidson, R.C.; Chen, C.
1997-08-01
A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria
Modern lens antennas for communications engineering
Thornton, John
2012-01-01
The aim of this book is to present the modern design principles and analysis of lens antennas. It gives graduates and RF/Microwave professionals the design insights in order to make full use of lens antennas. Why do we want to write a book in lens antennas? Because this topic has not been thoroughly publicized, its importance is underestimated. As antennas play a key role in communication systems, recent development in wireless communications would indeed benefit from the characteristics of lens antennas: low profile, and low cost etc. The major advantages of lens antennas are na
Gao, Steven; Zhu, Fuguo
2013-01-01
This book presents a comprehensive insight into the design techniques for different types of CP antenna elements and arrays In this book, the authors address a broad range of topics on circularly polarized (CP) antennas. Firstly, it introduces to the reader basic principles, design techniques and characteristics of various types of CP antennas, such as CP patch antennas, CP helix antennas, quadrifilar helix antennas (QHA), printed quadrifilar helix antennas (PQHA), spiral antenna, CP slot antennas, CP dielectric resonator antennas, loop antennas, crossed dipoles, monopoles and CP horns. Adva
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
Continuum Vlasov Simulation in Four Phase-space Dimensions
Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.
2010-11-01
In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).
Vlasov analysis of microbunching instability for magnetized beams
Directory of Open Access Journals (Sweden)
C.-Y. Tsai
2017-05-01
Full Text Available For a high-brightness electron beam with high bunch charge traversing a recirculation beam line, coherent synchrotron radiation and space charge effects may result in microbunching instability (MBI. Both tracking simulation and Vlasov analysis for an early design of a circulator cooler ring (CCR for the Jefferson Lab Electron Ion Collider (JLEIC reveal significant MBI [Ya. Derbenev and Y. Zhang, Proceedings of the Workshop on Beam Cooling and Related Topics, COOL’09, Lanzhou, China, 2009 (2009, FRM2MCCO01]. It is envisioned that the MBI could be substantially suppressed by using a magnetized beam. In this paper we have generalized the existing Vlasov analysis, originally developed for a nonmagnetized beam (or transversely uncoupled beam, to the description of transport of a magnetized beam including relevant collective effects. The new formulation is then employed to confirm prediction of microbunching suppression for a magnetized beam transport in the recirculation arc of a recent JLEIC energy recovery linac (ERL based cooler design for electron cooling. It is found that the smearing effect in the longitudinal beam phase space originates from the large transverse beam size as a nature of the magnetized beams and becomes effective through the x-z correlation when the correlated distance is larger than the microbunched scale. As a comparison, MBI analysis of the early design of JLEIC CCR is also presented in this paper.
Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits
International Nuclear Information System (INIS)
Warnock, R
2004-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed in the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch
Mini-remote-control Antenna for On-body Wireless Communication Systems
DEFF Research Database (Denmark)
Larsen, Lauge K.; Kvist, Søren Helstrup; Yatman, William H.
2012-01-01
Two commercially available, compact antennas are evaluated for use in a small 55mm 39mm 15mm Remote Control (RC). The influence of the body on the path gain (jS21j) at 2:45 GHz between the remote control and a monopole parallel to the side of the head is evaluated. The measurements are made on two...
Next Generation Radio over Fiber Network Management for a Distributed Antenna System
DEFF Research Database (Denmark)
Santiago, Carlos; Gangopadhyay, Bodhisattwa; arsenio, Artur
2009-01-01
Dette dokument beskriver funktioner og procedurer i futon Radio Over Fiber Manager til at operere med det øvre (net) og nederste (fysiske) lag, der anvendes til transport af trådløse signaler mellem en central enhed (CU) og Remote Antenna Units. Også, det giver nogle mekanismer og procedurer, der...
A novel paradigm for high isolation in multiple antenna systems with user's influence
DEFF Research Database (Denmark)
Pelosi, Mauro; Pedersen, Gert Frølund; Knudsen, Mikael Bergholz
2010-01-01
(UMTS) bands are investigated, showing also the influence of different hand phantoms in average use trough Finite-Difference TimeDomain (FDTD) simulations. It is confirmed that the way a mobile phone is held is very important in determining the amount of absorption loss, detuning and antenna isolation...
Comparison of Antenna Array Systems Using OFDM for Software Radio via the SIBIC Model
Directory of Open Access Journals (Sweden)
Robert D. Palmer
2005-09-01
Full Text Available This paper investigates the performance of two candidates for software radio WLAN, reconfigurable OFDM modulation and antenna diversity, in an indoor environment. The scenario considered is a 20Ã¢Â€Â‰mÃƒÂ—10Ã¢Â€Â‰mÃƒÂ—3Ã¢Â€Â‰m room with two base units and one mobile unit. The two base units use omnidirectional antennas to transmit and the mobile unit uses either a single antenna with equalizer, a fixed beamformer with equalizer, or an adaptive beamformer with equalizer to receive. The modulation constellation of the data is QPSK and 16-QAM. The response of the channel at the mobile unit is simulated using a three-dimensional indoor WLAN propagation model that generates multipath components with realistic spatial and temporal correlation. An underlying assumption of the scenario is that existing antenna hardware is available and could be exploited if software processing resources are allocated. The results of the simulations indicate that schemes using more resources outperform simpler schemes in most cases. This implies that desired user performance could be used to dynamically assign software processing resources to the demands of a particular indoor WLAN channel if such resources are available.
Wireless Distributed Antenna MIMO
DEFF Research Database (Denmark)
2015-01-01
The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...
Printed MIMO antenna engineering
Sharawi, Mohammad S
2014-01-01
Wireless communications has made a huge leap during the past two decades. The multiple-input-multiple-output (MIMO) technology was proposed in the 1990's as a viable solution that can overcome the data rate limit experienced by single-input-single-output (SISO) systems. This resource is focused on printed MIMO antenna system design. Printed antennas are widely used in mobile and handheld terminals due to their conformity with the device, low cost, good integration within the device elements and mechanical parts, as well as ease of fabrication.A perfect design companion for practicing engineers
Le Chevalier, Francois; Staraj, Robert
2013-01-01
This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS, etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers in this lively scientific community linking antenna experts and signal processing engineers.
Exact performance analysis of MIMO cognitive radio systems using transmit antenna selection
Tourki, Kamel
2014-03-01
We consider in this paper, a spectrum sharing cognitive radio system with a ratio selection scheme; where one out of N independent-and-identically- distributed transmit antennas is selected such that the ratio of the secondary transmitter (ST) to the secondary receiver (SR) channel gain to the interference from the ST to the primary receiver (PR) channel gain is maximized. Although previous works considered perfect, outdated, or partial channel state information at the transmitter, we stress that using such assumptions may lead to a feedback overhead for updating the SR with the ST-PR interference channel estimation. Considering only statistical knowledge of the ST-PR channel gain, we investigate a ratio selection scheme using a mean value (MV)-based power allocation strategy referred to as MV-based scheme. We first provide the exact statistics in terms of probability density function and cumulative distribution function of the secondary channel gain as well as of the interference channel gain. Furthermore, we derive exact cumulative density function of the received signal-to-noise ratio at the SR where the ST uses a power allocation based on instantaneous perfect channel state information (CSI) referred to as CSI-based scheme. These statistics are then used to derive exact closed form expressions of the outage probability, symbol error rate, and ergodic capacity of the secondary system when the interference channel from the primary transmitter (PT) to the SR is ignored. Furthermore, an asymptotical analysis is also carried out for the MV-based scheme as well as for the CSI-based scheme to derive the generalized diversity gain for each. Subsequently, we address the performance analysis based on exact statistics of the combined signal-to-interference-plus- noise ratio at the SR of the more challenging case; when the PT-SR interference channel is considered. Numerical results in a Rayleigh fading environment manifest that the MV-based scheme outperforms the CSI
Second order oscillations of a Vlasov-Poisson plasma in the Fourier transformed space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
1991-05-01
The Vlasov-Poisson system of equations in the Fourier-transformed velocity space is studied. At first some results of the linear theory are reformulated: in the new representation the Van Kampen eigenmodes and their adjoint are found to be ordinary functions with convenient piece-wise continuity properties. A transparent derivation is given of the free-streaming temporal echo in terms of the kinematics of wave packets in the Fourier-transformed velocity space. This analysis is further extended to include Coulomb interactions which allows to establish a connection between the echo theory, the second order oscillations of Best and the phenomenon of linear sidebands. The calculation of the time evolution of the global second order electric field is performed in detail in the case of a Maxwellian equilibrium distribution function. It is concluded that the phenomenon of linear sidebands may be properly explained in terms of the intrinsic features of the equilibrium distribution function. (author) 5 figs., 32 refs
Asymptotic solution of the Vlasov and Poisson equations for an inhomogeneous plasma
International Nuclear Information System (INIS)
Croci, R.
1991-01-01
The asymptotic solutions to a class of inhomogeneous integral equations that reduce to algebraic equations when a parameter η goes to zero (the kernel becoming proportional to a Dirac δ function) are derived. This class includes the integral equations obtained from the system of Vlasov and Poisson equations for the Fourier transform in space and the Laplace transform in time of the electrostatic potential, when the equilibrium magnetic field is uniform and the equilibrium plasma density depends on ηx, with the co-ordinate z being the direction of the magnetic field. In this case the inhomogeneous term is given by the initial conditions and possibly by sources, and the Laplace-transform variable ω is the eigenvalue parameter. (Author)
Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics
International Nuclear Information System (INIS)
Mashnik, S.G.; Maino, G.
1996-01-01
A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs
Theory of antennas for gravitational radiation
International Nuclear Information System (INIS)
Hirakawa, Hiromasa; Narihara, Kazumichi; Fujimoto, Masakatsu.
1976-01-01
A theory of antennas for gravitational radiation is presented. On the basis of the eigenmode system and the structure symmetry, the emission and reception characteristics and the directivity pattern of antennas are treated. The antenna thermal noise is discussed in connection with the coupling constant of vibration sensors and with the effect of cold-damping. (auth.)
Fundamentals of antennas concepts and applications
Christodoulou, Christos G
2001-01-01
This tutorial explains antenna design and application for various systems, including communications, remote sensing, radar, and biomedicine. It describes basic wire and array antennas in detail and introduces other types such as reflectors, lenses, horns, Yagi, microstrip, and frequency-independent antennas. Integration issues and technical challenges are discussed. Aimed at students, engineers, researchers, and technical professionals.
DEA deformed stretchable patch antenna
International Nuclear Information System (INIS)
Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G
2012-01-01
A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)
DSN Microwave Antenna Holography
Rochblatt, D. J.; Seidel, B. L.
1984-01-01
The DSN microwave antenna holography project will obtain three-dimensional pictures of the large DSN antenna surfaces. These pictures must be of suffi icient resolution to allow adjustment of the reflector panels to an rms surface of 0.5 mm (0.25 mm, goal). The major parameters and equations needed to define a holographic measurement system are outlined and then the proof of concept demonstration measurement that was made at DSS-43 (Australia) that resulted in contour maps with spatial resolution of 7 m in the aperture plane and resolution orthogonal to the aperture plane of 0.7 mm was discussed.
Aerogel-Based Antennas for Aerospace and Terrestrial Applications
Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)
2016-01-01
Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.
Slot Parameter Optimization for Multiband Antenna Performance Improvement Using Intelligent Systems
Directory of Open Access Journals (Sweden)
Erdem Demircioglu
2015-01-01
Full Text Available This paper discusses bandwidth enhancement for multiband microstrip patch antennas (MMPAs using symmetrical rectangular/square slots etched on the patch and the substrate properties. The slot parameters on MMPA are modeled using soft computing technique of artificial neural networks (ANN. To achieve the best ANN performance, Particle Swarm Optimization (PSO and Differential Evolution (DE are applied with ANN’s conventional training algorithm in optimization of the modeling performance. In this study, the slot parameters are assumed as slot distance to the radiating patch edge, slot width, and length. Bandwidth enhancement is applied to a formerly designed MMPA fed by a microstrip transmission line attached to the center pin of 50 ohm SMA connecter. The simulated antennas are fabricated and measured. Measurement results are utilized for training the artificial intelligence models. The ANN provides 98% model accuracy for rectangular slots and 97% for square slots; however, ANFIS offer 90% accuracy with lack of resonance frequency tracking.
A Static Displacement Monitoring System for VLBI Antenna Using Close-Range Photogrammetry
Directory of Open Access Journals (Sweden)
Hyukgil Kim
2017-11-01
Full Text Available In this study, a static displacement monitoring program was developed to maintain the accurate performance of a Very Long Baseline Interferometry (VLBI antenna by monitoring its structural stability. The monitoring program was designed to measure static displacement, among the many displacements of the antenna’s main reflector, which can directly affect its performance. The program measures the position of a monitored object with mm-level accuracy through close-range photogrammetry that uses high-resolution Charge Coupled Device (CCD cameras. The developed program will be used to evaluate the structural soundness of an antenna based on continuous displacement measurements, which can also be used as basic data for repair and reinforcement work in the future.
Directory of Open Access Journals (Sweden)
Meher Krishna Patel
2017-01-01
Full Text Available This paper presents an adaptive multiuser transceiver scheme for DS-CDMA systems in which pilot symbols are added to users’ data to estimate complex channel fading coefficients. The performance of receiver antenna diversity with maximal ratio combining (MRC technique is analyzed for imperfect channel estimation in flat fading environments. The complex fading coefficients are estimated using least mean square (LMS algorithm and these coefficients are utilized by the maximal ratio combiner for generating the decision variable. Probability of error in closed form is derived. Further, the effect of pilot signal power on bit error rate (BER and BER performance of multiplexed pilot and data signal transmission scenario are investigated. We have compared the performance of added and multiplexed pilot-data systems and concluded the advantages of both systems. The proposed CDMA technique uses the chaotic sequence as spreading sequence. Assuming proper synchronization, the computer simulation results demonstrate the better bit error rate performance in the presence of channel estimator in the chaotic based CDMA system and the receiver antenna diversity technique further improves the performance of the proposed system. Also, no channel estimator is required if there is no phase distortion to the transmitted signal.
Czech Academy of Sciences Publication Activity Database
Fendrych, František; Taylor, Andrew; Peksa, Ladislav; Kratochvílová, Irena; Vlček, J.; Řezáčová, V.; Petrák, V.; Kluiber, Z.; Fekete, Ladislav; Liehr, M.; Nesládek, M.
2010-01-01
Roč. 43, č. 37 (2010), 374018/1-374018/6 ISSN 0022-3727 R&D Projects: GA AV ČR KAN200100801; GA AV ČR KAN300100801; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanodiamond, * thin films * PE MW CVD * linear antennas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.105, year: 2010
Development of a linear motion antenna for the JT-60SA ECRF system
International Nuclear Information System (INIS)
Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; Wada, Kenji; Sato, Yoshikatsu
2013-01-01
Highlights: ► Development of an antenna featuring linear motion (LM) concept for long pulse electron cyclotron range of frequency (ECRF) heating and current drive in JT-60SA is in progress. ► A mock-up using a metallic sliding bearing with solid lubricant was fabricated. ► A vacuum pumping test with mass analyzer showed evidence of some hydrocarbons during shaft motion. ► Injection beam profile in toroidal beam scan was checked by low power measurement with mock-up. ► Current drive characteristics with the LM antenna for typical experimental scenarios of JT-60SA have been investigated by calculation. -- Abstract: Development of an antenna that features the linear motion (LM) concept for long-pulse electron-cyclotron range of frequency heating and current drive for the JT-60SA is in progress. Combining a linearly movable first mirror and a fixed curved second mirror allows the injection-beam angle to be controlled. Cooling water is fed through the drive shaft for the first mirror and through the fixed support for the second mirror. The shaft support structure uses a metallic sliding bearing with a solid lubricant. The sliding bearing supports combined linear and rotational motion, whereas a conventional ball bearing supports either linear or rotational motion. Therefore, the sliding bearing offers the advantage of reducing the support-structure volume, which is important in the design of the relatively narrow port duct of the JT-60SA. Recently, the sliding bearing has been installed into the mockup. Results of a vacuum test with a mass analyzer indicate the presence of hydrocarbons during shaft motion. The injection-beam profile obtained from a toroidal beam scan is checked against low-power measurements taken on the mockup. Finally, for typical JT-60SA experimental scenarios, heating- and current-drive characteristics of the LM antenna are investigated theoretically
Benkhelifa, Fatma
2017-04-24
In this paper, we consider the simultaneous wireless information and power transfer (SWIPT) for the spectrum sharing (SS) in a multiple-input multiple-output (MIMO) cognitive radio (CR) network. The secondary transmitter (ST) selects only one antenna which maximizes the received signal-to-noise ratio (SNR) at the secondary receiver (SR) and minimizes the interference induced at the primary receiver (PR). Moreover, PR is an energy harvesting (EH) node using the antenna switching (AS) which assigns a subset of its antennas to harvest the energy and assigns the rest to decode its information data. The objective of this work is to show that the SS is advantageous for both SR and PR sides and leads to a win-win situation. To illustrate the incentive of the SS in CR network, we evaluate the energy and data performance metrics in terms of the average harvested energy, the power outage, and the mutual outage probability (MOP) which declares a data outage event if the PR or SR is in an outage. We present some special cases and asymptotic results of the derived analytic results. Through the simulation results, we show the impact of various simulation parameters and the benefits due to the presence of ST.
Vlasov simulations of kinetic Alfvén waves at proton kinetic scales
Energy Technology Data Exchange (ETDEWEB)
Vásconez, C. L. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Quito (Ecuador); Valentini, F.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Camporeale, E. [Centrum Wiskunde and Informatica, Amsterdam (Netherlands)
2014-11-15
Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρ{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta β{sub p} = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and β{sub p} ≃ 1 (for which ρ{sub p} ≃ d{sub p}) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.
Antisymmetrized molecular dynamics of wave packets with stochastic incorporation of Vlasov equation
International Nuclear Information System (INIS)
Ono, Akira; Horiuchi, Hisashi.
1996-01-01
The first purpose of this report is to present an extended AMD model which can generally describe such minor branching processes by removing the restriction on the one-body distribution function. This is done not by generalizing the wave packets to arbitrary single-particle wave functions but by representing the diffused and/or deformed wave packet as an ensemble of Gaussian wave packets. In other words, stochastic displacements are given to the wave packets in phase space so that the ensemble-average of the time evolution of the one-body distribution function is essentially equivalent to the solution of Vlasov equation which does not have any restriction on the shape of wave packets. This new model is called AMD-V. Although AMD-V is equivalent to Vlasov equation in the instantaneous time evolution of the one-body distribution function for an AMD wave function, AMD-V describes the branching into channels and the fluctuation of the mean field which are caused by the spreading or the splitting of the single-particle wave function. The second purpose of this report is to show the drastic effect of this new stochastic process of wave packet splitting on the dynamics of heavy ion collisions, especially in the fragmentation mechanism. We take the 40 Ca + 40 Ca system at the incident energy 35 MeV/nucleon. It will be shown that the reproduction of data by the AMD-V calculation is surprisingly good. We will see that the effect of the wave packet diffusion is crucially important to remove the spurious binary feature of the AMD calculation and to enable the multi-fragment final state. (J.P.N.)
Directory of Open Access Journals (Sweden)
A. G. Buday
2017-01-01
Full Text Available Measuring the amplitude-phase distribution of the radiation field of complex antenna systems on a certain surface close to the radiating aperture allows solving the problem of reconstructing the free-space diagram in the far field and also helps in determining the influence of various structural elements and defects of radiating surfaces on formation of directional diagram. The purpose of this work was to develop a universal hardware-software complex of a modular design aimed for determining the characteristics of wide range of antenna systems in respect of measurements of the amplitude-phase distribution of the radiation field in the near zone.The equations that connect the structure of radiation fields of the antenna system at various distances from it in planar, cylindrical and spherical coordinate systems as well as structural diagrams of the hardware part of measuring complexes have been analyzed.As a result, the concept of constructing a universal hardware-software complex for measuring the radiation field of various types of antenna systems with any type of measurement surface for solving a wide range of applied problems has been developed. A modular structure of hardware and software has been proposed; it allows reconfiguring the complex rapidly in order to measure the characteristics of any particular antenna system at all stages of product development and testing, and also makes the complex economically accessible even for small enterprises and organizations.
Lu, Thomas; Pham, Timothy; Liao, Jason
2011-01-01
This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.
Numerical study of non-ideal Vlasov-BGK plasmas
International Nuclear Information System (INIS)
Levchenko, V.D.; Sigov, Y.S.; Premuda, F.
1995-01-01
A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code
Reconfigurable Antenna for Medical Applications
Directory of Open Access Journals (Sweden)
Elizabeth RUFUS
2009-12-01
Full Text Available Microwave imaging systems offer much promise for biomedical applications such as cancer detection because of their good penetration, non invasive and non ionizing nature and low cost. The resolution is one of the major problems faced in such systems, which can be improved by applying signal processing techniques. The key element for the microwave imaging system is the antenna. This paper present a fractal antenna which has low profile, light weight and is easy to be fabricated. It has been successfully demonstrated to have multiband characteristics. The simulated results show that the proposed antenna has very good radiation characteristics suitable for imaging applications.
Multi-antenna synthetic aperture radar
Wang, Wen-Qin
2013-01-01
Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica
Directory of Open Access Journals (Sweden)
Congying ZHU
2018-04-01
Full Text Available The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop (PLL, which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying (BPSK and Quadrature Phase Shift Keying (QPSK signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals, respectively. With these critical standard deviations, lock thresholds are increased from −12 and −4 dB to 3 and −2 dB, respectively. Keywords: Antenna vibration, Carrier tracking performance, Lock threshold, Phase locked loop, Tracking Telemetry and Command (TT&C signals
Ikram, M.
2018-04-24
In this work, a 4G/5G multiple-input multiple-output (MIMO) antenna system is presented for smart phone applications. The 4G antenna operates from 1900 to 3212 MHz and 3517 to 3712 MHz with 1312 (69%) and 195 (5.5%) MHz measured bandwidths, respectively. The 5G antenna covers 25.7–30.50 GHz band with 4.8 GHz (18.7%) measured bandwidth. The 4G MIMO antenna system is based on 4-element wideband monopoles, while the 5G one is based on 2-element linear connected arrays (LCA). Four slots are etched to improve the isolation between the 4G MIMO antenna elements and then a 4 × 1 power divider/combiner is used to excite two of these slots to act as a LCA at mm-waves. The concept of dual function ground slots is very useful to implement 4G and 5G MIMO antenna systems on the single substrate. The proposed design is fabricated on RO4350B substrate with a height of 0.76 mm and dielectric constant of 3.5. The overall size of the substrate is 115 × 65 × 0.76 mm. The integrated wideband 4G/5G antenna system is a compact, low profile, and suitable for future smart phone applications. Isolation obtained was at least 15 dB and the envelope correlation coefficient (ECC) values did not exceed 0.16 between all elements.
Energy Technology Data Exchange (ETDEWEB)
Singleton, John; Earley, Lawrence M.; Krawczyk, Frank L.; Potter, James M.; Romero, William P.; Wang, Zhi-Fu
2018-04-17
A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable.
Microkelvin thermal control system for the laser interferometer space antenna mission and beyond
Higuchi, Sei
2009-10-01
The Laser Interferometer Space Antenna (LISA) mission aims to detect directly gravitational waves from massive black holes and galactic binaries. Through detecting gravitational waves, we can study blackholes and the origin of the universe, which is inaccessible from the electromagnetic wave spectrum. It will open a new window to the universe. LISA is essentially a Michelson interferometer placed in space with a third spacecraft added. Gravitational waves are time-varying strain in space-time, which is detectable as a fractional change in a proper distance. LISA will monitor fractional changes in the interferometer arms of a nominally 5 million km. The fractional change in the arm length can be as small as 1 x 10-21 m/(m · Hz ) even for powerful sources. LISA makes use of the gravitational reference sensors (GRS) for drag-free control and will achieve the required sensitivity through management of specific acceleration noise. The total acceleration disturbance to each proof mass, which floats at the center of each GRS, is required to be below 3 x 10-15 m/(s2 · Hz ). Thermal variations due to, for example, solar irradiation, or temperature gradients across the proof mass housing, are expected to be significant disturbance source to the LISA sensitivity requirements. Even a small temperature gradient can produce distortions in the housing structure, which results in a mass attraction force. In this thesis, I focus on developing a thermal control system that aims to achieve the temperature stability of 10 muK / Hz over 0.1 mHz to 1 Hz. We have chosen glass-bead thermistors as the temperature sensor for feedback temperature control of the GRS. First, we created a temperature sensor design program in MATLAB that provides an optimal values of resistances in the thermistor bridge circuit for the given application. The spectral stability of the sensor achieves as low as 20 muK/ Hz at 1 mHz with a DC excitation source. The LISA thermal requirement is met by employing AC
Telecommunications Antennas for the Juno Mission to Jupiter
Vacchione, Joseph D.; Kruid, Ronald C.; Prata, Aluizio, Jr.; Amaro, Luis R.; Mittskus, Anthony P.
2012-01-01
The Juno Mission to Jupiter requires a full sphere of coverage throughout its cruise to and mission at Jupiter. This coverage is accommodated through the use of five (5) antennas; forward facing low gain, medium gain, and high gain antennas, and an aft facing low gain antenna along with an aft mounted low gain antenna with a torus shaped antenna pattern. Three of the antennas (the forward low and medium gain antennas) are classical designs that have been employed on several prior NASA missions. Two of the antennas employ new technology developed to meet the Juno mission requirements. The new technology developed for the low gain with torus shaped radiation pattern represents a significant evolution of the bicone antenna. The high gain antenna employs a specialized surface shaping designed to broaden the antenna's main beam at Ka-band to ease the requirements on the spacecraft's attitude control system.
Group Delay of High Q Antennas
DEFF Research Database (Denmark)
Bahramzy, Pevand; Pedersen, Gert Frølund
2013-01-01
Group Delay variations versus frequency is an essential factor which can cause distortion and degradation in the signals. Usually this is an issue in wideband communication systems, such as satellite communication systems, which are used for transmitting wideband data. However, group delay can also...... become an issue, when working with high Q antennas, because of the steep phase shift over the frequency. In this paper, it is measured how large group delay variations can become, when going from a low Q antenna to a high Q antenna. The group delay of a low Q antenna is shown to be around 1.3 ns, whereas...... a high Q antenna has group delay of around 22 ns. It is due to this huge group delay variation characteristics of high Q antennas, that signal distortion might occur in the radio system with high Q antennas....
47 CFR 73.54 - Antenna resistance and reactance measurements.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Antenna resistance and reactance measurements... measurements. (a) The resistance of an omnidirectional series fed antenna is measured at either the base of the... the point of common radiofrequency input to the directional antenna system after the antenna has been...
Energy Technology Data Exchange (ETDEWEB)
Messiaen, A., E-mail: a.messiaen@fz-juelich.de [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States); Vervier, M.; Dumortier, P.; Durodié, F.; Grine, D. [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium)
2013-10-15
Highlights: ► Analysis of the matching-decoupling system of the ICRF antenna array of ITER. ► Control of the array phasing by the decouplers for the same power of power sources. ► Computation for the 2012 design status of the antenna plug. ► 7 decouplers needed but 10 can be used to decrease the ratings of components. ► Effects of plasma profile and antenna geometry. -- Abstract: The eight triplets of straps of the ITER ICRF antenna array are fed through 8 matching circuits and 4 hybrids to ensure load resilience. Decouplers are used to mitigate the effects of triplet mutual coupling. They also control the array phasing. The electrical constraints on the decouplers for different layouts with heating (H) or current drive (CD) phasing are compared starting from the TOPICA matrix computed for the last antenna plug design and the reference (most pessimistic) plasma profile “2010low” provided by IO. It is shown that this last profile provides a significant decrease of plasma coupling and increase of mutual coupling with respect to the previous reference profile “Sc2short17”. This results in a larger range of decoupler reactance X{sub dec} and voltage V{sub Xdec} needed. This range can be reduced when using 10 decouplers instead of the 7 needed for the same forward power P{sub Gk+} of the 4 power sources. For H phasing only 4 decouplers could be used but with different P{sub Gk+} (P{sub Gk+} ratio up to 1.5–2.5). For CD phasing and same plasma profile the power capability P{sub tot} is increased by 25% with a decoupler layout allowing much smaller poloidal phasing than the 90° provided by the hybrids. A decrease of the distance antenna-plasma profile reduces the normalized decoupler voltage V{sub Xdec}/√P{sub tot} with no significant change of the X{sub dec} range. The recess of the vertical septa between the strap boxes increases the plasma coupling but has the drawback of also increasing the mutual coupling between triplets: the needed range of X
Recent antenna- and microwave systems designed at CSIR, DPSS for radar systems
CSIR Research Space (South Africa)
Botha, Louis
2016-07-01
Full Text Available We have decided to develop some common building blocks for use in radar system at the CSIR, DPSS. The reasons for doing this are: a) The cost of ad-hoc- developed RF subsystems (using connectorised components) is getting to be prohibitive as a...
Broadband standard dipole antenna for antenna calibration
Koike, Kunimasa; Sugiura, Akira; Morikawa, Takao
1995-06-01
Antenna calibration of EMI antennas is mostly performed by the standard antenna method at an open-field test site using a specially designed dipole antenna as a reference. In order to develop broadband standard antennas, the antenna factors of shortened dipples are theoretically investigated. First, the effects of the dipole length are analyzed using the induced emf method. Then, baluns and loads are examined to determine their influence on the antenna factors. It is found that transformer-type baluns are very effective for improving the height dependence of the antenna factors. Resistive loads are also useful for flattening the frequency dependence. Based on these studies, a specification is developed for a broadband standard antenna operating in the 30 to 150 MHz frequency range.
Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y
2018-02-01
This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.
Fan, Yuting; Li, Jianqiang; Xu, Kun; Chen, Hao; Lu, Xun; Dai, Yitang; Yin, Feifei; Ji, Yuefeng; Lin, Jintong
2013-09-09
In this paper, we analyze the performance of IEEE 802.11 distributed coordination function in simulcast radio-over-fiber-based distributed antenna systems (RoF-DASs) where multiple remote antenna units (RAUs) are connected to one wireless local-area network (WLAN) access point (AP) with different-length fiber links. We also present an analytical model to evaluate the throughput of the systems in the presence of both the inter-RAU hidden-node problem and fiber-length difference effect. In the model, the unequal delay induced by different fiber length is involved both in the backoff stage and in the calculation of Ts and Tc, which are the period of time when the channel is sensed busy due to a successful transmission or a collision. The throughput performances of WLAN-RoF-DAS in both basic access and request to send/clear to send (RTS/CTS) exchange modes are evaluated with the help of the derived model.
Vlasov simulations of electron hole dynamics in inhomogeneous magnetic field
Kuzichev, Ilya; Vasko, Ivan; Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton
2017-04-01
Electron holes (EHs) or phase space vortices are solitary electrostatic waves existing due to electrons trapped within EH electrostatic potential. Since the first direct observation [1], EHs have been widely observed in the Earth's magnetosphere: in reconnecting current sheets [2], injection fronts [3], auroral region [4], and many other space plasma systems. EHs have typical spatial scales up to tens of Debye lengths, electric field amplitudes up to hundreds of mV/m and propagate along magnetic field lines with velocities of about electron thermal velocity [5]. The role of EHs in energy dissipation and supporting of large-scale potential drops is under active investigation. The accurate interpretation of spacecraft observations requires understanding of EH evolution in inhomogeneous plasma. The critical role of plasma density gradients in EH evolution was demonstrated in [6] using PIC simulations. Interestingly, up to date no studies have addressed a role of magnetic field gradients in EH evolution. In this report, we use 1.5D gyrokinetic Vlasov code to demonstrate the critical role of magnetic field gradients in EH dynamics. We show that EHs propagating into stronger (weaker) magnetic field are decelerated (accelerated) with deceleration (acceleration) rate dependent on the magnetic field gradient. Remarkably, the reflection points of decelerating EHs are independent of the average magnetic field gradient in the system and depend only on the EH parameters. EHs are decelerated (accelerated) faster than would follow from the "quasi-particle" concept assuming that EH is decelerated (accelerated) entirely due to the mirror force acting on electrons trapped within EH. We demonstrate that EH propagation in inhomogeneous magnetic fields results in development of a net potential drop along an EH, which depends on the magnetic field gradient. The revealed features will be helpful for interpreting spacecraft observations and results of advanced particle simulations. In
Appearance of eigen modes for the linearized Vlasov-Poisson equation
International Nuclear Information System (INIS)
Degond, P.
1983-01-01
In order to determine the asymptotic behaviour, when the time goes to infinity, of the solution of the linearized Vlasov-Poisson equation, we use eigen modes, associated to continuous linear functionals on a Banach space of analytic functions [fr
application of the galerkin-vlasov method to the flexural analysis
African Journals Online (AJOL)
user
In this research, the Galerkin-Vlasov variational method was used to present a general formulation of the Kirchhoff plate problem with simply supported edges and under distributed ..... analysed for elastic, dynamic and stability behaviour,.
On invariant measures for the Vlasov equation with a regular potential
International Nuclear Information System (INIS)
Zhidkov, P.E.
2003-01-01
We consider a Vlasov equation with a smooth bounded potential of interaction between particles in a class of measure-valued solutions and construct a measure which is invariant for this problem in a sense
Mathematical and numerical methods for Vlasov-Maxwell equations: the contributions of data mining
International Nuclear Information System (INIS)
Assous, F.; Chaskalovic, J.
2014-01-01
There exist a lot of formulations that can model plasma physics or particle accelerators problems as the Vlasov- Maxwell equations. This paper deals with the applications of data mining techniques in the evaluation of numerical solutions of Vlasov-Maxwell models. This is part of the topic of characterizing the model and approximation errors via learning techniques. We give two examples of application. The first one aims at comparing two Vlasov-Maxwell approximate models. In the second one, a scheme based on data mining techniques is proposed to characterize the errors between a P1 and a P2 finite element Particle-In-Cell approach. Beyond these examples, this original approach should operate in all cases where intricate numerical simulations like for the Vlasov-Maxwell equations take a central part. (authors)
An HARQ scheme with antenna switching for V-BLAST system
Directory of Open Access Journals (Sweden)
Bonghoe Kim
2004-12-01
Full Text Available Bell-labs layered space-time (BLAST achieves high spectral efficiency in rich scattering environments by transmitting independent data streams via each transmit antenna. However, this high spectral efficiency is significantly reduced if the signals ate the receiver go through correlated channels. In this paper, we propose a hybrid automatic request (HARQ scheme to alleviate the adverse effect of the channel correlation by simply switching the transmission in retransmission. With the proposed scheme, we can achieve significant improvement over the correlated channels with negligible complexity increase.
Advantages of traveling wave resonant antennas for fast wave heating systems
International Nuclear Information System (INIS)
Phelps, D.A.; Callis, R.W.; Grassie, J.S. de
1997-04-01
The resilience of a maximally flat externally coupled traveling wave antenna (TWA) is contrasted with the sensitivity of a simple directly driven resonant loop array to vacuum and plasma conditions in DIII-D. We find a unique synergy between standing and traveling wave resonant TWA components. This synergy extends TWA operation to several passbands between 60 and 120 MHZ, provides 60 degrees- 120 degrees tunability between elements within a 1-2 MHZ bandwidth and permits efficient and continuous operation during ELMing H-mode
Spectrum sensing using single-radio switched-beam antenna systems
DEFF Research Database (Denmark)
Tsakalaki, Elpiniki; Wilcox, David; De Carvalho, Elisabeth
2012-01-01
of the reactive loads rotate the narrowband beampattern to different angular positions dividing the whole space around the cognitive receiver into several angular subspaces. The beampattern directionality leverages the performance of spectrum sensing algorithms like the energy detection by enhancing the receive......The paper describes spectrum sensing using single-radio switched-beam arrays with reactance-loaded parasitic elements. At a given frequency, the antenna's loading conditions (reactive loads) are optimized for maximum average beamforming gain in the beampattern look direction. Circular permutations...
Alani, Amir M.; Tosti, Fabio; Bianchini Ciampoli, Luca; Benedetto, Francesco; Benedetto, Andrea
2017-04-01
The assessment of the underground construction details of a road infrastructure is a problem of great concern in highway engineering. The case becomes complicated especially when damages reoccur after carrying out remedial surface maintenance and repair works over the life cycle of the infrastructure. The challenge will be exacerbated at the presence of underground watercourses, such that the geotechnical stability of the entire road structure could be threatened. In this respect, ground-penetrating radar (GPR) has been recognised and accepted as one of the most effective non-destructive testing (NDT) techniques that could be employed in identifying the cause/s of such problems. The recent advancements and developments made in the field of GPR hardware as well as the current level of understanding of the applications and processing techniques of the GPR data have immensely added to the reliability in the utilisation of this tool in variety of subsurface investigation projects. In view of this, the work presented in here focuses on the assessment of the underground construction details of a road pavement using different frequency GPR antenna systems. In addition to this, the possible presence and location of an underground watercourse was investigated in this work. The existence of the latter problem was perceived due to reoccurrence of longitudinal and traversal road surface cracking as well as subsidence at a particular location of the road. Reoccurrence of this damage was interpreted and related to the possible existence of an underground watercourse. The original design and the construction of the road were as such to prevent this movement. Therefore it seemed necessary to perform a GPR survey to investigate and confirm the underground construction details of the road. To this purpose, the identified area was surveyed using high to low frequency antennas with 2000 MHz, 900 MHz, 600 MHz and 200 MHz central frequencies of investigation. Scans were performed at 1m
Javed, Sidrah
2016-12-01
Next generation of wireless communication mostly relies on multiple-input multipleoutput (MIMO) configuration and full-duplex relaying to improve data-rates, spectrale efficiency, spatial-multiplexing, quality-of-service and energy-efficiency etc. However, multiple radio frequency (RF) transceivers in MIMO system and multi-hops in relay networks, accumulate transceiver impairments, rendering an unacceptable system performance. Majority of the technical contributions either assume ideal hardware or inappropriately model hardware impairments which often induce misleading results especially for high data-rate communication systems. We propose statistical mathematical modeling of various hardware impairment (HWI) to characterize their deteriorating effects on the information signal. In addition, we model the aggregate HWI as improper Gaussian signaling (IGS), to fully characterize their asymmetric properties and the self-interfering signal attribute under I/Q imbalance. The proposed model encourages to adopt asymmetric transmission scheme, as opposed to traditional symmetric signaling. First, we present statistical baseband equivalent mathematical models for general MIMO system and two special scenarios of receive and transmit diversity systems under HWI. Then, we express their achievable rate under PGS and IGS transmit schemes. Moreover, we tune the IGS statistical characteristics to maximize the achievable rate. We also present optimal beam-forming/pre-coding and receive combiner vector for multiple-input single-output (MISO) and single-input multiple output (SIMO) systems, which lead to SDNR maximization. Moreover, we propose an adaptive scheme to switch between maximal IGS (MIGS) and PGS transmission based on the described conditions to reduce computational overhead. Subsequently, two case studies are presented. 1) Outage analysis has been carried out for SIMO, under transceiver distortion noise, for two diversity combining schemes 2) The benefits of employing IGS
Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib
2013-02-04
A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).
Design of a rectenna system for GSM-900 band using novel broadside 2 × 1 array antenna
Directory of Open Access Journals (Sweden)
Manish Singh
2017-05-01
Full Text Available In this study, a rectenna operating at the GSM-900 frequency band has been fabricated and tested. This rectenna composed of a 2 × 1 T-shaped monopole array antenna and an energy processing circuit. In order to reduce the gap between adjacent antenna elements in the array structure, the proposed array antenna uses a ground stub. Compared with other array antennas, the proposed array antenna with the ground stub reduces the size up to 50% without affecting the gain and bandwidth. An antenna prototype is fabricated and experimentally tested. The measured antenna's gain and bandwidth are 3.2 and 152 MHz, respectively, hence showing its suitability for radio-frequency (RF energy harvesting application. For this to be feasible, the developed array antenna is matched with the rectifier at GSM-900 using a single stub matching network. The measured result demonstrates that the proposed rectifier circuit offers the conversion efficiency of 21.2 and 63.6% for an input power of −20 and 0 dBm, respectively. Finally, the rectifier performance is attested experimentally with the developed array antenna. The rectenna's measured RF-to-dc conversion efficiency was found to be 60% at the far-field distance from the transmitting antenna.
Zhuang, L.; Burla, M.; Roeloffzen, C.G.H.; Meijerink, Arjan; Marpaung, D.A.I.; Khan, M.R.H.; van Etten, Wim; Leinse, Arne; Hoekman, M.; Heideman, Rene
2009-01-01
A novel ring resonator-based photonic beamformer has been developed for continuous and squint-free control of the reception angle of broadband phased array antenna systems. The core of the system is a ring resonator based optical beamforming network (OBFN) used for delay synchronization and coherent
Energy Technology Data Exchange (ETDEWEB)
Le Bourdiec, S
2007-03-15
Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)
Antennas in inhomogeneous media
Galejs, Janis; Fock, V A; Wait, J R
2013-01-01
Antennas in Inhomogeneous Media details the methods of analyzing antennas in such inhomogeneous media. The title covers the complex geometrical configurations along with its variational formulations. The coverage of the text includes various conditions the antennas are subjected to, such as antennas in the interface between two media; antennas in compressible isotropic plasma; and linear antennas in a magnetoionic medium. The selection also covers insulated loops in lossy media; slot antennas with a stratified dielectric or isotropic plasma layers; and cavity-backed slot antennas. The book wil
Compact antennas for wireless communications and terminals theory and design
Laheurte, Jean-Marc
2012-01-01
Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon
SKB - PNC. Development of tunnel radar antennas
International Nuclear Information System (INIS)
Falk, L.
1991-07-01
Tunnel antennas for the RAMAC borehole radar system have been developed and tested in the field. The antennas are of the loaded dipole type and the receiver and transmitter electronics have been rebuilt to screen them from the antennas. A series of measurements has demonstrated that the radar pulse is short and well shaped and relatively free from ringing, even compared with the existing borehole antennas. Two antenna sets were tested: one centered at 60 MHz and another above 100 MHz. Both produced excellent radar pictures when tested in tunnels in Stripa mine. The antennas have been designed to be easy to carry, since the signal quality often depends on the way the antenna is held relative to electric conductors in the tunnels. (au) (46 figs., 57 refs.)
An Approach for Smart Antenna Testbed
Kawitkar, R. S.; Wakde, D. G.
2003-07-01
The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing
Directory of Open Access Journals (Sweden)
Khurram Hammed
2016-01-01
Full Text Available This paper presents a stochastic global optimization technique known as Particle Swarm Optimization (PSO for joint estimation of amplitude and direction of arrival of the targets in RADAR communication system. The proposed scheme is an excellent optimization methodology and a promising approach for solving the DOA problems in communication systems. Moreover, PSO is quite suitable for real time scenario and easy to implement in hardware. In this study, uniform linear array is used and targets are supposed to be in far field of the arrays. Formulation of the fitness function is based on mean square error and this function requires a single snapshot to obtain the best possible solution. To check the accuracy of the algorithm, all of the results are taken by varying the number of antenna elements and targets. Finally, these results are compared with existing heuristic techniques to show the accuracy of PSO.
International Nuclear Information System (INIS)
Monakhov, I.; Graham, M.; Blackman, T.; Dowson, S.; Durodie, F.; Jacquet, P.; Lehmann, J.; Mayoral, M.-L.; Nightingale, M.P.S.; Noble, C.; Sheikh, H.; Vrancken, M.; Walden, A.; Whitehurst, A.; Wooldridge, E.
2013-01-01
A load-tolerant external conjugate-T (ECT) impedance matching system for two A2 ion cyclotron resonance heating (ICRH) antennas was successfully put into operation at JET. The system allows continuous injection of the radio-frequency (RF) power into plasma in the presence of strong antenna loading perturbations caused by edge-localized modes (ELMs). Reliable ECT performance was demonstrated under a variety of antenna loading conditions including H-mode plasmas with radial outer gaps (ROGs) in the range 4–14 cm. The high resilience to ELMs predicted during the circuit simulations was fully confirmed experimentally. Dedicated arc-detection techniques and real-time matching algorithms were developed as a part of the ECT project. The new advanced wave amplitude comparison system has proven highly efficient in detection of arcs both between and during ELMs. The ECT system has allowed the delivery of up to 4 MW of RF power without trips into plasmas with type-I ELMs. Together with the 3 dB system and the ITER-like antenna, the ECT has brought the total RF power coupled to ELMy plasma to over 8 MW, considerably enhancing JET research capabilities. This paper provides an overview of the key design features of the ECT system and summarizes the main experimental results achieved so far. (paper)
Design of broadband single polarized antenna
Shin, Phoo Kho; Aziz, Mohamad Zoinol Abidin Abd.; Ahmad, Badrul Hisham; Ramli, Mohamad Hafize Bin; Fauzi, Noor Azamiah Md; Malek, Mohd Fareq Abd
2015-05-01
In practical wireless communication application, bandwidth enhancement becomes one of the major design considerations. At the same time, circular polarized (CP) antenna received much attention for the applications of modern wireless communication system when compared to linear polarized (LP) antenna. This is because CP antenna can reduce the multipath effect. Hence, broadband antenna with operating frequency at 2.4GHz for WLAN application is proposed. The proposed antenna is done by using L-probe amendment with rectangular patch. The rectangular patch and copper ground plane is separated with 10mm air gap. This approach is used to enhance the bandwidth and the gain of the proposed antenna. The bandwidth of the designed antenna is more than 200MHz which meet broadband application. The return loss for the antenna is below -10dB to achieved 90% matching efficiency. The position of L-probe feed is altered in order to obtained different polarizations. The broadband antenna had been designed and simulated by using Computer Simulation Technology (CST) software. In this paper, the comparison for single polarized antenna with the design of non-inverted patch and inverted patch is discussed. The characteristics of the S-parameter, axial ratio, gain, surface current for each designed antenna are analyzed.
Directory of Open Access Journals (Sweden)
Yong-Seok Kim
2004-08-01
Full Text Available An improved antenna array (AA has been introduced, in which reverse-link synchronous transmission technique (RLSTT is incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI, the beamformer estimates the desired user's complex weights, enhancing its signal and reducing cochannel interference (CCI from the other directions. In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such as the shape of multipath intensity profile (MIP, the number of antennas, and power control error (PCE. Theoretical analysis, confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.
Vlasov-Fokker-Planck modeling of magnetized plasma
International Nuclear Information System (INIS)
Thomas, Alexander
2016-01-01
Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm's law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.
Integral propagator solvers for Vlasov-Fokker-Planck equations
International Nuclear Information System (INIS)
Donoso, J M; Rio, E del
2007-01-01
We briefly discuss the use of short-time integral propagators on solving the so-called Vlasov-Fokker-Planck equation for the dynamics of a distribution function. For this equation, the diffusion tensor is singular and the usual Gaussian representation of the short-time propagator is no longer valid. However, we prove that the path-integral approach on solving the equation is, in fact, reliable by means of our generalized propagator, which is obtained through the construction of an auxiliary solvable Fokker-Planck equation. The new representation of the grid-free advancing scheme describes the inherent cross- and self-diffusion processes, in both velocity and configuration spaces, in a natural manner, although these processes are not explicitly depicted in the differential equation. We also show that some splitting methods, as well as some finite-difference schemes, could fail in describing the aforementioned diffusion processes, governed in the whole phase space only by the velocity diffusion tensor. The short-time transition probability offers a stable and robust numerical algorithm that preserves the distribution positiveness and its norm, ensuring the smoothness of the evolving solution at any time step. (fast track communication)
Vlasov-Fokker-Planck modeling of magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Thomas, Alexander [Univ. of Michigan, Ann Arbor, MI (United States)
2016-08-01
Understanding the magnetic fields that can develop in high-power-laser interactions with solid-density plasma is important because such fields significantly modify both the magnitude and direction of electron heat fluxes. The dynamics of such fields evidently have consequences for inertial fusion energy applications, as the coupling of the laser beams with the walls or pellet and the development of temperature inhomogeneities are critical to the uniformity of the implosion and potentially the success of, for example, the National Ignition Facility. To study these effects, we used the code Impacta, a two-dimensional, fully implicit, Vlasov-Fokker-Planck code with self-consistent magnetic fields and a hydrodynamic ion model, designed for nanosecond time-scale laser-plasma interactions. Heat-flux effects in Ohm’s law under non-local conditions was investigated; physics that is not well captured by standard numerical models but is nevertheless important in fusion-related scenarios. Under such conditions there are numerous interesting physical effects, such as collisional magnetic instabilities, amplification of magnetic fields, re-emergence of non-locality through magnetic convection, and reconnection of magnetic field lines and redistribution of thermal energy. In this project highlights included the first full-scale kinetic simulations of a magnetized hohlraum and the discovery of a new magnetic reconnection mechanism, as well as a completed PhD thesis and the production of a new code for Inertial Fusion research.
Radar techniques using array antennas
Wirth, Wulf-Dieter
2013-01-01
Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud
Directory of Open Access Journals (Sweden)
Ngoc Phuc Le
2014-01-01
Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.
Antennas for mobile satellite communications
Huang, John
1991-12-01
A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.
Makki, Behrooz
2016-03-22
This paper investigates the performance of the point-To-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas, which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency/feedback error probability on the performance of the MIMO-HARQ systems is analyzed. Then, we use some recent results on the achievable rates of finite block-length codes, to analyze the effect of the codewords lengths on the system performance. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas. © 1972-2012 IEEE.
Millimeter-wave antennas configurations and applications
du Preez, Jaco
2016-01-01
This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...
Inflatable Antennas Support Emergency Communication
2010-01-01
Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.
Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
Haji-Ali, Abdul-Lateef
2017-09-12
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.
Directory of Open Access Journals (Sweden)
Kenji Okabe
2015-12-01
Full Text Available In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI chip on the very thin parylene film (5 μm enables the integration of the rectifier circuits and the flexible antenna (rectenna. In the demonstration of wireless power transmission (WPT, the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.
Okabe, Kenji; Jeewan, Horagodage Prabhath; Yamagiwa, Shota; Kawano, Takeshi; Ishida, Makoto; Akita, Ippei
2015-12-16
In this paper, a co-design method and a wafer-level packaging technique of a flexible antenna and a CMOS rectifier chip for use in a small-sized implantable system on the brain surface are proposed. The proposed co-design method optimizes the system architecture, and can help avoid the use of external matching components, resulting in the realization of a small-size system. In addition, the technique employed to assemble a silicon large-scale integration (LSI) chip on the very thin parylene film (5 μm) enables the integration of the rectifier circuits and the flexible antenna (rectenna). In the demonstration of wireless power transmission (WPT), the fabricated flexible rectenna achieved a maximum efficiency of 0.497% with a distance of 3 cm between antennas. In addition, WPT with radio waves allows a misalignment of 185% against antenna size, implying that the misalignment has a less effect on the WPT characteristics compared with electromagnetic induction.
Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas
Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.
2012-01-01
Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.
Longitudinal traveling waves bifurcating from Vlasov plasma equilibria
International Nuclear Information System (INIS)
Holloway, J.P.
1989-01-01
The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves
Enabling Technologies for Fabrication of Large Area Flexible Antennas, Phase II
National Aeronautics and Space Administration — Flexible, foldable, and/or inflatable antenna systems open up a wealth of opportunities. Integrating antenna elements and related electronics onto flexible...
Reconfigurable antennas radiations using plasma Faraday cage
Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier
2015-01-01
International audience; This letter presents a new reconfigurable plasma antenna associated with a Faraday cage. The Faraday cage is realized using a fluorescent lamp. A patch antenna with a broadside radiation pattern or a monopole antenna with an end-fire radiation pattern , operating at 2.45 GHz, is placed inside Faraday cage. The performance of the reconfigurable system is observed in terms of input reflection coefficient, gain and radiation pattern via simulation and measurement. It is s...
Simons, Rainee N.; Miranda, Felix A.
2006-01-01
In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.
Ichikawa, R.; Ishii, A.; Takiguchi, H.; Kimura, M.; Sekido, M.; Takefuji, K.; Ujihara, H.; Hanado, Y.; Koyama, Y.; Kondo, T.; Kurihara, S.; Kokado, K.; Kawabata, R.; Nozawa, K.; Mukai, Y.; Kuroda, J.; Ishihara, M.; Matsuzaka, S.
2012-12-01
We are developing a compact VLBI system with a 1.6-m diameter aperture dish in order to provide reference baseline lengths for calibration. The reference baselines are used to validate surveying instruments such as GPS and EDM and is maintained by the Geospatial Information Authority of Japan (GSI). The compact VLBI system will be installed at both ends of the reference baseline. Since the system is not sensitive enough to detect fringes between the two small dishes, we have designed a new observation concept including one large dish station. We can detect two group delays between each compact VLBI system and the large dish station based on conventional VLBI measurement. A group delay between the two compact dishes can be indirectly calculated using a simple equation. We named the idea "Multiple Antenna Radio-interferometry for Baseline Length Evaluation", or MARBLE system. The compact VLBI system is easy transportable and consists of the compact dish, a new wide-band front-end system, azimuth and elevation drive units, an IF down-converter unit, an antenna control unit (ACU), a counterweight, and a monument pillar. Each drive unit is equipped with a zero-backlash harmonic drive gearing component. A monument pillar is designed to mount typical geodetic GNSS antennas easily and an offset between the GNSS antenna reference point. The location of the azimuth-elevation crossing point of the VLBI system is precisely determined with an uncertainty of less than 0.2 mm. We have carried out seven geodetic VLBI experiments on the Kashima-Tsukuba baseline (about 54 km) using the two prototypes of the compact VLBI system between December 2009 and December 2010. The average baseline length and repeatability of the experiments is 54184874.0 ± 2.4 mm. The results are well consistent with those obtained by GPS measurements. In addition, we are now planning to use the compact VLBI system for precise time and frequency comparison between separated locations.
Analysis of equivalent antenna based on FDTD method
Directory of Open Access Journals (Sweden)
Yun-xing Yang
2014-09-01
Full Text Available An equivalent microstrip antenna used in radio proximity fuse is presented. The design of this antenna is based on multilayer multi-permittivity dielectric substrate which is analyzed by finite difference time domain (FDTD method. Equivalent iterative formula is modified in the condition of cylindrical coordinate system. The mixed substrate which contains two kinds of media (one of them is airtakes the place of original single substrate. The results of equivalent antenna simulation show that the resonant frequency of equivalent antenna is similar to that of the original antenna. The validity of analysis can be validated by means of antenna resonant frequency formula. Two antennas have same radiation pattern and similar gain. This method can be used to reduce the weight of antenna, which is significant to the design of missile-borne antenna.
Linford, Neil; Linford, Paul; Payne, Andy
2016-04-01
The recent availability of multi-channel GPR instrumentation has allowed high-speed acquisition of densely sampled data sets over unprecedented areas of coverage. Such instrumentation has been of particular interest for the mapping of near-surface archaeological remains where the ability to collect GPR data at very close sample spacings (<0.1m) can provide a unique insight to both image and assess the survival of historic assets at a landscape scale. This paper reviews initial results obtained with a 3d-Radar GeoScope MkIV continuous wave stepped frequency (CWSF) GPR system utilising both initial prototypes and production versions of a newly introduced ground coupled antenna array. Whilst this system originally utilised an air-coupled antenna array there remained some debate over the suitability of an air-coupled antenna for all site conditions, particularly where a conductive surface layer, typical of many archaeological sites in the UK, may impede the transfer of energy into the ground. Encouraging results obtained from an initial prototype ground-coupled antenna array led to the introduction of a full width 22 channel G1922 version in March 2014 for use with the MkIV GeoScope console, offering faster acquisition across a wider frequency bandwidth (60MHz to 3GHz) with a cross-line 0.075m spacing between the individual elements in the array. Field tests over the Roman remains at Silchester corroborated the results from the earlier prototype, demonstrating an increased depth of penetration at the site compared to the previous air-coupled array. Further field tests were conducted with the G1922 over a range of sites, including Roman villa sites, formal post-medieval garden remains and a medieval farmstead to assess the response of the ground-coupled antenna to more challenging site conditions, particularly through water saturated soils. A full production DXG1820 version of the antenna became available for field work in 2015 offering optimisation of the individual
Vivaldi Antenna for RF Energy Harvesting
Directory of Open Access Journals (Sweden)
J. Schneider
2016-12-01
Full Text Available Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz. The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
Directory of Open Access Journals (Sweden)
H Abbasi
2012-12-01
Full Text Available In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.
Integration of the three-dimensional Vlasov equation for a magnetized plasma
International Nuclear Information System (INIS)
Cheng, C.Z.
1976-04-01
A second order splitting scheme is developed to integrate the three dimensional Vlasov equation for a plasma in a magnetic field. The integration of the Vlasov equation is divided into a series of intermediate steps and Fourier interpolation and the ASD method with a third order Taylor expansion are used to integrate the fractional equations. Numerical experiments related to cyclotron waves in 2 and 2 1 / 2 D are demonstrated with high accuracy and efficiency. The computer storage requirements are modest; for example, a typical 2D nonlinear electron plasma simulation requires only 4000 ''particles.''
New variational formulation of Maxwell-Vlasov and guiding center theories
International Nuclear Information System (INIS)
Pfirsch, D.
1983-07-01
A new variational formulation of Maxwell-Vlasov and related theories is given in terms of a common Lagrangian density for both the 'Vlasov particles' and the Maxwell fields. This formulation is used to derive in a consistent way, on the one hand, correct charge and current densities and, on the other, corresponding energy and energy flux densities. All of these densities generally show in addition to particle like contributions electric polarization and magnetization terms. By some limiting procedure collisionless guiding center theories with polarization drifts included are also treated. In this way local energy conservation laws are formulated for such theories, which has not been possible up to now. (orig.)
Broadband antenna for ground penetrating radar application in soil
Shebalkova, LV; Markov, MA; Romodin, VB
2018-03-01
The scope of the article embraces the features of design of antennas and arrays for GPR, their type and parameters and the expediency of the application of the antenna arrays in various purpose location systems of GPR.
Directory of Open Access Journals (Sweden)
Cheng-Nan Hu
2016-01-01
Full Text Available This paper presents a high gain millimeter-wave (mmW low-temperature cofired ceramic (LTCC microstrip antenna array with a compact, simple, and low-profile structure. Incorporating minimum mean square error (MMSE adaptive algorithms with the proposed 64-element microstrip antenna array, the numerical investigation reveals substantial improvements in interference reduction. A prototype is presented with a simple design for mass production. As an experiment, HFSS was used to simulate an antenna with a width of 1 mm and a length of 1.23 mm, resonating at 38 GHz. Two identical mmW LTCC microstrip antenna arrays were built for measurement, and the center element was excited. The results demonstrated a return loss better than 15 dB and a peak gain higher than 6.5 dBi at frequencies of interest, which verified the feasibility of the design concept.
Porous textile antenna designs for improved wearability
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
A Design of Double Broadband MIMO Antenna
Directory of Open Access Journals (Sweden)
Yanfeng Geng
2015-01-01
Full Text Available The MIMO antenna applied to LTE mobile system should be miniaturization and can work in the current communication frequency band; isolation between each antenna unit also should be good so as to reduce loss of radio wave energy and improve the antenna performance of the MIMO system. This paper puts forward the design scheme of a broadband MIMO double antenna. And the design of antenna unit and debugging and related technical measures, such as bending antenna bracket, are both presented; the integration design of high isolation of ultra broadband MIMO antenna is realized on the plate with the volume of 100 × 52 × 0.8 mm3; antenna working bands are 698 MHz~960 MHz and 1710 MHz~2700 MHz; in the whole spectrum, the 10 dB of port isolation can be basically achieved; in low frequency band, the isolation degree of antenna port can reach 12 dB.
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
Energy Technology Data Exchange (ETDEWEB)
Perin, M.; Chandre, C.; Tassi, E. [Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille (France); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.
Reliable Control of Ship-mounted Satellite Tracking Antenna
DEFF Research Database (Denmark)
Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal
2010-01-01
Motorized antenna is a key element in overseas satellite telecommunication. The control system directs the on-board antenna toward a chosen satellitewhile the high sea waves disturb the antenna. Certain faults (communication system malfunction or signal blocking) cause interruption in the communi...
International Nuclear Information System (INIS)
Messiaen, A.; Vervier, M.; Dumortier, P.; Grine, D.; Lamalle, P.U.; Durodie, F.; Koch, R.; Louche, F.; Weynants, R.
2009-01-01
The reference design for the ICRF antenna of ITER is constituted by a tight array of 24 straps grouped in eight triplets. The matching network must be load resilient for operation in ELMy discharges and must have antenna spectrum control for heating or current drive operation. The load resilience is based on the use of either hybrid couplers or conjugate-T circuits. However, the mutual coupling between the triplets at the low expected loading strongly counteracts the load resilience and the spectrum control. Using a mock-up of the ITER antenna array with adjustable water load matching solutions are designed. These solutions are derived from transmission line modelling based on the measured scattering matrix and are finally tested. We show that the array current spectrum can be controlled by the anti-node voltage distribution and that suitable decoupler circuits can not only neutralize the adverse mutual coupling effects but also monitor this anti-node voltage distribution. A matching solution using four 3 dB hybrids and the antenna current spectrum feedback control by the decouplers provides outstanding performance if each pair of poloidal triplets undergoes a same load variation. Finally, it is verified by modelling that this matching scenario has the same antenna spectrum and load resilience performances as the antenna array loaded by plasma as described by the TOPICA simulation. This is true for any phasing and frequency in the ITER frequency band. The conjugate-T solution is presently considered as a back-up option.
International Nuclear Information System (INIS)
Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill
2015-01-01
Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)
Federal Laboratory Consortium — TheAntenna Pattern Range (APR)features a non-metallic arch with a trolley to move the transmit antenna from the horizon to zenith. At the center of the ground plane,...
A Modal Approach to Compact MIMO Antenna Design
Yang, Binbin
MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored
Active patch antennas for transponder applications
Energy Technology Data Exchange (ETDEWEB)
Biffi Gentili, G; Avitabile, G; Bonifacio, F; Salvador, C [Florence Univ. (Italy). Dip. di Ingegneria Elettronica
1996-01-01
The paper deals with two patch antenna structures that are mainly taught for short range link and non-contact identification system (RFID). The proposed antennas were developed by starting from an original concept of cross-polarization usefully applicable, in compliance with european for transponder applications are described and experimental results are reported.
Textile UWB Antenna Bending and Wet Performances
Directory of Open Access Journals (Sweden)
Mai A. R. Osman
2012-01-01
Full Text Available The vision and ideas of wearable computing systems describe future electronic systems as an integral part of our everyday clothing that provides the wearer with such intelligent personal assistants. Recently, there has been growing interest in the antenna community to merge between wearable systems technology, ultrawideband (UWB technology and textile technology. This work aimed to make closer steps towards real wearability by investigating the possibilities of designing wearable UWB antenna where textile materials are used for the substrate as well as the conducting parts of the designed antenna. Two types of conducting materials have been used for conducting parts, while a nonconducting fabric has been used as antenna substrate material. A set of comparative results of the proposed design were presented and discussed. Moreover, effects on the return loss by means of measurements for each fabricated antenna prototype under bent and fully wet conditions were discussed in more details.
Numerical simulation of collision-free plasma using Vlasov hybrid simulation
International Nuclear Information System (INIS)
Nunn, D.
1990-01-01
A novel scheme for the numerical simulation of wave particle interactions in space plasmas has been developed. The method, termed VHS or Vlasov Hybrid Simulation, is applicable to hot collision free plasmas in which the unperturbed distribution functions is smooth and free of delta function singularities. The particle population is described as a continuous Vlasov fluid in phase space-granularity and collisional effects being ignored. In traditional PIC/CIC codes the charge/current due to each simulation particle is assigned to a fixed spatial grid. In the VHS method the simulation particles sample the Vlasov fluid and provide information about the value of distribution function (F(r,v) at random points in phase space. Values of F are interpolated from the simulation particles onto a fixed grid in velocity/position or phase space. With distribution function defined on a phase space grid the plasma charge/current field is quickly calculated. The simulation particles serve only to provide information, and thus the particle population may be dynamic. Particles no longer resonant with the wavefield may be discarded from the simulation, and new particles may be inserted into the Vlasov fluid where required
Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space
Czech Academy of Sciences Publication Activity Database
Sedláček, Zdeněk; Nocera, L.
2002-01-01
Roč. 52, supplement D (2002), s. 65-69 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : Vlasov plasma, oscillator Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002
Stability analysis of sharp-boundary Vlasov-fluid screw-pinch equilibria
International Nuclear Information System (INIS)
Lewis, H.R.; Turner, L.
1975-01-01
The Vlasov-fluid model is being used to study the linear stability of sharp-boundary screw pinches numerically. The numerical method appears to work well, and some preliminary results are reported. The sharp-boundary calculation is useful for gaining insight and for comparing with known MHD results. (auth)
Superexponentially damped Vlasov plasma oscillations in the Fourier transformed velocity space
International Nuclear Information System (INIS)
Sedlacek, Z.; Nocera, L.
2002-01-01
The Landau (exponentially) damped solutions of the Vlasov-Poisson equation Fourier transformed with respect to velocity are genuine eigenmodes corresponding to complex eigenvalues. In addition there exist solutions decaying faster than exponentially which exhibit no oscillatory behaviour. A new characterization is given of the initial conditions that give rise to these solutions together with a numerical demonstration
The principles of radio engineering and antennas. II Antennas (2nd revised and enlarged edition)
Belotserkovskii, G. B.
This book represents the second part of a textbook for technical schools. The characteristics and parameters of antennas are considered along with transmission lines, the theory of single dipoles and radiator systems, and the technological realization of elements and units of the antenna-feeder system, taking into account filters and multiport networks for microwave communications applications, and ferrite circulators and isolators. The first edition of this textbook was published in 1969. For the current edition, the material in the first edition has been revised, and new material has been introduced. Much attention is given to microwave antennas, including, in particular, arrays with electrical scanning characteristics. Other topics discussed are related to the general principles of antennas, the matching of the impedance of transmission lines, the elements of transmission lines, aperture-type antennas for microwaves, and the functional characteristics of antennas for ultrashort waves.
de Lera Acedo, E.; Razavi-Ghods, N.; Troop, N.; Drought, N.; Faulkner, A. J.
2015-10-01
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellent performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of the first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450 MHz) but it is now aimed to cover the re-defined SKA-low band (50-350 MHz) and furthermore the antenna is capable of performing up to 650 MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45° from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
Design of cost effective antennas for instrumentation radars
CSIR Research Space (South Africa)
Botha, L
2012-09-01
Full Text Available The cost of antennas for instrumentation radars are determined by the development cost. By re-use of the reflector system cost effective antennas can be designed. The factors governing the design of such antennas are described here....
Reconfigurable Patch Antenna Radiations Using Plasma Faraday Shield Effect
Barro , Oumar Alassane; Himdi , Mohamed; Lafond , Olivier
2016-01-01
International audience; This letter presents a new reconfigurable antenna associated with a plasma Faraday shield effect. The Faraday shield effect is realized by using a fluorescent lamp. A patch antenna operating at 2.45 GHz is placed inside the lamp. The performance of the reconfigurable system is observed in terms of S11, gain and radiation patterns by simulation and measurement. It is shown that by switching ON the fluorescent lamp, the gain of the antenna decreases and the antenna syste...
Cognitive Multiple-Antenna Network with Outage and Rate Margins at the Primary System
DEFF Research Database (Denmark)
Maham, Behrouz; Popovski, Petar
2015-01-01
In the common model for spectrum sharing, cognitive users can access the spectrum as long as the target performance in the legitimate primary system is not violated. In this paper, we consider a downlink primary multiple-inputsingle- output (MISO) system which operates under a controlled interfer...
On the Design of a Wireless Multi-antenna Monitoring System
Hofstra, K.L.; Cronie, H.S.
2004-01-01
In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several
Mobile Phone Antenna Performance 2016
DEFF Research Database (Denmark)
Pedersen, Gert F.
This study investigates the antenna performance of a number of mobile phones widely used in the Nordic Countries. The study is supported by the Nordic Council of Ministers. The antenna performance of the phones is vital for the phones ability to ensure radio coverage in low signal situations....... The study is based on the mobile systems in the Nordic mobile networks and on both speech and data services. The selected phone models are among the most popular new phones at the time of this study....
Antenna complexes protect Photosystem I from Photoinhibition
Alboresi, Alessandro; Ballottari, Matteo; Hienerwadel, Rainer; Giacometti, Giorgio M; Morosinotto, Tomas
2009-01-01
Background Photosystems are composed of two moieties, a reaction center and a peripheral antenna system. In photosynthetic eukaryotes the latter system is composed of proteins belonging to Lhc family. An increasing set of evidences demonstrated how these polypeptides play a relevant physiological function in both light harvesting and photoprotection. Despite the sequence similarity between antenna proteins associated with the two Photosystems, present knowledge on their physiological role is mostly limited to complexes associated to Photosystem II. Results In this work we analyzed the physiological role of Photosystem I antenna system in Arabidopsis thaliana both in vivo and in vitro. Plants depleted in individual antenna polypeptides showed a reduced capacity for photoprotection and an increased production of reactive oxygen species upon high light exposure. In vitro experiments on isolated complexes confirmed that depletion of antenna proteins reduced the resistance of isolated Photosystem I particles to high light and that the antenna is effective in photoprotection only upon the interaction with the core complex. Conclusion We show that antenna proteins play a dual role in Arabidopsis thaliana Photosystem I photoprotection: first, a Photosystem I with an intact antenna system is more resistant to high light because of a reduced production of reactive oxygen species and, second, antenna chlorophyll-proteins are the first target of high light damages. When photoprotection mechanisms become insufficient, the antenna chlorophyll proteins act as fuses: LHCI chlorophylls are degraded while the reaction center photochemical activity is maintained. Differences with respect to photoprotection strategy in Photosystem II, where the reaction center is the first target of photoinhibition, are discussed. PMID:19508723
Antenna theory: Analysis and design
Balanis, C. A.
The book's main objective is to introduce the fundamental principles of antenna theory and to apply them to the analysis, design, and measurements of antennas. In a description of antennas, the radiation mechanism is discussed along with the current distribution on a thin wire. Fundamental parameters of antennas are examined, taking into account the radiation pattern, radiation power density, radiation intensity, directivity, numerical techniques, gain, antenna efficiency, half-power beamwidth, beam efficiency, bandwidth, polarization, input impedance, and antenna temperature. Attention is given to radiation integrals and auxiliary potential functions, linear wire antennas, loop antennas, linear and circular arrays, self- and mutual impedances of linear elements and arrays, broadband dipoles and matching techniques, traveling wave and broadband antennas, frequency independent antennas and antenna miniaturization, the geometrical theory of diffraction, horns, reflectors and lens antennas, antenna synthesis and continuous sources, and antenna measurements.
Review of Large Spacecraft Deployable Membrane Antenna Structures
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Antenna Controller Replacement Software
Chao, Roger Y.; Morgan, Scott C.; Strain, Martha M.; Rockwell, Stephen T.; Shimizu, Kenneth J.; Tehrani, Barzia J.; Kwok, Jaclyn H.; Tuazon-Wong, Michelle; Valtier, Henry; Nalbandi, Reza;
2010-01-01
The Antenna Controller Replacement (ACR) software accurately points and monitors the Deep Space Network (DSN) 70-m and 34-m high-efficiency (HEF) ground-based antennas that are used to track primarily spacecraft and, periodically, celestial targets. To track a spacecraft, or other targets, the antenna must be accurately pointed at the spacecraft, which can be very far away with very weak signals. ACR s conical scanning capability collects the signal in a circular pattern around the target, calculates the location of the strongest signal, and adjusts the antenna pointing to point directly at the spacecraft. A real-time, closed-loop servo control algorithm performed every 0.02 second allows accurate positioning of the antenna in order to track these distant spacecraft. Additionally, this advanced servo control algorithm provides better antenna pointing performance in windy conditions. The ACR software provides high-level commands that provide a very easy user interface for the DSN operator. The operator only needs to enter two commands to start the antenna and subreflector, and Master Equatorial tracking. The most accurate antenna pointing is accomplished by aligning the antenna to the Master Equatorial, which because of its small size and sheltered location, has the most stable pointing. The antenna has hundreds of digital and analog monitor points. The ACR software provides compact displays to summarize the status of the antenna, subreflector, and the Master Equatorial. The ACR software has two major functions. First, it performs all of the steps required to accurately point the antenna (and subreflector and Master Equatorial) at the spacecraft (or celestial target). This involves controlling the antenna/ subreflector/Master-Equatorial hardware, initiating and monitoring the correct sequence of operations, calculating the position of the spacecraft relative to the antenna, executing the real-time servo control algorithm to maintain the correct position, and
Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas
Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.
1998-01-01
At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe
Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas
Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.
1999-01-01
At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe
Radio/antenna mounting system for wireless networking under row-crop agriculture conditions
Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...
Performance Evaluation of Sectored MPAC for 5G UE Antenna Systems
DEFF Research Database (Denmark)
Hekkala, Aki; Kyösti, Pekka; Kyröläinen, Jukka
2018-01-01
Over-the-air (OTA) test system performance evaluations is a topic to agree in the industry to be able to guarantee the comparability of the test results from different laboratories. For 5G test purposes at mmWave there are no currently metrics to be used. This paper presents both the recently...
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Xing, Chengwen; Xia, Minghua; Gao, Feifei; Wu, Yikchung
2012-01-01
In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial
Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas
Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu
2017-02-01
Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.
Present and future JET ICRF antennae
International Nuclear Information System (INIS)
Kaye, A.; Brown, T.; Bhatnagar, V.; Crawley, P.; Jacquinot, J.; Lobel, R.; Plancoulaine, J.; Rebut, P.H.; Wade, T.; Walker, C.
1994-01-01
Since the initial operation of the JET ICRF system in 1985, up to 22 MW has been coupled to the plasma, many heating scenarios have been demonstrated and the main technological problem of RF-specific impurity production overcome. Many developments of the antennae have taken place over this period, notably the replacement of the water-cooled nickel screens with indirectly cooled beryllium screens, and the forthcoming installation of eight new A2 antennae for operation during the pumped divertor phase of JET. The A2 antennae include enhanced provision for fast wave current drive experiments on JET. This paper describes the beryllium screens, the technological results from operation and subsequent inspection of these screens, the design of the A2 antennae and the results from high power RF testing of a model of the A2 antenna. (orig.)
5G MIMO Conformal Microstrip Antenna Design
Directory of Open Access Journals (Sweden)
Qian Wang
2017-01-01
Full Text Available With the development of wireless communication technology, 5G will develop into a new generation of wireless mobile communication systems. MIMO (multiple-input multiple-output technology is expected to be one of the key technologies in the field of 5G wireless communications. In this paper, 4 pairs of microstrip MIMO conformal antennas of 35 GHz have been designed. Eight-element microstrip Taylor antenna array with series-feeding not only achieves the deviation of the main lobe of the pattern but also increases the bandwidth of the antenna array and reduces sidelobe. MIMO antennas have been fabricated and measured. Measurement results match the simulation results well. The return loss of the antenna at 35 GHz is better than 20 dB, the first sidelobe level is −16 dB, and the angle between the main lobe and the plane of array is 60°.
Park, Kihong; Ko, Youngchai; Alouini, Mohamed-Slim
2011-01-01
to the channel variation per subcarrier, we develop an optimal transmit antenna selection scheme in terms of the maximum spectral efficiency, where all the possible groupings for sending the same information-bearing signals in a group of subcarriers are searched
Directory of Open Access Journals (Sweden)
Wang Bing
2013-02-01
Full Text Available GPS-based attitude system is an important research field, since it is a valuable technique for the attitude determination of platforms. There exist two classes approaches for attitude determination using the GPS. The one determines attitude via baseline estimates in two frames, the other one solves for attitude by incorporating the attitude parameters directly into the GPS measurements. However, comparisons between these two classes approaches have been unexplored. First of all, two algorithms are introduced in detail which on behalf of these two kinds of approaches. Then we present numerical simulations demonstrating the performance of our algorithms and provide a comparison evaluating.
Flexible Transmission Scheme for 4G Wireless Systems with Multiple Antennas
Directory of Open Access Journals (Sweden)
Horlin François
2005-01-01
Full Text Available New air interfaces are currently being developed to meet the high requirements of the emerging wireless communication systems. In this context, the combinations of the multicarrier (MC and spread-spectrum (SS technologies are promising candidates. In this paper, we propose a generic transmission scheme that allows to instantiate all the combinations of orthogonal frequency-division multiplexing (OFDM and cyclic-prefixed single-carrier (SC modulations with direct-sequence code-division multiple access (DS-CDMA. The generic transmission scheme is extended to integrate the space-division multiplexing (SDM and the orthogonal space-time block coding (STBC. Based on a generalized matrix model, the linear frequency-domain minimum mean square error (MMSE joint detector is derived. A mode selection strategy for up- and downlink is advised that efficiently trades off the cost of the mobile terminal and the achieved performance of a high-mobility cellular system. It is demonstrated that an adaptive transceiver that supports the proposed communication modes is necessary to track the changing communication conditions.
Delay Estimation in Long-Code Asynchronous DS/CDMA Systems Using Multiple Antennas
Directory of Open Access Journals (Sweden)
Sirbu Marius
2004-01-01
Full Text Available The problem of propagation delay estimation in asynchronous long-code DS-CDMA multiuser systems is addressed. Almost all the methods proposed so far in the literature for propagation delay estimation are derived for short codes and the knowledge of the codes is exploited by the estimators. In long-code CDMA, the spreading code is aperiodic and the methods developed for short codes may not be used or may increase the complexity significantly. For example, in the subspace-based estimators, the aperiodic nature of the code may require subspace tracking. In this paper we propose a novel method for simultaneous estimation of the propagation delays of several active users. A specific multiple-input multiple-output (MIMO system model is constructed in a multiuser scenario. In such model the channel matrix contains information about both the users propagation delays and channel impulse responses. Consequently, estimates of the delays are obtained as a by-product of the channel estimation task. The channel matrix has a special structure that is exploited in estimating the delays. The proposed delay estimation method lends itself to an adaptive implementation. Thus, it may be applied to joint channel and delay estimation in uplink DS-CDMA analogously to the method presented by the authors in 2003. The performance of the proposed method is studied in simulation using realistic time-varying channel model and different SNR levels in the face of near-far effects, and using low spreading factor (high data rates.
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Xing, Chengwen
2012-04-01
In this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.
International Nuclear Information System (INIS)
Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward
2001-01-01
This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed
Energy Technology Data Exchange (ETDEWEB)
Peyroux, J
2005-11-15
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Energy Technology Data Exchange (ETDEWEB)
Peyroux, J
2005-11-15
This project aims to make even more powerful the resolution of Vlasov codes through the various parallelization tools (MPI, OpenMP...). A simplified test case served as a base for constructing the parallel codes for obtaining a data-processing skeleton which, thereafter, could be re-used for increasingly complex models (more than four variables of phase space). This will thus make it possible to treat more realistic situations linked, for example, to the injection of ultra short and ultra intense impulses in inertial fusion plasmas, or the study of the instability of trapped ions now taken as being responsible for the generation of turbulence in tokamak plasmas. (author)
Antenna Arrays and Automotive Applications
Rabinovich, Victor
2013-01-01
This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
MIMO Communication Using Single Feed Antenna Arrays
DEFF Research Database (Denmark)
Alrabadi, Osama
Multi-input-multi-output (MIMO) communication has emerged as a promis- ing technology for meeting the increasing demand on higher data rates. The technology exploits the spatial resource dimension by sending the datas- treams to different locations in the multi element array (MEA) domain while...... conventionally to a single antenna element while mod- ulating the other datastreams in the analogue RF domain, using simple switched antenna systems (SAS) or sophisticated reactance-assisted antenna systems. The use of a SAS is found simple to implement, but can hardly handle high order signal formats...
Doland, G. D. (Inventor)
1978-01-01
Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.
The Antenna Bride and Bridegroom
2007-03-01
ALMA Achieves Major Milestone With Antenna-Link Success The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on 2 March, when two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. "This achievement results from the integration of many state-of-the-art components from Europe and North America and bodes well for the success of ALMA in Chile", said Catherine Cesarsky, ESO's Director General. ESO PR Photo 10/07 ESO PR Photo 10/07 The Prototype Antennas The milestone achievement, technically termed 'First Fringes', came at the ALMA Test Facility (ATF), located near Socorro in New Mexico. Faint radio waves emitted by the planet Saturn were collected by two ALMA prototype antennas, then processed by new, high-tech electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. The planet's radio emissions at a frequency of 104 gigahertz were tracked by the ALMA system for more than an hour. Such pairs of antennas are the basic building blocks of the multi-antenna imaging system ALMA. In such a system, the signals recorded by each antenna are electronically combined with the signals of every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly detailed image of the astronomical object under observation. When completed in the year 2012, ALMA will have 66 antennas. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO Director Fred K.Y. Lo. "With this milestone behind us, we now can proceed with increased confidence toward completing ALMA," he added. ALMA, located at an elevation of 5,000m in the Atacama Desert of
Romanofsky, Robert R.
2010-01-01
The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.
Federal Laboratory Consortium — Facility consists of a folded compact antenna range including a computer controlled three axis position table, parabolic reflector and RF sources for the measurement...
Planar Near-Field Measurements of Ground Penetrating Radar Antennas
DEFF Research Database (Denmark)
Meincke, Peter; Hansen, Thorkild
2004-01-01
Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....
Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies
Meador, Mary Ann
2017-01-01
This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.
PROSPECTS FOR THE DEVELOPMENT OF PHASED ANTENNA ARRAYS
Directory of Open Access Journals (Sweden)
A. P. Dzuba
2013-01-01
Full Text Available This article describes the main achievements in the development of phased antenna arrays (par in the past decade. Provides an overview of the most famous systems based on the PAR and PAR based on MMIC technology - PAR in radar stations, PAR to control the laser and optical beams. The existing options for the design of the PAR:ferroelectric antenna array; plasma antenna with electronic scanning; reflective grating on 100-mm semiconductor wafers; wideband antenna arrays with aperture; antenna arrays with digital beam forming.
Advanced Communication Technology Satellite (ACTS) multibeam antenna analysis and experiment
Acosta, Roberto J.; Lagin, Alan R.; Larko, Jeffrey M.; Narvaez, Adabelle
1992-01-01
One of the most important aspects of a satellite communication system design is the accurate estimation of antenna performance degradation. Pointing error, end coverage gain, peak gain degradation, etc. are the main concerns. The thermal or dynamic distortions of a reflector antenna structural system can affect the far-field antenna power distribution in a least four ways. (1) The antenna gain is reduced; (2) the main lobe of the antenna can be mispointed thus shifting the destination of the delivered power away from the desired locations; (3) the main lobe of the antenna pattern can be broadened, thus spreading the RF power over a larger area than desired; and (4) the antenna pattern sidelobes can increase, thus increasing the chances of interference among adjacent beams of multiple beam antenna system or with antenna beams of other satellites. The in-house developed NASA Lewis Research Center thermal/structural/RF analysis program was designed to accurately simulate the ACTS in-orbit thermal environment and predict the RF antenna performance. The program combines well establish computer programs (TRASYS, SINDA and NASTAN) with a dual reflector-physical optics RF analysis program. The ACTS multibeam antenna configuration is analyzed and several thermal cases are presented and compared with measurements (pre-flight).
Vlasov modelling of parallel transport in a tokamak scrape-off layer
International Nuclear Information System (INIS)
Manfredi, G; Hirstoaga, S; Devaux, S
2011-01-01
A one-dimensional Vlasov-Poisson model is used to describe the parallel transport in a tokamak scrape-off layer. Thanks to a recently developed 'asymptotic-preserving' numerical scheme, it is possible to lift numerical constraints on the time step and grid spacing, which are no longer limited by, respectively, the electron plasma period and Debye length. The Vlasov approach provides a good velocity-space resolution even in regions of low density. The model is applied to the study of parallel transport during edge-localized modes, with particular emphasis on the particles and energy fluxes on the divertor plates. The numerical results are compared with analytical estimates based on a free-streaming model, with good general agreement. An interesting feature is the observation of an early electron energy flux, due to suprathermal electrons escaping the ions' attraction. In contrast, the long-time evolution is essentially quasi-neutral and dominated by the ion dynamics.
Progress on a Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits
Bassi, Gabriele; Warnock, Robert L
2005-01-01
We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding). The time evolution of the phase space distribution is determined by solving the Vlasov-Maxwell equations in the time domain. This provides lower numerical noise than the macroparticle method, and allows the study of emittance degradation and microbunching in bunch compressors. We calculate the fields excited by the bunch in the lab frame using a formula simpler than that based on retarded potentials.* We have developed an algorithm for solving the Vlasov equation in the beam frame using arc length as the independent variable and our method of local characteristics (discretized Perron-Frobenius operator).We integrate in the interaction picture in the hope that we can adopt a fixed grid. The distribution function will be represented by B-splines, in a scheme preserving positivity and normalization of the distribution. The transformation between l...
One-Dimensional Vlasov-Maxwell Equilibrium for the Force-Free Harris Sheet
International Nuclear Information System (INIS)
Harrison, Michael G.; Neukirch, Thomas
2009-01-01
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet
Comparison of free-streaming ELM formulae to a Vlasov simulation
Energy Technology Data Exchange (ETDEWEB)
Moulton, D., E-mail: david.moulton@cea.fr [CEA, IRFM, F-13108 Saint-Paul Lez Durance (France); Fundamenski, W. [Imperial College of Science, Technology and Medicine, London (United Kingdom); Manfredi, G. [Institut de Physique et Chimie des Matériaux, CNRS and Université de Strasbourg, BP 43, F-67034 Strasbourg (France); Hirstoaga, S. [INRIA Nancy Grand-Est and Institut de Recherche en Mathématiques Avancées, 7 rue René Descartes, F-67084 Strasbourg (France); Tskhakaya, D. [Association EURATOM-ÖAW, University of Innsbruck, A-6020 Innsbruck (Austria)
2013-07-15
The main drawbacks of the original free-streaming equations for edge localised mode transport in the scrape-off layer [W. Fundamenski, R.A. Pitts, Plasma Phys. Control Fusion 48 (2006) 109] are that the plasma potential is not accounted for and that only solutions for ion quantities are considered. In this work, the equations are modified and augmented in order to address these two issues. The new equations are benchmarked against (and justified by) a numerical simulation which solves the Vlasov equation in 1d1v. When the source function due to an edge localised mode is instantaneous, the modified free-streaming ‘impulse response’ equations agree closely with the Vlasov simulation results. When the source has a finite duration in time, the agreement worsens. However, in all cases the match is encouragingly good, thus justifying the applicability of the free-streaming approach.
Lifting particle coordinate changes of magnetic moment type to Vlasov-Maxwell Hamiltonian dynamics
International Nuclear Information System (INIS)
Morrison, P. J.; Vittot, M.; Guillebon, L. de
2013-01-01
Techniques for coordinate changes that depend on both dependent and independent variables are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate changes with a new velocity variable dependent on the magnetic field, with spatial coordinates unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are given including magnetic coordinates, where the velocity is decomposed into components parallel and perpendicular to the local magnetic field, and the case of spherical velocity coordinates. An example of the lifting procedure is performed to obtain a simplified version of gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced by elimination of the electric field energy in the Hamiltonian.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
International Nuclear Information System (INIS)
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null
Design of silicon-based fractal antennas
Ghaffar, Farhan A.
2012-11-20
This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.
Design of silicon-based fractal antennas
Ghaffar, Farhan A.; Shamim, Atif
2012-01-01
This article presents Sierpinski carpet fractal antennas implemented in conventional low resistivity (Ï =10 Ω cm) as well as high resistivity (Ï =1500 Ω cm) silicon mediums. The fractal antenna is 36% smaller as compared with a typical patch antenna at 24 GHz and provides 13% bandwidth on high resistivity silicon, suitable for high data rate applications. For the first time, an on-chip fractal antenna array is demonstrated in this work which provides double the gain of a single fractal element as well as enhanced bandwidth. A custom test fixture is utilized to measure the radiation pattern and gain of these probe-fed antennas. In addition to gain and impedance characterization, measurements have also been made to study intrachip communication through these antennas. The comparison between the low resistivity and high resistivity antennas indicate that the former is not a suitable medium for array implementation and is only suitable for short range communication whereas the latter is appropriate for short and medium range wireless communication. The design is well-suited for compact, high data rate System-on-Chip (SoC) applications as well as for intrachip communication such as wireless global clock distribution in synchronous systems. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:180-186, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27245 Copyright © 2012 Wiley Periodicals, Inc.
Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations
Athanassoulis, Agissilaos
2018-03-01
We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1 + 1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.
60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna
Ghaffar, Farhan A.; Arsalan, Muhammad; Cheema, Hammad; Salama, Khaled N.; Shamim, Atif
2014-01-01
A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.
60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna
Ghaffar, Farhan A.
2014-04-01
A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.
Resonant double loop antenna development at ORNL
International Nuclear Information System (INIS)
Taylor, D.J.; Baity, F.W.; Brown, R.A.; Bryan, W.E.; Fadnek, A.; Hoffman, D.J.; King, J.F.; Livesey, R.L.; McIlwain, R.L.
1988-01-01
As part of the development of ion cyclotron resonant heating (ICRH) systems for fusion research, Oak Ridge National Laboratory (ORNL) has built resonant double loop (RDL) antennas for the Tokamak Fusion Test Reactor (TFTR) (Princeton Plasma Physics Laboratory, Princeton, NJ, US) and Tore Supra (Centre d'Etudes Nucleaire, Cadarache, France). Each antenna has been designed to deliver 4 MW of power. The electrical circuit and the mechanical philosophy employed are the same for both antennas, but different operating environments lead to substantial differences in the designs of specific components. A description and a comparison of the technologies developed in the two designs are presented. 5 refs., 4 figs., 1 tab
Implanted Antennas in Medical Wireless Communications
Rahmat-Samii, Yahya; Balanis, Constantine
2006-01-01
Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a
Evaluation of detectable angle of mid-infrared slot antennas
Obara, R.; Horikawa, J.; Shimakage, H.; Kawakami, A.
2017-07-01
For evaluations of a mid-infrared (MIR) detectors with antenna, we constructed an angular dependence measurement system of the antenna properties. The fabricated MIR detector consisted of twin slot antennas and a bolometer. The area of the slot antennas was designed to be 2.6 × 0.2 μm2 as to resonate at 61 THz, and they were located parallel and separated 1.6 μm each other. The bolometer was fabricated using by a 7.0-nm thick NbN thin film, and located at the center of the twin antennas. We measured polarization angle dependence and directivity, and showed that the MIR antennas have polarization dependence and directivity like radiofrequency antennas.
Prototype specification of antenna and radio front-end schemes for PAN devices
DEFF Research Database (Denmark)
Wang, Yu; Nguyen, Hung Tuan; johansson, Anders
2007-01-01
be implemented in the prototype directly, or used as references in antenna selections for the prototype. Interference mitigation on antenna system level for both HDR and LDR systems is investigated. For the LDR system, interference from the HDR system and UWB systems is identified as most critical. Front......This document provides antenna system specifications for the MAGNET Beyond prototype. Requirements on selecting antenna elements and diversity antenna systems are presented. A number of antenna elements and diversity systems suitable for MAGNET systems are specified. Presented antennas can......-end filtering with high attenuation on 5.2 GHz is suggested to suppress interference from the HDR system. A low-complexity switching diversity antenna system is designed to mitigate UWB interference. The performance of proposed scheme is evaluated with measured channels. The implementation of the scheme...
Wunderlich, S.; Welpot, M.; Gaspard, I.
2014-11-01
The markets for smart home products and services are expected to grow over the next years, driven by the increasing demands of homeowners considering energy monitoring, management, environmental controls and security. Many of these new systems will be installed in existing homes and offices and therefore using radio based systems for cost reduction. A drawback of radio based systems in indoor environments are fading effects which lead to a high variance of the received signal strength and thereby to a difficult predictability of the encountered path loss of the various communication links. For that reason it is necessary to derive a statistical path loss model which can be used to plan a reliable and cost effective radio network. This paper presents the results of a measurement campaign, which was performed in six buildings to deduce realistic radio channel models for a high variety of indoor radio propagation scenarios in the short range devices (SRD) band at 868 MHz. Furthermore, a potential concept to reduce the variance of the received signal strength using a circular polarized (CP) patch antenna in combination with a linear polarized antenna in an one-to-one communication link is presented.
International Nuclear Information System (INIS)
Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.; Pacheco, J.A. de Freitas
2013-01-01
We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ 1D 2 ) 3/2 remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-space density indicator: λ J = (5π/G) 1/2 Q −1/3 ρ dm −1/6 . The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10 −6 M ⊙
International Conference on Antenna Theory and Techniques
1999-12-03
Krüger, Introduction to Solar radio astronomy and radio physics.- D.Reidel publishing company. Dordrecht: Hol- land/Boston: USA. London: England. 1982...REFERENCES 1. M. S. Juk, J. B. Molochkov Designing lens, scan- ning, broadband of antennae and feeder devices. - Moscow: Energia , 1973. - 440 p...system of this antenna was exe- cuted. Besides the thermal deformations of a mirror caused by daytime solar heating were investigated as well as
Energy Technology Data Exchange (ETDEWEB)
Zauderer, B. Ashley; Bolatto, Alberto D.; Vogel, Stuart N.; Curley, Roger; Pound, Marc W.; Mundy, Lee G.; Teng, Stacy H.; Teuben, Peter J. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 249-17, Pasadena, CA 91125 (United States); Peréz, Laura M. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Lamb, James W.; Woody, David P.; Leitch, Erik M.; Muchovej, Stephen J.; Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States); Bock, Douglas C.-J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping NSW 1710 (Australia); Carlstrom, John E.; Culverhouse, Thomas L. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Plambeck, Richard L. [Radio Astronomy Laboratory, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Marrone, Daniel P. [Department of Astronomy, Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); and others
2016-01-15
Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009–2010 winter observing season where we utilize CARMA's eight 3.5 m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1 and 10.4 m antennas on baselines ranging from a few hundred meters to ∼2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located ≲6° away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in {sup 12}CO(2-1) at a linear resolution of ≈70 pc (0.″12 × 0.″18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes ∼30% of the dynamical mass in the inner 700 pc of this object with a surface density ∼10{sup 4} M{sub ⊙} pc{sup −2}; we compare these properties to those of the starburst region of NGC 253.
The Use of Conductive Ink in Antenna Education and Design
Addison, David W.
Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
2004-02-01
Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r
International Nuclear Information System (INIS)
Trias, Miquel; Vecchio, Alberto; Veitch, John
2009-01-01
Bayesian analysis of Laser Interferometer Space Antenna (LISA) data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a delayed rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.
Czech Academy of Sciences Publication Activity Database
Jakl Krečmarová, Marie; Petrák, Václav; Taylor, Andrew; Sankaran, K. J.; Lin, I. N.; Jäger, Aleš; Gärtnerová, Viera; Fekete, Ladislav; Drahokoupil, Jan; Laufek, František; Vacík, Jiří; Hubík, Pavel; Mortet, Vincent; Nesladek, M.
2014-01-01
Roč. 211, č. 10 (2014), s. 2296-2301 ISSN 1862-6300 R&D Projects: GA ČR GA13-31783S; GA MŠk(CZ) LM2011026; GA MŠk(XE) LM2011019 Grant - others:OP VK(XE) CZ.1.07/2.3.00/20.0306; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61389005 Keywords : linear antenna * nano-diamond * nitrogen doping * TEM * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.616, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/pssa.201431255/full
Smart antennas in aerospace applications
Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, C.G.H.; Marpaung, D.A.I.
2010-01-01
The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with
Development of ceramic-free antenna feeder
International Nuclear Information System (INIS)
Moriyama, S.; Kimura, H.; Fujii, T.; Saigusa, M.; Arai, H.
1994-01-01
We have proposed a ceramics-free antenna feeder line employing a ridged waveguide as a local support for IC antenna of next-generation tokamaks. One fourth mock-up model of the all metal waveguide designed for the ITER ICRF system is fabricated and electrical characteristics of the model including the coaxial line - waveguide converter are measured. Power reflection coefficient of the model including the coax-waveguide converter to the input coaxial line is estimated to be less than 15% below the cut-off frequency of 107 MHz and less than 3% above the cut-off frequency. It is found that this ceramics-free antenna support employing a ridged waveguide is quite available for IC antenna of next-generation tokamaks. (author)
PBG based terahertz antenna for aerospace applications
Choudhury, Balamati; Jha, Rakesh Mohan
2016-01-01
This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.
Energy Technology Data Exchange (ETDEWEB)
Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706 (United States)
2016-08-07
We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of the reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.
Printing of Wearable Antenna on Textile
Directory of Open Access Journals (Sweden)
Khirotdin Rd. Khairilhijra
2018-01-01
Full Text Available A wearable antenna which is meant to be a part of the clothing used for communication purposes includes tracking, navigation and mobile computing has been seen in demand due to the recent miniaturization of wireless devices. Printing of conductive ink provides flexibility properties on electronics thus allowing it to be used on conformal surfaces. However, the current printing techniques mostly suffer from ink incompatibility and limited of substrates to be printed with. Hence, this paper intend to discloses the printing of wearable antenna using alternative technique via syringe-based deposition system with conductive ink on textile. A validation between simulation and measurement of return loss, (S11 and radiation pattern of the antenna printed is also performed. It was found that a functional antenna is successfully printed on textile since the performances obtained are as expected. The antenna resonated at a minimum resonant frequency of 1.82 GHz which the S11 gathered at-18.90 dB. The radiation pattern for both simulation and measurement is as predicted since both have a larger magnitude of the main lobe than the side lobe. The magnitude of the main lobe from measurement was observed to be 8.83 dB higher than the magnitude of the main lobe of the simulation which is only 3.77 dB. It is proven that the syringe-based deposition system is capable of printing functional antenna on textile.
Compact super-wideband optical antenna
Wang, Wen C.; Forber, Richard; Bui, Kenneth
2009-05-01
We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.
Antennas from theory to practice
Huang, Yi
2008-01-01
Practical, concise and complete reference for the basics of modern antenna design Antennas: from Theory to Practice discusses the basics of modern antenna design and theory. Developed specifically for engineers and designers who work with radio communications, radar and RF engineering, this book offers practical and hands-on treatment of antenna theory and techniques, and provides its readers the skills to analyse, design and measure various antennas. Key features: Provides thorough coverage on the basics of transmission lines, radio waves and propag
Micropatch Antenna Phase Shifting
National Research Council Canada - National Science Library
Thursby, Michael
2000-01-01
.... We have been looking at the ability of embedded element to adjust the phase shift seen by the element with the goal of being able to remove the phase shifting devices from the antenna and replace...
Micropatch Antenna Phase Shifting
National Research Council Canada - National Science Library
Thursby, Michael
1999-01-01
.... We have been looking at the ability of embedded element to adjust the phase shift seen by the element wit the goal of being able to remove the phase shifting devices from the antenna and replace...
Rochblatt, David J.; Seidel, Boris L.
1992-01-01
This microwave holography technique utilizes the Fourier transform relation between the complex far field radiation pattern of an antenna and the complex aperture field distribution. Resulting aperture phase and amplitude distribution data can be used to precisely characterize various crucial performance parameters, including panel alignment, panel shaping, subreflector position, antenna aperture illumination, directivity at various frequencies, and gravity deformation effects. The methodology of data processing presented here was successfully applied to the Deep Space Network (DSN) 34-m beam waveguide antennas. The antenna performance was improved at all operating frequencies by reducing the main reflector mechanical surface rms error to 0.43 mm. At Ka-band (32 GHz), the estimated improvement is 4.1 dB, resulting in an aperture efficiency of 52 percent. The performance improvement was verified by efficiency measurements and additional holographic measurements.
Low-SAR metamaterial-inspired printed monopole antenna
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2017-01-01
In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.