WorldWideScience

Sample records for vivo skin analysis

  1. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM).

    Science.gov (United States)

    Ou, Xiang; Pan, Wei; Xiao, Perry

    2014-01-02

    We present our latest work on in vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). The in vivo skin capacitive images were taken by a capacitance based fingerprint sensor, the skin capacitive images were then analysed by GLCM. Four different GLCM feature vectors, angular second moment (ASM), entropy (ENT), contrast (CON) and correlation (COR), are selected to describe the skin texture. The results show that angular second moment increases as age increases, and entropy decreases as age increases. The results also suggest that the angular second moment values and the entropy values reflect more about the skin texture, whilst the contrast values and the correlation values reflect more about the topically applied solvents. The overall results shows that the GLCM is an effective way to extract and analyse the skin texture information, which can potentially be a valuable reference for evaluating effects of medical and cosmetic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Fatty acids penetration into human skin ex vivo: A TOF-SIMS analysis approach.

    Science.gov (United States)

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-03-02

    Linoleic, oleic, palmitoleic, palmitic, and stearic fatty acids (FAs) are commonly used in dermatological formulations. They differ by their structure, presence in the skin, and mode of application in pharmaceuticals and cosmetics compounding. These FAs are also known as chemical penetration enhancers, but their mechanisms of penetration enhancement and effect on barrier characteristics of the skin require additional study. In this study, the authors conducted an ex vivo analysis of the distribution of lipid components in the epidermis and dermis of human skin after applying individual FAs. The goal was to elucidate possible mechanisms of penetration enhancement and FA effects on barrier characteristics of the skin. FA penetration studies were conducted ex vivo on human skin and time-of-flight secondary ion mass spectrometry (TOF-SIMS) bioimaging analysis was performed to visualize and analyze distribution of FAs in skin sections. The current study demonstrated that TOF-SIMS imaging was effective in visualizing the distribution of linoleic, oleic, palmitoleic, palmitic, and stearic acid in the human skin ex vivo after the skin penetration experiment of individual FAs. The integration of the obtained TOF-SIMS images allowed a semiquantitative comparison of the effects induced by individual FA applications on the human skin ex vivo. FAs showed varying abilities to penetrate the skin and disorder the FAs within the skin, based on their structures and physicochemical properties. Linoleic acid penetrated the skin and changed the distribution of all the analyzed FAs. Skin treatment with palmitoleic or oleic acid increased the amounts of singular FAs in the skin. Penetration of saturated FAs was low, but it increased the detected amounts of linoleic acid in both skin layers. The results indicate that application of FAs on the skin surface induce redistribution of native FAs not only in the stratum corneum layer of epidermis but also in the lipid content of full epidermis

  3. Analysis of Human and Porcine Skin in vivo/ex vivo for Penetration of Selected Oils by Confocal Raman Microscopy.

    Science.gov (United States)

    Choe, ChunSik; Lademann, Jürgen; Darvin, Maxim E

    2015-01-01

    The subject of oil penetration into the skin is controversially discussed in the scientific literature. Confocal Raman microscopy was used for analyzing oil penetration into the skin. The following methods were applied in the study: methods based on tracking specific peaks (method 1), the nonrestricted multiple least square fit (method 2), analyzing the lipid-to-keratin peak ratio using the perpendicular drop-down cutoff procedure (method 3), and the Gaussian function-based deconvolution procedure (method 4). The results obtained using methods 1, 2 and 4 show that the investigated oils do not penetrate deeper than 11 µm into human and porcine skin. Petrolatum has a prominent swelling effect on the stratum corneum (32% in vivo, 28% ex vivo), while the other oils exhibit no significant swelling effect. By using method 3, the penetration profile of oils, and especially of petrolatum, into the skin was interpreted incorrectly for various reasons that are addressed herein below. Predominantly remaining in the uppermost corneocyte layers of the stratum corneum, topically applied oils do not reach the viable cells of the stratum spinosum. To exclude any possible mistakes when using the lipid-keratin Raman peak (2,820-3,030 cm-1), the penetration analysis should be performed using the Gaussian function-based deconvolution procedure. © 2015 S. Karger AG, Basel.

  4. A preclinical model for the analysis of genetically modified human skin in vivo.

    Science.gov (United States)

    Del Rio, Marcela; Larcher, Fernando; Serrano, Fernando; Meana, Alvaro; Muñoz, Marta; Garcia, Marta; Muñoz, Evangelina; Martin, Clara; Bernad, Antonio; Jorcano, José Luis

    2002-05-20

    Although skin is perhaps the most accessible of all somatic tissues for therapeutic gene transfer, it is a challenging site when attempting gene delivery. In addition to the transience of gene expression, important obstacles to cutaneous gene therapy have included the inability to sustain gene expression in a large proportion of keratinocytes within a given skin compartment. In this study, we have developed a novel experimental strategy that allows long-term regeneration of entirely genetically engineered human skin on the backs of NOD/SCID mice. Primary human keratinocytes were infected with a retroviral vector encoding the enhanced green fluorescent protein (EGFP) produced by transient transfection of 293T cells. EGFP expression allowed cell-sorting selection of a polyclonal population of productively transduced keratinocytes that were assembled in a live fibroblast-containing fibrin dermal matrix and orthotopically grafted onto mice. Epifluorescent illumination of the transplanted zone allowed in vivo monitoring of the genetically modified graft. EGFP-positive human skin was present on mice for 22 weeks after grafting. In addition, frozen sections prepared from the grafts displayed consistently strong EGFP-based fluorescence in all epidermal strata at every time point examined. Persistence of transgene expression was further confirmed through EGFP protein immunodetection. Purified EGFP-positive keratinocytes grafted as part of the fibrin-based artificial skin were capable of generating multilayer human epidermis on mice, with well-developed granulosum and corneum strata, and clearly defined rete ridges. Finally, the large proportion of transduced keratinocytes in our grafts allowed us to study, for the first time, the long-term in vivo clonal reconstitution pattern of the regenerated skin. Analysis of the provirus insertion sites indicates that a discrete number of epidermal stem cell clones was responsible for the maintenance of human skin regenerated in NOD

  5. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  6. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    Science.gov (United States)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-05-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  7. In vitro-in vivo correlation in skin permeation.

    Science.gov (United States)

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  8. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  9. Responsive corneosurfametry following in vivo skin preconditioning.

    Science.gov (United States)

    Uhoda, E; Goffin, V; Pierard, G E

    2003-12-01

    Skin is subjected to many environmental threats, some of which altering the structure and function of the stratum corneum. Among them, surfactants are recognized factors that may influence irritant contact dermatitis. The present study was conducted to compare the variations in skin capacitance and corneosurfametry (CSM) reactivity before and after skin exposure to repeated subclinical injuries by 2 hand dishwashing liquids. A forearm immersion test was performed on 30 healthy volunteers. 2 daily soak sessions were performed for 5 days. At inclusion and the day following the last soak session, skin capacitance was measured and cyanoacrylate skin-surface strippings were harvested. The latter specimens were used for the ex vivo microwave CSM. Both types of assessments clearly differentiated the 2 hand dishwashing liquids. The forearm immersion test allowed the discriminant sensitivity of CSM to increase. Intact skin capacitance did not predict CSM data. By contrast, a significant correlation was found between the post-test conductance and the corresponding CSM data. In conclusion, a forearm immersion test under realistic conditions can discriminate the irritation potential between surfactant-based products by measuring skin conductance and performing CSM. In vivo skin preconditioning by surfactants increases CSM sensitivity to the same surfactants.

  10. Analysis of Reparative Activity of Platelet Lysate: Effect on Cell Monolayer Recovery In Vitro and Skin Wound Healing In Vivo.

    Science.gov (United States)

    Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D

    2016-11-01

    Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.

  11. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo.

    Science.gov (United States)

    Mujica Ascencio, Saul; Choe, ChunSik; Meinke, Martina C; Müller, Rainer H; Maksimov, George V; Wigger-Alberti, Walter; Lademann, Juergen; Darvin, Maxim E

    2016-07-01

    Propylene glycol is one of the known substances added in cosmetic formulations as a penetration enhancer. Recently, nanocrystals have been employed also to increase the skin penetration of active components. Caffeine is a component with many applications and its penetration into the epidermis is controversially discussed in the literature. In the present study, the penetration ability of two components - caffeine nanocrystals and propylene glycol, applied topically on porcine ear skin in the form of a gel, was investigated ex vivo using two confocal Raman microscopes operated at different excitation wavelengths (785nm and 633nm). Several depth profiles were acquired in the fingerprint region and different spectral ranges, i.e., 526-600cm(-1) and 810-880cm(-1) were chosen for independent analysis of caffeine and propylene glycol penetration into the skin, respectively. Multivariate statistical methods such as principal component analysis (PCA) and linear discriminant analysis (LDA) combined with Student's t-test were employed to calculate the maximum penetration depths of each substance (caffeine and propylene glycol). The results show that propylene glycol penetrates significantly deeper than caffeine (20.7-22.0μm versus 12.3-13.0μm) without any penetration enhancement effect on caffeine. The results confirm that different substances, even if applied onto the skin as a mixture, can penetrate differently. The penetration depths of caffeine and propylene glycol obtained using two different confocal Raman microscopes are comparable showing that both types of microscopes are well suited for such investigations and that multivariate statistical PCA-LDA methods combined with Student's t-test are very useful for analyzing the penetration of different substances into the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The relationship between skin aging and steady state ultraweak photon emission as an indicator of skin oxidative stress in vivo.

    Science.gov (United States)

    Gabe, Y; Osanai, O; Takema, Y

    2014-08-01

    Ultraweak photon emission (UPE) is one potential method to evaluate the oxidative status of the skin in vivo. However, little is known about how the daily oxidative stress of the skin is related to skin aging-related alterations in vivo. We characterized the steady state UPE and performed a skin survey. We evaluated the skin oxidative status by UPE, skin elasticity, epidermal thickness and skin color on the inner upper arm, the outer forearm, and the buttock of 70 Japanese volunteers. The steady state UPE at the three skin sites increased with age. Correlation analysis revealed that the steady state UPE only from the buttock was related to skin elasticity, which showed age-dependent changes. Moreover, analysis by age group indicated that b* values of the inner upper arm of subjects in their 20s were inversely correlated with UPE as occurred in buttock skin. In contrast, photoaged skin did not show a clear relationship with steady state UPE because the accumulation of sun-exposure might influence the sensitivity to oxidative stress. These results suggest that steady state UPE reflects not only intrinsic skin aging and cutaneous color but also the current oxidative status independent of skin aging. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Physiochemical properties and resorption progress of porcine skin-derived collagen membranes: In vitro and in vivo analysis

    National Research Council Canada - National Science Library

    AN, Yin-Zhe; KIM, You-Kyoung; LIM, Su-Min; HEO, Yeong-Ku; KWON, Mi-Kyung; CHA, Jae-Kook; LEE, Jung-Seok; JUNG, Ui-Won; CHOI, Seong-Ho

    2018-01-01

    The aim of the present study was to evaluate the physiochemical properties and resorption progress of two cross-linked, porcine skin-derived collagen membranes and compare their features with those of...

  14. In vivo human skin autofluorescence: color perception

    Science.gov (United States)

    Utz, Sergei R.; Knuschke, Peter; Mavlyutov, Albert H.; Pilipenko, Helena A.; Sinichkin, Yurii P.

    1996-12-01

    The most frequently used techniques in the human skin diagnostics are reflectance and fluorescence spectroscopy. Technique of chromametry is based on color perception of the reflected from the skin white light. In CIE1976 (L*a*b*) color space the quantity estimation of color-difference between different states of the human skin have been defined by changes in parameters of brightness, hue and chroma of reflected light. This report focuses on the use of the perception of the color difference between autofluorescence of the human skin under different conditions for the purpose of skin diagnostics.

  15. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on

  16. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  17. In-Vivo Human Skin to Textiles Friction Measurements

    Science.gov (United States)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  18. In vivo optical coherence tomography of human skin microstructure

    Science.gov (United States)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Pravdenko, Kirill I.; Shabanov, Dmitry V.; Gladkova, Natalia D.; Pochinko, Vitaly; Zhegalov, V.; Dmitriev, G.; Vazina, I.; Petrova, Galina P.; Nikulin, Nikolai K.

    1994-12-01

    A compact effective optical coherence tomography (OCT) system is presented. It contains approximately equals 0.3 mW superluminescent diode with spectral width 30 nm FWHM (providing approximately equals 15 micrometers longitudinal resolution) and fiber interferometer with integrated longitudinal scanning. The dynamic range 60 dB allows to observe structure of human skin in vivo up to 1.5 mm in depth. A comparison of obtained tomographs with data of histologic analysis of the same samples of the skin have been carried out to identify the observed structures and determine their optical properties. This technique allows one to perform noncontact, noninvasive diagnostic of early stages of different pathological state of the skin, to measure the burn depth and to observe the process of the recovery. Unlike scanning confocal microscopy, OCT is more suitable for an endoscopic investigation of the mucous membranes of hollow organs. Possible diagnostic applications include dermatology, gastroenterology, gynecology, urology, oncology, othorinolaryngology, transplantology. The most promising features are the potential possibility of differential diagnosis of precancer and various types of cancer, estimation of the invasion depth, differential diagnosis of inflammation and dystrophic processes, control of radical operative treatment.

  19. Skin tissue engineering--in vivo and in vitro applications.

    Science.gov (United States)

    Groeber, Florian; Holeiter, Monika; Hampel, Martina; Hinderer, Svenja; Schenke-Layland, Katja

    2011-04-30

    Significant progress has been made over the years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin or for the establishment of human-based in vitro skin models. This review summarizes these advances in in vivo and in vitro applications of tissue-engineered skin. We further highlight novel efforts in the design of complex disease-in-a-dish models for studies ranging from disease etiology to drug development and screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Combined Raman spectroscopy and autofluoresence imaging method for in vivo skin tumor diagnosis

    Science.gov (United States)

    Zakharov, V. P.; Bratchenko, I. A.; Myakinin, O. O.; Artemyev, D. N.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2014-09-01

    The fluorescence and Raman spectroscopy (RS) combined method of in vivo detection of malignant human skin cancer was demonstrated. The fluorescence analysis was used for detection of abnormalities during fast scanning of large tissue areas. In suspected cases of malignancy the Raman spectrum analysis of biological tissue was performed to determine the type of neoplasm. A special RS phase method was proposed for in vivo identification of skin tumor. Quadratic Discriminant Analysis was used for tumor type classification on phase planes. It was shown that the application of phase method provides a diagnosis of malignant melanoma with a sensitivity of 89% and a specificity of 87%.

  1. In-vivo spectroscopic ellipsometry measurements of human skin

    Science.gov (United States)

    Chan, Danny; Schulz, Benjamin; Ruebhausen, Michael

    2004-03-01

    Human skin can be described as a layered biological tissue. Knowledge of the behaviour of the optical properties of skin across the layers is limited. We describe an ellipsometric setup for spectrally resolved in-vivo measurements of human skin and show measurements of the complex refractive index N=n+ik of the finger of several volunteers over a range from 330 to 780 nm. A tapestripping study of human skin reveals the profile of the complex refractive index extracted from a simple bulk model over the stratum corneum. Fits of the evolution of n and k to an exponential function show that after approximately five strips a steady state is reached. A refined model applying an effective medium approximation accounting for surface roughness describes the development of the ellipsometric parameter Ψ in terms of the skin's increased water content with deeper depth of the measured layer.

  2. In vivo multiphoton imaging of the eyelid skin

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; König, Karsten

    2017-02-01

    Multiphoton tomography (MPT) has become an important imaging method for non-invasive and high-resolution imaging of the skin in vivo. Due to the nonlinear excitation, by using near-infrared (NIR) light, 3D information is intrinsically provided. In combination with fluorescence lifetime imaging (FLIM), it is possible to obtain both structural and metabolic data. Human in vivo measurements are usually limited to easily accessible regions. However, often imaging of specific body parts such as the eyelid are of interest for cosmetic reasons. By using the clinically certified multiphoton imaging tomograph MPTflex this demand can be fulfilled. An articulated mirror arm and scan-detector head enable imaging at otherwise difficult-to-access areas. We show the characterization of the epidermal and upper dermal layers of the eyelid skin of human volunteers in vivo based on endogenous autofluorescence intensity, lifetime, and second-harmonic generation signals. Skin properties such as the epidermal thickness were also assessed. Furthermore, the influence of an anti-aging cream on the eyelid and forearm skin was investigated. Changes of the skin epidermis autofluorescence lifetime were observed after two-weeks long application of an anti-aging cream. The SHG-to-AF aging index of dermis (SAAID) increased during that time.

  3. In vivo skin elastography with high-definition optical videos.

    Science.gov (United States)

    Zhang, Yong; Brodell, Robert T; Mostow, Eliot N; Vinyard, Christopher J; Marie, Hazel

    2009-08-01

    Continuous measurements of biomechanical properties of skin provide potentially valuable information to dermatologists for both clinical diagnosis and quantitative assessment of therapy. This paper presents an experimental study on in vivo imaging of skin elastic properties using high-definition optical videos. The objective is to (i) investigate whether skin property abnormalities can be detected in the computed strain elastograms, (ii) quantify property abnormalities with a Relative Strain Index (RSI), so that an objective rating system can be established, (iii) determine whether certain skin diseases are more amenable to optical elastography and (iv) identify factors that may have an adverse impact on the quality of strain elastograms. There are three steps in optical skin elastography: (i) skin deformations are recorded in a video sequence using a high-definition camcorder, (ii) a dense motion field between two adjacent video frames is obtained using a robust optical flow algorithm, with which a cumulative motion field between two frames of a larger interval is derived and (iii) a strain elastogram is computed by applying two weighted gradient filters to the cumulative motion data. Experiments were carried out using videos of 25 patients. In the three cases presented in this article (hypertrophic lichen planus, seborrheic keratosis and psoriasis vulgaris), abnormal tissues associated with the skin diseases were successfully identified in the elastograms. There exists a good correspondence between the shape of property abnormalities and the area of diseased skin. The computed RSI gives a quantitative measure of the magnitude of property abnormalities that is consistent with the skin stiffness observed on clinical examinations. Optical elastography is a promising imaging modality that is capable of capturing disease-induced property changes. Its main advantage is that an elastogram presents a continuous description of the spatial variation of skin properties on

  4. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model

    OpenAIRE

    Sidgwick, G. P.; McGeorge, D.; Bayat, A.

    2016-01-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be ...

  5. Noninvasive in-vivo optical properties of skin tumors

    Science.gov (United States)

    Garcia-Uribe, Alejandro; Smith, Elizabeth B.; Zou, Jun; Duvic, Madeleine; Wang, Lihong V.

    2009-02-01

    This paper presents a study for in-vivo estimation of optical properties of pigmented skin tumor by oblique incidence diffuse reflectance spectroscopy. The developed system has been tested in clinical conditions to compare the optical properties of melanomas, dysplastic nevi and common nevi. The spatio-spectral data are collected in the wavelength range of 455 to 765 nm from 96 pigmented skin lesions including 10 histopathologically diagnosed as melanoma, 67 as dysplastic nevi and 19 lesions as common nevi. The preliminary results indicate significantly larger average reduced scattering coefficient spectra for malignant and dysplastic lesions than for benign common nevi.

  6. OCT monitoring of cosmetic creams in human skin in vivo

    Science.gov (United States)

    Han, Seung Hee; Yoon, Chang Han; Conroy, Leigh; Vitkin, I. Alex

    2012-02-01

    Optical coherence tomography (OCT) is a tool currently used for noninvasive diagnosis of human disease as well as for monitoring treatment during or after therapy. In this study, OCT was used to examine penetration and accumulation of cosmetic creams on human hand skin. The samples varied in collagen content with one formulation containing soluble collagen as its primary active ingredient. Collagen is a major connective tissue protein that is essential in maintaining health vitality and strength of many organs. The penetration and localization of collagen in cosmetic creams is thought to be the main determinant of the efficacy of new collagen synthesis. Detection and quantification of collagen in cosmetic creams applied to skin may thus help predict the eventual efficacy of the product in skin collagen regeneration. We hypothesize that the topically applied collagen may be detectable by OCT through its modulation of skin scattering properties. To test this hypothesis, we used a FDML swept-source optical coherence tomography (SS-OCT) system. A particular location on the skin of two male adult volunteers was used to investigate 4 different cosmetic creams. The duration of OCT monitoring of cosmetic penetration into skin ranged from 5 minutes to 2 hours following topical application. The results showed that OCT can discriminate between a cream with collagen and other collagen-free formulations. Thus it seems feasible that OCT intensity can monitor the in vivo effects of topical application of collagen contained in cosmetic formulations.

  7. In vivo measurements of human neck skin elasticity using MRI and finite element modeling.

    Science.gov (United States)

    An, Yunqiang; Ji, Changjin; Li, Yong; Wang, Jianxia; Zhang, Xinyue; Huang, Yaqi

    2017-04-01

    The assessment of mechanical properties of the human skin is very important in investigating the mechanism of obstructive sleep apnea, a common disorder characterized by repetitive collapse and obstruction of the upper airway during sleep. In this study, a unique method, combining magnetic resonance imaging (MRI) and finite element modeling (FEM), was developed to obtain the value of the in vivo elastic modulus of the neck skin. A total of 22 subjects, 16 males and six females, were recruited to participate in the MRI studies. The changes in the airway and the neck size resulting from fluid shift from the lower body to the neck were measured based on the MR images. A two-dimensional plane strain FE model was built to simulate such changes in the neck cross-section for each subject. Solving an inverse problem using FEM by matching the measured data, we obtained the in vivo elastic modulus of the neck skin to be 1.78 ± 1.73 MPa. Results showed that the elastic modulus tended to increase with age and body mass index for these subjects. A sensitivity analysis of the muscle and fat mechanical parameters was also performed to test their effects on the predicted skin elasticity. The unique method developed in this study for measuring the in vivo elastic modulus of the neck skin is quite effective, and the skin elasticity value obtained using this method is credible. © 2017 American Association of Physicists in Medicine.

  8. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    Science.gov (United States)

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  9. In vivo human-skin electrical conduction and pain sensations

    Energy Technology Data Exchange (ETDEWEB)

    Voegelin, M. R. [Florence, Univ. (Italy). Div. di Fisica Medica. Dipt. di Fisiopatologia; Paoli, G.; Zoppi, M. [Florence, Univ. (Italy). Istituto della I Clinica Medica

    1997-06-01

    In vivo human skin is stimulated by direct current the intensity of which ranges from 1 {mu}A to 1 mA. They have detected the voltage/current plot and the temporal trend of potential difference between two electrodes placed in a suitable cutaneous region of stimulation, in a group of healthy subjects. They have elaborated a non-linear functional equivalent model to describe the system behaviour. The electrical stimulation can induce painful sensation, over a critical value of the current intensity, and they believe that this sensation is due to thermal dissipation into the inner layers of the skin. In fact, subjects begin to feel pain when the electric power dissipated in the stimulated region for unit time is within the range of 235-260 mcal/cm{sup 2}{center_dot}s, that corresponds to the thermal threshold required to evoke pain.

  10. An immunohistological study of anhydrous topical ascorbic acid compositions on ex vivo human skin.

    Science.gov (United States)

    Heber, Geoffrey K; Markovic, Boban; Hayes, Amanda

    2006-06-01

    Ascorbic acid has numerous essential and beneficial functions in normal and photoaged skin. Ionisation of ascorbic acid in aqueous topical formulations leads to oxidative degradation. Ascorbic acid in an anhydrous vehicle would inherently have greater stability. The objective of this study was to observe the effects of two anhydrous formulations containing microfine particles of ascorbic acid on neocollagenesis and cytokeratin production in ex vivo human skin. Vitamin C preparations were applied topically onto the surface of freshly excised human abdominal skin. Following an exposure time of 48 h with appropriate controls, skin discs were cut into sections, placed on slides and assessed using immunohistochemical (antibodies: collagen type I, III, cytokeratin) staining. Analysis was performed using microscopy and descriptive rating. Both formulations resulted in increased production of collagen types I and III and cytokeratin. The application of anhydrous formulations containing microfine particles of ascorbic acid to ex vivo human skin in this study resulted in neocollagenesis and increased production of cytokeratin. This approach appears to enable biological effects of ascorbic acid in the skin using a vehicle which would provide it greater stability than an aqueous vehicle.

  11. In vivo terahertz pulsed spectroscopy of dysplastic and non-dysplastic skin nevi

    Science.gov (United States)

    Zaytsev, Kirill I.; Chernomyrdin, Nikita V.; Kudrin, Konstantin G.; Gavdush, Arseniy A.; Nosov, Pavel A.; Yurchenko, Stanislav O.; Reshetov, Igor V.

    2016-08-01

    The results of the in vivo terahertz (THz) pulsed spectroscopy (TPS) of pigmentary skin nevi are reported. Observed THz dielectric permittivity of healthy skin and dysplastic and non-dysplastic skin nevi exhibits significant contrast in THz frequency range. Dysplastic skin nevus is a precursor of melanoma, which is reportedly the most dangerous cancer of the skin. Therefore, the THz dielectric spectroscopy is potentially an effective tool for non-invasive early diagnosis of melanomas of the skin.

  12. Determination of the thickness and structure of the skin barrier by in vivo laser scanning microscopy

    Science.gov (United States)

    Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Knorr, F.; Sterry, W.; Antoniou, Ch

    2008-04-01

    Normal skin barrier function is an essential aspect of skin homeostasis and regeneration. Dynamic inflammatory, proliferative and neoplastic skin processes such as wound healing, psoriasis and contact dermatitis are associated with a significant disruption of the skin barrier. In recent years, there has been increasing interest in evaluating cosmetic and pharmacologic products for their ability to restore these protective properties. The gold standard for characterization of barrier function has been the measurement of the transepidermal water loss, however the disadvantage of this method is its interference with several endogenous and exogenous factors such as hydration, perspiration and topically applied substances. This study was aimed to test the clinical applicability of a fluorescence confocal laser scanning microscope (LSM) for a systematic morphologic analysis of the structure, integrity and thickness of the stratum corneum in 10 otherwise healthy volunteers. The influence of skin treatment with commercial moisturizing cream on skin barrier function was evaluated in serial non-invasive examinations. Our findings showed that in vivo LSM may represent a simple and efficient method for the characterization of skin barrier properties, such as the thickness and hydration of the stratum corneum.

  13. Stratum corneum damage and ex vivo porcine skin water absorption - a pilot study

    DEFF Research Database (Denmark)

    Duch Lynggaard, C; Bang Knudsen, D; Jemec, G B E

    2009-01-01

    A simple ex vivo screening technique would be of interest for mass screening of substances for potential barrier disruptive qualities. Ex vivo water absorption as a marker of skin barrier integrity was studied on pig ear skin. Skin water absorption was quantified by weighing and weight changes were...... found to reflect prehydration barrier damage. It is suggested that this simple model may be elaborated to provide a rapid, economical screening tool for potential skin irritants....

  14. In vivo skin characterization by confocal Raman microspectroscopy

    NARCIS (Netherlands)

    P.J. Caspers (Peter)

    2003-01-01

    markdownabstract__Abstract__ Various areas of skin research depend on detailed knowledge of the molecular composition of skin and molecular structure of skin constituents. On a microscopic scale the skin is a highly heterogeneous tissue. Molecular composition and structure vary

  15. In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin.

    Directory of Open Access Journals (Sweden)

    Paul W Dyce

    Full Text Available We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs. Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+. After differentiation, some GFP(+ OLCs reached 40-45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼ 0.3% of the freshly isolated skin cells were GFP(+. The GFP-positive cells increased to ∼ 7% after differentiation, suggesting that the GFP(+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.

  16. A new algorithm for the discrimination of actinic keratosis from normal skin and squamous cell carcinoma based on in vivo analysis of optical properties by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Suppa, M; Marneffe, A

    2016-01-01

    a semiautomated classification of lesions easier to handle by non-experts. OBJECTIVES: The aim of this paper was to quantify in vivo optical properties of facial located AK/SCC lesions, such as light attenuation, by HD-OCT. Additional objectives were to determine the best critical value of these optical...... accuracy strongly depends on the experience of physicians. In two recent studies, it was demonstrated that HD-OCT permits to quantify in vivo optical properties such as light attenuation in intrinsic ageing skin, in melanocytic lesions and in basal cell carcinoma. This approach seems to permit...... properties for discrimination of AK from SCC and from normal sun exposed skin and to subdifferentiate AKs. METHODS: The technique of semi-log plot has been implemented on HD-OCT signals. This permitted the in vivo measurement of OCT signals coming from the skin entrance up to the superficial reticular dermis...

  17. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    Science.gov (United States)

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p animal models in this context, prior to study in a clinical trial environment.

  18. In Vivo Human Skin Penetration Study of Sunscreens by Confocal Raman Spectroscopy.

    Science.gov (United States)

    Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Martin, Airton Abrahão

    2017-10-05

    This research work mainly deals with the application of confocal Raman spectroscopic technique to study in vivo human skin penetration of sunscreen products, as there are a lot of controversies associated with their skin penetration. Healthy human volunteers were tested for penetration of two commercial sunscreen products into their volar forearm skin for a period of 2 h. Measurements were taken before and after application of these sunscreen products. All the confocal Raman spectra were pre-processed and then subjected to multivariate two-dimensional principal component analysis and classical least squares analysis to determine the skin penetration of these sunscreens in comparison to the "sunscreen product spectrum" which was considered as the control. Score plots of principal component analysis of confocal Raman spectra indicated clear separation between the spectra before and after application of sunscreen products. Loading plots showed the maximum differences in the spectral region from 1590 to 1626 cm(-1) where the characteristic peak of the pure sunscreen products was observed. Classical least squares analysis has shown a significant penetration to a depth of 10 μm in the volar forearm skin of healthy human volunteers for both these sunscreen products. The results confirm that the penetration of these tested sunscreen products was restricted to stratum corneum and also prove that confocal Raman spectroscopy is a simple, fast, nondestructive, and noninvasive semi-quantitative analytical technique for these studies.

  19. Paired comparison of the sensitivity and specificity of multispectral digital skin lesion analysis and reflectance confocal microscopy in the detection of melanoma in vivo: A cross-sectional study.

    Science.gov (United States)

    Song, Eunice; Grant-Kels, Jane M; Swede, Helen; D'Antonio, Jody L; Lachance, Avery; Dadras, Soheil S; Kristjansson, Arni K; Ferenczi, Katalin; Makkar, Hanspaul S; Rothe, Marti J

    2016-12-01

    Several technologies have been developed to aid dermatologists in the detection of melanoma in vivo including dermoscopy, multispectral digital skin lesion analysis (MDSLA), and reflectance confocal microscopy (RCM). To our knowledge, there have been no studies directly comparing MDSLA and RCM. We conducted a repeated measures analysis comparing the sensitivity and specificity of MDSLA and RCM in the detection of melanoma (n = 55 lesions from 36 patients). Study patients (n = 36) with atypical-appearing pigmented lesions (n = 55) underwent imaging by both RCM and MDSLA. Lesions were biopsied and analyzed by histopathology. RCM exhibited superior test metrics (P = .001, McNemar test) compared with MDSLA. Respectively, sensitivity measures were 85.7% and 71.4%, and specificity rates were 66.7% and 25.0%. The sample size was relatively small and was collected from only one dermatologist's patient base; there was some degree of dermatopathologist interobserver variability; and only one confocalist performed the RCM image evaluations. RCM is a useful adjunct during clinical assessment of in vivo lesions suspicious for melanoma or those requiring re-excision because of high level of dysplasia or having features consistent with an atypical melanocytic nevus with severe cytologic atypia. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    Science.gov (United States)

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  1. Real-time trace gas sensing of ethylene, propanal and acetaldehyde from human skin in vivo.

    NARCIS (Netherlands)

    Moeskops, B.W.M.; Steeghs, M.M.L.; Swam, K. van; Cristescu, S.M.; Scheepers, P.T.J.; Harren, F.J.M.

    2006-01-01

    Trace gases emitted by human skin in vivo are monitored non-invasively and in real time using laser-based photoacoustic detection and proton-transfer reaction mass spectrometry. A small quartz cuvette is placed on the skin to create a headspace from which a carrier gas transports the skin emissions

  2. Monte Carlo simulation of near infrared autofluorescence measurements of in vivo skin.

    Science.gov (United States)

    Wang, Shuang; Zhao, Jianhua; Lui, Harvey; He, Qingli; Zeng, Haishan

    2011-12-02

    The autofluorescence properties of normal human skin in the near-infrared (NIR) spectral range were studied using Monte Carlo simulation. The light-tissue interactions including scattering, absorption and anisotropy propagation of the regenerated autofluorescence photons in the skin tissue were taken into account in the theoretical modeling. Skin was represented as a turbid seven-layered medium. To facilitate the simulation, ex vivo NIR autofluorescence spectra and images from different skin layers were measured from frozen skin vertical sections to define the intrinsic fluorescence properties. Monte Carlo simulation was then used to study how the intrinsic fluorescence spectra were distorted by the tissue reabsorption and scattering during in vivo measurements. We found that the reconstructed model skin spectra were in good agreement with the measured in vivo skin spectra from the same anatomical site as the ex vivo tissue sections, demonstrating the usefulness of this modeling. We also found that difference exists over the melanin fluorescent wavelength range (880-910 nm) between the simulated spectrum and the measured in vivo skin spectrum from a different anatomical site. This difference suggests that melanin contents may affect in vivo skin autofluorescence properties, which deserves further investigation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. In vivo non-invasive multiphoton tomography of human skin

    Science.gov (United States)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  4. The Effect of Polyhexanide, Octenidine Dihydrochloride, and Tea Tree Oil as Topical Antiseptic Agents on In Vivo Microcirculation of the Human Skin: A Noninvasive Quantitative Analysis.

    Science.gov (United States)

    Rothenberger, Jens; Krauss, Sabrina; Tschumi, Christian; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Held, Manuel

    2016-10-01

    Antiseptics are indispensable for wound management and should focus not only on the efficacy in reducing the bacterial burden but also on how much they interfere in wound healing. In this study, the authors analyzed the direct effect of topical antiseptic agents on the microcirculation of intact human skin. The perfusion dynamics were assessed before, and 10 minutes after, the volunteers' fingers of the right hand (n = 20) were immersed in the following solutions - octenidine dihydrochloride, polyhexanide, tea tree oil, and saline solution. The authors used the Oxygen to See (LEA Medizintechnik GmbH, Giessen, Germany) diagnostic device for noninvasive determination of oxygen supply in microcirculation of blood perfused tissues, which combines a laser light to determine blood flow, as well as white light to determine hemoglobin oxygenation and the relative amount of hemoglobin. Tea tree oil (÷19.0%) (B. Braun Melsungen AG, Melsungen, Germany) and polyhexanide (÷12.4%) (Lavanid, Serag Wiessner GmbH, Naila, Germany) caused a significant increase in blood flow compared to the negative control (-25.6%). Octenidine (Octenisept, Schülke & Mayr GmbH, Norderstedt, Germany) showed a nonsignificant trend towards an increase in blood flow (÷7.2%). There were alterations in the values of hemoglobin oxygenation and the relative amount of hemoglobin, but these were not significant. Perfusion is an important factor for wound healing. Therefore, it might be advantageous if antiseptic agents would increase blood flow. Tea tree oil and polyhexanide have a positive effect on skin blood flow and can therefore be used especially in critically perfused wounds, provided the adverse reactions and the antimicrobial efficacy are comparable.

  5. Reconstructing in-vivo reflectance spectrum of pigmented skin lesion by Monte Carlo simulation

    Science.gov (United States)

    Wang, Shuang; He, Qingli; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2012-03-01

    In dermatology applications, diffuse reflectance spectroscopy has been extensively investigated as a promising tool for the noninvasive method to distinguish melanoma from benign pigmented skin lesion (nevus), which is concentrated with the skin chromophores like melanin and hemoglobin. We carried out a theoretical study to examine melanin distribution in human skin tissue and establish a practical optical model for further pigmented skin investigation. The theoretical simulation was using junctional nevus as an example. A multiple layer skin optical model was developed on established anatomy structures of skin, the published optical parameters of different skin layers, blood and melanin. Monte Carlo simulation was used to model the interaction between excitation light and skin tissue and rebuild the diffuse reflectance process from skin tissue. A testified methodology was adopted to determine melanin contents in human skin based on in vivo diffuse reflectance spectra. The rebuild diffuse reflectance spectra were investigated by adding melanin into different layers of the theoretical model. One of in vivo reflectance spectra from Junctional nevi and their surrounding normal skin was studied by compare the ratio between nevus and normal skin tissue in both the experimental and simulated diffuse reflectance spectra. The simulation result showed a good agreement with our clinical measurements, which indicated that our research method, including the spectral ratio method, skin optical model and modifying the melanin content in the model, could be applied in further theoretical simulation of pigmented skin lesions.

  6. In vivo patch-clamp analysis of response properties of rat primary somatosensory cortical neurons responding to noxious stimulation of the facial skin

    Directory of Open Access Journals (Sweden)

    Nasu Masanori

    2010-05-01

    Full Text Available Abstract Background Although it has been widely accepted that the primary somatosensory (SI cortex plays an important role in pain perception, it still remains unclear how the nociceptive mechanisms of synaptic transmission occur at the single neuron level. The aim of the present study was to examine whether noxious stimulation applied to the orofacial area evokes the synaptic response of SI neurons in urethane-anesthetized rats using an in vivo patch-clamp technique. Results In vivo whole-cell current-clamp recordings were performed in rat SI neurons (layers III-IV. Twenty-seven out of 63 neurons were identified in the mechanical receptive field of the orofacial area (36 neurons showed no receptive field and they were classified as non-nociceptive (low-threshold mechanoreceptive; 6/27, 22% and nociceptive neurons. Nociceptive neurons were further divided into wide-dynamic range neurons (3/27, 11% and nociceptive-specific neurons (18/27, 67%. In the majority of these neurons, a proportion of the excitatory postsynaptic potentials (EPSPs reached the threshold, and then generated random discharges of action potentials. Noxious mechanical stimuli applied to the receptive field elicited a discharge of action potentials on the barrage of EPSPs. In the case of noxious chemical stimulation applied as mustard oil to the orofacial area, the membrane potential shifted depolarization and the rate of spontaneous discharges gradually increased as did the noxious pinch-evoked discharge rates, which were usually associated with potentiated EPSP amplitudes. Conclusions The present study provides evidence that SI neurons in deep layers III-V respond to the temporal summation of EPSPs due to noxious mechanical and chemical stimulation applied to the orofacial area and that these neurons may contribute to the processing of nociceptive information, including hyperalgesia.

  7. MALDI-MS imaging of lipids in ex vivo human skin.

    Science.gov (United States)

    Hart, Philippa J; Francese, Simona; Claude, Emmanuelle; Woodroofe, M Nicola; Clench, Malcolm R

    2011-07-01

    Lipidomics is a rapidly expanding area of scientific research and there are a number of analytical techniques that are employed to facilitate investigations. One such technique is matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS). Previous MALDI-MS studies involving lipidomic investigation have included the analysis of a number of different ex vivo tissues, most of which were obtained from animal models, with only a few being of human origin. In this study, we describe the use of MALDI-MS, MS/MS and MS imaging methods for analysing lipids within cross-sections of ex vivo human skin. It has been possible to tentatively identify lipid species via accurate mass measurement MALDI-MS and also to confirm the identity of a number of these species via MALDI-MS/MS, in experiments carried out directly on tissue. The main lipid species detected include glycerophospholipids and sphingolipids. MALDI images have been generated at a spatial resolution of 150 and 30 μm, using a MALDI quadrupole time-of-flight Q-Star Pulsar-i (TM) (Applied Biosystems/MDS Sciex, Concord, ON, Canada) and a MALDI high-definition MS (HDMS) SYNAPT G2-HDMS(TM) system (Waters, Manchester, UK), respectively. These images show the normal distribution of lipids within human skin, which will provide the basis for assessing alterations in lipid profiles linked to specific skin conditions e.g. sensitisation, in future investigations.

  8. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Science.gov (United States)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  9. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J [Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin (Germany); Gonchukov, S A [National Research Nuclear University ' ' MEPhI' ' (Russian Federation); Koenig, K [JenLab GmbH, Schillerstr. 1, 07745 Jena (Germany)

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  10. Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis

    Science.gov (United States)

    Lim, Liang; Nichols, Brandon; Migden, Michael R.; Rajaram, Narasimhan; Reichenberg, Jason S.; Markey, Mia K.; Ross, Merrick I.; Tunnell, James W.

    2014-11-01

    The goal of this study was to determine the diagnostic capability of a multimodal spectral diagnosis (SD) for in vivo noninvasive disease diagnosis of melanoma and nonmelanoma skin cancers. We acquired reflectance, fluorescence, and Raman spectra from 137 lesions in 76 patients using custom-built optical fiber-based clinical systems. Biopsies of lesions were classified using standard histopathology as malignant melanoma (MM), nonmelanoma pigmented lesion (PL), basal cell carcinoma (BCC), actinic keratosis (AK), and squamous cell carcinoma (SCC). Spectral data were analyzed using principal component analysis. Using multiple diagnostically relevant principal components, we built leave-one-out logistic regression classifiers. Classification results were compared with histopathology of the lesion. Sensitivity/specificity for classifying MM versus PL (12 versus 17 lesions) was 100%;/100%;, for SCC and BCC versus AK (57 versus 14 lesions) was 95%;/71%, and for AK and SCC and BCC versus normal skin (71 versus 71 lesions) was 90%/85%. The best classification for nonmelanoma skin cancers required multiple modalities; however, the best melanoma classification occurred with Raman spectroscopy alone. The high diagnostic accuracy for classifying both melanoma and nonmelanoma skin cancer lesions demonstrates the potential for SD as a clinical diagnostic device.

  11. Laser system for optical biopsy and in-vivo study of the human skin

    Science.gov (United States)

    Borisova, Ekaterina G.; Avramov, Lachezar A.

    2001-04-01

    The aim of this study was to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced autofluorescence spectroscopy (LIAFS) for human skin in vivo. The autofluorescence characterization of tissue relies on different spectral properties of tissue. It was demonstrated a differentiation between normal skin and skin with vitaligo. In our experimental investigation of the autofluorescence spectrum of human skin in vivo a nitrogen laser with excitation wavelength 337 nm was used. Two fluorescence bands were observed at 440 and 490 nm, these were attributed to reduced nicotinamide adenine dinucleotide (NADH) and collagen. The intensity of the NADH emission band was markedly reduced in the skin with vitaligo compared with the normal skin, which could indicate different redox conditions in skin with vitaligo. The autofluorescence spectrum of human skin depends on the main internal absorbers, which are blood and melanin. In this study was described the effect caused by melanin content on the shape of the autofluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. The goal of this work is optimization of detection and diagnosis of hollow organs and skin.

  12. The in vivo rat skin photomicronucleus assay: Phototoxicity and photogenotoxicity evaluation of six fluoroquinolones

    NARCIS (Netherlands)

    Reus, A.A.; Usta, M.; Kenny, J.D.; Clements, P.J.; Pruimboom-Brees, I.; Aylott, M.; Lynch, A.M.; Krul, C.A.M.

    2012-01-01

    An in vivo photomicronucleus test (MNT) using rat skin, the target organ for photoirritancy and carcinogenicity, was recently described. The assay was evaluated using fluoroquinolone (FQ) antibiotics with varying degrees of phototoxic potency (i.e. sparflocacin [SPFX], lomefloxacin [LOFX],

  13. In vivo measurements of skin barrier: comparison of different methods and advantages of laser scanning microscopy

    Science.gov (United States)

    Patzelt, A.; Sterry, W.; Lademann, J.

    2010-12-01

    A major function of the skin is to provide a protective barrier at the interface between external environment and the organism. For skin barrier measurement, a multiplicity of methods is available. As standard methods, the determination of the transepidermal water loss (TEWL) as well as the measurement of the stratum corneum hydration, are widely accepted, although they offer some obvious disadvantages such as increased interference liability. Recently, new optical and spectroscopic methods have been introduced to investigate skin barrier properties in vivo. Especially, laser scanning microscopy has been shown to represent an excellent tool to study skin barrier integrity in many areas of relevance such as cosmetology, occupation, diseased skin, and wound healing.

  14. In vivo optical elastography: stress and strain imaging of human skin lesions

    Science.gov (United States)

    Es'haghian, Shaghayegh; Gong, Peijun; Kennedy, Kelsey M.; Wijesinghe, Philip; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.

    2015-03-01

    Probing the mechanical properties of skin at high resolution could aid in the assessment of skin pathologies by, for example, detecting the extent of cancerous skin lesions and assessing pathology in burn scars. Here, we present two elastography techniques based on optical coherence tomography (OCT) to probe the local mechanical properties of skin. The first technique, optical palpation, is a high-resolution tactile imaging technique, which uses a complaint silicone layer positioned on the tissue surface to measure spatially-resolved stress imparted by compressive loading. We assess the performance of optical palpation, using a handheld imaging probe on a skin-mimicking phantom, and demonstrate its use on human skin. The second technique is a strain imaging technique, phase-sensitive compression OCE that maps depth-resolved mechanical variations within skin. We show preliminary results of in vivo phase-sensitive compression OCE on a human skin lesion.

  15. Dynamic longitudinal investigation of individual nerve endings in the skin of anesthetized mice using in vivo two-photon microscopy

    Science.gov (United States)

    Yuryev, Mikhail; Khiroug, Leonard

    2012-04-01

    Visualization of individual cutaneous nerve endings has previously relied on laborious procedures of tissue excision, fixation, sectioning and staining for light or electron microscopy. We present a method for non-invasive, longitudinal two-photon microscopy of single nerve endings within the skin of anesthetized transgenic mice. Besides excellent signal-to-background ratio and nanometer-scale spatial resolution, this method offers time-lapse ``movies'' of pathophysiological changes in nerve fine structure over minutes, hours, days or weeks. Structure of keratinocytes and dermal matrix is visualized simultaneously with nerve endings, providing clear landmarks for longitudinal analysis. We further demonstrate feasibility of dissecting individual nerve fibers with infra-red laser and monitoring their degradation and regeneration. In summary, our excision-free optical biopsy technique is ideal for longitudinal microscopic analysis of animal skin and skin innervations in vivo and can be applied widely in preclinical models of chronic pain, allergies, skin cancers and a variety of dermatological disorders.

  16. In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); E.A. Carter (Elizabeth); H.A. Bruining (Hajo); G.J. Puppels (Gerwin)

    2001-01-01

    textabstractConfocal Raman spectroscopy is introduced as a noninvasive in vivo optical method to measure molecular concentration profiles in the skin. It is shown how it can be applied to determine the water concentration in the stratum corneum as a function of distance to the skin surface, with a

  17. In vivo skin dose measurement in breast conformal radiotherapy

    Directory of Open Access Journals (Sweden)

    Shokouhozaman Soleymanifard

    2016-02-01

    Full Text Available Aim of the study: Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods : Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100 and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results : Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution.

  18. Increased in vivo skin penetration of quantum dots with UVR and in vitro quantum dot cytotoxicity

    Science.gov (United States)

    Mortensen, Luke; Zheng, Hong; Faulknor, Renea; De Benedetto, Anna; Beck, Lisa; DeLouise, Lisa A.

    2009-02-01

    The growing presence of quantum dots (QD) in a variety of biological, medical, and electronics applications means an increased risk of human exposure in manufacturing, research, and consumer use. However, very few studies have investigated the susceptibility of skin to penetration of QD - the most common exposure route- and the results of those that exist are conflicting. This suggests that a technique allowing determination of skin barrier status and prediction of skin permeability to QD would be of crucial interest as recent findings have provided evidence of in vitro cytotoxicity and long-term in vivo retention in the body for most QD surface chemistries. Our research focuses on barrier status of the skin (intact and with ultraviolet radiation induced barrier defect) and its impact on QD skin penetration. These model studies are particularly relevant to the common application condition of NP containing sunscreen and SPF cosmetics to UV exposed skin. Herein we present our initial efforts to develop an in vivo model of nanoparticle skin penetration using the SKH-1 hairless mouse with transepidermal water loss (TEWL) to evaluate skin barrier status and determine its ability to predict QD penetration. Our results show that ultraviolet radiation increases both TEWL and skin penetration of QD. Additionally, we demonstrate cytotoxic potential of QD to skin cells using a metastatic melanoma cell line. Our research suggests future work in specific targeting of nanoparticles, to prevent or enhance penetration. This knowledge will be used to develop powerful therapeutic agents, decreased penetration cosmetic nanoparticles, and precise skin cancer imaging modalities.

  19. Non-invasive measurement of micro-area skin impedance in vivo

    Science.gov (United States)

    Li, Dachao; Liang, Wenshuai; Liu, Tongkun; Yu, Haixia; Xu, Kexin

    2011-12-01

    Volume measurement of interstitial fluid transdermally extracted is important in continuous glucose monitoring instrument. The volume of transdermally extracted interstitial fluid could be determined by a skin permeability coefficient. If the skin impedance which is the indicator of skin permeability coefficient can be accurately measured, the volume of interstitial fluid can be calculated based on the relationship between the indicator and the skin permeability coefficient. The possibility of using the skin impedance to indicate the skin permeability coefficient is investigated. A correlation model between the skin impedance and the skin permeability coefficient is developed. A novel non-invasive method for in vivo, real-time, and accurate measurement of skin impedance within a micro skin area is brought forward. The proposed measurement method is based on the theory that organisms saliva and interstitial fluid are equipotential. An electrode is put on the surface of a micro skin area and another one is put in the mouth to be fully contacted with saliva of an animal in the experiments. The electrode in mouth is used to replace the implantable subcutaneous electrode for non-invasive measurement of skin impedance in vivo. A biologically compatible AC current with amplitude of 100mv and frequency of 10Hz is applied to stimulate the micro skin area by the two electrodes. And then the voltage and current between the two electrodes are measured to calculate the skin impedance within a micro skin area. The measurement results by electrode in mouth are compared with the results by subcutaneous electrode in animal experiments and they are consistent so the proposed measurement method is verified well. The effect of moisture and pressure for the measurement is also studied in the paper.

  20. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin

    NARCIS (Netherlands)

    P.J. Caspers (Peter); G.W. Lucassen (Gerald); G.J. Puppels (Gerwin)

    2003-01-01

    textabstractIn vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections

  1. In vivo assessment of aged human skin with a unilateral NMR scanner.

    Science.gov (United States)

    Bergman, Elad; Sarda, Yifat; Ritz, Noa; Sabo, Edmond; Navon, Gil; Bergman, Reuven; Nevo, Uri

    2015-06-01

    Human skin undergoes morphological and biochemical changes as a result of chronological aging and exposure to solar ultraviolet irradiation (photoaging). Noninvasive detection of these changes may aid in the prevention and treatment of both types of aging. This article presents a noninvasive method for the evaluation of aging skin with a unilateral stray field NMR scanner. These portable and inexpensive scanners may be suitable for in-depth skin characterization. In vivo profiles of sun-protected and sun-exposed skin from the forearms of female subjects of different ages (n = 9) were measured. Skin biopsies for histopathological examination were used as reference. T2 analysis with a bi-exponential decay model was applied and the extracted parameters were examined as markers for dermal aging. In the upper reticular dermis, a significant increase in the fraction of the slow T2 component and in the T2 value itself was found to correlate with chronological aging. For most subjects, there was an additional increase in the values of the slow T2 component and the T2 values from the sun-exposed forearm, superimposed on that measured for the sun-protected forearm. These results are in agreement with the decline in collagen content and the increase in free water content with aging. The results suggest that such a technique can be used as a tool for the assessment of aging, and that bi-exponential fitting can produce sensitive fingerprint parameters for the dermal alterations that occur during aging. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Ethosomal Hydrogel of Raloxifene HCl: Statistical Optimization & Ex Vivo Permeability Evaluation Across Microporated Pig Ear Skin.

    Science.gov (United States)

    Thakkar, Hetal P; Savsani, Hitesh; Kumar, Praveen

    2016-01-01

    The oral bioavailability of Raloxifene hydrochloride, an FDA approved selective estrogen receptor modulator, is severely limited due to its poor aqueous solubility and extensive first pass metabolism. The Present work focuses on the development of ethosomal hydrogel for transdermal delivery of Raloxifene HCl as an alternate way to solve aforementioned problem. The physical breaching of stratum corneum, the principal barrier, by microneedle treatment was also employed to potentiate its transdermal permeation. The influence of lipid and ethanol concentration on vesicle size and entrapment efficiency was extensively investigated using response surface methodology based on central composite design. The software based optimization was done and validated using check point analysis. Optimized batch was extensively evaluated for its safety, efficacy and stability. The optimized ethosomal batch possessed 403 nm size and 74.25% drug entrapment. Its zeta potential and in vitro drug release were also found favorable for transdermal permeation. The ex vivo skin permeation study revealed a transdermal flux of 4.621 μg/cm2/h through the intact pig ear skin which was further enhanced through the microporated skin (transdermal flux, 6.194 μg/cm2/h) with a 3.87 fold rise when compared to drug permeation from plain solution applied over intact skin (transdermal flux, 1.6 μg/cm2/h). Histopathological skin sections showed the non-irritant nature of the ethosomal hydrogel and microneedle treatment. The formulation was found stable under both refrigeration and room temperature conditions for 6 weeks. In a nutshell, the developed system was found efficient, safe and stable and seems promising for transdermal use.

  3. Study of the vitamins A, E and C esters penetration into the skin by confocal Raman spectroscopy in vivo

    Science.gov (United States)

    Mogilevych, Borys; Isensee, Debora; Rangel, Joao L.; Dal Pizzol, Carine; Martinello, Valeska C. A.; Dieamant, Gustavo C.; Martin, Airton A.

    2015-06-01

    Vitamins A, E and C play important role in skin homeostasis and protection. Hence, they are extensively used in many cosmetic and cosmeceutic products. However, their molecules are unstable, and do not easily penetrate into the skin, which drastically decreases its efficiency in topical formulations. Liposoluble derivative of the vitamin A - retinyl palmitate, vitamin E - tocopheryl acetate, and vitamin C - tetraisopalmitoyl ascorbic acid, are more stable, and are frequently used as an active ingredient in cosmetic products. Moreover, increased hydrophobicity of these molecules could lead to a higher skin penetration. The aim of this work is to track and compare the absorption of the liposoluble derivatives of the vitamins and their encapsulated form, into the healthy human skin in vivo. We used Confocal Raman Spectroscopy (CRS) that is proven to be helpful in label-free non-destructive investigation of the biochemical composition and molecular conformational analysis of the biological samples. The measurements were performed in the volar forearm of the 10 healthy volunteers. Skin was treated with both products, and Raman spectra were obtained after 15 min, 3 hours, and 6 hours after applying the formulation. 3510 Skin Composition Analyzer (River Diagnostics, The Netherlands) with 785 nm laser excitation was used to acquire information in the fingerprint region. Significant difference in permeation of the products was observed. Whereas only free form of retinyl palmitate penetrate the skin within first 15 minutes, all three vitamin derivatives were present under the skin surface in case of nanoparticulated form.

  4. In vivo Raman Confocal Spectroscopy in the Investigation of the Skin Barrier.

    Science.gov (United States)

    Darlenski, Razvigor; Fluhr, Joachim W

    2016-01-01

    The epidermal barrier, predominantly attributed to the stratum corneum (SC), is the outermost part of our body that comprises multiple defensive functions against exogenous attacks and the loss of body substances, e.g. water. A novel investigative method, in vivo Raman confocal spectroscopy (RCS), is employed to study the composition of the epidermal barrier and compounds penetrating the epidermis both in a space-resolved manner. By using this method, a semiquantitative analysis of skin barrier constituents can be evaluated, namely SC lipids, natural moisturizing factor components and sweat constituents. The technique enables to examine epidermal barrier impairment in experimental settings as well as the penetration of exogenous substances into the epidermis, e.g. retinol. RCS can reveal microcompositional changes in the skin barrier as a function of age. We also review the use of RCS in studying antioxidant defense components. This chapter discusses the application of in vivo RCS in the investigation of the epidermal barrier. © 2016 S. Karger AG, Basel.

  5. Multi-spectral mapping of in vivo skin hemoglobin and melanin

    Science.gov (United States)

    Jakovels, Dainis; Spigulis, Janis; Saknite, Inga

    2010-04-01

    The multi-spectral imaging technique has been used for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel and constructing 2-D maps of the relative concentrations of oxy-/deoxyhemoglobin and melanin. Instead of using a broad visible-NIR spectral range, this study focuses on narrowed spectral band 500-700 nm, so speeding-up the signal processing procedure. Regression analysis confirmed that superposition of three Gaussians is optimal analytic approximation for the oxy-hemoglobin absorption tabular spectrum in this spectral band, while superposition of two Gaussians fits well for deoxy-hemoglobin absorption and exponential function - for melanin absorption. The proposed approach was clinically tested for three types of in-vivo skin provocations - ultraviolet irradiance, chemical reaction with vinegar essence and finger arterial occlusion. Spectral range 500-700 nm provided better sensitivity to oxy-hemoglobin changes and higher response stability to melanin than two reduced ranges 500-600 nm and 530-620 nm.

  6. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery.

    Science.gov (United States)

    Zhao, Qi-Hong; Zhang, Ying; Liu, Yun; Wang, Hui-Li; Shen, Yuan-Yuan; Yang, Wen-Jun; Wen, Long-Ping

    2010-06-01

    Realgar has been used successfully to treat diseases for thousands of years, but its poor water solubility and high toxicity hampered its further medical uses. Here, we first applied transdermal drug delivery system to deliver realgar nanoparticles to investigate its anticancer effect and toxicity in vivo. In this study, MTT assay and flow cytometry analysis demonstrated that realgar significantly suppressed the proliferation and induced apoptosis of B16 melanoma cells in a dose-dependent manner. Transdermal penetration studies in vitro showed realgar nanoparticles could be delivered efficiently through skin. Tests on tumor-bearing C57BL/6 mice displayed that realgar could decrease the tumor volume markedly via transdermal drug delivery compared with the intraperitoneal administration and the control. Hematoxylin-eosin and immunohistochemical staining revealed that it could inhibit angiogenesis. The monitoring of the hepatic injury, body weight, feeding behavior, motor activity, and skin irritation of each animal indicated little toxicity of realgar to mice. The results demonstrated that realgar nanoparticles can be dermally delivered to achieve high efficacy against menaloma in vivo with low toxicity.

  7. Combined Raman and autofluorescence ex vivo diagnostics of skin cancer in near-infrared and visible regions

    Science.gov (United States)

    Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Khristoforova, Yulia A.; Moryatov, Alexander A.; Kozlov, Sergey V.; Zakharov, Valery P.

    2017-02-01

    The differentiation of skin melanomas and basal cell carcinomas (BCCs) was demonstrated based on combined analysis of Raman and autofluorescence spectra stimulated by visible and NIR lasers. It was ex vivo tested on 39 melanomas and 40 BCCs. Six spectroscopic criteria utilizing information about alteration of melanin, porphyrins, flavins, lipids, and collagen content in tumor with a comparison to healthy skin were proposed. The measured correlation between the proposed criteria makes it possible to define weakly correlated criteria groups for discriminant analysis and principal components analysis application. It was shown that the accuracy of cancerous tissues classification reaches 97.3% for a combined 6-criteria multimodal algorithm, while the accuracy determined separately for each modality does not exceed 79%. The combined 6-D method is a rapid and reliable tool for malignant skin detection and classification.

  8. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    Science.gov (United States)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  9. In vivo measurement of breast skin elasticity and breast skin thickness.

    Science.gov (United States)

    Sutradhar, Alok; Miller, Michael J

    2013-02-01

    The mechanical properties of the breast skin play an important role in explaining the changes associated with radiotherapy, tissue expansion, and breast reconstruction surgery. Quantitative measurement of mechanical properties of breast skin is essential for surgical preplanning and outcome prediction. We have measured the skin elasticity properties and skin thickness of the breast using noninvasive methods. The DermaLab suction cup and the DermaScanC ultrasound were used to measure the modulus of elasticity and the skin thickness, respectively. Measurements were taken in 16 different locations on the breast in 23 female patients, also with patients in supine and upright position. Different analytical models (plate, membrane, large deformation) that can represent the experiment were studied to extract the elasticity modulus. The average modulus of breast skin elasticity found was 344 ± 88 kPa (Mean ± SD) with 95% confidence interval being 306-382 kPa. The range of the modulus was 195-480 kPa. The average thickness of breast skin was 1.55 ± 0.25 mm with a range of 0.83-2.4 mm. Regional variations of breast skin elasticity properties and breast skin thickness were observed. No direct correlations of biomechanical properties with age or breast thickness were observed. No significant difference was observed in the elasticity modulus between the supine and upright patient positions. © 2012 John Wiley & Sons A/S.

  10. Novel instrumentation to determine peel force in vivo and preliminary studies with adhesive skin barriers.

    Science.gov (United States)

    Krueger, Evan M; Cullum, Malford E; Nichols, Thom R; Taylor, Michael G; Sexton, William L; Murahata, Richard I

    2013-11-01

    Adhesive barriers secure medical devices to skin. Laboratory adhesion models are not predictive of in vivo performance. The objectives of these studies were to validate a novel peel force device, and to investigate relationships between barrier formulations, barrier width, subjective discomfort during barrier removal, and substrates. Three hydrocolloid barrier formulations in three widths were adhered to ethylene/methyl acrylate film (EMA), VITRO-SKIN(®) and human abdominal skin. Peel force was measured using a MTS Insight™ and a cyberDERM Inc. Mini Peel Tester (CMPT). Subjects reported their discomfort. Peel forces were highly correlated between devices and highly dependent on substrate. Data suggested a weak direct association between peel force in vivo and discomfort. The 0.5″-wide barriers had the most precise peel forces measurements in vivo. A weak negative relationship between normalized peel force and barrier width on human skin was found. There was a strong positive relationship between peel force in vivo and on EMA, whereas no correlation was observed with VITRO-SKIN(®). The CMPT correlates with a standard instrument and can advantageously investigate adhesion in vivo. Barrier width and substrate impact the reliability and predictability of peel force measurements. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Polarization speckle imaging as a potential technique for in vivo skin cancer detection.

    Science.gov (United States)

    Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I; Lee, Tim K

    2013-06-01

    Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.

  12. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However......, the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7...

  13. Polarization speckle imaging as a potential technique for in vivo skin cancer detection

    Science.gov (United States)

    Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I.; Lee, Tim K.

    2013-06-01

    Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.

  14. Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.

    Science.gov (United States)

    Cal, Krzysztof; Sopala, Monika

    2008-08-01

    The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.

  15. In Vivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis

    DEFF Research Database (Denmark)

    Zanivan, Sara; Meves, Alexander; Behrendt, Kristina

    2013-01-01

    SILAC technology in combination with high-resolution mass spectrometry (MS) can be successfully used to measure phosphoproteomes in vivo. Here, Zanivan, Mann, and colleagues have applied SILAC-based MS to investigate phosphoproteomic changes during skin carcinogenesis, using the DMBA/TPA two-stag......-stage mouse model. Using this approach, the authors have revealed the phosphoproteomic dynamics that accompany skin cancer progression and predict specific kinase activities associated with tumor malignancy....

  16. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J [Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga (Latvia)

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  17. In vivo multimodality video microscopy of human skin in the vertical plane (Conference Presentation)

    Science.gov (United States)

    Wu, Zhenguo; Tian, Yunxian; Zhao, Jianhua; Lui, Harvey; McLean, David I.; Zeng, Haishan

    2016-02-01

    Reflectance confocal microscopy (RCM) and multiphoton microscopy (MPM) are non-invasive methods of acquiring morphological images of the skin in vivo. Most research in this area focuses on instruments that are configured for two-dimensional imaging in a horizontal plane parallel to the skin surface. In contrast, conventional histopathologic evaluation of the skin is based on vertical tissue sections that show microscopic features and their interrelationships according to their depth within the skin. The ability to similarly depict the skin in the vertical plane during in vivo microscopic imaging poses several significant challenges with respect to imaging speed, resolution and extractable information. Aiming to address above challenges, we developed a laser scanning multimodal microscopy system which combines RCM and MPM, and has the ability to do fast xz scanning to achieve high resolution vertical "optical sectioning" of in vivo human skin at video rates. RCM and MPM images are obtained simultaneously and co-registered thereby providing complementary morphological information. To validate the performance of this system vertical section RCM and MPM microscopic images of normal human skin in vivo were obtained at half video rates (15 frames/s). Using our system it is possible to discern the following structures: all layers of the epidermis including the stratum lucidum, the dermal-epidermal junction, and the papillary dermis. Blood flow is also visible as evidenced by blood cell movement within vessels. The effective imaging depth is about 200 micrometers. This system provides a means of interrogating human skin noninvasively at an orientation analogous to conventional histological sectioning.

  18. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    Science.gov (United States)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  19. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes.

    Science.gov (United States)

    Shen, Li-Na; Zhang, Yong-Tai; Wang, Qin; Xu, Ling; Feng, Nian-Ping

    2014-01-02

    The aim of this study was to develop and evaluate a novel topical delivery system for apigenin by using ethosomes. An optimal apigenin-loaded ethosome formulation was identified by means of uniform design experiments. Skin deposition and transdermal flux of apigenin loaded in ethosomes, liposomes, and deformable liposomes were compared in vitro and in vivo. The efficiency of apigenin encapsulation increased with an increase in the amount of phospholipids in ethosome formulations. Moreover, skin deposition and transdermal flux of apigenin improved with an increase in the levels of phospholipids (Lipoid S 75) and short-chain alcohols (propylene glycol and ethanol), but decreased with an increase in the ratio of propylene glycol to ethanol. Profiles of skin deposition versus time for ethosomes varied markedly between in vivo and in vitro studies compared with those of liposomes or deformable liposomes. Optimized ethosomes showed superior skin targeting both in vitro and in vivo. Moreover, they had the strongest effect on reduction of cyclooxygenase-2 levels in mouse skin inflammation induced by ultraviolet B (UVB) light. Therefore, apigenin-loaded ethosomes represent a promising therapeutic approach for the treatment of UVB-induced skin inflammation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A broad-spectrum sunscreen prevents UVA radiation-induced gene expression in reconstructed skin in vitro and in human skin in vivo.

    Science.gov (United States)

    Marionnet, Claire; Grether-Beck, Susanne; Seité, Sophie; Marini, Alessandra; Jaenicke, Thomas; Lejeune, François; Bastien, Philippe; Rougier, André; Bernerd, Françoise; Krutmann, Jean

    2011-06-01

    The efficacy of sunscreens to protect against ultraviolet (UV) A radiation is usually assessed by measuring erythema formation and pigmentation. The biological relevance of these endpoints for UVA-induced skin damage, however, is not known. We therefore carried out two complementary studies to determine UVA protection provided by a broad-spectrum sunscreen product at a molecular level by studying UVA radiation-induced gene expression. One study was performed on human reconstructed skin in vitro with a semi-global gene expression analysis of 227 genes in fibroblasts and 244 in keratinocytes. The second one was conducted in vivo in human volunteers and focused on genes involved in oxidative stress response and photo-ageing (haeme oxygenase-1, superoxide dismutase-2, glutathione peroxidase, catalase, matrix metalloproteinase-1). In-vitro UVA radiation induced modulation of genes involved in extracellular matrix homeostasis, oxidative stress, heat shock responses, cell growth, inflammation and epidermal differentiation. Sunscreen pre-application abrogated or significantly reduced these effects, as underlined by unsupervised clustering analysis. The in vivo study confirmed that the sunscreen prevented UVA radiation-induced transcriptional expression of the five studied genes. These findings indicate the high efficacy of a broad-spectrum sunscreen in protecting human skin against UVA-induced gene responses and suggest that this approach is a biologically relevant complement to existing methods. © 2011 John Wiley & Sons A/S.

  1. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    Science.gov (United States)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  2. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy.

    Science.gov (United States)

    Schleusener, Johannes; Gluszczynska, Patrycja; Reble, Carina; Gersonde, Ingo; Helfmann, Jürgen; Fluhr, Joachim W; Lademann, Jürgen; Röwert-Huber, Joachim; Patzelt, Alexa; Meinke, Martina C

    2015-10-01

    Raman spectroscopy has proved its capability as an objective, non-invasive tool for the detection of various melanoma and non-melanoma skin cancers (NMSC) in a number of studies. Most publications are based on a Raman microspectroscopic ex vivo approach. In this in vivo clinical evaluation, we apply Raman spectroscopy using a fibre-coupled probe that allows access to a multitude of affected body sites. The probe design is optimized for epithelial sensitivity, whereby a large part of the detected signal originates from within the epidermal layer's depth down to the basal membrane where early stages of skin cancer develop. Data analysis was performed on measurements of 104 subjects scheduled for excision of lesions suspected of being malignant melanoma (MM) (n = 36), basal cell carcinoma (BCC) (n = 39) and squamous cell carcinoma (SCC) (n = 29). NMSC were discriminated from normal skin with a balanced accuracy of 73% (BCC) and 85% (SCC) using partial least squares discriminant analysis (PLS-DA). Discriminating MM and pigmented nevi (PN) resulted in a balanced accuracy of 91%. These results lie within the range of comparable in vivo studies and the accuracies achieved by trained dermatologists using dermoscopy. Discrimination proved to be unsuccessful between cancerous lesions and suspicious lesions that had been histopathologically verified as benign by dermoscopy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Characterization of Temperature Profiles in Skin and Transdermal Delivery System When Exposed to Temperature Gradients In Vivo and In Vitro.

    Science.gov (United States)

    Zhang, Qian; Murawsky, Michael; LaCount, Terri; Hao, Jinsong; Kasting, Gerald B; Newman, Bryan; Ghosh, Priyanka; Raney, Sam G; Li, S Kevin

    2017-07-01

    Performance of a transdermal delivery system (TDS) can be affected by exposure to elevated temperature, which can lead to unintended safety issues. This study investigated TDS and skin temperatures and their relationship in vivo, characterized the effective thermal resistance of skin, and identified the in vitro diffusion cell conditions that would correlate with in vivo observations. Experiments were performed in humans and in Franz diffusion cells with human cadaver skin to record skin and TDS temperatures at room temperature and with exposure to a heat flux. Skin temperatures were regulated with two methods: a heating lamp in vivo and in vitro, or thermostatic control of the receiver chamber in vitro. In vivo basal skin temperatures beneath TDS at different anatomical sites were not statistically different. The maximum tolerable skin surface temperature was approximately 42-43°C in vivo. The temperature difference between skin surface and TDS surface increased with increasing temperature, or with increasing TDS thermal resistance in vivo and in vitro. Based on the effective thermal resistance of skin in vivo and in vitro, the heating lamp method is an adequate in vitro method. However, the in vitro-in vivo correlation of temperature could be affected by the thermal boundary layer in the receiver chamber.

  4. Cold Plasma Welding System for Surgical Skin Closure: In Vivo Porcine Feasibility Assessment.

    Science.gov (United States)

    Harats, Moti; Lam, Amnon; Maller, Michael; Kornhaber, Rachel; Haik, Josef

    2016-09-29

    Cold plasma skin welding is a novel technology that bonds skin edges through soldering without the use of synthetic materials or conventional wound approximation methods such as sutures, staples, or skin adhesives. The cold plasma welding system uses a biological solder applied to the edges of a skin incision, followed by the application of cold plasma energy. The objectives of this study were to assess the feasibility of a cold plasma welding system in approximating and fixating skin incisions compared with conventional methods and to evaluate and define optimal plasma welding parameters and histopathological tissue response in a porcine model. The cold plasma welding system (BioWeld1 System, IonMed Ltd, Yokneam, Israel) was used on porcine skin incisions using variable energy parameters. Wound healing was compared macroscopically and histologically to incisions approximated with sutures. When compared to sutured skin closure, cold plasma welding in specific system parameters demonstrated comparable and favorable wound healing results histopathologically as well as macroscopically. No evidence of epidermal damage, thermal or otherwise, was encountered in the specified parameters. Notably, bleeding, infection, and wound dehiscence were not detected at incision sites. Skin incisions welded at extreme energy parameters presented second-degree burns. Implementation of cold plasma welding has been shown to be feasible for skin closure. Initial in vivo results suggest cold plasma welding might provide equal, if not better, healing results than traditional methods of closure.

  5. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo.

    Science.gov (United States)

    Lewinski, Nastassja A; Berthet, Aurélie; Maurizi, Lionel; Eisenbeis, Antoine; Hopf, Nancy B

    2017-08-01

    In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe2O3) or maghemite (γ-Fe2O3) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.

  6. Study of the epidermis ablation effect on the efficiency of optical clearing of skin in vivo

    Science.gov (United States)

    Genina, E. A.; Ksenofontova, N. S.; Bashkatov, A. N.; Terentyuk, G. S.; Tuchin, V. V.

    2017-06-01

    We present the results of a comparative analysis of optical immersion clearing of skin in laboratory animals in vivo with and without preliminary ablation of epidermis. Laser ablation is implemented using a setup based on a pulsed erbium laser (λ = 2940 nm). The size of the damaged region amounted to 6 × 6 mm, the depth being smaller than 50 μm. As an optical clearing agent (OCA), use is made of polyethylene glycol (PEG-300). Based on optical coherence tomography, we use the single scattering model to estimate the scattering coefficient in the process of optical clearing in 2 regions at depths of 50-170 μm and 150-400 μm. The results show that skin surface ablation leads to the local oedema of the affected region that increases the scattering coefficient. However, the intense evaporation of water from the ablation zone facilitates the optical clearing at the expense of tissue dehydration, particularly in the upper layers. The assessment of the optical clearing efficiency shows that the efficiency exceeding 30% can be achieved at a depth from 50 to 170 μm in 120 min after ablation, as well as after the same ablation with subsequent application of PEG-300, which increases the efficiency of the immersion method by almost 1.8 times. At a depth from 150 to 400 μm, dehydration of upper layers cannot completely compensate for an increase in light scattering by dermis after epidermis ablation. The additional effect of OCA enhances the optical clearing of skin at the expense of improving the refractive index matching between dermis components, but the maximal efficiency of optical clearing in 120 min does not exceed 6%.

  7. UVA-1 exposure in vivo leads to an IL-6 surge within the skin.

    Science.gov (United States)

    Schneider, Lars Alexander; Raizner, Katharina; Wlaschek, Meinhard; Brenneisen, Peter; Gethöffer, Kerstin; Scharffetter-Kochanek, Karin

    2017-09-01

    UVA-1 is a known promotor of skin ageing. Cytokines like IL-1α, Il-1β or TNF-α, VEGF and IL-6 orchestrate UV effects, and IL-6 is furthermore an effector of UVA-induced photoageing. We investigated how fractionated UVA-1 doses influence the cytokine milieu and especially the IL-6 levels in the skin in vivo. In a study with 35 participants, we exposed previously unirradiated human skin to three UVA-1 irradiation regimes. Cytokine levels in interstitial skin fluid were measured up to 48 hours postexposure and compared to unirradiated control skin fluid. Our results show that IL-6 levels increased significantly after UVA-1 exposure at selected time points. The other candidates IL-1α, Il-1β or TNF-α and VEGF show no significant response after UVA-1 exposure in vivo. UVA-1 thus raises selectively IL-6 levels in vivo, a fact that underlines its role in photoageing and has potential implications for its modulatory effect on photoageing pathology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. NOTE: Multilayer Gafchromic film detectors for breast skin dose determination in vivo

    Science.gov (United States)

    Cheung, Tsang; Butson, Martin J.; Yu, Peter K. N.

    2002-01-01

    Assessment of skin dose delivered to patients from radiotherapy x-ray beams should be performed both inside and outside the prescribed treatment fields. A multilayer Gafchromic film detector which has high sensitivity for detection of radiation can be used to measure skin dose in a two-dimensional map over the skin surface if required. This is an advantage over other detectors, which only provide point dose estimates. A study of 25 patients undergoing breast irradiation was performed to analyse the ability of the multilayer detector to analyse skin dose and to assess both in-field and out-of-field radiation doses delivered during tangent field breast irradiation. Results show that the main contributor to total skin dose within the treatment field was delivered by exit dose. However, outside the field, most dose was delivered by entry beams. Patients with smaller breast separations where found, in general, to receive a higher total skin dose from entry and exiting beams at the central axis. Results also showed that a significant skin dose was delivered outside the treatment field and the main cause of this dose was from electron contamination from entry beams. The multilayer Gafchromic film detector provided adequate skin dose assessment within one fraction of treatment for in vivo results.

  9. In-vivo pilot study on physical absorption enhancement of active skin whitening ingredients by heat and ultrasound

    NARCIS (Netherlands)

    Scheja, M.M.; Wang, X.; Ma, P.

    2012-01-01

    In Q3 of 2011, Philips Research received a brief from the Skin Carecategory of the Philips Consumer Lifestyle sector to explore the feasibility of heat and ultrasound to increase skin uptake of active skin whitening ingredients from cosmetics. Philips Research Asia-Shanghai performed an in-vivo

  10. Visualization studies of human skin in vitro/in vivo under the influence of an electrical field

    NARCIS (Netherlands)

    Fatouros, N.E.; Groenink, H.W.M.; Graaff, de A.M.; Aelst, van A.C.; Koerten, H.K.; Bouwstra, J.A.

    2006-01-01

    The aim of this study was to investigate the local changes in the ultrastructure of human skin after iontophoresis, using cryo-scanning, transmission and freeze fracture electron microscopy in human skin in vitro and in vivo. Human dermatomed skin was subjected to passive diffusion for 6 hours

  11. Skin biochemical composition analysis by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Patricia Karen; Tosato, Maira Gaspar; Alves, Rani de Souza; Martin, Airton Abrahao; Favero, Priscila Pereira; Raniero, Leandro, E-mail: amartin@univap.br [Laboratorio de Espectroscopia Vibracional Biomedica, Instituto de Pesquisa e Desenvolvimento - IP e D, Universidade do Vale do Paraiba - UniVap, Sao Jose dos Campos, SP (Brazil)

    2012-09-15

    Skin aging is characterized by cellular and molecular alterations. In this context, Confocal Raman spectroscopy was used in vivo to measure these biochemical changes as function of the skin depth. In this study we have tried to correlate spectra from pure amino acids to in vivo spectra from volunteers with different ages. This study was performed on 32 volunteers: 11 from Group A (20-23 years), 11 from Group B (39-42 years) and 10 from Group C (59-62 years). For each group, the Raman spectra were measured on the surface (0 mm), 30 +- 3 mm and 60 +- 3 {mu}m below the surface. The results from intergroup comparisons showed that the oldest group had a prevalence of the tyrosine band, but it also presented a decrease in the band centered at 875 cm{sup -1} of pyrrolidone acid. The amide I band centered at 1637 cm{sup -1} that is attributed to collagen, as well as other proteins and lipid, showed a smaller amount of these biomolecules for Group C, which can be explained by the decrease in collagen concentration as a function of age. (author)

  12. Optical palpation in vivo: imaging human skin lesions using mechanical contrast

    Science.gov (United States)

    Es'haghian, Shaghayegh; Kennedy, Kelsey M.; Gong, Peijun; Sampson, David D.; McLaughlin, Robert A.; Kennedy, Brendan F.

    2015-01-01

    We demonstrate the first application of the recently proposed method of optical palpation to in vivo imaging of human skin. Optical palpation is a tactile imaging technique that probes the spatial variation of a sample's mechanical properties by producing an en face map of stress measured at the sample surface. This map is determined from the thickness of a translucent, compliant stress sensor placed between a loading element and the sample and is measured using optical coherence tomography. We assess the performance of optical palpation using a handheld imaging probe on skin-mimicking phantoms, and demonstrate its use on human skin lesions. Our results demonstrate the capacity of optical palpation to delineate the boundaries of lesions and to map the mechanical contrast between lesions and the surrounding normal skin.

  13. In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery

    Directory of Open Access Journals (Sweden)

    Taner Şenyiğit

    2016-12-01

    Full Text Available The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%. As a comparison, a commercial cream (CP 0.05% w/w, and a sodium deoxycholate gel (CP 0.05% w/w were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2 and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP.

  14. The occlusion effects in capacitive contact imaging for in vivo skin damage assessments.

    Science.gov (United States)

    Pan, W; Zhang, X; Lane, M; Xiao, P

    2015-08-01

    The aim of this study was to investigate the occlusion effects in capacitive contact imaging, and to develop a new quantitative methodology for in vivo skin assessments using capacitive contact imaging and condenser-TEWL (transepidermal water loss) method. Two measurement technologies were used in this study, i.e., capacitive contact imaging and condenser-TEWL method. Three types of skin damages were studied, intensive washes, tape stripping and sodium lauryl sulphate (SLS) irritation. The test skin sites were chosen on the volar forearms of healthy volunteers (aged 25-45); the measurements were taken both before and periodically after the damages. The results show that the time-dependent occlusion curves of the capacitive contact imaging can reflect the types of damages, and by analysing the shapes of the curves, we can get information about the skin surface water content level and stratum corneum thickness. The results also show that the combination of capacitive contact imaging and condenser-TEWL method gives extra information about the skin damages, such as the types of the damages and status of the damages. We have developed a potential new quantitative methodology for skin damage assessments using capacitive contact imaging and condenser-TEWL method. The combination of the two technologies can provide useful information for skin damage assessments. We have also developed a mathematical model for analysing the occlusion curves. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. In vivo investigations on the penetration of various oils and their influence on the skin barrier.

    Science.gov (United States)

    Patzelt, A; Lademann, J; Richter, H; Darvin, M E; Schanzer, S; Thiede, G; Sterry, W; Vergou, T; Hauser, M

    2012-08-01

    The skin represents a potent barrier to the environment, which can be enhanced by the topical application of skin care products, such as oil and oil-based formulations by moisturizing the skin. The aim of this study was the investigation of the penetration behaviour of four vegetable oils and of paraffin oil into the stratum corneum by laser scanning microscopy. In addition, the occlusion capacity of these substances was assessed by transepidermal water loss (TEWL) measurements. Petrolatum served as a positive control for skin occlusion. The study was conducted in vivo and included six healthy volunteers. Paraffin oil, as well as the vegetable oils, penetrated only into the first upper layers of the stratum corneum. TEWL measurements indicated that the application of the vegetable oils (except jojoba oil) as well as paraffin oil, led to a similar occlusion of the skin surface. The most effective occlusion was found for petrolatum. For the investigated oils, a deeper penetration than into the first upper layers of the stratum corneum could be excluded. The decreased TEWL values indicate that the application of the oils leads to a semi-occlusion of the skin surface as it is intended by the use of oils to retain moisture in skin. © 2011 John Wiley & Sons A/S.

  16. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.

    Directory of Open Access Journals (Sweden)

    R Chad Webb

    Full Text Available Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP and stratum corneum (SC determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.

  17. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.

    Science.gov (United States)

    Webb, R Chad; Pielak, Rafal M; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A

    2015-01-01

    Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.

  18. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    Directory of Open Access Journals (Sweden)

    Nikolaos Kourkoumelis

    2015-06-01

    Full Text Available Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i assembling the technical specifications of portable systems and (ii analyzing the spectral characteristics of in vivo measurements.

  19. Comparative study of skin autofluorescence expression in atopic dermatitis and psoriasis: A prospective in vivo study.

    Science.gov (United States)

    Yim, J H; Jeong, K H; Shin, M K

    2017-05-01

    Treatment of atopic dermatitis (AD) and psoriasis requires their differentiation from other eczematoid dermatitis and a determination of disease severity. However, both can be clinically difficult and the findings subjectively interpreted. We investigated the utility of in vivo autofluorescence (AF) measurements for diagnosis of both diseases, and determination of severity. Thirty patients with AD and 30 with psoriasis were recruited, together with sex- and age-matched patients with healthy skin. AF intensity was measured using the EcoSkin® fluorescence video dermatoscope. In AD and psoriasis patients, AF in non-sun-exposed lesional and non-lesional skin was measured. To identify the locations that reflect characteristics of AD, AF was also measured at the other sites in the patients with AD. AD was associated with lower AF and psoriasis with higher AF intensity peaking around 620 nm. In addition, skin AF intensity of each disease was associated with severity of lesion. Non-invasive measurement of skin AF in vivo can aid in diagnosis of AD and psoriasis as well as in treatment monitoring. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Fiber optic microneedles for transdermal light delivery: ex vivo porcine skin penetration experiments.

    Science.gov (United States)

    Kosoglu, Mehmet A; Hood, Robert L; Chen, Ye; Xu, Yong; Rylander, Marissa Nichole; Rylander, Christopher G

    2010-09-01

    Shallow light penetration in tissue has been a technical barrier to the development of light-based methods for in vivo diagnosis and treatment of epithelial carcinomas. This problem can potentially be solved by utilizing minimally invasive probes to deliver light directly to target areas. To develop this solution, fiber optic microneedles capable of delivering light for either imaging or therapy were manufactured by tapering step-index silica-based optical fibers employing a melt-drawing process. Some of the microneedles were manufactured to have sharper tips by changing the heat source during the melt-drawing process. All of the microneedles were individually inserted into ex vivo pig skin samples to demonstrate the feasibility of their application in human tissues. The force on each microneedle was measured during insertion in order to determine the effects of sharper tips on the peak force and the steadiness of the increase in force. Skin penetration experiments showed that sharp fiber optic microneedles that are 3 mm long penetrate through 2 mm of ex vivo pig skin specimens. These sharp microneedles had a minimum average diameter of 73 mum and a maximum tip diameter of 8 mum. Flat microneedles, which had larger tip diameters, required a minimum average diameter of 125 mum in order to penetrate through pig skin samples. Force versus displacement plots showed that a sharp tip on a fiber optic microneedle decreased the skin's resistance during insertion. Also, the force acting on a sharp microneedle increased more steadily compared with a microneedle with a flat tip. However, many of the sharp microneedles sustained damage during skin penetration. Two designs that did not accrue damage were identified and will provide a basis of more robust microneedles. Developing resilient microneedles with smaller diameters will lead to transformative, novel modes of transdermal imaging and treatment that are less invasive and less painful for the patient.

  2. Microdialysis of the interstitial water space in human skin in vivo: quantitative measurement of cutaneous glucose concentrations.

    Science.gov (United States)

    Petersen, L J; Kristensen, J K; Bülow, J

    1992-09-01

    The purpose of this study was to evaluate the usefulness of a microdialysis technique for measurement of substances in the interstitial water space in intact human skin. Glucose was selected to validate the method. The cutaneous glucose concentration was measured by microdialysis and compared to that in venous blood. Single dialysis fibers (length 20 mm, 2,000 Da molecular weight cutoff) were glued to nylon tubings and inserted in forearm skin by means of a fine needle. Dialysis fibers were inserted in duplicate. Seven subjects were investigated after an overnight fast. Intradermal position of the dialysis probes was established by C-mode ultrasound scanning. The implantation trauma lasted 90-135 min as measured by laser Doppler flowmetry. Each dialysis fiber was calibrated in vivo by perfusing it with four to five different glucose concentrations. The perfusion rate was 3 microliters/min. Regression analysis of the calibration curves yielded the relative in vivo recovery of glucose. The skin glucose concentration was calculated as that particular perfusate glucose concentration that resulted in no net glucose transport across the dialysis membrane. Correlation coefficient of the regression lines was 0.93 +/- 0.03 (mean +/- SEM). After the injection trauma had vanished, recovery was 20.5 +/- 0.7%. Coefficient of variation (CV) on recovery was 10.9%. The cutaneous glucose concentration was 99.1 +/- 1.8% of the glucose concentration in venous plasma water (CV 4.1%). These findings suggest that the microdialysis technique accurately and precisely can reflect biochemical events in the interstitial water space in human skin in vivo.

  3. Ex-vivo complexation, skin permeation, interaction and cytodermal toxicity studies of p-tertbutylcalix[4]arene nanoemulsion for radiation decontamination.

    Science.gov (United States)

    Sharma, Navneet; Ojha, Himanshu; Pathak, Dharam Pal; Goel, Rajeev; Sharma, Rakesh Kumar

    2017-01-01

    p-tertbutylcalix[4]arene loaded nanoemulsion has been designed, characterized and evaluated for skin decontamination of radionuclides of interest in nuclear and radiological emergencies. Further, nanoemulsion was evaluated for Ex-vivo complexation, skin permeation, interaction and cytodermal toxicity. Ex-vivo skin complexation studies were conducted using High-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). Skin studies at dermal and cyto-dermal level have been carried out using techniques such as florescence microscopy, Differential scanning calorimetry (DSC), Flow cytometry, Confocal microscopy, Prestoblue and Comet assay. HR-SF-ICPMS study confirmed >95% complexation of surrogate nuclides of thallium and Iodine applied on excised rat skin mounted over Franz diffusion cell. Temporal analysis of aliquots obtained from Franz diffusion cell using UV-Vis absorption spectroscopy indicated that only 3.37% of formulation permeates through the skin. Skin penetration study of rhodamine 123 nanoemulsion carried out using florescence microscopy confirmed that formulation remains localised in epidermis of rat skin. DSC data confirmed skin compatibility of nanoemulsion, as no lipid extraction was observed from skin. In-vitro cell viability and cellular uptake assays performed on human skin fibroblasts prove no cellular uptake and cytotoxic effects. Comet assay, cell cycle arrest, and apoptosis-inducing mechanistic studies prove that prepared nanoemulsion is safe at cellular level. Taken together, data indicate that p-tertbutylcalix[4]arene nanoemulsion is both effective and safe formulation to use on skin for radio-decontamination. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Microdialysis of the interstitial water space in human skin in vivo

    DEFF Research Database (Denmark)

    Petersen, L J; Kristensen, J K; Bülow, J

    1992-01-01

    The purpose of this study was to evaluate the usefulness of a microdialysis technique for measurement of substances in the interstitial water space in intact human skin. Glucose was selected to validate the method. The cutaneous glucose concentration was measured by microdialysis and compared...... of the dialysis probes was established by C-mode ultrasound scanning. The implantation trauma lasted 90-135 min as measured by laser Doppler flowmetry. Each dialysis fiber was calibrated in vivo by perfusing it with four to five different glucose concentrations. The perfusion rate was 3 microliters...... that the microdialysis technique accurately and precisely can reflect biochemical events in the interstitial water space in human skin in vivo....

  5. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo.

    Science.gov (United States)

    Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo

    Science.gov (United States)

    Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.

    2015-07-01

    The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.

  7. Near-infrared autofluorescence imaging of cutaneous melanins and human skin in vivo

    Science.gov (United States)

    Han, Xiao; Lui, Harvey; McLean, David I.; Zeng, Haishan

    2009-03-01

    In recent years, near-infrared (NIR) autofluorescence imaging has been explored as a novel technique for tissue evaluation and diagnosis. We present an NIR fluorescence imaging system optimized for the dermatologic clinical setting, with particular utility for the direct characterization of cutaneous melanins in vivo. A 785-nm diode laser is coupled into a ring light guide to uniformly illuminate the skin. A bandpass filter is used to purify the laser light for fluorescence excitation, while a long-pass filter is used to block the main laser wavelength but pass the spontaneous components for NIR reflectance imaging. A computer-controlled filter holder is used to switch these two filters to select between reflectance and fluorescence imaging modes. Both the reflectance and fluorescence photons are collected by an NIR-sensitive charge-coupled device (CCD) camera to form the respective images. Preliminary results show that cutaneous melanin in pigmented skin disorders emits higher NIR autofluorescence than surrounding normal tissue. This confirmed our previous findings from NIR fluorescence spectroscopy study of cutaneous melanins and provides a new approach to directly image the distributions of cutaneous melanins in the skin. In-vivo NIR autofluorescence images may be useful for clinical evaluation and diagnosis of pigmented skin lesions, including melanoma.

  8. In vivo characterization of structural and optical properties of human skin by combined photothermal radiometry and diffuse reflectance spectroscopy

    Science.gov (United States)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2017-02-01

    We have combined two optical techniques to enable simultaneous assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in midinfrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. Namely, while PPTR is highly sensitive to depth distribution of selected absorbers, DRS provides spectral information and thus enables differentiation between various chromophores. The accuracy and robustness of the inverse analysis is thus considerably improved compared to use of either technique on its own. Our analysis approach is simultaneous multi-dimensional fitting of the measured PPTR signals and DRS with predictions from a numerical model of light-tissue interaction (a.k.a. inverse Monte Carlo). By using a three-layer skin model (epidermis, dermis, and subcutis), we obtain a good match between the experimental and modeling data. However, dividing the dermis into two separate layers (i.e., papillary and reticular dermis) helps to bring all assessed parameter values within anatomically and physiologically plausible intervals. Both the quality of the fit and the assessed parameter values depend somewhat on the assumed scattering properties for skin, which vary in literature and likely depend on subject's age and gender, anatomical site, etc. In our preliminary experience, simultaneous fitting of the scattering properties is possible and leads to considerable improvement of the fit. The described approach may thus have a potential for simultaneous determination of absorption and scattering properties of human skin in vivo.

  9. Automated Dermoscopy Image Analysis of Pigmented Skin Lesions

    Directory of Open Access Journals (Sweden)

    Alfonso Baldi

    2010-03-01

    Full Text Available Dermoscopy (dermatoscopy, epiluminescence microscopy is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs, allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis. This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR.

  10. High-intensity focused ultrasound treatment for skin: ex vivo evaluation.

    Science.gov (United States)

    Park, J-H; Lim, S-D; Oh, S H; Lee, J H; Yeo, U C

    2017-08-01

    High-intensity focused ultrasound (HIFU) has been used for skin tightening. However, there is a rising concern of irreversible adverse effects. Our aim was to evaluate the depth of thermal injury zone after HIFU energy passes through different condition. To analyze the consistency of the HIFU device, phantom tests were performed. Simulations were performed on ex vivo porcine tissues to estimate the area of the thermal coagulation point (TCP) according to the applied energy and skin condition. The experiment was designed in three orientations: normal direction (from epidermis to fascia), reverse direction (from fascia to epidermis), and normal direction without epidermis. The TCP was larger and wider depending on the applied fluence and handpieces (HPs). When we measured TCP in different directions, the measured area in the normal direction was more superficially located than that in the reverse direction. The depth of the TCP in the porcine skin without epidermis was detected at 130% deeper than in skin with an intact epidermis. The affected area by HIFU is dependent on the skin condition and the characteristics of the HP and applied fluence. Considerations of these factors may be the key to minimize the unwanted adverse effects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  12. Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin

    Science.gov (United States)

    Echchgadda, Ibtissam; Grundt, Jessica A.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.

    2013-12-01

    Terahertz (THz) time-domain spectroscopy systems permit the measurement of a tissue's hydration level. This feature makes THz spectrometers excellent tools for the noninvasive assessment of skin; however, current systems are large, heavy and not ideal for clinical settings. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to measure the absorption coefficient (μa) and index of refraction (n) of human subjects in vivo. Spectra were collected from 0.1 to 2 THz, and measurements were made from skin at three sites: the palm, ventral and dorsal forearm. Additionally, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal water loss, and melanin concentration. Our results suggest that the measured optical properties varied considerably for skin tissues that exhibited dissimilar hydration levels. These data provide a framework for using compact THz spectrometers for clinical applications.

  13. Detection of advanced glycation end products (AGEs) on human skin by in vivo confocal Raman spectroscopy

    Science.gov (United States)

    Martin, A. A.; Pereira, L.; Ali, S. M.; Pizzol, C. D.; Tellez, C. A.; Favero, P. P.; Santos, L.; da Silva, V. V.; Praes, C. E. O.

    2016-03-01

    The aging process involves the reduction in the production of the major components of skin tissue. During intrinsic aging and photoaging processes, in dermis of human skin, fibroblasts become senescent and have decreased activity, which produce low levels of collagen. Moreover, there is accumulation of advanced glycation end products (AGEs). AGEs have incidence in the progression of age-related diseases, principally in diabetes mellitus and in Alzheimer's diseases. AGEs causes intracellular damage and/or apoptosis leading to an increase of the free radicals, generating a crosslink with skin proteins and oxidative stress. The aim of this study is to detect AGEs markers on human skin by in vivo Confocal Raman spectroscopy. Spectra were obtained by using a Rivers Diagnostic System, 785 nm laser excitation and a CCD detector from the skin surface down to 120 μm depth. We analyzed the confocal Raman spectra of the skin dermis of 30 women volunteers divided into 3 groups: 10 volunteers with diabetes mellitus type II, 65-80 years old (DEW); 10 young healthy women, 20-33 years old (HYW); and 10 elderly healthy women, 65-80 years old (HEW). Pentosidine and glucosepane were the principally identified AGEs in the hydroxyproline and proline Raman spectral region (1000-800 cm-1), in the 1.260-1.320 cm-1 region assignable to alpha-helical amide III modes, and in the Amide I region. Pentosidine and glucosepane calculated vibrational spectra were performed through Density Functional Theory using the B3LYP functional with 3-21G basis set. Difference between the Raman spectra of diabetic elderly women and healthy young women, and between healthy elderly women and healthy young women were also obtained with the purpose of identifying AGEs Raman bands markers. AGEs peaks and collagen changes have been identified and used to quantify the glycation process in human skin.

  14. In vivo determination of optical properties and fluorophore characteristics of non-melanoma skin cancer

    Science.gov (United States)

    Rajaram, Narasimhan; Kovacic, Dianne; Migden, Michael F.; Reichenberg, Jason S.; Nguyen, Tri H.; Tunnell, James W.

    2009-02-01

    Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as noninvasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy. We report for the first time to our knowledge both the optical properties and native fluorophore characteristics of non-melanoma skin cancer in the UV-visible range. We collected in vivo diffuse reflectance and intrinsic fluorescence measurements from 44 skin lesions on 37 patients. The skin sites were further categorized into three groups of non-melanoma skin cancer according to histopathology: 1) pre-cancerous actinic keratosis 2) malignant squamous cell carcinoma (SCC) and 3) basal cell carcinoma (BCC). We used a custom-built probe-based clinical system that collects both white light reflectance and laser-induced fluorescence in the wavelength range of 350-700 nm. We extracted the blood volume fraction, oxygen saturation, blood vessel size, tissue microarchitecture and melanin content from diffuse reflectance measurements. In addition, we determined the native fluorophore contributions of NADH, collagen and FAD from laser-induced fluorescence for all groups. The scattering from tissue decreased with progression from clinically normal to precancerous actinic keratosis to malignant SCC. A similar trend was observed for clinically normal skin and malignant BCC. Statistically significant differences were observed in the collagen contributions, which were lower in malignant SCC and BCC as compared to normal skin. Our data demonstrates that the mean optical properties and fluorophore contributions of normal, benign and malignant nonmelanoma cancers are significantly different from each other and can potentially be used as biomarkers for the early detection of skin cancer.

  15. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white)

    NARCIS (Netherlands)

    Hicks, Shari P.; Swindells, Kirsty J.; Middelkamp-Hup, Maritza A.; Sifakis, Martine A.; González, Ernesto; González, Salvador

    2003-01-01

    BACKGROUND: The pathogenesis of irritant contact dermatitis and its modulation according to skin color is not well understood. Reflectance confocal microscopy (RCM) enables high-resolution, real-time, in-vivo imaging of human skin. OBJECTIVE: The goal of our study was to use RCM to determine whether

  16. Fat tissue histological study at NIR laser treatment of the skin in vivo

    Science.gov (United States)

    Yanina, Irina Y.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.

    2011-07-01

    Histological slices of skin samples with the subcutaneous adipose tissue after laser irradiation at different doses are analyzed. These data may be used at carrying out of the analysis of histological slices of skin samples with the subcutaneous adipose tissue after photodynamic therapy. The obtained data are important for safe layer-by-layer dosimetry of laser irradiation used in the treatment of obesity and cellulite.

  17. In vivo multiphoton‐microscopy of picosecond‐laser‐induced optical breakdown in human skin

    Science.gov (United States)

    Lentsch, Griffin; Korta, Dorota Z.; König, Karsten; Kelly, Kristen M.; Tromberg, Bruce J.; Zachary, Christopher B.

    2017-01-01

    Importance Improvements in skin appearance resulting from treatment with fractionated picosecond‐lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non‐invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome. Objective The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high‐resolution, label‐free imaging technique, to characterize in vivo the skin response to a fractionated non‐ablative picosecond‐laser treatment. Design, Setting, and Participants Two areas on the arm of a volunteer were treated with a fractionated picosecond laser at the Dermatology Clinic, UC Irvine. The skin response to treatment was imaged in vivo with a clinical MPM‐based tomograph at 3 hours and 24 hours after treatment and seven additional time points over a 4‐week period. Main Outcomes and Measures MPM revealed micro‐injuries present in the epidermis. Pigmented cells were particularly damaged in the process, suggesting that melanin is likely the main absorber for laser induced optical breakdown. Results Damaged individual cells were distinguished as early as 3 hours post pico‐laser treatment with the 532 nm wavelength, and 24 hours post‐treatment with both 532 and 1064 nm wavelengths. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. After 24 hours of treatment, inflammatory cells were imaged in the proximity of epidermal micro‐injuries. The epidermal injuries were exfoliated over a 4‐week period. Conclusions and Relevance This observational and descriptive pilot study demonstrates that in vivo MPM imaging can be used non‐invasively to provide label‐free contrast for describing changes in human skin following a fractionated non‐ablative laser treatment. The results presented in

  18. Assessment Of Suspected Skin Lesion Depth By Multispectral Digital Dermatoscopy: In-Vivo Tests

    Science.gov (United States)

    Scalise, L.; Munaretto, R.; Serresi, S.; Tomasini, E. P.

    2010-05-01

    The aim of the present study is to demonstrate the possibility to assess the depth of suspected skin lesion in-vivo, using multispectral digital dermatoscopy (MDD); being malignant lesion depth an important factor related to survival rate. The system realised in this work is based on a special multi-wavelength LED illuminator (700 nm, 940 nm and 950 nm) and an high quality CCD camera which allows to acquire a detailed image of the suspected skin lesion. A statistically significant correlation between contrast of the area of the lesion at single wavelength and the depth of the lesions in vivo (as determined by histopathology survey) has been found using 39 samples. Interesting results, have been especially obtained using illuminating wavelength at 940 nm and 950 nm. Using a linear fitting of our data the maximum depth of melanoma has been overestimation of 0.43 ± 0.26 mm. The present study shows a possible use of our MDD system as in the assessment of maximum depth of suspected skin lesions.

  19. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2017-10-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  20. Predicting Biological Age from a Skin Surface Capacitive Analysis

    Science.gov (United States)

    Bevilacqua, Alessandro; Gherardi, Alessandro; Ferri, Massimo

    The skin is the largest (and the most exposed) organ of the body both in terms of surface area and weight. Its care is of great importance for both aesthetics and health issues. Often, the skin appearance gives us information about the skin health status as well as hints at the biological age. Therefore, the skin surface characterization is of great significance for dermatologists as well as for cosmetic scientists in order to evaluate the effectiveness of medical or cosmetic treatments. So far, no in vivo measurements regarding skin topography characterization could be achieved routinely to evaluate skin aging. This work describes how a portable capacitive device, normally used for fingerprint acquisition, can be utilized to achieve measures of skin aging routinely. The capacitive images give a high resolution (50 μm) representation of skin topography, in terms of wrinkles and cells. In this work, we have addressed the latter: through image segmentation techniques, cells have been localized and identified and a feature related to their area distribution has been generated. Accurate experiments accomplished in vivo show how the feature we conceived is linearly related to skin aging. Besides, since this finding has been achieved using a low cost portable device, this could boost research in this field as well as open doors to an application based on an embedded system.

  1. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  2. In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy

    Science.gov (United States)

    Skrebova Eikje, Natalja

    2011-03-01

    Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.

  3. In vivo laser scanning microscopic investigation of the decontamination of hazardous substances from the human skin

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Schanzer, S.; Richter, H.; Gross, I.; Menting, K. H.; Frazier, L.; Sterry, W.; Antoniou, C.

    2010-12-01

    The stimulation of the penetration of topically applied substances into the skin is a topic of intensive dermatological and pharmacological research. In this context, it was found that in addition to the intercellular penetration, the follicular penetration also represents an efficient penetration pathway. The hair follicles act as a long-term reservoir for topically applied substances. They are surrounded by all important target structures, such as blood capillaries, stem and dendritic cells. Therefore, the hair follicles, as well as the skin, need to be protected from hazardous substances. The traditional method of decontamination after respective accidental contacts consists of an intensive washing of the skin. However, during this mechanical procedure, the substances can be pushed even deeper into the hair follicles. In the present study, absorbent materials were applied to remove a fluorescent model substance from the skin without inducing mechanical stress. The results were compared to the decontamination effects obtained by intensive washing. Investigations were performed by means of in vivo laser scanning microscopy (LSM). The comparison revealed that decontamination with absorbent materials is more effective than decontamination with washing processes.

  4. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Science.gov (United States)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  5. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function.

    Science.gov (United States)

    Souza, Carla; de Freitas, Luis Alexandre Pedro; Maia Campos, Patrícia Maria Berardo Gonçalves

    2017-10-01

    Lipid nanoparticles have shown many advantages for treatment/prevention of skin disorders with damaged skin barrier function. Beeswax is a favorable candidate for the development of nanosystems in the cosmetic and dermatological fields because of its advantages for the development of products for topical application. In the present study, beeswax-based nanoparticles (BNs) were prepared using the hot melt microemulsion technique and incorporated to a gel-cream formulation. The formulation was subsequently evaluated for its rheological stability and effect on stratum corneum water content (SCWC) and transepidermal water loss (TEWL) using in vivo biophysical techniques. BNs resulted in mean particle size of 95.72 ± 9.63 nm and zeta potential of -9.85 ± 0.57 mV. BN-loaded formulation showed shear thinning behavior, well adjusted by the Herschel-Bulkley model, and a small thixotropy index that were stable for 28 days at different temperatures. BN-loaded formulation was also able to simultaneously decrease the TEWL and increase the SCWC values 28 days after treatment. In conclusion, the novel beeswax-based nanoparticles showed potential for barrier recovery and open the perspective for its commercial use as a novel natural active as yet unexplored in the field of dermatology and cosmetics for treatment of skin diseases with damaged skin barrier function.

  6. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Directory of Open Access Journals (Sweden)

    P. Behm

    2017-11-01

    Full Text Available We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  7. Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores

    Science.gov (United States)

    Miller, Jessica P.; Habimana-Griffin, LeMoyne; Edwards, Tracy S.; Achilefu, Samuel

    2017-06-01

    Similarity of skin cancer with many benign skin pathologies requires reliable methods to detect and differentiate the different types of these lesions. Previous studies have explored the use of disparate optical techniques to identify and estimate the invasive nature of melanoma and basal cell carcinoma with varying outcomes. Here, we used a concerted approach that provides complementary information for rapid screening and characterization of tumors, focusing on squamous cell carcinoma (SCC) of the skin. Assessment of in vivo autofluorescence lifetime (FLT) imaging of endogenous fluorophores that are excitable at longer wavelengths (480 nm) than conventional NADH and FAD revealed a decrease in the short FLT component for SCC compared to normal skin, with mean values of 0.57±0.026 ns and 0.61±0.021 ns, respectively (p=0.004). Subsequent systemic administration of a near-infrared fluorescent molecular probe in SCC bearing mice, followed by the implementation of image processing methods on data acquired from two-dimensional and three-dimensional fluorescence molecular imaging, allowed us to estimate the tumor volume and depth, as well as quantify the fluorescent probe in the tumor. The result suggests the involvement of lipofuscin-like lipopigments and riboflavin in SCC metabolism and serves as a model for staging SCC.

  8. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes

    DEFF Research Database (Denmark)

    Trauer, S.; Richter, H.; Kuntsche, Judith

    2014-01-01

    Liposomes are frequently described as drug delivery systems for dermal and transdermal applications. Recently, it has been shown that particulate substances penetrate effectively into hair follicles and that the follicular penetration depth can be increased by massaging the skin, which simulates...... the in vivo movement of hairs in the hair follicles. In the present study, massage was applied to skin mounted to Franz diffusion cells. By means of confocal laser scanning microscopy, the influence of massage and occlusion on the follicular penetration depths of rigid and flexible liposomes loaded...... with a hydrophilic and lipophilic dye was investigated. The application of massage increased follicular penetration significantly. Occlusion resulted in an increased follicular penetration depth only for rigid liposomes, whereas invasomes did not penetrate more effectively if occlusion was applied. The results...

  9. Release of rosmarinic acid from semisolid formulations and its penetration through human skin ex vivo

    Directory of Open Access Journals (Sweden)

    Stelmakienė Ada

    2015-06-01

    Full Text Available The aim of this study was to evaluate the release of rosmarinic acid (RA from the experimental topical formulations with the Melissa officinalis L. extract and to evaluate its penetration through undamaged human skin ex vivo. The results of the in vitro release study showed that higher amounts of RA were released from the emulsion vehicle when lemon balm extract was added in its dry form. An inverse correlation was detected between the released amount of RA and the consistency index of the formulation. Different penetration of RA into the skin may be influenced by the characteristics of the vehicle as well as by the form of the extract. The results of penetration assessment showed that the intensity of RA penetration was influenced by its lipophilic properties: RA was accumulating in the epidermis, while the dermis served as a barrier, impeding its deeper penetration.

  10. In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation)

    Science.gov (United States)

    Song, Seungri; Kim, Jung Dong; Bae, Jung-hyun; Chang, Sooho; Kim, Soocheol; Lee, Hyungsuk; Jeong, Dohyeon; Kim, Hong Kee; Joo, Chulmin

    2017-02-01

    Transdermal drug delivery (TDD) has been recently highlighted as an alternative to oral delivery and hypodermic injections. Among many methods, drug delivery using a microneedle (MN) is one of the promising administration strategies due to its high skin permeability, mininal invasiveness, and ease of injection. In addition, microneedle-based TDD is explored for cosmetic and therapeutic purposes, rapidly developing market of microneedle industry for general population. To date, visualization of microneedles inserted into biological tissue has primarily been performed ex vivo. MRI, CT and ultrasound imaging do not provide sufficient spatial resolution, and optical microscopy is not suitable because of their limited imaging depth; structure of microneedles located in 0.2 1mm into the skin cannot be visulalized. Optical coherence tomography (OCT) is a non-invasive, cross-sectional optical imaging modality for biological tissue with high spatial resolution and acquisition speed. Compared with ultrasound imaging, it exhibits superior spatial resolution (1 10 um) and high sensitivity, while providing an imaging depth of biological tissue down to 1 2 mm. Here, we present in situ imaging and analysis of the penetration and dissolution characteristics of hyaluronic acid based MNs (HA-MN) with various needle heights in human skin in vivo. In contrast to other studies, we measured the actual penetration depths of the HA-MNs by considering the experimentally measured refractive index of HA in the solid state. For the dissolution dynamics of the HA-MNs, time-lapse structural alteration of the MNs could be clearly visualized, and the volumetric changes of the MNs were measured with an image analysis algorithm.

  11. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties.

    Science.gov (United States)

    Zhai, Yingjie; Xu, Rui; Wang, Yi; Liu, Jiyong; Wang, Zimin; Zhai, Guangxi

    2015-01-01

    Ropivacaine, a novel long-acting local anesthetic, has been proved to own superior advantage. However, Naropin® Injection, the applied form in clinic, can cause patient non-convenience. The purpose of this study was to formulate ropivacaine (RPV) in ethosomes and evaluate the potential of ethosome formulation in delivering RPV transdermally. The RPV-loaded ethosomes were prepared with thin-film dispersion technique and the formulation was characterized in terms of size, zeta potential, differential scanning calorimetry (DSC) analysis and X-ray diffraction (XRD) study. The results showed that the optimized RPV-ethosomes displayed a typical lipid bilayer structure with a narrow size distribution of 73.86 ± 2.40 nm and drug loading of 8.27 ± 0.37%, EE of 68.92 ± 0.29%. The results of DSC and XRD study indicated that RPV was in amorphous state when encapsulated into ethosomes. Furthermore, the results of ex vivo permeation study proved that RPV-ethosomes could promote the permeability in a high-efficient, rapid way (349.0 ± 11.5 μg cm(-2) at 12 h and 178.8 ± 7.1 μg cm(-2) at 0.5 h). The outcomes of histopathology study forecasted that the interaction between ethosomes and skin could loosen the tight conjugation of corneocyte layers and weaken the permeation barrier. In conclusion, RPV-ethosomes could be a promising delivery system to encapsulate RPV and deliver RPV for transdermal administration.

  12. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  13. Real-time, High-resolution, In Vivo Characterization of Superficial Skin With Microscopy Using Ultraviolet Surface Excitation (MUSE).

    Science.gov (United States)

    Ho, Derek; Fereidouni, Farzad; Levenson, Richard M; Jagdeo, Jared

    2016-11-01

    Skin care products make up the largest part (36%) of the cosmetic market globally, of which the United States plays the largest role. In 2015, approximately 115 billion USD was spent globally on skin care products. Skin care products, in contradistinction to pharmaceuticals, are not strictly regulated by the FDA. A key factor for evaluation of a skin care product or topical drug is skin barrier function and effect on super cial skin. Thus, it is critical to have quantitative and qualitative methods to study the effects of skin care products on skin barrier and the super cial skin. Currently, no imaging method exists that can evaluate and track super cial skin changes visually in real-time. To report using a novel imaging modality, Microscopy using Ultraviolet Surface Excitation (MUSE), to provide real-time, high- resolution, in vivo characterization of super cial skin and moisturizing properties of topical moisturizer, and to highlight key bene ts of using MUSE to visualize the super cial skin and serve as an excellent complementary tool to current quantitative methods. The methodology of MUSE is based upon two main principles inherent to ultraviolet (UV) light and uorescent staining agents. In this study, the author's (JJ) index ngertip was imaged using the MUSE instrument without and with moisturizer. Dermatoglyphics of the fingertip consists of ridges (cristae super ciales) and grooves (sulci super ciales) proved to be straightforward to visualize at high resolution. Desquamation of superficial corneocytes and opening of an acrosyringium (the most superficial portion of eccrine ducts) were visualized in high-resolution. Post-application of a moisturizer, a uniform layer of moisturizer could be seen superficial to the corneocytes along the ridges and CONCLUSIONS: Real-time, high-resolution, in vivo characterization of super cial skin and moisturizing properties of moisturizer using MUSE is feasible. Its utility can be enhanced with downstream quantification using

  14. In vivo imaging of human and mouse skin with a handheld dual-axis confocal fluorescence microscope.

    Science.gov (United States)

    Ra, Hyejun; Piyawattanametha, Wibool; Gonzalez-Gonzalez, Emilio; Mandella, Michael J; Kino, Gordon S; Solgaard, Olav; Leake, Devin; Kaspar, Roger L; Oro, Anthony; Contag, Christopher H

    2011-05-01

    Advancing molecular therapies for the treatment of skin diseases will require the development of new tools that can reveal spatiotemporal changes in the microanatomy of the skin and associate these changes with the presence of the therapeutic agent. For this purpose, we evaluated a handheld dual-axis confocal (DAC) microscope that is capable of in vivo fluorescence imaging of skin, using both mouse models and human skin. Individual keratinocytes in the epidermis were observed in three-dimensional image stacks after topical administration of near-infrared (NIR) dyes as contrast agents. This suggested that the DAC microscope may have utility in assessing the clinical effects of a small interfering RNA (siRNA)-based therapeutic (TD101) that targets the causative mutation in pachyonychia congenita (PC) patients. The data indicated that (1) formulated indocyanine green (ICG) readily penetrated hyperkeratotic PC skin and normal callused regions compared with nonaffected areas, and (2) TD101-treated PC skin revealed changes in tissue morphology, consistent with reversion to nonaffected skin compared with vehicle-treated skin. In addition, siRNA was conjugated to NIR dye and shown to penetrate through the stratum corneum barrier when topically applied to mouse skin. These results suggest that in vivo confocal microscopy may provide an informative clinical end point to evaluate the efficacy of experimental molecular therapeutics.

  15. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes.

    Science.gov (United States)

    Trauer, Sindy; Richter, Heike; Kuntsche, Judith; Büttemeyer, Rolf; Liebsch, Manfred; Linscheid, Michael; Fahr, Alfred; Schäfer-Korting, Monika; Lademann, Jürgen; Patzelt, Alexa

    2014-02-01

    Liposomes are frequently described as drug delivery systems for dermal and transdermal applications. Recently, it has been shown that particulate substances penetrate effectively into hair follicles and that the follicular penetration depth can be increased by massaging the skin, which simulates the in vivo movement of hairs in the hair follicles. In the present study, massage was applied to skin mounted to Franz diffusion cells. By means of confocal laser scanning microscopy, the influence of massage and occlusion on the follicular penetration depths of rigid and flexible liposomes loaded with a hydrophilic and lipophilic dye was investigated. The application of massage increased follicular penetration significantly. Occlusion resulted in an increased follicular penetration depth only for rigid liposomes, whereas invasomes did not penetrate more effectively if occlusion was applied. The results confirm that massage is an important tool for increasing follicular penetration in ex vivo studies using Franz diffusion cells. Occlusion may reduce the efficacy of follicular penetration depending on the specific liposomal preparation. Rigidity in particular appears to be a relevant parameter. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Resveratrol-Loaded Lipid Nanocarriers: Correlation between In Vitro Occlusion Factor and In Vivo Skin Hydrating Effect

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2017-12-01

    Full Text Available Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions (NEs, solid lipid nanoparticles (SLNs and nanostructured lipid carriers (NLCs. These lipid nanocarriers were loaded with trans-resveratrol (RSV and incorporated in gel vehicles. In vitro occlusion factor was in the order SLNs > NLCs > NEs. Gels containing unloaded or RSV loaded lipid nanocarriers were applied on the back of a hand of 12 healthy volunteers twice a day for one week, recording skin hydration changes using the instrument Soft Plus. An increase of skin hydration was observed for all lipid nanocarriers (SLNs > NLCs > NEs. RSV loading into these nanocarriers did not affect in vitro and in vivo lipid nanocarriers effects. A linear relationship (r2 = 0.969 was observed between occlusion factor and in vivo increase of skin hydration. Therefore, the results of this study showed the feasibility of using the occlusion factor to predict in vivo skin hydration resulting from topical application of different lipid nanocarriers loading an active ingredient with no inherent hydrating activity.

  17. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  18. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  19. A novel image processing workflow for the in vivo quantification of skin microvasculature using dynamic optical coherence tomography.

    Science.gov (United States)

    Zugaj, D; Chenet, A; Petit, L; Vaglio, J; Pascual, T; Piketty, C; Bourdes, V

    2018-02-04

    Currently, imaging technologies that can accurately assess or provide surrogate markers of the human cutaneous microvessel network are limited. Dynamic optical coherence tomography (D-OCT) allows the detection of blood flow in vivo and visualization of the skin microvasculature. However, image processing is necessary to correct images, filter artifacts, and exclude irrelevant signals. The objective of this study was to develop a novel image processing workflow to enhance the technical capabilities of D-OCT. Single-center, vehicle-controlled study including healthy volunteers aged 18-50 years. A capsaicin solution was applied topically on the subject's forearm to induce local inflammation. Measurements of capsaicin-induced increase in dermal blood flow, within the region of interest, were performed by laser Doppler imaging (LDI) (reference method) and D-OCT. Sixteen subjects were enrolled. A good correlation was shown between D-OCT and LDI, using the image processing workflow. Therefore, D-OCT offers an easy-to-use alternative to LDI, with good repeatability, new robust morphological features (dermal-epidermal junction localization), and quantification of the distribution of vessel size and changes in this distribution induced by capsaicin. The visualization of the vessel network was improved through bloc filtering and artifact removal. Moreover, the assessment of vessel size distribution allows a fine analysis of the vascular patterns. The newly developed image processing workflow enhances the technical capabilities of D-OCT for the accurate detection and characterization of microcirculation in the skin. A direct clinical application of this image processing workflow is the quantification of the effect of topical treatment on skin vascularization. © 2018 The Authors. Skin Research and Technology Published by John Wiley & Sons Ltd.

  20. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation

    DEFF Research Database (Denmark)

    Philipsen, P A; Knudsen, L; Gniadecka, M

    2013-01-01

    in a higher spectral background caused by fluorescence, which could be removed by background correction. After background correction, we found only a negligible effect of pigmentation on the major spectral bands, and the comparison of the intensity of these bands allowed us to differentiate between normal......There is a general need for methods to obtain fast in vivo diagnosis of skin tumours. Raman spectroscopy measures molecular structure and may thus have potential as a tool for skin tumour diagnosis. The purpose of this study was to investigate how skin pigmentation influenced the Raman spectra...... and skin tumour diagnostics in vivo. We obtained Raman spectra in vivo from the normal skin of 55 healthy persons with different skin pigmentation (Fitzpatrick skin type I-VI) and in vivo from 25 basal cell carcinomas, 41 pigmented nevi and 15 malignant melanomas. Increased skin pigmentation resulted...

  1. In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D

    2017-08-01

    Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Yang, Xiaoyu; Lee, Kiho; Mao, Jiude; Teson, Jennifer M; Whitworth, Kristin M; Samuel, Melissa S; Spate, Lee D; Murphy, Clifton N; Prather, Randall S

    2012-09-20

    Multipotent skin-derived progenitors (SKPs) can be traced back to embryonic neural crest cells and are able to differentiate into both neural and mesodermal progeny in vitro. Neural stem cells (NSCs) are capable of self-renewing and can contribute to neuron and glia in the nervous system. Recently, we derived porcine SKPs and NSCs from the same enhanced green fluorescent protein (EGFP) transgenic fetuses and demonstrated that SKPs could contribute to neural and mesodermal lineages in vivo. However, it remains unclear whether porcine SKPs and NSCs can generate ectoderm and mesoderm lineages or other germ layers in vivo. Embryonic chimeras are a well-established tool for investigating cell lineage determination and cell potency through normal embryonic development. Thus, the purpose of this study was to investigate the in vivo developmental potential of porcine SKPs and fetal brain-derived NSCs by chimera production. Porcine SKPs, NSCs, and fibroblasts were injected into precompact in vitro fertilized embryos (IVF) and then transferred into corresponding surrogates 24 h postinjection. We found that porcine SKPs could incorporate into the early embryos and contribute to various somatic tissues of the 3 germ layers in postnatal chimera, and especially have an endodermal potency. However, this developmental potential is compromised when they differentiate into fibroblasts. In addition, porcine NSCs fail to incorporate into host embryos and contribute to chimeric piglets. Therefore, neural crest-derived SKPs may represent a more primitive state than their counterpart neural stem cells in terms of their contributions to multiple cell lineages.

  3. Lamellar Liquid Crystal Improves the Skin Retention of 3-O-Ethyl-Ascorbic Acid and Potassium 4-Methoxysalicylate In Vitro and In Vivo for Topical Preparation.

    Science.gov (United States)

    Li, Yuanru; Dong, Cuilian; Cun, Dongmei; Liu, Jie; Xiang, Rongwu; Fang, Liang

    2016-06-01

    The study aimed at increasing the skin retention of 3-O-ethyl-ascorbic acid (EA) and potassium 4-methoxysalicylate (4-MSK) via topical administration for effective skin-whitening. To achieve this goal, EA and 4-MSK were formulated into lamellar liquid crystalline (LLC) cream, and response surface methodology (RSM) was employed to optimize the formulation. Polarized light microscopy (PLM), differential scanning calorimetry (DSC), and rheological experiments were performed to confirm the presence of the LLC structure in the base of cream. In addition, a comparison analysis of the skin retention of the two drugs between the LLC cream and the common o/w (COW) cream was made through in vitro permeation and in vivo drug distribution experiments. As a result, the optimal formulation was defined as 1.2% of EA, 1.48% of 4-MSK, 14.05% of Schercemol™ DISM Ester (DISM) as the oil, 4.0% of Emulium® Delta as the emulsifier, and 3.0% of stearyl alcohol as the co-emulsifier. In comparison with the COW cream, the LLC cream significantly increased the skin retention of EA and 4-MSK both in vitro and in vivo. In conclusion, the LLC carrier serves as a promising choice for topical preparation by enhancing skin retention and providing desirable rheological characteristics.

  4. In vivo reflectance-mode confocal microscopy assessments: impact of overweight on human skin microcirculation and histomorphology

    Science.gov (United States)

    Altintas, Ahmet A.; Aust, Matthias C.; Krämer, Robert; Vogt, Peter M.; Altintas, Mehmet A.

    2016-03-01

    Reflectance-mode confocal microscopy (RCM) enables in vivo assessment of the human skin. Impact of overweight on both human skin microcirculation and histomorphology has not been investigated in vivo. The purpose of this study is to evaluate both microcirculation and histomorphology in vivo in overweight. In 10 normotensive overweight nondiabetic individuals (OW-group, BMI 29.1±2.7 kg/m2) and 10 age- and sex-matched healthy lean controls (CO-group, BMI 20.4±1.9 kg/m2) the following parameters were evaluated using RCM: dermal blood cell flow (DBCF), density of dermal capillaries (DDC), epidermal thickness (ET), and epidermal cell size (ECS). DBCF was counted at 63.11±4.14 cells/min in OW-group and at 51.06±3.84 cells/min in CO-group (Padiposity-related skin condition.

  5. Computerized analysis of pigmented skin lesions: a review.

    Science.gov (United States)

    Korotkov, Konstantin; Garcia, Rafael

    2012-10-01

    Computerized analysis of pigmented skin lesions (PSLs) is an active area of research that dates back over 25years. One of its main goals is to develop reliable automatic instruments for recognizing skin cancer from images acquired in vivo. This paper presents a review of this research applied to microscopic (dermoscopic) and macroscopic (clinical) images of PSLs. The review aims to: (1) provide an extensive introduction to and clarify ambiguities in the terminology used in the literature and (2) categorize and group together relevant references so as to simplify literature searches on a specific sub-topic. The existing literature was classified according to the nature of publication (clinical or computer vision articles) and differentiating between individual and multiple PSL image analysis. We also emphasize the importance of the difference in content between dermoscopic and clinical images. Various approaches for implementing PSL computer-aided diagnosis systems and their standard workflow components are reviewed and summary tables provided. An extended categorization of PSL feature descriptors is also proposed, associating them with the specific methods for diagnosing melanoma, separating images of the two modalities and discriminating references according to our classification of the literature. There is a large discrepancy in the number of articles published on individual and multiple PSL image analysis and a scarcity of reported material on the automation of lesion change detection. At present, computer-aided diagnosis systems based on individual PSL image analysis cannot yet be used to provide the best diagnostic results. Furthermore, the absence of benchmark datasets for standardized algorithm evaluation is a barrier to a more dynamic development of this research area. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Modified Corneosurfametry as a new accelerated high-throughput ex vivo methodology for predicting cleanser effects towards human skin.

    Science.gov (United States)

    Liu, M; Mollica, L; Regan, J; Hawkins, S; McGuiness, H; Vetro, K; Garczarek, U; Shi, S; Vasudevan, V; Ananthapadmanabhan, K P

    2016-04-01

    Corneosurfametry (CSM) was originally developed as a tool to predict irritation potential of cleansers. In this method, surface skin stripped using cyanoacrylate is contacted with surfactants/products, rinsed and stained with toluidine blue and basic fuschin dyes. The intensity of staining increases with increases in irritation potential of surfactant. Our objective was to modify the CSM technique to achieve better control of the tape stripping process. Another objective was to correlate the modified CSM (MCSM) with a traditional in-vivo forearm controlled application test (FCAT) for mildness and to explore its utility to assess the state of corneum after a clinical test. Surface skin cells were tape stripped from forearms of volunteers with D-Squame Adhesive Discs. Discs were treated with a 10% solution of the product in a 96-plate well for 10 min, rinsed, dried and treated with basic fuschin-toluidine blue dye solution, rinsed and dried again. Forearm Controlled Application Test (FCAT) was based on a published protocol. Tape strips obtained after product treatment were also analyzed by the MCSM procedure without additional product treatment. Mildness/barrier damage assessed from in-vivo FCAT showed a similar ranking to the MCSM results. MCSM, TEWL and Erythema analysis of between-treatment differences showed a good correlation indicating that barrier damage seen in in-vivo studies can be predicted from ex-vivo MCSM studies. MCSM analysis of tape strips after the FCAT study showed that the damage decreased with increase in tape strip number. A moisturizing body wash (MBW) with mild surfactants showed the least damage in all layers. In contrast, harsh dish washing liquid showed significantly higher damage down to several layers. Another MBW with petrolatum in a harsher base showed damage almost similar to that of the harsh dish washing liquid in the surface layers. Thus, the MCSM was able to show underlying damage which would have been normally masked by the

  7. Anti-inflammatory activity of Punica granatum L. (Pomegranate) rind extracts applied topically to ex vivo skin.

    Science.gov (United States)

    Houston, David M J; Bugert, Joachim; Denyer, Stephen P; Heard, Charles M

    2017-03-01

    Coadministered pomegranate rind extract (PRE) and zinc (II) produces a potent virucidal activity against Herpes simplex virus (HSV); however, HSV infections are also associated with localised inflammation and pain. Here, the objective was to determine the anti-inflammatory activity and relative depth penetration of PRE, total pomegranate tannins (TPT) and zinc (II) in skin, ex vivo. PRE, TPT and ZnSO 4 were dosed onto freshly excised ex vivo porcine skin mounted in Franz diffusion cells and analysed for COX-2, as a marker for modulation of the arachidonic acid inflammation pathway, by Western blotting and immunohistochemistry. Tape stripping was carried out to construct relative depth profiles. Topical application of PRE to ex vivo skin downregulated expression of COX-2, which was significant after just 6h, and maintained for up to 24h. This was achieved with intact stratum corneum, proving that punicalagin penetrated skin, further supported by the depth profiling data. When PRE and ZnSO 4 were applied together, statistically equal downregulation of COX-2 was observed when compared to the application of PRE alone; no effect followed the application of ZnSO 4 alone. TPT downregulated COX-2 less than PRE, indicating that tannins alone may not be entirely responsible for the anti-inflammatory activity of PRE. Punicalagin was found throughout the skin, in particular the lower regions, indicating appendageal delivery as a significant route to the viable epidermis. Topical application of TPT and PRE had significant anti-inflammatory effects in ex vivo skin, confirming that PRE penetrates the skin and modulates COX-2 regulation in the viable epidermis. Pomegranates have potential as a novel approach in ameliorating the inflammation and pain associated with a range of skin conditions, including cold sores and herpetic stromal keratitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening

    Science.gov (United States)

    Mazurenka, M.; Behrendt, L.; Meinhardt-Wollweber, M.; Morgner, U.; Roth, B.

    2017-10-01

    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.

  9. Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening.

    Science.gov (United States)

    Mazurenka, M; Behrendt, L; Meinhardt-Wollweber, M; Morgner, U; Roth, B

    2017-10-01

    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.

  10. Haptic characterization of human skin in vivo in response to shower gels using a magnetic levitation device.

    Science.gov (United States)

    Yardley, R; Fan, A; Masters, J; Mascaro, S

    2016-02-01

    Skin products such as shower gels have a direct impact on skin health and wellness. Although qualitative haptic characterization through explicit, verbal measures in consumer studies are often sufficient for general comparison on consumer perceived skin feel, a quantitative approach is desired to characterize minute changes in skin condition in response to various skin products. Prior research has sought to characterize the haptic properties of human skin in vitro and in vivo, but very few studies have compared the haptic effects of commercial skin products having relatively similar formulations. In addition, related studies have typically utilized simple, low-precision devices and fixtures. The purpose of this study was to use a precision magnetic levitation haptic device to characterize the frictional properties of human skin in vivo before, during, and after treatment with commercially available shower gels, to capture the entire cycle of consumer experience on skin feel. A hybrid force-position control algorithm was used to control a precision magnetic levitation haptic device with silicone tactor to stroke the human skin (on the volar forearm) in vivo. Position and force data were collected from 32 human subjects using eight different commercially available shower gels, while stroking the skin before, during, and after treatment. The data were analyzed to produce coefficients of friction and viscous damping constant, which were used as metrics for comparing the effects of each shower gel type. Other factors investigated include skin test location, order, and subject age and gender. Results showed significant differences between the effects of eight various shower gels, especially after accounting for variance between subjects. Most notably, Shower Gel four with high level of petrolatum, along with Shower Gels five and six with low levels of castoryl maleate (a skin lipid analog), as well as Shower Gel two with high levels of vegetable oils yielded higher skin

  11. Inhibition of skin carcinogenesis in vivo by caffeine and other agents.

    Science.gov (United States)

    Zajdela, F; Latarjet, R

    1978-12-01

    The induction of skin cancer in mice of the Swiss (Carshalton) strain, by repeated irradiation with UV-light, was strikingly reduced by the local application of caffeine prior to each exposure. Theophylline displayed the same activity. These two substances have been selected as probable inhibitors of error-prone, postreplicative DNA repair. Conversely, reductone and chloroquine, which are considered as inhibitors of the error-free, prereplicative excision repair, did not modify the incidence of the tumors. Special emphasis has been given to the histologic behavior of radiolabeled caffeine in the normal and UV-irradiated epidermis of the mouse in vivo and to the ability of mouse epidermal cells in vitro to repair DNA after UV irradiation.

  12. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    Science.gov (United States)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  13. Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography

    Science.gov (United States)

    Huang, Pin-Chieh; Pande, Paritosh; Shelton, Ryan L.; Joa, Frank; Moore, Dave; Gillman, Elisa; Kidd, Kimberly; Nolan, Ryan M.; Odio, Mauricio; Carr, Andrew; Boppart, Stephen A.

    2017-03-01

    Influenced by both the intrinsic viscoelasticity of the tissue constituents and the time-evolved redistribution of fluid within the tissue, the biomechanical response of skin can reflect not only localized pathology but also systemic physiology of an individual. While clinical diagnosis of skin pathologies typically relies on visual inspection and manual palpation, a more objective and quantitative approach for tissue characterization is highly desirable. Optical coherence tomography (OCT) is an interferometry-based imaging modality that enables in vivo assessment of cross-sectional tissue morphology with micron-scale resolution, which surpasses those of most standard clinical imaging tools, such as ultrasound imaging and magnetic resonance imaging. This pilot study investigates the feasibility of characterizing the biomechanical response of in vivo human skin using OCT. OCT-based quantitative metrics were developed and demonstrated on the human subject data, where a significant difference between deformed and nondeformed skin was revealed. Additionally, the quantified postindentation recovery results revealed differences between aged (adult) and young (infant) skin. These suggest that OCT has the potential to quantitatively assess the mechanically perturbed skin as well as distinguish different physiological conditions of the skin, such as changes with age or disease.

  14. Microemulsion system for topical delivery of thai mango seed kernel extract: development, physicochemical characterisation and ex vivo skin permeation studies.

    Science.gov (United States)

    Leanpolchareanchai, Jiraporn; Padois, Karine; Falson, Françoise; Bavovada, Rapepol; Pithayanukul, Pimolpan

    2014-10-24

    A microemulsion system containing Thai mango seed kernel extract (MSKE, cultivar "Fahlun") was developed and characterised for the purpose of topical skin delivery. The MSKE-loaded microemulsions were prepared by using the spontaneous emulsification method. Isopropyl myristate (IPM) was selected as the oil phase. A polyoxyethylene sorbitan monooleate and sorbitan monododecanoate (1:1, w/w) system was used as the surfactant phase; an aqueous mixture of different cosurfactants (absolute ethanol, 96.3% v/v ethanol, 1-propanol, 2-propanol or 1,2-propanediol) at a weight ratio of 1:1 was used as the aqueous phase. Among the cosurfactants studied, the 1-propanol aqueous mixture had the largest microemulsion region (48.93%) in the pseudo-ternary phase diagram. Microemulsions containing 1% MSKE demonstrated good physicochemical stability during a six-month study period at 25 ± 2 °C/60% ± 5% RH. The ex vivo skin permeation study demonstrated that the microemulsions exhibited a potent skin enhancement effect allowing MSKE to penetrate skin layers up to 60-fold higher compared with the control. Neither skin irritation nor skin corrosion was observed in ex vivo studies. The present study revealed that IPM-based microemulsion systems may be promising carriers to enhance skin penetration and delivering MSKE for topical treatment.

  15. Microemulsion System for Topical Delivery of Thai Mango Seed Kernel Extract: Development, Physicochemical Characterisation and Ex Vivo Skin Permeation Studies

    Directory of Open Access Journals (Sweden)

    Jiraporn Leanpolchareanchai

    2014-10-01

    Full Text Available A microemulsion system containing Thai mango seed kernel extract (MSKE, cultivar “Fahlun” was developed and characterised for the purpose of topical skin delivery. The MSKE-loaded microemulsions were prepared by using the spontaneous emulsification method. Isopropyl myristate (IPM was selected as the oil phase. A polyoxyethylene sorbitan monooleate and sorbitan monododecanoate (1:1, w/w system was used as the surfactant phase; an aqueous mixture of different cosurfactants (absolute ethanol, 96.3% v/v ethanol, 1-propanol, 2-propanol or 1,2-propanediol at a weight ratio of 1:1 was used as the aqueous phase. Among the cosurfactants studied, the 1-propanol aqueous mixture had the largest microemulsion region (48.93% in the pseudo-ternary phase diagram. Microemulsions containing 1% MSKE demonstrated good physicochemical stability during a six-month study period at 25 ± 2 °C/60% ± 5% RH. The ex vivo skin permeation study demonstrated that the microemulsions exhibited a potent skin enhancement effect allowing MSKE to penetrate skin layers up to 60-fold higher compared with the control. Neither skin irritation nor skin corrosion was observed in ex vivo studies. The present study revealed that IPM-based microemulsion systems may be promising carriers to enhance skin penetration and delivering MSKE for topical treatment.

  16. Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations

    KAUST Repository

    Flynn, Cormac

    2011-03-11

    Determining the mechanical properties of an individual\\'s skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior forearm and posterior upper arm under a rich set of three-dimensional deformations. We investigated the suitability of the Ogden and Tong and Fung strain energy functions along with a quasi-linear viscoelastic law. Using non-linear optimization techniques, we found material parameters and in vivo pre-stresses for different volunteers. The model simulated the experiments with errors-of-fit ranging from 13.7 to 21.5%. Pre-stresses ranging from 28 to 92 kPa were estimated. We show that using only in-plane experimental data in the parameter optimization results in a poor prediction of the out-of-plane response. The identifiability of the model parameters, which are evaluated using different determinability criteria, improves by increasing the number of deformation orientations in the experiments. © 2011 Biomedical Engineering Society.

  17. Non-invasive short-term assessment of retinoids effects on human skin in vivo using multiphoton microscopy.

    Science.gov (United States)

    Tancrède-Bohin, E; Baldeweck, T; Decencière, E; Brizion, S; Victorin, S; Parent, N; Faugere, J; Souverain, L; Bagot, M; Pena, A-M

    2015-04-01

    The occlusive patch test developed for assessing topical retinoids activity in human skin has been extended as a short-term screening protocol for anti-ageing agents. In this model, biopsies are performed at the end of the occlusion period for morphological and immuno-histochemistry analysis. Multiphoton microscopy is a recent non-invasive imaging technique that combined with image processing tools allows the in vivo quantification of human skin modifications. To validate with gold standards of anti-ageing that are retinoids, the relevance of multiphoton microscopy for kinetic and quantitative assessment in this model. Twenty women, aged 50-65 years, were enrolled. Retinol 0.3% (RO) and Retinoic acid 0.025% (RA) were applied to the dorsal photo-damaged side of their forearm under occlusive patches for 12 days. A patch alone was applied to a third area as control. Evaluation was performed at day D0, D12 (end of treatment), D18 and D32 using multiphoton microscopy. Epidermal thickness, normalized area of the dermal-epidermal junction (DEJ) and melanin density were estimated using 3D image processing tools. Main significant results are: Epidermal thickening at D12, D18 and D32 with RO and at D12, D18 with RA vs. baseline and vs. Increased DEJ undulation at D32 with RO and at D12 with RA vs. baseline and vs. Decreased melanin content with RO (at D12 and D18 vs. baseline and at D32 vs. baseline and vs. control) and with RA (at D12 vs. baseline). This study shows that multiphoton microscopy associated to specific 3D image processing tools allows cutaneous effects induced by topical retinoids in this in vivo model to be non-invasively detected, quantified and followed over time. This innovative approach could be applied to the evaluation of other active compounds. © 2014 European Academy of Dermatology and Venereology.

  18. Safety aspects of atmospheric pressure helium plasma jet operation on skin: In vivo study on mouse skin.

    Science.gov (United States)

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Filipic, Gregor; Sersa, Gregor; Cvelbar, Uros

    2017-01-01

    Biomedical applications of plasma require its efficacy for specific purposes and equally importantly its safety. Herein the safety aspects of cold plasma created with simple atmospheric pressure plasma jet produced with helium gas and electrode discharge are evaluated in skin damage on mouse, at different duration of exposure and gas flow rates. The extent of skin damage and treatments are systematically evaluated using stereomicroscope, labelling with fluorescent dyes, histology, infrared imaging and optical emission spectroscopy. The analyses reveal early and late skin damages as a consequence of plasma treatment, and are attributed to direct and indirect effects of plasma. The results indicate that direct skin damage progresses with longer treatment time and increasing gas flow rates which reflect changes in plasma properties. With increasing flow rates, the temperature on treated skin grows and the RONS formation rises. The direct effects were plasma treatment dependent, whereas the disclosed late-secondary effects were more independent on discharge parameters and related to diffusion of RONS species. Thermal effects and skin heating are related to plasma-coupling properties and are separated from the effects of other RONS. It is demonstrated that cumulative topical treatment with helium plasma jet could lead to skin damage. How these damages can be mitigated is discussed in order to provide guidance, when using atmospheric pressure plasma jets for skin treatments.

  19. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles.

    Science.gov (United States)

    Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri

    2017-01-01

    Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65-85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream.

  20. Effects of a skin-massaging device on the ex-vivo expression of human dermis proteins and in-vivo facial wrinkles.

    Directory of Open Access Journals (Sweden)

    Elisa Caberlotto

    Full Text Available Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65-85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream.

  1. Methacholine induces wheal-and-flare reactions in human skin but does not release histamine in vivo as assessed by the skin microdialysis technique.

    Science.gov (United States)

    Petersen, L J; Skov, P S

    1995-12-01

    A number of investigations have indicated that cholinergic agonists release histamine from isolated mast cells and suggested that cholinergic stimulation releases histamine in vivo. The purpose of this study was to investigate whether the cutaneous wheal-and-flare reaction induced by methacholine challenge in human skin involves histamine release as measured by the skin microdialysis technique. Five hollow dialysis fibers were inserted intradermally in forearm skin in eight healthy subjects. Each fiber was perfused with Kreb's-Ringer bicarbonate at a rate of 3 microliters/min. Dialysates were collected in 2-min fractions before skin challenge and for 20 min after intradermal injection of methacholine 10(-3)-10(-1) M, the vehicle, and a positive control, codeine phosphate 0.3 mg/ml. Histamine was assayed spectrofluorometrically. Methacholine caused a statistically significant dose-related wheal-and-flare reaction, the flare reaction to methacholine 10(-1) M being comparable with that seen with codeine 0.3 mg/ml. No significant histamine release was observed with methacholine, cumulative histamine release of 16 +/- 8 nM by methacholine 10(-1) M being similar to vehicle responses of 15 +/- 9 nM. Histamine release by codeine was 2524 +/- 435 nM. In conclusion, methacholine-induced wheal-and-flare reactions in human skin appeared not to involve histamine release from skin mast cells.

  2. Skin-sparing Helical Tomotherapy vs 3D-conformal Radiotherapy for Adjuvant Breast Radiotherapy: In Vivo Skin Dosimetry Study

    Energy Technology Data Exchange (ETDEWEB)

    Capelle, Lisa [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Warkentin, Heather; MacKenzie, Marc [Division of Medical Physics, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Joseph, Kurian; Gabos, Zsolt; Pervez, Nadeem; Tankel, Keith; Chafe, Susan [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Amanie, John [Division of Statistics and Epidemiology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Ghosh, Sunita; Parliament, Matthew [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada); Abdulkarim, Bassam, E-mail: bassam.abdulkarim@mcgill.ca [Division of Radiation Oncology, Cross Cancer Institute and University of Alberta, Edmonton, Alberta (Canada)

    2012-08-01

    Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT there was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P<.001; r = 0.44, P=.03, respectively) and the medial and central contralateral breast (r = 0.73, P<.001; r = 0.88, P<.001, respectively). With 3D-CRT there was a significant correlation in the medial and lateral ipsilateral breast (r = 0.45, P=.03; r = 0.68, P<.001, respectively); the medial and central contralateral breast (r = 0.62, P=.001; r = 0.86, P<.001, respectively); and the mid neck (r = 0.42, P=.04, respectively). On average, HT-calculated dose overestimated the measured dose by 14%; 3D-CRT underestimated the dose by 0.4%. There was a borderline association between highest measured skin dose and moist desquamation (P=.05). Skin-sparing HT had greater skin homogeneity (homogeneity index of 1.39 vs 1.65, respectively; P=.005) than 3D-CRT plans. HT plans had a lower skin{sub V50} (1.4% vs 5.9%, respectively; P=.001) but higher skin{sub V40} and skin{sub V30} (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients

  3. Effect of elevating the skin temperature during topical ALA application on in vitro ALA penetration through mouse skin and in vivo PpIX production in human skin

    NARCIS (Netherlands)

    van den Akker, Johanna T. H. M.; Boot, Kristian; Vernon, David I.; Brown, Stanley B.; Groenendijk, Laurens; van Rhoon, Gerard C.; Sterenborg, Henricus J. C. M.

    2004-01-01

    An approach to induce increased protoporphyrin IX (PpIX) production in aminolevulinic acid (ALA)-based photodynamic therapy (PDT) of skin lesions is to elevate the skin temperature during topical ALA application. Increased skin temperature may increase the ( depth of) penetration of ALA into the

  4. Myelinated and unmyelinated nerve fibers reinnervate tissue-engineered dermo-epidermal human skin analogs in an in vivo model.

    Science.gov (United States)

    Biedermann, T; Klar, A S; Böttcher-Haberzeth, S; Reichmann, E; Meuli, M

    2016-12-01

    The clinical application of autologous tissue-engineered skin analogs is an important strategy to cover large skin defects. Investigating biological dynamics, such as reinnervation after transplantation, is essential to improve the quality of such skin analogs. Previously, we have examined that our skin substitutes are reinnervated by host peripheral nerve fibers as early as 8 weeks after transplantation. Here, we wanted to investigate the presence and possible differences regarding myelinated and unmyelinated host nerve fibers 15 weeks after the transplantation of light and dark human tissue-engineered skin analogs. Human epidermal keratinocytes, melanocytes, and dermal fibroblasts were isolated from human light and dark skin biopsies. Keratinocytes and melanocytes were seeded on fibroblast-containing collagen type I hydrogels after expansion in culture. After additional culturing, the tissue-engineered dermo-epidermal skin analogs were transplanted onto full-thickness skin wounds created on the back of immuno-incompetent rats. Skin substitutes were excised and analyzed 15 weeks after transplantation. Histological sections were examined with regard to the ingrowth pattern of myelinated and unmyelinated nerve fibers into the skin analogs using markers, such as Substance P, NF200, and S100-Beta. We found myelinated and unmyelinated peripheral host nerve fibers 15 weeks after transplantation in the dermal part of our human skin substitutes. In particular, we identified large-diameter-myelinated Aβ- and Aδ-fibers, and small-diameter C-fibers. Furthermore, we observed myelinated nerves in close proximity to CD31-positive blood capillaries. In the long run, both types of ingrown host fibers showed an identical pattern in both light and dark skin analogs. Our data suggest that myelinated and unmyelinated peripheral nerves reinnervate human skin substitutes in a long-term in vivo transplantation assay. Our tissue-engineered skin analogs attract A- and C-fibers to

  5. In vivo and in vitro evaluation of topical formulations containing physiological lipid mixture for replacement of skin barrier function.

    Science.gov (United States)

    Barba, C; Parra, J L; Coderch, L; Semenzato, A

    2014-06-01

    The aim of the study was to describe a new in vivo and in vitro approach of the efficacy evaluation of cosmetic emollients to better understand the link between the formulation and the activity of cosmetic products. Two long term in vivo studies were carried out on nine healthy Caucasian volunteers mean age 40±12 years to evaluate the protecting and repairing effects of the two different barrier repair cosmetic formulations. The application of the formulations was repeated once a day during 7 days and biophysical parameters (TEWL and Skin Hydration) were measured before and after Sodium laureth sulphate exposure The in vitro study was carried out by freeze substitution transmission electron microscopy (FSTEM) on stratum corneum samples obtained by sections of fresh skin from young pigs, depleted with a solvent mixture and treated with the two products The in vivo results demonstrated that daily product application provided a reinforcement of the skin barrier with protecting and repairing effects from chemical injuries the extent of which was dependent on the formulation features (product A>product B) The role of the technical form on the lipid availability was confirmed by the in vitro evaluation tests. The results point out that a daily application of physiological lipid mixture containing emulsion can protect healthy skin and promote the reparing effect on unpaired barrier skin, reducing TEWL and maintaining hydration of the stratum corneum. The efficacy degree is higher when the cosmetic form promotes the availability of active ingredients increasing the product performance.

  6. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin

    2016-01-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants...

  7. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues.

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor

    2016-06-01

    Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (ppolarimetry together with PLS statistics hold promise for automated pathology classification. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Proof of concept testing of a positive reference material for in vivo and in vitro skin irritation testing.

    Science.gov (United States)

    Nomura, Yusuke; Lee, Michelle; Fukui, Chie; Watanabe, Kayo; Olsen, Daniel; Turley, Audrey; Morishita, Yuki; Kawakami, Tsuyoshi; Yuba, Toshiyasu; Fujimaki, Hideo; Inoue, Kaoru; Yoshida, Midori; Ogawa, Kumiko; Haishima, Yuji

    2017-12-11

    In vivo and in vitro irritation testing is important for evaluating the biological safety of medical devices. Here, the performance of positive reference materials for skin irritation testing was evaluated. Four reference standards, referred to as Y-series materials, were analyzed: a polyvinyl chloride (PVC) sheet spiked with 0 (Y-1), 1.0 (Y-2), 1.5 (Y-3), or 10 (Y-4) parts of Genapol X-080 per 100 parts of PVC by weight. Y-1, Y-2, and Y-3 did not induce skin irritation responses in an in vitro reconstructed human epidermis (RhE) tissue model, as measured by tissue viability or interleukin-1α release, or in an in vivo intracutaneous response test using rabbits. In contrast, Y-4 extracts prepared with saline or sesame oil at 37°C and 50°C clearly elicited positive irritation responses, including reduced viability (< 50%) and significantly higher interleukin-1α release compared with the solvent alone group, in the RhE tissue model and an intracutaneous response test, where substantial necrosis was observed by histopathology. The positive skin irritation responses induced in vitro under various extraction conditions, as well as those elicited in vivo, indicate that Y-4 is an effective extractable positive control material for in vivo and in vitro skin irritation tests of medical devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  9. Towards noncontact skin melanoma selection by multispectral imaging analysis

    Science.gov (United States)

    Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna

    2011-06-01

    A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the ``melanoma areas'' in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.

  10. New Enlightenment of Skin Cancer Chemoprevention through Phytochemicals: In Vitro and In Vivo Studies and the Underlying Mechanisms.

    Science.gov (United States)

    Singh, Madhulika; Suman, Shankar; Shukla, Yogeshwer

    2014-01-01

    Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.

  11. New Enlightenment of Skin Cancer Chemoprevention through Phytochemicals: In Vitro and In Vivo Studies and the Underlying Mechanisms

    Science.gov (United States)

    Singh, Madhulika; Suman, Shankar; Shukla, Yogeshwer

    2014-01-01

    Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer. PMID:24757666

  12. New Enlightenment of Skin Cancer Chemoprevention through Phytochemicals: In Vitro and In Vivo Studies and the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Madhulika Singh

    2014-01-01

    Full Text Available Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.

  13. Non-Invasive Assessment of Skin Barrier Properties: Investigating Emerging Tools for In Vitro and In Vivo Applications

    Directory of Open Access Journals (Sweden)

    Emer Duffy

    2017-10-01

    Full Text Available There is increasing interest in the development of non-invasive tools for studying the properties of skin, due to the potential for non-destructive sampling, reduced ethical concerns and the potential comparability of results in vivo and in vitro. The present research focuses on the use of a range of non-invasive approaches for studying skin and skin barrier properties in human skin and human skin equivalents (HSE. Analytical methods used include pH measurements, electrical sensing of the epidermis and detection of volatile metabolic skin products. Standard probe based measurements of pH and the tissue dielectric constant (TDC are used. Two other more novel approaches that utilise wearable platforms are also demonstrated here that can assess the electrical properties of skin and to profile skin volatile species. The potential utility of these wearable tools that permit repeatability of testing and comparability of results is considered through application of our recently reported impedance-based tattoo sensors and volatile samplers on both human participants and HSEs. The HSE exhibited a higher pH (6.5 and TDC (56 than human skin (pH 4.9–5.6, TDC 29–36, and the tattoo sensor revealed a lower impedance signal for HSEs, suggesting the model could maintain homeostasis, but in a different manner to human skin, which demonstrated a more highly resistive barrier. Characterisation of volatiles showed a variety of compound classes emanating from skin, with 16 and 27 compounds identified in HSEs and participants respectively. The continuing development of these tools offers potential for improved quality and relevance of data, and potential for detection of changes that are undetectable in traditional palpable and visual assessments, permitting early detection of irritant reactions.

  14. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers.

    Science.gov (United States)

    Paolino, Donatella; Lucania, Giuseppe; Mardente, Domenico; Alhaique, Franco; Fresta, Massimo

    2005-08-18

    The aim of this work was the evaluation of various ethosomal suspensions made up of water, phospholipids and ethanol at various concentrations for their potential application in dermal administration of ammonium glycyrrhizinate, a useful drug for the treatment of various inflammatory-based skin diseases. Physicochemical characterization of ethosomes was carried out by photon correlation spectroscopy and freeze fracture electron microscopy. The percutaneous permeation of ammonium glycyrrhizinate/ethosomes was evaluated in vitro through human stratum corneum and epidermis membranes by using Franz's cells and compared with the permeation profiles of drug solutions either in water or in a water-ethanol mixture. Reflectance spectrophotometry was used as a non-invasive technique to evaluate the carrier toxicity, the drug permeation and the anti-inflammatory activity of ammonium glycyrrhizinate in a model of skin erythema in vivo on human volunteers. Ethosomal suspensions had mean sizes ranging from 350 nm to 100 nm as a function of ethanol and lecithin quantities, i.e., high amounts of ethanol and a low lecithin concentration provided ethosome suspensions with a mean size of approximately 100 nm and a narrow size distribution. In vitro and in vivo experiments were carried out by using an ethosome formulation made up of ethanol 45% (v/v) and lecithin 2% (w/v). The ethosome suspension showed a very good skin tolerability in human volunteers, also when applied for a long period (48 h). Ethosomes elicited an increase of the in vitro percutaneous permeation of both methylnicotinate and ammonium glycyrrhizinate. Ethosomes were able to significantly enhance the anti-inflammatory activity of ammonium glycyrrhizinate compared to the ethanolic or aqueous solutions of this drug. Some in vivo experiments also showed the ability of ethosome to ensure a skin accumulation and a sustained release of the ammonium glycyrrhizinate.

  15. Drug in adhesive patch of palonosetron: Effect of pressure sensitive adhesive on drug skin permeation and in vitro-in vivo correlation.

    Science.gov (United States)

    Liu, Chao; Hui, Mei; Quan, Peng; Fang, Liang

    2016-09-25

    Palonosetron (PAL) is recommended for the prevention of chemotherapy-induced nausea and vomiting. The aim of this study was to develop a long-acting PAL transdermal patch to improve patient compliance. We were particularly concerned about the effect of pressure sensitive adhesives (PSAs) on PAL skin permeability. Formulation factors including PSAs, backing films and drug loadings were investigated in the in vitro skin permeation study using rabbit skin. Fourier transform infrared spectrometer study and thermal analysis were conducted to investigate the drug-PSA interaction and thermodynamic activity of PSAs, respectively. The results indicated that high drug skin permeation amount was obtained in PSA DURO-TAK(®)87-2516, which had low interaction potential with PAL and high thermodynamic activity. The optimized patch was composed of PAL of 8 %, DURO-TAK(®)87-2516 as PSA, CoTran™ 9700 as backing film and Scotchpak™ 9744 as release liner. The in vitro skin permeation amount of the optimized patch was 734.0±55.8μg/cm(2) during 3-day administration. The absolute bioavailability of the optimized patch was 43 % in rabbit and a good in vitro-in vivo correlation coefficient was obtained (R(2)=0.989). These results indicated the feasibility of PAL transdermal patch in the prevention of chemotherapy-induced nausea and vomiting. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Standardization of skin cleansing in vivo: part I. Development of an Automated Cleansing Device (ACiD).

    Science.gov (United States)

    Sonsmann, F K; Strunk, M; Gediga, K; John, C; Schliemann, S; Seyfarth, F; Elsner, P; Diepgen, T L; Kutz, G; John, S M

    2014-05-01

    To date, there are no legally binding requirements concerning product testing in cosmetics. This leads to various manufacturer-specific test methods and absent transparent information on skin cleansing products. A standardized in vivo test procedure for assessment of cleansing efficacy and corresponding barrier impairment by the cleaning process is needed, especially in the occupational context where repeated hand washing procedures may be performed at short intervals. For the standardization of the cleansing procedure, an Automated Cleansing Device (ACiD) was designed and evaluated. Different smooth washing surfaces of the equipment for ACiD (incl. goat hair, felt, felt covered with nitrile caps) were evaluated regarding their skin compatibility. ACiD allows an automated, fully standardized skin washing procedure. Felt covered with nitrile as washing surface of the rotating washing units leads to a homogenous cleansing result and does not cause detectable skin irritation, neither clinically nor as assessed by skin bioengineering methods (transepidermal water loss, chromametry). Automated Cleansing Device may be useful for standardized evaluation of the cleansing effectiveness and parallel assessment of the corresponding irritancy potential of industrial skin cleansers. This will allow objectifying efficacy and safety of industrial skin cleansers, thus enabling market transparency and facilitating rational choice of products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. In vivo and in situ imaging of controlled-release dissolving silk microneedles into the skin by optical coherence tomography.

    Science.gov (United States)

    Liu, Ran; Zhang, Mingtian; Jin, Cuiyun

    2017-06-01

    Nowadays, transdermal drug delivery has become a hot topic with regard to delivery. Also, the percutaneous microneedle patch made of water-soluble material makes this technique one step closer to clinical application. The process of the microneedle patch penetrates and dissolves in the animal skin can directly reflect the efficiency of drug delivery. Hence, it is important to reflect the situation of microneedles dissolution and drug release by in vivo and in situ imaging in real time. This paper's purpose is to use the means of OCT (optical coherence tomography) to realize assessment of dissolving microneedles delivery efficiency in vivo and in situ imaging. This is the first study to utilize OCT to observe the dissolving process of silk microneedles (SFM) in different carriers. Dissolving process es of silk fibroin microneedles in different carriers were captured by the OCT system. The solution rate of silk fibroin microneedles in water is rapid. It also has good solution in the skin of mouse in vivo. OCT is a noncontact, noninvasive imaging technique with high resolution, the detecting depth of which is generally 1-3 mm under the skin. OCT has great potential to observe the solution process of dissolving microneedles in the skin. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography.

    Science.gov (United States)

    Boone, M A L M; Suppa, M; Dhaenens, F; Miyamoto, M; Marneffe, A; Jemec, G B E; Del Marmol, V; Nebosis, R

    2016-01-01

    One of the most challenging problems in clinical dermatology is the early detection of melanoma. Reflectance confocal microscopy (RCM) is an added tool to dermoscopy improving considerably diagnostic accuracy. However, diagnosis strongly depends on the experience of physicians. High-definition optical coherence tomography (HD-OCT) appears to offer additional structural and cellular information on melanocytic lesions complementary to that of RCM. However, the diagnostic potential of HD-OCT seems to be not high enough for ruling out the diagnosis of melanoma if based on morphology analysis. The aim of this paper is first to quantify in vivo optical properties such as light attenuation in melanocytic lesions by HD-OCT. The second objective is to determine the best critical value of these optical properties for melanoma diagnosis. The technique of semi-log plot whereby an exponential function becomes a straight line has been implemented on HD-OCT signals coming from four successive skin layers (epidermis, upper papillary dermis, deeper papillary dermis and superficial reticular dermis). This permitted the HD-OCT in vivo measurement of skin entrance signal (SES), relative attenuation factor normalized for the skin entrance signal (µ raf1) and half value layer (z 1/2). The diagnostic accuracy of HD-OCT for melanoma detection based on the optical properties, µ raf1 , SES and z 1/2 was high (95.6, 82.2 and 88.9 %, respectively). High negative predictive values could be found for these optical properties (96.7, 89.3 and 96.3 %, respectively) compared to morphologic assessment alone (89.9 %), reducing the risk of mistreating a malignant lesion to a more acceptable level (3.3 % instead of 11.1 %). HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with in vivo analysis of optical properties of tissue scatterers in melanocytic lesions. In vivo HD-OCT analysis of optical properties permits melanoma

  19. In vitro Percutaneous Absorption of Niacinamide and Phytosterols and in vivo Evaluation of their Effect on Skin Barrier Recovery.

    Science.gov (United States)

    Offerta, Alessia; Bonina, Francesco; Gasparri, Franco; Zanardi, Andrea; Micicche, Lucia; Puglia, Carmelo

    2016-01-01

    In this study, we evaluated different strategies to optimize the percutaneous absorption of niacinamide (NA) and soy phytosterols (FITO) by making use of solid lipid nanoparticles (SLN) and penetration enhancers, such as the hydrogenated lecithin. The evaluation of the skin permeation of NA and FITO has been effected in vitro using excised human skin (i.e., stratum corneum-epidermis or SCE). Furthermore, we evaluated the in vivo effect that NA and FITO has on skin barrier recovery after the topical application; using the extent of methyl nicotinate (MN)-induced erythema in damaged skin as a parameter to determine the rate of stratum corneum recovery. Results pointed out the importance of these strategies as valid tools for NA and FITO topical delivery. In fact, soy lecithin based formulations were able to increase the percutaneous absorption of the two active ingredients, while SLN guaranteed an interesting delayed and sustained release of FITO. In vivo evaluation showed clearly that the formulation containing both the actives (NA and FITO) is able to recover about 95% of skin barrier integrity eight days after tape stripping. This effect is probably due to the "synergistic effect" of NA and FITO.

  20. In vivo cleansing efficacy of biodegradable exfoliating beads assessed by skin bioengineering techniques.

    Science.gov (United States)

    Kitsongsermthon, J; Duangweang, K; Kreepoke, J; Tansirikongkol, A

    2017-11-01

    The plastic microbeads, used in many cleansers, will be banned in cosmetic and personal care products within 2017 since they are non-degradable and can disturb the living organisms in water reservoirs. Various choices of biodegradable beads are commercially available, but their efficacy has not been proven yet. This study aimed to compare the cleansing efficacy in dirt and sebum removal aspects of three types of exfoliating beads. The gel scrubs with polyethylene (PE) beads, mannan beads or wax beads, were formulated and evaluated for their stability. The in vivo evaluation was done in 38 healthy volunteers and the skin irritation, efficacy for dirt and sebum removal were measured by Mexameter® , Colorimeter® , and Sebumeter® , respectively. The selected gel scrubs did not cause an irritation in any volunteers. The differences in dirt residues between before and after scrubbing were not statistically significant among three gel scrubs and the similar result was also reported in the sebum removal study. All gel scrubs demonstrated the comparable cleansing efficacy in term of dirt and sebum removal. Thus, mannan beads and wax beads may be replaced non-biodegradable PE beads to achieve the similar cleansing effect. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. On skin expansion.

    Science.gov (United States)

    Pamplona, Djenane C; Velloso, Raquel Q; Radwanski, Henrique N

    2014-01-01

    This article discusses skin expansion without considering cellular growth of the skin. An in vivo analysis was carried out that involved expansion at three different sites on one patient, allowing for the observation of the relaxation process. Those measurements were used to characterize the human skin of the thorax during the surgical process of skin expansion. A comparison between the in vivo results and the numerical finite elements model of the expansion was used to identify the material elastic parameters of the skin of the thorax of that patient. Delfino's constitutive equation was chosen to model the in vivo results. The skin is considered to be an isotropic, homogeneous, hyperelastic, and incompressible membrane. When the skin is extended, such as with expanders, the collagen fibers are also extended and cause stiffening in the skin, which results in increasing resistance to expansion or further stretching. We observed this phenomenon as an increase in the parameters as subsequent expansions continued. The number and shape of the skin expanders used in expansions were also studied, both mathematically and experimentally. The choice of the site where the expansion should be performed is discussed to enlighten problems that can lead to frustrated skin expansions. These results are very encouraging and provide insight into our understanding of the behavior of stretched skin by expansion. To our knowledge, this study has provided results that considerably improve our understanding of the behavior of human skin under expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Two-photon excited spectroscopies of ex vivo human skin endogenous species irradiated by femtosecond laser pulses

    Science.gov (United States)

    Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Zhao, Jingjun

    2006-10-01

    Two-photon excited spectroscopies from ex vivo human skin are investigated by using a femtosecond laser and a confocal microscope (Zeiss LSM 510 META). In the dermis, collagen is responsible for second harmonic generation (SHG); elastin, nicotinamide adenine dinucleotide (NADH), melanin and porphyrin are the primary endogenous sources of two-photon excited autofluorescence. In the epidermis, keratin, NADH, melanin and porphyrins contribute to autofluorescence signals. The results also show that the SHG spectra have the ability to shift with the excitation wavelength and the autofluorescence spectra display a red shift of the spectral peaks when increasing the excitation wavelength. These results may have practical implications for diagnosis of skin diseases.

  3. Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo

    Science.gov (United States)

    Yanina, Irina Yu.; Tuchin, Valery V.; Navolokin, Nikita A.; Matveeva, Olga V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Altshuler, Gregory B.

    2012-05-01

    Histological slices of skin samples with the subcutaneous adipose tissue after photothermal/photodynamic treatment are analyzed. In the case of subcutaneous indocyanine green injection and 808-nm diode laser exposure of the rat skin site in vivo, the greatest changes in tissue condition were observed. Processes were characterized by dystrophy, necrosis, and desquamation of the epithelial cells, swelling and necrosis of the connective tissue, and widespread necrosis of the subcutaneous adipose tissue. The obtained data are useful for safe layer-by-layer dosimetry of laser illumination of ICG-stained adipose tissue for treatment of obesity and cellulite.

  4. In vivo evaluation of wound bed reaction and graft performance after cold skin graft storage: new targets for skin tissue engineering.

    Science.gov (United States)

    Knapik, Alicia; Kornmann, Kai; Kerl, Katrin; Calcagni, Maurizio; Schmidt, Christian A; Vollmar, Brigitte; Giovanoli, Pietro; Lindenblatt, Nicole

    2014-01-01

    Surplus harvested skin grafts are routinely stored at 4 to 6°C in saline for several days in plastic surgery. The purpose of this study was to evaluate the influence of storage on human skin graft performance in an in vivo intravital microscopic setting after transplantation. Freshly harvested human full-thickness skin grafts and split-thickness skin grafts (STSGs) after storage of 0, 3, or 7 days in moist saline at 4 to 6°C were transplanted into the modified dorsal skinfold chamber, and intravital microscopy was performed to evaluate vessel morphology and angiogenic change of the wound bed. The chamber tissue was harvested 10 days after transplantation for evaluation of tissue integrity and inflammation (hematoxylin and eosin) as well as for immunohistochemistry (human CD31, murine CD31, Ki67, Tdt-mediated dUTP-biotin nick-end labelling). Intravital microscopy results showed no differences in the host angiogenic response between fresh and preserved grafts. However, STSGs and full-thickness skin grafts exhibited a trend toward different timing and strength in capillary widening and capillary bud formation. Preservation had no influence on graft quality before transplantation, but fresh STSGs showed better quality 10 days after transplantation than 7-day preserved grafts. Proliferation and apoptosis as well as host capillary in-growth and graft capillary degeneration were equal in all groups. These results indicate that cells may activate protective mechanisms under cold conditions, allowing them to maintain function and morphology. However, rewarming may disclose underlying tissue damage. These findings could be translated to a new approach for the design of full-thickness skin substitutes.

  5. Ex Vivo ERG analysis of photoreceptors using an In Vivo ERG system

    Science.gov (United States)

    Vinberg, Frans; Kolesnikov, Alexander V.; Kefalov, Vladimir J.

    2014-01-01

    The Function of the retina and effects of drugs on it can be assessed by recording transretinal voltage across isolated retina that is perfused with physiological medium. However, building ex vivo ERG apparatus requires substantial amount of time, resources and expertise. Here we adapted a commercial in vivo ERG system for transretinal ERG recordings from rod and cone photoreceptors and compared rod and cone signalling between ex vivo and in vivo environments. We found that the rod and cone a- and b-waves recorded with the transretinal ERG adapter and a standard in vivo ERG system are comparable to those obtained from live anesthetized animals. However, ex vivo responses are somewhat slower and their oscillatory potentials are suppressed as compared to those recorded in vivo. We found that rod amplification constant (A) was comparable between ex vivo and in vivo conditions, ∼10 - 30 s-2 depending on the choice of response normalization. We estimate that the A in cones is between 3 and 6 s-2 in ex vivo conditions and by assuming equal A in vivo we arrive to light funnelling factor of 3 for cones in the mouse retina. The ex vivo ERG adapter provides a simple and affordable alternative to designing a custom-built transretinal recordings setup for the study of photoreceptors. Our results provide a roadmap to the rigorous quantitative analysis of rod and cone responses made possible with such a system. PMID:24959652

  6. Mechanical properties, skin permeation and in vivo evaluations of dexibuprofen-loaded emulsion gel for topical delivery.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Son, Mi Woon; Jang, Sun Woo; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Kim, Jeong Hoon; Choi, Han-Gon

    2015-02-01

    The aim of this research was to evaluate the gel properties, skin permeation and in vivo drug efficacy of a novel dexibuprofen-loaded emulsion gel for topical delivery. In this study, the dexibuprofen-loaded emulsion gel and ibuprofen-loaded emulsion gel were prepared with isopropanol, Tween 80, propylene glycol, isopropyl myristate and carbopol. Their mechanical properties such as hardness and adhesiveness were assessed. Moreover, their skin permeation, anti-inflammatory and anti-nociceptive efficacy were evaluated using Franz diffusion cell with the hairless mouse skin, the carrageenan-induced paw oedema test and paw pressure test in rat's hind paws compared with the commercial hydrogel, respectively. The dexibuprofen emulsion gel and ibuprofen emulsion gel provided significantly higher hardness and adhesiveness than the commercial hydrogel. The dexibuprofen emulsion gel enhanced skin permeability by about twofold and 3.5-fold without lag time compared to the ibuprofen emulsion gel and the commercial hydrogel, respectively, suggesting its faster skin permeation. Moreover, the anti-inflammatory efficacy and alleviation in carrageenan-induced inflammation was in the order of dexibuprofen emulsion gel > commercial hydrogel > ibuprofen emulsion gel. The dexibuprofen emulsion gel furnished significantly higher nociceptive thresholds than the ibuprofen emulsion gel and the commercial hydrogel, leading to the most improved anti-nociceptive efficacy. Thus, this dexibuprofen-loaded emulsion gel with good mechanical property, rapid skin permeation and excellent anti-inflammatory and anti-nociceptive efficacy would be a strong candidate for the topical delivery of anti-inflammatory dexibuprofen.

  7. Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo.

    Science.gov (United States)

    Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-09-01

    Autofluorescence photobleaching describes the decrease of fluorescence intensity of endogenous fluorophores in biological tissue upon light irradiation. The origin of autofluorescence photobleaching is not fully understood. In the skin, the spatial distribution of various endogenous fluorophores varies within the skin layers. Most endogenous fluorophores are excited in the ultraviolet and short visible wavelength range, and only a few, such as porphyrins (red) and melanin (near-infrared), are excited at longer wavelengths. The excitation wavelength- and depth-dependent irradiation of skin will therefore excite different fluorophores, which will likely influence the photobleaching characteristics. The autofluorescence photobleaching of porcine ear skin has been measured ex vivo using 325, 473, 633, and 785 nm excitation at different skin depths from the surface to the dermis at 150 ? ? m . Confocal Raman microscopes were used to achieve sufficient spatial resolution of the measurements. The autofluorescence area under the curve was measured for 21 consecutive acquisitions of 15 s. In all cases, the photobleaching follows a two-exponential decay function approximated by nonlinear regression. The results show that photobleaching can be applied to improve the signal-to-noise ratio in Raman spectroscopy for all of the applied excitation wavelengths and skin depths.

  8. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  9. Depth-dependent autofluorescence photobleaching using 325, 473, 633, and 785 nm of porcine ear skin ex vivo

    Science.gov (United States)

    Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E.

    2017-09-01

    Autofluorescence photobleaching describes the decrease of fluorescence intensity of endogenous fluorophores in biological tissue upon light irradiation. The origin of autofluorescence photobleaching is not fully understood. In the skin, the spatial distribution of various endogenous fluorophores varies within the skin layers. Most endogenous fluorophores are excited in the ultraviolet and short visible wavelength range, and only a few, such as porphyrins (red) and melanin (near-infrared), are excited at longer wavelengths. The excitation wavelength- and depth-dependent irradiation of skin will therefore excite different fluorophores, which will likely influence the photobleaching characteristics. The autofluorescence photobleaching of porcine ear skin has been measured ex vivo using 325, 473, 633, and 785 nm excitation at different skin depths from the surface to the dermis at 150 μm. Confocal Raman microscopes were used to achieve sufficient spatial resolution of the measurements. The autofluorescence area under the curve was measured for 21 consecutive acquisitions of 15 s. In all cases, the photobleaching follows a two-exponential decay function approximated by nonlinear regression. The results show that photobleaching can be applied to improve the signal-to-noise ratio in Raman spectroscopy for all of the applied excitation wavelengths and skin depths.

  10. In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy

    Science.gov (United States)

    Tanaka, Ryosuke; Fukushima, Shu-ichiro; Sasaki, Kunihiko; Tanaka, Yuji; Murota, Hiroyuki; Matsumoto, Takeshi; Araki, Tsutomu; Yasui, Takeshi

    2013-06-01

    Optical assessment of skin burns is possible with second-harmonic-generation (SHG) microscopy due to its high sensitivity to thermal denaturation of collagen molecules. In contrast to previous studies that were performed using excised tissue specimens ex vivo, in vivo observation of dermal collagen fibers in living rat burn models with SHG microscopy is demonstrated. Changes in signal vanishing patterns in the SHG images are confirmed to be dependent on the burn degree. Comparison of the SHG images with Masson's trichrome-stained images indicated that the observed patterns were caused by the coexistence of molten and fibrous structures of dermal collagen fibers. Furthermore, a quantitative parameter for burn assessment based on the depth profile of the mean SHG intensity across the entire SHG image is proposed. These results and discussions imply a potential of SHG microscopy as a minimally invasive, highly quantitative tool for skin burn assessment.

  11. International guidelines for the in vivo assessment of skin properties in non-clinical settings

    DEFF Research Database (Denmark)

    du Plessis, Johan; Stefaniak, Aleksandr; Eloff, Fritz

    2013-01-01

    There is an emerging perspective that it is not sufficient to just assess skin exposure to physical and chemical stressors in workplaces, but that it is also important to assess the condition, i.e. skin barrier function of the exposed skin at the time of exposure. The workplace environment, repre...

  12. Healing and evaluating guinea pig skin incision after surgical suture and laser tissue by welding using in vivo Raman spectroscopy

    Science.gov (United States)

    Alimova, A.; Sriramoju, V.; Chakraverty, R.; Muthukattil, R.; Alfano, R. R.

    2010-02-01

    Changes in collagen in the wound during the healing process of guinea pig skin following surgical incisions and LTW was evaluated using in vivo, using Raman spectroscopy. Raman spectroscopy provided information regarding the internal structure of the proteins. After the incisions were closed either by suturing or by LTW the ratio of the Raman peaks of the amide III (1247 cm-1) band to a peak at 1326 cm-1 used to evaluate the progression of collagen deposition. Histopathology was used as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. This work is important to plastic surgery.

  13. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin

    DEFF Research Database (Denmark)

    Themstrup, L.; Welzel, Julia; Ciardo, Silvana

    2016-01-01

    Objectives: Dynamic optical coherence tomography (D-OCT) is an angiographic variation of OCT that non-invasively provides images of the in vivo microvasculature of the skin by combining conventional OCT images with flow data. The objective of this study was to investigate and report on the D......-OCT technique for imaging of the vascular networks in skin as well as to validate the method by comparing the results against already accepted blood flow measuring tools. Methods: 35 healthy subjects were recruited for the multicentre study, consisting of three experiments set up to examine the vascular blood...... perfusion during different induced physiologic changes in the blood flow. In order to validate the D-OCT images against existing techniques for blood flow measuring we performed consecutive D-OCT, chromametry and laser speckle contrast imager (LSCI) measurements on identical skin sites in all...

  14. In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry

    Science.gov (United States)

    Garcia-Uribe, Alejandro; Smith, Elizabeth B.; Zou, Jun; Duvic, Madeleine; Prieto, Victor; Wang, Lihong V.

    2011-02-01

    In this letter, we report the first use of oblique incidence diffuse reflectance spectrometry to conduct in-vivo measurements of optical properties of three different types of pigmented skin lesions, including melanoma, dysplastic, and common nevi. Both absorption and reduced scattering coefficient spectra were estimated from the spatially resolved diffuse reflectance within the wavelength range of 455-765 nm for 144 pigmented skin lesions including 16 melanomas. The absorption and reduced scattering spectra were found to change with the malignancy of the skin lesions, which were generally higher for the malignant cases than the benign ones. Based on the measurement results, the physiological origin leading to the change of the absorption and scattering properties is also discussed.

  15. Skin mechanics measured in vivo using torsion: a new and accurate model more sensitive to age, sex and moisturizing treatment.

    Science.gov (United States)

    Salter, D C; McArthur, H C; Crosse, J E; Dickens, A D

    1993-10-01

    Summary Measurements of skin mechanics are required to understand better cracking and flaking of the epidermis and loss of 'elasticity'with age in the dermis. Improvements in torsional testing are described here. The resulting data was fitted to algebraic models, the parameters of which can serve both as a concise description of the responses and as a means of relating them to skin structure and physiology. This investigation looks into the suitability of seven such algebraic models. Five of the models examined here appear to be new. Using the commercially available Dia-Stron DTM Torque Meter with our own software, model parameters were studied as indicators of the effects of age and sex in 41 people, and of skin moisturizing treatments in a further 10 people. The two models in the literature were both found to be substantially less accurate and sensitive representations of experimental data than one of the new models proposed here based on the Weibull distribution. This 'WB model'was consistently the one best able to distinguish differences and detect changes which were statistically significant. The WB model appears to be the most powerful and efficient available. Use of this model makes it possible to demonstrate in vivo a statistically significant mechanical difference between male and pre-menopausal female skin using only one parameter (p= 0.0163, with 18 males and 19 females) and to demonstrate a statistically significant mechanical difference between successive decades of age in female skin using only one parameter (p= 0.0124, n= 24). The two parameters of the model most sensitive to skin structure, function and treatment have been combined to form the axes of a 'Skin condition chart'. Any person can be located on this chart at a point indicating their overall skin condition in mechanical terms and any changes in that condition can be clearly demonstrated by movement across the plot.

  16. Enhancement of International Dermatologists' Pigmented Skin Lesion Biopsy Decisions Following Dermoscopy with Subsequent Integration of Multispectral Digital Skin Lesion Analysis.

    Science.gov (United States)

    Winkelmann, Richard R; Farberg, Aaron S; Tucker, Natalie; White, Richard; Rigel, Darrell S

    2016-07-01

    Early detection and subsequent management of melanoma are critical for patient survival. New technologies have been developed to augment clinician analysis of suspicious pigmented skin lesions. To determine how information provided by a multispectral digital skin lesion analysis device affects the biopsy decisions of international dermatologists following clinical and dermoscopic pigmented skin lesion evaluation. Participants at a dermoscopy conference in Vienna, Austria, were shown 12 clinical and dermoscopic images of pigmented skin lesions (2 melanomas in situ, 3 invasive melanomas, and 7 low-grade dysplastic nevi) previously analyzed by multispectral digital skin lesion analysis. Participants were asked if they would biopsy the lesion based on clinical images, again after observing high-resolution dermoscopy images, and again when subsequently shown multispectral digital skin lesion analysis information. Data were analyzed from a total of 70 international dermatologists. Overall, sensitivity was 58 percent after clinical evaluation (C) and 59 percent post-dermoscopy (D), but 74 percent after multispectral digital skin lesion analysis. Participant specificity was 56 percent (C) decreasing to 51 percent (D), but increasing to 61 percent with multispectral digital skin lesion analysis. Diagnostic accuracy was 57 percent (C) decreasing to 54 percent (D), but increasing to 67 percent for dermatologists after integrating the multispectral digital skin lesion analysis data into the biopsy decision. The overall number of lesions biopsied increased from 50 percent (C) to 53 percent (D), rising to 54 percent after multispectral digital skin lesion analysis. Decisions to biopsy melanocytic lesions were more sensitive and specific when multispectral digital skin lesion analysis information was provided with no significant increase in the number of biopsies recommended. Providing multispectral digital skin lesion analysis data may lead to additional improvement in biopsy

  17. Enhancement of International Dermatologists’ Pigmented Skin Lesion Biopsy Decisions Following Dermoscopy with Subsequent Integration of Multispectral Digital Skin Lesion Analysis

    Science.gov (United States)

    Farberg, Aaron S.; Tucker, Natalie; White, Richard; Rigel, Darrell S.

    2016-01-01

    Background: Early detection and subsequent management of melanoma are critical for patient survival. New technologies have been developed to augment clinician analysis of suspicious pigmented skin lesions. Objective: To determine how information provided by a multispectral digital skin lesion analysis device affects the biopsy decisions of international dermatologists following clinical and dermoscopic pigmented skin lesion evaluation. Methods: Participants at a dermoscopy conference in Vienna, Austria, were shown 12 clinical and dermoscopic images of pigmented skin lesions (2 melanomas in situ, 3 invasive melanomas, and 7 low-grade dysplastic nevi) previously analyzed by multispectral digital skin lesion analysis. Participants were asked if they would biopsy the lesion based on clinical images, again after observing high-resolution dermoscopy images, and again when subsequently shown multispectral digital skin lesion analysis information. Results: Data were analyzed from a total of 70 international dermatologists. Overall, sensitivity was 58 percent after clinical evaluation (C) and 59 percent post-dermoscopy (D), but 74 percent after multispectral digital skin lesion analysis. Participant specificity was 56 percent (C) decreasing to 51 percent (D), but increasing to 61 percent with multispectral digital skin lesion analysis. Diagnostic accuracy was 57 percent (C) decreasing to 54 percent (D), but increasing to 67 percent for dermatologists after integrating the multispectral digital skin lesion analysis data into the biopsy decision. The overall number of lesions biopsied increased from 50 percent (C) to 53 percent (D), rising to 54 percent after multispectral digital skin lesion analysis. Conclusion: Decisions to biopsy melanocytic lesions were more sensitive and specific when multispectral digital skin lesion analysis information was provided with no significant increase in the number of biopsies recommended. Providing multispectral digital skin lesion analysis

  18. Penetration and decontamination of americium-241 ex vivo using fresh and frozen pig skin.

    Science.gov (United States)

    Tazrart, A; Bolzinger, M A; Moureau, A; Molina, T; Coudert, S; Angulo, J F; Briancon, S; Griffiths, N M

    2017-04-01

    Skin contamination is one of the most probable risks following major nuclear or radiological incidents. However, accidents involving skin contamination with radionuclides may occur in the nuclear industry, in research laboratories and in nuclear medicine departments. This work aims to measure the penetration of the radiological contaminant Americium ( 241 Am) in fresh and frozen skin and to evaluate the distribution of the contamination in the skin. Decontamination tests were performed using water, Fuller's earth and diethylene triamine pentaacetic acid (DTPA), which is the recommended treatment in case of skin contamination with actinides such as plutonium or americium. To assess these parameters, we used the Franz cell diffusion system with full-thickness skin obtained from pigs' ears, representative of human skin. Solutions of 241 Am were deposited on the skin samples. The radioactivity content in each compartment and skin layers was measured after 24 h by liquid scintillation counting and alpha spectrophotometry. The Am cutaneous penetration to the receiver compartment is almost negligible in fresh and frozen skin. Multiple washings with water and DTPA recovered about 90% of the initial activity. The rest remains fixed mainly in the stratum corneum. Traces of activity were detected within the epidermis and dermis which is fixed and not accessible to the decontamination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. An image-processing analysis of skin textures.

    Science.gov (United States)

    Sparavigna, A; Marazzato, R

    2010-05-01

    This paper discusses an image-processing method applied to skin texture analysis. Considering that the characterisation of human skin texture is a task approached only recently by image processing, our goal is to lay out the benefits of this technique for quantitative evaluations of skin features and localisation of defects. We propose a method based on a statistical approach to image pattern recognition. The results of our statistical calculations on the grey-tone distributions of the images are proposed in specific diagrams, the coherence length diagrams. Using the coherence length diagrams, we were able to determine grain size and anisotropy of skin textures. Maps showing the localisation of defects are also proposed. According to the chosen statistical parameters of grey-tone distribution, several procedures to defect detection can be proposed. Here, we follow a comparison of the local coherence lengths with their average values. More sophisticated procedures, suggested by clinical experience, can be used to improve the image processing.

  20. Lack of effect of selected sunscreens applied on ex vivo human skin for 5-methyl-aminolevulinic acid penetration and protoporphyrin IX photoactivation.

    Science.gov (United States)

    Osman-Ponchet, Hanan; Sevin, Karine; Gaborit, Alexandre; Kouidhi, Magali; Hanaizi, Johanna; Comby, Pierre; Ruty, Bernard; Bouvier, Guy

    2017-03-01

    Photodynamic therapy (PDT) is a successful treatment for non-melanoma skin cancers. Methyl-aminolevulinate (MAL) is metabolized to protoporphyrin IX (PpIX) which accumulates in the skin lesion and which generates a painful photochemical toxic reaction upon red light exposure. PDT using daylight (DL) exposure is now used to reduce pain and subjects are advised to protect the areas with sunscreen. This work investigated the effect of sunscreen on MAL penetration and PpIX photoactivation in ex vivo human skin. To measure skin penetration of MAL, particle-free sunscreens were applied on ex vivo human skin samples mounted on diffusion cells before application of Metvix cream containing [14C]-MAL for 2.5h. To circumvent the absence of skin penetration of PpIX, skin samples were first treated with microneedles and mounted on diffusion cells before the application of PpIX solution for 1h followed by sunscreens. Skin samples were then exposed to solar simulator for 1h. Concentrations of [14C]-MAL or PpIX were measured in both total skin and receptor liquid. The results showed that the in vitro skin penetration of MAL and the PpIX photoactivation on ex vivo human skin samples are not modified by pretreatments of ex vivo human skin with sunscreens. This study demonstrates that neither in vitro skin penetration of MAL nor PpIX photoactivation were modified by pretreatments with Cetaphil SPF 30 Dermacontrol and Actinica® Lotion SPF 50+. This supports the efficacy and safety of MAL DL-PDT in the clinical situation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Microtopographic Inspection and Fractal Analysis of Skin Neoplasia

    Science.gov (United States)

    Costa, Manuel F. M.; Hipolito, Alberto Valencia; Gutierrez, Gustavo Fidel; Chanona, Jorge; Gallegos, Eva Ramón

    2008-04-01

    Early detection of skin cancer is fundamental to a successful treatment. Changes in the shape, including the relief, of skin lesions are an indicator of a possible malignity. Optical microtopographic inspection of skin lesions can be used to identify diagnostic patterns of benign and malign skin' lesions. Statistical parameters like the mean roughness (Ra) may allow the discrimination between different types of lesions and degree of malignity. Fractal analysis of bi-dimensional and 3D images of skin lesions can validate or complement that assessment by calculation of its fractal dimensions (FD). On the study herein reported the microtopographic inspection of the skin lesions were performed using the optical triangulation based microtopographer developed at the Physics Department of the University of Minho, MICROTOP.03.MFC. The patients that participated in this research work were men and women older than 15 years with the clinical and histopathology diagnoses of: melanoma, basocellular carcinoma, epidermoide carcinoma, actinic keratosis, keratoacantosis and benign nevus. Latex impressions of the lesions were taken and microtopographically analyzed. Characteristic information for each type of studied lesion was obtained. For melanoma it was observed that on the average these tumors present an increased roughness of around 67 percent compared to the roughness of the healthy skin. This feature allows the distinction from other tumors as basocellular carcinoma (were the roughness increase was in the average of 49 percent) and benign lesions as the epidermoide cyst (37 percent) or the seborrhea keratosis (4 percent). Tumor size and roughness are directly proportional to the grade of malignality. The characterization of the fractal geometry of 2D (histological slides) and 3D images of skin lesions was performed by obtaining its FD evaluated by means of the Box counting method. Results obtained showed that the average fractal dimension of histological slide images (FDh

  2. Spectrophotometric intracutaneous analysis for differential diagnosis of pigmented skin lesions

    Directory of Open Access Journals (Sweden)

    Е. V. Filonenko

    2013-01-01

    Full Text Available The non-invasive diagnosis of pigmented skin lesions by spectrophotometric intracutaneous analysis (SIA-scopy using device for dermatoscopy (SIAscope V by Astron Clinica, Ltd was approved in P.A.Herzen Moscow Cancer Research Institute. The method is based on analysis of light interaction with wavelength of 440–960 nm anf human skin, which is recorded by change of image on scan. The comparative analysis of SIA-scopy and histological data in 327 pigmented skin lesions in 147 patients showed, that SIA had high diagnostic efficiency for cutaneous melanoma: the sensitivity was 96%, specifity – 94%, diagnostic accuracy – 94%. For study of malignant potential of pigmented lesions by SIA-scopy the most informative capacity was obtained for assessment of melanin in papillary dermis, status of blood vessels and collagen fibres (SIA-scans 3, 4, 5.

  3. In-vivo multiphoton microscopy (MPM) of laser-induced optical breakdown (LIOB) in human skin (Conference Presentation)

    Science.gov (United States)

    Balu, Mihaela; Lentsch, Griffin; Korta, Dorota; Konig, Karsten; Kelly, Kristen M.; Tromberg, Bruce J.; Zachary, Christopher B.

    2017-02-01

    We use a multiphoton microscopy (MPM)-based clinical microscope (MPTflex, JenLab, Germany) to describe changes in human skin following treatment with a fractional non-ablative laser (PicoWay, Candela). The treatment was based on a fractionated picosecond Nd:YAG laser (1064 and 532nm, 3mJ and 1.5mJ (no attenuation), respectively maximum energy/pulse, 100 microbeams/6mmx6mm). Improvements in skin appearance resulting from treatment with this laser have been noted but optimizing the efficacy depends on a thorough understanding of the specific skin response to treatment. MPM is a nonlinear laser scanning microscopy technique that features sub-cellular resolution and label-free molecular contrast. MPM contrast in skin is derived from second-harmonic generation of collagen and two-photon excited fluorescence of NADH/FAD+, elastin, keratin, melanin. In this pilot study, two areas on the arm of a volunteer (skin type II) were treated with the picoWay laser (1064nm, 3mJ; 532nm, 1.5mJ; 1pass). The skin response to treatment was imaged in-vivo at 8 time points over the following 4 weeks. MPM revealed micro-injuries present in epidermis. Damaged individual cells were distinguished after 3h and 24h from treatment with both wavelengths. Pigmented cells were particularly damaged in the process, suggesting that melanin is the main absorber and the primary target for laser induced optical breakdown. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. These results represent the groundwork for future longitudinal studies on expanded number of subjects to understand the response to treatment in different skin types at different laser parameters, critical factors in optimizing treatment outcomes.

  4. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    Science.gov (United States)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  5. Characterization of pigmented dermo-epidermal skin substitutes in a long-term in vivo assay.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Klar, Agnieszka S; Widmer, Daniel S; Neuhaus, Kathrin; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2015-01-01

    In our laboratory, we have been using human pigmented dermo-epidermal skin substitutes for short-term experiments since several years. Little is known, however, about the long-term biology of such constructs after transplantation. We constructed human, melanocyte-containing dermo-epidermal skin substitutes of different (light and dark) pigmentation types and studied them in a long-term animal experiment. Developmental and maturational stages of the epidermal and dermal compartment as well as signs of homoeostasis were analysed 15 weeks after transplantation. Keratinocytes, melanocytes and fibroblasts from human skin biopsies were isolated and assembled into dermo-epidermal skin substitutes. These were transplanted onto immuno-incompetent rats and investigated 15 weeks after transplantation. Chromameter evaluation showed a consistent skin colour between 3 and 4 months after transplantation. Melanocytes resided in the epidermal basal layer in physiological numbers and melanin accumulated in keratinocytes in a supranuclear position. Skin substitutes showed a mature epidermis in a homoeostatic state and the presence of dermal components such as Fibrillin and Tropoelastin suggested advanced maturation. Overall, pigmented dermo-epidermal skin substitutes show a promising development towards achieving near-normal skin characteristics and epidermal and dermal tissue homoeostasis. In particular, melanocytes function correctly over several months whilst remaining in a physiological, epidermal position and yield a pigmentation resembling original donor skin colour. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. An in vivo comparison of barbed suture devices and conventional monofilament sutures for cosmetic skin closure: biomechanical wound strength and histology.

    Science.gov (United States)

    Zaruby, Jeffrey; Gingras, Kristen; Taylor, Jack; Maul, Don

    2011-02-01

    Very little biomechanical or histological data exist in the peer-reviewed literature comparing absorbable monofilament sutures to commercially-available knotless, absorbable barbed suture devices for cosmetic closure of skin incisions. The authors compare two commercially-available knotless, barbed suture devices against a conventional monofilament suture in a porcine model for biomechanical wound strength and histological quality of healing. This prospective randomized trial included 18 animals randomly assigned among three groups, with six in each. A total of 192 incisions were closed in a porcine in vivo model and assessed for biomechanical strength and histology at postoperative Days 0, 3, 10, and 21. Each animal received all three test devices in a randomized, three-way matched design. Immediately following euthanasia, the skin incisions were excised for ex vivo biomechanical testing. In the ex vivo analysis, Biosyn proved significantly stronger than the V-Loc 90 device at Day 0 and Quill Monoderm at Day 3. At no time point was there any difference in biomechanical strength between the two barbed suture devices. Differences in barb geometry, barb number, and helicity between the two barbed suture devices resulted in failure modes that were significantly different. All three test articles resulted in mild tissue reaction scores on histology. The V-Loc 90 device consistently had the lowest tissue reaction scores at all time periods, with the difference between the V-Loc 90 device and Quill being significant at postoperative Day 10. Knotless, absorbable barbed suture devices are a safe and efficacious alternative for cosmetic skin closures and yield wound strength and tissue reaction scores that are comparable to those from closures performed with absorbable monofilament sutures and secured with knots.

  7. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies.

    Science.gov (United States)

    Batheja, Priya; Sheihet, Larisa; Kohn, Joachim; Singer, Adam J; Michniak-Kohn, Bozena

    2011-01-20

    Tyrosine-derived nanospheres have demonstrated potential as effective carriers for the topical delivery of lipophilic molecules. In this investigation, a gel formulation containing nanospheres was developed for effective skin application and enhanced permeation. Carbopol and HPMC hydrophilic gels were evaluated for dispersion of these nanospheres. Sparingly water soluble diclofenac sodium (DS) and lipophilic Nile Red were used as model compounds. DS was used to determine the optimum polymer type, viscosity and release properties of the gel while fluorescent Nile Red was used in in vitro and in vivo skin distribution studies. In addition, the effect of a penetration enhancer, Azone, on the skin delivery was investigated. Dispersion of Nile Red-loaded nanospheres in 1% w/v HPMC gel produced a uniform and stable dispersion with suitable rheological properties for topical application, without any short-term cellular toxicity or tissue irritation. In vitro permeation studies using human cadaver skin revealed that the deposition of Nile Red via the nanosphere gel in the upper and lower dermis was 1.4 and 1.8 fold higher, respectively, than the amount of Nile Red deposited via an aqueous nanosphere formulation. In vivo, the HPMC gel containing Nile Red-loaded nanospheres significantly enhanced (1.4 fold) the permeation of Nile Red to the porcine stratum corneum/epidermis compared to the aqueous Nile Red-loaded nanospheres. An additional increase (1.4 fold) of Nile Red deposition in porcine stratum corneum/epidermis was achieved by incorporation of Azone (0.2M) into the nanosphere gel formulation. Therefore, tyrosine-derived nanospheres dispersed in gels offer promise for the topical delivery of lipophilic drugs and personal care agents to skin for treatment of cancers, psoriasis, eczema, and microbial infections. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Intra- and inter-individual variability in the mechanical properties of the human skin from in vivo measurements on 20 volunteers.

    Science.gov (United States)

    Jacquet, E; Chambert, J; Pauchot, J; Sandoz, P

    2017-11-01

    The mechanical properties and behavior of the human skin in vivo are of medical importance, particularly to surgeons who have to consider the skin extension capabilities in the preparation of surgical acts. Variable data can be found in literature that result from diverse kinds of tests (in vivo, ex vivo, and postmortem) performed with different instruments. This paper presents the results of in vivo measurements performed on a cohort of 20 healthy volunteers with an ultralight homemade uniaxial extensometer. Different anatomical zones were explored under different directions of solicitation in order to document inter- and intra-individual variability as well as skin anisotropy. The experimental data obtained are fitted with a phenomenological exponential model allowing the identification of three parameters characteristic of the tested skin behavior. These parameters can be related to the concept of skin extensibility used by surgeons. The inter- and intra-variability observed on that cohort confirms the need for a patient-specific approach based on the in vivo measurement of the mechanical behavior of the human skin of interest. Even the direction of higher skin stiffness is found to be individual-dependent. The capability of the extensometer used in this study to fulfill such measurement needs is also demonstrated. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A novel approach to measuring the frictional behaviour of human skin in vivo

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2012-01-01

    Friction involving human skin plays a key role in human life. The availability of a portable tribometer improves the accessibility to large number of both subjects and anatomical sites. This is the first mobile device suitable to measure skin friction with a controlled and variable normal load

  10. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish

    OpenAIRE

    Jing-Hui Zhang; Aping Niu; Jing Li; Jian-Wei Fu; Qun Xu; De-Sheng Pei

    2016-01-01

    Carbon quantum dots (CDs) were widely investigated because of their tunable fluorescence properties and low toxicity. However, so far there have been no reports on in vivo functional studies of hair and skin derived CDs. Here, hair derived CDs (HCDs) and skin derived CDs (SCDs) were produced by using human hair and pig skin as precursors. The quantum yields (QYs) of HCDs and SCDs were quite high, compared to citric acid derived CDs (CCDs). HCDs and SCDs possess optimal photostability, hypotox...

  11. International guidelines for the in vivo assessment of skin properties in non-clinical settings

    DEFF Research Database (Denmark)

    Stefaniak, Aleksandr B; Plessis, Johan du; John, Swen M

    2013-01-01

    position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure......BACKGROUND: Skin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically...... encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control. METHODS: An expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review...

  12. Histamine is not released in acute thermal injury in human skin in vivo: a microdialysis study

    DEFF Research Database (Denmark)

    Petersen, Lars J; Pedersen, Juri L; Skov, Per S

    2009-01-01

    BACKGROUND: Animal models have shown histamine to be released from the skin during the acute phase of a burn injury. The role of histamine during the early phase of thermal injuries in humans remains unclear. PURPOSE: The objectives of this trial were to study histamine release in human skin during...... the acute phase of a standardized thermal injury in healthy volunteers. METHODS: Histamine concentrations in human skin were measured by skin microdialysis technique. Microdialysis fibers were inserted into the dermis in the lower leg in male healthy volunteers. A standardized superficial thermal injury...... was elicited by a heating thermode (49 degrees C) applied to the skin for 5 min. Histamine in dialysate was analyzed for up to 2 h after the injury using two different analytical methods. RESULTS: Spectrofluorometric assay of histamine showed no histamine release in separate studies using 2-min samples over 20...

  13. Singlet molecular oxygen quenching by the antioxidant dimethylmethoxy chromanol in solution and in ex vivo porcine skin.

    Science.gov (United States)

    Nonell, S; García-Díaz, M; Viladot, J L; Delgado, R

    2013-06-01

    Singlet-oxygen is a non-radical reactive oxygen species believed to play a major role in many photooxidation processes in connection with diverse photo-biological processes such as skin ageing or photocarcinogenesis. Dimethylmethoxy chromanol (3,4-dihydro-6-hydroxy-2,2-dimethyl-7-methoxy-1(2H)-benzopyran) is a potent antioxidant used in cosmetic and pharmaceutical formulations. We have assessed the singlet oxygen quenching ability of dimethylmethoxy chromanol, by monitoring the near-IR phosphorescence of singlet-oxygen in solution and in ex vivo porcine skin samples. Dimethylmethoxy chromanol quenches singlet oxygen with a rate constant of (1.3 ± 0.1) × 10⁸ M⁻¹ s⁻¹ in solution. Consistent with this, a clear reduction in the singlet oxygen lifetime and emission intensity was observed when ex vivo porcine skin samples were treated with dimethylmethoxy chromanol. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Development and coupling analysis of active skin antenna

    Science.gov (United States)

    Zhou, Jinzhu; Huang, Jin; He, Qingqang; Tang, Baofu; Song, Liwei

    2017-02-01

    An active skin antenna is a multifunctional composite structure that can provide load-bearing structure and steerable beam pointing functions, and is usually installed in the structural surface of aircraft, warships, and armored vehicles. This paper presents an innovative design of the active skin antenna, which consists of a package layer, control and signal processing layer, and RF (radio frequency) layer. The RF layer is fabricated by low temperature co-fired ceramics, with 64 microstrip antenna elements, tile transmitting and receiving modules, microchannel heat sinks, and feeding networks integrated into a functional block 2.8 mm thick. In this paper, a full-sized prototype of an active skin antenna was designed, fabricated, and tested. Moreover, a coupling analysis method was presented to evaluate the mechanical and electromagnetic performance of the active skin antenna subjected to aerodynamic loads. A deformed experimental system was built to validate the effectiveness of the coupling analysis method, which was also implemented to evaluate the performance of the active skin antenna when subjected to aerodynamic pressure. The fabricated specimen demonstrated structural configuration feasibility, and superior environmental load resistance.

  15. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex Vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study

    Directory of Open Access Journals (Sweden)

    Samreen Jatana

    2016-02-01

    Full Text Available Understanding the interactions of nanoparticles (NPs with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD NPs between freshly excised human and mouse skin. QDs were mixed in seven different vehicles, including five commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 h rest ex vivo. Resting human skin 24 h prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models.

  16. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study

    Science.gov (United States)

    Jatana, Samreen; Callahan, Linda M.; Pentland, Alice P.; DeLouise, Lisa A.

    2016-01-01

    Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models. PMID:27453793

  17. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study.

    Science.gov (United States)

    Jatana, Samreen; Callahan, Linda M; Pentland, Alice P; DeLouise, Lisa A

    2016-03-01

    Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models.

  18. In vivo evaluation of Fe in the human skin and swins mice skin through the X-rays fluorescence technique; Avaliacao in vivo de Fe na pele humana e de camundongos swins atraves da tecnica de fluorescencia de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Estevam, Marcelo

    2005-07-01

    Recent technological improvements allow the method of in vivo XRF to supply useful sensibility for diagnostics or monitoring in biomedical applications. In cases of hereditary sanguine disorders as the {beta}-Thalassaemia or a genetic disorder like Haemochromatosis, there is a high concentration of elements as Fe, Zn and Cu in the skin and internal organs, due to the treatment of those abnormalities or due to the own dysfunction caused by the disease. The levels of Fe related to the patient bearers of the {beta}-Thalassaemia are determined, at the moment, measuring a protein in the sanguine current, called ferritin. The monitoring of the protein is ineffective in several situations, such as when the patient suffers any disturbance of health. Nowadays, the main forms of measuring the levels of those metals through hepatic storage are the biopsy of the liver, that is invasive and potentially dangerous, presenting a rate of mortality of 0,1%, and through magnetic susceptibilities that employs a quantum superconductor, which is highly expensive and there are only three main world medical centers with this equipment. This work investigates the use of a Si PIN-diode detector and a 238Pu source (13 and 17 keV; 13%; 95.2 mCi; 86y) for the measurement of Fe skin levels compatible with those associated to the disease {beta}-Thalassaemia. XRF spectra were analyzed using a set of AXIL-WinQXAS programs elaborated and disseminated by the IAEA. The determination coefficient of the calibration model (sensitivity curve) was 0.97. Measurements on skin phantoms containing concentrations of Fe in the range from 15 to 150 parts per million (ppm), indicate that we are able to detect Fe at levels of the order of 13 ppm, using monitoring periods of 50 seconds and skin entrance dose less than 10 mSv. The literature reports skin Fe levels from 15.0 to 60.0 ppm in normal persons and from 70 to 150 ppm in thalassaemic patients. So, the employed methodology allows the in vivo measurement of

  19. Determination of the Antioxidant Status of the Skin by In Vivo-Electron Paramagnetic Resonance (EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Silke Barbara Lohan

    2015-08-01

    Full Text Available Organisms produce free radicals which are essential for various metabolic processes (enzymatic oxidation, cellular respiration, signaling. Antioxidants are important chemical compounds that specifically prevent the oxidation of substances by scavenging radicals, especially reactive oxygen species (ROS. Made up of one or two unpaired electrons, ROS are free radicals that are highly reactive and can attack other metabolites. By using electron paramagnetic resonance (EPR spectroscopy, it is possible to measure paramagnetic substances such as free radicals. Therefore the dermal antioxidant activity can be determined by applying semi-stable radicals onto the skin and measuring the antioxidant-induced radical scavenging activity in the skin. In recent years, EPR has been developed as a spectroscopic method for determining the antioxidant status in vivo. Several studies have shown that an additional uptake of dietary supplements, such as carotenoids or vitamin C in physiological concentrations, provide a protective effect against free radicals. Using the EPR technique it could be demonstrated that the radical production in stress situations, such as irradiation with infrared and visible light, was reduced with time. However, not only the oral uptake of antioxidants, but also the topical application of antioxidants, e.g., a hyperforin-rich cream, is very useful against the development of oxidative stress. Regular application of a hyperforin-rich cream reduced radical formation. The skin lipids, which are very important for the barrier function of the skin, were also stabilized.

  20. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: significance of the skin reservoir and prediction of systemic absorption.

    Science.gov (United States)

    Yourick, Jeffrey J; Jung, Connie T; Bronaugh, Robert L

    2008-08-15

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing (3)H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose. In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid

  1. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis.

    Science.gov (United States)

    Loizidou, Eriketi Z; Inoue, Nicholas T; Ashton-Barnett, Johnny; Barrow, David A; Allender, Chris J

    2016-10-01

    Computerized tomography scan (CT scan) imaging and finite element analysis were employed to investigate how the geometric composition of microneedles affects their mechanical strength and penetration characteristics. Simulations of microneedle arrays, comprising triangular, square and hexagonal microneedle base, revealed a linear dependence of the mechanical strength to the number of vertices in the polygon base. A laser-enabled, micromoulding technique was then used to fabricate 3×3 microneedle arrays, each individual microneedle having triangular, square or hexagonal base geometries. Their penetration characteristics into ex-vivo porcine skin, were investigated for the first time by CT scan imaging. This revealed greater penetration depths for the triangular and square-based microneedles, demonstrating CT scan as a powerful and reliable technique for studying microneedle skin penetration. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Improved Skin Penetration Using In Situ Nanoparticulate Diclofenac Diethylamine in Hydrogel Systems: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit

    2016-04-01

    Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.

  3. Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development

    Directory of Open Access Journals (Sweden)

    Al Asmari AK

    2016-10-01

    Full Text Available Abdulrahman K Al Asmari, Abdul Quaiyoom Khan Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia Abstract: Cancer is the leading cause of morbidity and mortality all over the world in spite of the advances made in its management. In this study, we investigated the in vivo antitumorigenic potential of the venom obtained from a medically important scorpion species Leiurus quinquestriatus on chemically induced skin cancer in mice. Animals were divided into five groups, with 13 animals in each group. All the treatments were given topically on the shaved dorsal surface of the skin. Animals in Group 1 received vehicle only (0.2 mL acetone. Moreover, 7,12-dimethylbenz[a]anthracene (DMBA, 400 nmol per mouse was applied to all the animals in the remaining four groups. After 1 week, different concentrations of venom (17.5 µg, 35 µg, and 52.5 µg per animal were applied to each animal in the Groups III–V. Thirty minutes after the application of venom, croton oil was applied on the same position where venom was administered to the animals of Groups III–V. Animals in Group II were treated as the positive control (without venom and received croton oil as in Groups III–V. The findings of this study revealed that venom extract of L. quinquestriatus inhibits DMBA + croton oil-induced mouse skin tumor incidence and tumor multiplicity. Venom treatment also decreased the expression of proinflammatory cytokines. Immunohistochemistry results showed a downregulation of the expression of molecular markers such as Ki-67, nuclear factor kappa-B, cyclooxygenase-2, B-cell lymphoma-2, and vascular endothelial growth factor, in venom-treated animals. Our findings suggest that the venom of L. quinquestriatus possesses in vivo anticancer potential and may be used in the development of anticancer molecules. Keywords: Leiurus quinquestriatus, skin cancer, apoptosis, immunosuppression

  4. Amplified Mechanically Gated Currents in Distinct Subsets of Myelinated Sensory Neurons following In Vivo Inflammation of Skin and Muscle.

    Science.gov (United States)

    Weyer, Andy D; O'Hara, Crystal L; Stucky, Cheryl L

    2015-06-24

    Primary afferents are sensitized to mechanical stimuli following in vivo inflammation, but whether sensitization of mechanically gated ion channels contributes to this phenomenon is unknown. Here we identified two populations of murine A fiber-type sensory neurons that display markedly different responses to focal mechanical stimuli of the membrane based on their expression of calcitonin gene-related peptide (CGRP). Following inflammation of the hindpaw, myelinated, CGRP-positive neurons projecting to the paw skin displayed elevated mechanical currents in response to mechanical stimuli. Conversely, muscle inflammation markedly amplified mechanical currents in myelinated, CGRP-negative neurons projecting to muscle. These data show, for the first time, that mechanically gated currents are amplified following in vivo tissue inflammation, and also suggest that mechanical sensitization can occur in myelinated neurons after inflammation. Copyright © 2015 the authors 0270-6474/15/359456-07$15.00/0.

  5. SAMPA: A free software tool for skin and membrane permeation data analysis.

    Science.gov (United States)

    Bezrouk, Aleš; Fiala, Zdeněk; Kotingová, Lenka; Krulichová, Iva Selke; Kopečná, Monika; Vávrová, Kateřina

    2017-10-01

    Skin and membrane permeation experiments comprise an important step in the development of a transdermal or topical formulation or toxicological risk assessment. The standard method for analyzing these data relies on the linear part of a permeation profile. However, it is difficult to objectively determine when the profile becomes linear, or the experiment duration may be insufficient to reach a maximum or steady state. Here, we present a software tool for Skin And Membrane Permeation data Analysis, SAMPA, that is easy to use and overcomes several of these difficulties. The SAMPA method and software have been validated on in vitro and in vivo permeation data on human, pig and rat skin and model stratum corneum lipid membranes using compounds that range from highly lipophilic polycyclic aromatic hydrocarbons to highly hydrophilic antiviral drug, with and without two permeation enhancers. The SAMPA performance was compared with the standard method using a linear part of the permeation profile and a complex mathematical model. SAMPA is a user-friendly, open-source software tool for analyzing the data obtained from skin and membrane permeation experiments. It runs on a Microsoft Windows platform and is freely available as a Supporting file to this article. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Water-resistant sunscreens for skin protection: an in vivo approach to the two sources of sunscreen failure to maintain UV protection on consumer skin.

    Science.gov (United States)

    Puccetti, G

    2015-12-01

    The water resistance of sunscreen products has taken more importance for the UV protection of consumers involved in water activities and sports. The present work introduces a new in vivo approach to measure the water resistance of sunscreens on the actual skin of subjects, which can be easily applied to salt, chlorine and tap waters. The stress sources of sunscreen films on skin originate from two phenomena: high surface tension stress as the skin transits through the air/water interface and water diffusion into the film immersed in bulk water. The water resistance of sunscreen products is measured on the forearms of subjects by means of a new layered water bath approach that physically separates both stresses. Tape strips are subsequently taken and analysed for UV-A and UV-B optical densities via (1) imaging for remaining filters and (2) in vitro SPF absorption spectra. Water-resistant sunscreens generally perform well when immersed in bulk water even subjected to agitation, but they show a wide range of performances when considering their behaviour at the air/water interface. The differences are more pronounced in salt water than tap water. The results confirm 2 stress origins in sunscreen exposure to water: interfacial surface tension and bulk water diffusion. Polymers bring improvements to the resistance of sunscreens to bulk water but show wide latitude in performances when subject to the water surface tension stress. Globally, a higher loss of filters is observed in the UV-A than in the UV-B, which is attributed to more UV-A filter loss or degradation and thus resulting in a decreased protection in the UV-A. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation.

    Science.gov (United States)

    Song, Chung Kil; Balakrishnan, Prabagar; Shim, Chang-Koo; Chung, Suk-Jae; Chong, Saeho; Kim, Dae-Duk

    2012-04-01

    This study describes a novel carrier, transethosome, for enhanced skin delivery of voriconazole. Transethosomes (TELs) are composed of phospholipid, ethanol, water and edge activator (surfactants) or permeation enhancer (oleic acid). Characterization of the TELs was based on results from recovery, particle size, transmission electron microscopy (TEM), zeta potential and elasticity studies. In addition, skin permeation profile was obtained using static vertical diffusion Franz cells and hairless mouse skin treated with TELs containing 0.3% (w/w) voriconazole, and compared with those of ethosomes (ELs), deformable liposomes (DLs), conventional liposomes (CLs) and control (polyethylene glycol, PG) solutions. The recovery of the studied vesicles was above 90% in all vesicles, as all of them contained ethanol (7-30%). There was no significant difference in the particles size of all vesicles. The TEM study revealed that the TELs were in irregular spherical shape, implying higher fluidity due to perturbed lipid bilayer compared to that of other vesicles which were of spherical shape. The zeta potential of vesicles containing sodium taurocholate or oleic acid showed higher negative value compared to other vesicles. The elasticities of ELs and TELs were much higher than that of CLs and DLs. Moreover, TELs dramatically enhanced the skin permeation of voriconazole compared to the control and other vesicles (p<0.05). Moreover, the TELs enhanced both in vitro and in vivo skin deposition of voriconazole in the dermis/epidermis region compared to DLs, CLs and control. Therefore, based on the current study, the novel carrier TELs could serve as an effective dermal delivery for voriconazole. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.

    Science.gov (United States)

    Wang, Shuang; Zhao, Jianhua; Lui, Harvey; He, Qingli; Zeng, Haishan

    2013-02-01

    Fluorescence emission from in vivo cutaneous melanin was recently detected under near-infrared (NIR) excitation by our group. We then built a prototype NIR autofluorescence imaging system to observe and characterize the melanin distribution in human skin. In this article, we reported a new setup of NIR fluorescence imaging system and calibration methods to optimize the system for better clinical feasibility and clearer image. The imaging system was designed to perform both fluorescence and reflectance imaging with a 785-nm fiber-coupled laser source. The illumination light was purified by a 785-nm bandpass filter for fluorescence excitation; while the spontaneous components were selected by a longpass filter for NIR reflectance imaging. A hand-controlled filter wheel was used to switch these two filters for different imaging modes. A dichroic filter was used to guide the illuminating light onto the skin surface for excitation. Reflectance and fluorescence signals were collected sequentially by a NIR optimized CCD camera. The captured images were calibrated by the reflectance images of a standard reflectance disk for non-uniform illuminations and light collection efficiencies. The clinical results demonstrated that NIR fluorescence intensities and distribution patterns vary among lesion types. It was also confirmed that pigmented skin lesions emitted higher NIR fluorescence than the surrounding normal skin due to the presentation of higher concentrations of cutaneous melanin within the lesions. NIR autofluorescence imaging system could be utilized as a powerful tool for visualizing melanin distribution in pigmented skin lesions and as a potential method for aiding melanoma detection. © 2012 John Wiley & Sons A/S.

  9. Pigmented Skin Lesion Biopsies After Computer-Aided Multispectral Digital Skin Lesion Analysis.

    Science.gov (United States)

    Winkelmann, Richard R; Tucker, Natalie; White, Richard; Rigel, Darrell S

    2015-11-01

    The incidence of melanoma has been rising over the past century. With 37% of patients presenting to their primary care physician with at least 1 skin problem, primary care physicians and other nondermatologist practitioners have substantial opportunity to make an impact at the forefront of the disease process. New diagnostic aids have been developed to augment physician analysis of suspicious pigmented skin lesions (PSLs). To determine the effects of computer-aided multispectral digital skin lesion analysis (MSDSLA) on dermatologists' and nondermatologist clinicians' decisions to biopsy suspicious PSLs after clinical and dermatoscopic evaluation. Participants were shown 6 images of PSLs. For each PSL, participants were asked 3 times if they would biopsy the lesion: first after reviewing a clinical image of the PSL, again after reviewing a high-resolution dermatoscopic image, and again after reviewing MSDSLA probability findings. An answer was right if a melanoma or high-risk lesion was selected for biopsy or a low-risk lesion was not selected for biopsy. An answer was wrong if a melanoma or high-risk lesion was not selected for biopsy or a low-risk lesion was selected for biopsy. Clinicians' decisions to biopsy were evaluated using χ² analysis for proportions. Data were analyzed from a total of 212 participants, 177 of whom were dermatologists. Overall, sensitivity of clinical image review was 63%; dermatoscopic image review, 5%; and MSDSLA, 83%. Specificity of clinical image review was 59%; dermatoscopic image review, 40%; and MSDSLA, 76%. Biopsy decision accuracy was 61% after review of clinical images, 52% after review of dermatoscopic images, and 80% after review of MSDSLA findings. The number of lesions participants indicated that they would biopsy increased significantly, from 52% after reviewing clinical images to 63% after reviewing dermatoscopic images (Plesions.

  10. Continuous-wave terahertz reflection imaging of ex vivo nonmelanoma skin cancers

    Science.gov (United States)

    Joseph, Cecil S.; Yaroslavsky, Anna N.; Neel, Victor A.; Goyette, Thomas M.; Giles, Robert H.

    2012-02-01

    Nonmelanoma skin cancers are the most common form of cancer. Continuous wave terahertz imaging has the potential to differentiate between nonmelanoma skin cancers and normal skin. Terahertz imaging is non-ionizing and offers a high sensitivity to water content. Contrast between cancerous and normal tissue in transmission mode has already been demonstrated using a continuous wave terahertz system. The aim of this experiment was to implement a system that is capable of reflection modality imaging of nonmelanoma skin cancers. Fresh excisions of skin cancer specimens were obtained from Mohs surgeries for this study. A CO2 optically pumped far-infrared molecular gas laser was used for illuminating the tissue at 584 GHz. The reflected signal was detected using a liquid Helium cooled Silicon bolometer. The terahertz images were compared with sample histology. The terahertz reflection images exhibit some artifacts that can hamper the specificity. The beam waist at the sample plane was measured to be 0.57 mm, and the system's signal-to-noise ratio was measured to be 65 dB.

  11. Skin conditions in primary care: an analysis of referral demand.

    Science.gov (United States)

    Castillo-Arenas, E; Garrido, V; Serrano-Ortega, S

    2014-04-01

    Skin conditions are among the main reasons for seeking primary health care. Primary care physicians (PCPs) must diagnose skin conditions and determine their impact, and must therefore incorporate the relevant knowledge and skills into their education. The present study analyzes the reasons for primary care referral to dermatology (referral demand) as well as diagnostic agreement between PCPs and dermatologists informed by pathology where appropriate. Data were collected for 755 patients and 882 initial dermatology appointments from February 1, 2012 through April 30, 2012 following primary care referral. Data obtained included age, sex, occupation, reason for referral, primary care diagnosis, and dermatologic diagnosis. Statistical analysis of the data for each diagnosed condition identified frequency, reasons for referral, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the κ statistic for diagnostic agreement. The most common diagnoses were seborrheic keratosis, melanocytic nevus, actinic keratosis, and acne. The main reason for referral was diagnostic assessment (52.5%). For skin tumors, sensitivity of primary care diagnosis was 22.4%, specificity 94.7%, PPV 40.7%, and NPV 88.3%, with a κ of 0.211. For the more common diagnoses, primary care sensitivity was generally low and specificity high. According to our results, primary care physicians are better qualified to rule out a given skin condition in a patient (high specificity) than to establish an accurate clinical diagnosis (poor sensitivity). This suggests that knowledge and skills training should be organized for primary care physicians to improve management of skin conditions-especially skin cancer, because of its impact. A more responsive system would ensue, with shorter waiting lists and better health care. Copyright © 2013 Elsevier España, S.L. and AEDV. All rights reserved.

  12. U. V. -induced DNA damage and its repair in human skin in vivo studied by sensitive immunohistochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eggset, G.; Volden, G.; Krokan, H.

    1983-01-01

    Antibodies specific for u.v.-induced DNA damage were raised in rabbits, and used to study damage and repair of nuclear DNA in nude mouse and human skin in vivo by immuno-fluorescence and immunoperoxidase techniques. Purification of the antibodies by affinity chromatography strongly reduced unspecific background staining. In situ denaturation of nuclear DNA with 70 mM NaOH in 70% ethanol increased the sensitivity of the assay approximately 10-fold. Absorption experiments indicated that the specificity of the antibodies was primarily directed against pyrimidine dimers in single stranded DNA. Immunofluorescence and immunoperoxidase staining were essentially equally sensitive and positive responses using these techniques were already apparent in epidermal cell nuclei after 0.5 minimal erythemal dose (MED) of u.v. light. At higher doses, such as 2 MED, the staining was strong in all the epidermal layers and could also be observed in dermis. Even so, removal of antibody binding sites was well under way at 4-5 h post-irradiation and essentially complete after 24 h. Visible light increased the rate of repair, indicating the involvement of a photoreactivation enzyme in human skin in vivo.

  13. In vivo skin irritation potential of a Castanea sativa (Chestnut) leaf extract, a putative natural antioxidant for topical application.

    Science.gov (United States)

    Almeida, Isabel F; Valentão, Patrícia; Andrade, Paula B; Seabra, Rosa M; Pereira, Teresa M; Amaral, M Helena; Costa, Paulo C; Bahia, M Fernanda

    2008-11-01

    Topical application of natural antioxidants has proven to be effective in protecting the skin against ultraviolet-mediated oxidative damage and provides a straightforward way to strengthen the endogenous protection system. However, natural products can provoke skin adverse effects, such as allergic and irritant contact dermatitis. Skin irritation potential of Castanea sativa leaf ethanol:water (7:3) extract was investigated by performing an in vivo patch test in 20 volunteers. Before performing the irritation test, the selection of the solvent and extraction method was guided by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging test and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron-chelating activity and the phenolic composition (high performance liquid chromatography/diode array detection) were evaluated for the extract obtained under optimized conditions. The extraction method adopted consisted in 5 short extractions (10 min.) with ethanol:water (7:3), performed at 40 degrees. The IC(50) found for the iron chelation and DPPH scavenging assays were 132.94 +/- 9.72 and 12.58 +/- 0.54 microg/ml (mean +/- S.E.M.), respectively. The total phenolic content was found to be 283.8 +/- 8.74 mg GAE/g extract (mean +/- S.E.M.). Five phenolic compounds were identified in the extract, namely, chlorogenic acid, ellagic acid, rutin, isoquercitrin and hyperoside. The patch test carried out showed that, with respect to irritant effects, this extract can be regarded as safe for topical application.

  14. In vivo confocal microscopy of human skin: a new design for cosmetology and dermatology.

    Science.gov (United States)

    Corcuff, P; Gonnord, G; Piérard, G E; Lévéque, J L

    1996-08-01

    In-depth exploration of cellular structures in living human skin in situ is possible with the tandem scanning microscope (TSM). However, the rigid design of the microscope limited observations to the arms, hands, and fingers. A mobile version allowing the investigation of any parts of the body has been designed. The head containing the Nipkow disk and the optical path were the only part saved from the original TSM. This prototype can be used to observe, in real time, the different skin structures down to a depth of 200 microns and to measure the thickness of the different layers with micron precision level. The hydration of the stratum corneum (SC) could be assessed. For example, lengthy immersion of the hand in water led to an increase in SC thickness without affecting that of the living epidermis. Occlusive patch tests also showed that water and, even more so. propylene glycol, led to transient swelling of the SC. In dermatology, the example of psoriasis illustrated the value of the TSM for describing, measuring, and assessing pathologic skin changes. The availability of this noninvasive method for observing changes with time in a given skin site should prove useful for monitoring treatment efficacy. This tool opens up new insight for the investigation of cutaneous pathophysiology.

  15. Development and characterization of an in vivo skin photomicronucleus assay in rats

    NARCIS (Netherlands)

    Reus, A.A.; Usta, M.; Meeuwen, R.N.C. van; Maas, W.J.M.; Robinson, S.A.; Kenny, J.D.; Pruimboom-Brees, I.; Clements, P.J.; Lynch, A.M.; Krul, C.A.M.

    2010-01-01

    For pharmaceuticals, current regulatory guidance for photosafety testing states that studies are warranted for drug candidates that both absorb light in the range of 290-700 nm and that are either applied topically or reach the skin or eyes by systemic exposure. In contrast to standard genotoxicity

  16. Development and characterisation of an in vitro photomicronucleus test using ex vivo human skin tissue

    NARCIS (Netherlands)

    Reus, A.A.; Meeuwen, R.N.C. van; Vogel, N. de; Maas, W.J.M.; Krul, C.A.M.

    2011-01-01

    Photosafety testing is of concern for the evaluation of personal care products and pharmaceuticals. Current regulatory guidance state that photosafety should be evaluated for compounds that absorb radiation between 290 and 700 nm with relevant exposure in the skin or eyes. However, oversensitivity

  17. Electrode-Skin contact impedance: In vivo measurements on an ovine model

    Science.gov (United States)

    Nguyen, D. T.; Kosobrodov, R.; Barry, M. A.; Chik, W.; Jin, C.; Oh, T. I.; Thiagalingam, A.; McEwan, A.

    2013-04-01

    The problem of electrical impedance between the skin and the electrode is an on-going challenge in bio-electronics. This is particularly true in the case of Electrical Impedance Tomography (EIT), which uses a large number of skin-contact electrodes and is very sensitive to noise. In the present article, contact impedance is measured and compared for a range of electrodes placed on the thorax of an ovine model. The study has been approved by the Westmead Hospital Animal Ethics Committee. The electrode models that were employed in the research are Ag/AgCl electrodes (E1), commonly used for ECG and EIT measurements in both humans and animal models, stainless steel crocodile clips (E2), typically used on animal models, and novel multi-point dry electrodes in two modifications: bronze plated (E3) and nickel plated (E4). Further, since the contact impedance is mostly attributed to the acellular outer layer of the skin, in our experiment, we attempted to study the effect of this layer by comparing the results when the skin is intact and when electrodes are introduced underneath the skin through small cuts. This boundary effect was assessed by comparison of measurements obtained during E2 skin surface contact, and sub-cutaneous contact (E5). Twelve gauge intradermal needles were also tested as an electrode (E6). The full impedance spectrum, from 500 Hz to 300 kHz, was recorded, analysed and compared. As expected, the contact impedance in the more invasive cases, i.e the electrodes under the skin, is significantly lower than in the non-invasive cases. At the frequency of 50 kHz which is commonly used in lung EIT acquisition, electrodes E3, E4 and E6 demonstrated contact impedance of less than 200 Ω, compared to more than 400 Ω measured for electrodes E1, E2 and E5. In conclusion, the novel multipoint electrodes proved to be best suited for EIT purposes, because they are non-invasive and have lower contact impedance than Ag/AgCl and crocodile clips, in both invasive and

  18. Concealing a shiny facial skin appearance by an Aerogel-based formula. In vitro and in vivo studies.

    Science.gov (United States)

    Cassin, Guillaume; Diridollou, Stephane; Flament, Frederic; Adam, Anne-Sophie; Pierre, Patricia; Colomb, Loic; Morancais, Jean-Luc; Qiu, Huixia

    2017-10-10

    To explore, in vitro and in vivo, the potential interest of an Aerogel-based formula, in concealing a naturally shiny facial skin. In vitro, various formulae and ingredients were applied as a thin film onto contrast plates and studied through measuring the shine induced following pump spraying of a mixture of oleic acid and mineral water as a sebum/sweat mix model. In such a test, an Aerogel ingredient led to very positive results. In vivo, two different formulae with various concentrations of Aerogel were randomly tested on half side of the face vs. bare side of Chinese women, under some provocative environmental conditions, known to enhance facial shine. These conditions comprised a normal activity under a hot and highly humid summer time followed -or not- by a hamam session. Both studies included comparative evaluations using a half-face procedure (treated/untreated or vehicle. In the first case, evaluations were quantitatively carried out whereas the second one was based on a quantitative self-evaluations from standardized full-face photographs RESULTS: In vitro, the tested Aerogel, incorporated at 1% or 2% concentration in a common O/W cosmetic emulsion, shows an immediate light scattering effect, thereby masking shine. Such effect appears of much higher amplitude than that of two other tested particulate ingredients (Talc and Perlite). A noticeable remanence of anti-shine effect was confirmed in vivo in extreme conditions. The latter was self-perceived by all participants in the second study. This results is likely related to the super hydrophobic behavior of the Aerogel. As cosmetic ingredient, this new Aerogel appears as a highly promising ingredient for concealing the facial skin shine, a source of complaint from many consumers living in hot and humid regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. In vivo determination of the diclofenac skin reservoir: comparison between passive, occlusive, and iontophoretic application

    Directory of Open Access Journals (Sweden)

    Clijsen R

    2015-02-01

    Full Text Available Ron Clijsen,1,2 Jean Pierre Baeyens,2 André Odilon Barel,2 Peter Clarys2 1Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; 2Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium Aim: There is scarce information concerning the pharmacodynamic behavior of topical substances used in the physiotherapy setting. The aim of the present study was to estimate the formation and emptying of the diclofenac (DF skin reservoir after passive, semiocclusive, and electrically assisted applications of DF.Subjects and methods: Five different groups of healthy volunteers (ntotal=60, 23 male and 37 female, participated in this study. A 1% DF (Voltaren Emulgel formulation (12 mg was applied on the volar forearms on randomized defined circular skin areas of 7 cm2. DF was applied for 20 minutes under three different conditions at the same time. The presence of DF in the skin results in a reduction of the methyl nicotinate (MN response. To estimate the bioavailability of DF in the skin, MN responses at different times following initial DF application (1.5, 6, 24, 32, 48, 72, 96, and 120 hours were analyzed.Results: At 1.5 hours after the initial DF application, a significant decrease in MN response was detected for the occluded and iontophoretic delivery. Passive application resulted in a decrease of the MN response from 6 hours post-DF application. The inhibition remained up to 32 hours post-DF application for the iontophoretic delivery, 48 hours for the occluded application, and 72 hours for the passive delivery. At 96 and 120 hours post-DF application none of the MN responses was inhibited.Conclusion: The formation and emptying of a DF skin reservoir was found to be dependent on the DF-application mode. Penetration-enhanced delivery resulted in a faster emptying of the reservoir. Keywords: transdermal drug delivery, passive diffusion, occlusion

  20. Skin color analysis using a spectrophotometer in Asians.

    Science.gov (United States)

    Yun, In Sik; Lee, Won Jai; Rah, Dong Kyun; Kim, Yong Oock; Park, Be-young Yun

    2010-08-01

    To objectively describe skin color, the Commission International d'Eclairage (CIE) L*a*b* color coordinates and melanin and erythema indexes are used. However, it was difficult to understand the relationship among these parameters and to convert them into each other. We introduced a new technique to measure L*a*b* color coordinates and the melanin and erythema indexes at the same time. We analyzed the skin color of normal Asians using this method. The skin color of the forehead, cheek, upper inner arm, dorsum of hand, and anterior chest of 148 volunteers was measured using a spectrophotometer. Using a computer analysis program, L*a*b* values and the melanin and erythema indexes were presented at the same time. The averages of these data were shown according to gender, age, body parts, and correlations among the melanin and erythema indexes and L*a*b* color coordinates, and then they were analyzed. The averages of the melanin and erythema indexes of 148 participants were 1.10 +/- 0.29 and 1.29 +/- 0.38, respectively. The averages of the L*, a*, and b* values were 64.15 +/- 4.86, 8.96 +/- 2.65, and 18.34 +/- 2.39, respectively. The melanin and erythema indexes were higher in males than in females. While the correlation of the melanin index with the L* value was negative, it was positively correlated with the a* and b* values. While the erythema index showed a weak correlation with the b* value, its correlation was negative with the L* value and positive with the a* value. Our method of skin color measurement is useful. We consider the data of this study valuable basic data for the evaluation of colors of pigmental skin diseases and scars in the future.

  1. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    Science.gov (United States)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  2. Development of a multilayered palate substitute in rabbits: a histochemical ex vivo and in vivo analysis.

    Science.gov (United States)

    Martín-Piedra, M A; Alaminos, M; Fernández-Valadés-Gámez, R; España-López, A; Liceras-Liceras, E; Sánchez-Montesinos, I; Martínez-Plaza, A; Sánchez-Quevedo, M C; Fernández-Valadés, R; Garzón, I

    2017-03-01

    Current tissue engineering technology focuses on developing simple tissues, whereas multilayered structures comprising several tissue types have rarely been described. We developed a highly biomimetic multilayered palate substitute with bone and oral mucosa tissues using rabbit cells and biomaterials subjected to nanotechnological techniques based on plastic compression. This novel palate substitute was autologously grafted in vivo, and histological and histochemical analyses were used to evaluate biointegration, cell function, and cell differentiation in the multilayered palate substitute. The three-dimensional structure of the multilayered palate substitute was histologically similar to control tissues, but the ex vivo level of cell and tissue differentiation were low as determined by the absence of epithelial differentiation although cytokeratins 4 and 13 were expressed. In vivo grafting was associated with greater cell differentiation, epithelial stratification, and maturation, but the expression of cytokeratins 4, 13, 5, and 19 at did not reach control tissue levels. Histochemical analysis of the oral mucosa stroma and bone detected weak signals for proteoglycans, elastic and collagen fibers, mineralization deposits and osteocalcin in the multilayered palate substitute cultured ex vivo. However, in vivo grafting was able to induce cell and tissue differentiation, although the expression levels of these components were always significantly lower than those found in controls, except for collagen in the bone layer. These results suggest that generation of a full-thickness multilayered palate substitute is achievable and that tissues become partially differentiated upon in vivo grafting.

  3. Digital image analysis for diagnosis of skin tumors.

    Science.gov (United States)

    Blum, Andreas; Zalaudek, Iris; Argenziano, Giuseppe

    2008-03-01

    Between 1987 and 2007, different groups developed digital image analysis systems for the diagnosis of benign and malignant skin tumors. As the result of significant differences in the technical devices, the number, the nature and benign/malignant ratio of included skin tumors, different variables and statistical methods any comparison of these different systems and their results is difficult. For the use and comparison of the diagnostic performance of different digital image analysis systems in the future, some principle basic conditions are required: All used systems should have a standardized recording system and calibration. First, melanocytic and nonmelanocytic lesions should be included for the development of the diagnostic algorithms. Critical analyses of the results should answer the question if in future only melanocytic lesions should be analyzed or all pigmented and nonpigmented lesions. This will also lead to the answer if only dermatologists or all specialities of medical doctors will use such a system. All artifacts (eg, hairs, air bubbles) should be removed. The number of variables should be chosen according to the number of included melanomas. A high number of benign skin lesions should be included. Of all lesions only 10% or better less should be invasive melanomas. Each system should be developed by a training-set and controlled by an independent test-set. Each system should be controlled by the user with the final decision and responsibility and tested by independent users without any conflict of financial interest.

  4. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.

    Science.gov (United States)

    Parra, Alexander; Clares, Beatriz; Rosselló, Ana; Garduño-Ramírez, María L; Abrego, Guadalupe; García, María L; Calpena, Ana C

    2016-03-30

    The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Skin injury model classification based on shape vector analysis.

    Science.gov (United States)

    Röhrich, Emil; Thali, Michael; Schweitzer, Wolf

    2012-11-06

    Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Skin injury surface characteristics are simulated with plasticine. Six injury classes - abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0 for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the data at hand, as

  6. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography

    Science.gov (United States)

    Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip

    2018-02-01

    We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.

  7. In vitro and in vivo assessment of the effect of Laurus novocanariensis oil and essential oil in human skin.

    Science.gov (United States)

    Viciolle, E; Castilho, P; Rosado, C

    2012-12-01

    Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation. © 2012 Society of Cosmetic Scientists and the

  8. Spectroscopic analysis of skin intrinsic signals for multiphoton microscopy

    Science.gov (United States)

    Pena, Ana-Maria; Strupler, Mathias; Boulesteix, Thierry; Senni, Karim; Godeau, Gaston; Beaurepaire, Emmanuel; Schanne-Klein, Marie-Claire

    2006-02-01

    We recorded multiphoton images of human skin biopsies using endogenous sources of nonlinear optical signals. We detected simultaneously two-photon excited fluorescence (2PEF) from intrinsic fluorophores and second harmonic generation (SHG) from collagen. We observed SHG from fibrillar collagens in the dermis, whereas no SHG was detectable from the non fibrillar type IV collagen in the basal laminae. We compared these distinct behaviours of collagens I and IV in SHG microscopy to polarization-resolved surface SHG experiments on thin films of collagens I and IV molecules. We observed similar signals for both types of molecular films, except for the chiroptical contributions which are present only for collagen I and enhance the signal typically by a factor of 2. We concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues. In order to elucidate the origin of the endogenous fluorescence signals, we recorded 2PEF spectra at various positions in the skin biopsies, and compared these data to in vitro spectroscopic analysis. In particular, we studied the keratin fluorescence and determined its 2PEF action cross section. We observed a good agreement between 2PEF spectra recorded in the keratinized upper layers of the epidermis and in a solution of purified keratin. Finally, to illustrate the capabilities of this technique, we recorded 2PEF/SHG images of skin biopsies obtained from patients of various ages.

  9. Videocapillaroscopy in postburn scars: in vivo analysis of the microcirculation.

    Science.gov (United States)

    Gangemi, Ezio Nicola; Carnino, Riccardo; Stella, Maurizio

    2010-09-01

    The aim of the study was the evaluation in vivo of the differences between the microcirculatory characteristics of the postburn scar and the healthy skin. Twelve patients with postburn scars were included in the study, evaluating fifteen scar areas and twelve healthy skin areas by means of contact optical probe videocapillaroscopy. The examined areas for each patient were the right and the left upper limb. Capillary density, length and diameter, together with capillary distribution pattern (punctiform, reticular, directional) and the presence of microhaemorrhages and neoangiogenesis were studied. The results were obtained by two different researchers using the capillaroscope's software. Capillary loop diameter and length, capillary distribution pattern and presence of neoangiogenesis were found to be significantly increased in postburn scars compared with controls. There were also significant differences between hypertrophic tissue in the active phase and the one in the remission phase for capillary diameter and presence of neoangiogenesis. Videocapillaroscopy showed "in vivo" a change in local microcirculation architecture using a microscope. Patients with hypertrophic burn scars showed a variety of microcirculatory changes, often clustered in a characteristic pattern of abnormally oriented, dilated capillaries and neoangiogenetic phenomena. This methodology is highly likely to be of value in the assessment and prognostication of burn outcome. 2010 Elsevier Ltd and ISBI. All rights reserved.

  10. Analysis on unevenness of skin color using the melanin and hemoglobin components separated by independent component analysis of skin color image

    Science.gov (United States)

    Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko

    2011-03-01

    Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.

  11. A comparison of levocetirizine and desloratadine in the histamine-induced wheal and flare response in human skin in vivo.

    Science.gov (United States)

    Popov, T A; Dumitrascu, D; Bachvarova, A; Bocsan, C; Dimitrov, V; Church, M K

    2006-06-01

    The histamine-induced wheal and flare response was used to compare quantitatively the antihistaminic potency of levocetirizine and desloratadine. In this double-blind, placebo-controlled crossover study, 24 healthy male non-atopic volunteers received weekly single doses of 1.25, 2.5 or 5 mg levocetirizine, 2.5, 5 or 10 mg desloratadine, or placebo. Four hours after dosing, histamine (100 mg/ml) skin prick tests were performed on the volar surface of both forearms. The diameters of the wheals and flares were measured 10 minutes later. Sedation was evaluated using a visual analogue scale and a motricity test. The effects of individual drug doses were compared using Student's t-test for paired data and the overall effects of the two drugs by ANOVA. All doses of levocetirizine significantly (P wheals and flares in a dose-related manner. Only the 10 mg dose of desloratadine achieved significant inhibition of response. ANOVA showed levocetirizine to be significantly (P wheal and flare responses to histamine in human skin in vivo, with 1.25 mg levocetirizine being more effective than 10 mg desloratadine.

  12. An unsupervised machine learning method for delineating stratum corneum in reflectance confocal microscopy stacks of human skin in vivo

    Science.gov (United States)

    Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind

    2016-02-01

    Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.

  13. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    Science.gov (United States)

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?.

    Science.gov (United States)

    Filipović, Mila; Gledović, Ana; Lukić, Milica; Tasić-Kostov, Marija; Isailović, Tanja; Pantelić, Ivana; Vuleta, Gordana; Savić, Snežana

    2016-11-01

    Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. With the employment of noninvasive skin biophysical measurements, skin hydration (EC), transepi-dermal water loss (TEWL), erythema index (EI) and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study) on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  15. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?

    Directory of Open Access Journals (Sweden)

    Filipović Mila

    2016-01-01

    Full Text Available Background/Aim. Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. Methods. With the employment of noninvasive skin biophysical measurements, skin hydration (EC, transepi-dermal water loss (TEWL, erythema index (EI and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. Results. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Conclusion. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  16. In vivo photoacoustic monitoring of photosensitizer in skin: application to dosimetry for antibacterial photodynamic treatment

    Science.gov (United States)

    Hirao, Akihiro; Sato, Shunichi; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru

    2009-02-01

    To obtain efficient antibacterial photodynamic effect in traumatic injuries such as burns, depth-resolved dosimetry of photosensitizer is required. In this study, we performed dual-wavelength photoacoustic (PA) measurement for rat burned skins injected with a photosensitizer. As a photosensitizer, methylene blue (MB) or porfimer sodium was injected into the subcutaneous tissue in rats with deep dermal burn. The wound was irradiated with red (665 nm or 630 nm) pulsed light to excite photosensitizers and green (532 nm) pulsed light to excite blood in the tissue; the latter signal was used to eliminate blood-associated component involved in the former signal. Acoustic attenuation was also compensated from the photosensitizer-associated PA signals. These signal processing was effective to obtain high-contrast image of a photosensitizer in the tissue. Behaviors of MB and porfimer sodium in the tissue were compared.

  17. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo.

    Science.gov (United States)

    Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching

    2007-01-01

    The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.

  18. In vivo photodynamic inactivation of Psuedomonas aeruginosa in burned skin in rats

    Science.gov (United States)

    Hirao, Akihiro; Sato, Shunichi; Terakawa, Mitsuhiro; Saitoh, Daizoh; Shinomiya, Nariyoshi; Ashida, Hiroshi; Obara, Minoru

    2010-02-01

    Control of infection in wounds is critically important to avoid transition to sepsis; however, recent rise of drug-resistant bacteria makes it difficult. Thus, antimicrobial photodynamic therapy (APDT) has recently received considerable attention. In this study, we examined methylene blue (MB)-mediated photodynamic inactivation of Psuedomonas aeruginosa in rat burned skin. Two days after infection, the wound surface was contacted with a MB solution at different concentrations, and thereafter the wound was irradiated with cw 665-nm light at a constant power density of 250 mW/cm2 for different time durations. We obtained a two orders of magnitude decrease in the number of bacteria by PDT with a 2-h contact of 0.5-mM MB solution and a illumination of 480 J/cm2, demonstrating the efficacy of PDT against infection with Ps. aeruginosa in burns.

  19. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo.

    Science.gov (United States)

    Pershing, Lynn K; Reilly, Christopher A; Corlett, Judy L; Crouch, Dennis J

    2004-10-01

    While the physiologic and molecular effects of capsaicinoids have been extensively studied in various model systems by a variety of administration routes, little is known about the uptake and elimination kinetic profiles in human skin following topical exposure. The present study evaluated the uptake and elimination kinetics of capsaicinoids in human stratum corneum following a single topical exposure to 3% solutions containing 55% capsaicin, 35% dihydrocapsaicin, and 10% other analogues prepared in three vehicles: mineral oil (MO), propylene glycol (PG), and isopropyl alcohol (IPA). Capsaicinoid solutions were evaluated simultaneously in a random application pattern on the volar forearms of 12 subjects using a small, single 150-microg dose. Capsaicin and dihydrocapsaicin were recovered from human skin using commercial adhesive discs to harvest stratum corneum from treated sites. Capsaicinoids were extracted from the stratum corneum-adhesive discs and quantified by liquid chromatography/mass spectroscopy (LC/MS). Both capsaicinoids were detected in stratum corneum 1 min after application with all vehicles and achieved a pseudo-steady state shortly thereafter. IPA delivered three times greater capsaicin and dihydrocapsaicin into the human stratum corneum than PG or MO at all time points investigated. The Cmax of capsaicin in IPA, PG, and MO was 16.1, 6.2, and 6.5 microg, respectively. The dihydrocapsaicin content was 60% of capsaicin with all vehicles. The estimated T(half) of capsaicin and dihydrocapsaicin in the three vehicles was similar (24 h). Thus, maximal cutaneous capsaicinoid concentrations were achieved quickly in the human stratum corneum and were concentration and vehicle dependent. In contrast, capsaicinoid half-life was long and vehicle independent.

  20. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 Tesla.

    Science.gov (United States)

    Laistler, Elmar; Poirier-Quinot, Marie; Lambert, Simon A; Dubuisson, Rose-Marie; Girard, Olivier M; Moser, Ewald; Darrasse, Luc; Ginefri, Jean-Christophe

    2015-02-01

    To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. In vivo skin images with isotropic 80 μm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting. © 2013 Wiley Periodicals, Inc.

  1. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish

    Science.gov (United States)

    Zhang, Jing-Hui; Niu, Aping; Li, Jing; Fu, Jian-Wei; Xu, Qun; Pei, De-Sheng

    2016-11-01

    Carbon quantum dots (CDs) were widely investigated because of their tunable fluorescence properties and low toxicity. However, so far there have been no reports on in vivo functional studies of hair and skin derived CDs. Here, hair derived CDs (HCDs) and skin derived CDs (SCDs) were produced by using human hair and pig skin as precursors. The quantum yields (QYs) of HCDs and SCDs were quite high, compared to citric acid derived CDs (CCDs). HCDs and SCDs possess optimal photostability, hypotoxicity and biocompatibility in zebrafish, indicating that HCDs and SCDs possess the capacity of being used as fluorescence probes for in vivo biological imaging. The long-time observation for fluorescence alternation of CDs in zebrafish and the quenching assay of CDs by ATP, NADH and Fe3+ ions demonstrated that the decaying process of CDs in vivo might be induced by the synergistic effect of the metabolism process. All results indicated that large batches and high QYs of CDs can be acquired by employing natural and nontoxic hair and skin as precursors. To our knowledge, this is the first time to report SCDs, in vivo comparative studies of HCDs, SCDs and CCDs as bioprobes, and explore their mechanism of photostability in zebrafish.

  2. The application of a compact multispectral imaging system with integrated excitation source to in vivo monitoring of fluorescence during topical photodynamic therapy of superficial skin cancers.

    Science.gov (United States)

    Hewett, J; Nadeau, V; Ferguson, J; Moseley, H; Ibbotson, S; Allen, J W; Sibbett, W; Padgett, M

    2001-03-01

    A novel, compact and low-cost multispectral fluorescence imaging system with an integrated excitation light source is described. Data are presented demonstrating the application of this method to in vivo monitoring of fluorescence before, during and after topical 5-aminolevulinic acid photodynamic therapy of superficial skin cancers. The excitation source comprised a fluorescent tube with the phosphor selected to emit broadband violet light centered at 394 nm. The camera system simultaneously captured spectrally specific images of the fluorescence of the photosensitizer, protoporphyrin IX, the illumination profile and the skin autofluorescence. Real-time processing enabled images to be manipulated to create a composite image of high contrast. The application and validation of this method will allow further detailed studies of the characteristics and time-course of protoporphyrin IX fluorescence, during topical photodynamic therapy in human skin in vivo.

  3. Influence of age and sun exposure on the biophysical properties of the human skin: an in vivo study.

    Science.gov (United States)

    Adhoute, H; de Rigal, J; Marchand, J P; Privat, Y; Leveque, J L

    1992-06-01

    The physical properties of the skin were measured by using noninvasive methods on 72 people displaying various levels of solar elastosis on the neck. The physical parameters measured were the skin extensibility, the elastic recovery, the skin colour, the skin thickness and the electrical conductance. The correlation between the above parameters, the clinical grades of elastosis and the chronological age of each subject were studied using two different statistical approaches. They both showed that elastotic skin is less elastic, dryer, darker, more erythematous and less yellowish than the nonexposed skin. The similarities and differences between the properties of elastotic skin and purely chronologically aged skin are discussed.

  4. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  5. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Science.gov (United States)

    Thompson, Benjamin C; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  6. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    Science.gov (United States)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  7. In vivo skin fluorescence imaging in young Caucasian adults with early malignant melanomas

    Directory of Open Access Journals (Sweden)

    Piérard GE

    2014-08-01

    Full Text Available Gérald E Piérard,1 Trinh Hermanns-Lê,2 Sébastien L Piérard,3 Lucas Dewalque,4 Corinne Charlier,4 Claudine Piérard-Franchimont,2 Philippe Delvenne2 1Laboratory of Skin Bioengineering and Imaging (LABIC, Department of Clinical Sciences, Liège University, 2Department of Dermatopathology, Unilab Lg, University Hospital of Liège, 3INTELSIG Laboratory, Montefiore Institute, University of Liège, 4Department of Clinical, Forensic and Environmental Toxicology, University Hospital of Liège, Liège, Belgium Background: Human cutaneous malignant melanoma (CMM is an aggressive cancer showing a dramatic worldwide increase in incidence over the past few decades. The most prominent relative epidemiological increase has been disclosed in young women. The aim of the study was to assess the effects of chronic sun exposures in order to rate the extend of melanocytic stimulations in the vicinity of CMM. Methods: The study was designed to evaluate the melanin distribution and density using ultraviolet light illumination. The present study was performed on surgical excision specimens of thin CMM lesion removed from the upper limbs of 55 Caucasian adults (37 women and 18 men. Two control groups comprised 23 men and 21 women of similar ages who had medium-size congenital melanocytic nevi, also present on the upper limbs. The peritumoral skin was scrutinized using a Visioscan® VC98 device, revealing the faint mosaic melanoderma (FMM pattern that grossly indicates early signs of chronic photodamage in epidermal melanin units. Results: The median extent of relative FMM was significantly higher in the CMM male group. By contrast, the CMM female group showed a reverse bimodal distribution in FMM size. Only 12/37 (32.5% of the CMM female group had an increased FMM size, whereas 25/37 (67.5% of females with CMM had a global FMM extent in the normal range, relative to the controls. Conclusion: Thin CMM supervening in young women appear unrelated to repeat

  8. Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis

    Directory of Open Access Journals (Sweden)

    Punal M. Arabi

    2016-09-01

    Full Text Available Texture refers to visual patterns or spatial arrangement of pixels. Texture analysis is one of the features in image processing that is used to analyze the images captured by the imaging devices on human skin. Skin texture analysis plays a vital role in assessing the skin health and in the diagnosis of skin disorders such as allergic skin disorders, viral skin disease, bacterial skin diseases and fungal skin diseases. Texture analysis is carried out by one of the methods namely, structural, statistical, model based, transform based techniques. Statistical texture analysis depends mainly on feature extraction which may be done using GLCM (grey level co-occurrence matrix and WDM (wavelength division multiplexing techniques. The extracted features are used to classify texture. In this paper a study of skin texture analysis is carried out by comparing GLCM features and pixel intensity matrix parameters by experimenting with cheek and dorsal skin samples. The results obtained show that pixel intensity matrix parameters are more helpful than GLCM for analyzing the texture of skin.

  9. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    Science.gov (United States)

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2017-07-21

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  10. Video-mosaicking of in vivo reflectance confocal microscopy images for noninvasive examination of skin lesion (Conference Presentation)

    Science.gov (United States)

    Kose, Kivanc; Gou, Mengran; Yelamos, Oriol; Cordova, Miguel A.; Rossi, Anthony; Nehal, Kishwer S.; Camps, Octavia I.; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind

    2017-02-01

    In this report we describe a computer vision based pipeline to convert in-vivo reflectance confocal microscopy (RCM) videos collected with a handheld system into large field of view (FOV) mosaics. For many applications such as imaging of hard to access lesions, intraoperative assessment of MOHS margins, or delineation of lesion margins beyond clinical borders, raster scan based mosaicing techniques have clinically significant limitations. In such cases, clinicians often capture RCM videos by freely moving a handheld microscope over the area of interest, but the resulting videos lose large-scale spatial relationships. Videomosaicking is a standard computational imaging technique to register, and stitch together consecutive frames of videos into large FOV high resolution mosaics. However, mosaicing RCM videos collected in-vivo has unique challenges: (i) tissue may deform or warp due to physical contact with the microscope objective lens, (ii) discontinuities or "jumps" between consecutive images and motion blur artifacts may occur, due to manual operation of the microscope, and (iii) optical sectioning and resolution may vary between consecutive images due to scattering and aberrations induced by changes in imaging depth and tissue morphology. We addressed these challenges by adapting or developing new algorithmic methods for videomosaicking, specifically by modeling non-rigid deformations, followed by automatically detecting discontinuities (cut locations) and, finally, applying a data-driven image stitching approach that fully preserves resolution and tissue morphologic detail without imposing arbitrary pre-defined boundaries. We will present example mosaics obtained by clinical imaging of both melanoma and non-melanoma skin cancers. The ability to combine freehand mosaicing for handheld microscopes with preserved cellular resolution will have high impact application in diverse clinical settings, including low-resource healthcare systems.

  11. Non-invasive in vivo characterization of skin wound healing using label-free multiphoton microscopy (Conference Presentation)

    Science.gov (United States)

    Jones, Jake D.; Majid, Fariah; Ramser, Hallie; Quinn, Kyle P.

    2017-02-01

    Non-healing ulcerative wounds, such as diabetic foot ulcers, are challenging to diagnose and treat due to their numerous possible etiologies and the variable efficacy of advanced wound care products. Thus, there is a critical need to develop new quantitative biomarkers and diagnostic technologies that are sensitive to wound status in order to guide care. The objective of this study was to evaluate the utility of label-free multiphoton microscopy for characterizing wound healing dynamics in vivo and identifying potential differences in diabetic wounds. We isolated and measured an optical redox ratio of FAD/(NADH+FAD) autofluorescence to provide three-dimensional maps of local cellular metabolism. Using a mouse model of wound healing, in vivo imaging at the wound edge identified a significant decrease in the optical redox ratio of the epidermis (p≤0.0103) between Days 3 through 14 compared to Day 1. This decrease in redox ratio coincided with a decrease in NADH fluorescence lifetime and thickening of the epithelium, collectively suggesting a sensitivity to keratinocyte hyperproliferation. In contrast to normal wounds, we have found that keratinocytes from diabetic wounds remain in a proliferative state at later time points with a lower redox ratio at the wound edge. Microstructural organization and composition was also measured from second harmonic generation imaging of collagen and revealed differences between diabetic and non-diabetic wounds. Our work demonstrates label-free multiphoton microscopy offers potential to provide non-invasive structural and functional biomarkers associated with different stages of skin wound healing, which may be used to detect delayed healing and guide treatment.

  12. In vivo assessment of cytological changes by means of reflectance confocal microscopy - demonstration of the effect of topical vitamin E on skin irritation caused by sodium lauryl sulfate.

    Science.gov (United States)

    Casari, Alice; Farnetani, Francesca; De Pace, Barbara; Losi, Amanda; Pittet, Jean-Christophe; Pellacani, Giovanni; Longo, Caterina

    2017-03-01

    Irritant contact dermatitis is caused by skin barrier damage. Vitamin E is an antioxidant that is commonly used in cosmetics to prevent photo-damage. To show the usefulness of reflectance confocal microscopy in the assessment of irritant skin damage caused by sodium lauryl sulfate (SLS) and of the protective action of vitamin E applied prior to skin irritation. Ten healthy volunteers were enrolled. Irritation was induced by the application of a patch test containing SLS 5% aq. for 24 h. Three sites were compared: one site on which a product with vitamin E was applied before SLS treatment, one site on which the same product was applied after SLS treatment, and one control site (SLS only). Each site was evaluated with reflectance confocal microscopy, providing in vivo tissue images at nearly histological resolution. We also performed a computerized analysis of the VivaStack® images. Reflectance confocal microscopy is able to identify signs of skin irritation and the preventive effect of vitamin E application. Reflectance confocal microscopy is useful in the objective assessment of irritative skin damage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments--a first quantification in vivo using a mouse model.

    Science.gov (United States)

    Engel, Eva; Vasold, Rudolf; Santarelli, Francesco; Maisch, Tim; Gopee, Neera V; Howard, Paul C; Landthaler, Michael; Bäumler, Wolfgang

    2010-01-01

    Millions of people are tattooed with inks that contain azo pigments. The pigments contained in tattoo inks are manufactured for other uses with no established history of safe use in humans and are injected into the skin at high densities (2.5 mg/cm(2)). Tattoo pigments disseminate after tattooing throughout the human body and although some may photodecompose at the injection site by solar or laser light exposure, the extent of transport or photodecomposition under in vivo conditions remains currently unknown. We investigated the transport and photodecomposition of the widely used tattoo Pigment Red 22 (PR 22) following tattooing into SKH-1 mice. The pigment was extracted quantitatively at different times after tattooing. One day after tattooing, the pigment concentration was 186 microg/cm(2) skin. After 42 days, the amount of PR 22 in the skin has decreased by about 32% of the initial value. Exposure of the tattooed skin, 42 days after tattooing, to laser light reduced the amount of PR 22 by about 51% as compared to skin not exposed to laser light. A part of this reduction is as a result of photodecomposition of PR 22 as shown by the detection of corresponding hazardous aromatic amines. Irradiation with solar radiation simulator for 32 days caused a pigment reduction of about 60% and we again assume pigment decomposition in the skin. This study is the first quantitative estimate of the amount of tattoo pigments transported from the skin into the body or decomposed by solar or laser radiation.

  14. Spectral Remittance and Transmittance of Visible and Infrared-A Radiation in Human Skin-Comparison Between in vivo Measurements and Model Calculations.

    Science.gov (United States)

    Piazena, Helmut; Meffert, Hans; Uebelhack, Ralf

    2017-05-04

    The aim of the study was to assess the interindividual variability of spectral remittance and spectral transmittance of visible and infrared-A radiations interacting with human skin and subcutaneous tissue, and direct measurements were taken in vivo using healthy persons of different skin color types. Up to wavelengths of about 900 nm, both spectral remittance and spectral transmittance depended significantly on the individual contents of melanin and hemoglobin in the skin, whereas the contents of water and lipids mainly determined spectral slopes of both characteristics of interaction for wavelengths above about 900 nm. In vivo measured data of spectral transmittance showed approximately similar decreases with tissue thickness between about 900 nm and 1100 nm as compared with model data which were calculated using spectral absorption and scattering coefficients of skin samples in vitro published by different authors. In addition, in vivo measured data and in vitro-based model calculations of spectral remittance were approximately comparable in this wavelength range. In contrast, systematic but individually varying differences between both methods were found for both spectral remittance and spectral transmittance at wavelengths below about 900 nm, where interaction of radiation was significantly affected by both melanin and hemoglobin. © 2017 The American Society of Photobiology.

  15. Ion microbeam analysis. Application to the study of the skin barrier and its nano-toxicology; Analyse par microfaisceau d'ions. Application a l'etude de la fonction barriere cutanee et a la nanotoxicologie in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.

    2009-12-15

    This work is dedicated to the use of ion microbeam irradiation to the study of a complex biological tissue like skin. Up to now, it has been very difficult to detect and track metallic oxides and manufactured nano-particles in biological tissues, most particularly in skin. Thus, it is essential to precise the mechanisms involved in skin barrier function processes face to exogenous agents like nano-particles and to characterize them in biological models in vitro/in vivo. During my work, I have had the opportunity to combine quantitative methods of analysis with high resolution imagery techniques (confocal microscopy, transmission electron microscopy and ion beam analysis) in order to characterize: (i) the skin barrier function of an ex vivo pig ear skin model understanding the ion homeostasis behavior face to different chemical or physical stresses; (ii) the impact on viability, accumulation and intracellular distribution of nano-particles (Titanium Oxides) naked or functionalized with fluorescent dyes (FITC, Rhodamine)

  16. Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

    Directory of Open Access Journals (Sweden)

    McNeilly Tom N

    2010-11-01

    Full Text Available Abstract Background Infestation of ovine skin with the ectoparasitic mite Psoroptes ovis results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the in vivo skin response to infestation with P. ovis to gain a clearer understanding of the mechanisms and signalling pathways involved. Results Infestation with P. ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (IL1A, IL1B, IL6, IL8 and TNF and factors involved in immune cell activation and recruitment (SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 and CXCL2. The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response. Conclusions This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to P. ovis, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to P

  17. Phylogenetic Analysis of Apple scar skin viroid Isolates in Korea

    Directory of Open Access Journals (Sweden)

    Kang Hee Cho

    2015-12-01

    Full Text Available To identify genome sequences of Apple scar skin viroid (ASSVd isolates in Korea, the field survey was performed from ‘Hongro’ apple orchards located in eight sites in South Korea (Bongwha, Cheongsong, Dangjin, Gimchoen, Muju, Mungyeong, Suwon, and Yeongwol. ASSVd was detected by RT-PCR and PCR fragments were cloned into cloning vector. Full-length viral genomes of eight ASSVd isolates were sequenced and compared with 21 isolates reported previously from Korea, India, China, Japan and Greece. Eight isolates in this study showed 92.2-99.7% nucleotide sequence identities with those reported previously. Phylogenetic analysis showed that seven isolates reported in this study belong to the same group distinct from other groups.

  18. Material Characterization for the Analysis of Skin/Stiffener Separation

    Science.gov (United States)

    Davila, Carlos G.; Leone, Frank A.; Song, Kyongchan; Ratcliffe, James G.; Rose, Cheryl A.

    2017-01-01

    Test results show that separation failure in co-cured skin/stiffener interfaces is characterized by dense networks of interacting cracks and crack path migrations that are not present in standard characterization tests for delamination. These crack networks result in measurable large-scale and sub-ply-scale R curve toughening mechanisms, such as fiber bridging, crack migration, and crack delving. Consequently, a number of unknown issues exist regarding the level of analysis detail that is required for sufficient predictive fidelity. The objective of the present paper is to examine some of the difficulties associated with modeling separation failure in stiffened composite structures. A procedure to characterize the interfacial material properties is proposed and the use of simplified models based on empirical interface properties is evaluated.

  19. Diagnosing basal cell carcinoma in vivo by near-infrared Raman spectroscopy: a Principal Components Analysis discrimination algorithm

    Science.gov (United States)

    Silveira, Landulfo, Jr.; Silveira, Fabrício L.; Bodanese, Benito; Pacheco, Marcos Tadeu T.; Zângaro, Renato A.

    2012-02-01

    This work demonstrated the discrimination among basal cell carcinoma (BCC) and normal human skin in vivo using near-infrared Raman spectroscopy. Spectra were obtained in the suspected lesion prior resectional surgery. After tissue withdrawn, biopsy fragments were submitted to histopathology. Spectra were also obtained in the adjacent, clinically normal skin. Raman spectra were measured using a Raman spectrometer (830 nm) with a fiber Raman probe. By comparing the mean spectra of BCC with the normal skin, it has been found important differences in the 800-1000 cm-1 and 1250-1350 cm-1 (vibrations of C-C and amide III, respectively, from lipids and proteins). A discrimination algorithm based on Principal Components Analysis and Mahalanobis distance (PCA/MD) could discriminate the spectra of both tissues with high sensitivity and specificity.

  20. In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Cestelli Guidi, M.; Mirri, C.; Marcelli, A. [Laboratori Nazionali di Frascati - INFN, Frascati, Rome (Italy); Fratini, E.; Amendola, R. [ENEA, UT BIORAD-RAB, Rome (Italy); Licursi, V.; Negri, R. [Universita La Sapienza, Dip. Biologia e Biotecnologie ' ' Charles Darwin' ' , Rome (Italy)

    2012-09-15

    This paper discusses gene expression changes in the skin of mice treated by monoenergetic 14 MeV neutron irradiation and the possibility of monitoring the resultant lipid depletion (cross-validated by functional genomic analysis) as a marker of radiation exposure by high-resolution FT-IR (Fourier transform infrared) imaging spectroscopy. The irradiation was performed at the ENEA Frascati Neutron Generator (FNG), which is specifically dedicated to biological samples. FNG is a linear electrostatic accelerator that produces up to 1.0 x 10{sup 11} 14-MeV neutrons per second via the D-T nuclear reaction. The functional genomic approach was applied to four animals for each experimental condition (unirradiated, 0.2 Gy irradiation, or 1 Gy irradiation) 6 hours or 24 hours after exposure. Coregulation of a subclass of keratin and keratin-associated protein genes that are physically clustered in the mouse genome and functionally related to skin and hair follicle proliferation and differentiation was observed. Most of these genes are transiently upregulated at 6 h after the delivery of the lower dose delivered, and drastically downregulated at 24 h after the delivery of the dose of 1 Gy. In contrast, the gene coding for the leptin protein was consistently upregulated upon irradiation with both doses. Leptin is a key protein that regulates lipid accumulation in tissues, and its absence provokes obesity. The tissue analysis was performed by monitoring the accumulation and the distribution of skin lipids using FT-IR imaging spectroscopy. The overall picture indicates the differential modulation of key genes during epidermis homeostasis that leads to the activation of a self-renewal process at low doses of irradiation. (orig.)

  1. Oligonucleotides suppress IL-8 in skin keratinocytes in vitro and offer anti-inflammatory properties in vivo.

    Science.gov (United States)

    Dorn, Annette; Ludwig, Ralf Joachim; Bock, Andreas; Thaci, Diamant; Hardt, Katja; Bereiter-Hahn, Jurgen; Kaufmann, Roland; Bernd, August; Kippenberger, Stefan

    2007-04-01

    DNA codes for genetic information. Furthermore, recent findings suggest that DNA offers additional function, particularly in the recognition of microorganisms. In this study, we investigated two classes of oligodeoxynucleotides (ODN) in skin keratinocytes; namely, an ODN comprising two cytidine-phosphate-guanosine (CpG) motifs (CpG-1-phosphorothioate (PTO)) and a poly-cytidine (Non-CpG-5-PTO) as control. Both fluorescence-tagged ODN were rapidly taken up by cells and accumulated already after 5 minutes in perinuclear compartments. In order to test whether ODN convey immunological effects in keratinocytes, secretion of IL-8 was measured. Interestingly, both CpG-1-PTO and Non-CpG-5-PTO suppressed basal and tumor necrosis factor alpha-induced IL-8 levels measured in cell culture supernatants. Experiments using deletion mutant revealed a critical length of approximately 16 nucleotides conveying IL-8 suppression. Studies regarding the ODN backbone offered that PTO bondings are critical for significant IL-8 suppression. In order to substantiate the anti-inflammatory response, a contact hypersensitivity mouse model was utilized. Topical application of Non-CpG-5-PTO-containing ointments reduced ear thickness in sensitized mice. Taken together, these findings suggest an anti-inflammatory effect of ODN in epithelial cells in vitro and in vivo, indicating that DNA molecules offer distinct biological activities restricted to the physiological compartment applied. This effect seems to be independent from Toll-like receptor 9.

  2. White-light oblique-incidence diffuse reflectance spectroscopy for classification of in-vivo pigmented skin lesions

    Science.gov (United States)

    Garcia-Uribe, Alejandro; Smith, Elizabeth B.; Duvic, Madeleine; Wang, Lihong V.

    2007-02-01

    A study of in-vivo classification of pigmented skin lesions using oblique-incidence diffuse reflectance spectroscopy is presented. Spatio-spectral data in the wavelength range from 455 to 765 nm are collected from 111 pigmented lesions including 10 histopathologically diagnosed as melanoma. The first 67 lesions are used for training the classifiers, and 44 lesions are used for testing. The first classifier separates (1) malignant melanoma and severe dysplastic nevi from (2) moderate and mild dysplastic nevi, common nevi, actinic and seborrheic keratoses. The second classifier next distinguishes between (a) moderate and mild dysplastic nevi, common nevi from (b) actinic and seborrheic keratoses. The third classifier further separates (I) moderate and mild dysplastic nevi from (II) common nevi. The first classifier performs with 100% sensitivity and 91% specificity with overall classification rates of 93% and 95 % for the training and testing sets, respectively. The second classifier has classification rates of 95% and 97 % for the training and testing sets, respectively, whereas the third classifier has classification rates of 98% and 94 % for the training and testing sets, respectively.

  3. In vivo efficacy of anuran trypsin inhibitory peptides against staphylococcal skin infection and the impact of peptide cyclization.

    Science.gov (United States)

    Malik, U; Silva, O N; Fensterseifer, I C M; Chan, L Y; Clark, R J; Franco, O L; Daly, N L; Craik, D J

    2015-04-01

    Staphylococcus aureus is a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weak in vitro inhibitory activities against S. aureus, but several had strong antibacterial activities against S. aureus in an in vivo murine wound infection model. pYR, an immunomodulatory peptide from Rana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg(-1). Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Accelerated mice skin acute wound healing in vivo by combined treatment of argon and helium plasma needle.

    Science.gov (United States)

    García-Alcantara, Elizabeth; López-Callejas, Régulo; Morales-Ramírez, Pedro R; Peña-Eguiluz, Rosendo; Fajardo-Muñoz, Raúl; Mercado-Cabrera, Antonio; Barocio, Samuel R; Valencia-Alvarado, Raúl; Rodríguez-Méndez, Benjamín G; Muñoz-Castro, Arturo E; de la Piedad-Beneitez, Anibal; Rojas-Olmedo, Israel A

    2013-04-01

    The efficacy of a direct application of plasma needle to in vivo wound healing was experimentally studied in mice. This kind of plasma has achieved considerable success in blood coagulation and tissue restoration in mice. In the development of the present study, an argon plasma needle was chosen for coagulation purposes, whereas for healing purposes, a helium plasma needle was used. Treatment was applied with a plasma needle produced by argon and helium to a wound induced in laboratory mice. Tissue regeneration was carried out by three argon plasma treatments with 0.5 SLPM flow for 1 min and three treatments of helium with 1.5 SLPM flow. Intervals between each treatment were 5 min and 60 min for argon and helium plasmas, respectively, thus completing a total treatment time of 180 min. Histological sections were performed to corroborate the internal bleeding and tissue regeneration. After three treatments with argon plasma, the blood produced in the wound was coagulated and protein material appeared. By means of treatment with helium plasma, an approach of the wound edges was produced until the conclusion thereof. These results were corroborated histologically. This type of acceleration during the skin wound healing process can be attributed to the formation of reactive species such as NO, which were increased in the helium plasma needle with respect to the argon plasma needle. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  5. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.

    Science.gov (United States)

    Larsson, Marcus; Nilsson, Henrik; Strömberg, Tomas

    2003-01-01

    Methods for local photon path length and optical properties estimation, based on measured and simulated diffuse reflectance within 2 mm from the light source, are proposed and evaluated in vivo on Caucasian human skin. The accuracy of the methods was good (2%-7%) for path length and reduced scattering but poor for absorption estimation. Reduced scattering and absorption were systematically lower in the fingertip than in the forearm skin (633 nm). A maximum intrasite and interindividual variation of approximately 35% in an average photon path length was found. The methodology was applied in laser Doppler flowmetry, where path-length normalization of the estimated perfusion removed the optical property dependency.

  6. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types.

    Directory of Open Access Journals (Sweden)

    Paula Reemann

    Full Text Available Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.

  7. Electrospun Zein/PCL Fibrous Matrices Release Tetracycline in a Controlled Manner, Killing Staphylococcus aureus Both in Biofilms and Ex Vivo on Pig Skin, and are Compatible with Human Skin Cells.

    Science.gov (United States)

    Alhusein, Nour; Blagbrough, Ian S; Beeton, Michael L; Bolhuis, Albert; De Bank, Paul A

    2016-01-01

    To investigate the destruction of clinically-relevant bacteria within biofilms via the sustained release of the antibiotic tetracycline from zein-based electrospun polymeric fibrous matrices and to demonstrate the compatibility of such wound dressing matrices with human skin cells. Zein/PCL triple layered fibrous dressings with entrapped tetracycline were electrospun. The successful entrapment of tetracycline in these dressings was validated. The successful release of bioactive tetracycline, the destruction of preformed biofilms, and the viability of fibroblast (FEK4) cells were investigated. The sustained release of tetracycline from these matrices led to the efficient destruction of preformed biofilms from Staphylococcus aureus MRSA252 in vitro, and of MRSA252 and ATCC 25923 bacteria in an ex vivo pig skin model using 1 × 1 cm square matrices containing tetracycline (30 μg). Human FEK4 cells grew normally in the presence of these matrices. The ability of the zein-based matrices to destroy bacteria within increasingly complex in vitro biofilm models was clearly established. An ex vivo pig skin assay showed that these matrices, with entrapped tetracycline, efficiently kill bacteria and this, combined with their compatibility with a human skin cell line suggest these matrices are well suited for applications in wound healing and infection control.

  8. A novel approach to in vivo mitral valve stress analysis.

    Science.gov (United States)

    Xu, Chun; Brinster, Clay J; Jassar, Arminder S; Vergnat, Mathieu; Eperjesi, Thomas J; Gorman, Robert C; Gorman, Joseph H; Jackson, Benjamin M

    2010-12-01

    Three-dimensional (3-D) echocardiography allows the generation of anatomically correct and time-resolved geometric mitral valve (MV) models. However, as imaged in vivo, the MV assumes its systolic geometric configuration only when loaded. Customarily, finite element analysis (FEA) is used to predict material stress and strain fields rendered by applying a load on an initially unloaded model. Therefore, this study endeavors to provide a framework for the application of in vivo MV geometry and FEA to MV physiology, pathophysiology, and surgical repair. We hypothesize that in vivo MV geometry can be reasonably used as a surrogate for the unloaded valve in computational (FEA) simulations, yielding reasonable and meaningful stress and strain magnitudes and distributions. Three experiments were undertaken to demonstrate that the MV leaflets are relatively nondeformed during systolic loading: 1) leaflet strain in vivo was measured using sonomicrometry in an ovine model, 2) hybrid models of normal human MVs as constructed using transesophageal real-time 3-D echocardiography (rt-3DE) were repeatedly loaded using FEA, and 3) serial rt-3DE images of normal human MVs were used to construct models at end diastole and end isovolumic contraction to detect any deformation during isovolumic contraction. The average linear strain associated with isovolumic contraction was 0.02 ± 0.01, measured in vivo with sonomicrometry. Repeated loading of the hybrid normal human MV demonstrated little change in stress or geometry: peak von Mises stress changed by MV deformed minimally during isovolumic contraction, as measured by the mean absolute difference calculated over the surfaces of both leaflets between serial MV models: 0.53 ± 0.19 mm. FEA modeling of MV models derived from in vivo high-resolution truly 3-D imaging is reasonable and useful for stress prediction in MV pathologies and repairs.

  9. Photobleaching measurements of pigmented and vascular skin lesions: results of a clinical trial

    Science.gov (United States)

    Lihachev, Alexey; Rozniece, Kristine; Lesins, Janis; Spigulis, Janis

    2011-07-01

    The autofluorescence photobleaching intensity dynamics of in vivo skin and skin pathologies under continuous 532 nm laser irradiation have been studied. Overall the 141 human skin malformations were investigated by laser induced skin autofluorescence photobleaching analysis. Details of equipment are described along with some measurement results illustrating potentiality of the technology.

  10. Near-infrared analysis of peanut seed skins for catechins

    Science.gov (United States)

    Peanut skins are a by-product of peanut processing and contain a significant amount of antioxidant compounds. Currently there are not many uses for the skins and they have low market value. Modern consumers are interested in healthy foods and will purchase products fortified with antioxidants. A rap...

  11. Spectroscopic analysis of catechins in peanut seed skins

    Science.gov (United States)

    Peanuts, Arachis hypogaea, are cultivated as a source of edible seed oil and protein. The peanut seed testa or skin that surrounds the seed is typically removed after the shelling process by blanching. Several phenolic compounds such as catechins may be isolated as co-products from peanut seed skins...

  12. In-vivo fluorescence dosimetry of aminolevulinate-based protoporphyrin IX (PpIX) accumulation in human nonmelanoma skin cancers and precancers

    Science.gov (United States)

    Warren, Christine B.; Lohser, Sara; Chang, Sung; Bailin, Philip A.; Maytin, Edward V.

    2009-06-01

    PDT is clinically useful for precancers (actinic keratoses; AK) of the skin, but the optimal duration for 5-ALA application is still controversial. For basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), cure rates remain inferior to surgical excision. Lack of knowledge about regional levels of PpIX levels within target tissues clearly contribute to these suboptimal results. To investigate PpIX levels achievable in human skin neoplasias in-vivo, a clinical study to monitor PpIX accumulation in vivo was performed. PpIX-fluorescence in patients undergoing ALA-PDT for facial AK was monitored via real-time in-vivo fluorescence dosimetry, with measurements q20 min following application of 5-ALA (Levulan Kerastick). PpIX accumulation followed linear kinetics in nearly all cases. The slopes varied widely, and did not correlate with clinical outcome in all patients. Some patients with a low accumulation of PpIX fluorescence had a good response to therapy, whereas others with high PpIX accumulation required repeat treatment (although not necessarily of the same lesion). PpIX accumulation rates did correlate to a certain degree with the overall amount of erythema. We conclude that unknown factors besides PpIX levels must be critical for the response to treatment. To assess the relationship between PpIX levels in various skin cancers, patients undergoing routine Mohs surgery for BCC or SCC were measured by in-vivo dosimetry at 2 h after 5-ALA application. Overall, a progressive increase in PpIX signal during malignant progression was observed, in the following rank order: Normal skin < AK < SCC ~ BCC.

  13. Skin tightening-does it really exist?

    Science.gov (United States)

    Boen, Monica; Vanaman Wilson, Monique J; Fabi, Sabrina

    2017-12-01

    Skin tightening is one of the cornerstones of skin rejuvenation and is defined as the improvement of skin laxity and crepiness of the skin. There are several energy-based devices that can produce significant skin tightening without surgery, both on and off the face. The mechanisms of skin tightening involve collagen denaturation resulting in collagen shrinkage and tissue tightening, and the wound healing response that generates new collagen and elastin. These hypothesized mechanisms of skin contraction leading to clinical skin tightening have been derived from histological, immunohistochemical, and electron microscope analysis, as well as in vitro and in vivo experiments. This review is aimed at evaluating and analyzing the literature on the proposed mechanisms for skin tightening by minimally invasive energy-based technologies. ©2017 Frontline Medical Communications.

  14. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  15. The bedside diagnostic accuracy of a novice reflectance confocal microscopy reader for skin cancer detection in vivo in real-time: understanding challenges and potential pitfalls

    Science.gov (United States)

    Jain, Manu; Pulijal, Sri Varsha; Rajadhyaksha, Milind

    2017-02-01

    Reflectance confocal microscopy (RCM) is a non-invasive device that images skin lesions in vivo at a cellular resolution to guide management of patient care. While previous studies have demonstrated high accuracy of RCM in diagnosing skin cancers, most of these studies were performed by experts as a blinded analysis off-site and does not reflect true clinical scenario. We assessed the diagnostic potential of a novice RCM reader, in clinical settings, at the bedside. Over a period of 15 months (August 2015- November 2016), 168 lesions (from 128 cases) were imaged with RCM to determine BCC and or melanoma in dermoscopically equivocal lesions. To evaluate the learning curve of the novice reader, diagnostic accuracy was evaluated at the end of 15 months, as well as during the first half (8 months) and latter half (seven months) of the study. Histopathological diagnosis was available in 95/168 lesions, including 38 melanocytic lesions (ML: 13 melanomas and 25 nevi) and 57 non-melanocytic lesions (NML: 26 BCCs, 4 SCCs and 27 benign). The remaining 73/168 lesions (43.45%) were not biopsied (received topical treatment, monitoring). On RCM, 22/26 (84.61%) BCCs and 11/13 (84.61%) melanomas were correctly diagnosed. BCC was missed in 3/26 (11.53%) lesions and melanoma in 2/13 (15.38%) lesions; these lesions were diagnosed mostly as superficial BCCs and focal epidermal changes overlying deeply situated melanoma nodule on histopathology, respectively. False positive diagnosis of BCC was obtained in 7/23 (30.4%) lesions and of melanoma in 2/22 (4.5%) lesions; these were diagnosed mostly as benign inflamed keratosis and moderately atypical dysplastic nevus on histopathology, respectively. In 7 lesions BCC or melanoma could not be ruled out. A marked increase in the sensitivity and specificity was noticed between the two halves of the study. An overall high diagnostic accuracy of 80.28% with high sensitivity and specificity of 80.68% and 80.8%, respectively in diagnosing skin

  16. In vitro-in vivo correlations for nicotine transdermal delivery systems evaluated by both in vitro skin permeation (IVPT) and in vivo serum pharmacokinetics under the influence of transient heat application.

    Science.gov (United States)

    Shin, Soo Hyeon; Thomas, Sherin; Raney, Sam G; Ghosh, Priyanka; Hammell, Dana C; El-Kamary, Samer S; Chen, Wilbur H; Billington, M Melissa; Hassan, Hazem E; Stinchcomb, Audra L

    2018-01-28

    The in vitro permeation test (IVPT) has been widely used to characterize the bioavailability (BA) of compounds applied on the skin. In this study, we performed IVPT studies using excised human skin (in vitro) and harmonized in vivo human serum pharmacokinetic (PK) studies to evaluate the potential in vitro-in vivo correlation (IVIVC) of nicotine BA from two, matrix-type, nicotine transdermal delivery systems (TDS). The study designs used for both in vitro and in vivo studies included 1h of transient heat (42±2°C) application during early or late time periods post-dosing. The goal was to evaluate whether any IVIVC observed would be evident even under conditions of heat exposure, in order to investigate further whether IVPT may have the potential to serve as a possible surrogate method to evaluate the in vivo effects of heat on the bioavailability of a drug delivered from a TDS. The study results have demonstrated that the BA of nicotine characterized by the IVPT studies correlated with and was predictive of the in vivo BA of nicotine from the respective TDS, evaluated under the matched study designs and conditions. The comparisons of single parameters such as steady-state concentration, heat-induced increase in partial AUCs and post-treatment residual content of nicotine in TDS from the in vitro and in vivo data sets showed no significant differences (p≥0.05). In addition, a good point-to-point IVIVC (Level A correlation) for the entire study duration was achieved by predicting in vivo concentrations of nicotine using two approaches: Approach I requiring only an in vitro data set and Approach II involving deconvolution and convolution steps. The results of our work suggest that a well designed IVPT study with adequate controls can be a useful tool to evaluate the relative effects of heat on the BA of nicotine from TDS with different formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study.

    Science.gov (United States)

    Khan, Mohammed Ashif; Pandit, Jayamanti; Sultana, Yasmin; Sultana, Sarwat; Ali, Asgar; Aqil, Mohammed; Chauhan, Meenakshi

    2015-01-01

    5-fluorouracil (5-Fu) is an antineoplastic drug, topically used for the treatment of actinic keratosis and nonmelanoma skin cancer. It shows poor percutaneous permeation through the conventionally applicable creams and thus inefficient for the treatment of deep-seated skin cancer. In the present article, transfersomal gel containing 5-Fu was investigated for the treatment of skin cancer. Different formulation of tranfersomes was prepared using Tween-80 and Span-80 as edge activators. The vesicles were characterized for particle size, shape, entrapment efficiency, deformability and in vitro skin permeation. Optimized formulation was incorporated into 1% carbopol 940 gel and evaluated for efficacy in the treatment of skin cancer. 5-Fu-loaded transfersomes (TT-2) has the size of 266.9 ± 2.04 nm with 69.2 ± 0.98% entrapment efficiency and highest deformability index of 27.8 ± 1.08. Formulation TT-2 showed maximum skin deposition (81.3%) and comparable transdermal flux of 21.46 µg/cm(2) h. The TT-2-loaded gel showed better skin penetration and skin deposition of the drug than the marketed formulation. Composition of the transfersomal gel has been proved nonirritant to the skin. We concluded that the developed 5-Fu-loaded transfersomal gel improves the skin absorption of 5-Fu and provide a better treatment for skin cancer.

  18. Gene silencing following siRNA delivery to skin via coated steel microneedles: In vitro and in vivo proof-of-concept.

    Science.gov (United States)

    Chong, Rosalind H E; Gonzalez-Gonzalez, Emilio; Lara, Maria F; Speaker, Tycho J; Contag, Christopher H; Kaspar, Roger L; Coulman, Sion A; Hargest, Rachel; Birchall, James C

    2013-03-28

    The development of siRNA-based gene silencing therapies has significant potential for effectively treating debilitating genetic, hyper-proliferative or malignant skin conditions caused by aberrant gene expression. To be efficacious and widely accepted by physicians and patients, therapeutic siRNAs must access the viable skin layers in a stable and functional form, preferably without painful administration. In this study we explore the use of minimally-invasive steel microneedle devices to effectively deliver siRNA into skin. A simple, yet precise microneedle coating method permitted reproducible loading of siRNA onto individual microneedles. Following recovery from the microneedle surface, lamin A/C siRNA retained full activity, as demonstrated by significant reduction in lamin A/C mRNA levels and reduced lamin A/C protein in HaCaT keratinocyte cells. However, lamin A/C siRNA pre-complexed with a commercial lipid-based transfection reagent (siRNA lipoplex) was less functional following microneedle coating. As Accell-modified "self-delivery" siRNA targeted against CD44 also retained functionality after microneedle coating, this form of siRNA was used in subsequent in vivo studies, where gene silencing was determined in a transgenic reporter mouse skin model. Self-delivery siRNA targeting the reporter (luciferase/GFP) gene was coated onto microneedles and delivered to mouse footpad. Quantification of reporter mRNA and intravital imaging of reporter expression in the outer skin layers confirmed functional in vivo gene silencing following microneedle delivery of siRNA. The use of coated metal microneedles represents a new, simple, minimally-invasive, patient-friendly and potentially self-administrable method for the delivery of therapeutic nucleic acids to the skin. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Gene silencing following siRNA delivery to skin via coated steel microneedles: in vitro and in vivo proof-of-concept

    Science.gov (United States)

    Chong, Rosalind H.E.; Gonzalez-Gonzalez, Emilio; Lara, Maria F.; Speaker, Tycho J.; Contag, Christopher H.; Kaspar, Roger L.; Coulman, Sion A.; Hargest, Rachel; Birchall, James C.

    2013-01-01

    The development of siRNA-based gene silencing therapies has significant potential for effectively treating debilitating genetic, hyper-proliferative or malignant skin conditions caused by aberrant gene expression. To be efficacious and widely accepted by physicians and patients, therapeutic siRNAs must access the viable skin layers in a stable and functional form, preferably without painful administration. In this study we explore the use of minimally-invasive steel microneedle devices to effectively deliver siRNA into skin. A simple, yet precise microneedle coating method permitted reproducible loading of siRNA onto individual microneedles. Following recovery from the microneedle surface, lamin A/C siRNA retained full activity, as demonstrated by significant reduction in lamin A/C mRNA levels and reduced lamin A/C protein in HaCaT keratinocyte cells. However, lamin A/C siRNA pre-complexed with a commercial lipid-based transfection reagent (siRNA lipoplex) was less functional following microneedle coating. As Accell-modified “self-delivery” siRNA targeted against CD44 also retained functionality after microneedle coating, this form of siRNA was used in subsequent in vivo studies, where gene silencing was determined in a transgenic reporter mouse skin model. Self-delivery siRNA targeting the reporter (luciferase/GFP) gene was coated onto microneedles and delivered to mouse footpad. Quantification of reporter mRNA and intravital imaging of reporter expression in the outer skin layers confirmed functional in vivo gene silencing following microneedle delivery of siRNA. The use of coated metal microneedles represents a new, simple, minimally-invasive, patient-friendly and potentially self-administrable method for the delivery of therapeutic nucleic acids to the skin. PMID:23313112

  20. Analysis of the melanin distribution in different ethnic groups by in vivo laser scanning microscopy

    Science.gov (United States)

    Antoniou, C.; Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Zastrow, L.; Sterry, W.; Koch, S.

    2009-05-01

    The aim of this study was to determine whether Laser scanning confocal microscopy (LSM) is able to visualize differences in melanin content and distribution in different Skin Phototypes. The investigations were carried out on six healthy volunteers with Skin Phototypes II, IV, and VI. Representative skin samples of Skin Phototypes II, V, and VI were obtained for histological analysis from remaining tissue of skin grafts and were used for LSM-pathologic correlation. LSM evaluation showed significant differences in melanin distribution in Skin Phototypes II, IV, and VI, respectively. Based on the differences in overall reflectivity and image brightness, a visual evaluation scheme showed increasing brightness of the basal and suprabasal layers with increasing Skin Phototypes. The findings correlated well with histological analysis. The results demonstrate that LSM may serve as a promising adjunctive tool for real time assessment of melanin content and distribution in human skin, with numerous clinical applications and therapeutic and preventive implications.

  1. Application of principal component analysis to multispectral imaging data for evaluation of pigmented skin lesions

    Science.gov (United States)

    Jakovels, Dainis; Lihacova, Ilze; Kuzmina, Ilona; Spigulis, Janis

    2013-11-01

    Non-invasive and fast primary diagnostics of pigmented skin lesions is required due to frequent incidence of skin cancer - melanoma. Diagnostic potential of principal component analysis (PCA) for distant skin melanoma recognition is discussed. Processing of the measured clinical multi-spectral images (31 melanomas and 94 nonmalignant pigmented lesions) in the wavelength range of 450-950 nm by means of PCA resulted in 87 % sensitivity and 78 % specificity for separation between malignant melanomas and pigmented nevi.

  2. Comparison of skin patterning feature analysis methods for lesion classification

    Science.gov (United States)

    Round, Andrew J.; Duller, Andrew W.; Fish, Peter J.

    1998-06-01

    This paper describes a method of distinguishing between early malignant melanoma and benign moles by examining skin pattern texture on an image of the lesion. Skin patterning is a macroscopic texture composed of fine linear elements. This texture is poorly described by standard definitions of texture and poorly detected by existing techniques. Skin line patterning is detected through a new method which looks at small patches spaced equally across the image and constructs a profile of their linear self-similarity over a range of angles. Regions which exhibit skin patterning result in similar profiles for neighboring patches whereas no such similarity is found in areas where the patterning is disrupted. Interpretation of the profile images for the classification of the lesions is then addressed.

  3. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model

    Science.gov (United States)

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections. PMID:26536129

  4. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

    Science.gov (United States)

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2011-02-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G(2)M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure.

  5. Human atopic dermatitis skin-derived T cells can induce a reaction in mouse keratinocytes in vivo

    DEFF Research Database (Denmark)

    Martel, Britta C; Blom, Lars; Dyring-Andersen, Beatrice

    2015-01-01

    injection of the human AD skin-derived T cells resulted in migration of the human T cells from subcutis to the papillary dermis followed by development of erythema and edema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown......In atopic dermatitis (AD), the inflammatory response between skin infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice...... through keratinocyte activation and consequently cause development of eczematous lesions. Punch biopsies of lesional skin from AD patients were used to establish skin-derived T cell cultures and which were transferred into NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that subcutaneous...

  6. Correlation analysis on alpha attenuation and nasal skin temperature

    Science.gov (United States)

    Nozawa, Akio; Tacano, Munecazu

    2009-01-01

    Some serious accidents caused by declines in arousal level, such as traffic accidents and mechanical control mistakes, have become issues of social concern. The physiological index obtained by human body measurement is expected to offer a leading tool for evaluating arousal level as an objective indicator. In this study, declines in temporal arousal levels were evaluated by nasal skin temperature. As arousal level declines, sympathetic nervous activity is decreased and blood flow in peripheral vessels is increased. Since peripheral vessels exist just under the skin on the fingers and nose, the psychophysiological state can be judged from the displacement of skin temperature caused by changing blood flow volume. Declining arousal level is expected to be observable as a temperature rise in peripheral parts of the body. The objective of this experiment was to obtain assessment criteria for judging declines in arousal level by nasal skin temperature using the alpha attenuation coefficient (AAC) of electroencephalography (EEG) as a reference benchmark. Furthermore, a psychophysical index of sleepiness was also measured using a visual analogue scale (VAS). Correlations between nasal skin temperature index and EEG index were analyzed. AAC and maximum displacement of nasal skin temperature displayed a clear negative correlation, with a correlation coefficient of -0.55.

  7. In vivo evaluation of two forms of urea in the skin by Raman spectroscopy after application of urea-containing cream.

    Science.gov (United States)

    Egawa, M; Sato, Y

    2015-08-01

    As urea is one of the natural moisturizing factor (NMF) components in the stratum corneum, it has been used in topical products to improve skin conditions. However, the penetration behavior of urea in the skin after application of urea-containing cream has not been determined as there has been no technique with which to measure the urea content in the skin in vivo non-invasively. We therefore applied Raman spectroscopy to evaluate the depth profile of urea content in the skin. We investigated changes in depth profiles of two forms of urea to evaluate the penetration behavior of urea after application of urea-containing cream. Commercially available moisturizing creams F and R in quantities of 2.2-mg/cm(2) and containing 20% (w/w) urea were applied to volar forearm skin of six Japanese subjects. Raman spectra of the skin were measured at 2-μm intervals from the skin surface toward the interior using a confocal Raman spectrometer (model 3510 SCA) before and 15, 60, and 120 min after the application of the creams. The amounts of the two forms of urea, urea in water solution and urea in a solid state, were calculated by adding the spectra of solid urea and the cream base to a previously reported algorithm including the spectrum of urea in water solution. The characteristic band of urea in water solution was observed at approximately 1004/cm and that of the solid state at approximately 1010/cm in the Raman spectra of the skin after application of either cream. There was more urea in water solution form in the area where cream F was applied than in the area where cream R was applied. There was more urea in a solid state in the area where cream R was applied than in the area where cream F was applied at all depths and measurement times. In particular, there was significantly more urea in a solid state below a depth of 2 μm in the area where cream R was applied than in the area where cream F was applied 15 min after application. The present study demonstrated that we can

  8. Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Hack

    Full Text Available We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787 retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration.

  9. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH.

    Science.gov (United States)

    Luebberding, S; Krueger, N; Kerscher, M

    2013-10-01

    Evidence is given that differences in skin physiological properties exist between men and women. However, despite an assessable number of available publications, the results are still inconsistent. Therefore, the aim of this clinical study is the first systematic assessment of gender-related differences in skin physiology in men and women, with a special focus on changes over lifetime. A total of 300 healthy male and female subjects (20-74 years) were selected following strict criteria including age, sun behaviour or smoking habits. TEWL, hydration level, sebum production and pH value were measured with worldwide-acknowledged biophysical measuring methods at forehead, cheek, neck, volar forearm and dorsum of hand. Until the age of 50 men's TEWL is significantly lower than the water loss of women of the same age, regardless of the location. With ageing gender-related differences in TEWL assimilate. Young men show higher SC hydration in comparison with women. But, whereas SC hydration is stable or even increasing in women over lifetime, the skin hydration in men is progressively decreasing, beginning at the age of 40. Sebum production in male skin is always higher and stays stable with increasing age, whereas sebum production in women progressively decreases over lifetime. Across all localizations and age groups, the pH value in men is below 5, the pH value of female subjects is, aside from limited expectations, higher than 5. Skin physiological distinctions between the sexes exist and are particularly remarkable with regard to sebum production and pH value. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  10. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 1. pH

    Science.gov (United States)

    Stefaniak, Aleksandr B; du Plessis, Johan; John, Swen M; Eloff, Fritz; Agner, Tove; Chou, Tzu-Chieh; Nixon, Rosemary; Steiner, Markus F C; Kudla, Irena; Holness, D Linn

    2013-01-01

    Background Skin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control. Methods An expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review available data on factors that could influence the determination of skin surface pH in non-clinical settings with emphasis on the workplace as a worst case scenario. Results The key elements of the guidelines are: (i) minimize, to the extent feasible, the influences of relevant endogenous (anatomical position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure of central tendency and variability; and (iii) report notable deviations from these guidelines and other relevant factors that may influence measurements. Conclusion Guidelines on the measurement and reporting of skin surface pH in non-clinical settings should promote consistency in data reporting, facilitate inter-comparison of study results, and aid in understanding and preventing occupational skin diseases. PMID:23279097

  11. 2016 Arte Poster Competition First Place Winner: Circadian Rhythm and UV-Induced Skin Damage: An In Vivo Study.

    Science.gov (United States)

    Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma

    2016-09-01

    Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure. J Drugs Dermatol. 2016;15(9):1124-1130.

  12. Lack of in vivo clastogenic activity of grape seed and grape skin extracts in a mouse micronucleus assay.

    Science.gov (United States)

    Erexson, G L

    2003-03-01

    Meganatural brand grape seed extract (GSE) and grape skin extract (GSKE), containing proanthocyanidin polyphenolic compounds, are intended for use in food as functional ingredients exhibiting antioxidant activity. Proanthocyanidins, as well as the minor constituent phenolic compounds in GSE and GSKE, are present naturally in many foods such as fruits, vegetables, chocolate, tea, etc., and on average people consume 460-1000 mg/day of these combined substances. While some polyphenolic compounds, tested individually, have demonstrated antitumorigenic or antipromotional activity, at least one minor component of GSE and GSKE, quercitin, has exhibited positive activity in Salmonella and other in vitro mutagenicity assays. As part of a program to investigate the safety of GSE and GSKE, these products were tested for in vivo clastogenic activity and/or disruption of the mitotic apparatus by detecting micronuclei in polychromatic erythrocyte (PCE) cells in Crl:CD-1(ICR) BR mouse bone marrow. The appropriate test article was dissolved in 0.5% carboxymethylcellulose and dosed by oral gavage to five males/test article/dose level/harvest time point. Animals were dosed at 500, 1000 and 2000 mg/kg. Five animals dosed with either test article at 500, 1000 and 2000 mg/kg dose levels and five animals dosed with the cyclophosphamide (80 mg/kg) positive control were euthanized approximately 24 h after dosing for extraction of bone marrow. Five animals dosed with either test article at the 2000 mg/kg dose level and five animals dosed with the vehicle control article were euthanized approximately 24 and 48 h after dosing for extraction of bone marrow. At least 2000 PCEs per animal were analyzed for frequency of micronuclei. Cytotoxicity was assessed by scoring the number of PCEs and normochromatic erythrocytes (NCEs) in at least the first 500 erythrocytes for each animal. For both GSE and GSKE, no statistically significant increase in micronucleated PCEs was observed at any dose level

  13. Confounding Factors in the Transcriptome Analysis of an In-Vivo Exposure Experiment.

    Directory of Open Access Journals (Sweden)

    Oskar Bruning

    Full Text Available In transcriptomics experimentation, confounding factors frequently exist alongside the intended experimental factors and can severely influence the outcome of a transcriptome analysis. Confounding factors are regularly discussed in methodological literature, but their actual, practical impact on the outcome and interpretation of transcriptomics experiments is, to our knowledge, not documented. For instance, in-vivo experimental factors; like Individual, Sample-Composition and Time-of-Day are potentially formidable confounding factors. To study these confounding factors, we designed an extensive in-vivo transcriptome experiment (n = 264 with UVR exposure of murine skin containing six consecutive samples from each individual mouse (n = 64.Evaluation of the confounding factors: Sample-Composition, Time-of-Day, Handling-Stress, and Individual-Mouse resulted in the identification of many genes that were affected by them. These genes sometimes showed over 30-fold expression differences. The most prominent confounding factor was Sample-Composition caused by mouse-dependent skin composition differences, sampling variation and/or influx/efflux of mobile cells. Although we can only evaluate these effects for known cell type specifically expressed genes in our complex heterogeneous samples, it is clear that the observed variations also affect the cumulative expression levels of many other non-cell-type-specific genes.ANOVA analysis can only attempt to neutralize the effects of the well-defined confounding factors, such as Individual-Mouse, on the experimental factors UV-Dose and Recovery-Time. Also, by definition, ANOVA only yields reproducible gene-expression differences, but we found that these differences were very small compared to the fold changes induced by the confounding factors, questioning the biological relevance of these ANOVA-detected differences. Furthermore, it turned out that many of the differentially expressed genes found by ANOVA were

  14. Bite marks on skin and clay: A comparative analysis

    Directory of Open Access Journals (Sweden)

    R.K. Gorea

    2014-12-01

    Full Text Available Bite marks are always unique because teeth are distinctive. Bite marks are often observed at the crime scene in sexual and in physical assault cases on the skin of the victims and sometimes on edible leftovers in burglary cases. This piece of evidence is often ignored, but if properly harvested and investigated, bite marks may prove useful in apprehending and successfully prosecuting the criminals. Due to the importance of bite marks, we conducted a progressive randomised experimental study conducted on volunteers. A total of 188 bite marks on clay were studied. Based on these findings, 93.34% of the volunteers could be identified from the bite marks on the clay. In addition, 201 impressions on skin were studied, and out of these cases, 41.01% of the same volunteers could be identified based on the bite mark impressions on the skin.

  15. Optimized isolation enables Ex vivo analysis of microglia from various central nervous system regions

    NARCIS (Netherlands)

    De Haas, Alexander H.; Boddeke, Hendricus W. G. M.; Brouwer, Nieske; Biber, Knut

    2007-01-01

    Ex vivo analysis is an accurate and convenient way to study in vivo microglia phenotype and function. However, current microglia isolation protocols for ex vivo analysis show many differences in isolation steps (perfusion, removal of meninges and blood vessels, mechanical dissociation, enzymatic

  16. Spectroscopic optical coherence tomography for ex vivo brain tumor analysis

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Dillmann, Christopher; Gerling, Alexandra; Gerhardt, Nils C.; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2017-02-01

    For neurosurgeries precise tumor resection is essential for the subsequent recovery of the patients since nearby healthy tissue that may be harmed has a huge impact on the life quality after the surgery. However, so far no satisfying methodology has been established to assist the surgeon during surgery to distinguish between healthy and tumor tissue. Optical Coherence Tomography (OCT) potentially enables non-contact in vivo image acquisition at penetration depths of 1-2 mm with a resolution of approximately 1-15 μm. To analyze the potential of OCT for distinction between brain tumors and healthy tissue, we used a commercially available Thorlabs Callisto system to measure healthy tissue and meningioma samples ex vivo. All samples were measured with the OCT system and three dimensional datasets were generated. Afterwards they were sent to the pathology for staining with hematoxylin and eosin and then investigated with a bright field microscope to verify the tissue type. This is the actual gold standard for ex vivo analysis. The images taken by the OCT system exhibit variations in the structure for different tissue types, but these variations may not be objectively evaluated from raw OCT images. Since an automated distinction between tumor and healthy tissue would be highly desirable to guide the surgeon, we applied Spectroscopic Optical Coherence Tomography to further enhance the differences between the tissue types. Pattern recognition and machine learning algorithms were applied to classify the derived spectroscopic information. Finally, the classification results are analyzed in comparison to the histological analysis of the samples.

  17. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Xiaoxu Zhou

    2016-03-01

    Full Text Available Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.

  18. Development of an in vivo animal model for skin penetration in hairless rats assessed by mass balance

    DEFF Research Database (Denmark)

    Simonsen, Lene; Petersen, Mads B; Benfeldt, Eva

    2002-01-01

    acid and (14)C-butyl salicylate were topically applied. Rapid and differentiated percutaneous absorption of both compounds were shown by urinary excretion data. For (14)C-salicylic acid the amount on the skin surface, in the stratum corneum and in the viable skin was determined. Total mass balance...... rat and free mobility throughout the test period. By consecutive tape stripping, monitored by measurements of transepidermal water loss and confirmed by histological examination of skin biopsies, 10 tape strippings were found to remove the stratum corneum completely. For assessment of the model, (14)C-salicylic...

  19. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  20. Value of histopathologic analysis of skin excisions by GPs

    NARCIS (Netherlands)

    Buis, P.A.J.; Chorus, R.M.; van Diest, P.J.

    2005-01-01

    The clinical diagnoses of skin lesions in general practice may sometimes not be very accurate. The aim of this study was to compare clinical versus final histopathological diagnosis status (benign, pre-malignant/malignant) in 4595 consecutive submissions by GPs. The final diagnosis was pre-malignant

  1. A Histological Analysis Of Malignant Tumours Of Skin In University ...

    African Journals Online (AJOL)

    The non-melanoma, skin cancer (squamous cells carcinoma) was the commonest epidermal malignancy and accounted for 148 (47.3%). Kaposi's sarcoma was the commonest cutaneous sarcoma with 49 (15.7%) and all the cases were of melanomas were diagnosed above the age of 40 years and all occurred on the leg ...

  2. Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network.

    Science.gov (United States)

    Li, Yuexiang; Shen, Linlin

    2018-02-11

    Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is very useful to increase the accuracy and efficiency of pathologists. In this paper, we proposed two deep learning methods to address three main tasks emerging in the area of skin lesion image processing, i.e., lesion segmentation (task 1), lesion dermoscopic feature extraction (task 2) and lesion classification (task 3). A deep learning framework consisting of two fully convolutional residual networks (FCRN) is proposed to simultaneously produce the segmentation result and the coarse classification result. A lesion index calculation unit (LICU) is developed to refine the coarse classification results by calculating the distance heat-map. A straight-forward CNN is proposed for the dermoscopic feature extraction task. The proposed deep learning frameworks were evaluated on the ISIC 2017 dataset. Experimental results show the promising accuracies of our frameworks, i.e., 0.753 for task 1, 0.848 for task 2 and 0.912 for task 3 were achieved.

  3. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied.In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains.In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  4. Photoacoustic Analysis of the Penetration Kinetics of Cordia verbenacea DC in Human Skin

    Science.gov (United States)

    Carvalho, S. S.; Barja, P. R.

    2012-11-01

    Phonophoresis consists of the utilization of ultrasound radiation associated to pharmacological agents in order to enhance transdermal penetration of applied drugs. It is a widely employed resource in physiotherapy practice, normally associated with anti-inflammatory drugs, such as Acheflan. This drug was developed in Brazil from the essential oil of Cordia verbenacea DC, a native plant of the Brazilian southern coast. In previous studies, the photoacoustic (PA) technique proved effective in the study of the penetration kinetics of topically applied products and in the evaluation of drug delivery after phonophoresis application. The present work aimed to evaluate the penetration kinetics of Acheflan in human skin, employing in vivo PA measurements after massage application or phonophoresis application. Ten volunteers (aged between 18 and 30 years) took part in the study. Time evolution of the PA signal was fitted to a Boltzmann curve, S-shaped. After statistical analysis, PA measurements have shown drug penetration for both application forms, but drug delivery was more evident after phonophoresis application, with a characteristic penetration time of less than 15 min for the stratum corneum.

  5. Experimental functional analysis of severe skin-picking behavior in Prader-Willi syndrome.

    Science.gov (United States)

    Hall, Scott S; Hustyi, Kristin M; Chui, Clara; Hammond, Jennifer L

    2014-10-01

    Skin picking is an extremely distressing and treatment resistant behavior commonly shown by individuals with Prader-Willi syndrome (PWS). However, with the exception of a limited number of published single-case and survey studies, little is known about the environmental determinants of skin picking in this population. In this study, functional analyses were conducted with thirteen individuals with PWS, aged 6-23 years, who engaged in severe skin-picking behavior. In addition to the conditions typically employed in a functional analysis (i.e., alone, attention, play, demand), we included an ignore condition to examine potential effects of stimulus control by the presence of an adult. Twelve participants engaged in skin picking during the functional analysis, with the highest levels occurring in the alone and ignore conditions for eight participants, suggesting that skin picking in these participants was maintained by automatic reinforcement. For the remaining four participants, an undifferentiated pattern of low-rate skin picking was observed across conditions. These data confirm previous studies indicating that skin picking in PWS may be maintained most often by automatically produced sensory consequences. There were no associations between demographic characteristics of the participants (e.g., sex, age, IQ or BMI) and levels of skin picking observed in the functional analysis. Additional investigations are needed to identify the nature of the sensory consequences produced during episodes of skin picking in PWS. Behavioral interventions designed to extinguish or compete with the potential sensory consequences arising from skin picking in PWS are also warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. In vivo antibacterial activity of Garcinia mangostana pericarp extract against methicillin-resistant Staphylococcus aureus in a mouse superficial skin infection model.

    Science.gov (United States)

    Tatiya-Aphiradee, Nitima; Chatuphonprasert, Waranya; Jarukamjorn, Kanokwan

    2016-11-01

    Garcinia mangostana Linn. (Guttiferae) (GM) pericarp has been shown to exhibit good in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA); however, there is currently no available information regarding its in vivo antibacterial activity. To examine in vivo antibacterial activity of G. mangostana extract against MRSA. GM pericarp was extracted by ethanol (GM-EtOH) and methanol (GM-MeOH). The crude extracts were examined for in vitro antibacterial activity against MRSA using broth microdilution assay. The in vivo antibacterial activity of 10% GM-EtOH against MRSA was determined in a tape stripping mouse model of superficial skin infection for 9 days by evaluating transepidermal water loss (TEWL) and performing colony counts from cultured swabs. GM-EtOH showed greater in vitro activity against MRSA than GM-MeOH in broth microdilution assay with minimum inhibitory concentration 17 versus 20 μg/mL and minimum bactericidal concentration 30 versus 35 μg/mL, respectively. The GM-EtOH (13.20 ± 0.49%) contained α-mangostin more than the GM-MeOH (9.83 ± 0.30%). In the tape stripping mouse model, 10% GM-EtOH reduced the number of MRSA colonies (0-1) recovered from infected wounds (>100 colonies) on the first day of treatment, restored TEWL to normal levels on the fourth day, and had completely healed the wounds by day 9. GM-EtOH showed promising in vivo antibacterial activity against MRSA in a superficial skin infection model in mice. It is of interest to develop a topical formulation of GM-EtOH to further study its potential as a novel antibacterial agent.

  7. Retrospective analysis of follow-up results in patients with skin lymphomas of low degree malignancy

    Directory of Open Access Journals (Sweden)

    Tarasov V.V.

    2011-03-01

    Full Text Available Administration of specific chemotherapy (cytostatics has great significance in the treatment of skin lymphomas of low degree malignancy. The research goal is to study follow-up results of cytostatic therapy of skin lymphomas. Retrospective observation of survival of patients with T-cell epidermothropic skin lymphomas using special therapy and without its use has been studied. Comparative analysis of survival rate in two groups of patients has been done. 40 patients received cytostatics and 32 patents were not treated by chemotherapy. The first group of patients showed the reduction of survival level and increase of mortality level from skin lymphomas of low degree malignancy. The research findings proved the influence of cytostatic therapy on the survival of patients with skin lymphomas of low degree malignancy

  8. Photoacoustic analysis of thyroid cancer in vivo: a pilot study

    Science.gov (United States)

    Kim, Jeesu; Kim, Min-Hee; Jo, Kwanhoon; Ha, Jeonghoon; Kim, Yongmin; Lim, Dong-Jun; Kim, Chulhong

    2017-03-01

    Thyroid cancer is one of the most prevalent cancers. About 3-8% of the people in the United States have thyroid nodules, and 5-15% of these nodules are malignant. Fine-needle aspiration biopsy (FNAB) is a standard procedure to diagnose malignity of nodules. However, about 10-20% of FNABs produce indeterminable results, which leads to repeat biopsies and unnecessary surgical operations. We have explored photoacoustic (PA) imaging as a new method to identify cancerous nodules. In a pilot study to test its feasibility, we recruited patients with thyroid nodules (currently 36 cases with 21 malignant and 15 benign nodules), acquired in vivo PA and ultrasound (US) images of the nodules in real time using a recently-developed clinical PA/US imaging system, and analyzed the acquired data offline. The preliminary results show that malignant and benign nodules could be differentiated by utilizing their PA amplitudes at different excitation wavelengths. This is the first in vivo PA analysis of thyroid nodules. Although a larger-scale study is needed for statistical significance, the preliminary results show the good potential of PA imaging as a non-invasive tool for triaging thyroid cancer.

  9. Bite marks on skin and clay: A comparative analysis

    OpenAIRE

    R.K. Gorea; O.P. Jasuja; Abdulwahab Ali Abuderman; Abhinav Gorea

    2014-01-01

    Bite marks are always unique because teeth are distinctive. Bite marks are often observed at the crime scene in sexual and in physical assault cases on the skin of the victims and sometimes on edible leftovers in burglary cases. This piece of evidence is often ignored, but if properly harvested and investigated, bite marks may prove useful in apprehending and successfully prosecuting the criminals. Due to the importance of bite marks, we conducted a progressive randomised experimental study c...

  10. Platelet-activating factor induces histamine release from human skin mast cells in vivo, which is reduced by local nerve blockade.

    Science.gov (United States)

    Petersen, L J; Church, M K; Skov, P S

    1997-05-01

    Intradermal injection of platelet-activating factor (PAF) causes wheal and flare reactions, which are inhibited by antihistamines. However, PAF does not release histamine from human dispersed skin mast cells in vitro. The purpose of this study was to investigate the extent and possible mechanisms of PAF-induced histamine release in human skin in vivo with the use of dermal microdialysis. Hollow dialysis fibers were inserted into the upper dermis in forearm skin and each fiber was perfused with Krebs-Ringer bicarbonate solution at a rate of 3.0 microliters/min. PAF (4.5 to 36 mumol/L), lyso-PAF (36 mumol/L), vehicle (negative control), and codeine 750 or 250 mumol/L (positive control) were injected intradermally above separate fibers. Dialysate was collected in 2-minute fractions for 20 minutes and histamine analyzed spectrofluorometrically. PAF, but not lyso-PAF, caused statistically significant dose-related histamine release and wheal and flare reactions. Intradermal mepivacaine administration significantly abrogated flare reactions by PAF and codeine and inhibited histamine release and wheal reactions by PAF but not by codeine. Long-term topical capsaicin administration inhibited histamine release and wheal reactions by PAF but not by codeine. It inhibited flare reactions induced by both compounds. PAF did not release histamine from blood basophils. These data suggest that PAF induced histamine release from mast cells in intact human skin indirectly via neurogenic activation. Further, on the intradermal injection of PAF histamine release and the skin responses, the wheal and the flare, are differentially regulated by neurogenic components.

  11. The role of topically applied L-ascorbic acid in ex-vivo examination of burn-injured human skin

    Science.gov (United States)

    Pielesz, Anna; Biniaś, Dorota; Bobiński, Rafał; Sarna, Ewa; Paluch, Jadwiga; Waksmańska, Wioletta

    2017-10-01

    Wound treatment and healing is complex and is comprised of an elaborate set of processes including cellular, spectroscopic and biochemical ones as well as the ;reaction; of local tissue to thermal injury. Vitamin C as L-ascorbic acid (LA) prevents injurious effects of oxidants because it reduces reactive oxygen species to stable molecules, it becomes oxidized to the short-lived ascorbyl radical. As a result, antioxidant treatment may contribute to minimizing injury in burn patients. The aim of this study is to assess changes in molecular structure of collagen extracted from human epidermis burn wound scab during incubation of the epidermis in L-ascorbic acid solution. The study will be performed using FTIR and FT Raman spectroscopies. During this research it was observed that the intensity of Raman peaks increased where healing was being modified by LA. The intensity of the amide III band at 1247 cm- 1 relative to the intensity at 1326 cm- 1 was used to test tissue repair degree at the incision site. FTIR spectra were recorded from frozen specimens of serum modified by LA; an analysis of shifts in the amide I band position was conducted. The appearance of a new band for frozen samples modified by LA was observed around 1149-1220 cm- 1. The above conclusions confirmed the creation of hydrogen bonds between Nsbnd H stretch and Cdbnd O. Samples being incubated in solutions of L-ascorbic acid demonstrated the absence of electrophoretic bands of albumin. Alterations in the surface of the skin incubated in L-ascorbic acid were investigated with the use of Scanning Electron Microscopy (SEM). A decrease in external symptoms of burn injury was noted in the damaged epidermis incubated in L-ascorbic acid.

  12. An in vivo comparison of commonly used topical antimicrobials on skin graft healing after full-thickness burn injury.

    Science.gov (United States)

    Abbas, Ozan L; Borman, Huseyin; Bahar, Taner; Ertaş, Nilgün M; Haberal, Mehmet

    2015-01-01

    Topical antimicrobials are frequently used for local control of infections in burn patients. It has been postulated that these agents retard wound healing. There are limited data about the effects of topical antimicrobial agents on skin graft healing. In this study, we aimed to evaluate the effects of nitrofurazone, 1% silver sulfadiazine, and povidone-iodine on skin graft healing. Forty male rats were used in this study. A meshed skin graft, placed on an excised burn wound, was used as a model to compare topical agents with a control group. Skin graft survival rates, closure of meshed graft interstices (based on physical parameters, namely epithelialization and wound contraction), and histological changes were analyzed. Graft take was more than 85% in all groups. There was no difference between the mean values of the percent graft survival for each group (P > .05). Epithelialization occurred significantly earlier in animals in the nitrofurazone group (P .05). There was no histological difference between the biopsy specimens of skin grafts. In specimens obtained from the interstices of the meshed graft, no significant differences were found among the groups regarding the wound healing parameters (P > .05). We found that nitrofurazone, silver sulfadiazine, and povidone-iodine had no negative effect on graft healing and take in noncontaminated burn wounds.

  13. Aspirin for the primary prevention of skin cancer: A meta-analysis.

    Science.gov (United States)

    Zhu, Yun; Cheng, Yang; Luo, Rong-Cheng; Li, Ai-Min

    2015-03-01

    Skin cancer is one of the most common cancers worldwide. There are three major skin cancer types: basal cell carcinoma, squamous cell carcinoma and malignant melanoma. General risk factors for skin cancer include fair skin, a history of tanning and sunburn, family history of skin cancer, exposure to ultraviolet rays and a large number of moles. The incidence of skin cancer has increased in the USA in recent years. Aspirin intake is associated with chemoprotection against the development of a number of types of cancer. However, whether aspirin intake can reduce the risk of development of skin cancer is unclear. The present meta-analysis of available human studies is aimed at evaluating the association between aspirin exposure and the risk of skin cancer. All available human observational studies on aspirin intake for the primary prevention of skin cancer were identified by searching MEDLINE (Pubmed), BIOSIS, EMBASE, Cochrane Library and China National Knowledge Infrastructure prior to March 2013. The heterogeneity and publication bias of all studies were evaluated using Cochran's Q and I2 statistics, followed by a random-effect model where applicable. The pooled data were analyzed by odds ratios (ORs) and 95% confidence intervals (CIs). A total of eight case-control and five prospective cohort studies from 11 publications were selected for this analysis. There was no evidence of publication bias in these studies. Statistical analyses of the pooled data demonstrated that that a daily dose of 50-400 mg aspirin was significantly associated with a reduced risk of skin cancers (OR, 0.94; 95% CI, 0.90-0.99; P=0.02). Stratification analysis indicated that the continual intake of low dose aspirin (≤150 mg) reduced the risk of developing skin cancer (OR, 0.95; CI, 0.90-0.99; P=0.15) and that aspirin intake was significantly associated with a reduced risk of non-melanoma skin cancers (OR, 0.97; CI, 0.95-0.99; P=0.22). Overall, these findings indicated that aspirin intake

  14. Error rates in bite mark analysis in an in vivo animal model.

    Science.gov (United States)

    Avon, S L; Victor, C; Mayhall, J T; Wood, R E

    2010-09-10

    Recent judicial decisions have specified that one foundation of reliability of comparative forensic disciplines is description of both scientific approach used and calculation of error rates in determining the reliability of an expert opinion. Thirty volunteers were recruited for the analysis of dermal bite marks made using a previously established in vivo porcine-skin model. Ten participants were recruited from three separate groups: dentists with no experience in forensics, dentists with an interest in forensic odontology, and board-certified diplomates of the American Board of Forensic Odontology (ABFO). Examiner demographics and measures of experience in bite mark analysis were collected for each volunteer. Each participant received 18 completely documented, simulated in vivo porcine bite mark cases and three paired sets of human dental models. The paired maxillary and mandibular models were identified as suspect A, suspect B, and suspect C. Examiners were tasked to determine, using an analytic method of their own choosing, whether each bite mark of the 18 bite mark cases provided was attributable to any of the suspect dentitions provided. Their findings were recorded on a standardized recording form. The results of the study demonstrated that the group of inexperienced examiners often performed as well as the board-certified group, and both inexperienced and board-certified groups performed better than those with an interest in forensic odontology that had not yet received board certification. Incorrect suspect attributions (possible false inculpation) were most common among this intermediate group. Error rates were calculated for each of the three observer groups for each of the three suspect dentitions. This study demonstrates that error rates can be calculated using an animal model for human dermal bite marks, and although clinical experience is useful, other factors may be responsible for accuracy in bite mark analysis. Further, this study demonstrates

  15. Dermal penetration and resorption of beta-naphthylamine and N-phenyl-beta-naphthylamine from lubricants in an ex vivo human skin model.

    Science.gov (United States)

    Dennerlein, Kathrin; Göen, Thomas; Zobel, Melanie; Boos, Anja M; Drexler, Hans; Kilo, Sonja

    2017-10-01

    Dermal Penetration of aromatic amines (AA's), often suspected or known to be carcinogenic, can play an important role in the overall human exposure. However, information on penetration of certain AA's is poor and inconsistent. Penetration of the former lubricant additive N-phenyl-beta-naphthylamine (PBNA) and its contaminant beta-naphthylamine (BNA) a known carcinogen was investigated and the influence of formulation and co-application characterized. Percutaneous penetration of BNA and PBNA through freshly excised human skin (n = 8; 48 h) was investigated using an ex vivo diffusion cell model. Both AA's were applied in a technical-conform lubricant or dissolved in hexane. The amount of BNA and PBNA applied to skin was 0.52 and 259 μg/0.64 cm(2). The analytical determination of AA's was performed by GC-MS. Both, BNA and PBNA penetrated through human skin (38 vs. 5% of applied dose). In contrast to BNA, the percutaneous penetration of PBNA continued beyond the end of exposure. Co-exposure of both AA's increased the intradermal uptake of BNA and PBNA (p penetration (2.9 and 1.9% of applied dose). The results clearly reveal that dermal penetration of both AA's depends strongly on the mode of application. Co-application and formulation alters the penetration of the AA's. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Multi-spectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial

    Science.gov (United States)

    Kuzmina, Ilona; Diebele, Ilze; Valeine, Lauma; Jakovels, Dainis; Kempele, Anna; Kapostinsh, Janis; Spigulis, Janis

    2011-03-01

    A clinical trial comprising 266 pigmented lesions and 49 vascular lesions has been performed in three Riga clinics by means of multi-spectral imaging analysis. The imaging system Nuance 2.4 (CRI) and self-developed software for mapping of the main skin chromophores were used. The obtained results confirm clinical potential of this technology for non-contact quantitative assessment of skin pathologies.

  17. Metabolomic analysis using porcine skin: a pilot study of analytical techniques

    OpenAIRE

    Wu, Julie; Fiehn, Oliver; Armstrong, April W

    2014-01-01

    Background: Metabolic byproducts serve as indicators of the chemical processes and can provide valuable information on pathogenesis by measuring the amplified output. Standardized techniques for metabolome extraction of skin samples serve as a critical foundation to this field but have not been developed. Objectives: We sought to determine the optimal cell lysage techniques for skin sample preparation and to compare GC-TOF-MS and UHPLC-QTOF-MS for metabolomic analysis. ...

  18. Development of diagnostic algorithms for image analysis of skin lesions

    Science.gov (United States)

    Yova, Dido M.; Delibasis, Athanasios K.; Papaodysseus, Constantinos N.; Koukoutsis, Elias; Vasilopoulos, Periklis

    1997-05-01

    The crucial step in the diagnostic treatment of skin cancer is the initial examination and detection of any unusual change of a skin lesion. Digital imaging permits the documentation of the size, shape and color of lesions and their later comparison, so the last years its key role as an adjunct to early malignant melanoma diagnosis has arisen. In this work, a novel approach to diagnosis is presented by developing a digital imaging system for capturing and processing the images of individual lesions. It was used a 12 bit CCD camera, connected with a Pentium PC equipped with a Matrox frame grabber and convenient software. Images were collected using a zoom close up lens and a light source, attached to the front of the CCD camera. The format of the images was 640 X 480 pixels with 8 bit color table. The border of the lesion was found using a region growing based algorithm combined with the Gradient Operator. It was calculated the border irregularity and the asymmetry of the lesion, using the compactness formula. There was developed algorithms based on thresholding and region growing to determine the borders of the lesion. Compactness has been calculated as well. The pre-prototype system has been placed at the National Cancer Hospital to support melanoma diagnosis.

  19. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac

    2011-06-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin\\'s mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  20. Data from proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaofang Geng

    2015-06-01

    Full Text Available The Chinese giant salamander (Andrias davidianus, renowned as a living fossil, is the largest and longest-lived amphibian species in the world. Its skin is rich in collagens, and has developed mucous gland which could secrete a large amount of mucus under the scraping and electric stimulation. The molting is the degraded skin stratum corneum. To establish the functional skin proteome of Chinese giant salamander, two-dimensional gel electrophoresis (2DE and mass spectrometry (MS were applied to detect the composition and relative abundance of the proteins in the skin, mucus and molting. The determination of the general proteome in the skin can potentially serve as a foundation for future studies characterizing the skin proteomes from diseased salamander to provide molecular and mechanistic insights into various disease states and potential therapeutic interventions. Data presented here are also related to the research article “Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus” in the Journal of Proteomics [1].

  1. New perspective on the in vivo use of cold stress dynamic thermography in integumental reconstruction with the use of skin-muscle flaps.

    Science.gov (United States)

    Kolacz, Szymon; Moderhak, Mateusz; Jankau, Jerzy

    2017-05-15

    Among the problems encountered by plastic surgeons is the reconstruction of defects following tumors. One of the reconstructive options is trans rectus abdominis (TRAM) flap. Despite that anatomy is well explored, marginal flap necrosis may develop. To minimize the complications, imaging examinations were designed to determine the degree of flap perfusion. One of them is the thermographic examination. We examined 38 patients who had undergone 10 reconstructive breast surgeries with a pedicled TRAM ipsilateral flap, 10 patients with a TRAM contralateral flap, and 18 patients with a TRAM supercharged flap. Each operated patient underwent a thermographic examination before the surgery, after the dissection of the skin-muscle flap, immediately after suturing flap, and during the first and seventh day after the surgery. The collected data were then processed to yield results in a numerical form and compared with clinical examination. The aim of this study is to evaluate the efficacy of new thermal model calculation of dTnorm and t90_10 in cold stress dynamic thermography in the in vivo assessment of intraoperative and postoperative skin blood supply in humans before ischemic lesions become clinically apparent. Of 38 patients participating in the study, nine patients developed marginal necrosis of the skin flap despite intraoperative clinical evaluation of blood supply. Explicit circulatory disorders apparent in a clinical examination developed after 24 h. Cold stress tnorm and t90_10 dynamic thermography can be a helpful additional tool to assess and monitor the blood supply to the flap skin both intraoperatively and postoperatively. Active dynamic thermography; cold stress dynamic thermography, thermography; TRAM; flap necrosis; flap monitoring, breast reconstruction. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Histological ex vivo analysis of retrieved human tantalum augmentations.

    Science.gov (United States)

    Breer, Stefan; Hahn, Michael; Kendoff, Daniel; Krause, Matthias; Koehne, Till; Haasper, Carl; Gehrke, Thorsten; Amling, Michael; Gebauer, Matthias

    2012-11-01

    The characteristics of tantalum augment osseointegration in human ex vivo specimens from re-revision procedures are unknown and limited data in this regard is available. The purpose of this study was to investigate the osseointegration pattern into porous tantalum augmentations harvested during re-revision procedures. Between 2007 and 2010 a total of 324 hip and knee revisions with a tantalum augmentation were performed in our institution. Out of this cohort, seven patients (2.2 %) had to be re-revised. To analyse the status of trabecular ingrowth in the retrieved cases (four hips, three knees), all specimens were analysed by contact radiography, subjected to undecalcified processing, histology, thin-section analysis and backscattered electron imaging. Trabecular and vascular ingrowth could be found along the bone-augment-interface in two of seven revised specimens, respectively. The depth of bone ingrowth reached up to 2.6 mm. However, the analysis of the remaining cases revealed no bony ingrowth into trabecular metal. Rather, large parts of the implants were embedded in cement or pores were filled with autologous bone. Although the cause for the missing bony ingrowth seems to be multifactorial, some fundamental conditions, such as the provision of the greatest possible interface between the tantalum implant and the host bone, should be met and thus, bone cement and autologous bone grafts should be used with caution.

  3. Negative predictive value of pigmented lesion evaluation by multispectral digital skin lesion analysis in a community practice setting.

    Science.gov (United States)

    Winkelmann, Richard R; Rigel, Darrell S; Kollmann, Emily; Swenson, Nicole; Tucker, Natalie; Nestor, Mark S

    2015-03-01

    To determine if the high negative predictive value of a multispectral digital skin lesion analysis that has been previously found in an academic-based trial would be similar in a community-based setting with its expected different distribution of pigmented lesions. Data were collected from patients undergoing routine skin examinations over a one-year period at a community-based practice in Florida. All lesions that were selected for biopsy to rule out melanoma were also imaged with multispectral digital skin lesion analysis prior to biopsy. Histopathological diagnoses and multispectral digital skin lesion analysis results were reviewed and compared with findings from a prior primarily academic center-based multispectral digital skin lesion analysis trial. Community-based clinical setting in Florida. Negative predictive value, sensitivity, and specificity. One hundred thirty-seven consecutive lesions were selected for biopsy and also analyzed via multispectral digital skin lesion analysis. All 21 cases with multispectral digital skin lesion analysis "Low Disorganization" readings were all histologically benign (100% negative predictive value, 95% lower confidence boundary = 96.9%). The negative predictive value and the sensitivity were not significantly different than what was found in the prior academic-based multispectral digital skin lesion analysis trial. Multispectral digital skin lesion analysis also correctly identified all high-risk lesions, which were subsequently confirmed via histology to be one invasive melanoma and 15 moderately dysplastic nevi (100% sensitivity). Specificity with multispectral digital skin lesion analysis was significantly higher than reported in the academic-based multispectral digital skin lesion analysis trial (18% vs. 10%, p=0.02). Because of the high negative predictive value achieved by multispectral digital skin lesion analysis, lesions with readings of "Low Disorganization" may be considered for observation versus biopsy

  4. In vivo measurements of the influence of the skin on cerebral oxygenation changes measured with near-infrared spectrophotometry (NIRS)

    Science.gov (United States)

    Klaessens, John H. G. M.; van Os, Sandra H. G.; Hopman, Jeroen C. W.; Liem, K. D.; van de Bor, Margot; Thijssen, Johan M.

    2004-07-01

    Goal: To investigate the influence of skin on the accuracy and precision of regional cerebral oxygenation measurements using CW-NIRS and to reduce the inter individual variability of NIRS measurements by normalization with data from an extra wavelength. Method: Three piglets (7.8-9.3 kg) were anesthetized, paralyzed and mechanically ventilated. Receiving optodes were placed over the left and right hemisphere (C3, C4 EEG placement code) and one emitting optode on Cz position (optode distance=1.8cm). Optical densities (OD) were measured for 3 wavelengths (767, 850, 905 nm) (OXYMON) during stable normoxic, mild and deep hypoxemic conditions (SaO2=100%, 80% and 60%) of one minute in each region. This was repeated 3 times: all optodes with skin (condition 1); one receiving optode directly on the skull (2); emitting and also receiving optode on the skull (3). The absolute cO2Hb, cHHb, ctHb concentrations (μmol/L) were calculated from the OD's and changes with respect to the SaO2=100% condition were estimated. Because ODs varied over a large range, the light intensity was externally attenuated to adapt to the range of the spectrophotometer. The data were then corrected for these attenuation effects and for pathlength changes caused by skin removal using the OD at the independent wavelength (λ=975nm). Results: Removal of the skin resulted in an increase of the absorption values (average 0.25 OD in condition 2 and 0.42 OD in condition 3 with respect to condition 1). The change from normoxic to medium, and to deep hypoxic conditions produced a decrease of cO2Hb (-15, and -29 μmol/L, respectively), an increase in cHHb (+16, and +35 μmol/L) and in ctHb (+1, and +5 μmol/L). Total skin removal yielded an extra change in cO2Hb (-5, -1 μmol/L), cHHb (+8, +9 μmol/L), and ctHb (+3, +8 μmol /L). The coefficient of variability of the absolute concentration changes was considerably decreased by the normalization of densities by the density obtained at 795 nm. Conclusion: Skin

  5. Shrimp Allergy: Analysis of Commercially Available Extracts for In Vivo Diagnosis.

    Science.gov (United States)

    Asero, R; Scala, E; Villalta, D; Pravettoni, V; Arena, A; Billeri, L; Colombo, G; Cortellini, G; Cucinelli, F; De Cristofaro, M L; Farioli, L; Iemoli, E; Lodi Rizzini, F; Longo, R; Losappio, L; Macchia, D; Maietta, G; Minale, P; Murzilli, F; Nebiolo, F; Pastorello, E A; Ventura, M T; Voltolini, S; Amato, S; Mistrello, G

    Skin prick testing (SPT) with commercial extracts is the first step in the diagnosis of shrimp allergy, although its clinical efficiency is unknown. Objective: To analyze the clinical usefulness of all commercial crustacean extracts available for SPT in Italy. We performed a multicenter study of 157 shrimp-allergic patients who underwent SPT with 5 commercial crustacean extracts and with house dust mite (HDM) extract. Commercial extracts were analyzed using SDS-PAGE and compared with a freshly prepared in-house shrimp extract. IgE to Pen a 1/Pen m 1, Pen m 2, and Pen m 4 was determined, and immunoblot analysis was performed on a large number of sera. The skin reactions caused by commercial crustacean extracts were extremely heterogeneous, resulting in 32 clinical profiles, with marked differences in protein content and missing proteins at molecular weights corresponding to those of major shrimp allergens. Only strong Pen a 1/Pen m 1 reactors reacted to both HDM and all 5 commercial extracts in SPT. Most patients, including those who were tropomyosin-negative, reacted to HDM. Patients reacted to a large and variable array of proteins, and IgE reactivity was common at high molecular weights (>50 kDa). The in vivo diagnosis of shrimp allergy must continue to be based on SPT with fresh material. Shrimp-allergic patients frequently react to a number of ill-defined high-molecular-weight allergens, thus leaving currently available materials for component-resolved diagnosis largely insufficient. Mites and crustaceans probably share several allergens other than tropomyosin.

  6. Skin permeation of organic gunshot residue: implications for sampling and analysis.

    Science.gov (United States)

    Moran, Jordan Wade; Bell, Suzanne

    2014-06-17

    Traditional gunshot residue (GSR) analysis is based on detection of particulates formed from metals found in the primer. Recent concerns regarding the interpretation of GSR evidence has led to interest in alternatives such as the organic constituents (organic gunshot residue, OGSR) found in propellants. Previous work has shown OGSR to be detectable on hands for several hours after a firing event, and given the lipophilic nature of these compounds, it was expected that losses due to secondary transfer (an issue with GSR particulates) would be negligible. However, other loss mechanisms have been identified, specifically skin permeation and evaporation. This paper describes experimental and modeling studies used to elucidate characteristics of skin permeation of 5 compounds present in OGSR. Pharmaceutical methods were adapted to characterize skin permeation using a skin surrogate and Franz diffusion cells. The amount of compounds deposited on skin after an authentic firing event (1 and 2 shots) was experimentally determined and applied for the permeation experiments. A fully validated selected ion monitoring GC/MS method was developed for quantitative analysis, and easily accessible online tools were employed for modeling. Results showed that OGSR residues should be detectable on skin for many hours after a firing event of as few as one or two shots, with detection capability being a function of the efficacy of sampling and sample preparation and the instrumental method employed. The permeation rates of the OGSR compounds were sufficiently different to suggest the potential to develop methods to approximate time-since-deposition.

  7. Toward in vivo diagnosis of skin cancer using multimode imaging dermoscopy: (II) molecular mapping of highly pigmented lesions

    Science.gov (United States)

    Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L.

    2014-03-01

    We have developed a multimode imaging dermoscope that combines polarization and hyperspectral imaging with a computationally rapid analytical model. This approach employs specific spectral ranges of visible and near infrared wavelengths for mapping the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models that are prone to inaccuracies due to over-modeling. Various human skin measurements including a melanocytic nevus, and venous occlusion conditions were investigated and compared with other ratiometric spectral imaging approaches. Access to the broad range of hyperspectral data in the visible and near-infrared range allows our algorithm to flexibly use different wavelength ranges for chromophore estimation while minimizing melanin-hemoglobin optical signature cross-talk.

  8. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  9. Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas.

    Science.gov (United States)

    Unkovskiy, Alexey; Spintzyk, Sebastian; Axmann, Detlef; Engel, Eva-Maria; Weber, Heiner; Huettig, Fabian

    2017-11-10

    The use of computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing in maxillofacial prosthetics has been widely acknowledged. Rapid prototyping can be considered for manufacturing of auricular prostheses. Therefore, so-called prostheses replicas can be fabricated by digital means. The objective of this study was to identify a superior additive manufacturing method to fabricate auricular prosthesis replicas (APRs) within a digital workflow. Auricles of 23 healthy subjects (mean age of 37.8 years) were measured in vivo with respect to an anthropometrical protocol. Landmarks were volumized with fiducial balls for 3D scanning using a handheld structured light scanner. The 3D CAD dataset was postprocessed, and the same anthropometrical measurements were made in the CAD software with the digital lineal. Each CAD dataset was materialized using fused deposition modeling (FDM), selective laser sintering (SLS), and stereolithography (SL), constituting 53 APR samples. All distances between the landmarks were measured on the APRs. After the determination of the measurement error within the five data groups (in vivo, CAD, FDM, SLS, and SL), the mean values were compared using matched pairs method. To this, the in vivo and CAD dataset were set as references. Finally, the surface structure of the APRs was qualitatively evaluated with stereomicroscopy and profilometry to ascertain the level of skin detail reproduction. The anthropometrical approach showed drawbacks in measuring the protrusion of the ear's helix. The measurement error within all groups of measurements was calculated between 0.20 and 0.28 mm, implying a high reproducibility. The lowest mean differences of 53 produced APRs were found in FDM (0.43%) followed by SLS (0.54%) and SL (0.59%)--compared to in vivo, and again in FDM (0.20%) followed by SL (0.36%) and SLS (0.39%)--compared to CAD. None of these values exceed the threshold of clinical relevance (1.5%); however, the qualitative

  10. Analysis of Skin Humidity Variation Between Sasang Types

    Directory of Open Access Journals (Sweden)

    Soon-Oh Jung

    2009-01-01

    Full Text Available The purpose of this study was to examine the relationship between variations in skin humidity (SH induced by perspiration across Sasang types and to identify novel and effective Sasang classification factors. We also analyzed the responses of each Sasang type to sweating-related QSCC II items. The results revealed a significant difference in SH across gender and significant differences in SH before and after perspiration between Tae-Eum and So-Eum men. In addition, Tae-Eum women showed significant differences in SH compared with women classified as another Sasang type. Furthermore, evaluation of the items related to sweating in the QSCC II and their relationship to each constitution revealed a significant difference between Tae-Eum and other Sasang types. Overall, the results of this study indicate that there is a distinct SH difference following perspiration between Tae-Eum and other Sasang types. Such findings may aid in Sasang typology diagnostic testing with the support of further sophisticated clinical studies.

  11. Analysis of the ex vivo and in vivo antiretroviral activity of gemcitabine.

    Directory of Open Access Journals (Sweden)

    Christine L Clouser

    2011-01-01

    Full Text Available Replication of retroviral and host genomes requires ribonucleotide reductase to convert rNTPs to dNTPs, which are then used as substrates for DNA synthesis. Inhibition of ribonucleotide reductase by hydroxyurea (HU has been previously used to treat cancers as well as HIV. However, the use of HU as an antiretroviral is limited by its associated toxicities such as myelosuppression and hepatotoxicity. In this study, we examined the ribonucleotide reductase inhibitor, gemcitabine, both in cell culture and in C57Bl/6 mice infected with LP-BM5 murine leukemia virus (LP-BM5 MuLV, a murine AIDS model. Gemcitabine decreased infectivity of MuLV in cell culture with an EC50 in the low nanomolar range with no detectable cytotoxicity. Similarly, gemcitabine significantly decreased disease progression in mice infected with LP-BM5. Specifically, gemcitabine treatment decreased spleen size, plasma IgM, and provirus levels compared to LP-BM5 MuLV infected, untreated mice. Gemcitabine efficacy was observed at doses as low as 1 mg/kg/day in the absence of toxicity. Higher doses of gemcitabine (3 mg/kg/day and higher were associated with toxicity as determined by a loss in body mass. In summary, our findings demonstrate that gemcitabine has antiretroviral activity ex vivo and in vivo in the LP-BM5 MuLV model. These observations together with a recent ex vivo study with HIV-1, suggest that gemcitabine has broad antiretroviral activity and could be particularly useful in vivo when used in combination drug therapy.

  12. Differentiation between Acute Skin Rejection in Allotransplantation and T-Cell Mediated Skin Inflammation Based on Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Dolores Wolfram

    2015-01-01

    Full Text Available Advances in microsurgical techniques and immunosuppressive medication have rendered transplantation of vascularized composite allografts possible, when autologous tissue is neither available nor sufficient for reconstruction. However, skin rejection and side effects of long-term immunosuppression still remain a major hurdle for wide adoption of this excellent reconstructive technique. Histopathologic changes during acute skin rejection in vascular composite allotransplantation often mimic inflammatory skin disorders and are hard to distinguish. Hence, the identification of diagnostic and therapeutic markers specific for skin rejection is of particular clinical need. Here we present novel markers allowing for early differentiation between rejection in hind limb allotransplantation and contact hypersensitivity. Assessment of Ccl7, Il18, and Il1b expression is most indicative of distinguishing skin rejection from skin inflammatory disorders. Gene expression levels varied significantly across skin types and regions, indicating localization specific mechanism of leukocyte migration and infiltration. Expression of Il12b, Il17a, and Il1b gene expression levels differed significantly between rejection and inflammation, independent of the skin type. In synopsis of the RNA expression profile and previously assessed protein expression, the Il1 family appears as a promising option for accurate skin rejection diagnosis and, as a following step, for development of novel rejection treatments.

  13. Intense pulsed light (IPL) treatment for the skin in the eye area - clinical and cutometric analysis.

    Science.gov (United States)

    Augustyniak, Anna; Rotsztejn, Helena

    2017-02-01

    The aim of the research was to establish the influence of IPL treatment on skin ageing in the eye area. This study included 24 women, aged 38-63 years (mean age was 48.04) with Fitzpatrick skin type II and III who underwent five successive treatment sessions with an IPL in two-week intervals. The Cutometer (Courage + Khazaka electronic) reference test was an objective method for the assessment of the biomechanical properties of the skin. The measurements were made in three places around the eye. The photo documentation was used to compare state of skin before and after three months of treatments. Additionally, patients filled in a questionnaire, which contained questions concerning self-assessment of the procedure effects. Cutometric analysis showed significant improvement of skin elasticity (statistical significance level is mostly < 0.0001). The comparison of clinical changes in the therapy, based on photo documentation, showed a 25% improvement. This treatment was used in order to improve skin elasticity and decrease the amount and depth of wrinkles. It is a non-invasive treatment, with low risk of complications.

  14. Skin cancer margin analysis within minutes with full-field OCT (Conference Presentation)

    Science.gov (United States)

    Dalimier, Eugénie; Ogrich, Lauren; Morales, Diego; Cusack, Carrie Ann; Abdelmalek, Mark; Boccara, Claude; Durkin, John

    2017-02-01

    Non-melanoma skin cancer (NMSC) is the most common cancer. Treatment consists of surgical removal of the skin cancer. Traditional excision involves the removal of the visible skin cancer with a significant margin of normal skin. On cosmetically sensitive areas, Mohs micrographic tissue is the standard of care. Mohs uses intraoperative microscopic margin assessment which minimizes the surgical defect and can help reduce the recurrence rate by a factor of 3. The current Mohs technique relies on frozen section tissue slide preparation which significantly lengthens operative time and requires on-site trained histotechnicians. Full-Field Optical Coherence Tomography (FFOCT) is a novel optical imaging technique which provides a quick and efficient method to visualize cancerous areas in minutes, without any preparation or destruction of the tissue. This study aimed to evaluate the potential of FFOCT for the analysis of skin cancer margins during Mohs surgery. Over 150 images of Mohs specimens were acquired intraoperatively with FFOCT before frozen section analysis. The imaging procedure took less than 5 minutes for each specimen. No artifacts on histological preparation were found arising from FFOCT manipulation; however frozen section artifact was readily seen on FFOCT. An atlas was established with FFOCT images and corresponding histological slides to reveal FFOCT reading criteria of normal and cancerous structures. Blind analysis showed high concordance between FFOCT and histology. FFOCT can potentially reduce recurrence rates while maintaining short surgery times, optimize clinical workflow, and decrease healthcare costs. For the patient, this translates into smaller infection risk, decreased stress, and better comfort.

  15. Investigation of skin permeation, ex vivo inhibition of venom-induced tissue destruction, and wound healing of African plants used against snakebites

    DEFF Research Database (Denmark)

    Schmidt, Marianne Molander; Stærk, Dan; Nielsen, Hanne Mørck

    2015-01-01

    . Materials and methods Extracts which had previously shown in vitro inhibitory activity against necrosis enzymes, were tested in an ex vivo air–liquid-interface model, and a wound healing scratch assay as well as for their ability to permeate the skin barrier and inhibit venom induced cell death. Results...... Of the 14 water extracts and 16 ethanol extracts tested at a concentration of 10 μg/mL, only the ethanol extracts of Tamarindus indica and Paullinia pinnata resulted in a small but significant increase in cell migration of around 10% compared to treatment with buffer after 24 h treatment. The remaining...... extracts showed no effect, or they even delayed the cell migration compared to the treatment with buffer. After 48 h treatment, 10 of the tested extracts showed a decreased cell migration compared to no treatment. At a 100 μg/mL concentration all the extracts inhibited cell migration and five extracts...

  16. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    Science.gov (United States)

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  17. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatos, I.E.M.; Chettle, D.R.; Green, S.; Scott, M.C. (Birmingham Univ. (United Kingdom). School of Physics and Space Research)

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for ({alpha}, n) type radionuclide neutron sources ({sup 238}PuBe or {sup 241}AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to {sup 252}Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors). (author).

  18. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation.

    Science.gov (United States)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-21

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  19. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in human keratinocytes and ex vivo skin.

    Science.gov (United States)

    Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2013-05-01

    Nicotinamide (vitamin B3) protects from ultraviolet (UV) radiation-induced carcinogenesis in mice and from UV-induced immunosuppression in mice and humans. Recent double-blinded randomized controlled Phase 2 studies in heavily sun-damaged individuals have shown that oral nicotinamide significantly reduces premalignant actinic keratoses, and may reduce new non-melanoma skin cancers. Nicotinamide is a precursor of nicotinamide adenine dinucleotide (NAD(+)), an essential coenzyme in adenosine triphosphate (ATP) production. Previously, we showed that nicotinamide prevents UV-induced ATP decline in HaCaT keratinocytes. Energy-dependent DNA repair is a key determinant of cellular survival after exposure to DNA-damaging agents such as UV radiation. Hence, in this study we investigated whether nicotinamide protection from cellular energy loss influences DNA repair. We treated HaCaT keratinocytes with nicotinamide and exposed them to low-dose solar-simulated UV (ssUV). Excision repair was quantified using an assay of unscheduled DNA synthesis. Nicotinamide increased both the proportion of cells undergoing excision repair and the repair rate in each cell. We then investigated ssUV-induced cyclobutane pyrimidine dimers (CPDs) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxoG) formation and repair by comet assay in keratinocytes and with immunohistochemistry in human skin. Nicotinamide reduced CPDs and 8oxoG in both models and the reduction appeared to be due to enhancement of DNA repair. These results show that nicotinamide enhances two different pathways for repair of UV-induced photolesions, supporting nicotinamide's potential as an inexpensive, convenient and non-toxic agent for skin cancer chemoprevention.

  20. Kinetics of carotenoid distribution in human skin in vivo after exogenous stress: disinfectant and wIRA-induced carotenoid depletion recovers from outside to inside

    Science.gov (United States)

    Fluhr, Joachim W.; Caspers, Peter; van der Pol, J. Andre; Richter, Heike; Sterry, Wolfram; Lademann, Juergen; Darvin, Maxim E.

    2011-03-01

    The human organism has developed a protection system against the destructive effect of free radicals. The aim of the present study was to investigate the extent of exogenous stress factors such as disinfectant and IR-A radiation on the skin, and their influence on the kinetics of carotenoids distribution during the recovery process. Ten healthy volunteers were assessed with resonance spectroscopy using an Argon-laser at 488 nm to excite the carotenoids in vivo. Additionally, Raman-confocal-micro-spectroscopy measurements were performed using a model 3510 Skin Composition Analyzer with spatially resolved measurements down to 30 μm. The measurements were performed at a baseline of 20, 40, 60, and 120 min after an external stressor consisting either of water-filtered infrared A (wIRA) with 150 mW/cm2 or 1 ml/cm2 of an alcoholic disinfectant. Both Raman methods were capable to detect the infrared-induced depletion of carotenoids. Only Raman-microspectroscopy could reveal the carotenoids decrease after topical disinfectant application. The carotenoid-depletion started at the surface. After 60 min, recovery starts at the surface while deeper parts were still depleted. The disinfectant- and wIRA-induced carotenoid depletion in the epidermis recovers from outside to inside and probably delivered by sweat and sebaceous glands. We could show that the Raman microscopic spectroscopy is suited to analyze the carotenoid kinetic of stress effects and recovery.

  1. Oligosaccharidic fractions derived from Triticum vulgare extract accelerate tissutal repairing processes in in vitro and in vivo models of skin lesions.

    Science.gov (United States)

    Sanguigno, Luca; Minale, Massimiliano; Vannini, Ernesto; Arato, Guido; Riccio, Rodolfo; Casapullo, Agostino; Monti, Maria Chiara; Riccio, Raffaele; Formisano, Silvestro; Di Renzo, Gianfranco; Cuomo, Ornella

    2015-01-15

    Triticum vulgare has been extensively used in traditional medicine thanks to its properties of accelerating tissue repair. The aqueous extract of Triticum vulgare (TVE) is currently an active component used by Farmaceutici Damor in the manufacture of certain pharmaceutical products already marketed in Italy and abroad under the brand name Fitostimoline(®), in the formulation of cream and medicated gauze and is commonly used for the treatment of decubitus ulcers, sores, burns, scarring delays, dystrophic diseases, and, more broadly, in the presence of problems relating to re-epithelialization or tissue regeneration. The active components of Fitostimoline(®)-based products determine a marked acceleration of tissutal repairing processes, stimulate chemotaxis and the fibroblastic maturation, and significantly increase the fibroblastic index, which are crucial points in the repairing processes. The aim of the present paper was to identify and characterize the active fractions of TVE responsible for the pharmacological effect in tissutal repairing processes. Several fractions obtained from TVE by ultrafiltration procedures and HPAE chromatography were tested to measure their growth-enhancing activity on NIH-3T3 fibroblasts. The healing action of the same fractions, prepared as cream formulation, was assessed in rat subjected to two different models of skin lesion, skin scarification and excision. Our results showed a pro-proliferative effect of the fractions ST-98 and K>1000 in NIH-3T3 fibroblasts. Moreover these fractions formulated as cream preparations were effective also in in vivo models of skin lesion. The results of the present study showed that these active fractions of TVE are responsible for its pro-proliferative effect. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Combined multimodal photoacoustic tomography, optical coherence tomography (OCT) and OCT based angiography system for in vivo imaging of multiple skin disorders in human(Conference Presentation)

    Science.gov (United States)

    Liu, Mengyang; Chen, Zhe; Sinz, Christoph; Rank, Elisabet; Zabihian, Behrooz; Zhang, Edward Z.; Beard, Paul C.; Kittler, Harald; Drexler, Wolfgang

    2017-02-01

    All optical photoacoustic tomography (PAT) using a planar Fabry-Perot interferometer polymer film sensor has been demonstrated for in vivo human palm imaging with an imaging penetration depth of 5 mm. The relatively larger vessels in the superficial plexus and the vessels in the dermal plexus are visible in PAT. However, due to both resolution and sensitivity limits, all optical PAT cannot reveal the smaller vessels such as capillary loops and venules. Melanin absorption also sometimes causes difficulties in PAT to resolve vessels. Optical coherence tomography (OCT) based angiography, on the other hand, has been proven suitable for microvasculature visualization in the first couple millimeters in human. In our work, we combine an all optical PAT system with an OCT system featuring a phase stable akinetic swept source. This multimodal PAT/OCT/OCT-angiography system provides us co-registered human skin vasculature information as well as the structural information of cutaneous. The scanning units of the sub-systems are assembled into one probe, which is then mounted onto a portable rack. The probe and rack design gives six degrees of freedom, allowing the multimodal optical imaging probe to access nearly all regions of human body. Utilizing this probe, we perform imaging on patients with various skin disorders as well as on healthy controls. Fused PAT/OCT-angiography volume shows the complete blood vessel network in human skin, which is further embedded in the morphology provided by OCT. A comparison between the results from the disordered regions and the normal regions demonstrates the clinical translational value of this multimodal optical imaging system in dermatology.

  3. An integrated technique for the analysis of skin bite marks.

    Science.gov (United States)

    Bernitz, Herman; Owen, Johanna H; van Heerden, Willie F P; Solheim, Tore

    2008-01-01

    The high number of murder, rape, and child abuse cases in South Africa has led to increased numbers of bite mark cases being heard in high courts. Objective analysis to match perpetrators to bite marks at crime scenes must be able to withstand vigorous cross-examination to be of value in conviction of perpetrators. An analysis technique is described in four stages, namely determination of the mark to be a human bite mark, pattern association analysis, metric analysis and comparison with the population data, and illustrated by a real case study. New and accepted techniques are combined to determine the likelihood ratio of guilt expressed as one of a range of conclusions described in the paper. Each stage of the analysis adds to the confirmation (or rejection) of concordance between the dental features present on the victim and the dentition of the suspect. The results illustrate identification to a high degree of certainty.

  4. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  5. Raman spectroscopy of skin neoplasms

    Science.gov (United States)

    Moryatov, A. A.; Kozlov, S. V.; Kaganov, O. I.; Orlov, A. E.; Zaharov, V. P.; Batrachenko, I. A.; Artemiev, D. N.; Blinov, N. V.

    2017-09-01

    Skin melanoma is spread inhomogeneously worldwide, particularly in Samara region there are high figures of skin neoplasms sick rate as well—18.6%. Research goal: to develop a new method of early non-invasive differential diagnostics of skin neoplasms. Registration of Raman spectrum was implemented in the distance of 3-4 mm, the spectrum registration from pathologically changed zone was subsequently conducted, then from healthy skin zone. The test time for 1 patient was no longer than 3-5 min. In a range of experiments ex vivo there were the following results: melanoma—24, basal cell cancer—25, squamosus cell sarcinoma—7, nevus pigmentosis—9, other malignant neoplasms—6; in vivo: melanoma—9, basal cell cancer—8, nevus pigmentosis—2, other benign neoplasms—2. The first results of the research dedicated to studying permissive opportunities of Raman spectroscopy, with successive two-phase analysis of received parameters display high efficiency of method of differential diagnostic for skin melanoma and other malignant neoplasms, pigment and benign skin neoplasms. Safety and rapidity of the research reveal a high potential of the technique.

  6. Medical application of in vivo neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Zanzi, I.; Aloia, J.F.

    1978-01-01

    The clinical usefulness of total body neutron activation analysis (TBNAA) was clearly established at an IAEA panel meeting in Vienna in 1972. It is best demonstrated by the studies involving the measurement of total-body calcium. This measurement provides data useful for the diagnosis and management of metabolic bone disorders. It should be emphasized, however, that while most of the applications to date have involved calcium and phosphorus, the measurement of sodium, chlorine and nitrogen also appear to be useful clinically. Total-body calcium measurements utilizing TBNAA have been used in studies of osteoporosis to establish absolute and relative deficits of calcium in patients with this disease in comparison to a normal contrast population. Changes in total-body calcium (skeletal mass) have also been useful for quantitating the efficacy of various therapies in osteoporosis. Serial measurements over periods of years provide long-term balance data by direct measurement with a higher precision (+- 2%) than is possible by the use of any other technique. In the renal osteodystrophy observed in patients with renal failure, disorders of both calcium and phosphorus, as well as electrolyte disturbances, have been studied. The measure of total-body levels of these elements gives the clinician useful data upon which to design dialysis therapy. The measurement of bone changes in endocrine dysfunction has been studied, particularly in patients with thyroid and parathyroid disorders. In parathyroidectomy, the measurement of total-body calcium, post-operatively, can indicate the degree of bone resorption. Skeletal metabolism and body composition in acromegaly and Cushing's disease have also been investigated by TBNAA. Levels of cadmium in liver and kidney have also been measured in-vivo by prompt-gamma neutron activation and associated with hypertension, emphysema and cigarette smoking.

  7. Transcriptomic analysis of bottlenose dolphin (Tursiops truncatus) skin biopsies to assess the effects of emerging contaminants.

    Science.gov (United States)

    Lunardi, Denise; Abelli, Luigi; Panti, Cristina; Marsili, Letizia; Fossi, Maria Cristina; Mancia, Annalaura

    2016-03-01

    Chemicals discovered in water at levels that may be significantly different than expected are referred to as contaminants of emerging concern (CECs) because the risk to environmental health posed by their occurrence/frequency is still unknown. The worldwide distributed compounds perfluorooctanoic acid (PFOA) and bisphenol A (BPA) may fall into this category due to effects on endocrine receptors. We applied an ex vivo assay using small slices of bioptic skin from the bottlenose dolphin, Tursiops truncatus, cultured and treated for 24 h with different PFOA or BPA concentrations to analyze global gene expression. RNA was labeled and hybridized to a species-specific oligomicroarray. The skin transcriptome held information on the contaminant exposure, potentially predictive about long-term effects on health, being the genes affected involved in immunity modulation, response to stress, lipid homeostasis, and development. The transcriptomic signature of dolphin skin could be therefore relevant as classifier for a specific contaminant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. SpectraCam®: A new polarized hyperspectral imaging system for repeatable and reproducible in vivo skin quantification of melanin, total hemoglobin, and oxygen saturation.

    Science.gov (United States)

    Nkengne, A; Robic, J; Seroul, P; Gueheunneux, S; Jomier, M; Vie, K

    2018-02-01

    An accurate way to determine skin pigmentation is to acquire the spectral reflectance of a skin sample and to quantify chromophores by reverse calculation from physical models of light propagation. Therefore, we tested a new hyperspectral imaging device and software suite, the SpectraCam ® system, and evaluated its accuracy to quantify skin chromophores. Validation of the SpectraCam ® system was performed by, firstly, comparing the known and the acquired reflectance spectra of color phantoms. Repeatability and reproducibility were then evaluated by two operators who performed acquisitions at different time points and compared the acquired reflectance spectra. The specificity of the system was tested by quantitative analysis of single chromophore variation models: lentigo and pressure relief. Finally, we tested the ability of the SpectraCam ® system to detect variations in chromophore in the eye region due to the daily application of a new anti-dark circle cosmetic product. The SpectraCam ® system faithfully acquires the reflectance spectra of color phantoms (r 2 >0.90). The skin reflectance spectra acquired by different operators at different times are highly repeatable (r 2 >0.94) and reproducible (r 2 >0.99). The SpectraCam ® system can also produce qualitative maps that reveal local variations in skin chromophore or underlying structures such as blood vessels. The system is precise enough to detect melanin variation in lentigo or total hemoglobin and oxygen saturation variations upon pressure relief. It is also sensitive enough to detect a decrease in melanin in the eye region due to the application of an anti-dark circle cosmetic product. The SpectraCam ® system proves to be rapid and produces high-resolution data encompassing a large field of view. It is a robust hyperspectral imaging system that quantifies melanin, total hemoglobin, and oxygen saturation and is well adapted to cosmetic research. © 2017 John Wiley & Sons A/S. Published by John Wiley

  9. Feasibility of measuring arsenic and selenium in human skin using in vivo x-ray fluorescence (XRF)--a comparison of methods.

    Science.gov (United States)

    Shehab, H; Desouza, E D; O'Meara, J; Pejović-Milić, A; Chettle, D R; Fleming, D E B; McNeill, F E

    2016-01-01

    In recent years, in vivo measurement systems of arsenic in skin by K-shell x-ray fluorescence (XRF) have been developed, including one which was applied in a pilot study of human subjects. Improved tube-based approaches suggest the method can be further exploited for in vivo studies. Recently, it has been suggested that selenium deficiency is correlated with arsenic toxicity. A non-invasive measurement of both elements could therefore be of potential interest. The main aim of this current study was to evaluate and compare the performance of an upgraded portable XRF system and an advanced version of the benchtop XRF system for both selenium and arsenic. This evaluation was performed in terms of arsenic and selenium Kα detection limits for a 4W gold anode Olympus InnovX Delta portable analyzer (40 kVp) in polyester resin skin-mimicking phantoms. Unlike the polychromatic source earlier reported in the literature, the benchtop tube-based technique involves monochromatic excitation (25 W silver anode, manufactured by x-ray optics, XOS) and a higher throughput detector type. Use of a single exciting energy allows for a lower in vivo dose delivered and superior signal-noise ratio. For the portable XRF method, arsenic and selenium minimum detection limits (MDLs) of 0.59  ±  0.03 ppm and 0.75  ±  0.02 ppm respectively were found for 1 min measurement times. The MDLs for arsenic and selenium using the benchtop system were found to be 0.35  ±  0.01 ppm and 0.670  ±  0.004 ppm respectively for 30 min measurement times. In terms of a figure of merit (FOM), allowing for dose as well as MDL, the benchtop system was found to be superior for arsenic and the two systems were equivalent, within error, for selenium. We shall discuss the performance and possible improvements of each system, their ease of use and potential for field application.

  10. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation.

    Science.gov (United States)

    Aggarwal, Geeta; Dhawan, Sanju; HariKumar, S L

    2012-03-01

    The feasibility of development of transdermal delivery system of olanzapine utilizing natural oils as permeation enhancers was investigated. Penetration enhancing potential of corn (maize) oil, groundnut oil and jojoba oil on in vitro permeation of olanzapine across rat skin was studied. The magnitude of flux enhancement factor with corn oil, groundnut oil and jojoba oil was 7.06, 5.31 and 1.9 respectively at 5mg/ml concentration in solvent system. On the basis of in vitro permeation studies, eudragit based matrix type transdermal patches of olanzapine were fabricated using optimized concentrations of natural oils as permeation enhancers. All transdermal patches were found to be uniform with respect to physical characteristics. The interaction studies carried out by comparing the results of ultraviolet, HPLC and FTIR analyses for the pure drug, polymers and mixture of drug and polymers indicated no chemical interaction between the drug and excipients. Corn oil containing unsaturated fatty acids was found to be promising natural permeation enhancer for transdermal delivery of olanzapine with greatest cumulative amount of drug permeated (1010.68 μg/cm²/h) up to 24 h and caused no skin irritation. The fabricated transdermal patches were found to be stable. The pharmacokinetic characteristics of the final optimized matrix patch (T2) were determined after transdermal application to rabbits. The calculated relative bioavailability of TDDS was 113.6 % as compared to oral administration of olanzapine. The therapeutic effectiveness of optimized transdermal system was confirmed by tranquillizing activity in rotarod and grip mice model.

  11. Metabolomic analysis using porcine skin: a pilot study of analytical techniques.

    Science.gov (United States)

    Wu, Julie; Fiehn, Oliver; Armstrong, April W

    2014-06-15

    Metabolic byproducts serve as indicators of the chemical processes and can provide valuable information on pathogenesis by measuring the amplified output. Standardized techniques for metabolome extraction of skin samples serve as a critical foundation to this field but have not been developed. We sought to determine the optimal cell lysage techniques for skin sample preparation and to compare GC-TOF-MS and UHPLC-QTOF-MS for metabolomic analysis. Using porcine skin samples, we pulverized the skin via various combinations of mechanical techniques for cell lysage. After extraction, the samples were subjected to GC-TOF-MS and/or UHPLC-QTOF-MS. Signal intensities from GC-TOF-MS analysis showed that ultrasonication (2.7x107) was most effective for cell lysage when compared to mortar-and-pestle (2.6x107), ball mill followed by ultrasonication (1.6x107), mortar-and-pestle followed by ultrasonication (1.4x107), and homogenization (trial 1: 8.4x106; trial 2: 1.6x107). Due to the similar signal intensities, ultrasonication and mortar-and-pestle were applied to additional samples and subjected to GC-TOF-MS and UHPLC-QTOF-MS. Ultrasonication yielded greater signal intensities than mortar-and-pestle for 92% of detected metabolites following GC-TOF-MS and for 68% of detected metabolites following UHPLC-QTOF-MS. Overall, ultrasonication is the preferred method for efficient cell lysage of skin tissue for both metabolomic platforms. With standardized sample preparation, metabolomic analysis of skin can serve as a powerful tool in elucidating underlying biological processes in dermatological conditions.

  12. Use of multispectral digital skin lesion analysis for evaluation of nevi in children.

    Science.gov (United States)

    Dorizas, Andrew S; Nassar, Amer H; Goldberg, David J

    2014-10-01

    We determine if the use of Multispectral Digital Skin Lesion Analysis for the evaluation of nevi in children and possible detection of malignancies. Evidence gathered from a pivotal study involving 1,383 patients with 1,831-pigmented lesions. The isolated use of the pediatric population within this study was used to determine the specificity and sensitivity of such a device with comparison to a dermatologists evaluation. For all lesions from the assessed pediatric population the biopsy ratio was equivalent for the Multispectral Digital Skin Lesion Analysis device as for the dermatologists when performing as independent reviewers. Furthermore analyzed data suggests that dermatologists who incorporate the Multispectral Digital Skin Lesion Analysis device perform better than they would independently or if they were to follow the device blindly without incorporating their own judgment. An approach that integrates automated imaging technology like the Multispectral Digital Skin Lesion Analysis device, along with another diagnostic aid, with the end result being cost-effective, easy to use by even non-experts and comforting for the pediatric patient is likely to compete to be the new gold standard in successful early diagnosis and management of melanoma.

  13. Integrating Psychology and Philosophy: A Brief Analysis of "The Blessing of a Skinned Knee"

    Science.gov (United States)

    Hu, Yali

    2016-01-01

    A brief analysis of "The Blessing of a Skinned Knee" gives a glimpse of beliefs and practices cherished by the family that attempts to employ Jewish teachings to raise children. The child nurturing and rearing practices are in a degree enlightening and supplementing the existing literature in education. Prevention with the inspiration…

  14. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude

    Science.gov (United States)

    Karagiannis, Evangelos; Tanou, Georgia; Samiotaki, Martina; Michailidis, Michail; Diamantidis, Grigorios; Minas, Ioannis S.; Molassiotis, Athanassios

    2016-01-01

    The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude. PMID:27891143

  15. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    Science.gov (United States)

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  16. Comparative physiological and proteomic analysis reveal distinct regulation of peach skin quality traits by altitude

    Directory of Open Access Journals (Sweden)

    Evangelos Karagiannis

    2016-11-01

    Full Text Available The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analysed in peach fruit (cv. June Gold, harvested in 16 orchards located in low (71.5 m mean or high (495. m mean altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach’s response to altitude.

  17. Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing

    Science.gov (United States)

    Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan

    2011-09-01

    Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.

  18. Feature Selection on Hyperspectral Data for Dismount Skin Analysis

    Science.gov (United States)

    2014-03-27

    to make an identification. This is not the case with other human identification systems, such as fingerprint, voice, hand and iris [42], which...challenge. For decades, technology has been evolving to expand the capabilities of human identification systems. The most popular biometric ...technologies include fingerprint, voice, hand, iris , and face analysis [42]. A new approach to human identification could use hyperspectral imaging (HSI) to

  19. In vivo time-lapse imaging of skin burn wound healing using second-harmonic generation microscopy

    Science.gov (United States)

    Yasui, Takeshi; Tanaka, Ryosuke; Hase, Eiji; Fukushima, Shu-ichiro; Araki, Tsutomu

    2014-02-01

    Wound healing is a process to repair the damaged tissue caused by thermal burn, incised wound, or stab wound. Although the wound healing has many aspects, it is common for dynamics of collagen fiber, such as decomposition, production, or growth, to be closely related with wound healing. If such the healing process can be visualized as a timelapse image of the collagen fiber in the same subject, one may obtain new findings regarding biological repairing mechanisms in the healing process. In this article, to investigate the temporal modoification of dermal collagen fiber in the burn wound healing, we used second-harmonic-generation (SHG) microscopy, showing high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional sectioning, minimal invasiveness, deep penetration, the absence of interference from background light, and in vivo measurement without additional staining. Since SHG light arises from a non-centrosymmetric triple helix of three polypeptide chains in the collagen molecule, SHG intensity sensitively reflects the structure maturity of collagen molecule and its aggregates. A series of time-lapse SHG images during the wound healing process of 2 weeks clearly indicated that condensation and melting of dermal collagen fibers by the deep dermal burn, decomposition of the damaged collagen fibers in the inflammation phase, production of new collagen fibers in the proliferation phase, and the growth of the new collagen fibers in the remodeling phase. These results show a high potential of SHG microscopy for optical assessment of the wound healing process in vivo.

  20. Validation of image analysis techniques to measure skin aging features from facial photographs.

    Science.gov (United States)

    Hamer, M A; Jacobs, L C; Lall, J S; Wollstein, A; Hollestein, L M; Rae, A R; Gossage, K W; Hofman, A; Liu, F; Kayser, M; Nijsten, T; Gunn, D A

    2015-11-01

    Accurate measurement of the extent skin has aged is crucial for skin aging research. Image analysis offers a quick and consistent approach for quantifying skin aging features from photographs, but is prone to technical bias and requires proper validation. Facial photographs of 75 male and 75 female North-European participants, randomly selected from the Rotterdam Study, were graded by two physicians using photonumeric scales for wrinkles (full face, forehead, crow's feet, nasolabial fold and upper lip), pigmented spots and telangiectasia. Image analysis measurements of the same features were optimized using photonumeric grades from 50 participants, then compared to photonumeric grading in the 100 remaining participants stratified by sex. The inter-rater reliability of the photonumeric grades was good to excellent (intraclass correlation coefficients 0.65-0.93). Correlations between the digital measures and the photonumeric grading were moderate to excellent for all the wrinkle comparisons (Spearman's rho ρ = 0.52-0.89) bar the upper lip wrinkles in the men (fair, ρ = 0.30). Correlations were moderate to good for pigmented spots and telangiectasia (ρ = 0.60-0.75). These comparisons demonstrate that all the image analysis measures, bar the upper lip measure in the men, are suitable for use in skin aging research and highlight areas of improvement for future refinements of the techniques. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons.

  1. Analysis of the mutations inducedd by conazole fungicides in vivo

    Science.gov (United States)

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  2. An Advertisement and Article Analysis of Skin Products and Topics in Popular Women's Magazines: Implications for Skin Cancer Prevention.

    Science.gov (United States)

    Basch, Corey H; Mongiovi, Jennifer; Hillyer, Grace Clarke; Fullwood, M D; Ethan, Danna; Hammond, Rodney

    2015-01-01

    In the United States, skin cancer is the most commonly diagnosed cancer, with an estimated 5 million people treated per year and annual medical treatment expenditures that exceed 8 billion dollars. The purpose of this study was two-fold: 1) to enumerate the number of advertisements for skin products with and without Sun Protection Factor (SPF) and to further analyze the specific advertisements for sunblock to determine if models, when present, depict sun safe behaviors and 2) to enumerate the number of articles related to the skin for content. Both aims include an assessment for differences in age and in magazines targeting a Black or Latina population. The sample for this cross sectional study was comprised of 99 issues of 14 popular United States magazines marketed to women, four of which market to a Black or Latina audience. There were 6,142 advertisements, of which 1,215 (19.8%, 95% CI: 18.8-20.8%) were related to skin products. Among the skin product advertisements, 1,145 (93.8%, 95% CI: 93.9-96.3%) depicted skin products without SPF. The majority of skin articles (91.2%, 95% CI: 91.7-100.0%), skin product advertisements (89.9%, 95% CI: 88.2-91.6%), and sunblock advertisements featuring models (were found in magazines aimed at the older (>24 yr) audience. Future research on this topic could focus on the extent to which images in these magazines translate into risky health behaviors, such as sun seeking, or excessive other harmful effects of UV radiation.

  3. Comparative Transcriptome Analysis of Raccoon Dog Skin to Determine Melanin Content in Hair and Melanin Distribution in Skin

    OpenAIRE

    Zhanyu Du; Kai Huang; Jiaping Zhao; Xingchao Song; Xiumei Xing; Qiong Wu; Linbo Zhang; Chao Xu

    2017-01-01

    The raccoon dog (Nyctereutes procyonoides) is an important canid fur-bearing animal species worldwide. Chinese raccoon dogs that present a white mutation, especially those with a white coat. Exploring melanin biosynthesis in the hair and skin of raccoon dogs is important for understanding the survival and evolutionary mechanisms of them. In this study, we measured the content of melanin in the hair of two types of raccoon dog and generated stained slices of skin tissue. The results indicated ...

  4. Synthetic analysis of associations between IL-10 polymorphisms and skin cancer risk.

    Science.gov (United States)

    Zhao, Hongbo; Yang, Jiaoli; Yu, Zhenzhen; Shen, Hui; Huang, Xinlin; Zhang, Mi; Long, Teng; Cailing, A; Wang, Wenhui

    2018-01-23

    The current study was designed to quantitatively summarize the evidence for the strength of the associations between common IL-10 functional polymorphisms and skin cancer risk. Relevant publications concerning the associations between common IL-10 functional polymorphisms(-1082G>A, -819C>T and -592C>A) and skin cancer were retrieved by a comprehensive electronic literature search in PubMed, Web of Science, EBSCO, Embase, China National Knowledge Infrastructure, Wanfang, Chinese Biomedical Database (CBM). The odds ratio (OR) and 95% confidence interval (CI) were utilized to assess the strength of the relationship. A total of 26 studies including 4090 cases and 4133 controls (-1082G>A, 10 studies with 1809 cases and 1830 controls; -819C>T, 7 studies with 862 cases and 957 controls; -592C>A, 9 studies with 1419 cases and 1346 controls) were enrolled in the meta-analysis. Overall, the results revealed a borderline decreased risk of skin cancer in heterozygote model (OR = 0.82, 95CI = 0.67-1.00, p = 0.05). The subgroup analysis also presented similar association for non-melanoma skin cancer in heterozygote model (OR = 0.67, 95CI = 0.50-0.91, p = 0.01). Moreover, the further analysis based on the histological type of non-melanoma skin cancer indicated a significantly decreased risk of BCC in allele model (OR = 0.67, 95% CI = 0.50-0.91, p = 0.02) and dominant model (OR = 0.68, 95% CI = 0.48-0.98, p = 0.04). However, neither overall analysis nor subgroup analysis based on cancer subtype revealed a significant association of -1082G>A or -592C>A polymorphisms with skin cancer. The present study suggested a potential association between IL-10 -819C>T polymorphism and decreased risk of skin cancer, but a lack of association for -1082G>A and -592C>A polymorphisms. Further invalidation is urgently needed.

  5. Automatic motion correction for in vivo human skin optical coherence tomography angiography through combined rigid and nonrigid registration

    Science.gov (United States)

    Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.

    2017-06-01

    When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.

  6. Melanin quantification by in vitro and in vivo analysis of near-infrared fluorescence.

    Science.gov (United States)

    Kalia, Sunil; Zhao, Jianhua; Zeng, Haishan; McLean, David; Kollias, Nikiforos; Lui, Harvey

    2018-01-01

    Objective measurements of melanin can provide important information for differentiating melanoma from benign pigmented lesions and in assessing pigmentary diseases. Herein, we evaluate near-infrared (NIR) fluorescence as a possible tool to quantify melanin. Various concentrations of in vitro Sepia melanin in tissue phantoms were measured with NIR fluorescence and diffuse reflectance spectroscopy. Similar optic measurements were conducted in vivo on 161 normal human skin sites. Diffuse reflectance spectroscopy was used to quantify the melanin content via Stamatas-Kollias algorithm. At physiologic concentrations, increasing in vitro melanin concentrations demonstrated higher fluorescence that was linearly correlated (R 2  = 0.99, p < .001). At higher concentrations, the fluorescence signal plateaued. A linear relationship was also observed with melanin content in human skin (R 2  = 0.59, p < .001). Comparing the fluorescence and reflectance signals with in vitro and in vivo samples, the estimated melanin concentration in human skin ranged between 0 and 1.25 mg/ml, consistent with previous quantitative studies involving invasive methods. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The economic benefits of increasing kangaroo skin-to-skin care and breastfeeding in neonatal units: analysis of a pragmatic intervention in clinical practice.

    Science.gov (United States)

    Lowson, Karin; Offer, Clare; Watson, Julie; McGuire, Bill; Renfrew, Mary J

    2015-01-01

    A number of significant recent research studies have used techniques of economic modelling to demonstrate the potential benefits of increasing breastfeeding rates in the UK overall, and specifically in neonatal care. This paper complements this growing body of evidence by presenting an economic analysis of data from an actual intervention, the 'Getting It Right From the Start' programme, which took place in the north of the UK during 2011-12, with the aim of increasing breastfeeding and kangaroo skin-to-skin care rates in neonatal units. 'Getting It Right from the Start' was a pragmatic, multifaceted programme of change delivered under the auspices of the regional Health Innovation and Education Cluster, of which 17 were established in the UK in 2010. It engaged with 18 neonatal units in two Neonatal Networks with the aim of increasing kangaroo skin-to-skin care and breastfeeding rates. As part of the evaluation of the programme, we conducted an economic study comparing the overall costs and benefits of the intervention. Overall, the economic analysis demonstrated that for every £1 invested in the intervention to increase kangaroo skin-to-skin care and breastfeeding rates, between £4.00 and £13.82 of benefit was generated. This was spread across different healthcare settings and the timescale for the realisation of benefits will vary. The increases in kangaroo skin-to-skin care generated the greatest cost savings, with potential cost savings ranging between £668,000 (minimum cost assumptions) to more than £2 m (maximum cost assumptions). Increases in breastfeeding associated with the project generated between £68,486 and £582,432. The majority of the cost savings generated were associated with reductions in cases of gastroenteritis and necrotising enterocolitis. This was one of the first economic evaluations of an actual intervention to increase breastfeeding and kangaroo skin-to-skin care in neonatal units. It complements the existing economic models by

  8. Patient acceptance and diagnostic utility of automated digital image analysis of pigmented skin lesions.

    Science.gov (United States)

    Frühauf, J; Leinweber, B; Fink-Puches, R; Ahlgrimm-Siess, V; Richtig, E; Wolf, I H; Niederkorn, A; Quehenberger, F; Hofmann-Wellenhof, R

    2012-03-01

    Computerized analysis of pigmented skin lesions may help to increase diagnostic accuracy for melanoma, help to avoid unnecessary procedures and reduce health care costs. We evaluated both the patient acceptance and diagnostic utility of such an analysis tool in a real clinical setting. Two hundred nine consecutive patients (median age: 34 years, range: 2-73 years), who were concerned about a pigmented skin lesion, answered a questionnaire about their attitude towards computerized analysis and their confidence in the resulting findings. Using a dermoscopy analyser, their skin lesions (n = 219) were then grouped into the categories, benign, suspicious and malignant, and results were compared with those obtained by in-person examination of dermato-oncologic experts. More than half of the patients (n = 114) would accept the use of computer analysis for melanoma screening; although 16 (14.0%) patients would accept this method solely, 98 (86.0%) patients would prefer an additional in-person examination by a dermatologist. Of the 219 pigmented skin lesions, the dermoscopic experts rated 171 (78.1%) as benign, 36 (16.4%) as suspicious and 12 (5.5%) as malignant, whereas computer analysis revealed 102 (46.6%) benign, 78 (35.6%) suspicious and 39 (17.8%) malignant lesions. At the expense of specificity (48.8%), the sensitivity of computerized analysis was excellent (100%) and equal to that of in-person examination. Most patients would accept computer analysis for melanoma screening, some of them even without reservations. However, due to a high rate of false positive computer assessments, it cannot be recommended as a screening tool at this time. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  9. In Vivo Antioxidant and Anti-Skin-Aging Activities of Ethyl Acetate Extraction from Idesia polycarpa Defatted Fruit Residue in Aging Mice Induced by D-Galactose

    Directory of Open Access Journals (Sweden)

    Yang Ye

    2014-01-01

    Full Text Available Two different concentrations of D-galactose (D-gal induced organism and skin aging in Kunming mice were used to examine comprehensively the antioxidant and antiaging activities of ethyl acetate extraction (EAE from Idesia polycarpa defatted fruit residue for the first time. The oxygen radical absorbance capacity (ORAC of EAE was 13.09 ± 0.11 μmol Trolox equivalents (TE/mg, which showed EAE had great in vitro free radical scavenging and antioxidant activity. Biochemical indexes and morphological analysis of all tested tissues showed that EAE could effectively improve the total antioxidant capacity (T-AOC of the antioxidant defense system of the aging mice, enhance the activities of superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GSH-Px of tissues and serum, increase glutathione (GSH content and decrease the malondialdehyde (MDA content, and maintain the skin collagen, elastin, and moisture content. Meanwhile, EAE could effectively attenuate the morphological damage in brain, liver, kidney, and skin induced by D-gal and its effect was not less than that of the well-known L-ascorbic acid (VC and α-tocopherol (VE. Overall, EAE is a potent natural antiaging agent with great antioxidant activity, which can be developed as a new medicine and cosmetic for the treatment of age-related conditions.

  10. Use of Adipose-Derived Stem Cells to Support Topical Skin Adhesive for Wound Closure: A Preliminary Report from Animal In Vivo Study

    Directory of Open Access Journals (Sweden)

    Maciej Nowacki

    2016-01-01

    Full Text Available The aim of this study was to determine the local and systemic effects of adipose-derived stem cells (ADSCs as a component of topical skin adhesive in an animal artificial wound closure model. In presented study the cosmetic effects, histological analysis, mechanical properties, and cell migration have been assessed to evaluate the usefulness of ADSCs as supporting factor for octyl blend cyanoacrylate adhesive. The total of 40 rats were used and divided into six groups. In the Study Group, ADSCs were administered by multipoint injection of the six surrounding intrawound areas with additional freely leaving procedure of the cells between the skin flaps just before applying adhesive to close the wound. Five control groups without using ADSCs, utilizing different types of standard wound closure, were created in order to check efficiency of experimental stem cell therapy. In our study, we proved that ADSCs could be used effectively also as a supportive tool in topical skin adhesive for wound closure. However we did not achieve any spectacular differences related to such aspects as better mechanical properties or special biological breakthroughs in wound healing properties. The use of stem cells, especially ADSCs for wound closure can provide an inspiring development in plastic and dermatologic surgery.

  11. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog.

    Science.gov (United States)

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K Leslie; Abel, Erika L; Vasquez, Karen M; MacLeod, Michael C

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Proteome Analysis of Human Sebaceous Follicle Infundibula Extracted from Healthy and Acne-Affected Skin

    Science.gov (United States)

    Bek-Thomsen, Malene; Lomholt, Hans B.; Scavenius, Carsten; Enghild, Jan J.; Brüggemann, Holger

    2014-01-01

    Acne vulgaris is a very common disease of the pilosebaceous unit of the human skin. The pathological processes of acne are not fully understood. To gain further insight sebaceous follicular casts were extracted from 18 healthy and 20 acne-affected individuals by cyanoacrylate-gel biopsies and further processed for mass spectrometry analysis, aiming at a proteomic analysis of the sebaceous follicular casts. Human as well as bacterial proteins were identified. Human proteins enriched in acne and normal samples were detected, respectively. Normal follicular casts are enriched in proteins such as prohibitins and peroxiredoxins which are involved in the protection from various stresses, including reactive oxygen species. By contrast, follicular casts extracted from acne-affected skin contained proteins involved in inflammation, wound healing and tissue remodeling. Among the most distinguishing proteins were myeloperoxidase, lactotransferrin, neutrophil elastase inhibitor and surprisingly, vimentin. The most significant biological process among all acne-enriched proteins was ‘response to a bacterium’. Identified bacterial proteins were exclusively from Propionibacterium acnes. The most abundant P. acnes proteins were surface-exposed dermatan sulphate adhesins, CAMP factors, and a so far uncharacterized lipase in follicular casts extracted from normal as well as acne-affected skin. This is a first proteomic study that identified human proteins together with proteins of the skin microbiota in sebaceous follicular casts. PMID:25238151

  13. Histology of Mice Skin Tissue Based on in Vivo Evaluation of the Anticancer Extracts of Marine Sponge Aaptos Suberitoides

    Directory of Open Access Journals (Sweden)

    Wijayanti Pujitono

    2011-02-01

    Full Text Available The sponge Aaptos suberitoides can produce high secondary metabolite with some farmocological activities as antimicrobial, antiviral, antiinflamatory, and anticancer agents. The purpose of this research is to find out correlations between activities of the etanol extracts of marine sponges Aaptos suberitoides on the cancer growth of subcutaneous mice (Mus musculus injected by Benzo(apiren. For the purpose the mice were divided into six groups, i.e. I, II, III, IV, V, and VI. Each group was treated with carcinogenic inductions by intravenously injecting the Benzo(apiren concentration of 0.3g/0.2 ml oleum olivarum. After the cancer was appeared at the fifteenth day, the mice were treated by the anticancer extracts of marine sponges Aaptos suberitoides with concentrations of 500 mg/kg BB (Group IV, 1000 mg/kg BB (Group IV, and 1500 mg/kg BB (Group IV. The treatments were orally done each day for two weeks. At the twentieth week, subcutaneous cancer tissues were taken to make histological preparates using a parafin method. Result of the histological observation indicates that cancer in the mice was fibrosarcoma characterized by the thickening dermis layers, necrosis, mitosis, and nuclear polymorphsm. Necrosis, mitosis, and nuclear polymorphism occurred in Groups II, IV, V, and VI, and did not in Groups I and II. Presentation of necrosis was 20-60%, mitosis was in 3-4 cells, and nuclear polymorphism was 100%. Result of the statistical analyses by using the Kruskal-Wallis method and the Pair Comparison test indicates that the anticancer extracts of marine sponges with the concentrations of 500 mg/kg BB, 1000 mg/kg BB, and 1500 mg/kg BB had no activity inducing mice skin cancer.

  14. Comparison of autologous versus allogeneic epithelial-like stem cell treatment in an in vivo equine skin wound model.

    Science.gov (United States)

    Broeckx, Sarah Y; Borena, Bizunesh M; Van Hecke, Lore; Chiers, Koen; Maes, Sofie; Guest, Deborah J; Meyer, Evelyne; Duchateau, Luc; Martens, Ann; Spaas, Jan H

    2015-10-01

    Several studies report beneficial effects of autologous and allogeneic stem cells on wound healing. However, no comparison between autologous versus allogeneic epithelial-like stem cells (EpSCs) has been made so far. For this reason, we first hypothesize that both EpSC types enhance wound healing in comparison to vehicle treatment and untreated controls. Second, on the basis of other studies, we hypothesized that there would be no difference between autologous and allogeneic EpSCs. Twelve full-thickness skin wounds were created in six horses. Each horse was subjected to (i) autologous EpSCs, (ii) allogeneic EpSCs, (iii) vehicle treatment or (iv) untreated control. Wound evaluation was performed at day 3, 7 and 14 through wound exudates and at week 1, 2 and 5 through biopsies. Wound circumference and surface were significantly smaller in autologous EpSC-treated wounds. A significantly lower amount of total granulation tissue (overall) and higher vascularization (week 1) was observed after both EpSC treatments. Significantly more major histocompatibility complex II-positive and CD20-positive cells were noticed in EpSC-treated wounds at week 2. In autologous and allogeneic groups, the number of EpSCs in center biopsies was low after 1 week (11.7% and 6.1%), decreased to 7.6% and 1.7%, respectively (week 2), and became undetectable at week 5. These results confirm the first hypothesis and partially support the second hypothesis. Besides macroscopic improvements, both autologous and allogeneic EpSCs had similar effects on granulation tissue formation, vascularization and early cellular immune response. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Comparative proteomic analysis of fibrosarcoma and skin fibroblast cell lines.

    Science.gov (United States)

    Meral, Ogunc; Uysal, Hamdi

    2015-02-01

    Comparative proteomic analysis of normal and cancer cell lines provides for a better understanding of the molecular mechanism of cancer development and is essential for developing more effective strategies for new biomarker or drug target discovery. The purpose of this study is to compare protein expression levels between fibrosarcoma and fibroblast cell lines. In our study, two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques were carried out to compare the protein profile between fibrosarcoma and fibroblast cell lines. We prepared cell lysate samples to analyze intracellular proteins and secretome samples to analyze extracellular proteins in both cell lines. Our results revealed 13 upregulated proteins and 1 downregulated protein of which all of them identified in fibrosarcoma cell line after the comparison with fibroblast cell line cell lysates. When comparing secretome profiles of both cell lines, we found and identified 13 proteins only expressed in fibrosarcoma cell line. These identified proteins have common functions such as cell proliferation, cell differentiation, invasion, metastasis, and apoptosis in cancer. The data obtained from this study indicates that these proteins have importance on understanding the molecular mechanism of fibrosarcoma. These proteins may serve as candidate biomarkers and drug targets for future clinical studies.

  16. Skin Deep: Highlights of NREL Surface Analysis PV Research

    Energy Technology Data Exchange (ETDEWEB)

    Asher, S.; Pankow, J.; Perkins, C.; Reedy, R.; Teeter, G.; Young, M.

    2005-11-01

    The Surface Analysis project provides measurement support and leadership for collaborative research activities involving surface chemistry and physics in all areas of the PV program. Significant results from the past fiscal year include the following: i) in-situ XPS, UPS, and AES studies of chemical-bath exposure of CIGS surfaces demonstrated that Group-III elements are preferentially removed from the surface, that type conversion of the surface occurs, and that the addition of a surfactant improves CdS deposition and thus device performance; ii) XPS studies of polyethylene terephthalate (PET) candidate backsheet materials have shown that plasma exposure prior to oxide-barrier deposition results in the formation of low-molecular-weight fragments that result in the formation of a weak interfacial layer that fails during damp-heat exposure; iii) an empirical relation was derived for the source geometry that leads to optimal film-thickness uniformity in rotating-substrate physical-vapor deposition (PVD) systems; and iv) PVD flux-distribution calculations were performed to develop a novel method for combinatorial thin-film synthesis.

  17. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    Energy Technology Data Exchange (ETDEWEB)

    Boulware, Stephen [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L. [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States); Vasquez, Karen M. [Division of Pharmacy and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723 (United States); MacLeod, Michael C., E-mail: mcmacleod@mdanderson.org [Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957 (United States)

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  18. Skin Infections and Antibiotic Stewardship: Analysis of Emergency Department Prescribing Practices, 2007-2010

    Directory of Open Access Journals (Sweden)

    Daniel J. Pallin

    2014-05-01

    Full Text Available Introduction: National guidelines suggest that most skin abscesses do not require antibiotics, and that cellulitis antibiotics should target streptococci, not community-associated MRSA (CA-MRSA. The objective of this study is to describe antimicrobial treatment of skin infections in U.S. emergency departments (EDs and analyze potential quality measures. Methods: The National Hospital Ambulatory Medical Care Survey (NHAMCS is a 4-stage probability sample of all non-federal U.S. ED visits. In 2007 NHAMCS started recording whether incision and drainage was performed at ED visits. We conducted a retrospective analysis, pooling 2007-2010 data, identified skin infections using diagnostic codes, and identified abscesses by performance of incision and drainage. We generated national estimates and 95% confidence intervals using weighted analyses; quantified frequencies and proportions; and evaluated antibiotic prescribing practices. We evaluated 4 parameters that might serve as quality measures of antibiotic stewardship, and present 2 of them as potentially robust enough for implementation. Results: Of all ED visits, 3.2% (95% confidence interval 3.1-3.4% were for skin infection, and 2.7% (2.6-2.9% were first visits for skin infection, with no increase over time (p=0.80. However, anti-CA-MRSA antibiotic use increased, from 61% (56-66% to 74% (71-78% of antibiotic regimens (p<0.001. Twenty-two percent of visits were for abscess, with a non-significant increase (p=0.06. Potential quality measures: Among discharged abscess patients, 87% were prescribed antibiotics (84-90%, overuse. Among antibiotic regimens for abscess patients, 84% included anti-CA-MRSA agents (81-89%, underuse. Conclusion: From 2007-2010, use of anti-CA-MRSA agents for skin infections increased significantly, despite stable visit frequencies. Antibiotics were over-used for discharged abscess cases, and CA-MRSA-active antibiotics were underused among regimens when antibiotics were used for

  19. Applications of nuclear technologies for in-vivo elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Wielopolski, L.

    1982-01-01

    Measurement facilities developed, to date, include a unique whole-body-counter, (WBC); a total-body neutron-activation facility (TBNAA); and a partial-body activation facility (PBNAA). A variation of the prompt-gamma neutron-activation technique for measuring total-body nitrogen was developed to study body composition of cancer patients and the effect of nutritional regimens on the composition. These new techniques provide data in numerous clinical studies not previously amenable to investigation. The development and perfection of these techniques provide unique applications of radiation and radioisotopes to the early diagnosis of certain diseases and the evaluation of therapeutic programs. The PBNAA technique has been developed and calibrated for in-vivo measurement of metals. Development has gone forward on prompt-gamma neutron activation for the measurement of cadmium, x-ray fluorescence (XRF) for measurement of iron. Other techniques are being investigated for in-vivo measurement of metals such as silicon and beryllium.

  20. The effect of formulation on the penetration of coated and uncoated zinc oxide nanoparticles into the viable epidermis of human skin in vivo.

    Science.gov (United States)

    Leite-Silva, Vânia R; Le Lamer, Marina; Sanchez, Washington Y; Liu, David C; Sanchez, Washington H; Morrow, Isabel; Martin, Darren; Silva, Heron D T; Prow, Tarl W; Grice, Jeffrey E; Roberts, Michael S

    2013-06-01

    The use of nanoparticulate zinc oxide (ZnO-NP) in sunscreens and other cosmetic products has raised public health concerns. The two key issues are the extent of exposure to ZnO-NP and the likely hazard after the application of ZnO-NP in sunscreen and cosmetic products to humans in vivo. Our aims were to assess exposure by the extent of ZnO-NP penetration into the viable epidermis and hazard by changes in the viable epidermal redox state for a number of topical products. Of particular interest is the role of the particle coating, formulation used, and the presence of any enhancers. Multiphoton tomography with fluorescence lifetime imaging microscopy (MPT-FLIM) was used to simultaneously observe ZnO-NP penetration and potential metabolic changes within the viable epidermis of human volunteers after topical application of various ZnO-NP products. Coated and uncoated ZnO-NP remained in the superficial layers of the SC and in the skin furrows. We observed limited penetration of coated ZnO-NP dispersed in a water-in-oil emulsion formulation, which was predominantly localized adjacent to the skin furrow. However, the presence of ZnO-NP in the viable epidermis did not alter the metabolic state or morphology of the cells. In summary, our data suggest that some limited penetration of coated and uncoated ZnO-NP may occur into viable stratum granulosum epidermis adjacent to furrows, but that the extent is not sufficient to affect the redox state of those viable cells. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Meta Analysis of Skin Microbiome: New Link between Skin Microbiota Diversity and Skin Health with Proposal to Use This as a Future Mechanism to Determine Whether Cosmetic Products Damage the Skin

    Directory of Open Access Journals (Sweden)

    Christopher Wallen-Russell

    2017-05-01

    Full Text Available There is a skin allergy epidemic in the western world, and the rate of deterioration has increased significantly in the past 5–10 years. It is probable that there are many environmental contributing factors, yet some studies have linked it primarily to the rise in the use of synthetic chemical ingredients in modern cosmetics. Our challenge, therefore, was to find a mechanism to determine the effect these substances have on skin health, and whether they really are a primary cause of long term damage to the skin. The first problem is the lack of any definitive way to measure skin health. Motivated by the overwhelming evidence for a link between deficient gut flora and ill health, we decided to look at whether our skin microbiota could similarly be used as an indicator of skin health. Our research illustrates how microbiota diversity alone can predict whether skin is healthy or not, after we revealed a complete lack of conclusive findings linking the presence or abundance of particular species of microbe to skin problems. This phenomenon is replicated throughout nature, where high biodiversity always leads to healthy ecosystems. ‘Caveman’ skin, untouched by modern civilisation, was far different to “western” skin and displayed unprecedented levels of bacterial diversity. The less exposed communities were to western practices, the higher the skin diversity, which is clear evidence of an environmental factor in the developed world damaging skin. For the first time we propose benchmark values of diversity against which we can measure skin to determine how healthy it is. This gives us the ability to be able to predict which people are more likely to be prone to skin ailments, and start to test whether cosmetic ingredients and products are a main cause of the skin allergy epidemic.

  2. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.

    Science.gov (United States)

    Whiteside, Paul J D; Qian, Chenxi; Golda, Nicholas; Hunt, Heather K

    2017-09-01

    Applications of light-based energy devices involving optical targets within the dermis frequently experience negative side-effects resultant from surface scattering and excess optical absorption by epidermal melanin. As a broadband optical absorber, melanin decreases the efficacy of light-based treatments throughout the ultraviolet, visible, and near-infrared spectra while also generating additional heat within the surface tissue that can lead to inflammation or tissue damage. Consequently, procedures may be performed using greater energy densities to ensure that the target receives a clinically relevant dose of light; however, such practices are limited, as doing so tends to exacerbate the detrimental complications resulting from melanin absorption of treatment light. The technique presented herein represents an alternative method of operation aimed at increasing epidermal energy fluence while mitigating excess absorption by unintended chromophores. The approach involves the application of continuously pulsed ultrasound to modulate the tissue's optical properties and thereby improve light transmission through the epidermis. To demonstrate the change in optical properties, pulsed light at a wavelength of 532 nm from a Q-switched Nd:YAG laser was transmitted into 4 mm thick samples of porcine skin, comprised of both epidermal and dermal tissue. The light was transmitted using an optical waveguide, which allowed for an ultrasonic transducer to be incorporated for simultaneous paraxial pulsation in parallel with laser operation. Light transmitted through the tissue was measured by a photodiode attached to an integrating sphere. Increasing the driving voltage of ultrasonic pulsation resulted in an increase in mean transmitted optical power of up to a factor of 1.742 ± 0.0526 times the control, wherein no ultrasound was applied, after which the optical power increase plateaued to an average amplification factor of 1.733 ± 0.549 times the control. The

  3. In vivo effects of diabetes, insulin and oleanolic acid on enzymes of glycogen metabolism in the skin of streptozotocin-induced diabetic male Sprague-Dawley rats.

    Science.gov (United States)

    Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya

    2016-03-04

    The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Experimental Design and Data Analysis of In Vivo Fluorescence Imaging Studies.

    Science.gov (United States)

    Ding, Ying; Lin, Hui-Min

    2016-01-01

    The objective of this chapter is to provide researchers who conduct in vivo fluorescence imaging studies with guidance in statistical aspects in the experimental design and data analysis of such studies. In the first half of this chapter, we introduce the key statistical components for designing a sound in vivo experiment. Particular emphasis is placed on the issues and designs that pertain to fluorescence imaging studies. Examples representing several popular types of fluorescence imaging experiments are provided as case studies to demonstrate how to appropriately design such studies. In the second half of this chapter, we explain the fundamental statistical concepts and methods used in the data analysis of typical in vivo experiments. We also provide specific examples in in vivo imaging studies to illustrate the key steps of analysis procedure.

  5. Evaluating the Photoprotective Effects of Ochre on Human Skin by In Vivo SPF Assessment: Implications for Human Evolution, Adaptation and Dispersal.

    Directory of Open Access Journals (Sweden)

    Riaan F Rifkin

    Full Text Available Archaeological indicators of cognitively modern behaviour become increasingly prevalent during the African Middle Stone Age (MSA. Although the exploitation of ochre is viewed as a key feature of the emergence of modern human behaviour, the uses to which ochre and ochre-based mixtures were put remain ambiguous. Here we present the results of an experimental study exploring the efficacy of ochre as a topical photoprotective compound. This is achieved through the in vivo calculation of the sun protection factor (SPF values of ochre samples obtained from Ovahimba women (Kunene Region, Northern Namibia and the Palaeozoic Bokkeveld Group deposits of the Cape Supergroup (Western Cape Province, South Africa. We employ visible spectroscopy, energy-dispersive X-ray fluorescence (ED-XRF, X-ray diffraction (XRD and granulometric analyses to characterise ochre samples. The capacity of ochre to inhibit the susceptibility of humans to the harmful effects of exposure to ultraviolet radiation (UVR is confirmed and the mechanisms implicated in the efficacy of ochre as a sunscreen identified. It is posited that the habitual application of ochre may have represented a crucial innovation for MSA humans by limiting the adverse effects of ultraviolet exposure. This may have facilitated the colonisation of geographic regions largely unfavourable to the constitutive skin colour of newly arriving populations.

  6. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    Science.gov (United States)

    Dietterle, S.; Lademann, J.; Röwert-Huber, H.-J.; Stockfleth, E.; Antoniou, C.; Sterry, W.; Astner, S.

    2008-10-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively.

  7. Assessment of penetrant and vehicle mixture properties on transdermal permeability using a mixed effect pharmacokinetic model of ex vivo porcine skin.

    Science.gov (United States)

    Chittenden, Jason T; Riviere, Jim E

    2016-10-01

    The accurate prediction of the rate and extent of transdermal absorption from topical exposure to chemical mixtures would be beneficial in risk assessment and drug delivery applications. The isolated perfused porcine skin flap (IPPSF) has been used as an ex vivo model for assessing transdermal absorption from topical exposures. A mixed effect, pharmacokinetic tissue model was used to model finite dose, transdermal, absorption data from IPPSF experiments for 12 penetrants dosed in up to 10 different vehicles. The model was able to identify permeability constant, while accounting for between and within unit variability, across the entire data set. This approach provides a platform for exploring the relationship between covariates (chemical descriptors and functions thereof) and the model parameters. Successive models were employed that reduced the overall variability in the parameter estimate by modeling the parameters as functions of the covariates. Log kp was initially modeled as a function of LogP and MW of the pure penetrant (adjusted r2  = 0.48). The addition of mixture factors to account for the different dosing vehicles further improved the relationship: to r2  = 0.56 with Connolly molecular area (CMA) and r2  = 0.78 with the further addition of total polar surface area difference (TPSAd). The pharmacokinetic model and quantitative structure property relationship (QSPR) developed for the IPPSF may be relevant to clinical transdermal formulation development. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The Impact of Multispectral Digital Skin Lesion Analysis on German Dermatologist Decisions to Biopsy Atypical Pigmented Lesions with Clinical Characteristics of Melanoma.

    Science.gov (United States)

    Winkelmann, Richard R; Hauschild, Axel; Tucker, Natalie; White, Richard; Rigel, Darrell S

    2015-10-01

    To determine the impact of multispectral digital skin lesion analysis on German dermatologist biopsy decisions of atypical pigmented skin lesions. Participants were shown high-resolution clinical images of 12 atypical pigmented skin lesions previously analyzed by multispectral digital skin lesion analysis. Participants were asked if they would biopsy the lesion based on clinical images and high-resolution dermoscopy images and again when subsequently shown multispectral digital skin lesion analysis probability information. Forty-one dermatologists at a skin cancer conference in Germany in September 2014. Sensitivity, specificity, diagnostic accuracy, percent biopsying all melanomas, and overall biopsy rates. Sensitivity for the detection of melanoma following clinical evaluation was 64 percent. After receipt of multispectral digital skin lesion analysis probability information, sensitivity decreased nonsignificantly to 62 percent. Specificity with clinical evaluation was 57 percent and increased to 73 percent using multispectral digital skin lesion analysis. Overall biopsy accuracy increased from 60 percent with clinical evaluation to 68 percent with multispectral digital skin lesion analysis. The percentage of low-grade dysplastic nevi chosen for biopsy decreased from 43 percent after clinical evaluation to 27 percent with multispectral digital skin lesion analysis. Finally, the overall percentage of lesions biopsied decreased from 52 percent with clinical evaluation to 42 percent after multispectral digital skin lesion analysis. Multispectral digital skin lesion analysis can be used reliably to detect melanoma as well as clinical evaluation. Dermatologists can confidently use multispectral digital skin lesion analysis to significantly improve specificity and reduce their overall number of biopsies while increasing overall diagnostic accuracy.

  9. Mathematical Model and Analysis of Negative Skin Friction of Pile Group in Consolidating Soil

    OpenAIRE

    Gangqiang Kong; Hanlong Liu; Qing Yang; Robert Y. Liang; Hang Zhou

    2013-01-01

    In order to calculate negative skin friction (NSF) of pile group embedded in a consolidating soil, the dragload calculating formulas of single pile were established by considering Davis one-dimensional nonlinear consolidation soils settlement and hyperbolic load-transfer of pile-soil interface. Based on effective influence area theory, a simple semiempirical mathematical model of analysis for predicting the group effect of pile group under dragload was described. The accuracy and reliability ...

  10. Free radicals induced by sunlight in different spectral regions - in vivo versus ex vivo study.

    Science.gov (United States)

    Lohan, Silke B; Müller, Robert; Albrecht, Stephanie; Mink, Kathrin; Tscherch, Kathrin; Ismaeel, Fakher; Lademann, Jürgen; Rohn, Sascha; Meinke, Martina C

    2016-05-01

    Sunlight represents an exogenous factor stimulating formation of free radicals which can induce cell damage. To assess the effect of the different spectral solar regions on the development of free radicals in skin, in vivo electron paramagnetic resonance (EPR) investigations with human volunteers and ex vivo studies on excised human and porcine skin were carried out. For all skin probes, the ultraviolet (UV) spectral region stimulates the most intensive radical formation, followed by the visible (VIS) and the near infrared (NIR) regions. A comparison between the different skin models shows that for UV light, the fastest and highest production of free radicals could be detected in vivo, followed by excised porcine and human skin. The same distribution pattern was found for the VIS/NIR spectral regions, whereby the differences in radical formation between in vivo and ex vivo were less pronounced. An analysis of lipid composition in vivo before and after exposure to UV light clearly showed modifications in several skin lipid components; a decrease of ceramide subclass [AP2] and an increase of ceramide subclass [NP2], sodium cholesterol sulphate and squalene (SQ) were detectable. In contrast, VIS/NIR irradiation led to an increase of ceramides [AP2] and SCS, and a decrease of SQ. These results, which are largely comparable for the different skin models investigated in vivo and ex vivo, indicate that radiation exposure in different spectral regions strongly influences radical production in skin and also results in changes in skin lipid composition, which is essential for barrier function. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Metabolic flux and compartmentation analysis in the brain in vivo

    Directory of Open Access Journals (Sweden)

    Bernard eLanz

    2013-10-01

    Full Text Available Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood brain barrier (BBB by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.

  12. Metabolic Flux and Compartmentation Analysis in the Brain In vivo

    Science.gov (United States)

    Lanz, Bernard; Gruetter, Rolf; Duarte, João M. N.

    2013-01-01

    Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons. PMID:24194729

  13. Estudo in vivo de atividade anti-radicalar por quantificação de peróxidos cutâneos In vivo antiradicalar activity by skin peroxidies quantification

    Directory of Open Access Journals (Sweden)

    Rodrigo Fuscelli Pytel

    2005-12-01

    Full Text Available FUNDAMENTOS: O organismo humano possui eficientes mecanismos de defesa contra os radicais livres. A relação causal observada entre estresse oxidativo e diversos processos degenerativos despertou o interesse para a exploração de diversos antioxidantes. OBJETIVOS: Este trabalho propõe um método in vivo para comprovação da eficácia de um novo complexo de alta atividade anti-radicalar (acetato de tocoferila, licopeno e mistura de ácidos clorogênicos rica em ácido caféico. MÉTODOS: Neste ensaio, não invasivo e placebo controlado, a medida da taxa de peróxido cutâneo realizou-se em diferentes áreas - três após a incidência da radiação UV, duas tratadas, uma não tratada, e uma não tratada e não irradiada. A presença do peróxido foi detectada pela aplicação de sonda fluorescente em adesivo específico, que retirou uma amostra do estrato córneo dos sítios supracitados. O cálculo da proteção anti-radicalar dá-se em função das unidades fluorimétricas obtidas. RESULTADOS: Tomando-se como base áreas controles não irradiadas, as áreas irradiadas e tratadas com o complexo estudado apresentaram concentrações 116% menores (p=0,02% de peróxidos cutâneos, com significância estatística em relação às áreas apenas irradiadas. Já as áreas irradiadas e tratadas com o placebo apresentaram concentrações apenas 49% menores (p=0,501, o que não é estatisticamente significativo em comparação às áreas irradiadas. CONCLUSÃO: Os resultados obtidos indicam que o complexo estudado possui significativa capacidade protetora da pele contra a ação de radicais livres formados a partir da exposição solar.BACKGROUND: Our organism has important defense mechanisms against free radicals. The causal relationship observed among the oxidative stress and degenerative problems in humans, are getting attention for the exploration of antioxidant agents. OBJECTIVES: This study proposes an in vivo methodology for proving the

  14. 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods.

    Science.gov (United States)

    Steinman, Joe; Koletar, Margaret M; Stefanovic, Bojana; Sled, John G

    2017-01-01

    Ex vivo 2-photon fluorescence microscopy (2PFM) with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total) were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature.

  15. Clinical applications of in vivo neutron-activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  16. Microspectroscopic Confocal Raman and Macroscopic Biophysical Measurements in the in vivo Assessment of the Skin Barrier: Perspective for Dermatology and Cosmetic Sciences

    NARCIS (Netherlands)

    Falcone, D.; Uzunbajakava, N.E.; Varghese, B.; Aquino Santos, G.R. de; Richters, R.J.H.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2015-01-01

    Skin barrier function, confined to the stratum corneum, is traditionally evaluated using established, noninvasive biophysical methods like transepidermal water loss, capacitance and conductance. However, these methods neither measure skin molecular composition nor its structure, hindering the actual

  17. Effects of UV Rays and Thymol/Thymus vulgaris L. Extract in an ex vivo Human Skin Model: Morphological and Genotoxicological Assessment.

    Science.gov (United States)

    Cornaghi, Laura; Arnaboldi, Francesca; Calò, Rossella; Landoni, Federica; Baruffaldi Preis, William Franz; Marabini, Laura; Donetti, Elena

    2016-01-01

    Ultraviolet (UV) radiation is the major environmental factor affecting functions of the skin. Compounds rich in polyphenols, such as Thymus vulgaris leaf extract and thymol, have been proposed for the prevention of UV-induced skin damage. We compared the acute effects induced by UVA and UVB rays on epidermal morphology and proliferation, cytotoxicity, and genotoxicity. Normal human skin explants were obtained from young healthy women (n = 7) after informed consent and cultured at the air-liquid interface overnight. After 24 h, the samples were divided in 2 groups: the former exposed to UVA (16 or 24 J/cm2) and the latter irradiated with UVB (0.24 or 0.72 J/cm2). One hour after the end of irradiation, supernatants were collected for evaluation of the lactate dehydrogenase activity. Twenty-four hours after UVB exposure, biopsies were processed for light and transmission electron microscopy analysis, proliferation, cytotoxicity, and genotoxicity. UVB and UVA rays induced early inhibition of cell proliferation and DNA damage compared to controls. In particular, UVB rays were always more cytotoxic and genotoxic than UVA ones. For this reason, we evaluated the effect of either T. vulgaris L. extract (1.82 µg/ml) or thymol (1 µg/ml) on all samples treated for 1 h before UVB irradiation. While Thymus had a protective action for all of the endpoints evaluated, the action of the extract was less pronounced on epidermal proliferation and morphological features. The results presented in this study could be the basis for investigating the mechanism of thymol and T. vulgaris L. extract against the damage induced by UV radiation. © 2016 S. Karger AG, Basel.

  18. The influence of cosmetics on the properties of skin autofluorescence

    Science.gov (United States)

    Tamošiūnas, M.; Bertulytė, I.; Rečiūnaitė, I.; Jakštys, B.; Šatkauskienė, I.; Čepurnienė, K.

    2014-10-01

    The aim of this study was to estimate the changes of autofluorescence and sensitized fluorescence under the effect of cosmetics. We used a method of fluorescence spectroscopy in vivo and examined the mouse skin covering the tumour. Analysis of fluorescence spectral changes was made after differentiation of the cosmetics according to its effects: i) inducing temporary changes of skin autofluorescence after absorbtion into skin (lipsticks, face powders, body lotions, mascaras); ii) permanently changing the fluorescence of the skin (collagen containing products). Cosmetics have been shown to be optically active and capable to alter the fluorescence of exogenously accumulated photosensitizers and endogenous tissue fluorophores.

  19. Implementation and analysis of relief patterns of the surface of benign and malignant lesions of the skin by microtopography

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Pacheco, Maria del Carmen Lopez [Laboratorio de CitopatologIa Ambiental, Departamento de MorfologIa, ENCB-IPN, UP Lazaro Cardenas, Casco de Santo Tomas, 11340 (Mexico); Martins-Costa, Manuel Filipe Pereira da Cunha [Departamento de Fisica, Universidad do Minho, Escola de Ciencias Campus de Gualtar-PT-4710-057 Braga (Portugal); Zapata, Aura Judith Perez [Laboratorio de CitopatologIa Ambiental, Departamento de MorfologIa, ENCB-IPN, UP Lazaro Cardenas, Casco de Santo Tomas, 11340 (Mexico); Cherit, Judith DomInguez [Departamento de DermatologIa, Hospital General Dr Manuel Gea Gonzalez, Calzada de Tlalpan No 4800, 14000 (Mexico); Gallegos, Eva Ramon [Laboratorio de CitopatologIa Ambiental, Departamento de MorfologIa, ENCB-IPN, UP Lazaro Cardenas, Casco de Santo Tomas, 11340 (Mexico)

    2005-12-07

    The objective of this study was to be able to distinguish between healthy skin tissue and malignant ones, furthermore determining a unique pattern of roughness for each skin lesion by microtopographic analysis of the skin surface of Mexican patients during the period from April to October 2002. The standard technique used in this study for the diagnosis of skin cancer and the comparison of the results was the haematoxylin-eosin histopathological technique. Latex impressions were taken from skin lesions as well as from the healthy skin of each patient to serve as control samples. These impressions were analysed by the MICROTOP.03.MFC microtopographic system inspection. It was observed that when the tumour becomes rougher, more malign will be the lesion. On average, the melanoma present an increase of roughness of 67% compared to healthy skin, obtaining a roughness relation of 1:2.54. The percentage decreases to 49% (49%, 1:60) in the case of basal cell carcinoma and to 40% in pre-malignant lesions such as melanocytic nevus (40%, 1:150). In benign lesions such as the seborrhoea keratosis only a small increase in roughness was noted (4%, 1:0.72). Microtopographic inspection of the skin surface can be considered as a complementary diagnostic technique for skin cancer.

  20. Systematic Review and Meta-Analysis of Human Skin Diseases Due to Particulate Matter

    Directory of Open Access Journals (Sweden)

    Le Thi Nhu Ngoc

    2017-11-01

    Full Text Available This study investigated the effects of particulate matter (PM on human skin diseases by conducting a systematic review of existing literature and performing a meta-analysis. It considered articles reporting an original effect of PM on human skin. From among 918 articles identified, 13 articles were included for further consideration after manual screening of the articles resulted in the exclusion of articles that did not contain data, review articles, editorials, and also articles in languages other than English. Random-effects models and forest plots were used to estimate the effect of PM on the skin by Meta-Disc analysis. According to people’s reports of exposure and negative skin effects (atopic dermatitis (AD, eczema, and skin aging, etc. due to air pollution, the summary relative risk (odds ratio of PM10 was determined to be 0.99 (95% confidence interval (CI 0.89–1.11 whereas PM2.5 was determined to be 1.04 (95% CI 0.96–1.12. Simultaneously, there was a different extent of impact between PM10 and PM2.5 on atopic dermatitis (AD for those of young age: the odds ratio of PM10 and PM2.5 were 0.96 (95% CI 0.83–1.11; I2 = 62.7% and 1.05 (95% CI 0.95–1.16; I2 = 46%, respectively. Furthermore, the results suggest an estimated increase of disease incidence per 10 μg/m3 PM of 1.01% (0.08–2.05 due to PM10 and 1.60% (0.45–2.82 due to PM2.5. Following the results, PM10 and PM2.5 are associated with increased risks of human skin diseases, especially AD, whose risk is higher in infants and school children. With its smaller size and a high concentration of metals, PM2.5 is more closely related to AD in younger people, compared to PM10.

  1. Differentiation of benign pigmented skin lesions with the aid of computer image analysis: a novel approach.

    Science.gov (United States)

    Choi, Jae Woo; Park, Young Woon; Byun, Sang Young; Youn, Sang Woong

    2013-08-01

    The differential diagnosis of common pigmented skin lesions is important in cosmetic dermatology. The computer aided image analysis would be a potent ancillary diagnostic tool when patients are hesitant to undergo a skin biopsy. We investigated the numerical parameters discriminating each pigmented skin lesion from another with statistical significance. For each of the five magnified digital images containing clinically diagnosed nevus, lentigo and seborrheic keratosis, a total of 23 parameters describing the morphological, color, texture and topological features were calculated with the aid of a self-developed image analysis software. A novel concept of concentricity was proposed, which represents how closely the color segmentation resembles a concentric circle. Morphologically, seborrheic keratosis was bigger and spikier than nevus and lentigo. The color histogram revealed that nevus was the darkest and had the widest variation in tone. In the aspect of texture, the surface of the nevus showed the highest contrast and correlation. Finally, the color segmented pattern of the nevus and lentigo was far more concentric than that of seborrheic keratosis. We found that the subtle distinctions between nevus, lentigo and seborrheic keratosis, which are likely to be unrecognized by ocular inspection, are well emphasized and detected with the aid of software.

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  3. Meta-analysis of the effectiveness of surgical scalpel or diathermy in making abdominal skin incisions.

    LENUS (Irish Health Repository)

    Ahmad, Nasir Zaheer

    2012-02-01

    BACKGROUND: Surgical scalpels are traditionally used to make skin incisions. Diathermy incisions on contrary are less popular among the surgeons. The aim of this meta-analysis was to compare the effectiveness of both techniques and address the common fallacies about diathermy incisions. METHODS: A literature search of MEDLINE and Cochrane databases was done, using the keywords diathermy, cold scalpel, and incisions. Eleven clinical trials comparing both methods of making skin incisions were selected for meta-analysis. The end points compared included postoperative wound infection, pain in first 24 hours after surgery, time taken to complete the incisions, and incision-related blood loss. RESULTS: Postoperative wound infection rate was comparable in both techniques (P = 0.147, odds ratio = 1.257 and 95% CI = 0.923-1.711). Postoperative pain was significantly less with diathermy incisions in first 24 hours (P = 0.031, weighted mean difference = 0.852 and 95% CI = 0.076-1.628). Similarly, the time taken to complete the incision and incision-related blood loss was significantly less with diathermy incisions (95% CI = 0.245-0.502 and 0.548-1.020, respectively). CONCLUSION: Diathermy incisions are equally prone to get wound infection, as do the incisions made with scalpel. Furthermore, lower incidence of early postoperative pain, swiftness of the technique, and a reduced blood loss are the encouraging facts supporting routine use of diathermy for abdominal skin incisions after taking careful precautions.

  4. Analysis of in vivo penetration of textile dyes causing allergic reactions

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Worm, M.; Richter, H.; Sterry, W.; Meinke, M.

    2009-10-01

    Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies.

  5. Digital teledermatology for skin tumours: a preliminary assessment using a receiver operating characteristics (ROC) analysis.

    Science.gov (United States)

    Lewis, K; Gilmour, E; Harrison, P V; Patefield, S; Dickinson, Y; Manning, D; Griffiths, C

    1999-01-01

    A low-cost store-and-forward teledermatology system using digital images for the remote diagnosis and management of skin tumours was evaluated. Two hospitals participated in the trial. Patients were seen face to face at one hospital, and had their images and clinical history viewed remotely by a different dermatologist at a second hospital. A preliminary receiver operating characteristics (ROC) analysis revealed clinical agreement between the teledermatologist and face-to-face dermatologist in 93% of cases in terms of their assessment of the benign/malignant nature of the lesions. Sensitivity of the judgements was 88% and specificity was 80%. These preliminary findings indicate the potential for remote management of skin tumours using a low-cost system in the National Health Service.

  6. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    Science.gov (United States)

    Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges

    2016-01-01

    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735

  7. Validation of Cyanoacrylate Method for Collection of Stratum Corneum in Human Skin for Lipid Analysis

    DEFF Research Database (Denmark)

    Jungersted, JM; Hellgren, Lars; Drachmann, Tue

    2010-01-01

    Background and Objective: Lipids in the stratum corneum (SC) are of major importance for the skin barrier function. Many different methods have been used for the collection of SC for the analysis of SC lipids. The objective of the present study was to validate the cyanoacrylate method for the col......Background and Objective: Lipids in the stratum corneum (SC) are of major importance for the skin barrier function. Many different methods have been used for the collection of SC for the analysis of SC lipids. The objective of the present study was to validate the cyanoacrylate method...... for the collection of SC in relation to lipid analysis. Methods: The results of the lipid analysis (ceramide/cholesterol and ceramide profile) of SC samples obtained by the cyanoacrylate method were compared to the results of the lipid analysis of mechanically removed SC samples. The intra- and interindividual...... indicate that the cyanoacrylate method used for obtaining SC for lipid analysis is a useful and valid method for the purpose....

  8. Compositional analysis and physicochemical and mechanical testing of tanned rabbit skins

    Directory of Open Access Journals (Sweden)

    M.L. R. Sousa

    2016-09-01

    Full Text Available Chemical composition and physicochemical and mechanical parameters of New Zealand White rabbit tanned skin were evaluated. Skin samples from 70-d-old males, in natura and semi-finished, were collected for evaluation. The in natura treatment comprise skins without any processing, while semi-finished treatment comprise skins after soaking, fleshing, liming, de-liming, purging, degreasing, pickling, tanning, neutralising, re-tanning and dyeing, followed by oiling, drying, stretching and softening. After tanning, samples from the dorsal and flank regions were removed for tensile and physicochemical testing in the longitudinal and transverse directions. A split plot design was used with plot treatments (leather regions: R1=dorsal and R2=flank and subplots directions (S1=longitudinal and S2=transversal, using 10 examples per treatment. At the end of processing, the leather analysis revealed low moisture (31.76%, protein (46.48% and fat content (24.95%, and a high ash content (8.58%. Leather presented a pH of 4.9 and contained 2.0% chromium oxide, 25.5% extractable substances in dichloromethane, and these characteristics were coupled with a higher tensile strength (10.84 N/mm2 in the dorsal region. However, samples in the same region proved to have higher elasticity (64.57% in the longitudinal direction, although there was no difference in the progressive tearing analysis (21.07-23.50 N/mm. Overall, our analyses suggest that, in this case, the tanned leather product does not have sufficient resistance for application in clothing production.

  9. Comparative analysis of the effects of CO2 fractional laser and sonophoresis on human skin penetration with 5-aminolevulinic acid.

    Science.gov (United States)

    Choi, J H; Shin, E J; Jeong, K H; Shin, M K

    2017-11-01

    Successful delivery of a photosensitizer into the skin is an important factor for effective photodynamic therapy (PDT). The effective method to increase drug penetration within short incubation time overcoming skin barrier have been investigated. This study was performed to analyze and compare the effectiveness of ablative fractional laser (FXL) pretreatment and/or sonophoresis for enhancing the penetration of 5-aminolevulinic acid (ALA) into human skin in vivo. Twenty-four identical 1 × 1 cm(2) treatment areas were mapped on the backs of ten healthy male subjects. Each area received FXL pretreatment and/or sonophoresis with different energy settings and ALA incubation times. After treatments, porphyrin fluorescence reflecting the ALA penetration were measured. Application of ablative CO2 FXL pretreatment resulted to higher fluorescence intensities than the non-treatment group. Incubation times were positively correlated with the increments of ALA penetration. However, increasing pulse energy or combining with sonophoresis did not show additional positive effects on ALA penetration. Ablative CO2 FXL pretreatment effectively facilitated ALA penetration in human skin in vivo. Ablative CO2 FXL alone without sonophoresis setting pulse energy of 10 and 20 mJ with more than 60 min of ALA incubation time could be an ideal setting for ALA penetration.

  10. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Bratlie

    Full Text Available BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.

  11. Invasive melanoma in vivo can be distinguished from basal cell carcinoma, benign naevi and healthy skin by canine olfaction: a proof-of-principle study of differential volatile organic compound emission.

    Science.gov (United States)

    Willis, C M; Britton, L E; Swindells, M A; Jones, E M; Kemp, A E; Muirhead, N L; Gul, A; Matin, R N; Knutsson, L; Ali, M

    2016-11-01

    Volatile organic compounds (VOCs) are continuously released by the body during normal metabolic processes, but their profiles change in the presence of cancer. Robust evidence that invasive melanoma in vivo emits a characteristic VOC signature is lacking. To conduct a canine olfactory, proof-of-principle study to investigate whether VOCs from invasive melanoma are distinguishable from those of basal cell carcinoma (BCC), benign naevi and healthy skin in vivo. After a 13-month training period, the dog's ability to discriminate melanoma was evaluated in 20 double-blind tests, each requiring selection of one melanoma sample from nine controls (three each of BCC, naevi and healthy skin; all samples new to the dog). The dog correctly selected the melanoma sample on nine (45%) occasions (95% confidence interval 0·23-0·68) vs. 10% expected by chance alone. A one-sided exact binomial test gave a P-value of melanoma samples significantly increased the probability of their detection. Use of a discrete-choice model confirmed melanoma as the most influential of the recorded medical/personal covariates in determining the dog's choice of sample. Accuracy rates based on familiar samples during training were not a reliable indicator of the dog's ability to distinguish melanoma, when confronted with new, unknown samples. Invasive melanoma in vivo releases odorous VOCs distinct from those of BCC, benign naevi and healthy skin, adding to the evidence that the volatile metabolome of melanoma contains diagnostically useful biomarkers. © 2016 British Association of Dermatologists.

  12. In Vivo Enhancer Analysis Chromosome 16 Conserved NoncodingSequences

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Ahituv, Nadav; Moses, Alan M.; Nobrega,Marcelo; Prabhakar, Shyam; Shoukry, Malak; Minovitsky, Simon; Visel,Axel; Dubchak, Inna; Holt, Amy; Lewis, Keith D.; Plajzer-Frick, Ingrid; Akiyama, Jennifer; De Val, Sarah; Afzal, Veena; Black, Brian L.; Couronne, Olivier; Eisen, Michael B.; Rubin, Edward M.

    2006-02-01

    The identification of enhancers with predicted specificitiesin vertebrate genomes remains a significant challenge that is hampered bya lack of experimentally validated training sets. In this study, weleveraged extreme evolutionary sequence conservation as a filter toidentify putative gene regulatory elements and characterized the in vivoenhancer activity of human-fish conserved and ultraconserved1 noncodingelements on human chromosome 16 as well as such elements from elsewherein the genome. We initially tested 165 of these extremely conservedsequences in a transgenic mouse enhancer assay and observed that 48percent (79/165) functioned reproducibly as tissue-specific enhancers ofgene expression at embryonic day 11.5. While driving expression in abroad range of anatomical structures in the embryo, the majority of the79 enhancers drove expression in various regions of the developingnervous system. Studying a set of DNA elements that specifically droveforebrain expression, we identified DNA signatures specifically enrichedin these elements and used these parameters to rank all ~;3,400human-fugu conserved noncoding elements in the human genome. The testingof the top predictions in transgenic mice resulted in a three-foldenrichment for sequences with forebrain enhancer activity. These datadramatically expand the catalogue of in vivo-characterized human geneenhancers and illustrate the future utility of such training sets for avariety of iological applications including decoding the regulatoryvocabulary of the human genome.

  13. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for treatment of skin diseases. We compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotranspla......Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for treatment of skin diseases. We compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin...... in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human...... skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...

  14. Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish.

    Science.gov (United States)

    Kim, Jae-Yong; Hong, Joo-Heon; Jung, Hee Kyoung; Jeong, Yoo Seok; Cho, Kyung-Hyun

    2012-09-01

    Three major sources of flavonoids and phenolic compounds, which are commonly used in food industry, namely loquat leaf (LL), grape skin (GS) and acai puree, were tested in regard to their potential anti-atherosclerotic and anti-diabetic activity. The compounds were evaluated by in vitro antioxidant assay using a macrophage model and for in vivo hypolipidemic activity using zebrafish. In assays in vitro, all extracts demonstrated potent ferric ion reductive capacity, radical-scavenging activity and inhibition of low-density lipoprotein (LDL) oxidation at a final concentration of 0.1 mg/ml. Extracts could also abrogate fructose-mediated protein glycation and mildly inhibit cholesteryl ester transfer protein (CETP). Cellular uptake of oxidized or acetylated LDL into macrophages was inhibited by acai treatment (final concentration, 0.1 mg/ml) and moderately diminished by GS and LL extracts. After 4 weeks of feeding on a high cholesterol diet (HCD), zebrafish exhibited serum total cholesterol (TC) and triglyceride (TG) levels 2.5-fold higher than those fed a normal diet (ND). Within the experimental group, those fed acai demonstrated the lowest serum TC and CETP activity, while the LL-consuming group showed a reduction in serum TC and TG relative to HCD-fed fish. Serum glucose levels also increased in the HCD group, to threefold above the ND group; GS and LL feeding elicited the greatest reduction in hyperglycemia. The groups consuming acai and LL showed much less hepatic inflammation, as well as attenuation of fatty liver and a reduced content of oxidized species. In conclusion, extracts of LL, GS, and acai shared antioxidant, anti-inflammatory and anti-atherosclerotic activity in cellular assays and in a hypercholesterolemic zebrafish model.

  15. Detection of Fight or Flight Reaction on Facial Skin Thermogram using Spatio-Temporal Spectrum Differential Analysis

    Science.gov (United States)

    Nozawa, Akio; Tomono, Satoshi; Mizuno, Tota; Ide, Hideto

    It has been known that human being exhibits the Fight or Flight Reaction(FFR) when they feel anxiety, strain and threat. This paper describes experiments that were conducted to arouse the fight or flight reaction. Facial skin thermograms in which the temperature fluctuation in specific regions was identified were measured, and the characteristics of the temperature fluctuations in the relevant regions were quantitatively evaluated. The results showed that, for nine of the ten subjects, the FFR was confirmed in the form of reacted areas indicating acute increases in skin temperature, primarily in facial expression muscles such as the procerus muscle and cheek muscles. Additionally, the spatio-temporal spectrum differential analysis method for facial skin thermograms was proposed, and as a result of detecting spatio-temporal skin temperature fluctuations in the facial skin thermograms accompanying manifestation of the FFR, a detection rate of 76.5% was obtained. Thus, the effectiveness of the proposed technique was confirmed.

  16. Digital image analysis of facial erythema over time in persons with varied skin pigmentation.

    Science.gov (United States)

    Whitmer, Kyra; Barford, Brian; Turner, Mathew; Sullivan, David; Sommers, Marilyn

    2011-08-01

    Selected chemotherapeutic agents used for the treatment of cancer are known to cause skin toxicities. One group of agents, epidermal growth factor receptor (EGFR) inhibitors, characteristically precipitates an acneform rash. Currently, no standard of care exists for the management of the rash resulting from EGFR inhibitors. In order to objectively evaluate any management strategy, a method to quantify the rash is required. The purpose of this paper is to describe a method to quantify the erythema of a facial rash through the use of digital photography and image analysis. A Canfield OMNIA System using a Canon PowerShot Pro1 camera was used to obtain high-resolution digital images of facial rashes. Digital images were recorded in Joint Photographic Experts Group format, corrected for brightness and white balance and color. A method was developed to analyze digital images of erythema independent of the range of skin pigmentation. Two examples are given to illustrate the method developed and its utility. An inexpensive and portable method is described for objectively monitoring the development of facial erythema in subjects of the full range of skin pigmentation. This method can be used clinically to examine the development and resolution of facial rash erythema in response to treatment. © 2011 John Wiley & Sons A/S.

  17. Proteomic analysis of skin defensive factors of tree frog Hyla simplex.

    Science.gov (United States)

    Wu, Jing; Liu, Han; Yang, Hailong; Yu, Haining; You, Dewen; Ma, Yufang; Ye, Huahu; Lai, Ren

    2011-09-02

    Tree frogs produce a variety of skin defensive chemicals against many biotic and abiotic risk factors for their everyday survival. By proteomics or peptidomics and coupling transcriptome analysis with pharmacological testings, 27 peptides or proteins belonging to 9 families, which act mainly as defensive functions, were identified and characterized from skin secretions of the tree frog, Hyla simplex. They are: (1) a novel family of peptides with EGF- and VEGF-releasing activities; (2) a novel family of analgesic peptides; (3) a family of neurotoxins acting on sodium channel; (4) a snake venom-like presynaptically active neurotoxin; (5) a snake venom-like neurotoxin targeting cyclic nucleotide-gated ion channels; (6) a tachykinin-like peptide, which is the first report from tree frogs; (7) two antimicrobial peptides; (8) a alpha-1-antitrypsin-like serpin; and (9) a wasp venom-like toxin with serine protease inhibitors activity. Families of 1, 2, 4, 5, and 8 proteins or peptides are first reported in amphibians. The chemical array in the tree frog skin shares some similarities with snake venoms. Most of these components in this tree frog help defend against predators, heal wounds, or attenuate suffering.

  18. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    Directory of Open Access Journals (Sweden)

    Stephen B. Fleming

    2015-03-01

    Full Text Available Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.

  19. A Preliminary Analysis of the Phenomenology of Skin-Picking in Prader-Willi Syndrome

    Science.gov (United States)

    Morgan, Jessica R.; Storch, Eric A.; Woods, Douglas W.; Bodzin, Danielle; Lewin, Adam B.; Murphy, Tanya K.

    2010-01-01

    To examine the nature and psychosocial correlates of skin-picking behavior in youth with Prader-Willi Syndrome (PWS). Parents of 67 youth (aged 5-19 years) with PWS were recruited to complete an internet-based survey that included measures of: skin-picking behaviors, the automatic and/or focused nature of skin-picking, severity of skin-picking…

  20. Kinetic analysis of ex vivo human blood infection by Leishmania.

    Directory of Open Access Journals (Sweden)

    Inmaculada Moreno

    Full Text Available The leishmanioses, vector-borne diseases caused by the trypanosomatid protozoan Leishmania, are transmitted to susceptible mammals by infected phlebotomine sand flies that inoculate promastigotes into hemorrhagic pools created in host skin. We assumed that promastigotes are delivered to a blood pool, and analyzed early promastigote interactions (0-5 min with host components, which lead to parasite endocytosis by blood leukocytes, and to host infection. Promastigotes were incubated with NHS or with heparinized blood in near-physiological conditions, and we used cell radioimmunoassay and flow cytometry to measure the on-rate constants (k(+1 of promastigote interactions with natural opsonins and erythrocytes. We obtained quantitative data for parasitized cells to determine the time-course of promastigote binding and internalization by blood leukocytes. In these reactions, promastigotes bind natural opsonins, immune adhere to erythrocytes and activate complement cytolysis, which kills approximately 95% of promastigotes by 2 min post-infection. C3-promastigote binding is a key step in opsonization; nascent C3-promastigotes are the substrate for two simultaneous reactions, C3-promastigote immune adherence (IA to erythrocytes and complement-mediated promastigote killing. The k(+1 for IA was 75-fold greater than that for promastigote killing, showing that IA facilitates promastigote endocytosis and circumvents lysis. At 5 min post-infection, when reaction velocity is still linear and promastigote concentration is not limiting, 17.4% of granulocytes and 10.7% of monocytes had bound promastigotes, of which approximately 50% and approximately 25%, respectively, carried surface-bound (live or internalized (live and dead leishmanias. Of other leukocyte types, 8.5% of B cells bound but did not internalize promastigotes, and T cells, NK cells and CD209(+ dendritic cells did not bind parasites. These data show that, once in contact with blood, promastigote

  1. Model-based analysis of skin conductance responses: Towards causal models in psychophysiology.

    Science.gov (United States)

    Bach, Dominik R; Friston, Karl J

    2013-01-01

    The empirical investigation of unobservable psychological processes usually rests on operational definitions. As an alternative, we propose the use of explicit causal models. This is particularly useful in psychophysiology, where formal models can be expressed mathematically, exploiting biophysical constraints, and inverted to yield estimates of unobservable processes. In psychophysiology, recent advances have been made in causal modeling for skin conductance responses, which we discuss to exemplify the development of such models. Empirical evidence suggests that these methods have a greater validity compared to operational approaches. This review concludes by considering the theoretical implications for the field of psychophysiology and benefits for practical data analysis. Copyright © 2012 Society for Psychophysiological Research.

  2. Small angle scattering polarization biopsy: a comparative analysis of various skin diseases

    Science.gov (United States)

    Zimnyakov, D. A.; Alonova, M. V.; Yermolenko, S. B.; Ivashko, P. V.; Reshetnikova, E. M.; Galkina, E. M.; Utz, S. R.

    2013-12-01

    An approach to differentiation of the morphological features of normal and pathological human epidermis on the base of statistical analysis of the local polarization states of laser light forward scattered by in-vitro tissue samples is discussed. The eccentricity and the azimuth angle of local polarization ellipses retrieved for various positions of the focused laser beam on the tissue surface, and the coefficient of collimated transmittance are considered as the diagnostic parameters for differentiation. The experimental data obtained with the psoriasis, discoid lupus erythematosus, alopecia, lichen planus, scabies, demodex, and normal skin samples are presented.

  3. Analysis of Participatory Photojournalism in a Widely Disseminated Skin Cancer Prevention Program

    OpenAIRE

    Hall, Dawn; Glanz, Karen; Kline, Melissa

    2010-01-01

    This article describes the content of pictures submitted to a photo contest as part of a nationally disseminated skin cancer prevention program called Pool Cool. The aims of this analysis are to describe sun-safety behaviors and environmental supports depicted in the photos and to gain insight into pool staff perceptions of the program. A directed approach was used to assess the content of 1,886 photos submitted in 2005 and 2006. Staying in the shade and applying sunscreen were the most commo...

  4. CFD Analysis of an Installation Used to Measure the Skin-Friction Penalty of Acoustic Treatments

    Science.gov (United States)

    Spalart, Philippe R.; Garbaruk, Andrey; Howerton, Brian M.

    2017-01-01

    There is a drive to devise acoustic treatments with reduced skin-friction and therefore fuel-burn penalty for engine nacelles on commercial airplanes. The studies have been experimental, and the effects on skin-friction are deduced from measurements of the pressure drop along a duct. We conduct a detailed CFD analysis of the installation, for two purposes. The first is to predict the effects of the finite size of the rig, including its near-square cross-section and the moderate length of the treated patch; this introduces transient and blockage effects, which have not been included so far in the analysis. In addition, the flow is compressible, so that even with homogeneous surface conditions, it is not homogeneous in the streamwise direction. The second purpose is to extract an effective sand-grain roughness size for a particular liner, which in turn can be used in a CFD analysis of the aircraft, leading to actual predictions of the effect of acoustic treatments on fuel burn in service. The study is entirely based on classical turbulence models, with an appropriate modification for effective roughness effects, rather than directly modeling the liners.

  5. Nicotinamide Enhances Repair of Arsenic and Ultraviolet Radiation-Induced DNA Damage in HaCaT Keratinocytes and Ex Vivo Human Skin

    OpenAIRE

    Thompson, Benjamin C.; Halliday, Gary M.; Damian, Diona L.

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy ...

  6. Benefit Cost Analysis of Three Skin Cancer Public Education Mass-Media Campaigns Implemented in New South Wales, Australia.

    Directory of Open Access Journals (Sweden)

    Christopher M Doran

    Full Text Available Public education mass media campaigns are an important intervention for influencing behaviour modifications. However, evidence on the effectiveness of such campaigns to encourage the population to reduce sun exposure is limited. This study investigates the benefits and costs of three skin cancer campaigns implemented in New South Wales from 2006-2013. This analysis uses Australian dollars (AUD and 2010-11 as the currency and base year, respectively. Historical data on skin cancer were used to project skin cancer rates for the period 2006-2020. The expected number of skin cancer cases is derived by combining skin cancer rates, sunburn rates and relative risk of skin cancers due to sun exposure. Counterfactual estimates are based on sunburn exposure in the absence of the campaigns. Monetary values are attached to direct (treatment and indirect (productivity costs saved due to fewer skin cancer cases. Monetary benefits are compared with the cost of implementing the campaigns and are presented in the form of a benefit-cost ratio. Relative to the counterfactual (i.e., no campaigns there are an estimated 13,174 fewer skin cancers and 112 averted deaths over the period 2006-2013. The net present value of these benefits is $60.17 million and the campaign cost is $15.63 million. The benefit cost ratio is 3.85, suggesting that for every $1 invested a return of $3.85 is achieved. Skin cancer public education mass media campaigns are a good investment given the likely extent to which they reduce the morbidity, mortality and economic burden of skin cancer.

  7. Determination of melanin types and relative concentrations: an observational study using a non-invasive inverse skin reflectance analysis.

    Science.gov (United States)

    Hani, A F M; Baba, R; Shamsuddin, N; Nugroho, H

    2014-10-01

    Melanin is a major skin colour pigment that is made up of eumelanin (the dark brown-black colour) and pheomelanin (the light red-yellow colour) pigments. Skin-whitening products typically contain depigmentation agents that reduce the level of pigmentation by changing the pheomelanin-eumelanin production. Similarly, in skin pigment treatment of skin disorders, the melanin production is managed accordingly. To assess and improve treatment efficacy, it is important to have a measurement tool that is capable of determining the melanin types objectively. So far, the efficacy assessment is subjective. In this study, an inverse skin reflectance pigmentation analysis system that determines eumelanin and pheomelanin content is developed and evaluated in an observational study involving 36 participants with skin photo type IV. The reflectance spectra of the left forearms of participants were analysed by the pigmentation analysis system to determine their skin parameters--pheomelanin and eumelanin concentrations, melanosome volume fraction, and epidermal thickness. The determined skin parameters are then inputted into the realistic skin model (RSM) of the Advanced Systems Analyses Program (asap®) to generate the ground truth reflectance spectra for the given skin parameters to validate the system. The developed pigmentation analysis system is found to be accurate with a spectral error of 0.0163 ± 0.009 between measured reflectance and the reflectance output of the analysis system and RSM. The regression analysis shows a strong linear relationship (R(2) = 0.994) indicating good precision. The relative concentrations of pheomelanin (38.23 ± 15.04) and eumelanin (1.68 ± 0.91) analysed by the system gives a ratio of pheomelanin to eumelanin of 0.048 ± 0.029; this value is consistent with previously reported figure of 0.049. The proposed pigmentation analysis system is able to determine melanin types and their relative concentrations. It has the potential to assess the

  8. Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis.

    Science.gov (United States)

    Wolf, Matthew T; Vodovotz, Yoram; Tottey, Stephen; Brown, Bryan N; Badylak, Stephen F

    2015-02-01

    The host response to both synthetic and biologically derived biomaterials is a temporally regulated, complex process that involves multiple interacting cell types. This complexity has classically limited the efficacy of in vitro assays for predicting the in vivo outcome, necessitating the use of costly animal models for biomaterial development. The present study addressed these challenges by developing an in vitro assay that characterized the dynamic inflammatory response of human monocyte-derived-macrophages to biomaterials, coupled with quasi-mechanistic analysis in silico analysis: principal component analysis (PCA) and dynamic network analysis (DyNA). Synthetic and extracellular matrix (ECM)-derived materials were evaluated using this method, and were then associated with the in vivo remodeling and macrophage polarization response in a rodent skeletal muscle injury model. PCA and DyNA revealed a distinct in vitro macrophage response to ECM materials that corresponded to constructive remodeling and an increased M2 macrophage presence in vivo. In contrast, PCA and DyNA suggested a response to crosslinked ECM and synthetic materials characteristic of a foreign body reaction and dominant M1 macrophage response. These results suggest that in silico analysis of an in vitro macrophage assay may be useful as a predictor for determining the in vivo host response to implanted biomaterials.

  9. Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit

    Directory of Open Access Journals (Sweden)

    Blanca Ibanez-Rosello

    2016-12-01

    Full Text Available Purpose: Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM. Material and methods: A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM and each individual FM was assessed for the severity (S, frequency of occurrence (O, and lack of detec