WorldWideScience

Sample records for vivo potential therapy

  1. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo studies

    Directory of Open Access Journals (Sweden)

    Amal Bakr Shori

    2015-12-01

    Full Text Available Diabetes is a condition in which there is an elevation of blood glucose. Insulin, which is produced by the pancreas, is an important hormone needed by the body because it enables glucose to be transported into cells. Under the diabetic condition, the cells may not respond properly to insulin or the body does not produce a sufficient amount of insulin, or both. This situation will cause glucose accumulation in the blood that leads to major complications. Oral insulin therapy has been used for many years; however, coagulation in an acidic environment decreases the efficacy of insulin by neutralizing its actions. Several researchers have found that camel milk can be an adjunct to insulin therapy. It appears to be safe and effective in improving long-term glycemic control. Therefore, the aim of this study was to review in vivo studies on the effect of camel milk as a potential therapy for controlling diabetes and its complications such as high cholesterol levels, liver and kidney disease, decreased oxidative stress, and delayed wound healing.

  2. Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications

    NARCIS (Netherlands)

    Wasungu, Luc; Scarzello, Marco; van Dam, Gooitzen; Molema, Grietje; Wagenaar, Anno; Engberts, Jan B. F. N.; Hoekstra, Dick

    In this study, the in vitro and in vivo transfection capacity of novel pH-sensitive sugar-based gemini surfactants was investigated. In an aqueous environment at physiological pH, these compounds form bilayer vesicles, but they undergo a lamellar-to-micellar phase transition in the endosomal pH

  3. Can nanotechnology potentiate photodynamic therapy?

    Science.gov (United States)

    Huang, Ying-Ying; Sharma, Sulbha K; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y; Hamblin, Michael R

    2012-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, "can nano-technology potentiate PDT?"

  4. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer.

    Science.gov (United States)

    Bochicchio, Sabrina; Dapas, Barbara; Russo, Ilaria; Ciacci, Carolina; Piazza, Ornella; De Smedt, Stefaan; Pottie, Eline; Barba, Anna Angela; Grassi, Gabriele

    2017-06-20

    Tailored developed nanoliposomes loaded with a siRNA against the transcription factor E2F1 (siE2F1), were produced and delivered to human colorectal adenocarcinoma cell lines and to intestinal human biopsies. siE2F1 loaded nanoliposomes were produced through a dedicated ultrasound assisted technique producing particles with about 40nm size (Small Unilamellar Vesicles, SUVs) and 100% siRNA encapsulation efficiency. Compared to other production methods, the one proposed here can easily produce particles in the nanometric scale by suitable ultrasonic duty cycle treatments. Furthermore, SUVs have a high degree of size homogeneity, a relevant feature for uniform delivery behaviour. siE2F1-loaded SUVs demonstrated a very low cytotoxicity in cells when compared to a commercial transfection agent. Moreover, SUVs loaded with siE2F1 were effective in the down regulation of the target in cultured colon carcinoma cells and in the consequent reduction of cell growth. Finally, a remarkable uptake and target silencing efficiencies were observed in cultured human biopsy of colonic mucosa. In conclusion, whereas further studies in more complex models are required, the siE2F1-SUVs generated have the potential to contribute to the development of novel effective inflammatory bowel diseases-associated colorectal cancer therapies for a future personalized medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. In vivo secretory potential and the effect of combination therapy with octreotide and cabergoline in patients with clinically non-functioning pituitary adenomas

    DEFF Research Database (Denmark)

    Andersen, M; Bjerre, P; Schrøder, H D

    2001-01-01

    . The basal LH, FSH and alpha-subunit levels were determined before and during 6 months' therapy with octreotide and cabergoline, and MR scans were used to evaluate tumour volume before and during this period of therapy. Octopus-perimetry was used to examine the visual fields. A reduction in tumour volume...

  6. Potential of Red Spinach Leaves Ethanolic Extract (Amaranthus tricolor L. as a Complementary Therapy For Hiperlipidemia: Study in Vivo of Histopathologic and Activity of Alanin Aminotransferase (ALT

    Directory of Open Access Journals (Sweden)

    Dimas Adhi Pradana

    2016-12-01

    Full Text Available This study was conducted to determine the potential of ethanolic extract of red spinach leaves (Amaranthus tricolor L. with control quality as a complementary treatment of hyperlipidemic based on histopathology and activity of alanin aminotrasferase (ALT. A total of 24 male Wistar rats were randomized in 6 groups: normal group; positive control group were given the drug simvastatin; negative control group; 1st treatment group was given extract at dose of 400mg/kgBW rat, 2nd group was given extract at dose of 400mg/kgBW rat and simvastatin dose 0.18 mg/kgBW rat; 3rd treatment groups were given extract at dose of 800mg/kgBW rat and simvastatin dose 0.18 mg/kgBW rat. Induction hyperlipidemic using high fat diet and poloxamer. The data obtained were tested normality with the Shapiro-Wilk test. Statistical analysis using Oneway ANOVA and Post-Hoc Tukey HSD to determine the significance of differences between groups for ALT parameter. Result show the use of ethanolic extract of red spinach leaves can reduce fatty liver condition based on decreased level of ALT and liver histopathologic. It is concluded that the ethanolic extract of red spinach leaves dose 400mg/kgBW rat combine with simvastatin can reduce activity of ALT until 31.57 U1-1.

  7. In Vivo Noninvasive Imaging for Gene Therapy

    OpenAIRE

    Vassaux Georges; Groot-Wassink Thomas

    2003-01-01

    Gene therapy is reaching a stage where some clinical benefits have been demonstrated on patients involved in phase I/II clinical trials. However, in many cases, the clinical benefit is hardly measurable and progress in the improvement of gene therapy formulations is hampered by the lack of objective clinical endpoints to measure transgene delivery and to quantitate transgene expression. However, these endpoints rely almost exclusively on the analysis of biopsies by molecular and histopatholog...

  8. Cancer ameliorating potential of Phyllanthus amarus: In vivo and in ...

    African Journals Online (AJOL)

    It also significantly reduced the number of aberrant cells and frequency of aberrations per cell in vivo. Conclusion: Ameliorating potential of P. amarus was dose and duration dependant. These extracts significantly reduced the mutagenicity and genotoxicity that were produced due to AFB1 treatment both in vitro and in vivo.

  9. Antimicrobial Blue Light Therapy for Infectious Keratitis: Ex Vivo and In Vivo Studies.

    Science.gov (United States)

    Zhu, Hong; Kochevar, Irene E; Behlau, Irmgard; Zhao, Jie; Wang, Fenghua; Wang, Yucheng; Sun, Xiaodong; Hamblin, Michael R; Dai, Tianhong

    2017-01-01

    To investigate the effectiveness of antimicrobial blue light (aBL) as an alternative or adjunctive therapeutic for infectious keratitis. We developed an ex vivo rabbit model and an in vivo mouse model of infectious keratitis. A bioluminescent strain of Pseudomonas aeruginosa was used as the causative pathogen, allowing noninvasive monitoring of the extent of infection in real time via bioluminescence imaging. Quantitation of bacterial luminescence was correlated to colony-forming units (CFU). Using the ex vivo and in vivo models, the effectiveness of aBL (415 nm) for the treatment of keratitis was evaluated as a function of radiant exposure when aBL was delivered at 6 or 24 hours after bacterial inoculation. The aBL exposures calculated to reach the retina were compared to the American National Standards Institute standards to estimate aBL retinal safety. Pseudomonas aeruginosa keratitis fully developed in both the ex vivo and in vivo models at 24 hours post inoculation. Bacterial luminescence in the infected corneas correlated linearly to CFU (R2 = 0.921). Bacterial burden in the infected corneas was rapidly and significantly reduced (>2-log10) both ex vivo and in vivo after a single exposure of aBL. Recurrence of infection was observed in the aBL-treated mice at 24 hours after aBL exposure. The aBL toxicity to the retina is largely dependent on the aBL transmission of the cornea. Antimicrobial blue light is a potential alternative or adjunctive therapeutic for infectious keratitis. Further studies of corneal and retinal safety using large animal models, in which the ocular anatomies are similar to that of humans, are warranted.

  10. Superovulation Response and In vivo Embryo Production Potential ...

    African Journals Online (AJOL)

    Holstein, respectively. And hence, Boran cows' response to superovulation and yield of better quality and number of embryo than their Boran*Holstein counterparts showed the high potential of the breed for in-vivo and in-vitro embyo production.

  11. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy.

    Science.gov (United States)

    Liu, Yang; Ashton, Jeffrey R; Moding, Everett J; Yuan, Hsiangkuo; Register, Janna K; Fales, Andrew M; Choi, Jaeyeon; Whitley, Melodi J; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R; Kirsch, David G; Badea, Cristian T; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy.

  12. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy

    Science.gov (United States)

    Liu, Yang; Ashton, Jeffrey R.; Moding, Everett J.; Yuan, Hsiangkuo; Register, Janna K.; Fales, Andrew M.; Choi, Jaeyeon; Whitley, Melodi J.; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Kirsch, David G.; Badea, Cristian T.; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy. PMID:26155311

  13. Potential Therapeutic Modalities in Cancer Gene Therapy

    Directory of Open Access Journals (Sweden)

    Prithvi Sinha

    2017-04-01

    Full Text Available In spite of huge concerted efforts, the treatment of cancer, a disease frequently associated with genetic alterations caused due to hereditary or environmental factors, remains a challenge. The last few years have witnessed emergence of several innovative and effective modalities for the treatment of solid tumours and hematological malignancies. Gene therapy has shown enormous potential for cancer treatment, especially for metastatic cancers which unlike localized solid tumours, may not be amenable to surgery or other treatment options. Gene therapy aims to introduce a correct copy of the malfunctioning gene in the tumour environment by using viral or non-viral methods to impede or inhibit its growth. This review provides an overview of three main approaches for cancer gene therapy namely immunotherapy, oncolytic therapy and gene transfer therapy. Immunotherapy augments the host immune system in order to destroy cancer cells while oncolytic therapy uses genetically engineered viruses such as to effectively kill cancer cells. Clinical studies so far have shown that cells can be engineered to express gene products that can specifically target cancer cells and prevents their growth and metastasis. Though gene therapy for cancer is yet to see extensive clinical use, it is likely that in combination with other treatment modalities, it will help in controlling and possibly curing cancer in the near future.

  14. EPR oximetry of tumors in vivo in cancer therapy

    Science.gov (United States)

    Šentjurc, Marjeta; Čemažar, Maja; Serša, Gregor

    2004-05-01

    The partial oxygen pressure ( pO 2) in tumors is considered to be one of important factors that affect the response of tumors to different treatment. Therefore, we anticipate that the information about the variation of oxygen concentration in tumors can be used as a guide for individualizing radiotherapy, chemotherapy, and especially the combined therapies. There is thus a need to obtain quantitative data on the effects of different therapies on tumor oxygenation under in vivo conditions. One of the methods, which enable these measurements is EPR oximetry. In this work basic principles of the method will be described as well as some examples of tumor oxygenation changes after application of chemotherapeutic drugs (vinblastine, cisplatin, bleomycin) or electric pulses in combination with cisplatin or bleomycin to fibrosarcoma SA-1 tumors in mice. A paramagnetic probe, a char of Bubinga tree, was implanted into the tumor (center and periphery) and in the muscle or subcutis. EPR spectra line-width, which is proportional to oxygen concentration, was measured with time after the treatments. Tumor oxygenation was reduced for 58% of pretreatment value 1 h after intraperitoneal injection of 2.5 mg kg -1 VLB and returned to pretreatment level within 24 h. Reduction in oxygenation of muscle and subcutis was much smaller and returned to pretreatment value faster as in tumors. With cisplatin (4 mg kg -1) and bleomicyn (1 mg kg -1) the reduction was less than 15%, but increases in combined therapy to 70%. Similar reduction was observed also with electric pulses alone (eight pulses, 1300 V cm -1, 100 μs, 1 Hz) with fast recovery of 8 h. After electrochemotherapy the recovery was slower and occurs only after 48 h. This study demonstrates that EPR oximetry is a sensitive method for monitoring changes in tissue oxygenation after different treatments, which may have implications in controlling side effects of therapy and in the planning of combined treatments.

  15. Photodynamic therapy with fullerenes in vivo: reality or a dream?

    Science.gov (United States)

    Sharma, Sulbha K; Chiang, Long Y; Hamblin, Michael R

    2011-12-01

    Photodynamic therapy (PDT) employs the combination of nontoxic photosensitizers and visible light that is absorbed by the chromophore to produce long-lived triplet states that can carry out photochemistry in the presence of oxygen to kill cells. The closed carbon-cage structure found in fullerenes can act as a photosensitizer, especially when functionalized to impart water solubility. Although there are reports of the use of fullerenes to carry out light-mediated destruction of viruses, microorganisms and cancer cells in vitro, the use of fullerenes to mediate PDT of diseases such as cancer and infections in animal models is less well developed. It has recently been shown that fullerene PDT can be used to save the life of mice with wounds infected with pathogenic Gram-negative bacteria. Fullerene PDT has also been used to treat mouse models of various cancers including disseminated metastatic cancer in the peritoneal cavity. In vivo PDT with fullerenes represents a new application in nanomedicine.

  16. Physicochemical, pharmacokinetic, efficacy and toxicity profiling of a potential nitrofuranyl methyl piperazine derivative IIIM-MCD-211 for oral tuberculosis therapy via in-silico-in-vitro-in-vivo approach.

    Science.gov (United States)

    Magotra, Asmita; Sharma, Anjna; Singh, Samsher; Ojha, Probir Kumar; Kumar, Sunil; Bokolia, Naveen; Wazir, Priya; Sharma, Shweta; Khan, Inshad Ali; Singh, Parvinder Pal; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal

    2017-11-21

    Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 μM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal

  17. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa

    2017-11-01

    Full Text Available Abstract Background Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Results Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. Conclusions The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

  18. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles.

    Science.gov (United States)

    Pedrosa, Pedro; Heuer-Jungemann, Amelie; Kanaras, Antonios G; Fernandes, Alexandra R; Baptista, Pedro V

    2017-11-21

    Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

  19. Floating Gate sensor for in-vivo dosimetry in radiation therapies. Design and first characterization.

    Science.gov (United States)

    Faigon, A.; Martinez Vazquez, I.; Carbonetto, S.; García Inza, M.; G

    2017-01-01

    A floating gate dosimeter was designed and fabricated in a standard CMOS technology. The design guides and characterization are presented. The characterization included the controlled charging by tunneling of the floating gate, and its discharging under irradiation while measuring the transistor drain current whose change is the measure of the absorbed dose. The resolution of the obtained device is close to 1 cGy satisfying the requirements for most radiation therapies dosimetry. Pending statistical proofs, the dosimeter is a potential candidate for wide in-vivo control of radiotherapy treatments.

  20. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles.

    Science.gov (United States)

    Dai, Wei-Jing; Zhu, Li-Yao; Yan, Zhong-Yi; Xu, Yong; Wang, Qi-Long; Lu, Xiao-Jie

    2016-01-01

    Owing to its easy-to-use and multiplexing nature, the genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease 9) is revolutionizing many areas of medical research and one of the most amazing areas is its gene therapy potentials. Previous explorations into the therapeutic potentials of CRISPR-Cas9 were mainly conducted in vitro or in animal germlines, the translatability of which, however, is either limited (to tissues with adult stem cells amenable to culture and manipulation) or currently impermissible (due to ethic concerns). Recently, important progresses have been made on this regard. Several studies have demonstrated the ability of CRISPR-Cas9 for in vivo gene therapy in adult rodent models of human genetic diseases delivered by methods that are potentially translatable to human use. Although these recent advances represent a significant step forward to the eventual application of CRISPR-Cas9 to the clinic, there are still many hurdles to overcome, such as the off-target effects of CRISPR-Cas9, efficacy of homology-directed repair, fitness of edited cells, immunogenicity of therapeutic CRISPR-Cas9 components, as well as efficiency, specificity, and translatability of in vivo delivery methods. In this article, we introduce the mechanisms and merits of CRISPR-Cas9 in genome editing, briefly retrospect the applications of CRISPR-Cas9 in gene therapy explorations and highlight recent advances, later we discuss in detail the challenges lying ahead in the way of its translatability, propose possible solutions, and future research directions. Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy. Published by Elsevier Inc. All rights reserved.

  1. Photodynamic therapy with fullerenes in vivo: reality or a dream?

    Science.gov (United States)

    Sharma, Sulbha K; Chiang, Long Y; Hamblin, Michael R

    2012-01-01

    Photodynamic therapy (PDT) employs the combination of nontoxic photosensitizers and visible light that is absorbed by the chromophore to produce long-lived triplet states that can carry out photochemistry in the presence of oxygen to kill cells. The closed carbon-cage structure found in fullerenes can act as a photosensitizer, especially when functionalized to impart water solubility. Although there are reports of the use of fullerenes to carry out light-mediated destruction of viruses, microorganisms and cancer cells in vitro, the use of fullerenes to mediate PDT of diseases such as cancer and infections in animal models is less well developed. It has recently been shown that fullerene PDT can be used to save the life of mice with wounds infected with pathogenic Gram-negative bacteria. Fullerene PDT has also been used to treat mouse models of various cancers including disseminated metastatic cancer in the peritoneal cavity. In vivo PDT with fullerenes represents a new application in nanomedicine. PMID:22122587

  2. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles

    Directory of Open Access Journals (Sweden)

    Wei-Jing Dai

    2016-01-01

    Full Text Available Owing to its easy-to-use and multiplexing nature, the genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR associated nuclease 9 is revolutionizing many areas of medical research and one of the most amazing areas is its gene therapy potentials. Previous explorations into the therapeutic potentials of CRISPR-Cas9 were mainly conducted in vitro or in animal germlines, the translatability of which, however, is either limited (to tissues with adult stem cells amenable to culture and manipulation or currently impermissible (due to ethic concerns. Recently, important progresses have been made on this regard. Several studies have demonstrated the ability of CRISPR-Cas9 for in vivo gene therapy in adult rodent models of human genetic diseases delivered by methods that are potentially translatable to human use. Although these recent advances represent a significant step forward to the eventual application of CRISPR-Cas9 to the clinic, there are still many hurdles to overcome, such as the off-target effects of CRISPR-Cas9, efficacy of homology-directed repair, fitness of edited cells, immunogenicity of therapeutic CRISPR-Cas9 components, as well as efficiency, specificity, and translatability of in vivo delivery methods. In this article, we introduce the mechanisms and merits of CRISPR-Cas9 in genome editing, briefly retrospect the applications of CRISPR-Cas9 in gene therapy explorations and highlight recent advances, later we discuss in detail the challenges lying ahead in the way of its translatability, propose possible solutions, and future research directions.

  3. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  4. Evaluating the Efficacy of ERG-Targeted Therapy in Vivo for Prostate Tumors

    Science.gov (United States)

    2015-04-01

    therapeutic attack and prevention through diet and nutrition . Semin Cancer Biol (2015). In press. PMID: 25869442. 3. Invited Articles (Since the...Award Number: W81XWH-11-1-0272 TITLE: Evaluating the Efficacy of ERG-Targeted Therapy in Vivo for Prostate Tumors PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Evaluating the Efficacy of ERG-Targeted Therapy in Vivo for Prostate Tumors 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0272 5c

  5. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer

    Science.gov (United States)

    Ruan, Jing; Ji, Jiajia; Song, Hua; Qian, Qirong; Wang, Kan; Wang, Can; Cui, Daxiang

    2012-06-01

    How to find early gastric cancer cells in vivo is a great challenge for the diagnosis and therapy of gastric cancer. This study is aimed at investigating the feasibility of using fluorescent magnetic nanoparticle (FMNP)-labeled mesenchymal stem cells (MSCs) to realize targeted imaging and hyperthermia therapy of in vivo gastric cancer. The primary cultured mouse marrow MSCs were labeled with amino-modified FMNPs then intravenously injected into mouse model with subcutaneous gastric tumor, and then, the in vivo distribution of FMNP-labeled MSCs was observed by using fluorescence imaging system and magnetic resonance imaging system. After FMNP-labeled MSCs arrived in local tumor tissues, subcutaneous tumor tissues in nude mice were treated under external alternating magnetic field. The possible mechanism of MSCs targeting gastric cancer was investigated by using a micro-multiwell chemotaxis chamber assay. Results show that MSCs were labeled with FMNPs efficiently and kept stable fluorescent signal and magnetic properties within 14 days, FMNP-labeled MSCs could target and image in vivo gastric cancer cells after being intravenously injected for 14 days, FMNP-labeled MSCs could significantly inhibit the growth of in vivo gastric cancer because of hyperthermia effects, and CCL19/CCR7 and CXCL12/CXCR4 axis loops may play key roles in the targeting of MSCs to in vivo gastric cancer. In conclusion, FMNP-labeled MSCs could target in vivo gastric cancer cells and have great potential in applications such as imaging, diagnosis, and hyperthermia therapy of early gastric cancer in the near future.

  6. Pancreatic cancer vaccine: a unique potential therapy

    Directory of Open Access Journals (Sweden)

    Cappello P

    2015-12-01

    Full Text Available Paola Cappello, Moitza Principe, Francesco Novelli Department of Molecular Biotechnologies and Health Sciences, Center for Experimental Research and Medical Studies, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy Abstract: Pancreatic ductal adenocarcinoma (PDA is a lethal disease and is one of the cancers that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy has provided any significant increase in the survival of patients with PDA. Despite intensive efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even after the introduction of molecularly targeted agents, chosen on the basis of their involvement in pathways that are considered to be important in PDA development and progression. Recently, however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin treatment has provided a limited survival advantage in patients with advanced PDA. Therefore, effective therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. Results from the last 10 years of research in the field of PDA have helped to identify new immunological targets and develop new vaccines that are capable of stimulating an immune response. In addition, the information obtained about the role of the tumor microenvironment in suppressing the immune response and the possibility of targeting PDA microenvironment to limit immune suppression and enhance the response of effector T-cells has opened new avenues for treating this incurable disease. The time is ripe for developing new therapeutic approaches that are able to effectively counteract the progression and spreading of PDA. This review discusses the potential prospects in the care of patients with pancreatic cancer through vaccination and its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, and inhibition of immunological

  7. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo.

    Directory of Open Access Journals (Sweden)

    Rajiv R Mohan

    Full Text Available Decorin, small leucine-rich proteoglycan, has been shown to modulate angiogenesis in nonocular tissues. This study tested a hypothesis that tissue-selective targeted decorin gene therapy delivered to the rabbit stroma with adeno-associated virus serotype 5 (AAV5 impedes corneal neovascularization (CNV in vivo without significant side effects. An established rabbit CNV model was used. Targeted decorin gene therapy in the rabbit stroma was delivered with a single topical AAV5 titer (100 µl; 5×10(12 vg/ml application onto the stroma for two minutes after removing corneal epithelium. The levels of CNV were examined with stereomicroscopy, H&E staining, lectin, collagen type IV, CD31 immunocytochemistry and CD31 immunoblotting. Real-time PCR quantified mRNA expression of pro- and anti-angiogenic genes. Corneal health in live animals was monitored with clinical, slit-lamp and optical coherence tomography biomicroscopic examinations. Selective decorin delivery into stroma showed significant 52% (p<0.05, 66% (p<0.001, and 63% (p<0.01 reduction at early (day 5, mid (day 10, and late (day 14 stages of CNV in decorin-delivered rabbit corneas compared to control (no decorin delivered corneas in morphometric analysis. The H&E staining, lectin, collagen type IV, CD31 immunostaining (57-65, p<0.5, and CD31 immunoblotting (62-67%, p<0.05 supported morphometric findings. Quantitative PCR studies demonstrated decorin gene therapy down-regulated expression of VEGF, MCP1 and angiopoietin (pro-angiogenic and up-regulated PEDF (anti-angiogenic genes. The clinical, biomicroscopy and transmission electron microscopy studies revealed that AAV5-mediated decorin gene therapy is safe for the cornea. Tissue-targeted AAV5-mediated decorin gene therapy decreases CNV with no major side effects, and could potentially be used for treating patients.

  8. Potential for heavy particle radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.; Phillips, T.L.

    1977-03-01

    Radiation therapy remains one of the major forms of cancer treatment. When x rays are used in radiotherapy, there are large variations in radiation sensitivity among tumors because of the possible differences in the presence of hypoxic but viable tumor cells, differences in reoxygenation during treatment, differences in distribution of the tumor cells in their cell cycle, and differences in repair of sublethal damage. When high-LET particles are used, depending upon the LET distribution, these differences are reduced considerably. Because of these differences between x rays and high-LET particle effects, the high-LET particles may be more effective on tumor cells for a given effect on normal cells. Heavy particles have potential application in improving radiotherapy because of improved dose localization and possible advantages of high-LET particles due to their radiobiological characteristics. Protons, because of their defined range, Bragg peak, and small effects of scattering, have good dose localization characteristics. The use of protons in radiotherapy minimizes the morbidity of radiotherapy treatment and is very effective in treating deep tumors located near vital structures. Fast neutrons have no physical advantages over /sup 60/Co gamma rays but, because of their high-LET component, could be very effective in treating tumors that are resistant to conventional radiations. Negative pions and heavy ions combine some of the advantages of protons and fast neutrons.

  9. Glucocorticoids enhance in vivo exposure-based therapy of spider phobia.

    Science.gov (United States)

    Soravia, Leila M; Heinrichs, Markus; Winzeler, Livia; Fisler, Melanie; Schmitt, Wolfgang; Horn, Helge; Dierks, Thomas; Strik, Werner; Hofmann, Stefan G; de Quervain, Dominique J-F

    2014-05-01

    Preclinical and clinical studies indicate that the administration of glucocorticoids may promote fear extinction processes. In particular, it has been shown that glucocorticoids enhance virtual reality based exposure therapy of fear of heights. Here, we investigate whether glucocorticoids enhance the outcome of in vivo exposure-based group therapy of spider phobia. In a double blind, block-randomized, placebo-controlled, between-subject study design, 22 patients with specific phobia of spiders were treated with two sessions of in vivo exposure-based group therapy. Cortisol (20 mg) or placebo was orally administered 1 hr before each therapy session. Patients returned for a follow-up assessment one month after therapy. Exposure-based group therapy led to a significant decrease in phobic symptoms as assessed with the Fear of Spiders Questionnaire (FSQ) from pretreatment to immediate posttreatment and to follow-up. The administration of cortisol to exposure therapy resulted in increased salivary cortisol concentrations and a significantly greater reduction in fear of spiders (FSQ) as compared to placebo at follow-up, but not immediately posttreatment. Furthermore, cortisol-treated patients reported significantly less anxiety during standardized exposure to living spiders at follow-up than placebo-treated subjects. Notably, groups did not differ in phobia-unrelated state-anxiety before and after the exposure sessions and at follow-up. These findings indicate that adding cortisol to in vivo exposure-based group therapy of spider phobia enhances treatment outcome. © 2013 Wiley Periodicals, Inc.

  10. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  11. Human fetal liver cells for regulated ex vivo erythropoietin gene therapy

    Directory of Open Access Journals (Sweden)

    Ebtisam El Filali

    2014-01-01

    Full Text Available Possible risks and lack of donor livers limit application of liver transplantation. Liver cell transplantation is, at this moment, not a feasible alternative because engraftment in the liver is poor. Furthermore, there is also shortage of cells suitable for transplantation. Fetal liver cells are able to proliferate in cell culture and could therefore present an alternative source of cells for transplantation. In this study, we investigated the utility of human fetal liver cells for therapeutic protein delivery. We transplanted human fetal liver cells in immunodeficient mice but were not able to detect engraftment of human hepatocytes. In contrast, transplantation of human adult hepatocytes led to detectable engraftment of hepatocytes in murine liver. Transplantation of fetal liver cells did lead to abundant reconstitution of murine liver with human endothelium, indicating that endothelial cells are the most promising cell type for ex vivo liver cell gene therapy. Human liver endothelial cells were subsequently transduced with a lentiviral autoregulatory erythropoietin expression vector. After transplantation in immunodeficient mice, these cells mediated long-term regulation of murine hematocrits. Our study shows the potential of human liver endothelial cells for long-term regulated gene therapy.

  12. [Multi-channel in vivo recording techniques: signal processing of action potentials and local field potentials].

    Science.gov (United States)

    Xu, Jia-Min; Wang, Ce-Qun; Lin, Long-Nian

    2014-06-25

    Multi-channel in vivo recording techniques are used to record ensemble neuronal activity and local field potentials (LFP) simultaneously. One of the key points for the technique is how to process these two sets of recorded neural signals properly so that data accuracy can be assured. We intend to introduce data processing approaches for action potentials and LFP based on the original data collected through multi-channel recording system. Action potential signals are high-frequency signals, hence high sampling rate of 40 kHz is normally chosen for recording. Based on waveforms of extracellularly recorded action potentials, tetrode technology combining principal component analysis can be used to discriminate neuronal spiking signals from differently spatially distributed neurons, in order to obtain accurate single neuron spiking activity. LFPs are low-frequency signals (lower than 300 Hz), hence the sampling rate of 1 kHz is used for LFPs. Digital filtering is required for LFP analysis to isolate different frequency oscillations including theta oscillation (4-12 Hz), which is dominant in active exploration and rapid-eye-movement (REM) sleep, gamma oscillation (30-80 Hz), which is accompanied by theta oscillation during cognitive processing, and high frequency ripple oscillation (100-250 Hz) in awake immobility and slow wave sleep (SWS) state in rodent hippocampus. For the obtained signals, common data post-processing methods include inter-spike interval analysis, spike auto-correlation analysis, spike cross-correlation analysis, power spectral density analysis, and spectrogram analysis.

  13. Photodynamic therapy with fullerenes in vivo: reality or a dream?

    OpenAIRE

    Sharma, Sulbha K; Chiang, Long Y.; Michael R. Hamblin

    2011-01-01

    Photodynamic therapy (PDT) employs the combination of nontoxic photosensitizers and visible light that is absorbed by the chromophore to produce long-lived triplet states that can carry out photochemistry in the presence of oxygen to kill cells. The closed carbon-cage structure found in fullerenes can act as a photosensitizer, especially when functionalized to impart water solubility. Although there are reports of the use of fullerenes to carry out light-mediated destruction of viruses, micro...

  14. In vivo ectopic implantation model to assess human mesenchymal progenitor cell potential.

    Science.gov (United States)

    Abarrategi, Ander; Perez-Tavarez, Raquel; Rodriguez-Milla, Miguel Angel; Cubillo, Isabel; Mulero, Francisca; Alfranca, Arantzazu; Lopez-Lacomba, Jose Luis; García-Castro, Javier

    2013-12-01

    Clinical interest on human mesenchymal progenitor cells (hMPC) relies on their potential applicability in cell-based therapies. An in vitro characterization is usually performed in order to define MPC potency. However, in vitro predictions not always correlate with in vivo results and thus there is no consensus in how to really assess cell potency. Our goal was to provide an in vivo testing method to define cell behavior before therapeutic usage, especially for bone tissue engineering applications. In this context, we wondered whether bone marrow stromal cells (hBMSC) would proceed in an osteogenic microenvironment. Based on previous approaches, we developed a fibrin/ceramic/BMP-2/hBMSCs compound. We implanted the compound during only 2 weeks in NOD-SCID mice, either orthotopically to assess its osteoinductive property or subcutaneously to analyze its adequacy as a cell potency testing method. Using fluorescent cell labeling and immunohistochemistry techniques, we could ascertain cell differentiation to bone, bone marrow, cartilage, adipocyte and fibrous tissue. We observed differences in cell potential among different batches of hBMSCs, which did not strictly correlate with in vitro analyses. Our data indicate that the method we have developed is reliable, rapid and reproducible to define cell potency, and may be useful for testing cells destined to bone tissue engineering purposes. Additionally, results obtained with hMPCs from other sources indicate that our method is suitable for testing any potentially implantable mesenchymal cell. Finally, we propose that this model could successfully be employed for bone marrow niche and bone tumor studies.

  15. Effect of tissue heterogeneity on an in vivo range verification technique for proton therapy

    Science.gov (United States)

    Hassane Bentefour, El; Shikui, Tang; Prieels, Damien; Lu, Hsiao-Ming

    2012-09-01

    It was proposed recently that time-resolved dose measurements during proton therapy treatment by passively scattered beams may be used for in vivo range verification. The method was shown to work accurately in a water tank. In this paper, we further evaluated the potential of the method for more clinically relevant situations where proton beams must pass through regions with significant tissue heterogeneities. Specifically, we considered prostate treatment where the use of anterior or anterior- oblique fields was recently proposed in order to reduce rectal dose by taking advantage of the sharp distal fall-off of the Bragg peak. These beam portals pass through various parts of pubic bone and potential air cavities in the bladder and bowels. Using blocks of materials with densities equivalent to bone, air, etc, arranged in the water tank in relevant configurations, we tested the robustness of the method against range shifting and range mixing. In the former, the beam range is changed uniformly by changes in tissue density in the beam path, while in the latter, variations in tissue heterogeneities across the beam cross section causes the mixing of beam energies downstream, as often occurs when the beam travels along the interface of materials with significantly different densities. We demonstrated that in the region of interest, the method can measure water-equivalent path length with accuracy better than ±0.5 mm for pure range shifting and still reasonable accuracy for range mixing between close beam energies. In situations with range mixing between significantly different beam energies, the dose rate profiles may be simulated for verifying the beam range. We also found that the above performances can be obtained with very small amount of dose (diodes are used as detectors. This makes the method suitable for in vivo range verification prior to each treatment delivery.

  16. In Vivo Models Used for Evaluation of Potential Antigastroduodenal Ulcer Agents

    Directory of Open Access Journals (Sweden)

    Michael Buenor Adinortey

    2013-01-01

    Full Text Available Peptic ulcer is among the most serious gastrointestinal diseases in the world. Several orthodox drugs are employed for the treatment of the disease. Although these drugs are effective, they produce many adverse effects thus limiting their use. In recent years, there has been a growing interest in alternative therapies, especially those from plants due to their perceived relative lower side effects, ease of accessibility, and affordability. Plant medicines with ethnomedicinal use in peptic ulcer management need to be screened for their effectiveness and possible isolation of lead compounds. This requires use of appropriate animal models of various ulcers. The limited number of antiulcer models for drug development against gastric and duodenal ulcer studies has hindered the progress of targeted therapy in this field. It is, therefore, necessary to review the literature on experimental models used to screen agents with potential antigastroduodenal ulcer activity and explain their biochemical basis in order to facilitate their use in the development of new preventive and curative antiulcer drugs. Clinical trials can then be carried out on agents/drugs that show promise. In this paper, current in vivo animal models of ulcers and the pathophysiological mechanisms underlying their induction, their limitations, as well as the challenges associated with their use have been discussed.

  17. Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie, E-mail: stefanie.girst@unibw.de [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Greubel, Christoph; Reindl, Judith [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Siebenwirth, Christian [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zlobinskaya, Olga [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Walsh, Dietrich W.M. [Institut für Angewandte Physik und Messtechnik (LRT2), Universität der Bundeswehr München, Neubiberg (Germany); Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Ilicic, Katarina [Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Aichler, Michaela; Walch, Axel [Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Oberschleißheim (Germany); and others

    2016-05-01

    Purpose: Proton minibeam radiation therapy is a novel approach to minimize normal tissue damage in the entrance channel by spatial fractionation while keeping tumor control through a homogeneous tumor dose using beam widening with an increasing track length. In the present study, the dose distributions for homogeneous broad beam and minibeam irradiation sessions were simulated. Also, in an animal study, acute normal tissue side effects of proton minibeam irradiation were compared with homogeneous irradiation in a tumor-free mouse ear model to account for the complex effects on the immune system and vasculature in an in vivo normal tissue model. Methods and Materials: At the ion microprobe SNAKE, 20-MeV protons were administered to the central part (7.2 × 7.2 mm{sup 2}) of the ear of BALB/c mice, using either a homogeneous field with a dose of 60 Gy or 16 minibeams with a nominal 6000 Gy (4 × 4 minibeams, size 0.18 × 0.18 mm{sup 2}, with a distance of 1.8 mm). The same average dose was used over the irradiated area. Results: No ear swelling or other skin reactions were observed at any point after minibeam irradiation. In contrast, significant ear swelling (up to fourfold), erythema, and desquamation developed in homogeneously irradiated ears 3 to 4 weeks after irradiation. Hair loss and the disappearance of sebaceous glands were only detected in the homogeneously irradiated fields. Conclusions: These results show that proton minibeam radiation therapy results in reduced adverse effects compared with conventional homogeneous broad-beam irradiation and, therefore, might have the potential to decrease the incidence of side effects resulting from clinical proton and/or heavy ion therapy.

  18. In vivo assessment of antiretroviral therapy-associated side effects

    Directory of Open Access Journals (Sweden)

    Eduardo Milton Ramos-Sanchez

    2014-07-01

    Full Text Available Antiretroviral therapy has been associated with side effects, either from the drug itself or in conjunction with the effects of human immunodeficiency virus infection. Here, we evaluated the side effects of the protease inhibitor (PI indinavir in hamsters consuming a normal or high-fat diet. Indinavir treatment increased the hamster death rate and resulted in an increase in triglyceride, cholesterol and glucose serum levels and a reduction in anti-oxLDL auto-antibodies. The treatment led to histopathological alterations of the kidney and the heart. These results suggest that hamsters are an interesting model for the study of the side effects of antiretroviral drugs, such as PIs.

  19. Bioactive glasses potential biomaterials for future therapy

    CERN Document Server

    Kaur, Gurbinder

    2017-01-01

    This book describes the history, origin and basic characteristics of bioactive materials. It includes a chapter dedicated to hydroxyapatite mineral, its formation and its bioactive properties. The authors address how cytotoxicity is a determining step for bioactivity. Applications of bioactive materials in the contexts of tissue regeneration, bone regeneration and cancer therapy are also covered. Silicate, metallic and mesoporous glasses are described, as well as the challenges and future prospects of research in this field.

  20. Potentiation of substance p by lysergic acid diethylamide in vivo

    Science.gov (United States)

    Krivoy, W. A.

    1961-01-01

    In doses of 10 μg/kg or more, lysergic acid diethylamide enhanced the fourth potential (DR IV) of the dorsal root potential complex in the cat. Smaller doses of lysergic acid diethylamide did not in themselves alter the DR IV, but revealed an enhancement of the potential by substance P, which by itself had no effect. 2-Bromolysergic acid diethylamide had no action on the dorsal root potentials, but prevented the actions of lysergic acid diethylamide. PMID:13754427

  1. An ex vivo platform to simulate cardiac physiology: a new dimension for therapy development and assessment

    NARCIS (Netherlands)

    de Hart, Jurgen; de Weger, Arend; van Tuijl, Sjoerd; Stijnen, Johannes M. A.; van den Broek, Chantal N.; Rutten, Marcel C. M.; de Mol, Bas A.

    2011-01-01

    Cardiac research and development of therapies and devices is being done with in silico models, using computer simulations, in vitro models, for example using pulse duplicators or in vivo models using animal models. These platforms, however, still show essential gaps in the study of comprehensive

  2. Potentials of Stem Cell Therapy-Curiosities Ignited

    Directory of Open Access Journals (Sweden)

    Editorial

    2009-01-01

    Full Text Available The potentials of Stem cell therapy are being harnessed to the fullest by the Stem Cell Biologists all over the world who are working towards the unanimous goal of finding a cure to many untreatable diseases through cellular replacement or tissue engineering .Keeping this view in mind, both basic and translational research are being promoted by various institutions & hospitals throughout the world Umbilical Cord blood, a rich source of Hematopoietic stem cells holds great potential for use in hematological malignancies and Umbilical Cord Blood Storage has spread its roots around the world. The post thaw viability of the Cryopreserved Umbilical cord blood stem cells is an issue of concern. In this regard Dr.Sachdeva in his article has explored the possibilities of using patient’s own serum as cryoprotection for enhancing the cryopreservation viability of umbilical cord blood cells.Amidst the several ongoing studies on the properties of telomerase Dr.Goes et al in their article of this issue have studied the influence of the telomerase in the osteogenic process and their studies support the hypothesis that the telomerase accelerates the osteogenic differentiation besides extending the lifespan of mesenchymal stem cells.This issue also presents a comprehensive record of work being done in the Stem Cell research field presented by leading scientists ,clinicians and researchers in the Annual Symposium & Plenary Session on Regenerative Medicine 2009.These include an array of topics like In vitro production of RBCs from ES, iPS generation and Stem Cell therapy in Japan by Dr.Yukio Nakamura, Stem Cell applications in Burn Injury by Dr.Yerneni, Stem cells in auditory hair cell repair by Dr.Hata , Hematopoietic Stem Cell Transplantation status in India by Shripad D. Banavali ,Recent Innovations in ocular Surface reconstruction by Dr.H.N.Madhavan, Ex vivo expansion of Primate CD34+ Cells isolated from Bone Marrow and Human Bone Marrow Mononuclear Cells

  3. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy

    DEFF Research Database (Denmark)

    Waugh, C. M.; Morrissey, D.; Jones, E.

    2015-01-01

    Extracorporeal shock wave therapy (ESWT) is a non-invasive treatment for chronic tendinopathies, however little is known about the in-vivo biological mechanisms of ESWT. Using microdialysis, we examined the real-time biological response of healthy and pathological tendons to ESWT. A single session......-responders based on a minimum 5-fold increase in any inflammatory marker or MMP from pre- to post-ESWT. Our findings provide novel evidence of the biological mechanisms underpinning ESWT in humans in vivo. They suggest that the mechanical stimulus provided by ESWT might aid tendon remodelling in tendinopathy...

  4. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility.

    Science.gov (United States)

    Yu, Min; Bardia, Aditya; Aceto, Nicola; Bersani, Francesca; Madden, Marissa W; Donaldson, Maria C; Desai, Rushil; Zhu, Huili; Comaills, Valentine; Zheng, Zongli; Wittner, Ben S; Stojanov, Petar; Brachtel, Elena; Sgroi, Dennis; Kapur, Ravi; Shioda, Toshihiro; Ting, David T; Ramaswamy, Sridhar; Getz, Gad; Iafrate, A John; Benes, Cyril; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A

    2014-07-11

    Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor-positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease. Copyright © 2014, American Association for the Advancement of Science.

  5. Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies.

    Science.gov (United States)

    Grinholc, Mariusz; Nakonieczna, Joanna; Fila, Grzegorz; Taraszkiewicz, Aleksandra; Kawiak, Anna; Szewczyk, Grzegorz; Sarna, Tadeusz; Lilge, Lothar; Bielawski, Krzysztof P

    2015-05-01

    A family of N-methylpyrrolidinium fullerene iodide salts has been intensively studied to determine their applicability in antimicrobial photodynamic therapy (APDT). This study examined in vitro the efficacy of a C60 fullerene functionalized with one methylpyrrolidinium group to kill upon irradiation with white light gram-negative and gram-positive bacteria, as well as fungal cells, and the corresponding mechanism of the fullerene bactericidal action. The in vitro studies revealed that the high antistaphylococcal efficacy of functionalized fullerene could be linked to their ability to photogenerate singlet oxygen and superoxide anion. Following Staphylococcus aureus photoinactivation, no modifications of its genomic DNA were detected. In contrast, photodamage of the cell envelope seemed to be a dominant mechanism of bactericidal action. In in vivo studies, a 2 log10 reduction in the average bioluminescent radiance between treated and non-treated mice was reached. One day post APDT treatment, moist and abundant growth of bacteria could be observed on wounds of non-fulleropyrrolidine and dark control mice. APDT-treated wounds stayed visibly clear up to the third day. Moreover, cytotoxicity test on human dermal keratinocytes revealed great safety of using the sensitizer toward eukaryotic cells. These data indicate potential application of functionalized fullerene as antistaphylococcal sensitizer for superficial infections.

  6. Photodynamic therapy affects the expression of IL-6 and IL-10 in vivo

    Science.gov (United States)

    Gollnick, Sandra O.; Musser, David A.; Henderson, Barbara W.

    1998-05-01

    Photodynamic therapy (PDT), which can effectively destroy malignant tissue, also induces a complex immune response which potentiates anti-tumor immunity, but also inhibits skin contact hypersensitivity (CHS) and prolongs skin graft survival. The underlying mechanisms responsible for these effects are poorly understood, but are likely to involve meditation by cytokines. We demonstrate in a BALB/c mouse model that PDT delivered to normal and tumor tissue in vivo causes marked changes in the expression of cytokines interleukin (IL)-6 and IL-10. IL-6 mRNA and protein are rapidly and strongly enhanced in the PDT treated EMT6 tumor. Previous studies have shown that intratumoral injection of IL- 6 or transduction of the IL-6 gene into tumor cells can enhance tumor immunogenicity and inhibit tumor growth in experimental murine tumor systems. Thus, PDT may enhance local anti-tumor immunity by up-regulating IL-6. PDT also results in an increase in IL-10 mRNA and protein in the skin. The same PDT regime which enhances IL-10 production in the skin has been shown to strongly inhibit the CHS response. The kinetics of IL-10 expression coincide with the known kinetics of PDT induced CHS suppression and we propose that the enhanced IL-10 expression plays a role in the observed suppression of cell mediated responses seen following PDT.

  7. Potential Use of Ayahuasca in Grief Therapy.

    Science.gov (United States)

    González, Débora; Carvalho, María; Cantillo, Jordi; Aixalá, Marc; Farré, Magí

    2017-01-01

    The death of a loved one is ultimately a universal experience. However, conventional interventions employed for people suffering with uncomplicated grief have gathered little empirical support. The present study aimed to explore the potential effects of ayahuasca on grief. We compared 30 people who had taken ayahuasca with 30 people who had attended peer-support groups, measuring level of grief and experiential avoidance. We also examined themes in participant responses to an open-ended question regarding their experiences with ayahuasca. The ayahuasca group presented a lower level of grief in the Present Feelings Scale of Texas Revised Inventory of Grief, showing benefits in some psychological and interpersonal dimensions. Qualitative responses described experiences of emotional release, biographical memories, and experiences of contact with the deceased. Additionally, some benefits were identified regarding the ayahuasca experiences. These results provide preliminary data about the potential of ayahuasca as a therapeutic tool in treatments for grief.

  8. Anti-Genotoxic Potential of Bilirubin In Vivo

    DEFF Research Database (Denmark)

    Wallner, Marlies; Antl, Nadja; Rittmannsberger, Barbara

    2013-01-01

    The bile pigment bilirubin is a known antioxidant and is associated with protection from cancer and cardiovascular disease (CVD) when present in too strong concentrations. Unconjugated bilirubin (UCB) might also possess anti-genotoxic potential by preventing oxidative damage to DNA. Moderately el...

  9. Fluorescence Quenching Nanoprobes Dedicated to In Vivo Photoacoustic Imaging and High-Efficient Tumor Therapy in Deep-Seated Tissue.

    Science.gov (United States)

    Qin, Huan; Zhou, Ting; Yang, Sihua; Xing, Da

    2015-06-10

    Photoacoustic imaging (PAI) and photoacoustic (PA) therapy have promising applications for treating tumors. It is known that the utilization of high-absorption-coefficient probes can selectively enhance the PAI target contrast and PA tumor therapy efficiency in deep-seated tissue. Here, the design of a probe with the highest availability of optical-thermo conversion by using graphene oxide (GO) and dyes via π-π stacking interactions is reported. The GO serves as a base material for loading dyes and quenching dye fluorescence via fluorescence resonance energy transfer (FRET), with the one purpose of maximum of PA efficiency. Experiments verify that the designed fluorescence quenching nanoprobes can produce stronger PA signals than the sum of the separate signals generated in the dye and the GO. Potential applications of the fluorescence quenching nanoprobes are demonstrated, dedicating to enhance PA contrast of targets in deep-seated tissues and tumors in living mice. PA therapy efficiency both in vitro and in vivo by using the fluorescence quenching nanoprobes is found to be higher than with the commonly used PA therapy agents. Taken together, quenching dye fluorescence via FRET will provide a valid means for developing high-efficiency PA probes. Fluorescence quenching nanoprobes are likely to become a promising candidate for deep-seated tumor imaging and therapy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A personal perspective on the early, early history of in vivo (DNA-based) gene therapy.

    Science.gov (United States)

    Kelley, William N

    2012-06-01

    Our first efforts in the laboratory to explore the concept of in vivo gene therapy began in late 1984. Our first peer-reviewed paper demonstrating success in vitro was published in January 1988, and our first demonstration of proof-of-principle in vivo in an experimental animal was published in August 1989. At this stage, as a strong supporter of the future of gene and cell therapy, I felt I could make a more important contribution as a scientific leader than as a bench scientist. Accordingly, in late 1989, I moved to the University of Pennsylvania in a senior leadership position where I was able, among other accomplishments, to establish the Institute for Human Gene Therapy in 1992 and the Department of Molecular and Cellular Engineering in 1993. Dr. Jim Wilson was recruited in 1993 to head these two academic units as Director and Chairman, respectively. The burgeoning growth and accelerating successes in the field of gene and cell therapy worldwide, the important contributions to the field by a large number of faculty at the University of Pennsylvania, and my role early in this history have been richly rewarding. A brief summary of this early, early history is provided below.

  11. Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies

    Directory of Open Access Journals (Sweden)

    A.G.M. Mostofa

    2017-06-01

    Full Text Available Thymoquinone (TQ, the main bioactive component of Nigella sativa, has been found to exhibit anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Moreover, TQ can specifically sensitize tumor cells toward conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy and simultaneously minimize therapy-associated toxic effects in normal cells. In this review, we summarized the adjuvant potential of TQ as observed in various in vitro and in vivo animal models and discussed the pharmacological properties of TQ to rationalize its supplementary role in potentiating the efficacy of standard therapeutic modalities namely surgery, radiotherapy, chemotherapy, and immunotherapy. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical levels to delineate its implied utility as a novel complementary adjuvant therapy for cancer treatment.

  12. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment.

    Science.gov (United States)

    Shi, Jinjin; Ma, Rourou; Wang, Lei; Zhang, Jing; Liu, Ruiyuan; Li, Lulu; Liu, Yan; Hou, Lin; Yu, Xiaoyuan; Gao, Jun; Zhang, Zhenzhong

    2013-01-01

    Carbon nanotubes (CNTs) have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs) with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME), was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.

  13. Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models.

    Directory of Open Access Journals (Sweden)

    Freija Van den Driessche

    Full Text Available Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems.

  14. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  15. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa.

    Science.gov (United States)

    Nour El Din, Suzanne; El-Tayeb, Tarek A; Abou-Aisha, Khaled; El-Azizi, Mohamed

    2016-01-01

    Silver nanoparticles (AgNPs) have been used as potential antimicrobial agents against resistant pathogens. We investigated the possible therapeutic use of AgNPs in combination with visible blue light against a multidrug resistant clinical isolate of Pseudomonas aeruginosa in vitro and in vivo. The antibacterial activity of AgNPs against P. aeruginosa (1×10(5) colony forming unit/mL) was investigated at its minimal inhibitory concentration (MIC) and sub-MIC, alone and in combination with blue light at 460 nm and 250 mW for 2 hours. The effect of this combined therapy on the treated bacteria was then visualized using transmission electron microscope. The therapy was also assessed in the prevention of biofilm formation by P. aeruginosa on AgNP-impregnated gelatin biopolymer discs. Further, in vivo investigations were performed to evaluate the efficacy of the combined therapy to prevent burn-wound colonization and sepsis in mice and, finally, to treat a real infected horse with antibiotic-unresponsive chronic wound. The antimicrobial activity of AgNPs and visible blue light was significantly enhanced (P<0.001) when both agents were combined compared to each agent alone when AgNPs were tested at MIC, 1/2, or 1/4 MIC. Transmission electron microscope showed significant damage to the cells that were treated with the combined therapy compared to other cells that received either the AgNPs or blue light. In addition, the combined treatment significantly (P<0.001) inhibited biofilm formation by P. aeruginosa on gelatin discs compared to each agent individually. Finally, the combined therapy effectively treated a horse suffering from a chronic wound caused by mixed infection, where signs of improvement were observed after 1 week, and the wound completely healed after 4 weeks. To our knowledge, this combinatorial therapy has not been investigated before. It was proved efficient and promising in managing infections caused by multidrug resistant bacteria and could be used as an

  16. Combination phenylbutyrate/gemcitabine therapy effectively inhibits in vitro and in vivo growth of NSCLC by intrinsic apoptotic pathways

    Directory of Open Access Journals (Sweden)

    Schniewind Bodo

    2006-11-01

    Full Text Available Abstract Background Standard chemotherapy protocols in NSCLC are of limited clinical benefit. Histone deacetylase (HDAC inhibitors represent a new strategy in human cancer therapy. In this study the combination of the HDAC inhibitor phenylbutyrate (PB and the nucleoside analogue gemcitabine (GEM was evaluated and the mechanisms underlying increased cell death were analyzed. Methods Dose escalation studies evaluating the cytotoxicity of PB (0.01–100 mM, GEM (0.01–100 μg/ml and a combination of the two were performed on two NSCLC cell lines (BEN and KNS62. Apoptotic cell death was quantified. The involvement of caspase-dependent cell death and MAP-kinase activation was analyzed. Additionally, mitochondrial damage was determined. In an orthotopic animal model the combined effect of PB and GEM on therapy was analyzed. Results Applied as a single drug both GEM and PB revealed limited potential to induce apoptosis in KNS62 and Ben cells. Combination therapy was 50–80% (p = 0.012 more effective than either agent alone. On the caspase level, combination therapy significantly increased cleavage of the pro-forms compared to single chemotherapy. The broad spectrum caspase-inhibitor zVAD was able to inhibit caspase cleavage completely, but reduced the frequency of apoptotic cells only by 30%. Combination therapy significantly increased changes in MTP and the release of cyto-c, AIF and Smac/Diabolo into the cytoplasm. Furthermore, the inhibitors of apoptosis c-IAP1 and c-IAP2 were downregulated and it was shown that in combination therapy JNK activation contributed significantly to induction of apoptosis. The size of the primary tumors growing orthotopically in SCID mice treated for 4 weeks with GEM and PB was significantly reduced (2.2–2.7 fold compared to GEM therapy alone. The Ki-67 (KNS62: p = 0.015; Ben: p = 0.093 and topoisomerase IIα (KNS62: p = 0.008; Ben: p = 0.064 proliferation indices were clearly reduced in tumors treated by combination

  17. Near-infrared persistent luminescence phosphors ZnGa2O4:Cr3+as an accurately tracker to photothermal therapy in vivo for visual treatment.

    Science.gov (United States)

    Chen, Hongbin; Zheng, Bin; Liang, Chao; Zhao, Li; Zhang, Ying; Pan, Huizhuo; Ji, Wanying; Gong, Xiaoqun; Wang, Hanjie; Chang, Jin

    2017-10-01

    The photothermal therapy agents induced by 808 nm near infrared light laser have good potential for photothermal therapy (PTT) in vivo, with the advantages of harmless treatment, minimally invasion, high efficiency and deep tissue penetration. For the traditional photothermal therapy agents, however, it was impossible to track them in vivo because of the low signal-to-noise ratio, so we cannot conduct the extra near infrared light laser to radiate tumors sites accurately. Herein, we introduce a new complex: indocyanine green (ICG), near-infrared persistent luminescence (PL) phosphors ZnGa 2 O 4 :Cr 3+ (ZGC) and mesoporous silica nanoparticles (MSNs) (ICG@mZGC nanoparticles) were assembled for long-lasting optical imaging to guide PTT. The results revealed that the novel nanoparticle, ICG@mZGC, could lower signal-to-noise ratio, enable highly sensitive optical detection during optical imaging-guided PTT and perform a good effect of photothermal therapy in vivo, and thus providing possibilities for mZGC to improve the localization precision of tumor sites in photothermal therapy in the body. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In vivo optical imaging to visualize photodynamic therapy-induced immune responses

    Science.gov (United States)

    Mitra, Soumya; Foster, Thomas H.

    2009-02-01

    Motivated by recent successes in growing intradermal tumors in the ears of mice and establishing the feasibility of in vivo confocal imaging of anatomic vessels in these tumors using fluorophore-conjugated antibodies to CD31, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Immune responses induced by photodynamic therapy (PDT) are dynamic processes that occur in a spatially and temporally specific manner. To visualize these processes noninvasively, we have made progress in developing optical molecular imaging strategies that take advantage of intradermal injection of fluorophore-conjugated-antibodies against surface antigens on immune cells. This enables confocal imaging of the fluorescently labeled host cells to depths of at least 100 microns, and using this technique we have achieved in vivo imaging of granulocyte (GR-1)- and major histocompatibility complex class II (MHC-II)-positive cell trafficking in tumors in response to PDT. The latter include macrophages and dendritic cells. Data from tumors that were subjected to PDT with the photosensitizer, HPPH, reveals a significantly enhanced level of GR-1+ cell infiltration compared to untreated control tumor. The temporal kinetics of GR-1+ and MHC-II+ cells at different time intervals post-PDT are being examined. The ability to image host responses in vivo without excising or perturbing the tissue has opened up opportunities to explore means of optimizing them to therapeutic advantage.

  19. Endovascular optical coherence tomography ex vivo: venous wall anatomy and tissue alterations after endovenous therapy

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Oliver A. [Ludwig Maximilians University, Institute for Clinical Radiology, Munich (Germany); Siemens AG Medical Solutions, Forchheim (Germany); Schmedt, Claus-Georg; Steckmeier, Bernd M. [Ludwig Maximilians University, Department of Vascular Surgery and Phlebology, Munich (Germany); Hunger, Kathrin; Reiser, Maximilian; Mueller-Lisse, Ullrich [Ludwig Maximilians University, Institute for Clinical Radiology, Munich (Germany); Hetterich, Holger; Rieber, Johannes [Ludwig Maximilians University, Division of Cardiology, Munich (Germany); Sroka, Ronald [Ludwig Maximilians University, Laser Research Laboratory, LIFE-Center, Munich (Germany); Babaryka, Gregor [Ludwig Maximilians University, Institute of Pathology, Munich (Germany); Siebert, Uwe [Massachusetts General Hospital, Harvard Medical School, Institute for Technology Assessment and Department of Radiology, Boston, MA (United States); University for Health Sciences, Medical Informatics and Technology, Department of Public Health, Medical Decision Making and Health Technology Assessment, Hall/Innsbruck (Austria)

    2007-09-15

    Endovascular optical coherence tomography (OCT) is a new imaging modality providing histology-like information of the venous wall. Radiofrequency ablation (RFA) and laser therapy (ELT) are accepted alternatives to surgery. This study evaluated OCT for qualitative assessment of venous wall anatomy and tissue alterations after RFA and ELT in bovine venous specimens. One hundred and thirty-four venous segments were obtained from ten ex-vivo bovine hind limbs. OCT signal characteristics for different wall layers were assessed in 180/216 (83%) quadrants from 54 normal venous cross-sections. Kappa statistics ({kappa}) were used to calculate intra- and inter-observer agreement. Qualitative changes after RFA (VNUS-Closure) and ELT (diode laser 980 nm, energy densities 15 Joules (J)/cm, 25 J/cm, 35 J/cm) were described in 80 venous cross-sections. Normal veins were characterized by a three-layered appearance. After RFA, loss of three-layered appearance and wall thickening at OCT corresponded with circular destruction of tissue structures at histology. Wall defects after ELT ranged from non-transmural punctiform damage to complete perforation, depending on the energy density applied. Intra- and inter-observer agreement for reading OCT images was very high (0.90 and 0.88, respectively). OCT allows for reproducible evaluation of normal venous wall and alterations after endovenous therapy. OCT could prove to be valuable for optimizing endovenous therapy in vivo. (orig.)

  20. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo

    Science.gov (United States)

    Peng, Mingli; Li, Houli; Luo, Zhiyi; Kong, Jian; Wan, Yinsheng; Zheng, Lemin; Zhang, Qinlu; Niu, Hongxin; Vermorken, Alphons; van de Ven, Wim; Chen, Chao; Zhang, Xikun; Li, Fuqiang; Guo, Lili; Cui, Yali

    2015-06-01

    Dextran-coated superparamagnetic iron oxide nanoparticles (DSPIONs) have gained considerable interest, because of their biocompatibility and biosafety in clinics. Doxorubicin (Dox), a widely used chemotherapeutic drug, always has limited applications in clinical therapy due to its serious side effects of dose-limiting irreversible cardiotoxicity and myelo suppression. Herein, DSPIONs were synthesized and developed as magnetic carriers for doxorubicin. The Dox-DSPION conjugates were evaluated in the in vitro test of Dox release, which showed pH-dependence with the highest release percentage of 50.3% at pH 5.0 and the lowest release percentage of 11.8% in a physiological environment. The cytotoxicity of DSPIONs and Dox-DSPIONs evaluated by the MTT assay indicated that DSPIONs had no cytotoxicity and the conjugates had significantly reduced the toxicity (IC50 = 1.36 μg mL-1) compared to free Dox (IC50 = 0.533 μg mL-1). Furthermore, confocal microscopic data of cell uptake suggest that less cytotoxicity of Dox-DSPIONs may be attributed to the cellular internalization of the conjugates and sustainable release of Dox from the formulation in the cytoplasm. More importantly, the results from the rabbit VX2 liver tumor model test under an external magnetic field showed that the conjugates had approximately twice the anti-tumor activity and two and a half times the animal survival rate, respectively, compared to free Dox. Collectively, our data have demonstrated that Dox-DSPIONs have less toxicity with better antitumor effectiveness in in vitro and in vivo applications, suggesting that the conjugates have potential to be developed into chemo-therapeutic formulations.

  1. Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments.

    Science.gov (United States)

    Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli

    2016-10-01

    Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.

  2. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    Science.gov (United States)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  3. Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors.

    Science.gov (United States)

    Solomon, George M; Marshall, Susan G; Ramsey, Bonnie W; Rowe, Steven M

    2015-10-01

    Cystic Fibrosis is caused by mutations in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene resulting in abnormal protein function. Recent advances of targeted molecular therapies and high throughput screening have resulted in multiple drug therapies that target many important mutations in the CFTR protein. In this review, we provide the latest results and current progress of CFTR modulators for the treatment of cystic fibrosis, focusing on potentiators of CFTR channel gating and Phe508del processing correctors for the Phe508del CFTR mutation. Special emphasis is placed on the molecular basis underlying these new therapies and emerging results from the latest clinical trials. The future directions for augmenting the rescue of Phe508del with CFTR modulators are also emphasized. © 2015 Wiley Periodicals, Inc.

  4. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    Science.gov (United States)

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  5. Phenotype and functional evaluation of ex vivo generated antigen-specific immune effector cells with potential for therapeutic applications

    Science.gov (United States)

    Han, Shuhong; Huang, Yuju; Liang, Yin; Ho, Yuchin; Wang, Yichen; Chang, Lung-Ji

    2009-01-01

    Ex vivo activation and expansion of lymphocytes for adoptive cell therapy has demonstrated great success. To improve safety and therapeutic efficacy, increased antigen specificity and reduced non-specific response of the ex vivo generated immune cells are necessary. Here, using a complete protein-spanning pool of pentadecapeptides of the latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV), a weak viral antigen which is associated with EBV lymphoproliferative diseases, we investigated the phenotype and function of immune effector cells generated based on IFN-γ or CD137 activation marker selection and dendritic cell (DC) activation. These ex vivo prepared immune cells exhibited a donor- and antigen-dependent T cell response; the IFN-γ-selected immune cells displayed a donor-related CD4- or CD8-dominant T cell phenotype; however, the CD137-enriched cells showed an increased ratio of CD4 T cells. Importantly, the pentadecapeptide antigens accessed both class II and class I MHC antigen processing machineries and effectively activated EBV-specific CD4 and CD8 T cells. Phenotype and kinetic analyses revealed that the IFN-γ and the CD137 selections enriched more central memory T (Tcm) cells than did the DC-activation approach, and after expansion, the IFN-γ-selected effector cells showed the highest level of antigen-specificity and effector activities. While all three approaches generated immune cells with comparable antigen-specific activities, the IFN-γ selection followed by ex vivo expansion produced high quality and quantity of antigen-specific effector cells. Our studies presented the optimal approach for generating therapeutic immune cells with potential for emergency and routine clinical applications. PMID:19660111

  6. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy

    Science.gov (United States)

    Liu, Shaojie; Doughty, Austin; Mesiya, Sana; Pettitt, Alex; Zhou, Feifan; Chen, Wei R.

    2017-02-01

    Temperature distribution in tissue is a crucial factor in determining the outcome of photothermal therapy in cancer treatment. In order to investigate the temperature distribution in tumor tissue during laser irradiation, we developed a novel ex vivo device to simulate the photothermal therapy on tumors. A 35°C, a thermostatic incubator was used to provide a simulation environment for body temperature of live animals. Different biological tissues (chicken breast and bovine liver) were buried inside a tissue-simulating gel and considered as tumor tissues. An 805-nm laser was used to irradiate the target tissue. A fiber with an interstitial cylindrical diffuser (10 mm) was directly inserted in the center of the tissue, and the needle probes of a thermocouple were inserted into the tissue paralleling the laser fiber at different distances to measure the temperature distribution. All of the procedures were performed in the incubator. Based on the results of this study, the temperature distribution in bovine liver is similar to that of tumor tissue under photothermal therapy with the same doses. Therefore, the developed model using bovine liver for determining temperature distribution can be used during interstitial photothermal therapy.

  7. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    Science.gov (United States)

    Wykes, R C; Lignani, G

    2017-05-28

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Salmonella-mediated cancer therapy: Roles and potential

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong [Dept. of Experimental TherapeuticsBeckman Research Institute of City of Hope, Duarte (United States); Min, Jung Joon [Dept. of Nuclear MedicineChonnam National University Medical School, Gwangju (Korea, Republic of)

    2017-06-15

    The use of bacteria for cancer therapy, which was proposed many years ago, was not recognized as a potential therapeutic strategy until recently. Technological advances and updated knowledge have enabled the genetic engineering of bacteria for their safe and effective application in the treatment of cancer. The efficacy of radiotherapy depends mainly on tissue oxygen levels, and low oxygen concentrations in necrotic and hypoxic regions are a common cause of treatment failure. In addition, the distribution of a drug is important for the therapeutic effect of chemotherapy, and the poor vasculature in tumors impairs drug delivery, limiting the efficacy of a drug, especially in necrotic and hypoxic regions. Bacteria-mediated cancer therapy (BMCT) relies on facultative anaerobes that can survive in well or poorly oxygenated regions, and it therefore improves the therapeutic efficacy drug distribution throughout the tumor mass. Since the mid-1990s, the number of published bacterial therapy papers has increased rapidly, with a doubling time of 2.5 years in which the use of Salmonella increased significantly. BMCT is being reevaluated to overcome some of the drawbacks of conventional therapies. This review focuses on Salmonella-mediated cancer therapy as the most widely used type of BMCT.{sub 2}.

  9. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  10. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo

    Science.gov (United States)

    Lobikin, Maria; Chernet, Brook; Lobo, Daniel; Levin, Michael

    2012-12-01

    Cancer may result from localized failure of instructive cues that normally orchestrate cell behaviors toward the patterning needs of the organism. Steady-state gradients of transmembrane voltage (Vmem) in non-neural cells are instructive, epigenetic signals that regulate pattern formation during embryogenesis and morphostatic repair. Here, we review molecular data on the role of bioelectric cues in cancer and present new findings in the Xenopus laevis model on how the microenvironment's biophysical properties contribute to cancer in vivo. First, we investigated the melanoma-like phenotype arising from serotonergic signaling by ‘instructor’ cells—a cell population that is able to induce a metastatic phenotype in normal melanocytes. We show that when these instructor cells are depolarized, blood vessel patterning is disrupted in addition to the metastatic phenotype induced in melanocytes. Surprisingly, very few instructor cells need to be depolarized for the hyperpigmentation phenotype to occur; we present a model of antagonistic signaling by serotonin receptors that explains the unusual all-or-none nature of this effect. In addition to the body-wide depolarization-induced metastatic phenotype, we investigated the bioelectrical properties of tumor-like structures induced by canonical oncogenes and cancer-causing compounds. Exposure to carcinogen 4-nitroquinoline 1-oxide (4NQO) induces localized tumors, but has a broad (and variable) effect on the bioelectric properties of the whole body. Tumors induced by oncogenes show aberrantly high sodium content, representing a non-invasive diagnostic modality. Importantly, depolarized transmembrane potential is not only a marker of cancer but is functionally instructive: susceptibility to oncogene-induced tumorigenesis is significantly reduced by forced prior expression of hyperpolarizing ion channels. Importantly, the same effect can be achieved by pharmacological manipulation of endogenous chloride channels, suggesting

  11. Potentially Harmful Therapy and Multicultural Counseling: Bridging Two Disciplinary Discourses

    Science.gov (United States)

    Wendt, Dennis C.; Gone, Joseph P.; Nagata, Donna K.

    2015-01-01

    In recent years psychologists have been increasingly concerned about potentially harmful therapy, yet this recent discourse has not addressed issues that have long been voiced by the multicultural counseling and psychotherapy movement. We aim to begin to bring these seemingly disparate discourses of harm into greater conversation with one another, in the service of placing the discipline on a firmer foothold in its considerations of potentially harmful therapy. After reviewing the two discourses and exploring reasons for their divergence, we argue that they operate according to differing assumptions pertaining to the sources, objects, and scope of harm. We then argue that these differences reveal the discipline’s need to better appreciate that harm is a social construct, that psychotherapy may be inherently ethnocentric, and that strategies for collecting evidence of harm should be integrated with a social justice agenda. PMID:26339075

  12. In vivo reproducibility of robotic probe placement for an integrated US-CT image-guided radiation therapy system

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Sen, H. Tutkun; Iordachita, Iulian; Kazanzides, Peter; Wong, John

    2014-03-01

    Radiation therapy is used to treat cancer by delivering high-dose radiation to a pre-defined target volume. Ultrasound (US) has the potential to provide real-time, image-guidance of radiation therapy to identify when a target moves outside of the treatment volume (e.g. due to breathing), but the associated probe-induced tissue deformation causes local anatomical deviations from the treatment plan. If the US probe is placed to achieve similar tissue deformations in the CT images required for treatment planning, its presence causes streak artifacts that will interfere with treatment planning calculations. To overcome these challenges, we propose robot-assisted placement of a real ultrasound probe, followed by probe removal and replacement with a geometrically-identical, CT-compatible model probe. This work is the first to investigate in vivo deformation reproducibility with the proposed approach. A dog's prostate, liver, and pancreas were each implanted with three 2.38-mm spherical metallic markers, and the US probe was placed to visualize the implanted markers in each organ. The real and model probes were automatically removed and returned to the same position (i.e. position control), and CT images were acquired with each probe placement. The model probe was also removed and returned with the same normal force measured with the real US probe (i.e. force control). Marker positions in CT images were analyzed to determine reproducibility, and a corollary reproducibility study was performed on ex vivo tissue. In vivo results indicate that tissue deformations with the real probe were repeatable under position control for the prostate, liver, and pancreas, with median 3D reproducibility of 0.3 mm, 0.3 mm, and 1.6 mm, respectively, compared to 0.6 mm for the ex vivo tissue. For the prostate, the mean 3D tissue displacement errors between the real and model probes were 0.2 mm under position control and 0.6 mm under force control, which are both within acceptable

  13. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy

    Directory of Open Access Journals (Sweden)

    Sensuke Konno

    2009-05-01

    Full Text Available Sensuke KonnoDepartment of Urology, New York, Medical College, Valhalla, NY, USAAbstract: Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa and its active constituent is the protein-bound polysaccharide (proteoglucan, or more specifically known as β-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus, and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.Keywords: maitake D-fraction, PDF, vitamin C, synergism, cancer therapy

  14. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing.

    Science.gov (United States)

    Nafee, Noha; Youssef, Alaa; El-Gowelli, Hanan; Asem, Heba; Kandil, Sherif

    2013-09-15

    Hypericin (HY) is a naturally-occurring, potent photosensitizer. However, its lipophilicity limits its therapeutic applications. Our attempt is, thus, to develop a biodegradable nanocarrier for hypericin capable of preserving its antibacterial photoactivity. Amphiphilic block copolymers were synthesized to prepare hypericin-laden nanoparticles (HY-NPs). The antimicrobial photoactivity of HY-NPs was assessed; in vitro against biofilm and planktonic cells of methicillin resistant Staphylococcus aureus (MRSA) clinical isolates and in vivo on infected wounds in rats. Nanoparticles of 45 nm in diameter ensured higher amounts of reactive oxygen species upon irradiation. HY-NPs demonstrated superior inhibition of biofilm over planktonic cells. In vivo wound healing studies in rats revealed faster healing, better epithelialization, keratinization and development of collagen fibers when HY-NPs were applied. Determination of growth factors and inflammatory mediators in the wound area confirmed superior healing potential of nanoencapsulated hypericin suggesting that hypericin can join the era of antibiotic-free antimicrobial therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. EGFR transactivation: mechanisms, pathophysiology and potential therapies in cardiovascular system

    Science.gov (United States)

    Forrester, Steven J.; Kawai, Tatsuo; Elliott, Katherine J.; O’Brien, Shannon; Thomas, Walter; Harris, Raymond C.; Eguchi, Satoru

    2017-01-01

    Accumulating studies suggest that the epidermal growth factor receptor (EGFR) activation is associated with the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases, including hypertension, cardiac hypertrophy, renal fibrosis and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is well described – a process termed EGFR “transactivation” – yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight the recent advancement of the signaling cascades and downstream consequences of EGFR transactivation within the cardiovascular renal system in vitro and in vivo. We will also focus on linking EGFR transactivation to animal models of the disease as well as the potential therapeutic applications. PMID:26566153

  16. Stem cells: Potential therapy for age-related diseases

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2006-01-01

    -engineered organs) to restore the functions of damaged or defective tissues and organs and thus to "rejuvenate" the failing aging body. One of the most important sources for cellular medicine is embryonic and adult (somatic) stem cells (SSCs). One example of SCCs with enormous clinical potential is the mesenchymal......Aging is associated with a progressive failing of tissues and organs of the human body leading to a large number of age-related diseases. Regenerative medicine is an emerging clinical discipline that aims to employ cellular medicines (normal cells, ex vivo expanded cells, or tissue...... stem cells (MSCs) that are present in the bone marrow and are able to differentiate into cell types such as osteoblasts, chondrocytes, endothelial cells, and probably also neuron-like cells. Because of the ease of their isolation and their extensive differentiation potential, MSCs are among the first...

  17. Ex-Vivo Uterine Environment (EVE Therapy Induced Limited Fetal Inflammation in a Premature Lamb Model.

    Directory of Open Access Journals (Sweden)

    Yuichiro Miura

    Full Text Available Ex-vivo uterine environment (EVE therapy uses an artificial placenta to provide gas exchange and nutrient delivery to a fetus submerged in an amniotic fluid bath. Development of EVE may allow us to treat very premature neonates without mechanical ventilation. Meanwhile, elevations in fetal inflammation are associated with adverse neonatal outcomes. In the present study, we analysed fetal survival, inflammation and pulmonary maturation in preterm lambs maintained on EVE therapy using a parallelised umbilical circuit system with a low priming volume.Ewes underwent surgical delivery at 115 days of gestation (term is 150 days, and fetuses were transferred to EVE therapy (EVE group; n = 5. Physiological parameters were continuously monitored; fetal blood samples were intermittently obtained to assess wellbeing and targeted to reference range values for 2 days. Age-matched animals (Control group; n = 6 were surgically delivered at 117 days of gestation. Fetal blood and tissue samples were analysed and compared between the two groups.Fetal survival time in the EVE group was 27.0 ± 15.5 (group mean ± SD hours. Only one fetus completed the pre-determined study period with optimal physiological parameters, while the other 4 animals demonstrated physiological deterioration or death prior to the pre-determined study end point. Significant elevations (p0.05 in surfactant protein mRNA expression level between the two groups.In this study, we achieved limited fetal survival using EVE therapy. Despite this, EVE therapy only induced a modest fetal inflammatory response and did not promote lung maturation. These data provide additional insight into markers of treatment efficacy for the assessment of future studies.

  18. In vivo modeling and molecular characterization: a path towards targeted therapy of melanoma brain metastasis

    Directory of Open Access Journals (Sweden)

    Avital eGaziel-Sovran

    2013-05-01

    Full Text Available Brain metastasis from melanoma remains mostly incurable and the main cause of death from the disease. Early stage clinical trials and case studies show some promise for targeted therapies in the treatment of melanoma brain metastasis. However, the progression-free survival for currently available therapies, although significantly improved, is still very short. The development of new potent agents to eradicate melanoma brain metastasis relies on the elucidation of the molecular mechanisms that drive melanoma cells to reach and colonize the brain. The discovery of such mechanisms depends heavily on pre-clinical models that enable the testing of candidate factors and therapeutic agents in vivo. In this review we summarize the effects of available targeted therapies on melanoma brain metastasis in the clinic. We provide an overview of existing pre-clinical models to study the disease and discuss specific molecules and mechanisms reported to modulate different aspects of melanoma brain metastasis and finally, by integrating both clinical and basic data, we summarize both opportunities and challenges currently presented to researchers in the field.

  19. Potential of Epigenetic Therapies in Non-cancerous Conditions

    Directory of Open Access Journals (Sweden)

    Raymond eYung

    2014-12-01

    Full Text Available There has been an explosion of knowledge in the epigenetics field in the past 20 years. The first epigenetic therapies have arrived in the clinic for cancer treatments. In contrast, much of the promise of epigenetic therapies for non-cancerous conditions remains in the laboratories. The current review will focus on the recent progress that has been made in understanding the pathogenic role of epigenetics in immune and inflammatory conditions, and how the knowledge may provide much needed new therapeutic targets for many autoimmune diseases. Dietary factors are increasingly recognized as potential modifiers of epigenetic marks that can influence health and diseases across generations. The current epigenomics revolution will almost certainly complement the explosion of personal genetics medicine to help guide treatment decisions and disease risk stratification.

  20. Circulating DNA as Potential Biomarker for Cancer Individualized Therapy

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    2013-09-01

    Full Text Available Cancer individualized therapy often requires for gene mutation analysis of tumor tissue. However, tumor tissue is not always available in clinical practice, particularly from patients with refractory and recurrence disease. Even if patients have sufficient tumor tissue for detection, as development of cancer, the gene status and drug sensitivity of tumor tissues could also change. Hence, screening mutations from primary tumor tissues becomes useless, it’s necessary to find a surrogate tumor tissue for individualized gene screening. Circulating DNA is digested rapidly from blood, which could provide real-time information of the released fragment and make the real-time detection possible. Therefore, it’s expected that circulating DNA could be a potential tumor biomarker for cancer individualized therapy. This review focuses on the biology and clinical utility of circulating DNA mainly on gene mutation detection. Besides, its current status and possible direction in this research area is summarized and discussed objectively.

  1. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma.

    Science.gov (United States)

    Camerin, Monica; Moreno, Miguel; Marín, María J; Schofield, Claire L; Chambrier, Isabelle; Cook, Michael J; Coppellotti, Olimpia; Jori, Giulio; Russell, David A

    2016-05-11

    Photodynamic therapy (PDT) is a treatment of cancer whereby tumours are destroyed by reactive oxygen species generated upon photoactivation of a photosensitizer drug. Hydrophobic photosensitizers are known to be ideal for PDT; however, their hydrophobicity necessitates that they are typically administered using emulsions. Here, a delivery vehicle for photodynamic therapy based on the co-self-assembly of both a Zn(ii)-phthalocyanine derivative photosensitizer and a polyethylene glycol (PEG) derivative onto gold nanoparticles is reported. The PEG on the particle surface ensured that the conjugates were water soluble and enhanced their retention in the serum, improving the efficiency of PDT in vivo. The pharmacokinetic behaviour of the nanoparticle conjugates following intravenous injection into C57/BL6 mice bearing a subcutaneous transplanted B78H1 amelanotic melanoma showed a significant increase of retention of the nanoparticles in the tumour. PDT tumour destruction was achieved 3 h following injection of the nanoparticle conjugates leading to a remarkable 40% of the treated mice showing no tumour regrowth and complete survival. These results highlight that dual functionalised nanoparticles exhibit significant potential in PDT of cancer especially for difficult to treat cancers such as amelanotic melanoma.

  2. Redox Potential and ROS-Mediated Nanomedicines for Improving Cancer Therapy.

    Science.gov (United States)

    Glass, Sterling B; Gonzalez-Fajardo, Laura; Beringhs, André O'Reilly; Lu, Xiuling

    2017-11-21

    The overabundance of reactive oxygen species (ROS) and antioxidants in cancer cells represents a challenge for therapeutic intervention, while also providing an opportunity for the development of new strategies to improve clinical therapeutic outcomes. Recent Advances: Nanotechnology has advanced tremendously in recent decades and now offers many potential opportunities to leverage altered redox status to improve conventional therapies. Highly tunable nanoparticle delivery systems have shown great promise for improving the following: (i) chemotherapy via selective redox-sensitive drug release in tumor cells and limited systemic toxicity; (ii) photodynamic therapy via enhancing photoactivation and/or ROS production; and (iii) radiation therapy via enhancing ROS production. Great progress has also been made regarding novel nanoparticle-mediated therapies to enhance tumor cell death via ROS generation and angiogenic inhibition. Current anticancer therapies are limited by systemic side effects and resistance. The inherent heterogeneity and hypoxic status of solid tumors impose significant barriers for even the most rationally designed nanoparticle systems. In addition, few comprehensive biodistribution and toxicity evaluations exist, and clinical efficacy remains to be established. The practicality of many nanoparticle systems is compromised by variable in vivo responses and scale-up difficulties due to complicated chemistry and prohibitive manufacturing costs. As nanoparticle design continues to advance, improved therapeutic efficacy will likely follow. Actively targeted systems may improve distribution specificity but more positive clinical demonstrations are needed. Further investigation into systemic and intracellular distribution as well as toxicity will improve understanding of how these nanoparticle systems can be applied to improve existing therapies. Antioxid. Redox Signal. 00, 000-000.

  3. Effects of peptide therapy on ex vivo T-cell responses.

    Science.gov (United States)

    Marcotte, G V; Braun, C M; Norman, P S; Nicodemus, C F; Kagey-Sobotka, A; Lichtenstein, L M; Essayan, D M

    1998-04-01

    Peptide therapy targets T cells directly with short peptides containing multiple T-cell receptor epitopes. Murine studies suggest T-cell anergy as the mechanism of action; however, changes in T-cell cytokine profiles may be more relevant in human beings. We sought to study the effects of peptide therapy on ex vivo antigen-specific T-cell responses. Antigen-specific T-cell lines were generated from subjects enrolled in a double-blind, placebo controlled, two-dose study of the ALLERVAX CAT therapeutic, containing Fel d 1 peptides (ImmuLogic Pharmaceutical Corp., Waltham, Mass.) (n = 7, 8, and 7, respectively, for groups receiving placebo, 75 microg, or 750 microg). Each subject had three lines propagated before and after receiving peptide therapy; antigens used were cat hair extract, Fel d 1 peptides, and tetanus toxoid (negative control). Proliferative responses and cytokine generation from each line were assessed after two restimulations with antigen and autologous antigen-presenting cells. The Fel d 1 peptide lines showed a dose-dependent decrease of IL-4 production (p = 0.02 and 0.025, respectively, for the 750 microg group vs both the 75 microg and placebo groups). IL-4 production from the cat hair allergen extract lines and interferon-gamma production from both the Fel d 1 peptide lines and cat hair allergen extract lines showed no statistically significant changes. The control tetanus toxoid lines showed no changes in cytokine production; there were no significant changes in proliferation with any of the antigens in any of the treatment groups. In the clinical arm of the trial, only the 750 microg dose of peptides produced a significant response. Peptide therapy induces a significant, dose-dependent decrease in peptide-stimulated IL-4 production, consistent with either a shift in T-cell phenotype or peptide-specific T-cell tolerance.

  4. Quantitative ultrasound imaging of therapy response in bladder cancer in vivo.

    Science.gov (United States)

    Tran, William T; Sannachi, Lakshmanan; Papanicolau, Naum; Tadayyon, Hadi; Al Mahrouki, Azza; El Kaffas, Ahmed; Gorjizadeh, Alborz; Lee, Justin; Czarnota, Gregory J

    2016-01-01

    Quantitative ultrasound (QUS) was investigated to monitor bladder cancer treatment response in vivo and to evaluate tumor cell death from combined treatments using ultrasound-stimulated microbubbles and radiation therapy. Tumor-bearing mice (n=45), with bladder cancer xenografts (HT- 1376) were exposed to 9 treatment conditions consisting of variable concentrations of ultrasound-stimulated Definity microbubbles [nil, low (1%), high (3%)], combined with single fractionated doses of radiation (0 Gy, 2 Gy, 8 Gy). High frequency (25 MHz) ultrasound was used to collect the raw radiofrequency (RF) data of the backscatter signal from tumors prior to, and 24 hours after treatment in order to obtain QUS parameters. The calculated QUS spectral parameters included the mid-band fit (MBF), and 0-MHz intercept (SI) using a linear regression analysis of the normalized power spectrum. There were maximal increases in QUS parameters following treatments with high concentration microbubbles combined with 8 Gy radiation: (ΔMBF = +6.41 ± 1.40 (±SD) dBr and SI= + 7.01 ± 1.20 (±SD) dBr. Histological data revealed increased cell death, and a reduction in nuclear size with treatments, which was mirrored by changes in quantitative ultrasound parameters. QUS demonstrated markers to detect treatment effects in bladder tumors in vivo.

  5. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies

    Directory of Open Access Journals (Sweden)

    Ira Katz

    2016-01-01

    Full Text Available New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  6. Strategies to potentiate immune response after photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Hamblin, Michael R.

    2017-02-01

    Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not yet advanced to a mainstream cancer treatment. Although PDT has been shown to be an efficient photochemical way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT a great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. Some of these combination approaches use immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen associated molecular patterns. Other approaches use cytokines and growth factors whether directly administered or genetically encoded. A promising approach targets regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

  7. The in vivo developmental potential of porcine skin-derived progenitors and neural stem cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Yang, Xiaoyu; Lee, Kiho; Mao, Jiude; Teson, Jennifer M; Whitworth, Kristin M; Samuel, Melissa S; Spate, Lee D; Murphy, Clifton N; Prather, Randall S

    2012-09-20

    Multipotent skin-derived progenitors (SKPs) can be traced back to embryonic neural crest cells and are able to differentiate into both neural and mesodermal progeny in vitro. Neural stem cells (NSCs) are capable of self-renewing and can contribute to neuron and glia in the nervous system. Recently, we derived porcine SKPs and NSCs from the same enhanced green fluorescent protein (EGFP) transgenic fetuses and demonstrated that SKPs could contribute to neural and mesodermal lineages in vivo. However, it remains unclear whether porcine SKPs and NSCs can generate ectoderm and mesoderm lineages or other germ layers in vivo. Embryonic chimeras are a well-established tool for investigating cell lineage determination and cell potency through normal embryonic development. Thus, the purpose of this study was to investigate the in vivo developmental potential of porcine SKPs and fetal brain-derived NSCs by chimera production. Porcine SKPs, NSCs, and fibroblasts were injected into precompact in vitro fertilized embryos (IVF) and then transferred into corresponding surrogates 24 h postinjection. We found that porcine SKPs could incorporate into the early embryos and contribute to various somatic tissues of the 3 germ layers in postnatal chimera, and especially have an endodermal potency. However, this developmental potential is compromised when they differentiate into fibroblasts. In addition, porcine NSCs fail to incorporate into host embryos and contribute to chimeric piglets. Therefore, neural crest-derived SKPs may represent a more primitive state than their counterpart neural stem cells in terms of their contributions to multiple cell lineages.

  8. [Preclinical models to establish innovative therapy strategies : Ex‑vivo assessment of head and neck tumor chemo- and immune responses].

    Science.gov (United States)

    Wichmann, G; Dietz, A

    2016-07-01

    The pharmacological treatment of head and neck squamous cell carcinoma (HNSCC) is currently experiencing an expansion of the spectrum of targeting therapies. It can be expected that use of immune modulators, e.g., checkpoint-inhibitors, and their combination with chemotherapy will lead to a plethora of therapeutic options in the near future, from which the best one for the individual patient can be selected. HNSCCs are heterogeneous in their biology, and responses to chemotherapy are nonuniform and often only observable in subgroups. It would be valuable to know the chance of success of a particular treatment in advance. Evidence-based selection of the best individual treatment is difficult, since predictive biomarkers which are assessable prior to the treatment decision and reliably indicate the suitability of particular therapeutics are lacking. Pretherapeutic predictive ex-vivo chemoresponse testing of HNSCC biopsy specimens could enable identification of responders and allow a more suitable therapy regimen to be chosen for potential non-responders, without exposing them to likely ineffective therapy attempts. However, early ex-vivo assays failed regarding reliable prediction of therapeutic success, even with tolerable doses of pharmaceuticals and, in particular, their combinations. Predictive testing was hence deemed improper for the clinic. Improved methodology has now led to a reappraisal of predictive testing and its additional use in analysis of antitumor immune responses ex vivo. Here we describe recent advances and new results from ex-vivo chemoresponse testing of HNSCC and highlight their ability to facilitate establishment of innovative therapy strategies.

  9. Ozone therapy: clinical and basic evidence of its therapeutic potential.

    Science.gov (United States)

    Re, Lamberto; Mawsouf, Mohamed N; Menéndez, Silvia; León, Olga S; Sánchez, Gregorio M; Hernández, Frank

    2008-01-01

    Ozone has recently been subjected to criticism and emphasis in relation to clinical efficacy and toxicity, respectively. Without a doubt, ozone, in common with oxygen itself, is one of the most potent oxidants. Ozone is considered one of the major pollutants in urban areas. Nevertheless, increasingly widespread use lately has highlighted the potential benefits as a therapeutic agent when used according to well-defined and safe protocols. Basic studies conducted following rigorous scientific and ethical criteria have been proposed for scientific discussion. This paper concerns original data on an in vivo model of Parkinson's disease and published data on the effect of low ozone doses with any risk of toxicity excluded with the concentrations commonly used in medical applications.

  10. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy.

    Science.gov (United States)

    Konno, Sensuke

    2009-07-30

    Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as beta-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option.

  11. Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy

    Science.gov (United States)

    Konno, Sensuke

    2009-01-01

    Maitake D-fraction or PDF is the bioactive extract of maitake mushroom (Grifola frondosa) and its active constituent is the protein-bound polysaccharide (proteoglucan), or more specifically known as β-glucan. PDF has been extensively studied and a number of its medicinal potentials/properties have been unveiled and demonstrated. Those include various physiological benefits ranging from immunomodulatory and antitumor activities to treatment for hypertension, diabetes, hypercholesterolemia, viral infections (hepatitis B and human immunodeficiency virus), and obesity. Particularly, two major biological activities of PDF, immunomodulatory and antitumor activities, have been the main target for scientific and clinical research. To demonstrate and confirm such biological activities, numerous studies have been performed in vitro and in vivo or in clinical settings. These studies showed that PDF was indeed capable of modulating immunologic and hematologic parameters, inhibiting or regressing the cancer cell growth, and even improving quality of life of cancer patients. Synergistic potentiation of PDF with vitamin C demonstrated in vitro is rather interesting and may have clinical implication, because such combination therapy appears to help improve the efficacy of currently ongoing cancer therapies. Recently, intravenous administration of vitamin C has been often used to increase its physiological concentration and this useful procedure may further make this combination therapy feasible. Therefore, PDF may have great potential, either being used solely or combined with other agents, for cancer therapy. Such relevant and detailed studies will be described and discussed herein with a special focus on the combination of PDF and vitamin C as a viable therapeutic option. PMID:20360893

  12. LINGO-1 antagonists as therapy for multiple sclerosis: in vitro and in vivo evidence.

    Science.gov (United States)

    Rudick, Richard A; Mi, Sha; Sandrock, Alfred W

    2008-10-01

    Multiple sclerosis (MS) is an inflammatory disease of the CNS that causes progressive neurological disability in most patients. Certain alleles of immunity-associated genes increase risk of MS, confirming a role for autoimmune mechanisms in pathogenesis. Activated mononuclear cells infiltrate the CNS and trigger an inflammatory cascade, resulting in demyelination and axonal injury. Non-inflammatory mechanisms also appear to be involved in axonal degeneration but are not fully elucidated. Current therapies are anti-inflammatory, and no available therapy is known to promote myelin repair or maintenance. Leucine-rich repeats and Ig domain-containing, neurite outgrowth inhibitor (Nogo) receptor-interacting protein-1 (LINGO-1) is a potent negative regulator of axonal myelination. This article provides an overview of the available data on the effects of LINGO-1 antagonists on oligodendrocyte differentiation and remyelination. LINGO-1 is a potential target for neuroprotective therapy in that antagonists may promote remyelination in diseases such as MS.

  13. Cannabinoids and cancer: potential for colorectal cancer therapy.

    Science.gov (United States)

    Patsos, H A; Hicks, D J; Greenhough, A; Williams, A C; Paraskeva, C

    2005-08-01

    Despite extensive research into the biology of CRC (colorectal cancer), and recent advances in surgical techniques and chemotherapy, CRC continues to be a major cause of death throughout the world. Therefore it is important to develop novel chemopreventive/chemotherapeutic agents for CRC. Cannabinoids are a class of compounds that are currently used in the treatment of chemotherapy-induced nausea and vomiting, and in the stimulation of appetite. However, there is accumulating evidence that they could also be useful for the inhibition of tumour cell growth by modulating key survival signalling pathways. The chemotherapeutic potential for plant-derived and endogenous cannabinoids in CRC therapy is reviewed.

  14. Sodium hyaluronate enhances colorectal tumour cell metastatic potential in vitro and in vivo.

    LENUS (Irish Health Repository)

    Tan, B

    2012-02-03

    BACKGROUND: Sodium hyaluronate has been used intraperitoneally to prevent postoperative adhesions. However, the effect of sodium hyaluronate on tumour growth and metastasis in vitro and in vivo is still unknown. METHODS: Human colorectal tumour cell lines SW480, SW620 and SW707 were treated with sodium hyaluronate (10-500 microg\\/ml) and carboxymethylcellulose (0.125-1 per cent), and tumour cell proliferation and motility were determined in vitro. For the in vivo experiments male BD IX rats were randomized to a sodium hyaluronate group (n = 11; intraperitoneal administration of 0.5 x 10(6) DHD\\/K12 tumour cells and 5 ml 0.4 per cent sodium hyaluronate) or a phosphate-buffered saline group (n = 11; 0.5 x 10(6) DHD\\/K12 tumour cells and 5 ml phosphate-buffered saline intraperitoneally). Four weeks later the intraperitoneal tumour load was visualized directly. RESULTS: In vitro sodium hyaluronate increased tumour cell proliferation and motility significantly. Sodium hyaluronate-induced tumour cell motility appeared to be CD44 receptor dependent, whereas sodium hyaluronate-induced tumour cell proliferation was CD44 receptor independent. In vivo there was a significantly higher total tumour nodule count in the peritoneal cavity of the sodium hyaluronate-treated group compared with the control (P = 0.016). CONCLUSION: Sodium hyaluronate enhances tumour metastatic potential in vitro and in vivo, which suggests that use of sodium hyaluronate to prevent adhesions in colorectal cancer surgery may also potentiate intraperitoneal tumour growth. Presented to the Patey Prize Session of the Surgical Research Society and the annual scientific meeting of the Association of Surgeons of Great Britain and Ireland, Brighton, UK, 4-7 May 1999

  15. Dynamics of Action Potential Initiation in the GABAergic Thalamic Reticular Nucleus In Vivo

    Science.gov (United States)

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold. PMID:22279567

  16. Ozone therapy as an adjuvant for endondontic protocols: microbiological - ex vivo study and citotoxicity analyses.

    Science.gov (United States)

    Nogales, Carlos Goes; Ferreira, Marina Beloti; Montemor, Antonio Fernando; Rodrigues, Maria Filomena de Andrade; Lage-Marques, José Luiz; Antoniazzi, João Humberto

    2016-01-01

    This study evaluated the antimicrobial efficacy of ozone therapy in teeth contaminated with Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus using a mono-species biofilm model. Parallel to this, the study aimed to evaluate the cytotoxicity of ozone for human gingival fibroblasts. Material and Methods: One hundred and eighty single-root teeth were contaminated with a mono-species biofilm of Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Groups were formed: Group I - control; Group II - standard protocol; Group III - standard protocol + ozone gas at 40 µg/mL; and Group IV - standard protocol + aqueous ozone at 8 µg/mL. In parallel, human gingival fibroblasts were submitted to the MTT test. Cells were plated, then ozone was applied as follows: Group I (control) - broth medium; Group II - aqueous ozone at 2 µg/mL; Group III - aqueous ozone at 5 µg/mL; and Group IV - aqueous ozone at 8 µg/mL. Data were submitted to the Kruskal Wallis test and Bonferroni post hoc analyses to assess microbiology and cytotoxicity, respectively (pozone therapy improved the decontamination of the root canal ex vivo. Ozone was toxic to the cells on first contact, but cell viability was recovered. Thus, these findings suggest that ozone might be useful to improve root canal results.

  17. Combination Gene Therapy for Liver Metastasis of Colon Carcinoma in vivo

    Science.gov (United States)

    Chen, Shu-Hsai; Chen, X. H. Li; Wang, Yibin; Kosai, Ken-Ichiro; Finegold, Milton J.; Rich, Susan S.

    1995-03-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8^+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.

  18. An in vivo photodynamic therapy with diode laser to cell activation of kidney dysfunction

    Science.gov (United States)

    Dyah Astuti, Suryani; Indra Prasaja, Brahma; Anggono Prijo, Tri

    2017-05-01

    This study aims to analyze the effect of photodynamic therapy (PDT) low level laser therapy (LLLT) 650 nm in the experimental animals mice (Musmuculus) suffering from kidney organ damage in mice (Musmuculus) in vivo. Exposure laser acupuncture was performed on the kidney BL-23. The conditioning of kidney damage in mice used carbofuraan 35 at a dose of 0.041697 mg/mice. LLLT 650 nm exposure was done on a wide variety of energy (0.5; 1.0; 1.5; 2.0; 4.0; 5.0; 6.0; 7.0) J. The histopathological kidney cells in mice renal impairment showed that exposure to 650 nm laser energy 1 Joule resulted in the reduction of damaged cells (necrosis) and normal cells were increased with the improvement of renal tubular cells (64.14 ± 8:02)%. Therefore, exposure to 650 nm LLLT on acupuncture points Shenshu (BL-23) has the ability to proliferation of renal tubular cells of mice.

  19. Ozone therapy as an adjuvant for endondontic protocols: microbiological – ex vivo study and citotoxicity analyses

    Science.gov (United States)

    NOGALES, Carlos Goes; FERREIRA, Marina Beloti; MONTEMOR, Antonio Fernando; RODRIGUES, Maria Filomena de Andrade; Lage-MARQUES, José Luiz; ANTONIAZZI, João Humberto

    2016-01-01

    ABSTRACT Objectives This study evaluated the antimicrobial efficacy of ozone therapy in teeth contaminated with Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus using a mono-species biofilm model. Parallel to this, the study aimed to evaluate the cytotoxicity of ozone for human gingival fibroblasts. Material and Methods: One hundred and eighty single-root teeth were contaminated with a mono-species biofilm of Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Groups were formed: Group I – control; Group II – standard protocol; Group III – standard protocol + ozone gas at 40 µg/mL; and Group IV – standard protocol + aqueous ozone at 8 µg/mL. In parallel, human gingival fibroblasts were submitted to the MTT test. Cells were plated, then ozone was applied as follows: Group I (control) – broth medium; Group II – aqueous ozone at 2 µg/mL; Group III – aqueous ozone at 5 µg/mL; and Group IV – aqueous ozone at 8 µg/mL. Data were submitted to the Kruskal Wallis test and Bonferroni post hoc analyses to assess microbiology and cytotoxicity, respectively (pozone therapy improved the decontamination of the root canal ex vivo. Ozone was toxic to the cells on first contact, but cell viability was recovered. Thus, these findings suggest that ozone might be useful to improve root canal results. PMID:28076466

  20. Automation and uncertainty analysis of a method for in-vivo range verification in particle therapy.

    Science.gov (United States)

    Frey, K; Unholtz, D; Bauer, J; Debus, J; Min, C H; Bortfeld, T; Paganetti, H; Parodi, K

    2014-10-07

    We introduce the automation of the range difference calculation deduced from particle-irradiation induced β(+)-activity distributions with the so-called most-likely-shift approach, and evaluate its reliability via the monitoring of algorithm- and patient-specific uncertainty factors. The calculation of the range deviation is based on the minimization of the absolute profile differences in the distal part of two activity depth profiles shifted against each other. Depending on the workflow of positron emission tomography (PET)-based range verification, the two profiles under evaluation can correspond to measured and simulated distributions, or only measured data from different treatment sessions. In comparison to previous work, the proposed approach includes an automated identification of the distal region of interest for each pair of PET depth profiles and under consideration of the planned dose distribution, resulting in the optimal shift distance. Moreover, it introduces an estimate of uncertainty associated to the identified shift, which is then used as weighting factor to 'red flag' problematic large range differences. Furthermore, additional patient-specific uncertainty factors are calculated using available computed tomography (CT) data to support the range analysis. The performance of the new method for in-vivo treatment verification in the clinical routine is investigated with in-room PET images for proton therapy as well as with offline PET images for proton and carbon ion therapy. The comparison between measured PET activity distributions and predictions obtained by Monte Carlo simulations or measurements from previous treatment fractions is performed. For this purpose, a total of 15 patient datasets were analyzed, which were acquired at Massachusetts General Hospital and Heidelberg Ion-Beam Therapy Center with in-room PET and offline PET/CT scanners, respectively. Calculated range differences between the compared activity distributions are reported in a

  1. In vivo protection against NMDA-induced neurodegeneration by MK-801 and nimodipine : Combined therapy and temporal course of protection

    NARCIS (Netherlands)

    Stuiver, BT; Douma, BRK; Bakker, R; Nyakas, C; Luiten, PGM

    Neuroprotection against excitotoxicity by a combined therapy with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the L-type Ca2+ channel blocker nimodipine was examined using an in vivo rat model of NMDA-induced neurodegeneration. Attention was focused on the neuroprotective

  2. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy.

    Science.gov (United States)

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.

  3. CD-PLLD co-delivering docetaxel and MMP-9 siRNA plasmid for nasopharyngeal carcinoma therapy in vivo.

    Science.gov (United States)

    Liu, Tao; Wu, Xidong; Wang, Yigang; Hou, Xiongjun; Jiang, Gang; Wu, Ting; Xie, Huifen; Xie, Minqiang

    2017-08-01

    The co-delivery of a drug and a target gene has become a primary strategy in cancer therapy. Based on our previous study, a synthesized star‑shaped co‑polymer consisting of β‑cyclodextrin (CD) and a poly(L‑lysine) dendron (PLLD) was used to co-deliver docetaxel (DOC) and matrix metalloproteinase 9 (MMP‑9) small interfering RNA, via CD‑PLLD/DOC/MMP‑9 complexes, into mice implanted with HNE‑1 human nasopharyngeal carcinoma (NPC) tumor cells in vivo. Unlike the commonly used amphiphilic co‑polymer micelles, the obtained CD derivative may be used directly for a combined delivery of nucleic acid and hydrophobic DOC without a complicated micellization process. In vivo assays demonstrated that CD‑PLLD/DOC/MMP‑9 inhibited HNE‑1 tumor growth and decreased proliferating cell nuclear antigen expression levels, indicating a potential strategy for NPC therapy. In addition, the distribution of DOC and MMP‑9 was investigated; CD‑PLLD/DOC/MMP‑9 complexes were phagocytized in reticuloendothelial systems, including the liver and spleen, which requires further study. Furthermore, the complexes did not cross the blood‑brain barrier due to their large molecular size, suggesting they may be relatively safe. Additionally, the complexes mediated increased DOC concentrations with prolonged blood circulation and EGFP expression in HNE‑1 tumors. These results suggest the future potential application of CD-PLLD/DOC/MMP-9 for NPC therapy.

  4. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages

    Science.gov (United States)

    Qin, Jinbao; Peng, Zhiyou; Li, Bo; Ye, Kaichuang; Zhang, Yuxin; Yuan, Fukang; Yang, Xinrui; Huang, Lijia; Hu, Junqing; Lu, Xinwu

    2015-08-01

    Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography (CT) imaging. These Au NRs were then applied to an apolipoprotein E knockout (Apo E) mouse model to evaluate their effects on in vivo CT imaging and their effectiveness as for the subsequent photothermal therapy of macrophages in femoral artery restenosis under 808 nm laser irradiation. In vitro photothermal ablation treatment using Au NRs exhibited a significant cell-killing efficacy of macrophages, even at relatively low concentrations of Au NRs and low NIR powers. In addition, the in vivo results demonstrated that the Au NRs are effective for in vivo imaging and photothermal therapy of inflammatory macrophages in femoral artery restenosis. This study shows that Au nanorods are a promising theranostic platform for the diagnosis and photothermal therapy of inflammation-associated diseases.Inflammatory macrophages play pivotal roles in the development of atherosclerosis. Theranostics, a promising approach for local imaging and photothermal therapy of inflammatory macrophages, has drawn increasing attention in biomedical research. In this study, gold nanorods (Au NRs) were synthesized, and their in vitro photothermal effects on the macrophage cell line (Ana-1 cells) under 808 nm near infrared reflection (NIR) were investigated by the CCK8 assay, calcein AM/PI staining, flow cytometry, transmission electron microscopy (TEM), silver staining and in vitro micro-computed tomography

  5. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    Science.gov (United States)

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  6. Cancer ameliorating potential of Phyllanthus amarus: In vivo and in vitro studies against Aflatoxin B1 toxicity

    Directory of Open Access Journals (Sweden)

    Md. Sultan Ahmad

    2015-10-01

    Conclusion: Ameliorating potential of P. amarus was dose and duration dependant. These extracts significantly reduced the mutagenicity and genotoxicity that were produced due to AFB1 treatment both in vitro and in vivo.

  7. Evaluation of the effect of photodynamic antimicrobial therapy in dentin caries: a pilot in vivo study

    Science.gov (United States)

    Borges, F. M. C.; de-Melo, M. A. S.; Lima, J. M. P.; Zanin, I. C. J.; Rodrigues, L. K. A.; Nobre-dos-Santos, M.

    2010-02-01

    In vitro and in situ studies have demonstrated that the photodynamic antimicrobial therapy (PACT) is effective in reducing Streptococcus mutans population in artificially carious dentin. This pilot in vivo study evaluated the antimicrobial effect of PACT using toluidine blue O (TBO) and a light-emitting diode (LED) in carious dentin lesions. Five healthy adult volunteers (19-36 yr), with at least 4 active carious cavities each, participated in this study. Teeth of each volunteer were randomly divided into four groups: (1) without TBO and without light (Control); (2) with TBO alone (TBO); (3) with LED at 94/J cm2 alone (LED); and (4) with TBO plus LED at 94 J/cm2 (PACT). Each cavity was divided into two halves. The baseline carious dentin sample was collected from half of each cavity. Following, the treatments were performed using a random distribution of tooth into treatments. Then, the second collection of carious dentin samples was performed. Before and after treatments, dentin samples were analyzed with regard to the counts of total viable microorganisms, total streptococci, mutans streptococci, and lactobacilli. The data were statistically analyzed by Kruskal-Wallis and Student-Newman-Keuls tests (α=5%). Log reductions ranged from -0.12 to 2.68 and significant reductions were observed for PACT (group 4) when compared to the other groups (1, 2, and 3) for total streptococci and mutans streptococci. Concluding, PACT was effective in killing oral microorganisms present in in vivo carious dentin lesions and may be a promising technique for eliminating bacteria from dentin before restoration.

  8. Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy.

    Science.gov (United States)

    Synatschke, Christopher V; Nomoto, Takahiro; Cabral, Horacio; Förtsch, Melanie; Toh, Kazuko; Matsumoto, Yu; Miyazaki, Kozo; Hanisch, Andreas; Schacher, Felix H; Kishimura, Akihiro; Nishiyama, Nobuhiro; Müller, Axel H E; Kataoka, Kazunori

    2014-02-25

    We describe the preparation of well-defined multicompartment micelles from polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was incorporated into the hydrophobic core during self-assembly and served as a model drug and fluorescent probe at the same time. The initial micellar corona is formed by negatively charged PMAA and could be gradually changed to poly(ethylene glycol) (PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA with positively charged poly(ethylene glycol)-block-poly(L-lysine) (PLL-b-PEG) diblock copolymers. At high degrees of PEGylation, a compartmentalized micellar corona was observed, with a stable bottlebrush-on-sphere morphology as demonstrated by cryo-TEM measurements. By in vitro cellular experiments, we confirmed that the porphyrazine-loaded micelles were PDT-active against A549 cells. The corona composition strongly influenced their in vitro PDT activity, which decreased with increasing PEGylation, correlating with the cellular uptake of the micelles. Also, a PEGylation-dependent influence on the in vivo blood circulation and tumor accumulation was found. Fully PEGylated micelles were detected for up to 24 h in the bloodstream and accumulated in solid subcutaneous A549 tumors, while non- or only partially PEGylated micelles were rapidly cleared and did not accumulate in tumor tissue. Efficient tumor growth suppression was shown for fully PEGylated micelles up to 20 days, demonstrating PDT efficacy in vivo.

  9. Potentials of Chitosan-Based Delivery Systems in Wound Therapy: Bioadhesion Study

    Directory of Open Access Journals (Sweden)

    Julia Hurler

    2012-01-01

    Full Text Available Chitosan is currently proposed to be one of the most promising polymers in wound dressing development. Our research focuses on its potential as a vehicle for nano-delivery systems destined for burn therapy. One of the most important features of wound dressing is its bioadhesion to the wounded site. We compared the bioadhesive properties of chitosan with those of Carbopol, a synthetic origin polymer. Chitosan-based hydrogels of different molecular weights were first analyzed by texture analysis for gel cohesiveness, adhesiveness and hardness. In vitro release studies showed no difference in release of model antimicrobial drug from the different hydrogel formulations. Bioadhesion tests were performed on pig ear skin and the detachment force, necessary to remove the die from the skin, and the amount of remaining formulation on the skin were determined. Although no significant difference regarding detachment force could be seen between Carbopol-based and chitosan-based formulations, almost double the amount of chitosan formulation remained on the skin as compared to Carbopol formulations. The findings confirmed the great potential of chitosan-based delivery systems in advanced wound therapy. Moreover, results suggest that formulation retention on the ex vivo skin samples could provide deeper insight on formulation bioadhesiveness than the determination of detachment force.

  10. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    Science.gov (United States)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p < 0.01), and induced a stronger anticancer effect than that of free curcumin (p < 0.05). In conclusion, Cur/MPEG-PCL micelles are an excellent intravenously injectable aqueous formulation of curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  11. Using nanotechnology to design potential therapies for CNS regeneration.

    Science.gov (United States)

    Ellis-Behnke, R G; Teather, L A; Schneider, G E; So, K-F

    2007-01-01

    The nanodelivery of therapeutics into the brain will require a step-change in thinking; overcoming the blood brain barrier is one of the major challenges to any neural therapy. The promise of nanotechnology is that the selective delivery of therapeutics can be delivered through to the brain without causing secondary damage. There are several formidable barriers that must be overcome in order to achieve axonal regeneration after injury in the CNS. The development of new biological materials, in particular biologically compatible scaffolds that can serve as permissive substrates for cell growth, differentiation and biological function is a key area for advancing medical technology. This review focuses on four areas: First, the barriers of delivering therapies to the central nervous system and how nanotechnology can potentially solve them; second, current research in neuro nanomedicine featuring brain repair, brain imaging, nanomachines, protein misfolding diseases, nanosurgery, implanted devices and nanotechnologies for crossing the blood brain barrier; third, health and safety issues and fourth, the future of neuro nanomedicine as it relates to the pharmaceutical industry.

  12. In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility.

    Science.gov (United States)

    Eliades, Theodore; Athanasiou, Athanasios E

    2002-06-01

    Despite the large number of studies investigating nickel release from orthodontic stainless steel and nickel-titanium alloys, there is a lack of conclusive evidence with respect to the composition and kinetics of the corrosive products released. The objective of this review is to address the critical issues of corrosion potential and nickel leaching from alloys by investigating the effect of intraoral conditions on the surface reactivity of the materials. After an overview of fundamentals of metallurgical structure of orthodontic alloys, we provide an analysis of corrosion processes occurring in vivo. We present recent evidence suggesting the formation of a proteinaceous biofilm on retrieved orthodontic materials that later undergoes calcification. We illustrate the vastly irrelevant surface structure of in vivo- vs in vitro-aged alloys and discuss the potential implications of this pattern in the reactivity of the materials. Finally, we present a comprehensive review of the issue of nickel release, based on three perspectives: its biologic effects, the methods used for studying its release, and nickel-induced hypersensitivity in orthodontic patients.

  13. Potential drug interactions in patients given antiretroviral therapy.

    Science.gov (United States)

    Santos, Wendel Mombaque Dos; Secoli, Silvia Regina; Padoin, Stela Maris de Mello

    2016-11-21

    to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p terapia de antirretroviral. um estudo de corte transversal foi conduzido em 161 pessoas infectadas com o HIV. Dados de tratamentos clínicos, sociodemográficos e antirretrovirais foram coletados. Para analisar a possível interação medicamentosa, nós usamos o software Micromedex(r). A análise estatística foi feita por regressão logística binária, com um valor P de ≤0.05, considerado estatisticamente significativo. dos participantes, 52.2% foram expostos a potenciais interações droga-droga. No total, houve 218 interações droga-droga, das quais 79.8% ocorreram entre drogas usadas para a terapia antirretroviral. Houve uma associação entre o uso de cinco ou mais medicamentos e possíveis interações droga-droga (p = 0.000), e entre o período de tempo de terapia antirretroviral acima de seis anos e possíveis interações droga-droga (p terapia antirretroviral. un estudio transversal se llevó a cabo en 161 adultos con infección por VIH. Se recogieron datos clínicos, socio demográficos, y de tratamiento antirretroviral. Para analizar las posibles

  14. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    Science.gov (United States)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  15. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    Science.gov (United States)

    Lademann, J.; Caspers, P. J.; van der Pol, A.; Richter, H.; Patzelt, A.; Zastrow, L.; Darvin, M.; Sterry, W.; Fluhr, J. W.

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC.

  16. Lanthanide (Gd(3+) and Yb(3+)) functionalized gold nanoparticles for in vivo imaging and therapy.

    Science.gov (United States)

    Ge, Xiaoqian; Song, Zheng-Mei; Sun, Lining; Yang, Yi-Fan; Shi, Liyi; Si, Rui; Ren, Wei; Qiu, Xueer; Wang, Haifang

    2016-11-01

    Nanoparticles are regularly used as contrast agents in bioimaging. Unlike other agents such as composite materials, nanoparticles can also be used for treating as well as imaging disease. Here we synthesized lanthanide functionalized gold nanoparticles that can be used for both imaging and therapy in vivo. That is a multifunctional nanoplatform was developed based on a simple and versatile method, by incorporating 10-nm gold nanoparticles and lanthanide ions (Gd(3+) and Yb(3+)), denoted as LnAu nanoparticles hereby. The LnAu nanoparticles were then surface-modified using a PEGylated amphiphilic polymer (C18MH-mPEG), and the resulting PEG modified LnAu nanoparticles (PEG-LnAu) display good monodispersion in water and good solubility in biological media. Due to the low toxicity in vitro and in vivo (as determined by a cell viability assay and histological and serum biochemistry analysis), the PEG-LnAu nanoparticles can be successfully applied to in vivo magnetic resonance imaging (MRI), in vivo computed tomography (CT) imaging and photothermal therapy (PTT) for tumor-bearing mice. Therefore, the present work developed an easy yet powerful strategy to combine lanthanide ions and gold nanoparticles to a unified nanoplatform for integrating bioimaging and therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ozone therapy as an adjuvant for endondontic protocols: microbiological – ex vivo study and citotoxicity analyses

    Directory of Open Access Journals (Sweden)

    Carlos Goes NOGALES

    Full Text Available ABSTRACT Objectives This study evaluated the antimicrobial efficacy of ozone therapy in teeth contaminated with Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus using a mono-species biofilm model. Parallel to this, the study aimed to evaluate the cytotoxicity of ozone for human gingival fibroblasts. Material and Methods: One hundred and eighty single-root teeth were contaminated with a mono-species biofilm of Enterococcus faecalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Groups were formed: Group I – control; Group II – standard protocol; Group III – standard protocol + ozone gas at 40 µg/mL; and Group IV – standard protocol + aqueous ozone at 8 µg/mL. In parallel, human gingival fibroblasts were submitted to the MTT test. Cells were plated, then ozone was applied as follows: Group I (control – broth medium; Group II – aqueous ozone at 2 µg/mL; Group III – aqueous ozone at 5 µg/mL; and Group IV – aqueous ozone at 8 µg/mL. Data were submitted to the Kruskal Wallis test and Bonferroni post hoc analyses to assess microbiology and cytotoxicity, respectively (p<0.05%. Results The results revealed antimicrobial efficacy by Group IV with no CFU count. The cytotoxicity assay showed Groups III and IV to be the most aggressive, providing a decrease in cell viability at hour 0 from 100% to 77.3% and 68.6%, respectively. Such a decrease in cell viability was reverted, and after 72 hours Groups III and IV provided the greatest increase in cell viability, being statistically different from Groups I and II. Conclusion According to the applied methodology and the limitations of this study, it was possible to conclude that ozone therapy improved the decontamination of the root canal ex vivo. Ozone was toxic to the cells on first contact, but cell viability was recovered. Thus, these findings suggest that ozone might be useful to improve root canal results.

  18. Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection.

    Directory of Open Access Journals (Sweden)

    Grant D Trobridge

    Full Text Available BACKGROUND: There is currently no effective AIDS vaccine, emphasizing the importance of developing alternative therapies. Recently, a patient was successfully transplanted with allogeneic, naturally resistant CCR5-negative (CCR5Delta32 cells, setting the stage for transplantation of naturally resistant, or genetically modified stem cells as a viable therapy for AIDS. Hematopoietic stem cell (HSC gene therapy using vectors that express various anti-HIV transgenes has also been attempted in clinical trials, but inefficient gene transfer in these studies has severely limited the potential of this approach. Here we evaluated HSC gene transfer of an anti-HIV vector in the pigtailed macaque (Macaca nemestrina model, which closely models human transplantation. METHODS AND FINDINGS: We used lentiviral vectors that inhibited both HIV-1 and simian immunodeficiency virus (SIV/HIV-1 (SHIV chimera virus infection, and also expressed a P140K mutant methylguanine methyltransferase (MGMT transgene to select gene-modified cells by adding chemotherapy drugs. Following transplantation and MGMT-mediated selection we demonstrated transgene expression in over 7% of stem-cell derived lymphocytes. The high marking levels allowed us to demonstrate protection from SHIV in lymphocytes derived from gene-modified macaque long-term repopulating cells that expressed an HIV-1 fusion inhibitor. We observed a statistically significant 4-fold increase of gene-modified cells after challenge of lymphocytes from one macaque that received stem cells transduced with an anti-HIV vector (p<0.02, Student's t-test, but not in lymphocytes from a macaque that received a control vector. We also established a competitive repopulation assay in a second macaque for preclinical testing of promising anti-HIV vectors. The vectors we used were HIV-based and thus efficiently transduce human cells, and the transgenes we used target HIV-1 genes that are also in SHIV, so our findings can be rapidly

  19. Acute and chronic effects of hyperbaric oxygen therapy on blood circulation of human muscle and tendon in vivo.

    Science.gov (United States)

    Kubo, Keitaro; Ikebukuro, Toshihiro

    2012-10-01

    This study aimed to investigate the acute and chronic effects of hyperbaric oxygen therapy on blood circulation of human muscle and tendon in vivo. Using near-infrared spectroscopy and red laser lights, we determined acute changes in blood volume (THb) and oxygen saturation (StO2) of the medial gastrocnemius muscle and Achilles tendon during 60 minutes of hyperbaric oxygen therapy (1.3 atm absolute and 50% O2, experiment 1). In addition, we determined the chronic effects of hyperbaric oxygen therapy (60 minutes, 2 times per week, 6 weeks) on THb and StO2 of muscle and tendon (experiment 2). In experiment 1, THb of the muscle increased gradually from resting level, but StO2 did not change. On the other hand, THb and StO2 of the tendon increased during hyperbaric oxygen therapy. In experiment 2, the pattern of changes in the measured variables during 60 minutes of therapy was similar for both the muscle and tendon between the first and last therapies. During resting, THb and StO2 of the tendon were significantly lower after 6 weeks of therapy, although those of the muscle were not. In conclusion, oxygen saturation of the tendon increased during hyperbaric oxygen therapy, whereas that of the muscle did not. This result would be related to the difference in the treated effects between muscle and tendon. However, oxygen saturation of the tendon, but not the muscle, during resting decreased after 6 weeks of therapy.

  20. A method for evaluating treatment quality using in vivo EPID dosimetry and statistical process control in radiation therapy.

    Science.gov (United States)

    Fuangrod, Todsaporn; Greer, Peter B; Simpson, John; Zwan, Benjamin J; Middleton, Richard H

    2017-03-13

    Purpose Due to increasing complexity, modern radiotherapy techniques require comprehensive quality assurance (QA) programmes, that to date generally focus on the pre-treatment stage. The purpose of this paper is to provide a method for an individual patient treatment QA evaluation and identification of a "quality gap" for continuous quality improvement. Design/methodology/approach A statistical process control (SPC) was applied to evaluate treatment delivery using in vivo electronic portal imaging device (EPID) dosimetry. A moving range control chart was constructed to monitor the individual patient treatment performance based on a control limit generated from initial data of 90 intensity-modulated radiotherapy (IMRT) and ten volumetric-modulated arc therapy (VMAT) patient deliveries. A process capability index was used to evaluate the continuing treatment quality based on three quality classes: treatment type-specific, treatment linac-specific, and body site-specific. Findings The determined control limits were 62.5 and 70.0 per cent of the χ pass-rate for IMRT and VMAT deliveries, respectively. In total, 14 patients were selected for a pilot study the results of which showed that about 1 per cent of all treatments contained errors relating to unexpected anatomical changes between treatment fractions. Both rectum and pelvis cancer treatments demonstrated process capability indices were less than 1, indicating the potential for quality improvement and hence may benefit from further assessment. Research limitations/implications The study relied on the application of in vivo EPID dosimetry for patients treated at the specific centre. Sampling patients for generating the control limits were limited to 100 patients. Whilst the quantitative results are specific to the clinical techniques and equipment used, the described method is generally applicable to IMRT and VMAT treatment QA. Whilst more work is required to determine the level of clinical significance, the

  1. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  2. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.

    Science.gov (United States)

    Tao, Hu; Hwang, Suk-Won; Marelli, Benedetto; An, Bo; Moreau, Jodie E; Yang, Miaomiao; Brenckle, Mark A; Kim, Stanley; Kaplan, David L; Rogers, John A; Omenetto, Fiorenzo G

    2014-12-09

    A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and technology in this context enables a class of biomedical devices that can be optically or electronically functional and yet harmlessly degrade once their use is complete. We present here a fully degradable, remotely controlled, implantable therapeutic device operating in vivo to counter a Staphylococcus aureus infection that disappears once its function is complete. This class of device provides fully resorbable packaging and electronics that can be turned on remotely, after implantation, to provide the necessary thermal therapy or trigger drug delivery. Such externally controllable, resorbable devices not only obviate the need for secondary surgeries and retrieval, but also have extended utility as therapeutic devices that can be left behind at a surgical or suturing site, following intervention, and can be externally controlled to allow for infection management by either thermal treatment or by remote triggering of drug release when there is retardation of antibiotic diffusion, deep infections are present, or when systemic antibiotic treatment alone is insufficient due to the emergence of antibiotic-resistant strains. After completion of function, the device is safely resorbed into the body, within a programmable period.

  3. Functional manganese dioxide nanosheet for targeted photodynamic therapy and bioimaging in vitro and in vivo

    Science.gov (United States)

    Kim, Seongchan; Ahn, Seong Min; Lee, Ji-Seon; Kim, Tae Shik; Min, Dal-Hee

    2017-06-01

    Photodynamic therapy (PDT) has been widely studied as a promising non-invasive therapeutic strategy for the treatment of cancer. However, the poor solubility of photosensitizer (PS) in aqueous solution and inefficient cell-penetrating capability have limited the target-specific PDT. Herein, we develop a novel targeted photodynamic therapeutic and bioimaging system based on folic acid (FA)-conjugated MnO2 (FA-MnO2) nanosheet as a new carrier of PS, zinc phthalocyanine (ZnPc). ZnPc loaded FA-MnO2 nanosheet (FA-MnO2/ZnPc) complex is successfully formed by electrostatic interaction and coordination. We find that FA-MnO2/ZnPc complex exhibits excellent targeted delivery of ZnPc into folate receptor positive cancer cells and the ZnPc is released out from the complex via endogenous glutathione (GSH) stimulus, facilitating simultaneous bioimaging and targeted PDT by singlet oxygen (SO) generation upon light irradiation, showing high efficacy with only one tenth of conventional PS dosage in vitro and in vivo.

  4. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymeric nanoparticles for nonviral gene therapy extend brain tumor survival in vivo.

    Science.gov (United States)

    Mangraviti, Antonella; Tzeng, Stephany Yi; Kozielski, Kristen Lynn; Wang, Yuan; Jin, Yike; Gullotti, David; Pedone, Mariangela; Buaron, Nitsa; Liu, Ann; Wilson, David R; Hansen, Sarah K; Rodriguez, Fausto J; Gao, Guo-Dong; DiMeco, Francesco; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Green, Jordan J

    2015-02-24

    Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat glioma cell lines, 9L and F98, to discover nanoparticle formulations more effective than the leading commercial reagent Lipofectamine 2000. The lead polymer structure, poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-modified with 1-(3-aminopropyl)-4-methylpiperazine, is a poly(β-amino ester) (PBAE) and formed nanoparticles with HSVtk DNA that were 138 ± 4 nm in size and 13 ± 1 mV in zeta potential. These nanoparticles containing HSVtk DNA showed 100% cancer cell killing in vitro in the two glioma cell lines when combined with GCV exposure, while control nanoparticles encoding GFP maintained robust cell viability. For in vivo evaluation, tumor-bearing rats were treated with PBAE/HSVtk infusion via convection-enhanced delivery (CED) in combination with systemic administration of GCV. These treated animals showed a significant benefit in survival (p = 0.0012 vs control). Moreover, following a single CED infusion, labeled PBAE nanoparticles spread completely throughout the tumor. This study highlights a nanomedicine approach that is highly promising for the treatment of malignant glioma.

  6. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation

    Directory of Open Access Journals (Sweden)

    Hoda El-Kehdy

    2016-01-01

    Full Text Available In line with the search of effective stem cell population that would progress liver cell therapy and because the rate and differentiation potential of mesenchymal stem cells (MSC decreases with age, the current study investigates the hepatogenic differentiation potential of human fetal liver MSCs (FL-MSCs. After isolation from 11-12 gestational weeks’ human fetal livers, FL-MSCs were shown to express characteristic markers such as CD73, CD90, and CD146 and to display adipocytic and osteoblastic differentiation potential. Thereafter, we explored their hepatocytic differentiation potential using the hepatogenic protocol applied for adult human liver mesenchymal cells. FL-MSCs differentiated in this way displayed significant features of hepatocyte-like cells as demonstrated in vitro by the upregulated expression of specific hepatocytic markers and the induction of metabolic functions including CYP3A4 activity, indocyanine green uptake/release, and glucose 6-phosphatase activity. Following transplantation, naive and differentiated FL-MSC were engrafted into the hepatic parenchyma of newborn immunodeficient mice and differentiated in situ. Hence, FL-MSCs appeared to be interesting candidates to investigate the liver development at the mesenchymal compartment level. Standardization of their isolation, expansion, and differentiation may also support their use for liver cell-based therapy development.

  7. Potential of Stem Cell-Based Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Hany E. Marei

    2018-02-01

    Full Text Available Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs, mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

  8. Efficient Ex Vivo Engineering and Expansion of Highly Purified Human Hematopoietic Stem and Progenitor Cell Populations for Gene Therapy.

    Science.gov (United States)

    Zonari, Erika; Desantis, Giacomo; Petrillo, Carolina; Boccalatte, Francesco E; Lidonnici, Maria Rosa; Kajaste-Rudnitski, Anna; Aiuti, Alessandro; Ferrari, Giuliana; Naldini, Luigi; Gentner, Bernhard

    2017-04-11

    Ex vivo gene therapy based on CD34 + hematopoietic stem cells (HSCs) has shown promising results in clinical trials, but genetic engineering to high levels and in large scale remains challenging. We devised a sorting strategy that captures more than 90% of HSC activity in less than 10% of mobilized peripheral blood (mPB) CD34 + cells, and modeled a transplantation protocol based on highly purified, genetically engineered HSCs co-infused with uncultured progenitor cells. Prostaglandin E 2 stimulation allowed near-complete transduction of HSCs with lentiviral vectors during a culture time of less than 38 hr, mitigating the negative impact of standard culture on progenitor cell function. Exploiting the pyrimidoindole derivative UM171, we show that transduced mPB CD34 + CD38 - cells with repopulating potential could be expanded ex vivo. Implementing these findings in clinical gene therapy protocols will improve the efficacy, safety, and sustainability of gene therapy and generate new opportunities in the field of gene editing. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Blockade of Aquaporin 1 Inhibits Proliferation, Motility, and Metastatic Potential of Mesothelioma In Vitro but not in an In Vivo Model

    Directory of Open Access Journals (Sweden)

    Sonja Klebe

    2015-01-01

    Full Text Available Background. Malignant mesothelioma (MM is an aggressive tumor of the serosal membranes, mostly the pleura. It is related to asbestos exposure and has a poor prognosis. MM has a long latency period, and incidence is predicted to remain stable or increase until 2020. Currently, no biomarkers for a specific targeted therapy are available. Previously, we observed that expression of aquaporin 1 (AQP1 was an indicator of prognosis in two independent cohorts. Here we determine whether AQP1 inhibition has therapeutic potential in the treatment of MM. Methods. Functional studies were performed with H226 cells and primary MM cells harvested from pleural effusions. AQP1 expression and mesothelial phenotype was determined by immunohistochemistry. AQP1 function was inhibited by a pharmacological blocker (AqB050 or AQP1-specific siRNA. Cell proliferation, migration, and anchorage-independent cell growth were assessed. A nude mouse heterotopic xenograft model of MM was utilised for the in vivo studies. Results. Inhibition of AQP1 significantly decreases cell proliferation, metastatic potential, and motility without inducing nonspecific cytotoxicity or increasing apoptosis. In vivo blockade of AQP1 had no biologically significant effect on growth of established tumours. Conclusions. Targeted blockade of AQP1 restricts MM growth and migration in vitro. Further work is warranted to fully evaluate treatment potential in vivo.

  10. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  11. Evaluation of in vitro and in vivo anti-arthritic potential of Berberis calliobotrys

    Directory of Open Access Journals (Sweden)

    Alamgeer

    2015-12-01

    Full Text Available The present study was commenced to evaluate the anti-arthritic effect of 70% methanol extract and n-butanol and aqueous fractions of Berberis calliobotrys using both in vitro and in vivo arthritis models. Extract and fractions were investigated in vitro for inhibition of protein (bovine serum and egg albumin denaturation and human red blood cell membrane stabilization. In vivo anti-arthritic activity of extract and fractions at 50, 100 and 200 mg/kg was assessed using turpentine oil and formaldehyde-induced arthritis, while, 200 mg/kg dose was evaluated against complete Freund’s adjuvant-induced arthritis. B. calliobotrys produced significant (p<0.001 dose dependent inhibition of protein denaturation and human red blood cell membrane stabilization. In turpentine oil, formaldehyde and complete Freund’s adjuvant-induced arthritis models, B. calliobotrys significantly (p<0.001 reduced joint and paw swelling. B. calliobotrys markedly improved body weight, hematology profile, radiological and histopathological parameters in complete Freund’s adjuvant model. It could be concluded that B. calliobotrys holds anti-arthritic potential, supporting its traditional use in treatment of rheumatoid arthritis.

  12. In vitro and in vivo germ line potential of stem cells derived from newborn mouse skin.

    Directory of Open Access Journals (Sweden)

    Paul W Dyce

    Full Text Available We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs. Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+. After differentiation, some GFP(+ OLCs reached 40-45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼ 0.3% of the freshly isolated skin cells were GFP(+. The GFP-positive cells increased to ∼ 7% after differentiation, suggesting that the GFP(+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.

  13. Cryptotanshinone-Loaded Cerasomes Formulation: In Vitro Drug Release, in Vivo Pharmacokinetics, and in Vivo Efficacy for Topical Therapy of Acne

    Directory of Open Access Journals (Sweden)

    Ting Zuo

    2016-12-01

    Full Text Available Cerasomes (CS, evolved from liposomes, are novel drug-delivery systems that have potential medical application as carriers for drugs or active ingredients. Although many studies have been conducted on the pharmaceutical and physicochemical properties of CS, the role of CS in influencing the in vivo plasma and topical pharmacokinetics and efficacy of topical drug delivery remain unclear. In this context, we chose cryptotanshinone (CTS as a model drug for the preparation of CTS-CS by means of the ethanol injection method to investigate their in vitro/in vivo drug-release behavior and in vivo efficacy. (1 In in vitro studies, CTS-CS gel was proven to be capable of achieving a higher permeation rate and significant accumulation in the dermis of isolated rat skin using Franz diffusion cells. (2 In in vivo studies, microdialysis experiments used to measure the plasma and topical pharmacokinetics demonstrated that the CS had a high drug concentration, short peak time, and slow elimination. Meanwhile, the plasma area under the concentration–time curve of CTS-CS gel was less than half that for the CTS gel in 12 h, which indicates that the drug bioavailability dramatically increased in the experiments. (3 In in vivo efficacy studies, we duplicated a rat acne model and performed antiacne efficacy experiments. The CTS-CS gel improved the antiacne efficacy compared to that of ordinary CTS gel. Moreover, it inhibited the expression of interleukin-1α and androgen receptors effectively. All of these results show that CTS-CS gel has significant potential for the treatment of acne induced by inflammation and excessive secretion of androgen, suggesting that CS formulations were designed as a good therapeutic option for skin disease.

  14. Plitidepsin: design, development, and potential place in therapy

    Directory of Open Access Journals (Sweden)

    Alonso-Álvarez S

    2017-01-01

    Full Text Available Sara Alonso-Álvarez,1 Emilia Pardal,2 Diego Sánchez-Nieto,3 Miguel Navarro,4 Maria Dolores Caballero,1 Maria Victoria Mateos,1 Alejandro Martín1 1Hematology Department, IBSAL-CIC-USAL, Hospital Universitario de Salamanca, Salamanca, Spain; 2Hematology Department, Hospital Virgen del Puerto, Plasencia, Spain; 3Pharmacy Department, Hospital Universitario de Salamanca, Salamanca, Spain; 4Oncology Department, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain Abstract: Plitidepsin is a cyclic depsipeptide that was first isolated from a Mediterranean marine tunicate (Aplidium albicans and, at present, is manufactured by total synthesis and commercialized as Aplidin®. Its antitumor activity, observed in preclinical in vitro and in vivo studies has prompted numerous clinical trials to be conducted over the last 17 years, alone or in combination with other anticancer agents. Single-agent plitidepsin has shown limited antitumor activity and a tolerable safety profile in several malignancies, such as noncutaneous peripheral T-cell lymphoma, melanoma, and multiple myeloma. In patients with relapsed or refractory multiple myeloma, plitidepsin activity seems to be enhanced after addition of dexamethasone while remaining well tolerated, and a Phase III trial comparing plitidepsin plus dexamethasone vs dexamethasone alone is underway. Additional studies are required to better define the role of plitidepsin in combination with other active agents in these indications. Results of plitidepsin activity in other hematological malignancies or solid tumors have been disappointing so far. Further studies analyzing its mechanisms of action and potential biomarkers will help select patients who may benefit most from this drug. In this review, we critically analyze the published studies on plitidepsin in hematological malignancies and solid tumors and discuss its current role and future perspectives in treating these malignancies. We also review its design

  15. Experimental cystic echinococcosis therapy: In vitro and in vivo combined 5-fluorouracil/albendazole treatment.

    Science.gov (United States)

    Pensel, Patricia E; Elissondo, Natalia; Gambino, Guillermo; Gamboa, Gabriela Ullio; Benoit, J P; Elissondo, María C

    2017-10-15

    Human cystic echinococcosis is a zoonosis caused by the larval stage of the tapeworm Echinococcus granulosus sensu lato (s. l.). Although benzimidazole compounds such as albendazole (ABZ) and mebendazole have been the cornerstone of chemotherapy for the disease, there is often no complete recovery after treatment. Hence, new strategies are required to improve treatment of human cystic echinococcosis. The goals of the current study were as follows: (i) to evaluate the in vitro efficacy of the 5-fluorouracil (5-FU) and ABZ combination against E. granulosus s. l. protoscoleces and cysts, (ii) to compare the clinical efficacy of 5-FU alone or in combination with ABZ in infected mice. The combination of 5-FU+ABZ had a stronger in vitro effect against larval stage than that did both drugs alone. Even at the lowest concentration of 5-FU+ABZ combination (1μg/ml), the reduction of the viability of protoscoleces and cysts was greater than that observed with drugs alone at 10μg/ml. The results were confirmed at the ultrastructural level by scanning electron microscopy. These data helped to justify the in vivo investigations assessing the therapeutic potential of the combination of 5-FU and ABZ suspension in CF-1 mice infected with E. granulosus sensu stricto (s. s.) metacestodes. Treatment with 5-FU (10mg/kg) or 5-FU (10mg/kg) + ABZ suspension (5mg/kg) reduced the weight of cysts recovered from mice compared with control groups. Interestingly, the effect of 5-FU given weekly for 5 consecutive weeks was comparable to that observed with ABZ suspension under a daily schedule during 30days. Co-administration of 5-FU with ABZ did not enhance the in vivo efficacy of drugs alone calculated in relation to cysts weights. However, the combination provoked greater ultrastructural alterations compared to the monotherapy. In conclusion, we demonstrated the efficacy of 5-FU either alone or co-administrated with ABZ against murine experimental cystic echinococcosis. Since 5-FU treatments

  16. Ex vivo confocal imaging with contrast agents for the detection of oral potentially malignant lesions.

    Science.gov (United States)

    El Hallani, S; Poh, C F; Macaulay, C E; Follen, M; Guillaud, M; Lane, P

    2013-06-01

    We investigated the potential use of real-time confocal microscopy in the non-invasive detection of occult oral potentially malignant lesions. Our objectives were to select the best fluorescence contrast agent for cellular morphology enhancement, to build an atlas of confocal microscopic images of normal human oral mucosa, and to determine the accuracy of confocal microscopy to recognize oral high-grade dysplasia lesions on live human tissue. Five clinically used fluorescent contrast agents were tested in vitro on cultured human cells and validated ex vivo on human oral mucosa. Images acquired ex vivo from normal and diseased human oral biopsies with bench-top fluorescent confocal microscope were compared to conventional histology. Image analyzer software was used as an adjunct tool to objectively compare high-grade dysplasia versus low-grade dysplasia and normal epithelium. Acriflavine Hydrochloride provided the best cellular contrast by preferentially staining the nuclei of the epithelium. Using topical application of Acriflavine Hydrochloride followed by confocal microscopy, we could define morphological characteristics of each cellular layer of the normal human oral mucosa, building an atlas of histology-like images. Applying this technique to diseased oral tissue specimen, we were also able to accurately diagnose the presence of high-grade dysplasia through the increased cellularity and changes in nuclear morphological features. Objective measurement of cellular density by quantitative image analysis was a strong discriminant to differentiate between high-grade dysplasia and low-grade dysplasia lesions. Pending clinical investigation, real-time confocal microscopy may become a useful adjunct to detect precancerous lesions that are at high risk of cancer progression, direct biopsy and delineate excision margins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Re: Engineered Nanoparticles Induce Cell Apoptosis: Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Engineered nanoparticles (ENPs have been widely applied in industry, biology and medicine recently (i.e. clothes, sunscreens, cosmetics, foods, diagnostic medicine, imaging and drug delivery. There are many kinds of manufactured nanomaterial products including TiO2, ZnO, CeO2, Fe2O3, and CuO (as metal oxide nanoparticles as well as gold, silver, platinum and palladium (as metal nanoparticles, and other carbon-based ENP’s such as carbon nanotububes and quantum dots. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs and cause toxic effects. In many researches, ENP effects on the cancer cells of different organs with related cell apoptosis were noted (AgNP, nano-Cr2O3, Au-Fe2O3 NPs, nano-TiO2, nano-HAP, nano-Se, MoO3 nanoplate, Realgar nanoparticles. ENPs, with their unique properties, such as surface charge, particle size, composition and surface modification with tissue recognition ligands or antibodies, has been increasingly explored as a tool to carry small molecular weight drugs as well as macromolecules for cancer therapy, thus generating the new concept “nanocarrier”. Direct induction of cell apoptosis by ENPs provides an opportunity for cancer treatment. In the century of nanomedicine that depends on development of the nanotechnology, ENPs have a great potential for application in cancer treatment with minimal side effects.

  18. Trifluoromethyl Boron Dipyrromethene Derivatives as Potential Photosensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Jian-Yong Liu

    2018-02-01

    Full Text Available In this study, two novel boron dipyrromethene-based photosensitizers (BDP3 and BDP6 substituted with three or six trifluoromethyl groups have been synthesized and characterized with various spectroscopic methods, and their photo-physical, photo-chemical, and photo-biological properties have also been explored. The two photosensitizers are highly soluble and remain nonaggregated in N,N-dimethylformamide as shown by the intense and sharp Q-band absorption. Under red light irradiation (λ = 660 nm, 1.5 J/cm2, both photosensitizers show high and comparable cytotoxicity towards HepG2 human hepatocarcinoma and HeLa human cervical carcinoma cells with IC50 values of 0.42–0.49 μM. The high photocytotoxicity of BDP3 and BDP6 can be due to their high cellular uptake and low aggregation tendency in biological media, which result in a high efficiency to generate reactive oxygen species inside the cells. Confocal laser fluorescence microscopic studies indicate that they have superior selective affinities to the mitochondria and lysosomes of HepG2 and HeLa cells. The results show that these two trifluoromethyl boron dipyrromethene derivatives are potential anticancer agents for photodynamic therapy.

  19. Photodynamic therapy of otitis media in-vitro and in-vivo using gerbil

    Science.gov (United States)

    Rhee, Chung-Ku; Kwon, Pil Seung; Ahn, Jin Chul; Chung, Phil Sang; Ge, Ruifeng

    2008-02-01

    The aim of this study was to evaluate antibacterial effects of PDT on common bacteria causing otitis media with effusion (OME). In vitro study was carried out using a hematoporphyrin derivative sensitizer (photogem) and 632 nm diode laser on H. influenzae, M. catarrhalis, and S. pneumoniae. One ml of each bacterial suspension was incubated for 3 hours and various concentrations of photogem were administered into the suspension. The suspensions were irradiated with 632 diode laser (15 J/cm2). The presence of colony forming units of the bacteria was examined, microscopic structures of bacteria were examined by TEM, and cytometry of bacteria was performed. The PDT was effective in killing all 3 kinds of bacteria. TEM showed damaged bacterial cell membrane and cytoplasmic structures and the flow cytometry showed lower number of viable bacteria in PDT group comparing to the control group. In vivo PDT study was performed using gerbil. S. pneumoniae or H. influenzae was injected into bullae. Photogem was injected into bullae in 2 days by when OME was developed and transcanal irradiation of 632 nm diode laser (90 J) was performed with a fiber perforated through an ear drum into a middle ear cavity and bulla. Four days after PDT, middle ear and bulla were washed with DPBS and the washed DPBS was cultured. The presence of bacterial colonies was examined. PDT was effective in killing S. pneumoniae in 87 % of the infected bullae with OME while it was effective to eradicate H. influenzae in 50 % of the infected bullae with OME. The results of these studies demonstrated that PDT may be effective to treat otitis media. It may have clinical implication to treat otitis media that is resistant to antibiotic therapy.

  20. Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses.

    Science.gov (United States)

    Nguyen, Jack T; Smee, Donald F; Barnard, Dale L; Julander, Justin G; Gross, Matthew; de Jong, Menno D; Went, Gregory T

    2012-01-01

    The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81) and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09). Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.

  1. Efficacy of combined therapy with amantadine, oseltamivir, and ribavirin in vivo against susceptible and amantadine-resistant influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Jack T Nguyen

    Full Text Available The limited efficacy of existing antiviral therapies for influenza--coupled with widespread baseline antiviral resistance--highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD regimen composed of amantadine, oseltamivir, and ribavirin that is highly efficacious at reducing mortality and weight loss in mouse models of influenza infection. TCAD therapy was superior to dual and single drug regimens in mice infected with drug-susceptible, low pathogenic A/H5N1 (A/Duck/MN/1525/81 and amantadine-resistant 2009 A/H1N1 influenza (A/California/04/09. Treatment with TCAD afforded >90% survival in mice infected with both viruses, whereas treatment with dual and single drug regimens resulted in 0% to 60% survival. Importantly, amantadine had no activity as monotherapy against the amantadine-resistant virus, but demonstrated dose-dependent protection in combination with oseltamivir and ribavirin, indicative that amantadine's activity had been restored in the context of TCAD therapy. Furthermore, TCAD therapy provided survival benefit when treatment was delayed until 72 hours post-infection, whereas oseltamivir monotherapy was not protective after 24 hours post-infection. These findings demonstrate in vivo efficacy of TCAD therapy and confirm previous reports of the synergy and broad spectrum activity of TCAD therapy against susceptible and resistant influenza strains in vitro.

  2. In Vivo Near-Infrared Photodynamic Therapy Based on Targeted Upconversion Nanoparticles.

    Science.gov (United States)

    Zhou, Aiguo; Wei, Yanchun; Chen, Qun; Xing, Da

    2015-11-01

    Upconversion nanoparticles have shown to be a promising prospect for biological detection and photodynamic therapy (PDT). The focus of this study was to develop an upconversion nanoparticle modified with a targeting peptide and photosensitizer for near-infrared photodynamic therapy. To produce a tumor-targeting nanophotosensitizer with near-infrared excitation, NaYF4:Yb/Er upconversion nanoparticles were first wrapped with O-carboxymethyl chitosan to develop an upconversion rianoplatform and then chemically conjugated with the photosensitizer pyropheophorbide-a (Ppa) and RGD peptide c(RGDyK). The nanoparticle exhibited low dark toxicity and high biocompatibility. When injected into the tail vein of tumor-bearing U87-MG mice, UCNP-Ppa-RGD revealed an enhanced tumor-specific biodistribution and successful therapeutic effect following near-infrared laser irradiation. It possessed a significantly deeper therapeutic depth compared with conventional visible light triggered PDT using Ppa. The results suggest that the nanoplatform has advantages in the spectral application, and the constructed tumor-specific nanoparticle shows high clinical potential to serve not only as a photodynamic imaging reagent but also as a therapeutic agent for the treatment of large or deeply seated tumors.

  3. Metabolomics has the potential to improve drug therapy

    DEFF Research Database (Denmark)

    Stage, Claus; Jürgens, Gesche; Dalhoff, Kim Peder

    2014-01-01

    Until now drug therapy has primarily been controlled by dose titration on the basis of effects and side effects. However, a lot of people being treated with a drug experience too little effect or too many side effects. Therefore it will be advantageous to improve drug therapy and make it even more...

  4. Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence

    Science.gov (United States)

    2011-01-01

    Background To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT), in vitro effects of equol treatment in human prostate cancer (LNCap) cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. Methods First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples). These steroids were incubated with increasing concentrations of equol (0-2,000 nM) and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol) as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours) in the presence of increasing concentrations of dimethyl sulfoxide (DMSO) (vehicle-control), 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA) levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1cc s.c. injections of either DMSO-control vehicle (n = 8) or 1.0 mg/kg (body weight) of equol (in DMSO) (n = 8). At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH), 5alpha-DHT, testosterone and 17beta-estradiol levels. Results Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate weights and serum

  5. iEquol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Hamaker Amy N

    2011-01-01

    Full Text Available Abstract Background To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT, in vitro effects of equol treatment in human prostate cancer (LNCap cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. Methods First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples. These steroids were incubated with increasing concentrations of equol (0-2,000 nM and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours in the presence of increasing concentrations of dimethyl sulfoxide (DMSO (vehicle-control, 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1cc s.c. injections of either DMSO-control vehicle (n = 8 or 1.0 mg/kg (body weight of equol (in DMSO (n = 8. At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH, 5alpha-DHT, testosterone and 17beta-estradiol levels. Results Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate

  6. How technology influences the therapeutic process: evaluation of the patient-therapist relationship in augmented reality exposure therapy and in vivo exposure therapy.

    Science.gov (United States)

    Wrzesien, Maja; Bretón-López, Juana; Botella, Cristina; Burkhardt, Jean-Marie; Alcañiz, Mariano; Pérez-Ara, María Ángeles; Del Amo, Antonio Riera

    2013-07-01

    New technologies have slowly become a part of psychologists' therapeutic office. However, many therapists still have doubts about the possibility of creating a good therapeutic relationship with patients in the presence of technology. This study evaluates the development of the therapeutic alliance in individuals with small animal phobia disorder who were treated with Augmented Reality Exposure Therapy or In Vivo Exposure Therapy. Twenty-two participants received an intensive session of cognitive behavioural therapy in either a technology-mediated therapeutic context or in a traditional therapeutic context. The results show no significant difference for the therapeutic alliance between two conditions. The results seem to show that technologies such as Augmented Reality do not represent a danger to negatively influence the therapeutic alliance.

  7. Anaesthesia for electroconvulsive therapy: An overview with an update on its role in potentiating electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Pavan Kumar Kadiyala

    2017-01-01

    Full Text Available Despite advances in pharmacotherapy, electroconvulsive therapy (ECT remains a mainstay treatment option in psychiatry since its introduction in 1930s. It can be used primarily in severe illnesses when there is an urgent need for treatment or secondarily after failure or intolerance to pharmacotherapy. The 'unmodified' technique of ECT was practised initially, with a high incidence of musculoskeletal complications. Several modifications including general anaesthesia and muscle relaxation are used to increase the safety and patient acceptability of ECT. Various anaesthetic techniques including medications are considered to provide adequate therapeutic seizure, simultaneously controlling seizure-induced haemodynamic changes and side effects. A brief review of literature on choice of these anaesthetic techniques is discussed. This article is intended to reinforce the knowledge of clinicians, who may have limited exposure to ECT procedure. Importance is given to the recent updates on the role of induction agents in potentiating therapeutic response to ECT in psychiatric disorders.

  8. Human ex-vivo action potential model for pro-arrhythmia risk assessment.

    Science.gov (United States)

    Page, Guy; Ratchada, Phachareeya; Miron, Yannick; Steiner, Guido; Ghetti, Andre; Miller, Paul E; Reynolds, Jack A; Wang, Ken; Greiter-Wilke, Andrea; Polonchuk, Liudmila; Traebert, Martin; Gintant, Gary A; Abi-Gerges, Najah

    2016-01-01

    While current S7B/E14 guidelines have succeeded in protecting patients from QT-prolonging drugs, the absence of a predictive paradigm identifying pro-arrhythmic risks has limited the development of valuable drug programs. We investigated if a human ex-vivo action potential (AP)-based model could provide a more predictive approach for assessing pro-arrhythmic risk in man. Human ventricular trabeculae from ethically consented organ donors were used to evaluate the effects of dofetilide, d,l-sotalol, quinidine, paracetamol and verapamil on AP duration (APD) and recognized pro-arrhythmia predictors (short-term variability of APD at 90% repolarization (STV(APD90)), triangulation (ADP90-APD30) and incidence of early afterdepolarizations at 1 and 2Hz to quantitatively identify the pro-arrhythmic risk. Each drug was blinded and tested separately with 3 concentrations in triplicate trabeculae from 5 hearts, with one vehicle time control per heart. Electrophysiological stability of the model was not affected by sequential applications of vehicle (0.1% dimethyl sulfoxide). Paracetamol and verapamil did not significantly alter anyone of the AP parameters and were classified as devoid of pro-arrhythmic risk. Dofetilide, d,l-sotalol and quinidine exhibited an increase in the manifestation of pro-arrhythmia markers. The model provided quantitative and actionable activity flags and the relatively low total variability in tissue response allowed for the identification of pro-arrhythmic signals. Power analysis indicated that a total of 6 trabeculae derived from 2 hearts are sufficient to identify drug-induced pro-arrhythmia. Thus, the human ex-vivo AP-based model provides an integrative translational assay assisting in shaping clinical development plans that could be used in conjunction with the new CiPA-proposed approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence.

    Science.gov (United States)

    Tu, Wenqing; Xu, Chao; Jin, Yuanxiang; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-06-01

    Permethrin (PM), one of the most heavily used synthetic pyrethroids, has the potential to interfere with thyroid hormones in mammals, however, the effect is poorly recognized in aquatic organisms. Herein, embryonic zebrafish were exposed to PM (0, 1, 3 and 10μg/L) until 72h post-fertilization. We demonstrated that PM readily accumulated in larvae with a preference for cis-PM, inhibited development and increased thyroxine and 3,5,3'-triiodothyronine levels accompanying increase in the transcription of most target genes, i.e., thyroid-stimulating hormone β, deiodinases, thyroid receptors, involved in the hypothalamic-pituitary-thyroid axis. Further Western blot analysis indicated that transthyretin (TTR) protein was significantly increased. Molecular docking analysis and molecular dynamics simulations revealed that PM fits into three hydrophobic binding pocket of TTR, one of the molecular targets of thyroid hormone disrupting chemicals (THDCs), and forms strong van der Waals interactions with six resides of TTR, including Leu8, Leu 101, Leu125, Thr214, Leu218 and Val229, thus altering TTR activity. Both in vivo and in silico studies clearly disclosed that PM potentially disrupts the thyroid endocrine system in fish. This study provides a rapid and cost-effective approach for identifying THDCs and the underlying mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

    Science.gov (United States)

    Laufer, Jan; Johnson, Peter; Zhang, Edward; Treeby, Bradley; Cox, Ben; Pedley, Barbara; Beard, Paul

    2012-05-01

    The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.

  11. Persistent Luminescent Nanocarrier as an Accurate Tracker in Vivo for Near Infrared-Remote Selectively Triggered Photothermal Therapy.

    Science.gov (United States)

    Zheng, Bin; Chen, Hong-Bin; Zhao, Pei-Qi; Pan, Hui-Zhuo; Wu, Xiao-Li; Gong, Xiao-Qun; Wang, Han-Jie; Chang, Jin

    2016-08-24

    Optical imaging-guidance of indocyanine green (ICG) for photothermal therapy (PTT) has great latent capacity in cancer therapy. However, the conventional optical image-guidance mode has caused strong tissue autofluorescence of the living tissue, which leads to the accurate infrared light irradiation cannot be conducted. In this article, ICG and persistent luminescence phosphors (PLPs) coloaded mesoporous silica nanocarriers ((ICG+PLPs)@mSiO2) were first designed and prepared for persistent luminescent imaging-guided PTT. The (ICG+PLPs)@mSiO2 nanocarriers could significantly improve signal-to-noise ratio during luminescence imaging-guided PTT, making the PLP promising for improving the accuracy of the tumor site for photothermal therapy in vivo. This paper is likely to develop a new way for accurately regulating cancer cell death based on luminescence imaging-guided PTT selectively triggered by near-infrared (NIR)-remote.

  12. Autophagy Therapeutic Potential of Garlic in Human Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Yung-Lin Chu

    2013-07-01

    Full Text Available Cancer is one of the deadliest diseases against humans. To tackle this menace, humans have developed several high-technology therapies, such as chemotherapy, tomotherapy, targeted therapy, and antibody therapy. However, all these therapies have their own adverse side effects. Therefore, recent years have seen increased attention being given to the natural food for complementary therapy, which have less side effects. Garlic 大 蒜 Dà Suàn; Allium sativum, is one of most powerful food used in many of the civilizations for both culinary and medicinal purpose. In general, these foods induce cancer cell death by apoptosis, autophagy, or necrosis. Studies have discussed how natural food factors regulate cell survival or death by autophagy in cancer cells. From many literature reviews, garlic could not only induce apoptosis but also autophagy in cancer cells. Autophagy, which is called type-II programmed cell death, provides new strategy in cancer therapy. In conclusion, we wish that garlic could be the pioneer food of complementary therapy in clinical cancer treatment and increase the life quality of cancer patients.

  13. Mirror therapy: A potential intervention for pain management

    OpenAIRE

    Wittkopf, Priscilla G.; Johnson, Mark I.

    2017-01-01

    Summary The consequences of chronic pain and associated disabilities to the patient and to the health care system are well known. Medication is often the first treatment of choice for chronic pain, although side effects and high costs restrict long-term use. Inexpensive, safe and easy to self-administer non-pharmacological therapies, such as mirror therapy, are recommended as adjuncts to pain treatment. The purpose of this review is to describe the principles of use of mirror therapy so it ca...

  14. In vitro and in vivo double-enhanced suicide gene therapy mediated by generation 5 polyamidoamine dendrimers for PC-3 cell line

    Directory of Open Access Journals (Sweden)

    Chen Yue

    2012-01-01

    Full Text Available Abstract Background One of the most frequently used and efficient suicide gene therapies for prostate cancer is HSV-TK/GCV system, but its application has been limited due to lack of favorable gene vector and the reduction of "bystander effect". We investigated the effect of a novel combination of HSV-TK/GCV fused with Cx43 and gemcitabine using non-viral vector generation 5 polyamidoamine dendrimers (G5-PAMAM-D on PC-3 cells. Methods RT-PCR and Western blot were used to detect TK and Cx43 expression. Cell viability and proliferation were measured by using MTT assay. Cell apoptosis was detected with double-staining of Annexin V-FITC and propidium iodide (PI by flow cytometry. Nude mice models were established to evaluate the therapeutic effect in vivo. Results G5-PAMAM-D efficiently delivered recombinant plasmids into PC-3 cells and HSV-TK and Cx43 could be expressed successfully. With gemcitabine, G5-PAMAM-D mediated HSV-TK and Cx43 expression effectively inhibited prostate cancer PC-3 cell proliferation, leading to more cellular apoptosis and inhibiting PC-3 tumor growth in nude mice models. Conclusions This study illustrates that this new suicide gene system mediated by G5-PAMAM-D is effective in decreasing PC-3 cell proliferation and inducing cell apoptosis, and inhibiting tumor growth in vivo. In a word, our study could provide a potential approach for gene therapy of prostate cancer.

  15. Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo.

    Science.gov (United States)

    Dong, Lile; Ji, Guanming; Liu, Yu; Xu, Xia; Lei, Pengpeng; Du, Kaimin; Song, Shuyan; Feng, Jing; Zhang, Hongjie

    2018-01-03

    Photothermal therapy (PTT) has attracted increasing interest and become widely used in cancer therapy owing to its noninvasiveness and low level of systemic adverse effects. However, there is an urgent need to develop biocompatible and multifunctional PTT agents with high photothermal conversion efficiency. Herein, biocompatible Cu-Ag2S/PVP nanoparticles (NPs) with strong near-infrared absorption and high photothermal conversion efficiency were successfully synthesized for high-performance photoacoustic (PA) imaging-guided PTT in vivo. The novel Cu-Ag2S/PVP NPs feature high photothermal conversion efficiency (58.2%) under 808 nm light irradiation, noticeably higher than those of most reported PTT agents. Because of their good dispersibility, Cu-Ag2S/PVP NPs passively accumulate within tumors via the enhanced permeability and retention effect, which can be confirmed by PA imaging, photothermal performance, and biodistribution in vivo. Furthermore, Cu-Ag2S/PVP NPs are thoroughly cleared through feces and urine within seven days, indicating a high level of biosafety for further potential clinical translation.

  16. The potential of isotopically enriched magnesium to study bone implant degradation in vivo.

    Science.gov (United States)

    Draxler, Johannes; Martinelli, Elisabeth; Weinberg, Annelie M; Zitek, Andreas; Irrgeher, Johanna; Meischel, Martin; Stanzl-Tschegg, Stefanie E; Mingler, Bernhard; Prohaska, Thomas

    2017-03-15

    This pilot study highlights the substantial potential of using isotopically enriched (non-radioactive) metals to study the fate of biodegradable metal implants. It was possible to show that magnesium (Mg) release can be observed by combining isotopic mass spectrometry and isotopic pattern deconvolution for data reduction, even at low amounts of Mg released a from slowly degrading (26)Mg enriched (>99%) Mg metal. Following implantation into rats, structural in vivo changes were monitored by μCT. Results showed that the applied Mg had an average degradation rate of 16±5μmyear(-1), which corresponds with the degradation rate of pure Mg. Bone and tissue extraction was performed 4, 24, and 52weeks after implantation. Bone cross sections were analyzed by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) to determine the lateral (26)Mg distribution. The (26)Mg/(24)Mg ratios in digested tissue and excretion samples were analyzed by multi collector ICP-MS. Isotope pattern deconvolution in combination with ICP-MS enabled detection of Mg pin material in amounts as low as 200ppm in bone tissues and 20ppm in tissues up to two fold increased Mg levels with a contribution of pin-derived Mg of up to 75% (4weeks) and 30% (24weeks) were found adjacent to the implant. After complete degradation, no visual bone disturbance or residual pin-Mg could be detected in cortical bone. In organs, increased Δ(26)Mg/(24)Mg values up to 16‰ were determined compared to control samples. Increased Δ(26)Mg/(24)Mg values were detected in serum samples at a constant total Mg level. In contrast to urine, feces did not show a shift in the (26)Mg/(24)Mg ratios. This investigation showed that the organism is capable of handling excess Mg well and that bones fully recover after degradation. Magnesium alloys as bone implants have faced increasing attention over the past years. In vivo degradation and metabolism studies of these implant materials have shown the promising application

  17. Trimetazidine therapy for diabetic mouse hearts subjected to ex vivo acute heart failure.

    Science.gov (United States)

    Breedt, Emilene; Lacerda, Lydia; Essop, M Faadiel

    2017-01-01

    Acute heart failure (AHF) is the most common primary diagnosis for hospitalized heart diseases in Africa. As increased fatty acid β-oxidation (FAO) during heart failure triggers detrimental effects on the myocardium, we hypothesized that trimetazidine (TMZ) (partial FAO inhibitor) offers cardioprotection under normal and obese-related diabetic conditions. Hearts were isolated from 12-14-week-old obese male and female diabetic (db/db) mice versus lean non-diabetic littermates (db/+) controls. The Langendorff retrograde isolated heart perfusion system was employed to establish an ex vivo AHF model: a) Stabilization phase-Krebs Henseleit buffer (10 mM glucose) at 100 mmHg (25 min); b) Critical Acute Heart Failure (CAHF) phase-(1.2 mM palmitic acid, 2.5 mM glucose) at 20 mmHg (25 min); and c) Recovery Acute Heart Failure phase (RAHF)-(1.2 mM palmitic acid, 10 mM glucose) at 100 mmHg (25 min). Treated groups received 5 μM TMZ in the perfusate during either the CAHF or RAHF stage for the full duration of each respective phase. Both lean and obese males benefited from TMZ treatment administered during the RAHF phase. Sex differences were observed only in lean groups where the phases of the estrous cycle influenced therapy; only the lean follicular female group responded to TMZ treatment during the CAHF phase. Lean luteal females rather displayed an inherent cardioprotection (without treatments) that was lost with obesity. However, TMZ treatment initiated during RAHF was beneficial for obese luteal females. TMZ treatment triggered significant recovery for male and obese female hearts when administered during RAHF. There were no differences between lean and obese male hearts, while lean females displayed a functional recovery advantage over lean males. Thus TMZ emerges as a worthy therapeutic target to consider for AHF treatment in normal and obese-diabetic individuals (for both sexes), but only when administered during the recovery phase and not during the very acute

  18. Antimicrobial photodynamic therapy in chronic osteomyelitis induced by Staphylococcus aureus: An in vitro and in vivo study

    Science.gov (United States)

    dos Reis Júnior, João Alves; de Assis, Patrícia Nascimento; Paraguassú, Gardênia Matos; de Vieira de Castro, Isabele Cardoso; Trindade, Renan Ferreira; Marques, Aparecida Maria Cordeiro; Almeida, Paulo Fernando; Pinheiro, Antônio Luiz Barbosa

    2012-09-01

    Osteomyelitis it is an acute or chronic inflammation in the marrow spaces in the superficial or cortical bone, and associated to bacterial infection. Chronic osteomyelitis represents a major health problem due to its difficult treatment and increased morbidity. Antimicrobial photodynamic therapy (APT) by laser is a treatment based on a cytotoxic photochemical reaction in which, a bright light produced by a laser system and an active photosensitizer absorbed by cells leads an activation that induces a series of metabolic reactions that culminates a bacterial killing. The aim of this study was to assess, both in vitro and in vivo, the effect of lethal laser photosensitization on osteomyelitis. On the in vitro study a diode laser (λ660nm; 40mW; o/ = 0.4 cm2; 5 or 10 J/cm2) and 5, 10 and 15μg/mL toluidine blue (TB) were tested and the best parameter chosen for the in vivo study. The concentration of 5μg/mL was selected to perform the decontamination of infected by Staphylococcus aureus tibial bone defects in rats. The results were performed by ANOVA test. On the in vitro studies all PDTs groups in the different concentrations reduced significantly (pphotodynamic therapy using toluidine blue was effective in reducing the staphiloccocus aureus in both in vitro and in vivo studies.

  19. Cognitive therapy and exposure in-vivo in the treatment of Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    Oppen, P. van; Dehaan, E.; Balkom, A.J.L.M. van; Spinhoven, P.; Hoogduin, K.; Dyck, R. van

    1995-01-01

    The present study is the first controlled study that evaluates the effects of cognitive therapy along the lines of Beck (1976) [Cognitive therapy and the emotional disorder. New York: International University Press] and Salkovskis (1985) [Behaviour Research and Therapy, 23, 571-583] in obsessive

  20. In vitro and In vivo Model Systems for Hemophilia A Gene Therapy.

    Science.gov (United States)

    Mao, Jianhua; Xi, Xiaodong; Kapranov, Philipp; Dong, Biao; Firrman, Jenni; Xu, Ruian; Xiao, Weidong

    2013-01-17

    Hemophilia A is a hereditary disorder caused by various mutations in factor VIII gene resulting in either a severe deficit or total lack of the corresponding activity. Recent success in gene therapy of a related disease, hemophilia B, gives new hope that similar success can be achieved for hemophilia A as well. To develop a gene therapy strategy for the latter, a variety of model systems are needed to evaluate molecular engineering of the factor VIII gene, vector delivery efficacy and safety-related issues. Typically, a tissue culture cell line is the most convenient way to get a preliminary glimpse of the potential of a vector delivery strategy. It is then followed by extensive testing in hemophilia A mouse and dog models. Newly developed hemophilia A sheep may provide yet another tool for evaluation of factor VIII gene delivery vectors. Hemophilia models based on other species may also be developed since hemophiliac animals have been identified or generated in rat, pig, cattle and horse. Although a genetic nonhuman primate hemophilia A model has yet to be developed, the non-genetic hemophilia A model can also be used for special purposes when specific questions need to be addressed that cannot not be answered in other model systems. Hemophilia A is caused by a functional deficiency in the factor VIII gene. This X-linked, recessive bleeding disorder affects approximately 1 in 5000 males [1-3]. Clinically, it is characterized by frequent and spontaneous joint hemorrhages, easy bruising and prolonged bleeding time. The coagulation activity of FVIII dictates severity of the clinical symptoms. Approximately 50% of all cases are classified as severe with less than 1% of normal levels of factor VIII detected [4]. This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding. In contrast, patients with 5-30% of normal factor VIII activity exhibit mild clinical manifestations.

  1. The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Petra Hilkens

    2017-01-01

    Full Text Available Adequate vascularization, a restricting factor for the survival of engineered tissues, is often promoted by the addition of stem cells or the appropriate angiogenic growth factors. In this study, human dental pulp stem cells (DPSCs and stem cells from the apical papilla (SCAPs were applied in an in vivo model of dental pulp regeneration in order to compare their regenerative potential and confirm their previously demonstrated paracrine angiogenic properties. 3D-printed hydroxyapatite scaffolds containing DPSCs and/or SCAPs were subcutaneously transplanted into immunocompromised mice. After twelve weeks, histological and ultrastructural analysis demonstrated the regeneration of vascularized pulp-like tissue as well as mineralized tissue formation in all stem cell constructs. Despite the secretion of vascular endothelial growth factor in vitro, the stem cell constructs did not display a higher vascularization rate in comparison to control conditions. Similar results were found after eight weeks, which suggests both osteogenic/odontogenic differentiation of the transplanted stem cells and the promotion of angiogenesis in this particular setting. In conclusion, this is the first study to demonstrate the successful formation of vascularized pulp-like tissue in 3D-printed scaffolds containing dental stem cells, emphasizing the promising role of this approach in dental tissue engineering.

  2. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities.

    Science.gov (United States)

    Amaretti, Alberto; di Nunzio, Mattia; Pompei, Anna; Raimondi, Stefano; Rossi, Maddalena; Bordoni, Alessandra

    2013-01-01

    Thirty-four strains of lactic acid bacteria (seven Bifidobacterium, 11 Lactobacillus, six Lactococcus, and 10 Streptococcus thermophilus) were assayed in vitro for antioxidant activity against ascorbic and linolenic acid oxidation (TAA(AA) and TAA(LA)), trolox-equivalent antioxidant capacity (TEAC), intracellular glutathione (TGSH), and superoxide dismutase (SOD). Wide dispersion of each of TAA(AA), TAA(LA), TEAC, TGSH, and SOD occurred within bacterial groups, indicating that antioxidative properties are strain specific. The strains Bifidobacterium animalis subsp. lactis DSMZ 23032, Lactobacillus acidophilus DSMZ 23033, and Lactobacillus brevis DSMZ 23034 exhibited among the highest TAA(AA), TAA(LA), TEAC, and TGSH values within the lactobacilli and bifidobacteria. These strains were used to prepare a potentially antioxidative probiotic formulation, which was administered to rats at the dose of 10(7), 10(8), and 10(9) cfu/day for 18 days. The probiotic strains colonized the colon of the rats during the trial and promoted intestinal saccharolytic metabolism. The analysis of plasma antioxidant activity, reactive oxygen molecules level, and glutathione concentration, revealed that, when administered at doses of at least 10(8) cfu/day, the antioxidant mixture effectively reduced doxorubicin-induced oxidative stress. Probiotic strains which are capable to limit excessive amounts of reactive radicals in vivo may contribute to prevent and control several diseases associated with oxidative stress.

  3. In Vitro and In Vivo Infectious Potential of Coxiella burnetii: A Study on Belgian Livestock Isolates

    Science.gov (United States)

    Mori, Marcella; Boarbi, Samira; Michel, Patrick; Bakinahe, Raïssa; Rits, Katleen; Wattiau, Pierre; Fretin, David

    2013-01-01

    Q-fever is a zoonosis caused by the gram-negative obligate intracellular pathogen Coxiella burnetii. Since its discovery, and particularly following the recent outbreaks in the Netherlands, C. burnetii appeared as a clear public health concern. In the present study, the infectious potential displayed by goat and cattle isolates of C. burnetii was compared to a reference strain (Nine Mile) using both in vitro (human HeLa and bovine macrophage cells) and in vivo (BALB/c mice) models. The isolates had distant genomic profiles with one - the goat isolate - being identical to the predominant strain circulating in the Netherlands during the 2007–2010 outbreaks. Infective doses were established with ethidium monoazide-PCR for the first time here applied to C. burnetii. This method allowed for the preparation of reproducible and characterized inocula thanks to its capacity to discriminate between live and dead cells. Globally, the proliferative capacity of the Nine Mile strain in cell lines and mice was higher compared to the newly isolated field strains. In vitro, the bovine C. burnetii isolate multiplied faster in a bovine macrophage cell line, an observation tentatively explained by the preferential specificity of this strain for allogeneic host cells. In the BALB/c mouse model, however, the goat and bovine isolates multiplied at about the same rate indicating no peculiar hypervirulent behavior in this animal model. PMID:23840751

  4. Protease-functionalized mucus penetrating microparticles: In-vivo evidence for their potential.

    Science.gov (United States)

    Mahmood, Arshad; Laffleur, Flavia; Leonaviciute, Gintare; Bernkop-Schnürch, Andreas

    2017-10-30

    The focus of the current study was to explore whether immobilization of proteases to microparticles could result in their enhanced penetration into mucus. The proteases papain (PAP) and bromelain (BROM) were covalently attached to a polyacrylate (PAA; Carbopol 971P) via amide bond formation based on carbodiimide reaction. Microparticles containing these conjugates were generated via ionic gelation with calcium chloride and were characterized regarding size, surface charge, enzymatic activity and fluorescein diacetate (FDA) loading efficiency. Furthermore, mucus penetration potential of these microparticles was evaluated in-vitro on freshly collected porcine intestinal mucus, on intact intestinal mucosa and in-vivo in Sprague-Dawley rats. Results showed mean diameter of microparticles ranging between 2-3μm and surface charge between -8 to -18mV. The addition of PAA-microparticles to porcine intestinal mucus led to a 1.39-fold increase in dynamic viscosity whereas a 3.10- and 2.12-fold decrease was observed in case of PAA-PAP and PAA-BROM microparticles, respectively. Mucus penetration studies showed a 4.27- and 2.21- fold higher permeation of FDA loaded PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. Extent of mucus diffusion determined via silicon tube assay illustrated 3.96- fold higher penetration for PAA-PAP microparticles and 1.99- fold for PAA-BROM microparticles. An in-vitro analysis on porcine intestinal mucosa described up to 16- and 7.35-fold higher degree of retention and furthermore, during in-vivo evaluation in Sprague-Dawley rats a 3.35- and 2.07-fold higher penetration behavior was observed in small intestine for PAA-PAP and PAA-BROM microparticles as compared to PAA microparticles, respectively. According to these results, evidence for microparticles decorated with proteases in order to overcome the mucus barrier and to reach the absorption lining has been provided that offers wide ranging applications in mucosal

  5. In vivo curative and protective potential of orally administered 5-aminolevulinic acid plus ferrous ion against malaria.

    Science.gov (United States)

    Suzuki, Shigeo; Hikosaka, Kenji; Balogun, Emmanuel O; Komatsuya, Keisuke; Niikura, Mamoru; Kobayashi, Fumie; Takahashi, Kiwamu; Tanaka, Tohru; Nakajima, Motowo; Kita, Kiyoshi

    2015-11-01

    5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe(2+)) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug. Copyright © 2015, Suzuki et al.

  6. Tumor-colonizing bacteria: a potential tumor targeting therapy.

    Science.gov (United States)

    Zu, Chao; Wang, Jiansheng

    2014-08-01

    In 1813, Vautier published his observation of tumor regression in patients who had suffered from gas gangrene. Since then, many publications have described the use of bacteria as antitumor therapy. For example, Bifidobacterium and Clostridium have been shown to selectively colonize tumors and to reduce tumor size. In addition, recent studies have focused on the use of genetic engineering to induce the expression of pro-drug converting enzymes, cytokines, specific antibodies, or suicide genes in tumor-colonizing bacteria. Moreover, some animal experiments have reported the treatment of tumors with engineered bacteria, and few side effects were observed. Therefore, based on these advances in tumor targeting therapy, bacteria may represent the next generation of cancer therapy.

  7. Recent advances in in vivo genotoxicity testing: prediction of carcinogenic potential using comet and micronucleus assay in animal models.

    Science.gov (United States)

    Kang, Seung Hun; Kwon, Jee Young; Lee, Jong Kwon; Seo, Young Rok

    2013-12-01

    Genotoxic events have been known as crucial step in the initiation of cancer. To assess the risk of cancer, genotoxicity assays, including comet, micronucleus (MN), chromosomal aberration, bacterial reverse, and sister chromatid exchange assay, can be performed. Compared with in vitro genotoxicity assay, in vivo genotoxicity assay has been used to verify in vitro assay result and definitely provide biological significance for certain organs or cell types. The comet assay can detect DNA strand breaks as markers of genotoxicity. Methods of the in vivo comet assay have been established by Japanese Center for the Validation of Alternative Methods (JaCVAM) validation studies depending on tissue and sample types. The MN can be initiated by segregation error and lagging acentric chromosome fragment. Methods of the in vivo MN assay have been established by Organization for Economic Co-operation and Development (OECD) test guidelines and many studies. Combining the in vivo comet and MN assay has been regarded as useful methodology for evaluating genetic damage, and it has been used in the assessment of potential carcinogenicity by complementarily presenting two distinct endpoints of the in vivo genotoxicity individual test. Few studies have investigated the quantitative relation between in vivo genotoxicity results and carcinogenicity. Extensive studies emphasizes that positive correlation is detectable. This review summarizes the results of the in vivo comet and MN assays that have investigated the genotoxicity of carcinogens as classified by the International Agency for Research on Cancer (IARC) carcinogenicity database. As a result, these genotoxicity data may provide meaningful information for the assessment of potential carcinogenicity and for implementation in the prevention of cancer.

  8. Photosensitizer-Conjugated Albumin-Polypyrrole Nanoparticles for Imaging-Guided In Vivo Photodynamic/Photothermal Therapy.

    Science.gov (United States)

    Song, Xuejiao; Liang, Chao; Gong, Hua; Chen, Qian; Wang, Chao; Liu, Zhuang

    2015-08-26

    Conjugated polymers with strong absorbance in the near-infrared (NIR) region have been widely explored as photothermal therapy agents due to their excellent photostability and high photothermal conversion efficiency. Herein, polypyrrole (PPy) nanoparticles are fabricated by using bovine serum albumin (BSA) as the stabilizing agent, which if preconjugated with photosensitizer chlorin e6 (Ce6) could offer additional functionalities in both imaging and therapy. The obtained PPy@BSA-Ce6 nanoparticles exhibit little dark toxicity to cells, and are able to trigger both photodynamic therapy (PDT) and photothermal therapy (PTT). As a fluorescent molecule that in the meantime could form chelate complex with Gd(3+), Ce6 in PPy@BSA-Ce6 nanoparticles after being labeled with Gd(3+) enables dual-modal fluorescence and magnetic resonance (MR) imaging, which illustrate strong tumor uptake of those nanoparticles after intravenous injection into tumor-bearing mice. In vivo combined PDT and PTT treatment is then carried out after systemic administration of PPy@BSA-Ce6, achieving a remarkably improved synergistic therapeutic effect compared to PDT or PTT alone. Hence, a rather simple one-step approach to fabricate multifunctional nanoparticles based on conjugated polymers, which appear to be promising in cancer imaging and combination therapy, is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis.

    Science.gov (United States)

    Golkar, Zhabiz; Bagasra, Omar; Pace, Donald Gene

    2014-02-13

    The emergence of multiple drug-resistant bacteria has prompted interest in alternatives to conventional antimicrobials. One of the possible replacement options for antibiotics is the use of bacteriophages as antimicrobial agents. Phage therapy is an important alternative to antibiotics in the current era of drug-resistant pathogens. Bacteriophages have played an important role in the expansion of molecular biology and have been used as antibacterial agents since 1966. In this review, we describe a brief history of bacteriophages and clinical studies on their use in bacterial disease prophylaxis and therapy. We discuss the advantages and disadvantages of bacteriophages as therapeutic agents in this regard.

  10. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy

    Science.gov (United States)

    Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil

    2017-10-01

    Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.

  11. Longitudinal assessment of thrombin generation potential in response to alteration of antiplatelet therapy after TIA or ischaemic stroke.

    LENUS (Irish Health Repository)

    Tobin, W O

    2013-02-01

    The impact of changing antiplatelet therapy on thrombin generation potential in patients with ischaemic cerebrovascular disease (CVD) is unclear. We assessed patients within 4 weeks of TIA or ischaemic stroke (baseline), and then 14 days (14d) and >90 days (90d) after altering antiplatelet therapy. Thrombin generation was assessed in platelet poor plasma. Ninety-one patients were recruited. Twenty-four were initially assessed on no antiplatelet therapy, and then after 14d (N = 23) and 90d (N = 8) on aspirin monotherapy; 52 were assessed on aspirin monotherapy, and after 14 and 90 days on aspirin and dipyridamole combination therapy; 21 patients were assessed on aspirin and after 14 days (N = 21) and 90 days (N = 19) on clopidogrel. Peak thrombin generation and endogenous thrombin potential were reduced at 14 and 90 days (p ≤ 0.04) in the overall cohort. We assessed the impact of individual antiplatelet regimens on thrombin generation parameters to investigate the cause of this effect. Lag time and time-to-peak thrombin generation were unchanged at 14 days, but reduced 90 days after commencing aspirin (p ≤ 0.009). Lag time, peak thrombin generation and endogenous thrombin potential were reduced at both 14 and 90 days after adding dipyridamole to aspirin (p ≤ 0.01). Lag time was reduced 14 days after changing from aspirin to clopidogrel (p = 0.045), but this effect was not maintained at 90 days (p = 0.2). This pilot study did not show any consistent effects of commencing aspirin, or of changing from aspirin to clopidogrel on thrombin generation potential during follow-up. The addition of dipyridamole to aspirin led to a persistent reduction in peak and total thrombin generation ex vivo, and illustrates the diverse, potentially beneficial, newly recognised \\'anti-coagulant\\' effects of dipyridamole in ischaemic CVD.

  12. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.

    Science.gov (United States)

    Yu, Li; Chen, Xun; Wang, Liantang; Chen, Shangwu

    2016-06-21

    Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy.

  13. Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization.

    Science.gov (United States)

    Andreani, N A; Renzi, S; Piovani, G; Ajmone Marsan, P; Bomba, L; Villa, R; Ferrari, M; Dotti, S

    2017-10-01

    Vero cell lines are extensively employed in viral vaccine manufacturing. Similarly to all established cells, mutations can occur during Vero cells in vitro amplification which can result in adverse features compromising their biological safety. To evaluate the potential neoplastic evolution of these cells, in vitro transformation test, gene expression analysis and karyotyping were compared among low- (127 and 139 passages) and high-passage (passage 194) cell lines, as well as transformed colonies (TCs). In vivo tumorigenicity was also tested to confirm preliminary in vitro data obtained for low passage lines and TCs. Moreover, Vero cells cultivated in foetal bovine serum-free medium and derived from TCs were analysed to investigate the influence of cultivation methods on tumorigenic evolution. Low-passage Vero developed TCs in soft agar, without showing any tumorigenic evolution when inoculated in the animal model. Karyotyping showed a hypo-diploid modal chromosome number and rearrangements with no difference among Vero cell line passages and TCs. These abnormalities were reported also in serum-free cultivated Vero. Gene expression revealed that high-passage Vero cells had several under-expressed and a few over-expressed genes compared to low-passage ones. Gene ontology revealed no significant enrichment of pathways related to oncogenic risk. These findings suggest that in vitro high passage, and not culture conditions, induces Vero transformation correlated to karyotype and gene expression alterations. These data, together with previous investigations reporting tumour induction in high-passage Vero cells, suggest the use of low-passage Vero cells or cell lines other than Vero to increase the safety of vaccine manufacturing.

  14. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    Science.gov (United States)

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  15. Alkaloids in Erythrina by UPLC-ESI-MS and In Vivo Hypotensive Potential of Extractive Preparations

    Directory of Open Access Journals (Sweden)

    Liara Merlugo

    2015-01-01

    Full Text Available Erythrina species are used in popular medicine as sedative, anxiolytic, anti-inflammatory, and antihypertensive. In this work, we investigated the chemical composition of extracts obtained from leaves of E. falcata and E. crista-galli. The hypotensive potential of E. falcata and the mechanism of action were also studied. The extracts were obtained by maceration and infusion. The total content of phenolic compounds and flavonoids was estimated by spectrophotometric methods. The chemical constituents were studied performing a chromatographic analysis by UPLC-ESI-MS. For in vivo protocols, blood pressure and heart rate were measured by the invasive hemodynamic monitoring method. Different concentrations of extracts and drugs such as L-NAME, losartan, hexamethonium, and propranolol were administrated i.v. The results of total phenolic contents for E. falcata and E. crista-galli were 1.3193–1.4989 mgGAE/mL for maceration and 0.8771–0.9506 mgGAE/mL for infusion. In total flavonoids, the content was 7.7829–8.1976 mg RE/g for maceration and 9.3471–10.4765 RE mg/g for infusion. The chemical composition was based on alkaloids, suggesting the presence of erythristemine, 11β-methoxyglucoerysodine, erysothiopine, 11β-hydroxyerysodine-glucose, and 11-hydroxyerysotinone-rhamnoside. A potent dose-dependent hypotensive effect was observed for E. falcata, which may be related to the route of β-adrenergic receptors.

  16. [Conservative therapy of female urinary incontinence--potential and effect].

    Science.gov (United States)

    Horcicka, L; Chmel, R; Novácková, M

    2005-01-01

    Non-surgical treatment of female stress urinary incontinence is not as effective as surgical methods but it is very successful in indicated cases. Rehabilitation of the pelvic floor muscles (Kegel exercises, vaginal cones, and electrostimulation of the pelvic floor muscles), drug treatment (alfa-mimetics, tricyclic antidepressives, estrogens, duloxetin), pessarotherapy and uretral obturator devices represent possibilities of conservative therapy of the stress incontinence. Conservative therapy is the method of choice in the treatment of urge incontinence. The most successful are anticholinergic drugs but they have very frequent serious side effects (dryness of the mucous membranes, accommodation disorders, constipation). Spasmolytics, estrogens and tricyclic antidepressives are the other popular used drugs. Life style modification, bladder training and electrostimulation represent very important parts of the conservative treatment. Effectiveness of the non-surgical treatment of both urge and stress urinary incontinence can not reach 100 percent but it helps very much in the quality of life improvement of incontinent women.

  17. Potential future neuroprotective therapies for neurodegenerative disorders and stroke.

    Science.gov (United States)

    Tarawneh, Rawan; Galvin, James E

    2010-02-01

    The cellular mechanisms underlying neuronal loss and neurodegeneration have been an area of interest in the last decade. Although neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease each have distinct clinical symptoms and pathologies, they all share common mechanisms such as protein aggregation, oxidative injury, inflammation, apoptosis, and mitochondrial injury that contribute to neuronal loss. Although cerebrovascular disease has different causes from the neurodegenerative disorders, many of the same common disease mechanisms come into play following a stroke. Novel therapies that target each of these mechanisms may be effective in decreasing the risk of disease, abating symptoms, or slowing down their progression. Although most of these therapies are experimental, and require further investigation, a few seem to offer promise.

  18. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tom Verfaillie

    2010-01-01

    Full Text Available Different physiological and pathological conditions can perturb protein folding in the endoplasmic reticulum, leading to a condition known as ER stress. ER stress activates a complex intracellular signal transduction pathway, called unfolded protein response (UPR. The UPR is tailored essentially to reestablish ER homeostasis also through adaptive mechanisms involving the stimulation of autophagy. However, when persistent, ER stress can switch the cytoprotective functions of UPR and autophagy into cell death promoting mechanisms. Recently, a variety of anticancer therapies have been linked to the induction of ER stress in cancer cells, suggesting that strategies devised to stimulate its prodeath function or block its prosurvival function, could be envisaged to improve their tumoricidial action. A better understanding of the molecular mechanisms that determine the final outcome of UPR and autophagy activation by chemotherapeutic agents, will offer new opportunities to improve existing cancer therapies as well as unravel novel targets for cancer treatment.

  19. Potential for Stem Cell-Based Periodontal Therapy

    Science.gov (United States)

    Bassir, Seyed Hossein; Wisitrasameewong, Wichaya; Raanan, Justin; Ghaffarigarakani, Sasan; Chung, Jamie; Freire, Marcelo; Andrada, Luciano C.; Intini, Giuseppe

    2015-01-01

    Periodontal diseases are highly prevalent and are linked to several systemic diseases. The goal of periodontal treatment is to halt the progression of the disease and regenerate the damaged tissue. However, achieving complete and functional periodontal regeneration is challenging because the periodontium is a complex apparatus composed of different tissues, including bone, cementum, and periodontal ligament. Stem cell-based regenerative therapy may represent an effective therapeutic tool for periodontal regeneration due to their plasticity and ability to differentiate into different cell lineages. This review presents and critically analyzes the available information on stem cell-based therapy for the regeneration of periodontal tissues and suggests new avenues for the development of more effective therapeutic protocols. PMID:26058394

  20. Apoptosis mediated leishmanicidal activity of Azadirachta indica bioactive fractions is accompanied by Th1 immunostimulatory potential and therapeutic cure in vivo.

    Science.gov (United States)

    Chouhan, Garima; Islamuddin, Mohammad; Want, Muzamil Y; Abdin, Malik Z; Ozbak, Hani A; Hemeg, Hassan A; Sahal, Dinkar; Afrin, Farhat

    2015-03-26

    Exploration of immunomodulatory antileishmanials of plant origin is now being strongly recommended to overcome the immune suppression evident during visceral leishmaniasis (VL) and high cost and toxicity associated with conventional chemotherapeutics. In accordance, we assessed the in vitro and in vivo antileishmanial and immunomodulatory potential of ethanolic fractions of Azadirachta indica leaves (ALE) and seeds (ASE). A. indica fractions were prepared by sequential extraction of the powdered plant parts in hexane, ethanol and water. Erythrosin B staining was employed to appraise the anti-promastigote potential of ALE and ASE. Cytostatic or cytocidal mode of action was ascertained and alterations in parasite morphology were depicted under oil immersion light microscopy. Study of apoptotic correlates was performed to deduce the mechanism of induced cell death and anti-amastigote potential was assessed in Leishmania parasitized RAW 264.7 macrophages. In vivo antileishmanial effectiveness was evaluated in L. donovani infected BALB/c mice, accompanied by investigation of immunomodulatory potential of ALE and ASE. Adverse toxicity of the bioactive fractions against RAW macrophages was studied by MTT assay. In vivo side effects on the liver and kidney functions were also determined. Plant secondary metabolites present in ALE and ASE were analysed by Gas chromatography-mass spectrometry (GC-MS). ALE and ASE (500 μg ml(-1)) exhibited leishmanicidal activity in a time- and dose-dependent manner (IC₅₀ 34 and 77.66 μg ml(-1), respectively) with alterations in promastigote morphology and induction of apoptosis. ALE and ASE exerted appreciable anti-amastigote potency (IC₅₀ 17.66 and 24.66 μg ml(-1), respectively) that was coupled with profound in vivo therapeutic efficacy (87.76% and 85.54% protection in liver and 85.55% and 83.62% in spleen, respectively). ALE exhibited minimal toxicity with selectivity index of 26.10 whereas ASE was observed to be non-toxic. The

  1. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source.

    Science.gov (United States)

    McQuaid, N; Zamyadi, A; Prévost, M; Bird, D F; Dorner, S

    2011-02-01

    The source water of a drinking water treatment plant prone to blooms, dominated by potential microcystin-producing cyanobacteria, was monitored for two seasons in 2007-2008. In the 2008 season, the median value for potential microcystin-producing cyanobacterial biovolume was 87% of the total phytoplankton biovolume in the untreated water of the plant. Depth profiles taken above the plant's intake identified three sampling days at high risk for the contamination of the plant's raw water with potentially toxic cyanobacteria. Chlorophyceae and Bacillariophyceae caused false positive values to be generated by the phycocyanin probe when cyanobacteria represented a small fraction of the total phytoplanktonic biovolume present. However, there was little interference with the phycocyanin probe readings by other algal species when potential microcystin-producing cyanobacteria dominated the phytoplankton of the plant's untreated water. A two-tiered method for source water monitoring, using in vivo phycocyanin fluorescence, is proposed based on (1) a significant relationship between in vivo phycocyanin fluorescence and cyanobacterial biovolume and (2) the calculated maximum potential microcystin concentration produced by dominant Microcystis sp. biovolume. This method monitors locally-generated threshold values for cyanobacterial biovolume and microcystin concentrations using in vivo phycocyanin fluorescence.

  2. Ex-vivo Potential of Cadaveric and Fresh Limbal Tissues to Regenerate Cultured Epithelium

    Directory of Open Access Journals (Sweden)

    Vemuganti Geeta

    2004-01-01

    Full Text Available Purpose: To evaluate and compare the ex-vivo growth potential and formation of cultured corneal epithelium from residual corneo-limbal rings obtained from the operating room after penetrating keratoplasty, and fresh limbal tissues from patients undergoing routine cataract surgery. Methods: With the approval of the Institutional Review Board and informed consent from patients, 1-2mm of limbal tissues from 15 patients and 31 tissues from the cadaveric limbal ring preserved in MK medium (16 tissues and Optisol (15 tissues were used for the study. Donor data included age, time lapse between death and collection, collection and preservation and preservation and culture. Tiny bits of the limbal tissue were explanted on the de-epithelialised human amniotic membrane prepared following standard guidelines, and cultured using Human Corneal Epithelial cell medium. Radial growth from the explant was observed and measured by phase contrast microscopy over 2-4 weeks. After adequate confluent growth, whole mount preparation of the membrane was made and stained with haematoxylin and eosin. Part of the membrane was fixed in formalin and processed for routine histologic examination. The sections were stained with haematoxylin and eosin. Results: Forty-six tissues were evaluated from 42 eyes (15 from patients, 31 from cadaveric eyes with a mean age of 55.3 years ± 21.23 years (range 18 years - 110 years. The growth pattern observed was similar in all the positive cases with clusters of cells budding from the explant over 24- 72 hours, and subsequent formation of a monolayer over the next 2-3 weeks. The stained whole mount preparation showed a radial growth of cells around explants with diameter ranging from 5 to 16mm. Histologic evaluation of the membrane confirmed the growth of 2-3 cell-layered epithelium over the amniotic membrane. Cultivated epithelium around explant cell cultures was observed in 100% (15/15 of limbal tissue obtained from patients, as against

  3. Farnesoid X Receptor Agonism Protects against Diabetic Tubulopathy: Potential Add-On Therapy for Diabetic Nephropathy.

    Science.gov (United States)

    Marquardt, Andi; Al-Dabet, Moh'd Mohanad; Ghosh, Sanchita; Kohli, Shrey; Manoharan, Jayakumar; ElWakiel, Ahmed; Gadi, Ihsan; Bock, Fabian; Nazir, Sumra; Wang, Hongjie; Lindquist, Jonathan A; Nawroth, Peter Paul; Madhusudhan, Thati; Mertens, Peter R; Shahzad, Khurrum; Isermann, Berend

    2017-11-01

    Established therapies for diabetic nephropathy (dNP) delay but do not prevent its progression. The shortage of established therapies may reflect the inability to target the tubular compartment. The chemical chaperone tauroursodeoxycholic acid (TUDCA) ameliorates maladaptive endoplasmic reticulum (ER) stress signaling and experimental dNP. Additionally, TUDCA activates the farnesoid X receptor (FXR), which is highly expressed in tubular cells. We hypothesized that TUDCA ameliorates maladaptive ER signaling via FXR agonism specifically in tubular cells. Indeed, TUDCA induced expression of FXR-dependent genes (SOCS3 and DDAH1) in tubular cells but not in other renal cells. In vivo, TUDCA reduced glomerular and tubular injury in db/db and diabetic endothelial nitric oxide synthase-deficient mice. FXR inhibition with Z-guggulsterone or vivo-morpholino targeting of FXR diminished the ER-stabilizing and renoprotective effects of TUDCA. Notably, these in vivo approaches abolished tubular but not glomerular protection by TUDCA. Combined intervention with TUDCA and the angiotensin-converting enzyme inhibitor enalapril in 16-week-old db/db mice reduced albuminuria more efficiently than did either treatment alone. Although both therapies reduced glomerular damage, only TUDCA ameliorated tubular damage. Thus, interventions that specifically protect the tubular compartment in dNP, such as FXR agonism, may provide renoprotective effects on top of those achieved by inhibiting angiotensin-converting enzyme. Copyright © 2017 by the American Society of Nephrology.

  4. Purple sweet potato colour--a potential therapy for galactosemia?

    Science.gov (United States)

    Timson, David J

    2014-06-01

    Galactosemia is an inherited metabolic disease in which galactose is not properly metabolised. There are various theories to explain the molecular pathology, and recent experimental evidence strongly suggests that oxidative stress plays a key role. High galactose diets are damaging to experimental animals and oxidative stress also plays a role in this toxicity which can be alleviated by purple sweet potato colour (PSPC). This plant extract is rich in acetylated anthocyanins which have been shown to quench free radical production. The objective of this Commentary is to advance the hypothesis that PSPC, or compounds therefrom, may be a viable basis for a novel therapy for galactosemia.

  5. Potential applications of nanotechnologies to Parkinson's disease therapy.

    Science.gov (United States)

    Linazasoro, G

    2008-01-01

    Nanotechnology will play a key role in developing new diagnostic and therapeutic tools. Nanotechnologies use engineered materials with the smallest functional organization on the nanometre scale in at least one dimension. Some aspects of the material can be manipulated resulting in new functional properties. Nanotechnology could provide devices to limit and reverse neuropathological disease states, to support and promote functional regeneration of damaged neurons, to provide neuroprotection and to facilitate the delivery of drugs and small molecules across the blood-brain barrier. All of them are relevant to improve current therapy of Parkinson's disease (PD).

  6. Asymmetric salivary gland uptake: Potential pitfall following radioiodide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, J.D. Jr.; Mack, J.M.; Spencer, R.P.

    1987-10-01

    A 67-year old woman, with prior radioiodide (/sup 131/I) therapy for differentiated thyroid carcinoma, had a follow-up scan that revealed asymmetric accumulation in the left upper neck and cheek regions. This resembled functioning metastatic tissue. An immediate /sup 99m/Tc-pertechnetate image demonstrated accumulation in the same areas. This corresponded to activity in the left submandibular gland and parotid. Hence, asymmetric salivary gland uptake was mimicking functional thyroid metastases. Possible causes of the disparate salivary gland function were discussed.

  7. Elastase inhibitors as potential therapies for ELANE-associated neutropenia.

    Science.gov (United States)

    Makaryan, Vahagn; Kelley, Merideth L; Fletcher, Breanna; Bolyard, Audrey Anna; Aprikyan, A Andrew; Dale, David C

    2017-10-01

    Mutations in ELANE, the gene for neutrophil elastase (NE), a protease expressed early in neutrophil development, are the most frequent cause of cyclic (CyN) and severe congenital neutropenia (SCN). We hypothesized that inhibitors of NE, acting either by directly inhibiting enzymatic activity or as chaperones for the mutant protein, might be effective as therapy for CyN and SCN. We investigated β-lactam-based inhibitors of human NE (Merck Research Laboratories, Kenilworth, NJ, USA), focusing on 1 inhibitor called MK0339, a potent, orally absorbed agent that had been tested in clinical trials and shown to have a favorable safety profile. Because fresh, primary bone marrow cells are rarely available in sufficient quantities for research studies, we used 3 cellular models: patient-derived, induced pluripotent stem cells (iPSCs); HL60 cells transiently expressing mutant NE; and HL60 cells with regulated expression of the mutant enzyme. In all 3 models, the cells expressing the mutant enzyme had reduced survival as measured with annexin V and FACS. Coincubation with the inhibitors, particularly MK0339, promoted cell survival and increased formation of mature neutrophils. These studies suggest that cell-permeable inhibitors of neutrophil elastase show promise as novel therapies for ELANE-associated neutropenia. © Society for Leukocyte Biology.

  8. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    Science.gov (United States)

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In vivo determination of tooth mobility after fixed orthodontic appliance therapy with a novel intraoral measurement device.

    Science.gov (United States)

    Konermann, Anna; Al-Malat, R; Skupin, J; Keilig, L; Dirk, C; Karanis, R; Bourauel, C; Jäger, A

    2017-05-01

    Valid measurement systems recording tooth mobility upon displacement within the subtle range of physiological strains are missing. Here, we introduce a novel in vivo measurement device and demonstrate a first clinical application by monitoring tooth mobility changes during retention after fixed multibracket appliance therapy. Tooth mobility was measured in vivo on 21 patients (11 female, 10 male; mean age 16.1 ± 3.1 years) by displacing the upper first incisor 0.2 mm lingually for 0.2, 0.5, 1, 2, 5, and 10 s with the novel intraoral device. Measurements were recorded directly after, as much as 2, 7, and 14 days and up to 6 months after appliance debonding. Device performance was precise and valid in clinical use. Data revealed significant interindividual varying tooth mobility, which was very high during the first 2 days after appliance removal. After 1 week, mobility values decreased, but were generally higher upon short loadings compared to long ones. After 3 months, tooth mobility was significantly lower than directly after debonding. Interestingly, males exhibited significantly less mobility than females. Our work is the first using an in vivo measurement device capable of performing and recording tooth displacements within this delicate range and in such precision. Furthermore, our findings elucidate tooth mobility changes after multibracket treatment, giving important information for retention periods. Establishment of this novel measurement device in clinical use is an important improvement when approaching the complexity of tooth mobility in vivo regarding different issues like orthodontics, periodontal disease, or bruxism.

  10. Therapeutic potentials of naringin on polymethylmethacrylate induced osteoclastogenesis and osteolysis, in vitro and in vivo assessments

    Directory of Open Access Journals (Sweden)

    Li N

    2013-12-01

    Full Text Available Nianhu Li,1,2,* Zhanwang Xu,2,* Paul H Wooley,1,3 Jianxin Zhang,2 Shang-You Yang1,3 1Department of Surgery, Orthopedics, University of Kansas School of Medicine, Wichita, KS, USA; 2Department of Orthopedics, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China; 3Orthopaedic Research Institute, Via Christi Wichita Hospitals, Wichita, KS, USA *The first two authors contributed equally to this work Abstract: Wear debris associated periprosthetic osteolysis represents a major pathological process associated with the aseptic loosening of joint prostheses. Naringin is a major flavonoid identified in grapefruit. Studies have shown that naringin possesses many pharmacological properties including effects on bone metabolism. The current study evaluated the influence of naringin on wear debris induced osteoclastic bone resorption both in vitro and in vivo. The osteoclast precursor cell line RAW 264.7 was cultured and stimulated with polymethylmethacrylate (PMMA particles followed by treatment with naringin at several doses. Tartrate resistant acid phosphatase (TRAP, calcium release, and gene expression profiles of TRAP, cathepsin K, and receptor activator of nuclear factor-kappa B were sequentially evaluated. PMMA challenged murine air pouch and the load bearing tibia titanium pin-implantation mouse models were used to evaluate the effects of naringin in controlling PMMA induced bone resorption. Histological analyses and biomechanical pullout tests were performed following the animal experimentation. The in vitro data clearly demonstrated the inhibitory effects of naringin in PMMA induced osteoclastogenesis. The naringin dose of 10 µg/mL exhibited the most significant influence on the suppression of TRAP activities. Naringin treatment also markedly decreased calcium release in the stimulated cell culture medium. The short-term air pouch mouse study revealed that local injection of naringin

  11. Vitamin D as a potential therapy in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gianforcaro, Alexandro; Hamadeh, Mazen J

    2014-02-01

    Vitamin D has been demonstrated to influence multiple aspects of amyotrophic lateral sclerosis (ALS) pathology. Both human and rodent central nervous systems express the vitamin D receptor (VDR) and/or its enzymatic machinery needed to fully activate the hormone. Clinical research suggests that vitamin D treatment can improve compromised human muscular ability and increase muscle size, supported by loss of motor function and muscle mass in animals following VDR knockout, as well as increased muscle protein synthesis and ATP production following vitamin D supplementation. Vitamin D has also been shown to reduce the expression of biomarkers associated with oxidative stress and inflammation in patients with multiple sclerosis, rheumatoid arthritis, congestive heart failure, Parkinson's disease and Alzheimer's disease; diseases that share common pathophysiologies with ALS. Furthermore, vitamin D treatment greatly attenuates hypoxic brain damage in vivo and reduces neuronal lethality of glutamate insult in vitro; a hallmark trait of ALS glutamate excitotoxicity. We have recently shown that high-dose vitamin D3 supplementation improved, whereas vitamin D3 restriction worsened, functional capacity in the G93A mouse model of ALS. In sum, evidence demonstrates that vitamin D, unlike the antiglutamatergic agent Riluzole, affects multiple aspects of ALS pathophysiology and could provide a greater cumulative effect. © 2014 John Wiley & Sons Ltd.

  12. Potential implications of cell therapy for osteogenesis imperfecta

    Science.gov (United States)

    Niyibizi, Christopher; Li, Feng

    2009-01-01

    Osteogenesis imperfecta (OI) is a brittle-bone disease whose hallmark is bone fragility. Since the disease is genetic, there is currently no available cure. Several pharmacological agents have been tried with not much success, except the recent use of bisphosphonates. Stem cells have been suggested as an alternative OI treatment, but many hurdles remain before this technology can be applied for treating patients with OI. This review summarizes what is known at present regarding the application of stem cells to treat OI using animal models, clinical trials using mesenchymal stem cells to treat patients with OI and the knowledge gained from the clinical trials. Application of gene therapy in combination with stem cells is also discussed. The hurdles to be overcome to bring stem cells close to the clinic and future perspectives are discussed. PMID:20490372

  13. Nanoparticles: their potential use in antibacterial photodynamic therapy.

    Science.gov (United States)

    Perni, Stefano; Prokopovich, P; Pratten, Jonathan; Parkin, Ivan P; Wilson, Michael

    2011-05-01

    Photodynamic therapy (PDT) has been proposed as a new technique to inactivate microorganisms as it does not lead to the selection of mutant resistant strains; a clear benefit compared to antibiotic treatment. PDT has also attracted the interest of nanotechnology as the effectiveness of the treatment can be greatly enhanced by the use of nanoparticles. In the last decade, different approaches to the combination of nanoparticles and PDT have been investigated in relation to the antimicrobial applications of the technique. One use of the nanoparticles is to improve the delivery of photosensitiser to the bacteria; others use the nanoparticles to improve the inactivation kinetics. A different approach utilises nanoparticles as a photosensitiser. In this review these diverse types of interactions will be described.

  14. Visceral Blood Flow Modulation: Potential Therapy for Morbid Obesity

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Tyler J., E-mail: tjharris@gmail.com [University of California, Los Angeles, Department of Vascular and Interventional Radiology (United States); Murphy, Timothy P.; Jay, Bryan S. [Rhode Island Hospital, Brown University, Department of Diagnostic Imaging, Vascular Disease Research Center (United States); Hampson, Christopher O.; Zafar, Abdul M. [University of Texas Health Science Center at San Antonio, Department of Radiology (United States)

    2013-06-15

    We present this preliminary investigation into the safety and feasibility of endovascular therapy for morbid obesity in a swine model. A flow-limiting, balloon-expandable covered stent was placed in the superior mesenteric artery of three Yorkshire swine after femoral arterial cutdown. The pigs were monitored for between 15 and 51 days after the procedure and then killed, with weights obtained at 2-week increments. In the two pigs in which the stent was flow limiting, a reduced rate of weight gain (0.42 and 0.53 kg/day) was observed relative to the third pig (0.69 kg/day), associated with temporary food aversion and signs of mesenteric ischemia in one pig.

  15. The potential for bio-optical imaging of biomaterial-associated infection in vivo

    NARCIS (Netherlands)

    Sjollema, Jelmer; Sharma, Prashant K.; Dijkstra, Rene J. B.; van Dam, Gooitzen M.; van der Mei, Henny C.; Engelsman, Anton F.; Busscher, Henk J.

    This review presents the current state of Bioluminescence and Fluorescent Imaging technologies (BLI and FLI) as applied to Biomaterial-Associated Infections (BAI). BLI offers the opportunity to observe the in vivo course of BAI in small animals without the need to sacrifice animals at different time

  16. Light dependence of calcium and membrane potential measured in blowfly photoreceptors in vivo

    NARCIS (Netherlands)

    Oberwinkler, J; Stavenga, DG

    Light adaptation in insect photoreceptors is caused by an increase in the cytosolic Ca2+ concentration. To better understand this process, we measured the cytosolic Ca2+ concentration in vivo as a function of adapting light intensity in the white-eyed blowfly mutant chalky. We developed a technique

  17. In vitro and in vivo evaluation of antidiabetic potential of extracts of ...

    African Journals Online (AJOL)

    Recipes were extracted in water according to traditional usage and screened in vitro to assess glucose uptake in C2C12 muscle cells and glucose production by the H4IIE liver cells (through inhibition of glucose-6-phosphatase, the rate limiting enzyme) and in vivo through the oral glucose tolerance test in normal mice (2 ...

  18. Acute and subchronic in-vivo effects of Ferula hermonis L. and Sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain

    National Research Council Canada - National Science Library

    Raafat, K; El-Lakany, A

    2015-01-01

    ...) and Sambucus nigra L. aqueous (Elder) extracts, and their potential active isolates; for acute (6 h) and subchronic (8 days) glucose homeostasis, in vivo antioxidant potential and DN amelioration in alloxan-induced DM mice model...

  19. Ge-Gen Decoction attenuates oxytocin-induced uterine contraction and writhing response: potential application in primary dysmenorrhea therapy.

    Science.gov (United States)

    Yang, Lu; Chai, Cheng-Zhi; Yue, Xin-Yi; Yan, Yan; Kou, Jun-Ping; Cao, Zheng-Yu; Yu, Bo-Yang

    2016-02-01

    The uterine tetanic contraction and uterine artery blood flow reduction are possible reasons for primary dysmenorrhea (PD). In the present study, we aimed to evaluate the uterine relaxant effect and the influence on uterine artery blood velocity of Ge-Gen Decoction (GGD), a well-known Chinese herbal formula. In female ICR mice, uterine contraction was induced by oxytocin exposure following estradiol benzoate pretreatment, and the uterine artery blood velocity was detected by Doppler ultrasound. Histopathological examination of the uterine tissue samples were performed by H&E staining. Ex vivo studies demonstrated that oxytocin, posterior pituitary, or acetylcholine induced contractions in isolated mouse uterus. GGD inhibited both spontaneous and stimulated contractions. In vivo study demonstrated that GGD significantly reduced oxytocin-induced writhing responses with a maximal inhibition of 87%. Further study demonstrated that GGD normalized oxytocin-induced abnormalities of prostaglandins F2 alpha (PGF2α) and Ca(2+) in mice. In addition, injection of oxytocin induced a decrease in uterine artery blood flow velocity. Pretreatment with GGD reversed the oxytocin response on blood flow velocity. Histopathological examination showed pretreatment with GGD alleviated inflammation and edema in the uterus when compared with the model group. Both ex vivo and in vivo results indicated that GGD possessed a significant spasmolytic effect on uterine tetanic contraction as well as improvement on uterine artery blood velocity which may involve PGF2α and Ca(2+) signaling, suggesting that GGD may have a clinic potential in PD therapy. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  20. Potential Use of Biological Proteins for Liver Failure Therapy

    Directory of Open Access Journals (Sweden)

    Kazuaki Taguchi

    2015-08-01

    Full Text Available Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells in the treatment of hepatic diseases.

  1. An ex vivo human model system to evaluate specificity of replicating and non-replicating gene therapy agents

    NARCIS (Netherlands)

    Rots, MG; Elferink, MGL; Gommans, WM; Oosterhuis, D; Schalk, JAC; Curiel, DT; Olinga, P; Haisma, HJ; Groothuis, GMM

    Background Inefficiency, aspecificity and toxicity of gene transfer vectors hamper gene therapy from showing its full potential. On this basis significant research currently focuses on developing vectors with improved infection and/or expression profiles. Screening assays with validity to the

  2. Temporal Changes in Phosphatidylserine Expression and Glucose Metabolism after Myocardial Infarction: An in Vivo Imaging Study in Mice

    National Research Council Canada - National Science Library

    Lehner, Sebastian; Todica, Andrei; Brunner, Stefan; Uebleis, Christopher; Wang, Hao; Wängler, Carmen; Herbach, Nadja; Herrler, Tanja; Böning, Guido; Laubender, Rüdiger Paul; Cumming, Paul; Schirrmacher, Ralf; Franz, Wolfgang; Hacker, Marcus

    2012-01-01

    Positron emission tomography (PET) for in vivo monitoring of phosphatidylserine externalization and glucose metabolism can potentially provide early predictors of outcome of cardioprotective therapies after myocardial infarction...

  3. THE TREATMENT OF SOCIAL PHOBIA - THE DIFFERENTIAL EFFECTIVENESS OF EXPOSURE IN-VIVO AND AN INTEGRATION OF EXPOSURE IN-VIVO, RATIONAL-EMOTIVE THERAPY AND SOCIAL SKILLS TRAINING

    NARCIS (Netherlands)

    MERSCH, PPA

    Thirty-four social phobic patients were treated with either exposure in vivo or an integrated treatment, consisting of rational emotive therapy, social skills training and exposure in viva. Comparison with a waiting-list control group showed the effectiveness of both treatments. Contrary to

  4. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy.

    Science.gov (United States)

    Choudhury, Sourav R; Fitzpatrick, Zachary; Harris, Anne F; Maitland, Stacy A; Ferreira, Jennifer S; Zhang, Yuanfan; Ma, Shan; Sharma, Rohit B; Gray-Edwards, Heather L; Johnson, Jacob A; Johnson, Aime K; Alonso, Laura C; Punzo, Claudio; Wagner, Kathryn R; Maguire, Casey A; Kotin, Robert M; Martin, Douglas R; Sena-Esteves, Miguel

    2016-08-01

    Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.

  5. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    Energy Technology Data Exchange (ETDEWEB)

    Guenancia, Charles [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Li, Na [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Hachet, Olivier [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Rigal, Eve [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cottin, Yves [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Dutartre, Patrick; Rochette, Luc [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Vergely, Catherine, E-mail: cvergely@u-bourgogne.fr [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France)

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  6. Immortalized human fetal bone marrow-derived mesenchymal stromal cell expressing suicide gene for anti-tumor therapy in vitro and in vivo.

    Science.gov (United States)

    Lee, Wayne Y W; Zhang, Ting; Lau, Carol P Y; Wang, C C; Chan, Kai-Ming; Li, Gang

    2013-12-01

    Cancer is one of the greatest health challenges facing the world today with >10 million new cases of cancer every year. The self-renewal, tumor-homing ability and low immunogenicity of mesenchymal stromal cells (MSCs) make them potential delivery candidates for suicide genes for anti-tumor therapy. However, unstable supply and short life span of adult MSCs in vitro have limited this therapeutic potential. In this study, we aimed to evaluate if immortalization of human fetal bone marrow-derived mesenchymal stromal cells by simian virus 40 (SV40-hfBMSCs) could be a stable source of MSCs for clinical application of suicide gene therapy. Transduction of SV40 and herpes simplex virus thymidine kinase-IRES-green fluorescent protein (TK-GFP) did not cause significant change in the stem cell properties of hfBMSCs. The anti-tumor effect of SV40-TK-hfBMSCs in the presence of the prodrug ganciclovir was demonstrated in vitro and in nude mice bearing human prostate cancer cells, DU145 and PC3, which had been transduced with luciferase and GFP for imaging evaluation by an in vivo live imaging system (IVIS 200 imaging system; Caliper Life Sciences). Repeated injection of low doses (1 × 10(6) cells/kg) of SV40-TK-hfBMSCs was as effective as previously reported and did not cause observable harmful side effects in multiple organs. Mixed lymphocyte reaction showed that SV40-TK-hfBMSCs did not induce significant proliferation of lymphocytes isolated from healthy adults. Taken together, immortalized hfBMSCs represent a reliable and safe source of MSCs for further clinical translational study. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Impact of Vital Dyes on Cell Viability and Transduction Efficiency of AAV Vectors Used in Retinal Gene Therapy Surgery: An In Vitro and In Vivo Analysis.

    Science.gov (United States)

    Salvetti, Anna P; Patrício, Maria I; Barnard, Alun R; Orlans, Harry O; Hickey, Doron G; MacLaren, Robert E

    2017-07-01

    Treatment of inherited retinal degenerations using adeno-associated viral (AAV) vectors involves delivery by subretinal injection. In the latter stages, alteration of normal anatomy may cause difficulty in visualizing the retinotomy, retinal detachment extension, and vector diffusion. Vital dyes may be useful surgical adjuncts, but their safety and impact on AAV transduction are largely unknown. The effects of Sodium Fluorescein (SF), Membrane Blue (MB), and Membrane Blue Dual (DB) at a range of dilutions were assessed on human embryonic kidney cells in vitro using an AAV2-green fluorescent protein (GFP) reporter at different multiplicities of infection. Flow cytometry analysis was performed to assess both cell viability and transduction efficiency. The effect on quantitative (q)PCR titer was determined. Balanced salt solution (BSS) or dilute DB (1:5 in BSS) were delivered subretinally into left/right eyes of C57BL/6J mice (n = 12). Retinal structure and function were analyzed by optical coherence tomography, autofluorescence, dark-and light-adapted full-field electroretinography. DB and MB were not toxic at any concentration tested, SF only when undiluted. The presence of dyes did not adversely affect the genomic titer. DB even increased the values, due to presence of surfactant in the formulation. AAV2-GFP transduction efficiency was not reduced by the dyes. No structural and functional toxic effects were observed following subretinal delivery of DB. Only undiluted SF affected cell viability. No effects on qPCR titer and transduction efficiency were observed. DB does not appear toxic when delivered subretinally and improves titer accuracy. DB may therefore be a safe and helpful adjunct during gene therapy surgery. This paper might be of interest to the retinal gene therapy community: it is a "bench to bedside" research paper about the potential use of dyes as a surgical adjunct during the gene therapy surgery. We have tested the potential toxicity and impact on

  8. In Vitro and In Vivo Investigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-01-01

    Full Text Available Delivering growth factors (GFs at bone/implant interface needs to be optimized to achieve faster osseointegration. Amorphous microporous silica (AMS has a potential to be used as a carrier and delivery platform for GFs. In this work, adsorption (loading and release (delivery mechanism of a model protein, bovine serum albumin (BSA, from AMS was investigated in vitro as well as in vivo. In general, strong BSA adsorption to AMS was observed. The interaction was stronger at lower pH owing to favorable electrostatic interaction. In vitro evaluation of BSA release revealed a peculiar release profile, involving a burst release followed by a 6 h period without appreciable BSA release and a further slower release later. Experimental data supporting this observation are discussed. Apart from understanding protein/biomaterial (BSA/AMS interaction, determination of in vivo protein release is an essential aspect of the evaluation of a protein delivery system. In this regard micropositron emission tomography (μ-PET was used in an exploratory experiment to determine in vivo BSA release profile from AMS. Results suggest stronger in vivo retention of BSA when adsorbed on AMS. This study highlights the possible use of AMS as a controlled protein delivery platform which may facilitate osseointegration.

  9. Decreased Cortisol and Pain in Breast Cancer: Biofield Therapy Potential

    Directory of Open Access Journals (Sweden)

    Alice Running

    2015-01-01

    Full Text Available Breast cancer is one of the leading causes of cancer death among women of all races. Pain is a common symptom associated with cancer; 75–90% of cancer patients experience pain during their illness and up to 50% of that pain is undertreated. Unrelieved pain leads to increased levels of the stress hormone cortisol. The purpose of this study was to examine the impact of bioenergy on fecal cortisol levels for mice injected with murine mammary carcinoma 4T1 in two separate pilot studies. Using a multiple experimental group design, six to eight week old female BALB/c mice were injected with tumor and randomly assigned, in groups of 10, to daily treatment, every other day treatment, and no treatment groups. Five days after tumor cell injection, bioenergy interventions were begun for a period of ten consecutive days. Fecal samples were collected for each study and ELISA analysis was conducted at the end of both studies. For both studies, cortisol levels were decreased in the every other day treatment groups but remained high in the no treatment groups. Future studies utilizing bioenergy therapies on cortisol levels in a murine breast cancer model can begin to describe pain outcomes and therapeutic dose.

  10. Large anti-HER2/neu liposomes for potential targeted intraperitoneal therapy of micrometastatic cancer

    Science.gov (United States)

    Sofou, Stavroula; Enmon, Richard; Palm, Stig; Kappel, Barry; Zanzonico, Pat; McDevitt, Michael R.; Scheinberg, David A.; Sgouros, George

    2011-01-01

    Effective targeting and killing of intraperitoneally disseminated micrometastases remains a challenge. Objective/Methods In this work, we evaluated the potential of antibody-labeled PEGylated large liposomes as vehicles for direct intraperitoneal (i.p.) drug delivery with the aim to enhance the tumor-to-normal organ ratio and to improve the bioexposure of cancer cells to the delivered therapeutics while shifting the toxicities toward the spleen. These targeted liposomes are designed to combine: (1) specific targeting to and internalization by cancer cells mediated by liposome-conjugated tumor-specific antibodies, (2) slow clearance from the peritoneal cavity, and (3) shift of normal organ toxicities from the liver to the spleen due to their relatively large size. Results Conjugation of anti-HER2/neu antibodies to the surface of large (approximately 600 nm in diameter) PEGylated liposomes results in fast, specific binding of targeted liposomes to cancer cells in vitro, followed by considerable cellular internalization. In vivo, after i.p. administration, these liposomes exhibit fast, specific binding to i.p. cancerous tumors. Large liposomes are slowly cleared from the peritoneal cavity, and they exhibit increased uptake by the spleen relative to the liver, while targeted large liposomes demonstrate specific tumor uptake at early times. Although tissue and tumor uptake are greater for cationic liposomes, the tumor-to-liver and spleen-to-liver ratios are similar for both membrane compositions, suggesting a primary role for the liposome’s size, compared to the liposome’s surface charge. Conclusions The findings of this study suggest that large targeted liposomes administered i.p. could be a potent drug-delivery strategy for locoregional therapy of i.p. micrometastatic tumors. PMID:20070139

  11. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy

    DEFF Research Database (Denmark)

    Lund, Ida K; Illemann, Martin; Sørensen, Tine Thurison

    2011-01-01

    Degradation of proteins in the extracellular matrix is crucial for the multistep process of cancer invasion and metastasis. Compelling evidence has demonstrated the urokinase receptor (uPAR) and its cognate ligand, the urokinase plasminogen activator (uPA), to play critical roles in the concerted......, and a potential diagnostic and predictive impact of the different uPAR forms has been reported. Hence, pericellular proteolysis seems to be a suitable target for anti-cancer therapy and numerous approaches have been pursued. Targeting of this process may be achieved by preventing the binding of uPA to u......PAR on the cell surface and/or by direct inhibition of the catalytic activity of uPA. Both strategies have been pursued and inhibition of these functions has shown effect in xenogenic cancer models. Pericellular proteolysis has also been inhibited in vivo in mouse models of wound healing and hepatic fibrinolysis...

  12. Phage-Host Interactions in Flavobacterium psychrophilum and the Potential for Phage Therapy in Aquaculture

    DEFF Research Database (Denmark)

    Christiansen, Rói Hammershaimb

    , the increasing problem with antibiotic resistance has led to increased attention to the use of phages for controlling F. psychrophilum infections in aquaculture. In a synopsis and four scientific papers, this PhD project studies the potential and optimizes the use of phage therapy for treatment and prevention...... temperatures below 15°C and typically with fry mortality rates of 50-60%. Several attempts of vaccine development against RTFS have been made, but according to my knowledge no commercial vaccine is yet available. Bacterial chemotherapy is still the most effective and used treatment of RTFS today. However......, the dispersal and survival of a F. psychrophilum phage in vivo in juvenile rainbow trout after administration by three different methods was examined. Following phage administration by bath and oral intubation into the stomach, phages could be detected in the intestine, spleen, brain and kidney for 24 h before...

  13. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarrut, David, E-mail: david.sarrut@creatis.insa-lyon.fr [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon (France); Université Lyon 1 (France); Centre Léon Bérard (France); Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault [Inserm, UMR1037 CRCT, F-31000 Toulouse, France and Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse (France); Boussion, Nicolas [INSERM, UMR 1101, LaTIM, CHU Morvan, 29609 Brest (France); Freud, Nicolas; Létang, Jean-Michel [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, 69008 Lyon (France); Jan, Sébastien [CEA/DSV/I2BM/SHFJ, Orsay 91401 (France); Loudos, George [Department of Medical Instruments Technology, Technological Educational Institute of Athens, Athens 12210 (Greece); Maigne, Lydia; Perrot, Yann [UMR 6533 CNRS/IN2P3, Université Blaise Pascal, 63171 Aubière (France); Papadimitroulas, Panagiotis [Department of Biomedical Engineering, Technological Educational Institute of Athens, 12210, Athens (Greece); Pietrzyk, Uwe [Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany and Fachbereich für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42097 Wuppertal (Germany); Robert, Charlotte [IMNC, UMR 8165 CNRS, Universités Paris 7 et Paris 11, Orsay 91406 (France); and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  14. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications.

    Science.gov (United States)

    Sarrut, David; Bardiès, Manuel; Boussion, Nicolas; Freud, Nicolas; Jan, Sébastien; Létang, Jean-Michel; Loudos, George; Maigne, Lydia; Marcatili, Sara; Mauxion, Thibault; Papadimitroulas, Panagiotis; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; Schaart, Dennis R; Visvikis, Dimitris; Buvat, Irène

    2014-06-01

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same framework is emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  15. Hendra and Nipah Infection: Pathology, Models and Potential Therapies

    Science.gov (United States)

    Vigant, Frederic; Lee, Benhur

    2011-01-01

    The Paramyxoviridae family comprises of several genera that contain emerging or re-emerging threats for human and animal health with no real specific effective treatment available. Hendra and Nipah virus are members of a newly identified genus of emerging paramyxoviruses, Henipavirus. Since their discovery in the 1990s, henipaviruses outbreaks have been associated with high economic and public health threat potential. When compared to other paramyxoviruses, henipaviruses appear to have unique characteristics. Henipaviruses are zoonotic paramyxoviruses with a broader tropism than most other paramyxoviruses, and can cause severe acute encephalitis with unique features among viral encephalitides. There are currently no approved effective prophylactic or therapeutic treatments for henipavirus infections. Although ribavirin was empirically used and seemed beneficial during the biggest outbreak caused by one of these viruses, the Nipah virus, its efficacy is disputed in light of its lack of efficacy in several animal models of henipavirus infection. Nevertheless, because of its highly pathogenic nature, much effort has been spent in developing anti-henipavirus therapeutics. In this review we describe the unique features of henipavirus infections and the different strategies and animal models that have been developed so far in order to identify and test potential drugs to prevent or treat henipavirus infections. Some of these components have the potential to be broad-spectrum antivirals as they target effectors of viral pathogenecity common to other viruses. We will focus on small molecules or biologics, rather than vaccine strategies, that have been developed as anti-henipaviral therapeutics. PMID:21488828

  16. In vivo Evaluation of PEGylated 64Cu-liposomes with Theranostic and Radiotherapeutic Potential using Micro PET/CT

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager; Binderup, Tina

    2016-01-01

    . Liposomes with 5 and 10 mol% PEG were characterizedwith respect to size, charge, and 64Cu- and 177Lu-loadingefficiency. The tumor imaging potential of 64Cu-loadedliposomes was evaluated in terms of in vivo biodistribution,tumor accumulation and tumor-to-muscle (T/M) ratios, usingPET imaging. The potential...... of PEGylated liposomes for diagnosticand therapeutic applications was further evaluatedthrough dosimetry analysis using OLINDA/EXM software.The 64Cu-liposomes were used as biological surrogates toestimate the organ and tumor kinetics of 177Lu-liposomes.High remote loading efficiency (>95 %) was obtainedfor...

  17. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy.

    Science.gov (United States)

    Chukwuocha, Uchechukwu M; Fernández-Rivera, Omar; Legorreta-Herrera, Martha

    2016-12-04

    Cymbopogon citratus (lemon grass) has been used in traditional medicine as an herbal infusion to treat fever and malaria. Generally, whole plant extracts possess higher biological activity than purified compounds. However, the antimalarial activity of the whole C. citratus plant has not been experimentally tested. To evaluate the antimalarial activity of an herbal infusion and the whole Cymbopogon citratus plant in two experimental models of malaria. The plant was dried for 10 days at room temperature and was then milled and passed through brass sieves to obtain a powder, which was administered to CBA/Ca mice with a patent Plasmodium chabaudi AS or P. berghei ANKA infection. We analysed the effects of two different doses (1600 and 3200mg/kg) compared with those of the herbal infusion and chloroquine, used as a positive control. We also assessed the prophylactic antimalarial activities of the whole C. citratus plant and the combination of the whole plant and chloroquine. The C. citratus whole plant exhibited prolonged antimalarial activity against both P. chabaudi AS and P. berghei ANKA. The low dose of the whole C. citratus plant displayed higher antimalarial activity than the high dose against P. berghei ANKA. As a prophylactic treatment, the whole plant exhibited higher antimalarial activity than either the herbal infusion or chloroquine. In addition, the combination of the whole C. citratus plant and chloroquine displayed higher activity than chloroquine alone against P. berghei ANKA patent infection. We demonstrated the antimalarial activity of the whole C. citratus plant in two experimental models. The whole C. citratus plant elicited higher anti-malarial activity than the herbal infusion or chloroquine when used as a prophylactic treatment. The antimalarial activity of the whole C. citratus plant supports continued efforts towards developing whole plant therapies for the management of malaria and other infectious diseases prevalent in resource

  18. The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation: in vivo.

    Science.gov (United States)

    Song, Jeong Eun; Kim, Eun Young; Ahn, Woo Young; Lee, Yu Jeong; Lee, Dongwon; Reis, Rui; Khang, Gilson

    2015-11-01

    Demineralized bone particle (DBP), which is widely used as a biomaterial in the field of tissue engineering, contains various bioactive molecules, such as cytokines. For this reason, in this study we investigated the effects of injectable DBP gels on cell proliferation, inflammation and maintenance of the shape of DBP gels as a scaffold able to substitute for intervertebral discs (IVDs) in vivo. DBP gels were fabricated with different percentages (5% and 10%) of DBP powder and 3% acetic acid, including 0.02% pepsin. DBP gels with 1 × 10(6) annulus fibrosus (AF) cells were implanted into the dorsal subcutaneous region of BALB/C-nu mice for 1, 2 and 3 weeks. Cell proliferation was measured by MTT assay. The effect of DBP gels on the inflammatory response was analysed by measuring the amount of tumour necrosis factor-alpha (TNFα) released. Also, histological methods were carried out to analyse the response of DBP gels in vivo. This study demonstrated that injectable DBP gels are able to provide physical scaffolds for growing IVD cells in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Online in vivo dosimetry in conformal radio therapies with MOSkin detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Tenconi, C.; Mantaut, N. [Universita degli Studi di Milano, Department of Physics, Via Festa del Perdono 7, 20122 Milano (Italy); Carrara, M.; Borroni, M.; Pignoli, E. [Fondazione IRCCS Istituto Nazionale dei Tumori, Medical Physics Unit, Via Giuseppe Ponzio 44, Milan (Italy); Cutajar, D.; Petasecca, M.; Fuduli, I.; Lerch, M.; Rosenfeld, A. [University of Wollongong, Centre for Medical Radiation Physics, 2522 Wollongong, New South Wales (Australia)

    2012-10-15

    A novel MOSFET based dosimeter, the MOSkin, has been developed at the Centre for Medical Radiation Physics, University of Wollongong (Australia). This dosimeter is designed with suitable packaging that allows skin dose measurements at depths of 0.07 mm, as recommended by the ICRP. Initially proposed for real-time skin dose measurement, it is now studied for real-time in vivo dosimetry during high dose rate (Hdr) brachytherapy and intensity modulated radiotherapy. MOSkin detectors have shown good characteristics of reproducibility and linearity. Experiments performed with the {sup 192}Ir source of a Hdr brachytherapy facility have shown negligible energy response for photons from the Ir-192 source. The angular response is within the experimental error when used in a dual-MOSkin configuration. In this work, urethral dose measurements were performed in a tissue-equivalent phantom reproducing prostate brachytherapy treatments. The obtained urethral doses were compared to the dose values calculated by the treatment planning system and the discrepancy was found to be within 4%, showing that dual-MOSkin detectors can be profitably utilized for real-time in vivo dosimetry during a brachytherapy treatment. (Author)

  20. Stable Control of Physiological Parameters, But Not Infection, in Preterm Lambs Maintained on Ex Vivo Uterine Environment Therapy.

    Science.gov (United States)

    Miura, Yuichiro; Usuda, Haruo; Watanabe, Shimpei; Woodward, Eleanor; Saito, Masatoshi; Musk, Gabrielle C; Kallapur, Suhas G; Sato, Shinichi; Kitanishi, Ryuta; Matsuda, Tadashi; Newnham, John P; Stock, Sarah J; Kemp, Matthew W

    2017-10-01

    Ex vivo uterine environment (EVE) therapy is an experimental neonatal intensive care strategy wherein gas exchange is performed by membranous oxygenators attached to the umbilical vessels. Our aim was to assess the ability of a newly refined EVE system to maintain key physiological parameters in preterm lambs within optimal ranges for 48 h. EVE group; n = 6: Preterm lambs were delivered under general anesthesia at 115 ± 2 days of gestational age. Animals were submerged in a bath of artificial amniotic fluid on EVE therapy for 48 h. Physiological parameters were monitored in real-time over the length of the experiment. Control group; n = 11: Ewes carrying a single fetus (115 ± 2 days of gestational age) underwent recovery surgery to allow placement of a fetal carotid artery catheter. Fetuses received an infusion of sterile saline only. After euthanasia, EVE and Control group fetuses underwent necroscopy to perform static pressure-volume curves and for sampling of lung and cord blood plasma for molecular analyses. Five out of six fetuses in the EVE group completed the study period with key physiological variables remaining within their respective reference ranges for the duration of the 48 h study. Bacteremia was identified in four out of five EVE fetuses, and was associated with a systemic inflammatory response. Using our refined EVE therapy platform, preterm lambs were maintained in a stable physiological condition for 48 h. These findings represent a significant advance over earlier work with this system; however, the identification of bacteremia and a fetal inflammatory response suggests that further refinement to the EVE therapy platform is required. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation.

    Science.gov (United States)

    Ahmad, Varish; Khan, Mohd Sajid; Jamal, Qazi Mohammad Sajid; Alzohairy, Mohammad A; Al Karaawi, Mohammad A; Siddiqui, Mughees Uddin

    2017-01-01

    Due to the appearance of antibiotic resistance and the toxicity associated with currently used antibiotics, peptide antibiotics are the need of the hour. Thus, demand for new antimicrobial agents has brought great interest in new technologies to enhance safety. One such antimicrobial molecule is bacteriocin, synthesised by various micro-organisms. Bacteriocins are widely used in agriculture, veterinary medicine as a therapeutic, and as a food preservative agent to control various infectious and food-borne pathogens. In this review, we highlight the potential therapeutic and food preservative applications of bacteriocin. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  2. Silicon particles as trojan horses for potential cancer therapy.

    Science.gov (United States)

    Fenollosa, Roberto; Garcia-Rico, Eduardo; Alvarez, Susana; Alvarez, Rosana; Yu, Xiang; Rodriguez, Isabel; Carregal-Romero, Susana; Villanueva, Carlos; Garcia-Algar, Manuel; Rivera-Gil, Pilar; de Lera, Angel R; Parak, Wolfgang J; Meseguer, Francisco; Alvarez-Puebla, Ramón A

    2014-09-16

    Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.

  3. Selective ex vivo photothermal nano-therapy of solid liver tumors mediated by albumin conjugated gold nanoparticles.

    Science.gov (United States)

    Mocan, Lucian; Matea, Cristian; Tabaran, Flaviu A; Mosteanu, Ofelia; Pop, Teodora; Puia, Cosmin; Agoston-Coldea, Lucia; Zaharie, Gabriela; Mocan, Teodora; Buzoianu, Anca Dana; Iancu, Cornel

    2017-03-01

    We have used albumin (BSA) bound to gold nanoparticles (GNPs) as active vectors to target liver cells. Our incentive to develop an original model of living liver cancer sprang from the ethical drawbacks that hindered the assessment of the selective character and the therapeutic capacity of these nano-biosystems in cancer patients. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Albumin bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of BSA bound to GNPs into tumor cells following ex-vivo intra-vascular perfusion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Correlation of in vivo tumor response and singlet oxygen luminescence detection in mTHPC-mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Brian C. Wilson

    2015-01-01

    Full Text Available Excited-state singlet oxygen (1O2, generated during photodynamic therapy (PDT, is believed to be the primary cytotoxic agent with a number of clinically approved photosensitizers. Its relative concentration in cells or tissues can be measured directly through its near-infrared (NIR luminescence emission, which has correlated well with in vitro cell and in vivo normal skin treatment responses. Here, its correlation with the response of tumor tissue in vivo is examined, using the photosensitizer meso-tetrahydroxyphenylchlorin (mTHPC in an animal model comprising luciferase- and green fluorescent protein (GFP-transduced gliosarcoma grown in a dorsal window chamber. The change in the bioluminescence signal, imaged pretreatment and at 2, 5 and 9 d post treatment, was used as a quantitative measure of the tumor response, which was classified in individual tumors as "non", "moderate" and "strong" in order to reduce the variance in the data. Plotting the bioluminescence-based response vs the 1O2 counts demonstrated clear correlation, indicating that 1O2 luminescence provides a valid dosimetric technique for PDT in tumor tissue.

  5. Development of ex vivo model for determining temperature distribution in tumor tissue during photothermal therapy (Conference Presentation)

    Science.gov (United States)

    Doughty, Austin; Liu, Shaojie; Zhou, Feifan; Liu, Hong; Chen, Wei R.

    2017-02-01

    We have recently developed Laser Immunotherapy (LIT), a targeted cancer treatment modality using synergistic application of near-infrared laser irradiation and in situ immunological stimulation. This study further investigates the principles underlying the immune response to LIT treatment by studying immunological impact of the laser photothermal effect in vivo, in vitro, and ex vivo. Tumor cells were stressed in vitro, and samples were collected to analyze protein expression with a Western Blot. Additionally, a tumor model was designed using bovine liver tissue suspended in agarose gel which was treated using laser interstitially and monitored with both proton-resonance frequency shift MR thermometry and thermocouples. From the bovine liver tumor model, we were able to develop the correlation between tissue temperature elevation and laser power and distance from the fiber tip. Similar data was collected by monitoring the temperature of a metastatic mammary tumor in a rat during laser irradiation. Ultimately, these results show that the laser irradiation of LIT leads to clear immunological effects for an effective combination therapy to treat metastatic cancers.

  6. In vivo PET imaging with {sup 18}F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    Energy Technology Data Exchange (ETDEWEB)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines.

  7. Discovery of a natural product-like iNOS inhibitor by molecular docking with potential neuroprotective effects in vivo.

    Science.gov (United States)

    Zhong, Hai-Jing; Liu, Li-Juan; Chong, Cheong-Meng; Lu, Lihua; Wang, Modi; Chan, Daniel Shiu-Hin; Chan, Philip Wai Hong; Lee, Simon Ming-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2014-01-01

    In this study, we applied structure-based virtual screening techniques to identify natural product or natural product-like inhibitors of iNOS. The iNOS inhibitory activity of the hit compounds was characterized using cellular assays and an in vivo zebrafish larvae model. The natural product-like compound 1 inhibited NO production in LPS-stimulated Raw264.7 macrophages, without exerting cytotoxic effects on the cells. Significantly, compound 1 was able to reverse MPTP-induced locomotion deficiency and neurotoxicity in an in vivo zebrafish larval model. Hence, compound 1 could be considered as a scaffold for the further development of iNOS inhibitors for potential anti-inflammatory or anti-neurodegenerative applications.

  8. In Vivo Therapeutic Potential of Mesenchymal Stromal Cells Depends on the Source and the Isolation Procedure

    Directory of Open Access Journals (Sweden)

    Francesca Bortolotti

    2015-03-01

    Full Text Available Over the last several years, mesenchymal stromal cells (MSCs have been isolated from different tissues following a variety of different procedures. Here, we comparatively assess the ex vivo and in vivo properties of MSCs isolated from either adipose tissue or bone marrow by different purification protocols. After MSC transplantation into a mouse model of hindlimb ischemia, clinical and histological analysis revealed that bone marrow MSCs purified on adhesive substrates exerted the best therapeutic activity, preserving tissue viability and promoting formation of new arterioles without directly transdifferentiating into vascular cells. In keeping with these observations, these cells abundantly expressed cytokines involved in vessel maturation and cell retention. These findings indicate that the choice of MSC source and purification protocol is critical in determining the therapeutic potential of these cells and warrant the standardization of an optimal MSC isolation procedure in order to select the best conditions to move forward to more effective clinical experimentation.

  9. Evaluation of the potential of Mycobacterium smegmatis as vaccine Candidate against tuberculosis by in silico and in vivo studies

    Directory of Open Access Journals (Sweden)

    Le Thuy Nguyen Thi

    2010-04-01

    Full Text Available In this study, we scanned multiple published databases of gene expression in vivo of M. tuberculosis at different phases of infection in animals and humans, to select 38 proteins that are highly expressed in the active, latent and reactivation phases. The selected proteins were predicted for T and B epitopes. For each proteins, the regions containing T and B epitopes were selected at the same time to look for identical epitopes on M. smegmatis based on sequence alignments. Preliminary studies of humoral immunogenicity and cross-reactivity with M. tuberculosis in mice using two M. smegmatis-derived experimental vaccines were carried out, demonstrating the immunogenicity of M. smegmatis proteoliposomes and the recognition of M. tuberculosis proteins by the sera of animals immunized with this vaccine candidate. The conjunction of in silico and in vivo studies suggested the potential for future evaluation of M. smegmatis as vaccine candidate against tuberculosis using different strategies

  10. Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week.

    Science.gov (United States)

    Usuda, Haruo; Watanabe, Shimpei; Miura, Yuichiro; Saito, Masatoshi; Musk, Gabrielle C; Rittenschober-Böhm, Judith; Ikeda, Hideyuki; Sato, Shinichi; Hanita, Takushi; Matsuda, Tadashi; Jobe, Alan H; Newnham, John P; Stock, Sarah J; Kemp, Matthew W

    2017-10-01

    Extremely preterm infants born at the border of viability (22-24 weeks' gestation) have high rates of death and lasting disability. Ex vivo uterine environment therapy is an experimental neonatal intensive care strategy that provides gas exchange using parallel membranous oxygenators connected to the umbilical vessels, sparing the extremely preterm cardiopulmonary system from ventilation-derived injury. In this study, we aimed to refine our ex vivo uterine environment therapy platform to eliminate fetal infection and inflammation, while simultaneously extending the duration of hemodynamically stable ex vivo uterine environment therapy to 1 week. Merino-cross ewes with timed, singleton pregnancies were surgically delivered at 112-115 days of gestation (term is ∼150 days) and adapted to ex vivo uterine environment therapy (treatment group; n = 6). Physiological variables were continuously monitored; humerus and femur length, ductus arteriosus directional flow, and patency were estimated with ultrasound; serial blood samples were collected for hematology and microbiology studies; weight was recorded at the end of the experiment. Control group animals (n = 7) were euthanized at 122 days of gestation and analyzed accordingly. Bacteremia was defined by positive blood culture. Infection and fetal inflammation was assessed with white blood cell counts (including differential leukocyte counts), plasma and lung proinflammatory cytokine measurements, and lung histopathology. Five of 6 fetuses in the treatment group completed the 1-week study period with key physiological parameters, blood counts remaining within normal ranges, and no bacteremia detected. There were no significant differences (P > .05) in arterial blood oxygen content or lactate levels between ex vivo uterine environment therapy and control groups at delivery. There was no significant difference (P > .05) in birthweight between control and ex vivo uterine environment groups. In the ex vivo uterine

  11. Biocompatible chitosan based hydrogels for potential application in local tumour therapy.

    Science.gov (United States)

    Olaru, Anda-Mihaela; Marin, Luminita; Morariu, Simona; Pricope, Gabriela; Pinteala, Mariana; Tartau-Mititelu, Liliana

    2018-01-01

    A series of hydrogels based on chitosan polyamine and nitrosalicylaldehyde were prepared via dynamic covalent chemistry (DCC), by imination and transimination reactions towards ordered clusters which play the role of crosslinking nodes of the chitosan network. The hydrogelation mechanism has been proved through NMR and FTIR spectroscopy, X-ray diffraction and polarized light microscopy. The successful preparation of the hydrogels and their mechanical properties were further investigated using rheological measurements. By electron scanning microscopy, the hydrogels exhibited a channels microstructure morphology which critically influenced their fast swelling by capillarity. The hydrogels cytotoxicity was explored in vitro on HeLa cancer cells and their biocompatibility was monitored in vivo by subcutaneous implantation on rats. The novel hydrogels proved good in vitro cytotoxicity on the HeLa cells and also in vivo biocompatibility in rats. Thus, these novel biomaterials promise to be suitable for local cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. [18F]Fluoroazabenzoxazoles as potential amyloid plaque PET tracers: synthesis and in vivo evaluation in rhesus monkey.

    Science.gov (United States)

    Hostetler, Eric D; Sanabria-Bohórquez, Sandra; Fan, Hong; Zeng, Zhizhen; Gammage, Linda; Miller, Patricia; O'Malley, Stacey; Connolly, Brett; Mulhearn, James; Harrison, Scott T; Wolkenberg, Scott E; Barrow, James C; Williams, David L; Hargreaves, Richard J; Sur, Cyrille; Cook, Jacquelynn J

    2011-11-01

    An (18)F-labeled positron emission tomography (PET) tracer for amyloid plaque is desirable for early diagnosis of Alzheimer's disease, particularly to enable preventative treatment once effective therapeutics are available. Similarly, such a tracer would be useful as a biomarker for enrollment of patients in clinical trials for evaluation of antiamyloid therapeutics. Furthermore, changes in the level of plaque burden as quantified by an amyloid plaque PET tracer may provide valuable insights into the effectiveness of amyloid-targeted therapeutics. This work describes our approach to evaluate and select a candidate PET tracer for in vivo quantification of human amyloid plaque. Ligands were evaluated for their in vitro binding to human amyloid plaques, lipophilicity and predicted blood-brain barrier permeability. Candidates with favorable in vitro properties were radiolabeled with (18)F and evaluated in vivo. Baseline PET scans in rhesus monkey were conducted to evaluate the regional distribution and kinetics of each tracer using tracer kinetic modeling methods. High binding potential in cerebral white matter and cortical grey matter was considered an unfavorable feature of the candidate tracers. [(18)F]MK-3328 showed the most favorable combination of low in vivo binding potential in white matter and cortical grey matter in rhesus monkeys, low lipophilicity (Log D=2.91) and high affinity for human amyloid plaques (IC(50)=10.5±1.3 nM). [(18)F]MK-3328 was identified as a promising PET tracer for in vivo quantification of amyloid plaques, and further evaluation in humans is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Field and action potential recordings in heart slices: correlation with established in vitro and in vivo models

    Science.gov (United States)

    Himmel, Herbert M; Bussek, Alexandra; Hoffmann, Michael; Beckmann, Rolf; Lohmann, Horst; Schmidt, Matthias; Wettwer, Erich

    2012-01-01

    BACKGROUND AND PURPOSE Action potential (AP) recordings in ex vivo heart preparations constitute an important component of the preclinical cardiac safety assessment according to the ICH S7B guideline. Most AP measurement models are sensitive, predictive and informative but suffer from a low throughput. Here, effects of selected anti-arrhythmics (flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine, verapamil) on field/action potentials (FP/AP) of guinea pig and rabbit ventricular slices are presented and compared with data from established in vitro and in vivo models. EXPERIMENTAL APPROACH Data from measurements of membrane currents (hERG, INa), AP/FP (guinea pig and rabbit ventricular slices), AP (rabbit Purkinje fibre), haemodynamic/ECG parameters (conscious, telemetered dog) were collected, compared and correlated to complementary published data (focused literature search). KEY RESULTS The selected anti-arrhythmics, flecainide, quinidine, atenolol, sotalol, dofetilide, nifedipine and verapamil, influenced the shape of AP/FP of guinea pig and rabbit ventricular slices in a manner similar to that observed for rabbit PF. The findings obtained from slice preparations are in line with measurements of membrane currents in vitro, papillary muscle AP in vitro and haemodynamic/ECG parameters from conscious dogs in vivo, and were also corroborated by published data. CONCLUSION AND IMPLICATIONS FP and AP recordings from heart slices correlated well with established in vitro and in vivo models in terms of pharmacology and predictability. Heart slice preparations yield similar results as papillary muscle but offer enhanced throughput for mechanistic investigations and may substantially reduce the use of laboratory animals. PMID:22074238

  14. Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori

    DEFF Research Database (Denmark)

    Santos, Rita S; Dakwar, George R; Xiong, Ranhua

    2015-01-01

    Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H. pylori to antibiotics, antimicrobial nucleic acid...... mimics are a promising alternative. In particular, locked nucleic acids (LNA)/2'-OMethyl RNA (2'OMe) have shown to specifically target H. pylori, as evidenced by in situ hybridization. The success of in vivo hybridization depends on the ability of these nucleic acids to penetrate the major physical...... barriers-the highly viscoelastic gastric mucus and the bacterial cell envelope. We found that LNA/2'OMe is capable of diffusing rapidly through native, undiluted, gastric mucus isolated from porcine stomachs, without degradation. Moreover, although LNA/2'OMe hybridization was still successful without...

  15. In vivo exposure therapy for the treatment of an adult needle phobic.

    Science.gov (United States)

    McDonnell-Boudra, Dee; Martin, Amy; Hussein, Iyad

    2014-01-01

    Dental anxiety is a widespread problem. Behavioural interventions are effective in reducing dental anxiety and dentists are well placed to carry out these interventions. This article aims to familiarize dentists with simple behavioural techniques that can be used to treat patients presenting with dental anxiety. A case study detailing the assessment and treatment of an uncomplicated needle phobia using in vivo graded exposure is included in order to demonstrate the use of these techniques. Familiarity with simple, behavioural interventions for dental anxiety will enable dentists to respond appropriately to patients who present with mild fear and anxiety. Early intervention may play a role in the reduction of phobic anxiety in the dental setting. Dentists with an interest in behavioural management may also wish to treat patients with uncomplicated dental phobia.

  16. Secukinumab for rheumatology: development and its potential place in therapy

    Directory of Open Access Journals (Sweden)

    Koenders MI

    2016-06-01

    Full Text Available Marije I Koenders, Wim B van den Berg Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands Abstract: Rheumatic disease is not a single disorder, but a group of more than 100 diseases that affect joints, connective tissues, and/or internal organs. Although rheumatic diseases like rheumatoid arthritis (RA, psoriatic arthritis, and ankylosing spondylitis (AS differ in their pathogenesis and clinical presentation, the treatment of these inflammatory disorders overlaps. Non-steroid anti-inflammatory drugs are used to reduce pain and inflammation. Additional disease-modifying anti-rheumatic drugs are prescribed to slowdown disease progression, and is in RA more frequently and effectively applied than in AS. Biologicals are a relatively new class of treatments that specifically target cytokines or cells of the immune system, like tumor necrosis factor alpha inhibitors or B-cell blockers. A new kid on the block is the interleukin-17 (IL-17 inhibitor secukinumab, which has been recently approved by the US Food and Drug Administration for moderate-to-severe plaque psoriasis, psoriatic arthritis, and AS. IL-17 is a proinflammatory cytokine that has an important role in host defense, but its proinflammatory and destructive effects have also been linked to pathogenic processes in autoimmune diseases like RA and psoriasis. Animal models have greatly contributed to further insights in the potential of IL-17 blockade in autoimmune and autoinflammatory diseases, and have resulted in the development of various potential drugs targeting the IL-17 pathway. Secukinumab (AIN457 is a fully human monoclonal antibody that selectively binds to IL-17A and recently entered the market under the brand name Cosentyx®. By binding to IL-17A, secukinumab prevents it from binding to its receptor and inhibits its ability to trigger inflammatory responses that play a role in the development of various autoimmune diseases. With secukinumab being

  17. Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential.

    Science.gov (United States)

    Urbani, Luca; Piccoli, Martina; Franzin, Chiara; Pozzobon, Michela; De Coppi, Paolo

    2012-01-01

    Satellite cells (SCs) are essential for postnatal muscle growth and regeneration, however, their expansion potential in vitro is limited. Recently, hypoxia has been used to enhance proliferative abilities in vitro of various primary cultures. Here, by isolating SCs from single mouse hindlimb skeletal myofibers, we were able to distinguish two subpopulations of clonally cultured SCs (Low Proliferative Clones--LPC--and High Proliferative Clones--HPC), which, as shown in rat skeletal muscle, were present at a fixed proportion. In addition, culturing LPC and HPC at a low level of oxygen we observed a two fold increased proliferation both for LPC and HPC. LPC showed higher myogenic regulatory factor (MRF) expression than HPC, particularly under the hypoxic condition. Notably, a different myogenic potential between LPC and HPC was retained in vivo: green fluorescent protein (GFP)+LPC transplantation in cardiotoxin-injured Tibialis Anterior led to a higher number of new GFP+muscle fibers per transplanted cell than GFP+HPC. Interestingly, the in vivo myogenic potential of a single cell from an LPC is similar if cultured both in normoxia and hypoxia. Therefore, starting from a single satellite cell, hypoxia allows a larger expansion of LPC than normal O(2) conditions, obtaining a consistent amount of cells for transplantation, but maintaining their myogenic regeneration potential.

  18. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms.

    Science.gov (United States)

    Lebeaux, David; Chauhan, Ashwini; Létoffé, Sylvie; Fischer, Frédéric; de Reuse, Hilde; Beloin, Christophe; Ghigo, Jean-Marc

    2014-11-01

    Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo. Using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bioluminescent strains, we studied the combination of L-arginine and gentamicin against planktonic persisters through time-kill curves of late stationary-phase cultures. In vitro biofilm tolerance towards gentamicin was assessed using PVC 96 well-plates assays. Efficacy of gentamicin as antibiotic lock treatment (ALT) at 5 mg/mL at different pH was evaluated in vivo using a model of totally implantable venous access port (TIVAP) surgically implanted in rats. We demonstrated that a combination of gentamicin and the clinically compatible basic amino acid L-arginine increases in vitro planktonic and biofilm susceptibility to gentamicin, with 99% mortality amongst clinically relevant pathogens, i.e. S. aureus, E. coli and P. aeruginosa persistent bacteria. Moreover, although gentamicin local treatment alone showed poor efficacy in a clinically relevant in vivo model of catheter-related infection, gentamicin supplemented with L-arginine led to complete, long-lasting eradication of S. aureus and E. coli biofilms, when used locally. Given that intravenous administration of L-arginine to human patients is well tolerated, combined use of aminoglycoside and the non-toxic adjuvant L-arginine as catheter lock solution could constitute a new option for the eradication of pathogenic biofilms. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. {sup 18}F-labeled benzylpiperidine benzisoxazole: a potential radioligand for in vivo mapping of acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.; Choi, Y. S.; Kim, Y. R.; Baek, J. Y.; Kim, S. E.; Choi, Y.; Lee, K. H.; Kim, B. T. [Sungkyunkwon University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Acetylcholinesterase (AChE) has been an important cholinergic marker for diagnosis of Alzheimer's disease since biochemical finding on severe loss of its activity in this disease. In this study, benzylpiperidine benzisoxazole (1), a potent AChE inhibitor (IC{sub 50}=0.33 nM), was labeled with {sup 18}F and evaluated for in vivo mapping of AChE. Fluorine-substituted derivatives of 1 were synthesized and their in vitro binding affinities to AChE were measured using Ellmans method. 4-[{sup 18}F]F-1 was selected and synthesized by reductive alkylation of the piperidine precursor with 4-[{sup 18}F]fluorobenzaldehyde. In vitro autoradiography was performed by incubating rat brain coronal slices with the radioligand at 4 .deg. C for 60 min, and in vivo tissue distribution studies were carried out in mice. In vitro assay data showed that fluorine-substituted derivatives of 1 exhibited similar binding affinities to the unsubstituted ligand (1). 4-[{sup 18}F]F-1 was synthesized in 25-50% radiochemical yield and with high specific activity (>37 GBq/{mu}mol). In autoradiograms of 4-[{sup 18}F]F-1, high uptake in striatal region was clearly shown, which was completely inhibited in the presence of the unlabeled ligand. Tissue distribution studies demonstrated that the order of uptake was well correlated with the known density of AChE in mouse brain and results of the in vitro autoradiography, showing a high striatum to cerebellum uptake ratio (3 at 90 min). This study demonstrated that 4-[{sup 18}F]F-1 may be a good candidate for in vivo mapping of AChE.

  20. The in vivo rodent test systems for assessment of carcinogenic potential

    DEFF Research Database (Denmark)

    van der Laan, Jan-Willem; Spindler, Per

    2002-01-01

    mouse models, the RasH2 and Tg.AC transgenic mouse models, and the neonatal mouse model. The "ICH Guideline S1B on Testing for Carcinogenicity of Pharmaceuticals" advocates that carcinogenicity testing of pharmaceuticals, when needed, might be carried out choosing one 2-year rodent carcinogenicity study...... (rat) plus one other study that supplements the 2-year study and providing additional information that is not readily available from the 2-year study: either (1) a short- or medium-term in vivo rodent test system or (2) a 2-year carcinogenicity study in a second rodent species (mouse). Another topic...

  1. Proton pump inhibitor therapy and potential long-term harm.

    Science.gov (United States)

    Corleto, Vito Domenico; Festa, Stefano; Di Giulio, Emilio; Annibale, Bruno

    2014-02-01

    This review summarizes the recent literature on the potential side-effects of proton pump inhibitors (PPIs) and known interactions with the metabolism/absorption of other drugs. Data confirm that PPIs are a very well tolerated drug class. Their high safety, efficacy and wide distribution lead to overuse, inappropriate dosage or excessive duration of treatment. Despite the absorption of micronutrients or other plausible effects on the development of bacterial infections linked to PPI-induced hypochlorhydria, it is difficult to demonstrate an association between PPI and specific symptoms. A possible negative effect of PPIs on bone integrity appears weak, but hypomagnesemia is likely a PPI drug class effect. A higher risk of Clostridium difficile infection and other infectious diseases such as small intestinal bacterial overgrowth and spontaneous bacterial peritonitis remain controversial in PPI users. However, the careful use of PPIs in cirrhotic or otherwise fragile patients is mandatory. Short-term or long-term PPI use may trigger microscopic colitis, and the management of this condition may include PPI withdrawal. The effect of PPIs on stimulating exocrine or endocrine gastric cell proliferation is poorly understood. A diagnostic delay or masking of diseases such as gastrinoma is difficult to evaluate. Short-term standard dose PPI treatment is low risk. Long-term PPI use may complicate health conditions by various mechanisms linked to PPIs and/or to hypochlorhydria.

  2. Microbiota abnormalities in inflammatory airway diseases - Potential for therapy.

    Science.gov (United States)

    Gollwitzer, Eva S; Marsland, Benjamin J

    2014-01-01

    Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease. © 2013.

  3. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy.

    Science.gov (United States)

    Turrini, Eleonora; Ferruzzi, Lorenzo; Fimognari, Carmela

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  4. The Woman's Heart: Insights into New Potential Targeted Therapy.

    Science.gov (United States)

    Gianfrilli, Daniele; Pofi, Ricardo; Feola, Tiziana; Lenzi, Andrea; Giannetta, Elisa

    2017-01-01

    Cardiovascular disease is an increasingly common cause of death in women. There is as yet no consensus on the analysis of cardiovascular risk factors with regard to the specific, personalised treatment of pre- and post-menopausal women. Clinically significant cardioprotective and antiremodelling effects have been observed in animal and human studies exploring chronic inhibition of phosphodiesterase type 5 (PDE5). The relationship between the heart, estrogens and PDE5 inhibitors (PDE5is) remains unclear. Experimental data suggest potential beneficial effects on cardiac geometry, function, endothelial function and microvascular coronary flow in women. It was recently postulated that the efficacy of PDE5is is estrogen-dependent in female heart disease. A registered randomised, placebo-controlled study, RECOGITO (NCT01803828), aimed at identifying the genderspecific efficacy of long-term PDE5 inhibition in diabetic cardiomyopathy, is currently recruiting patients. Estrogen receptor modulation could be a new promising approach to heart protection via PDE5is. PDE5is could be indicated as a gender-oriented strategy in modulated cardiac dysfunction and remodelling and in cardiac risk factors for selected cardiovascular diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. [In vivo experimental study on nasopharyngeal carcinoma with combination of pAdKDR-tk/GCV suicide gene therapy system and 60Co radiotherapy].

    Science.gov (United States)

    Qiu, Qianhui; Sun, Wei; Chen, Shaohua; Huang, Xiaoming

    2010-05-01

    To explore the killing effect of pAdKDR-tk/GCV suicide gene therapy system combined with 60Co radiotherapy on human nasopharyngeal carcinoma in vivo. The pAdKDR-tk/GCV suicide gene therapy system and 60Co radiotherapy were used separately or in combination for human nasopharyngeal carcinoma in vivo to compare their effects. The tumor growth curve and inhibition rate of tumor to the cure effects of the combination of the pAdKDR-tk/GCV suicide gene therapy system and 60Co radiotherapy. The inhibition rate of gene therapy alone and radiotherapy alone in curing the transplanted tumor in nude mouse subcutaneously was 58.43% and 70.88% respectively, and the combined application of gene therapy and radiotherapy exhibited stronger therapeutic effects (the inhibition rate was 84.39%, Pgene therapy alone and radiotherapy alone in the twenty-first day. The combined application of gene therapy and radiotherapy has an obviously higher curative effect than simple therapy. This method would establish a theoretic and clinical basis for the research of combination of suicide gene system tumor vascular targeting treating and radiotherapy.

  6. Biomimetic Magnetosomes as Versatile Artificial Antigen-Presenting Cells to Potentiate T-Cell-Based Anticancer Therapy.

    Science.gov (United States)

    Zhang, Qianmei; Wei, Wei; Wang, Peilin; Zuo, Liping; Li, Feng; Xu, Jin; Xi, Xiaobo; Gao, Xiaoyong; Ma, Guanghui; Xie, Hai-Yan

    2017-09-20

    Adoptive T-cell transfer for cancer therapy relies on both effective ex vivo T-cell expansion and in vivo targeting performance. One promising but challenging method for accomplishing this purpose is to construct multifunctional artificial antigen-presenting cells (aAPCs). We herein developed biomimetic magnetosomes as versatile aAPCs, wherein magnetic nanoclusters were coated with azide-engineered leucocyte membranes and then decorated with T-cell stimuli through copper-free click chemistry. These nano aAPCs not only exhibited high performance for antigen-specific cytotoxic T-cell (CTL) expansion and stimulation but also visually and effectively guided reinfused CTLs to tumor tissues through magnetic resonance imaging and magnetic control. The persisting T cells were able to delay tumor growth in a murine lymphoma model, while the systemic toxicity was not notable. These results together demonstrated the excellent potential of this "one-but-all" aAPC platform for T-cell-based anticancer immunotherapy.

  7. Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence.

    Directory of Open Access Journals (Sweden)

    Monica Gunetti

    Full Text Available Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.

  8. Safety of conventional systemic therapies for psoriasis on reproductive potential and outcomes.

    Science.gov (United States)

    Yiu, Zenas Z N; Warren, Richard B; Mrowietz, Ulrich; Griffiths, Christopher E M

    2015-01-01

    The effects of conventional systemic therapies for psoriasis on pregnancy outcomes, lactation, male fertility and mutagenicity are common concerns in the clinical setting. There is relatively little evidence to guide clinician and patient. In this study, we review the safety profile of the commonly used conventional systemic therapies used for psoriasis in individuals of reproductive potential. Safety data are derived from large-scale registries, adverse-event reporting databases, clinical trials and case reports. We assess the effect of each therapy on adverse pregnancy outcomes, including congenital malformations, and lactation with maternal administration. We also assess the effect of the therapies on male fertility and potential mutagenicity with paternal administration. We provide applicable guidance to inform clinician and patient before and after conception.

  9. In vivo studies of low level laser (light) therapy for traumatic brain injury

    Science.gov (United States)

    Xuan, Weijun; Wu, Qiuhe; Huang, Ying-Ying; Ando, Takahiro; Huang, Liyi; Hamblin, Michael R.

    2012-03-01

    Low-level laser (or light) therapy (LLLT) is attracting growing interest to treat both stroke and traumatic brain injury (TBI). The fact that near-infrared light can penetrate into the brain allows non-invasive treatment to be carried out with a low likelihood of treatment-related adverse events. It is proposed that red and NIR light is absorbed by chromophores in the mitochondria of cells leading to changes in gene transcription and upregulation of proteins involved in cell survival, antioxidant production, collagen synthesis, reduction of chronic inflammation and cell migration and proliferation. We developed a mouse model of controlled cortical impact (CCI) TBI and examined the effect of 0, 1, 3, and 14 daily 810-nm CW laser treatments in the CCI model as measured by neurological severity score and wire grip and motion test. 1 laser Tx gave a significant improvement while 3 laser Tx was even better. Surprisingly 14 laser Tx was no better than no treatment. Histological studies at necropsy suggested that the neurodegeneration was reduced at 14 days and that the cortical lesion was repaired by BrdU+ve neural progenitor (stem) cells at 28 days. Transcranial laser therapy is a promising treatment for acute (and chronic TBI) and the lack of side-effects and paucity of alternative treatments encourages early clinical trials.

  10. Smart thermosensitive liposomes for effective solid tumor therapy and in vivo imaging.

    Directory of Open Access Journals (Sweden)

    Kevin Affram

    Full Text Available In numerous studies, liposomes have been used to deliver anticancer drugs such as doxorubicin to local heat-triggered tumor. Here, we investigate: (i the ability of thermosensitive liposomal nanoparticle (TSLnp as a delivery system to deliver poorly membrane-permeable anticancer drug, gemcitabine (Gem to solid pancreatic tumor with the aid of local mild hyperthermia and, (ii the possibility of using gadolinium (Magnevist® loaded-TSLnps (Gd-TSLnps to increase magnetic resonance imaging (MRI contrast in solid tumor. In this study, we developed and tested gemcitabine-loaded thermosensitive liposomal nanoparticles (Gem-TSLnps and gadolinium-loaded thermosensitive liposomal nanoparticles (Gd-TSLnps both in in-vitro and in-vivo. The TSLnps exhibited temperature-dependent release of Gem, at 40-42°C, 65% of Gem was released within 10 min, whereas < 23% Gem leakage occurred at 37°C after a period of 2 h. The pharmacokinetic parameters and tissue distribution of both Gem-TSLnps and Gd-TSLnps were significantly greater compared with free Gem and Gd, while Gem-TSLnps plasma clearance was reduced by 17-fold and that of Gd-TSLpns was decreased by 2-fold. Area under the plasma concentration time curve (AUC of Gem-TSLnps (35.17± 0.04 μghr/mL was significantly higher than that of free Gem (2.09 ± 0.01 μghr/mL whereas, AUC of Gd-TSLnps was higher than free Gd by 3.9 fold high. TSLnps showed significant Gem accumulation in heated tumor relative to free Gem. Similar trend of increased Gd-TSLnps accumulation was observed in non-heated tumor compared to that of free Gd; however, no significant difference in MRI contrast enhancement between free Gd and Gd-TSLnps ex-vivo tumor images was observed. Despite Gem-TSLnps dose being half of free Gem dose, antitumor efficacy of Gem-TSLnps was comparable to that of free Gem(Gem-TSLnps 10 mg Gem/kg compared with free Gem 20 mg/kg. Overall, the findings suggest that TSLnps may be used to improve Gem delivery and enhance

  11. Learning from past treatments and their outcome improves prediction of in vivo response to anti-HIV therapy.

    Science.gov (United States)

    Saigo, Hiroto; Altmann, Andre; Bogojeska, Jasmina; Müller, Fabian; Nowozin, Sebastian; Lengauer, Thomas

    2011-01-01

    Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combinations of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations. Consequently, the genome of the viral target proteins is sequenced and inspected for resistance mutations as part of routine diagnostic procedures for ensuring an effective treatment. For predicting response to a combination therapy, currently available computer-based methods rely on the genotype of the virus and the composition of the regimen as input. However, no available tool takes full advantage of the knowledge about the order of and the response to previously prescribed regimens. The resulting high-dimensional feature space makes existing methods difficult to apply in a straightforward fashion. The machine learning system proposed in this work, sequence boosting, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal features, by utilizing the recent advancements in data mining and boosting. When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients from the EuResist integrated database, sequence boosting achieved superior performance compared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the discriminative treatment information. Analysis of feature importance values provided by our model confirmed known facts regarding HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past had poor treatment perspectives today. Furthermore, our model revealed novel biological insights. More precisely, the combination of previously used drugs with their in vivo response is more informative than the information of previously used drugs alone. Using this information improves the performance of systems for predicting therapy outcome.

  12. A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor

    Directory of Open Access Journals (Sweden)

    Jung-Ju Huang, Shu-Rui Yang, I-Ming Chu, Eric M Brey, Hui-Yi Hsiao and Ming-Huei Cheng

    2013-01-01

    Full Text Available The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid (PLGA and polycaprolactone (PCL were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.

  13. A comparative study of the chondrogenic potential between synthetic and natural scaffolds in an in vivo bioreactor

    Science.gov (United States)

    Huang, Jung-Ju; Yang, Shu-Rui; Chu, I.-Ming; Brey, Eric M.; Hsiao, Hui-Yi; Cheng, Ming-Huei

    2013-10-01

    The clinical demand for cartilage tissue engineering is potentially large for reconstruction defects resulting from congenital deformities or degenerative disease due to limited donor sites for autologous tissue and donor site morbidities. Cartilage tissue engineering has been successfully applied to the medical field: a scaffold pre-cultured with chondrocytes was used prior to implantation in an animal model. We have developed a surgical approach in which tissues are engineered by implantation with a vascular pedicle as an in vivo bioreactor in bone and adipose tissue engineering. Collagen type II, chitosan, poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were four commonly applied scaffolds in cartilage tissue engineering. To expand the application of the same animal model in cartilage tissue engineering, these four scaffolds were selected and compared for their ability to generate cartilage with chondrocytes in the same model with an in vivo bioreactor. Gene expression and immunohistochemistry staining methods were used to evaluate the chondrogenesis and osteogenesis of specimens. The result showed that the PLGA and PCL scaffolds exhibited better chondrogenesis than chitosan and type II collagen in the in vivo bioreactor. Among these four scaffolds, the PCL scaffold presented the most significant result of chondrogenesis embedded around the vascular pedicle in the long-term culture incubation phase.

  14. Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Directory of Open Access Journals (Sweden)

    Darshan R. Telange

    2016-12-01

    Full Text Available The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32 approach. Our results include the validation of the mathematical model in order to ascertain the role of specific formulation and process variables that contribute favorably to the formulation’s development. The final product was characterized and confirmed by Differential Scanning Calorimetry (DSC, Fourier Transform Infrared Spectroscopy (FTIR, Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR, and Powder X-ray Diffraction (PXRD analysis. The aqueous solubility and the in vitro dissolution rate were enhanced compared to that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex were evaluated by measuring its impact on carbon tetrachloride (CCl4-intoxicated rats. The optimized phospholipid complex improved the liver function test parameters to a significant level by restoration of all elevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidant potential by increasing levels of GSH (reduced glutathione, SOD (superoxide dismutase, catalase and decreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipid complex also demonstrated a significant improvement in oral bioavailability demonstrated by improvements to key pharmacokinetic parameters, compared to that of pure kaempferol.

  15. Effect of Native Gastric Mucus on in vivo Hybridization Therapies Directed at Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Rita S Santos

    2015-01-01

    Full Text Available Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H. pylori to antibiotics, antimicrobial nucleic acid mimics are a promising alternative. In particular, locked nucleic acids (LNA/2’-OMethyl RNA (2'OMe have shown to specifically target H. pylori, as evidenced by in situ hybridization. The success of in vivo hybridization depends on the ability of these nucleic acids to penetrate the major physical barriers—the highly viscoelastic gastric mucus and the bacterial cell envelope. We found that LNA/2'OMe is capable of diffusing rapidly through native, undiluted, gastric mucus isolated from porcine stomachs, without degradation. Moreover, although LNA/2'OMe hybridization was still successful without permeabilization and fixation of the bacteria, which is normally part of in vitro studies, the ability of LNA/2'OMe to efficiently hybridize with H. pylori was hampered by the presence of mucus. Future research should focus on developing nanocarriers that shield LNA/2'OMe from components in the gastric mucus, while remaining capable of diffusing through the mucus and delivering these nucleic acid mimics directly into the bacteria.

  16. Near-infrared emission Ba3(PO4)2:Mn5+ phosphor and potential application in vivo fluorescence imaging

    Science.gov (United States)

    Cao, RenPing; Yu, Xiaoguang; Sun, Xinyuan; Cao, Chunyan; Qiu, JianRong

    2014-07-01

    Fluorescence imaging in the second near-infrared window (NIR-II, 1000-1350 nm) is attracting attention due to negligible tissue scattering and lower tissue autofluorescence, etc. Here, Ba3(PO4)2:Mn5+ phosphor is prepared via solid state reaction method in air, and NIR emission band peaking at ∼1191 nm in the NIR-II region is observed. According to experiment results, Ba3(PO4)2:Mn5+ phosphor has a great potential for the study of the NIR-II fluorescence imaging in vivo.

  17. Photoacoustic spectroscopy to evaluate the potentiality of bee-propolis as UV protector: In vivo test in humans

    Science.gov (United States)

    Sehn, E.; Silva, K. C.; Bento, A. C.; Baesso, M. L.; Franco, S. L.

    2005-06-01

    In this work, the Photoacoustic Spectroscopy was employed to evaluate the potentiality of bee-propolis as UV protector. The experiments were performed to obtain the creams optical absorption spectra in the UV spectral region and also to evaluate in vivo the penetration rate of the obtained product in humans. The results showed the spectral response of the developed bee-propolis creams, and also revealed that two hours after the application about 40 % of the cream signal was still detected on the skin surface.

  18. Polarization speckle imaging as a potential technique for in vivo skin cancer detection.

    Science.gov (United States)

    Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I; Lee, Tim K

    2013-06-01

    Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.

  19. Polarization speckle imaging as a potential technique for in vivo skin cancer detection

    Science.gov (United States)

    Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I.; Lee, Tim K.

    2013-06-01

    Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.

  20. [Expression patterns of non-viral transfection with GFP in the organ of Corti in vitro and in vivo. Gene therapy of the inner ear with non-viral vectors].

    Science.gov (United States)

    Praetorius, M; Pfannenstiel, S; Klingmann, C; Baumann, I; Plinkert, P K; Staecker, H

    2008-05-01

    Diseases of the inner ear such as presbycusis, tinnitus, sudden hearing loss, and vertigo affect many patients, but so far there are no specific therapy options. Gene therapy might become a potential modality of treatment. Viral vectors are standard in animal models to date. Future considerations, however, call for a further evaluation of non-viral transfection methods. The non-viral transfection agents Metafectene, Superfect, Effectene, and Mirus TransIT were incubated with a plasmid coding for GFP. In vivo, the plasmid-agent mix was injected via the membrane of the round window, and 48 h later the inner ear was perfused, harvested, decalcified, and histologically evaluated for GFP expression. Cationic lipids (Metafectene) and dendrimers (Superfect) were able to transfect cells in the area of the organ of Corti and lead to GFP expression. The polyamine (Mirus TransIT) did show expression of GFP in the area of Rosenthal's canal and in the area of the inner hair cell. The combination of a non-liposomal lipid with a DNA condensing component (Effectene) did not show transfection of the organ of Corti. In the area of the spiral ganglia cells, GFP expression was seen with all the transfection agents. Non-viral transfection agents are able to introduce a reporter gene in cells of the inner ear in vitro and in vivo. There are, however, differences in the efficiency of the transfection. They might be an alternative in gene therapy of the inner ear. Further investigations to elucidate their potential are needed.

  1. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery.

    Science.gov (United States)

    Kim, Taejin; Afonin, Kirill A; Viard, Mathias; Koyfman, Alexey Y; Sparks, Selene; Heldman, Eliahu; Grinberg, Sarina; Linder, Charles; Blumenthal, Robert P; Shapiro, Bruce A

    2013-03-19

    Specific small interfering RNAs (siRNAs) designed to silence different oncogenic pathways can be used for cancer therapy. However, non-modified naked siRNAs have short half-lives in blood serum and encounter difficulties in crossing biological membranes due to their negative charge. These obstacles can be overcome by using siRNAs complexed with bolaamphiphiles, consisting of two positively charged head groups that flank an internal hydrophobic chain. Bolaamphiphiles have relatively low toxicities, long persistence in the blood stream, and most importantly, in aqueous conditions can form poly-cationic micelles thus, becoming amenable to association with siRNAs. Herein, two different bolaamphiphiles with acetylcholine head groups attached to an alkyl chain in two distinct configurations are compared for their abilities to complex with siRNAs and deliver them into cells inducing gene silencing. Our explicit solvent molecular dynamics (MD) simulations showed that bolaamphiphiles associate with siRNAs due to electrostatic, hydrogen bonding, and hydrophobic interactions. These in silico studies are supported by various in vitro and in cell culture experimental techniques as well as by some in vivo studies. Results demonstrate that depending on the application, the extent of siRNA chemical protection, delivery efficiency, and further intracellular release can be varied by simply changing the type of bolaamphiphile used.Molecular Therapy-Nucleic Acids (2013) 2, e80; doi:10.1038/mtna.2013.5; published online 19 March 2013.

  2. In vitro and in vivo activity of iclaprim, a diaminopyrimidine compound and potential therapeutic alternative against Pneumocystis pneumonia.

    Science.gov (United States)

    Aliouat, E M; Dei-Cas, E; Gantois, N; Pottier, M; Pinçon, C; Hawser, S; Lier, A; Huang, D B

    2018-03-01

    Pneumocystis pneumonia is a serious complication that may affect immunosuppressed patients. The absence of reliable and safe therapeutic alternatives to trimethoprim-sulfamethoxazole (TMP/SMX) justifies the search for more effective and less toxic agents. In this study, the in vitro and in vivo anti-Pneumocystis jirovecii activity of iclaprim, a diaminopyrimidine compound that exerts its antimicrobial activity through the inhibition of dihydrofolate reductase (DHFR), as does TMP, was evaluated alone or in combination with SMX. The antimicrobial activity of iclaprim was tested in vitro using an efficient axenic culture system, and in vivo using P. carinii endotracheally inoculated corticosteroid-treated rats. Animals were orally administered iclaprim (5, 25, 50 mg/kg/day), iclaprim/SMX (5/25, 25/125, 50/250 mg/kg/day), TMP (50 mg/kg/day), or TMP/SMX (50/250 mg/kg/day) once a day for ten consecutive days. The in vitro maximum effect (E max ) and the drug concentrations needed to reach 50% of E max (EC 50 ) were determined, and the slope of the dose-response curve was estimated by the Hill equation (E max sigmoid model). The iclaprim EC 50 value was 20.3 μg/mL. This effect was enhanced when iclaprim was combined with SMX (EC 50 : 13.2/66 μg/mL) (p = 0.002). The TMP/SMX EC 50 value was 51.4/257 μg/mL. In vivo, the iclaprim/SMX combination resulted in 98.1% of inhibition compared to TMP/SMX, which resulted in 86.6% of inhibition (p = 0.048). Thus, overall, the iclaprim/SMX combination was more effective than TMP/SMX both in vitro and in vivo, suggesting that it could be an alternative therapy to the TMP/SMX combination for the treatment of Pneumocystis pneumonia.

  3. An ex vivo study of arrested primary teeth caries with silver diamine fluoride therapy.

    Science.gov (United States)

    Mei, May L; Ito, L; Cao, Y; Lo, Edward C M; Li, Q L; Chu, C H

    2014-04-01

    This ex vivo study compared the physico-chemical structural differences between primary carious teeth biannually treated with silver diamine fluoride (SDF) and carious teeth without such treatment. Twelve carious primary upper-central incisors were collected from 6-year-old children. Six teeth had arrested caries after 24-month biannual SDF applications and 6 had active caries when there was no topical fluoride treatment. The mineral density, elemental contents, surface morphology, and crystal characteristics were assessed by micro-computed tomography (micro-CT), energy-dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Micro-CT examination revealed a superficial opaque band approximately 150μm on the arrested cavitated dentinal lesion. This band was limited in the active carious lesion. EDX examination detected a higher intensity of calcium and phosphate of 150μm in the surface zone than in the inner zone, but this zone was restricted in the active cavitated dentinal lesion. SEM examination indicated that the collagens were protected from being exposed in the arrested cavitated dentinal lesion, but were exposed in the active cavitated dentinal lesion. TEM examination suggested that remineralised hydroxyapatites were well aligned in the arrested cavitated dentinal lesion, while those in the active cavitated dentinal lesion indicated a random apatite arrangement. A highly remineralised zone rich in calcium and phosphate was found on the arrested cavitated dentinal lesion of primary teeth with an SDF application. The collagens were protected from being exposed in the arrested cavitated dentinal lesion. Clinical SDF application positively influences dentine remineralisation. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Poster - Thur Eve - 25: In vivo dosimetric verification of intensity-modulated radiation therapy.

    Science.gov (United States)

    Chytyk-Praznik, K; Van Uytven, E; Van Beek, T; McCurdy, Bmc

    2012-07-01

    Dosimetric verification of patient treatment plans has become increasingly important due to the widespread use of complicated delivery techniques. IMRT and VMAT treatments are typically verified prior to start of the patient's course of treatment, using a point dose and/or a film measurement. Pre-treatment verification will not detect patient or machine-related errors; therefore, in vivo dosimetric verification is the only way to determine if the patient's treatment was delivered correctly. Portal images were acquired throughout the course of five prostate and six head-and-neck patient IMRT treatments. The corresponding predicted images were calculated using a previously developed portal dose image prediction algorithm, which combines a versatile fluence model with a patient scatter and EPID dose prediction model. The prostate patient image agreement was found to vary day-to-day due to rectal gas pockets and the effect of adjustable support rails on the patient couch. The head-and-neck patient images were observed to be more consistent daily, but an increased measured dose was evident at the periphery of the patient, likely due to patient weight loss. The majority of the fields agreed within 3% and 3 mm for greater than 90% of the pixels, as established by the χ-comparison. This work demonstrates the changes in patient anatomy that are detectable with the portal dose image prediction model. Prior to clinical implementation, the effect of the couch must be incorporated into the model, the image acquisition must be automatically scheduled and routine EPID QA must be undertaken to ensure the collection of high-quality EPID images. © 2012 American Association of Physicists in Medicine.

  5. In vivo validation of a therapy planning system for laser-induced thermotherapy (LITT) of liver malignancies.

    Science.gov (United States)

    Lehmann, Kai Siegfried; Frericks, Bernd Benedikt; Holmer, Christoph; Schenk, Andrea; Weihusen, Andreas; Knappe, Verena; Zurbuchen, Urte; Peitgen, Heinz Otto; Buhr, Heinz Johannes; Ritz, Jörg Peter

    2011-06-01

    In situ ablation is increasingly being used for the treatment of liver malignancies. The application of these techniques is limited by the lack of a precise prediction of the destruction volume. This holds especially true in anatomically difficult situations, such as metastases in the vicinity of larger liver vessels. We developed a three-dimensional (3D) planning system for laser-induced thermotherapy (LITT) of liver tumors. The aim of the study was to validate the system for calculation of the destruction volume. LITT (28 W, 20 min) was performed in close contact to major hepatic vessels in six pigs. After explantation of the liver, the coagulation area was documented. The liver and its vascular structures were segmented from a pre-interventional CT scan. Therapy planning was carried out including the cooling effect of adjacent liver vessels. The lesions in vivo and the simulated lesions were compared with a morphometric analysis. The volume of lesions in vivo was 6,568.3 ± 3,245.9 mm(3), which was not different to the simulation result of 6,935.2 ± 2,538.5 mm(3) (P = 0.937). The morphometric analysis showed a sensitivity of the system of 0.896 ± 0.093 (correct prediction of destructed tissue). The specificity was 0.858 ± 0.090 (correct prediction of vital tissue). A 3D computer planning system for the prediction of thermal lesions in LITT was developed. The calculation of the directional cooling effect of intrahepatic vessels is possible for the first time. The morphometric analysis showed a good correlation under clinical conditions. The pre-therapeutic calculation of the ablation zone might be a valuable tool for procedure planning.

  6. Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis.

    Science.gov (United States)

    den Reijer, P Martijn; Sandker, Marjan; Snijders, Susan V; Tavakol, Mehri; Hendrickx, Antoni P A; van Wamel, Willem J B

    2017-02-01

    Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.

  7. Treatment of obesity as a potential complementary approach to cancer therapy.

    Science.gov (United States)

    Sirin, Olga; Kolonin, Mikhail G

    2013-06-01

    Obesity has long been recognized as a risk factor for diabetes and cardiovascular disease. Recent epidemiological data also associate obesity with cancer risk and progression. For this reason, a combination treatment of obesity along with treatment of the cancer itself may improve patient survival and well-being. As the molecular pathways linking obesity and cancer become better understood, new potential therapy targets are surfacing. In this article, we summarize the mechanisms proposed to account for the obesity-cancer association and discuss approaches to manipulation of adipose tissue as potential interventions aimed at cancer prevention or supplemental therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The potential of methylxanthine-based therapies in pediatric respiratory tract diseases.

    Science.gov (United States)

    Oñatibia-Astibia, Ainhoa; Martínez-Pinilla, Eva; Franco, Rafael

    2016-03-01

    Caffeine, theophylline and theobromine are the most known methylxanthines as they are present in coffee, tea and/or chocolate. In the last decades, a huge experimental effort has been devoted to get insight into the variety of actions that these compounds exert in humans. From such knowledge it is known that methylxanthines have a great potential in prevention, therapy and/or management of a variety of diseases. The benefits of methylxanthine-based therapies in the apnea of prematurity and their translational potential in pediatric affections of the respiratory tract are here presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In vivo small animal imaging for early assessment of therapeutic efficacy of photodynamic therapy for prostate cancer

    Science.gov (United States)

    Fei, Baowei; Wang, Hesheng; Chen, Xiang; Meyers, Joseph; Mulvilhill, John; Feyes, Denise; Edgehouse, Nancy; Duerk, Jeffrey L.; Pretlow, Thomas G.; Oleinick, Nancy L.

    2007-03-01

    We are developing in vivo small animal imaging techniques that can measure early effects of photodynamic therapy (PDT) for prostate cancer. PDT is an emerging therapeutic modality that continues to show promise in the treatment of cancer. At our institution, a new second-generation photosensitizing drug, the silicon phthalocyanine Pc 4, has been developed and evaluated at the Case Comprehensive Cancer Center. In this study, we are developing magnetic resonance imaging (MRI) techniques that provide therapy monitoring and early assessment of tumor response to PDT. We generated human prostate cancer xenografts in athymic nude mice. For the imaging experiments, we used a highfield 9.4-T small animal MR scanner (Bruker Biospec). High-resolution MR images were acquired from the treated and control tumors pre- and post-PDT and 24 hr after PDT. We utilized multi-slice multi-echo (MSME) MR sequences. During imaging acquisitions, the animals were anesthetized with a continuous supply of 2% isoflurane in oxygen and were continuously monitored for respiration and temperature. After imaging experiments, we manually segmented the tumors on each image slice for quantitative image analyses. We computed three-dimensional T2 maps for the tumor regions from the MSME images. We plotted the histograms of the T2 maps for each tumor pre- and post-PDT and 24 hr after PDT. After the imaging and PDT experiments, we dissected the tumor tissues and used the histologic slides to validate the MR images. In this study, six mice with human prostate cancer tumors were imaged and treated at the Case Center for Imaging Research. The T2 values of treated tumors increased by 24 +/- 14% 24 hr after the therapy. The control tumors did not demonstrate significant changes of the T2 values. Inflammation and necrosis were observed within the treated tumors 24 hour after the treatment. Preliminary results show that Pc 4-PDT is effective for the treatment of human prostate cancer in mice. The small animal MR

  10. Preparation and in vivo evaluation of multifunctional ⁹⁰Y-labeled magnetic nanoparticles designed for cancer therapy.

    Science.gov (United States)

    Radović, Magdalena; Calatayud, María Pilar; Goya, Gerardo Fabián; Ibarra, Manuel Ricardo; Antić, Bratislav; Spasojević, Vojislav; Nikolić, Nadežda; Janković, Drina; Mirković, Marija; Vranješ-Đurić, Sanja

    2015-01-01

    Two different types of magnetic nanoparticles (MNPs) were synthesized in order to compare their efficiency as radioactive vectors, Fe₃O₄-Naked (80 ± 5 nm) and polyethylene glycol 600 diacid functionalized Fe₃O₄(Fe₃O₄-PEG600) MNPs (46 ± 0.6 nm). They were characterized based on the external morphology, size distribution, and colloidal and magnetic properties. The obtained specific power absorption value for Fe₃O₄-PEG600 MNPs was 200 W/g, indicated their potential in hyperthermia based cancer treatments. The labeling yield, in vitro stability and in vivo biodistribution profile of (90) Y-MNPs were compared. Both types of MNPs were (90)Y-labeled in reproducible high yield (>97%). The stability of the obtained radioactive nanoparticles was evaluated in saline and human serum media in order to optimize the formulations for in vivo use. The biodistribution in Wistar rats showed different pharmacokinetic behaviors of nanoparticles: a large fraction of both injected MNPs ended in the liver (14.58%ID/g for (90)Y-Fe₃O₄-Naked MNPs and 19.61%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) whereas minor fractions attained in other organs. The main difference between the two types of MNPs was the higher accumulation of (90)Y-Fe₃O₄-Naked MNPs in the lungs (12.14%ID/g vs. 2.00%ID/g for (90)Y-Fe₃O₄-PEG600 MNPs) due to their in vivo agglomeration. The studied radiolabeled magnetic complexes such as (90)Y-Fe₃O₄-PEG600 MNPs constitute a great promise for multiple diagnostic-therapeutic uses combining, for example, MRI-magnetic hyperthermia and regional radiotherapy. © 2014 Wiley Periodicals, Inc.

  11. Light dosimetry in vivo in interstitial photodynamic therapy of human tumors

    Science.gov (United States)

    Reynes, Anne M.; Diebold, Simon; Lignon, Dominique; Granjon, Yves; Guillemin, Francois H.

    1991-11-01

    Photodynamic therapy, developed since 1961 with Lipson''s studies, is now limited in its clinical applications by the lack of knowledge about light comportment and the action of hematoporphyrin in tissues. Using human tumor models in mice, the intratumoral light flux was measured during an interstitial illumination (cylindrical diffusor 5 mm of length) by an argon dye laser emitting continuously at 630 nm (Spectra-Physics 375 B). The flux measured was captured by a plane-cut fiber (400 micrometers ) linked with an optical power meter (Newport 815). The light decrease in tissue had an exponential shape, and k, the global attenuation coefficient, was easily calculated as well as the depth penetration (1/k). Control measurements were performed in beef muscle, and the k value was very consistent with published data. In small tumors (3), the results presented a good reproducibility for the same histology (ksarcoma equals 0.48 +/- 0.08 mm-1, kcholangiocarcinoma equals 0.67 +/- 0.01 mm-1). The intraperitoneal injection of hematoporphyrin derivative (HpD at 10 mg/kg) did not seem to significantly influence the light evolution in tissues compared with control measurements without HpD. The simplicity and the reproducibility of this technique raises hopes of a coming clinical application and a possible comparison between different studies with measurable references.

  12. Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo

    Science.gov (United States)

    Khurana, Mamta; Moriyama, Eduardo H.; Mariampillai, Adrian; Samkoe, Kimberley; Cramb, David; Wilson, Brian C.

    2009-11-01

    As part of an ongoing program to develop two-photon (2-γ) photodynamic therapy (PDT) for treatment of wet-form age-related macular degeneration (AMD) and other vascular pathologies, we have evaluated the reciprocity of drug-light doses in focal-PDT. We targeted individual arteries in a murine window chamber model, using primarily the clinical photosensitizer Visudyne/liposomal-verteporfin. Shortly after administration of the photosensitizer, a small region including an arteriole was selected and irradiated with varying light doses. Targeted and nearby vessels were observed for a maximum of 17 to 25 h to assess vascular shutdown, tapering, and dye leakage/occlusion. For a given end-point metric, there was reciprocity between the drug and light doses, i.e., the response correlated with the drug-light product (DLP). These results provide the first quantification of photosensitizer and light dose relationships for localized irradiation of a single blood vessel and are compared to the DLP required for vessel closure between 1-γ and 2-γ activation, between focal and broad-beam irradiation, and between verteporfin and a porphyrin dimer with high 2-γ cross section. Demonstration of reciprocity over a wide range of DLP is important for further development of focal PDT treatments, such as the targeting of feeder vessels in 2-γ PDT of AMD.

  13. In Vivo Optical Molecular Imaging of Matrix Metalloproteinase Activity following Celecoxib Therapy for Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Rahul A. Sheth

    2012-09-01

    Full Text Available We present an optical molecular imaging approach to measure the efficacy of the cyclooxygenase-2 (COX-2 inhibitor celecoxib on tumor growth rate through its effect on matrix metalloproteinase (MMP activity. A xenograft model of colorectal cancer was generated in nude mice, which were then randomized to receive celecoxib versus vehicle. MMP activity was measured by an enzyme-activatable optical molecular probe. A novel genetically engineered mouse (GEM model of colorectal cancer was also used to assess celecoxib's effect on MMP activity, which was measured by quantitative fluorescence colonoscopy. Subcutaneously implanted xenograft tumors were 84% (SD 20.2% smaller in volume in the treatment group versus the control group. Moreover, treated animals exhibited only a 7.6% (SEM 9% increase in MMP activity versus 106% (SEM 8% for untreated animals. There was an apparent linear relationship (r = .91 between measured MMP activity and tumor growth rate. Finally, in the GEM model experiment, treated murine tumors remained relatively unchanged in volume and MMP activity; however, untreated tumors grew significantly and showed an increase in MMP activity. This method may provide for the improved identification of patients for whom COX-2 inhibition therapy is indicated by allowing one to balance the patient's cardiovascular risk with the cancer's responsiveness to celecoxib.

  14. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo

    Science.gov (United States)

    de Freitas, Laura Marise; Calixto, Giovana Maria Fioramonti; Chorilli, Marlus; Giusti, Juçaíra Stella M.; Bagnato, Vanderlei Salvador; Soukos, Nikolaos S.; Amiji, Mansoor M.; Fontana, Carla Raquel

    2016-01-01

    Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL) at 20 J/cm2 in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment. PMID:27213356

  15. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo.

    Science.gov (United States)

    de Freitas, Laura Marise; Calixto, Giovana Maria Fioramonti; Chorilli, Marlus; Giusti, Juçaíra Stella M; Bagnato, Vanderlei Salvador; Soukos, Nikolaos S; Amiji, Mansoor M; Fontana, Carla Raquel

    2016-05-20

    Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT-in planktonic and biofilm phases-with MB or MB-NP (25 µg/mL) at 20 J/cm² in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm²) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  16. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo

    Directory of Open Access Journals (Sweden)

    Laura Marise de Freitas

    2016-05-01

    Full Text Available Antimicrobial photodynamic therapy (aPDT is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB-loaded poly(lactic-co-glycolic (PLGA nanoparticles (MB-NP and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL at 20 J/cm2 in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2 in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82% on gingival bleeding index (GBI compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  17. Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy.

    Science.gov (United States)

    Li, Juan; Sun, Wunchang; Wang, Bing; Xiao, Xiao; Liu, Xiang-Qin

    2008-09-01

    Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Splitinteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly functional 6.3-kb Becker-form dystrophin cDNA was broken into two pieces and modified by adding appropriate split-intein coding sequences, resulting in splitgenes sufficiently small for packaging in AAV vectors. The two split-genes, after codelivery into target cells, produced two polypeptides that spontaneously trans-spliced to form the expected Becker-form dystrophin protein in cell culture in vitro. Delivering the split-genes by AAV1 vectors into the muscle of a mouse model of Duchenne muscular dystrophy rendered therapeutic gene expression and benefits.

  18. In vitro and in vivo immunomodulatory potential of Pedicularis longiflora and Allium carolinianum in alloxan-induced diabetes in rats.

    Science.gov (United States)

    Yatoo, Mohd Iqbal; Dimri, Umesh; Gopalakrishnan, Arumugam; Saxena, Archana; Wani, Sarfaraz Ahmad; Dhama, Kuldeep

    2017-10-27

    Pedicularis longiflora Rudolph (Orobanchaceae) and Allium carolinianum Linn (Alliaceae) are two important medicinal plants found in trans-Himalayan Changthang. The immunomodulatory potential of these plants has not been explored. In the present study, we evaluated the in vitro and in vivo immunomodulatory potential of P. longiflora and A. carolinianum in alloxan-induced diabetes in Wistar rats. The ethanol extracts of the aerial parts of P. longiflora and whole plant parts of A. carolinianum were used for studying the in vitro immunomodulatory activity using lymphocyte stimulation and cytokine release assays. For the in vivo study, 5 groups of 6 rats per group, including alloxan-induced diabetic and plant extract-treated rats, were evaluated for cell-mediated immune (CMI) and humoral immune (HMI) responses in a 42-day experimental trial using doses of 500mg/kg b.wt. for P. longiflora and 250mg/kgbwt. for A. carolinianum. For P. longiflora, the median effective dose was found to be 500mg/kg. The in vitro lymphocyte stimulation index for P. longiflora was significantly higher (1.73±0.04, pimmunomodulatory activities than A. carolinianum, especially in alloxan-induced diabetic rats. However, further research is needed to identify the different molecular mechanisms involved in mediating this immunomodulatory response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy

    Science.gov (United States)

    Zhang, Wentao; Shi, Shuo; Wang, Yanru; Yu, Shaoxuan; Zhu, Wenxin; Zhang, Xu; Zhang, Daohong; Yang, Baowei; Wang, Xin; Wang, Jianlong

    2016-06-01

    Biologically, MoS2-based nanostructures have been intensely applied for the photothermal therapy of cancer, but rarely for antibacterial uses. In this contribution, a multifunctional chitosan (CS) functionalized magnetic MoS2 (abbreviated to CFM) was constructed to nonspecifically combat bacterial infection by integrating bacterial conjugation and enrichment, and NIR-triggered photothermal sterilization. Owing to the abundant introduced amino groups, the CFM complex offers a significantly enhanced conjugation efficiency without obvious specificity towards both Gram-positive and -negative bacteria compared to amino-free magnetic MoS2. The magnetic properties of CFM obtained from iron oxide facilitate the enrichment of a CFM-bacteria conjugate, improving the photothermal efficiency of CFM as a photothermal antibacterial agent. Specifically, after being trapped together with bacteria cells, CFM shows an enhanced in vitro photothermal sterilization ability. In vivo S. aureus-induced abscess treatment studies show faster healing when CFM is used as subcutaneous nano-localized heating sources with the assistance of an external magnet to concentrate the CFM-bacteria conjugate. This work establishes an innovative solution and a novel antimicrobial agent for combating bacterial infections without the use of antibiotics, which may open a new area of application and research for MoS2-based nanostructures.Biologically, MoS2-based nanostructures have been intensely applied for the photothermal therapy of cancer, but rarely for antibacterial uses. In this contribution, a multifunctional chitosan (CS) functionalized magnetic MoS2 (abbreviated to CFM) was constructed to nonspecifically combat bacterial infection by integrating bacterial conjugation and enrichment, and NIR-triggered photothermal sterilization. Owing to the abundant introduced amino groups, the CFM complex offers a significantly enhanced conjugation efficiency without obvious specificity towards both Gram

  20. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  1. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes

    Science.gov (United States)

    Manzanares, Maria-Cristina; Ginebra, Maria-Pau; Franch, Jordi

    2015-01-01

    The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed. PMID:26132468

  2. In vivo and In vitro Identification of Endocannabinoid Signaling in Periodontal Tissues and Their Potential Role in Local Pathophysiology.

    Science.gov (United States)

    Konermann, Anna; Jäger, Andreas; Held, Stefanie A E; Brossart, P; Schmöle, Anne

    2017-03-14

    The endocannabinoid system (ECS) with its binding receptors CB1 and CB2 impacts multiple pathophysiologies not only limited to neuronal psychoactivity. CB1 is assigned to cerebral neuron action, whereas CB2 is mainly expressed in different non-neuronal tissues and associated with immunosuppressive effects. Based on these tissue-selective CB receptor roles, it was the aim of this study to analyze potential expression in periodontal tissues under physiological conditions and inflammatory states. In vivo, CB receptor expression was investigated on human periodontal biopsies with or without bacterial inflammation and on rat maxillae with or without sterile inflammation. In vitro analyses were performed on human periodontal ligament (PDL) cells at rest or under mechanical strain via qRT-PCR, Western blot, and immunocytochemistry. P periodontal tissues, both adjusted by different entities of periodontal inflammation and by mechanical stress. This indicates potential ECS function as regulatory tool in controlling of periodontal pathophysiology.

  3. A novel single walled carbon nanotube (SWCNT) functionalization agent facilitating in vivo combined chemo/thermo therapy

    Science.gov (United States)

    Zhang, Liwen; Rong, Pengfei; Chen, Minglong; Gao, Shi; Zhu, Lei

    2015-10-01

    Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and albumin, the yielding product (SWCNT/EB) demonstrated extreme stability for weeks under physiological conditions and it can be endowed with a therapeutic ability by simply mixing SWCNT/EB with an albumin based drug. Specifically, the formed SWCNT/EB/albumin/PTX nanocomplex exhibits strong near-infrared (NIR) absorbance, and can serve as an agent for chemo/thermal therapeutic purposes. Our in vivo result reveals that SWCNT/EB/albumin/PTX after being administered into the MDA-MB-435 tumor would effectively ablate the tumor by chemo and photothermal therapy. Such a combined treatment strategy provides remarkable therapeutic outcomes in restraining tumor growth compared to chemo or photothermal therapy alone. Overall, our strategy of dispersing SWCNTs by EB can be used as a platform for carrying other drugs or functional genes with the aid of albumin to treat diseases. The present study opens new opportunities in surface modification of SWCNTs for future clinical disease treatment.Carbon nanotubes (CNTs) have shown intriguing applications in biotechnological and biomedical fields due to their unique shape and properties. However, the fact that unmodified CNTs are prone to aggregation, stunts CNTs applications under physiological conditions. In this research, we found that as little as 1/5th the single walled carbon nanotube (SWCNT) weight of Evans Blue (EB) is capable of dispersing SWCNT as well as facilitating SWCNT functionalization. In view of the binding between EB and

  4. Evaluating the anti-inflammatory potential of Tectaria cicutaria L. rhizome extract in vitro as well as in vivo.

    Science.gov (United States)

    Choudhari, Amit S; Raina, Prerna; Deshpande, Manasi M; Wali, Ashok G; Zanwar, Anand; Bodhankar, Subhash L; Kaul-Ghanekar, Ruchika

    2013-10-28

    The rhizome of Tectaria cicutaria has been used in the folklore system of Indian traditional medicine (Ayurveda) for the treatment of various disorders such as rheumatic pain, chest complaints, burns, sprain, poisonous bites, tonsilitis, toothache, gum complaints, cuts and wounds. The present work has for the first time tried to elucidate the anti-inflammatory potential of aqueous extract of Tectaria cicutaria rhizome (TCRaq) in vitro as well as in vivo. Anti-inflammatory potential of TCRaq was analyzed in vivo in carrageenan induced rat paw edema model. Serum antioxidant status in TCRaq-treated as well as untreated control rodents was measured by oxygen radical absorbance capacity (ORAC) assay. In vitro experiments for analyzing the anti-inflammatory potential of TCRaq were performed on murine macrophage cell line, RAW 264.7. Analysis of nitric oxide release in RAW 264.7 cells was done by Griess reaction. RT-PCR and western blotting experiment was performed to analyze the expression of iNOS. Expression of COX-2 and NFκB proteins was evaluated by western blotting. TCRaq significantly reduced the paw volume in Sprague-Dawley rats at a dose of 200mg/kg body weight, which was comparable with the standard diclofenac treatment. The rats treated with TCRaq showed a significant increase in the serum antioxidant levels compared to the untreated control animals. TCRaq was able to reduce the nitric oxide (NO) levels in RAW 264.7 cells that had been stimulated with lipopolysaccharide (LPS). This was accompanied by a corresponding decrease in iNOS expression at mRNA and protein level. Interestingly, TCRaq was found to decrease the expression of COX-2 as well as the nuclear translocation of NFκB in RAW 264.7 cells. Our study signifies the anti-inflammatory potential of Tectaria cicutaria and scientifically validates its traditional use in inflammatory conditions. © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma.

    Science.gov (United States)

    Camerin, Monica; Magaraggia, Michela; Soncin, Marina; Jori, Giulio; Moreno, Miguel; Chambrier, Isabelle; Cook, Michael J; Russell, David A

    2010-07-01

    The efficiency of a Zn(II)-phthalocyanine disulphide (C11Pc), a compound with both phthalocyanine units bearing seven hexyl chains and a sulphur terminated C11 chain, as a photodynamic therapy (PDT) agent was investigated in C57 mice bearing a sub-cutaneously transplanted amelanotic melanoma. The phthalocyanine was intravenously injected at a dose of 1.5 micromol/kg body weight either free or bound to gold nanoparticles, using a Cremophor emulsion as a delivery vehicle. Biodistribution studies at selected post-injection times showed that the nanoparticle-associated C11Pc was recovered in significantly larger amounts from all the examined tissues and the serum and yielded a greater selectivity of tumour targeting: thus, the ratio between the amount of phthalocyanine recovered from the amelanotic melanoma and the skin (peritumoural tissue) increased from 2.3 to 5.5 from the free to the gold nanoparticle-bound C11Pc at 24 h after injection. PDT studies with the C11Pc-loaded amelanotic melanoma showed a markedly more significant response of the tumour in the mice that had received the nanoparticle-bound photosensitiser; the PDT effect was especially extensive if the irradiation was performed at 3h after C11Pc injection when large phthalocyanine amounts were still present in the serum. This suggests that the PDT promoted by C11Pc predominantly acts via vascular damage at least in this specific animal model. This hypothesis was fully confirmed by electron microscopy observations of tumour specimens obtained at different times after the end of PDT, showing an extensive damage of the blood capillaries and the endothelial cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Photodynamic therapy on bacterial reduction in dental caries: in vivo study

    Science.gov (United States)

    Baptista, Alessandra; Araujo Prates, Renato; Kato, Ilka Tiemy; Amaral, Marcello Magri; Zanardi de Freitas, Anderson; Simões Ribeiro, Martha

    2010-04-01

    The reduction of pathogenic microorganisms in supragingival plaque is one of the principal factors in caries prevention and control. A large number of microorganisms have been reported to be inactivated in vitro by photodynamic therapy (PDT). The purpose of this study was to develop a rat model to investigate the effects of PDT on bacterial reduction in induced dental caries. Twenty four rats were orally inoculated with Streptococcus mutans cells (ATCC 25175) for three consecutive days. The animals were fed with a cariogenic diet and water with 10% of sucrose ad libitum, during all experimental period. Caries lesion formation was confirmed by Optical Coherence Tomography (OCT) 5 days after the beginning of the experiment. Then, the animals were randomly divided into two groups: Control Group: twelve animals were untreated by either light or photosensitizer; and PDT Group: twelve animals were treated with 100μM of methylene blue for 5min and irradiated by a Light Emitting Diode (LED) at λ = 640+/-30nm, fluence of 172J/cm2, output power of 240mW, and exposure time of 3min. Microbiological samples were collected before, immediately after, 3, 7 and 10 days after treatment and the number of total microaerophiles was counted. OCT images showed areas of enamel demineralization on rat molars. Microbiological analysis showed a significant bacterial reduction after PDT. Furthermore, the number of total microaerophiles in PDT group remained lower than control group until 10 days posttreatment. These findings suggest that PDT could be an alternative approach to reduce bacteria in dental caries.

  7. Treatment of Oral Candidiasis Using Photodithazine®- Mediated Photodynamic Therapy In Vivo.

    Directory of Open Access Journals (Sweden)

    Juliana Cabrini Carmello

    Full Text Available This study evaluated the effectiveness of antimicrobial photodynamic therapy (aPDT in the treatment of oral candidiasis in a murine model using Photodithazine® (PDZ. This model of oral candidiasis was developed to allow the monitoring of the infection and the establishment of the aPDT treatment. Six-week-old female mice were immunosuppressed and inoculated with C. albicans to induce oral candidiasis. PDZ-mediated aPDT and nystatin treatment were carried out for 5 consecutive days with one application per day. The macroscopic evaluation of oral lesions was performed. After each treatment, the tongue was swabbed to recover C. albicans cells. Viable colonies were quantified and the number of CFU/ml determined. The animals were sacrificed 24 hours and 7 days after treatment and the tongues were surgically removed for histological analysis and analysis of inflammatory cytokines expression (IL-1, TNF-α and IL-6 by RT-qPCR. Data were analyzed by two-way ANOVA. PDZ-mediated aPDT was as effective as Nystatin (NYS group in the inactivation of C. albicans, reducing 3 and 3.2 logs10 respectively, 24 h after treatment (p<0.05. Animals underwent PDZ-mediated aPDT showed complete remission of oral lesions, while animals treated with NYS presented partial remission of oral lesions in both periods assessed. Histological evaluation revealed mild inflammatory infiltrate in the groups treated with aPDT and NYS in both periods assessed. The aPDT induced the TNF-α expression when compared with the control (P-L- (p<0.05, 24 h and 7 days after treatment. In summary, the murine model developed here was able to mimic the infection and PDZ-mediated aPDT was effective to treat mice with oral candidiasis.

  8. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo.

    Science.gov (United States)

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease.

  9. Experience with and potential of Cf-252 therapy for other tumors: Lexington clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Y.

    1986-01-01

    Clinical observations of tumor response in a variety of sites to Cf-252 (Cf) neutron brachytherapy (NT) are described. Many tumors which are accessible and easily implanted are suitable for Cf-NT, but in advanced stages, must be integrated into a more comprehensive program of local, regional and systemic therapy. With local tumor clearance and control, there should be treatment for regional disease using conventional photon radiotherapy; adjuvant therapies for disseminated disease using systemic therapy is also needed. While potential for therapy exists for Cf-NT treatment of many tumors, additional clinical trials carried out in a variety of global settings are needed where different tumors are common and are available for studies. Tumors suitable for study include e.g. cervix, uterus, vagina, tonsil-oropharynx, anterior oral cavity, prostate, female urethra, nasopharynx, anus and rectum, malignant glioma, parotid, perhaps esophagus, bladder, non-oat cell lung, localized sarcoma and melanoma, etc.

  10. Gene therapy as a potential tool for treating neuroblastoma-a focused review.

    Science.gov (United States)

    Kumar, M D; Dravid, A; Kumar, A; Sen, D

    2016-05-01

    Neuroblastoma, a solid tumor caused by rapid division of undifferentiated neuroblasts, is the most common childhood malignancy affecting children aged genes is restored to normalcy. Gene therapy is a powerful tool with the potential to inhibit the deleterious effects of oncogenes by inserting corrected/normal genes into the genome. Both viral and non-viral vector-based gene therapies have been developed and adopted to deliver the target genes into neuroblastoma cells. These attempts have given hope to bringing in a new regime of treatment against neuroblastoma. A few gene-therapy-based treatment strategies have been tested in limited clinical trials yielding some positive results. This mini review is an attempt to provide an overview of the available options of gene therapy to treat neuroblastoma.

  11. Mannan-conjugated adenovirus enhanced gene therapy effects on murine hepatocellular carcinoma cells in vitro and in vivo.

    Science.gov (United States)

    Liu, Zhongbing; Ke, Famin; Duan, Chenggang; Lan, Huan; Li, Juan; Gao, Cen; Li, Jinwei; Zhong, Zhirong

    2013-08-21

    The incidence of advanced hepatocellular carcinoma (HCC) is increasing worldwide, and its prognosis is extremely poor. For some patients for whom surgical treatments are not appropriate, one can only rely on chemotherapy. In the conventional chemotherapy, side effects usually occurred in most cases due to high toxicity levels. Moreover, the development of drug resistance toward chemotherapeutic agents often prevents the successful long-term use of chemotherapy for HCC. Gene therapy represents the exciting biotechnological advance that may revolutionize the conventional fashion of cancer treatment. Overexpression of phosphatase and tensin homologue (PTEN) in cancer cells carrying deletion/mutant type of it can induce the apoptosis of cancer cells and inhibit cell proliferation. In this work, in order to make full use of the high transfectivity of adenovirus, we managed to conjugate the polysaccharide mannan (polymannose) to the surface of the adenovirus chemically under appropriate oxidizing conditions to prepare the mannan-modified adenovirus (Man-Ad5-PTEN). The cytotoxicity and anticancer activity of Man-Ad5-PTEN were assessed in vitro. Reporter gene expression of LacZ transferred by Man-Ad5-LacZ was verified on mannose receptor-deficient NIH/3T3 cells versus mannose receptor-efficient macrophages. Hepatocellular carcinoma cell lines transduced by mannan-modified adenovirus were assayed for cell cycle, apoptosis, invasion, and migration. Further, we detected the antitumor effect on intraperitoneal H22 tumor-bearing mice treated by Man-Ad5-PTEN alone or combined with chemotherapeutic agent of doxorubicin. The results demonstrated that cell growth suppression was not observed in Chang normal hepatocyte cells and the cell killing by Man-Ad5-PTEN is tumor selective. Further, the results showed that the strategy of mannan conjugation could enhance adenovirus-mediated PTEN gene therapy effects on murine hepatocellular carcinoma cells in vitro and in vivo.

  12. Quantitative imaging of intracellular signaling for personalized pancreatic cancer therapy in an in vivo avatar (Conference Presentation)

    Science.gov (United States)

    Samkoe, Kimberley S.; Schultz, Emily; Park, Yeonjae; Fischer, Dawn; Pogue, Brian W.; Smith, Kerrington; Tichauer, Kenneth M.; Gibbs, Summer L.

    2017-02-01

    Pancreatic ductal adenocarcinomas (PDAC) are notoriously difficult to treat and in general, molecular targeted therapies have failed even when the targeted protein is overexpressed in the tumor tissue. Genetic mutations in extracellular receptors and downstream signaling proteins (i.e., RAS signaling pathway) and convoluted intracellular cross-talk between cell signaling pathways are likely reasons that these promising therapies fail. Monitoring the complex relationship between intracellular protein signaling is difficult and to-date, standard techniques that are used (Western blot, flow cytometry, immunohistochemistry, etc.) are invasive, static and do not accurately represent in vivo structure-function relationships. Here, we describe the development of an in ovo avatar using patient derived tumors grown on the chicken chorioallantoic membrane (CAM) and the novel fluorescence-based Quantitative Protein Expression Tracking (QUIET) methodology to bridge the gap between oncology, genomics and patient outcomes. Previously developed paired-agent imaging, was extended to a three-compartment model system in QUIET, which utilizes three types of imaging agents: novel fluorophore conjugated cell permeable targeted and untargeted small molecule paired-agents, in addition to a tumor perfusion agent that is not cell membrane permeable. We have demonstrated the ability to quantify the intracellular binding domain of a trans-membrane protein in vitro using cell permeable fluorescent agents (erlotinib-TRITC and control isotype-BODIPY FL). In addition, we have demonstrated imaging protocols to simultaneously image up to 6 spectrally distinct organic fluorophores in in ovo avatars using the Nuance EX (Perkin Elmer) and established proof-of-principle intracellular and extracellular protein concentrations of epidermal growth factor receptor using QUIET and traditional paired-agent imaging.

  13. In Vivo Antiplasmodial Potentials of the Combinations of Four Nigerian Antimalarial Plants

    Directory of Open Access Journals (Sweden)

    Adeleke Clement Adebajo

    2014-08-01

    Full Text Available Various combinations of Nauclea latifolia root, Artocarpus altilis stem bark, Murraya koenigii leaf and Enantia chlorantha stem bark used in African ethnomedicine as decoctions for malaria and fevers, and combinations with standard drugs, were investigated for antiplasmodial activities using Plasmodium berghei berghei-infected mice. The respective prophylactic and curative ED50 values of 189.4 and 174.5 mg/kg for N. latifolia and chemosuppressive ED50 value of 227.2 mg/kg for A. altilis showed that they were the best antimalarial herbal drugs. A 1.6-fold increase of the survival time given by the negative control was elicited by M. koenigii, thereby confirming its curative activity. Pyrimethamine with an ED50 of 0.5 ± 0.1 mg/kg for the prophylactic, and chloroquine with ED50 = 2.2 ± 0.1 and 2.2 ± 0.0 mg/kg for the chemosuppressive and curative tests, respectively, were significantly (p < 0.05 more active. Co-administrations of N. latifolia with the standard drugs significantly reduced their prophylactic, chemosuppressive and curative actions, possibly increasing the parasites’ resistance. Binary combinations of N. latifolia or M. koenigii with any of the other plants significantly increased the prophylactic and suppressive activities of their individual plants, respectively. Also, E. chlorantha with A. altilis or N. latifolia enhanced their respective prophylactic or curative activities, making these combinations most beneficial against malaria infections. Combinations of three and four extracts gave varied activities. Hence, the results justified the combinations of ethnomedicinal plants in antimalarial herbal remedies and showed the importance of the three in vivo models in establishing antimalarial activity.

  14. Diffuse reflectance spectra measured in vivo in human tissues during Photofrin-mediated pleural photodynamic therapy

    Science.gov (United States)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Friedberg, Joseph S.; Hahn, Stephen M.

    2006-02-01

    Optimal delivery of light in photodynamic therapy (PDT) requires not only optimal placement and power of light sources, but knowledge of the dynamics of light propagation in the tissue being treated and in the surrounding normal tissue, and of their respective accumulations of sensitizer. In an effort to quantify both tissue optical properties and sensitizer distribution, we have measured fluorescence emission and diffuse reflectance spectra at the surface of a variety of tissue types in the thoracic cavities of human patients. The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical resection of the affected lung and pleura. Patients received intracavity PDT at 630nm to a dose of 30 J/cm2, as determined by isotropic detectors sutured to the cavity walls. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 5 patients. The measurements we acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The light sources for these two measurements (a 403-nm diode laser and a halogen lamp, respectively) were blocked by computer-controlled shutters, allowing sequential fluorescence, reflectance, and background acquisition. The diffuse reflectance was analyzed to determine the absorption and scattering spectra of the tissue and from these, the concentration and oxygenation of hemoglobin and the local drug uptake

  15. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis

    Science.gov (United States)

    Auletta, Jeffery J; Bartholomew, Amelia M; Maziarz, Richard T; Deans, Robert J; Miller, Robert H; Lazarus, Hillard M; Cohen, Jeffrey A

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS for which only partially effective therapies exist. Intense research defining the underlying immune pathophysiology is advancing both the understanding of MS as well as revealing potential targets for disease intervention. Mesenchymal stromal cell (MSC) therapy has the potential to modulate aberrant immune responses causing demyelination and axonal injury associated with MS, as well as to repair and restore damaged CNS tissue and cells. This article reviews the pathophysiology underlying MS, as well as providing a cutting-edge perspective into the field of MSC therapy based upon the experience of authors intrinsically involved in MS and MSC basic and translational science research. PMID:22642335

  16. Efficient and fast functional screening of microdystrophin constructs in vivo and in vitro for therapy of duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Larochelle, Nancy; Orlopp, Kristian

    2009-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked, lethal genetic disorder affecting the skeletal muscle compartment, and is caused by mutation(s) in the dystrophin gene. Gene delivery of microdystrophin constructs using adeno-associated virus (AAV) and antisense-mediated exon skipping restoring...... the genetic reading frame are two of the most promising therapeutic strategies for DMD. Both approaches use microdystrophin proteins either directly as a desired construct for gene delivery, using the capacity-limited AAV vectors, or as the therapeutic outcome of gene splicing. Although functionality...... of the resulting artificial dystrophin proteins can be predicted in silico, experimental evidence usually obtained in transgenic mice is required before human trials. However, the enormous number of potential constructs makes screening assays for dystrophin protein function in vitro and in vivo highly desirable...

  17. In Vivo Stabilization of a Gastrin-Releasing Peptide Receptor Antagonist Enhances PET Imaging and Radionuclide Therapy of Prostate Cancer in Preclinical Studies.

    Science.gov (United States)

    Chatalic, Kristell L S; Konijnenberg, Mark; Nonnekens, Julie; de Blois, Erik; Hoeben, Sander; de Ridder, Corrina; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; van Gent, Dik C; Nock, Berthold A; Maina, Theodosia; van Weerden, Wytske M; de Jong, Marion

    2016-01-01

    A single tool for early detection, accurate staging, and personalized treatment of prostate cancer (PCa) would be a major breakthrough in the field of PCa. Gastrin-releasing peptide receptor (GRPR) targeting peptides are promising probes for a theranostic approach for PCa overexpressing GRPR. However, the successful application of small peptides in a theranostic approach is often hampered by their fast in vivo degradation by proteolytic enzymes, such as neutral endopeptidase (NEP). Here we show for the first time that co-injection of a NEP inhibitor (phosphoramidon (PA)) can lead to an impressive enhancement of diagnostic sensitivity and therapeutic efficacy of the theranostic (68)Ga-/(177)Lu-JMV4168 GRPR-antagonist. Co-injection of PA (300 µg) led to stabilization of (177)Lu-JMV4168 in murine peripheral blood. In PC-3 tumor-bearing mice, PA co-injection led to a two-fold increase in tumor uptake of (68)Ga-/(177)Lu-JMV4168, 1 h after injection. In positron emission tomography (PET) imaging with (68)Ga-JMV4168, PA co-injection substantially enhanced PC-3 tumor signal intensity. Radionuclide therapy with (177)Lu-JMV4168 resulted in significant regression of PC-3 tumor size. Radionuclide therapy efficacy was confirmed by production of DNA double strand breaks, decreased cell proliferation and increased apoptosis. Increased survival rates were observed in mice treated with (177)Lu-JMV4168 plus PA as compared to those without PA. This data shows that co-injection of the enzyme inhibitor PA greatly enhances the theranostic potential of GRPR-radioantagonists for future application in PCa patients.

  18. An investigation into the depth of penetration of low level laser therapy through the equine tendon in vivo

    Directory of Open Access Journals (Sweden)

    Ryan Teresa

    2007-05-01

    Full Text Available Abstract Low level laser therapy (LLLT is frequently used in the treatment of wounds, soft tissue injury and in pain management. The exact penetration depth of LLLT in human tissue remains unspecified. Similar uncertainty regarding penetration depth arises in treating animals. This study was designed to test the hypothesis that transmission of LLLT in horses is increased by clipping the hair and/or by cleaning the area to be treated with alcohol, but is unaffected by coat colour. A LLLT probe (810 nm, 500 mW was applied to the medial aspect of the superficial flexor tendon of seventeen equine forelimbs in vivo. A light sensor was applied to the lateral aspect, directly opposite the laser probe to measure the amount of light transmitted. Light transmission was not affected by individual horse, coat colour or leg. However, it was associated with leg condition (F = 4.42, p = 0.0032. Tendons clipped dry and clipped and cleaned with alcohol, were both associated with greater transmission of light than the unprepared state. Use of alcohol without clipping was not associated with an increase in light transmission. These results suggest that, when applying laser to a subcutaneous structure in the horse, the area should be clipped and cleaned beforehand.

  19. Bioreducible PEI-siRNA Nanocomplex for Liver Cancer Therapy: Transfection, Biodistribution, and Tumor Growth Inhibition In Vivo

    Directory of Open Access Journals (Sweden)

    Wei Xia

    2013-01-01

    Full Text Available A bioreducible polyethylenimine (SS-PEI was successfully applied as a nonviral carrier for the delivery of plasmid DNA and VEGF-siRNA in vitro and in vivo. The SS-PEI could strongly condense DNA or siRNA into nanosized complexes (below 200 nm with positive surface charges. In vitro transfection experiments using GFP plasmid as gene reporter showed that the complexes of SS-PEI/DNA were able to efficiently transfect HepG2 cells, with efficiency comparable to that of polyethylenimine, a gold standard for nonviral gene delivery. Moreover, the complexes of SS-PEI/VEGF-siRNA could lead to reduced levels of VEGF protein in HepG2 cells in vitro. Treatment with the complexes of SS-PEI/VEGF-siRNA efficiently inhibited HepG2 tumor growth in an xenograft mouse model. The data of this study imply that the SS-PEI is a potent nucleic acid carrier applicable for liver cancer gene therapy.

  20. Diffuse reflectance spectra measured in vivo in human tissues during Photofrin-mediated pleural photodynamic therapy: updated results

    Science.gov (United States)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Friedberg, Joseph S.; Cengel, Keith A.; Hahn, Stephen M.

    2009-02-01

    We present the results of a series of spectroscopic measurements made in vivo in patients undergoing photodynamic therapy (PDT). The patients studied here were enrolled in Phase II clinical trials of Photofrin-mediated PDT for the treatment of non-small cell lung cancer and cancers with pleural effusion. Patients were given Photofrin at dose of 2 mg per kg body weight 24 hours prior to treatment. Each patient received surgical debulking of the tumor followed by intracavity PDT at 630nm to a dose of 60 J/cm2. Dose was monitored continuously using implanted isotropic fiber-based light detectors. We measured the diffuse reflectance spectra before and after PDT in various positions within the cavity, including tumor, diaphragm, pericardium, skin, and chest wall muscle in 10 patients. The measurements were acquired using a specially designed fiber optic-based probe consisting of one fluorescence excitation fiber, one white light delivery fiber, and 9 detection fibers spaced at distances from 0.36 to 7.8 mm from the source, all of which are imaged via a spectrograph onto a CCD, allowing measurement of radially-resolved diffuse reflectance and fluorescence spectra. The absorption spectra were analyzed using an analytical model of light propagation in diffuse media based on the P3 approximation to radiative transport, assuming a known basis set of absorbers including hemoglobin in its oxygenated and deoxygenated forms and Photofrin. We find significant variation in hemodynamics and sensitizer concentration among patients and within tissues in a single patient.

  1. In vivo Biocompatibility, Biodistribution and Therapeutic Efficiency of Titania Coated Upconversion Nanoparticles for Photodynamic Therapy of Solid Oral Cancers.

    Science.gov (United States)

    Lucky, Sasidharan Swarnalatha; Idris, Niagara Muhammad; Huang, Kai; Kim, Jaejung; Li, Zhengquan; Thong, Patricia Soo Ping; Xu, Rong; Soo, Khee Chee; Zhang, Yong

    2016-01-01

    Despite the advantages of using photodynamic therapy (PDT) for the treatment of head and neck tumors, it can only be used to treat early stage flat lesions due to the limited tissue penetration ability of the visible light. Here, we developed near-infrared (NIR) excitable upconversion nanoparticle (UCN) based PDT agent that can specifically target epithelial growth factor receptor (EGFR) overexpressing oral cancer cells, in a bid to widen the application of PDT against thick and solid advanced or recurrent head and neck cancers. In vivo studies using the synthesized anti-EGFR-PEG-TiO2-UCNs following systemic administration displayed no major sub-acute or long term toxic effects in terms of blood biochemical, hematological or histopathological changes at a concentration of 50 mg/kg. NIR-PDT even in the presence of a 10 mm tissue phantom placed over the xenograft tumor, showed significant delay in tumor growth and improved survival rate compared to conventional chlorin-e6 (Ce6) PDT using 665 nm red light. Our work, one of the longest study till date in terms of safety (120 d), PDT efficacy (35 d) and survival (60 d), demonstrates the usefulness of UCN based PDT technology for targeted treatment of thick and bulky head and neck tumors.

  2. In vitro and In vivo Studies on Stilbene Analogs as Potential Treatment Agents for Colon Cancer

    Science.gov (United States)

    Based upon the potential of resveratrol as a cancer chemopreventive agent, 27 stilbenes analogs were synthesized and tested against colon cancer cell line HT-29. Among these compounds, amino derivative (Z)-4-(3,5-dimethoxystyryl) aniline (4), (Z)-methyl 4-(3,5-dimethoxystyryl) benzoate (6) and (Z)-1...

  3. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential

    DEFF Research Database (Denmark)

    Jain, Sanyog; Jain, Amit K; Pohekar, Milind

    2013-01-01

    Quercetin (QT) was formulated into a novel self-emulsifying drug delivery system (SEDDS) to improve its oral bioavailability and antioxidant potential compared to free drug. Capmul MCM was selected as the oily phase on the basis of optimum solubility of QT in oil. Tween 20 and ethanol were selected...

  4. Antioxidant potential of selected supplements in vitro and the problem of its extrapolation for in vivo

    Directory of Open Access Journals (Sweden)

    Julija Ogrin Papić

    2012-04-01

    Full Text Available Introduction: antioxidants, free radicals and oxidative stress have been studied extensively for quite some time but their role in diseases and their prevention has not been clearly determined. Because commercialantioxidants do not need to pass clinical tests in order to be sold over the counter we have decided to test the antioxidant potential of different commercial preparations with the antioxidative properties.Methods: pH, rH and oxidant-reduction potential of different preparations in aqueous solution was measured. Afterwards antioxidant potential using FormPlus® after adding the preparation to human blood as a morecomplex environment with different homeostasis mechanisms was determined.Results: all the results showed expected change compared to the control but the results in aqueous solution did not match the results obtained from the human blood, as was expected.Conclusion: from the experiments it can be concluded that while the preparations did show antioxidant activity, it is very difficult and even wrong to predict the antioxidant potential of an antioxidant preparationadded to human blood, let alone in a living organism, based just on the results obtained in aqueous solution. Further possibilities for research include more extensive studies of antioxidant preparations in more complex environment and last but not least in test organisms or in human trials.

  5. Evaluation of anticataract potential of Triphala in selenite-induced cataract: In vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Suresh Kumar Gupta

    2010-01-01

    Full Text Available Triphala (TP is composed of Emblica officinalis, Terminalia chebula, and Terminalia belerica. The present study was undertaken to evaluate its anticataract potential in vitro and in vivo in a selenite-induced experimental model of cataract. In vitro enucleated rat lenses were maintained in organ culture containing Dulbecco′s Modified Eagles Medium alone or with the addition of 100΅M selenite. These served as the normal and control groups, respectively. In the test group, the medium was supplemented with selenite and different concentrations of TP aqueous extract. The lenses were incubated for 24 h at 37°C. After incubation, the lenses were processed to estimate reduced glutathione (GSH, lipid peroxidation product, and antioxidant enzymes. In vivo selenite cataract was induced in 9-day-old rat pups by subcutaneous injection of sodium selenite (25 μmole/kg body weight. The test groups received 25, 50, and 75 mg/kg of TP intraperitoneally 4 h before the selenite challenge. At the end of the study period, the rats′ eyes were examined by slit-lamp. TP significantly (P < 0.01 restored GSH and decreased malondialdehyde levels. A significant restoration in the activities of antioxidant enzymes such as superoxide dismutase (P < 0.05, catalase (P < 0.05, glutathione peroxidase (P < 0.05, and glutathione-s-transferase (P < 0.005 was observed in the TP-supplemented group compared to controls. In vivo TF 25mg/kg developed only 20% nuclear cataract as compared to 100% in control. TP prevents or retards experimental selenite-induced cataract. This effect may be due to antioxidant activity. Further studies are warranted to explore its role in human cataract.

  6. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    Directory of Open Access Journals (Sweden)

    Paulraj Gabriel M

    2010-06-01

    Full Text Available Abstract Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA in human colon cancer cell lines (COLO 320 DM. The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w. into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM, induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis.

  7. Chemopreventive potential of beta-Sitosterol in experimental colon cancer model--an in vitro and In vivo study.

    Science.gov (United States)

    Baskar, Albert A; Ignacimuthu, Savarimuthu; Paulraj, Gabriel M; Al Numair, Khalid S

    2010-06-04

    Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of beta-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. The active molecule was isolated, based upon bioassay guided fractionation, and identified as beta-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of beta-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of beta-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with beta-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. beta-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 microM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of beta-catenin and PCNA antigens in human colon cancer cells. beta-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. We found doses of 10-20 mg/kg b.w. beta-sitosterol to be effective for future in vivo studies. beta-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated beta-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis.

  8. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    Science.gov (United States)

    2010-01-01

    Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis. PMID:20525330

  9. "Footprint-free" human induced pluripotent stem cell-derived astrocytes for in vivo cell-based therapy.

    Science.gov (United States)

    Mormone, Elisabetta; D'Sousa, Sunita; Alexeeva, Vera; Bederson, Maria M; Germano, Isabelle M

    2014-11-01

    The generation of human induced pluripotent stem cells (hiPSC) from somatic cells has enabled the possibility to provide patient-specific hiPSC for cell-based therapy, drug discovery, and other translational applications. Two major obstacles in using hiPSC for clinical application reside in the risk of genomic modification when they are derived with viral transgenes and risk of teratoma formation if undifferentiated cells are engrafted. In this study, we report the generation of "footprint-free" hiPSC-derived astrocytes. These are efficiently generated, have anatomical and physiological characteristics of fully differentiated astrocytes, maintain homing characteristics typical of stem cells, and do not give rise to teratomas when engrafted in the brain. Astrocytes can be obtained in sufficient numbers, aliquoted, frozen, thawed, and used when needed. Our results show the feasibility of differentiating astrocytes from "footprint-free" iPSC. These are suitable for clinical cell-based therapies as they can be induced from patients' specific cells, do not require viral vectors, and are fully differentiated. "Footprint-free" hiPSC-derived astrocytes represent a new potential source for therapeutic use for cell-based therapy, including treatment of high-grade human gliomas, and drug discovery.

  10. Effect of thrombocytopenia on the efficacy of Photofrin-based photodynamic therapy in vivo

    Science.gov (United States)

    de Vree, Wil J. A.; de Bruijn, Henriette S.; Kraak-Slee, Regina G.; Koster, Johan F.; Sluiter, Wim

    2001-01-01

    Neutrophils are indispensable for successful PDT. Recently it has been observed that the administration of anti-thrombocyte antiserum prevents the occlusion of the microvasculature that normally occurs upon Photofrin-based PDT. We hypothesized that this antiserium treatment would increase the therapeutic efficacy by facilitating the accumulation of neutrophils at the lesion. To study this we implanted the isologous rhabdomyosarcoma R-1 subcutaneously into the thigh of WAG/Raj rats, and treated the tumor by interstitial Photofrin-based PDT. We found that the increasing tumor doubling time after PDT under anti-thrombocyte antiserum-induced thrombocytopenia was significantly higher that in normal rats. Strikingly, the increase in tumor doubling time did not differ if thrombocytopenia was induced before or immediately after illumination. At least 1.5 times more neutrophils than normal accumulated into the PDT-treated tumors under thrombocytopenia. If the rats were rendered granulocytopenic by the administration of anti-granulocyte antiserum first followed by anti-thrombocyte antiserum post PDT, this lead to a considerable loss of the thrombocytopenia- dependent gain in the efficacy of PDT. These findings suggest that the increased accumulation of neutrophils into the tumor underlie the enhanced efficacy of PDT and may implicate that under normal clinical conditions the full granulocyte-dependent kill potential is not utilized due to the presence of activated thrombocytes that cause blood flow stasis.

  11. A low molecular weight ES-20 protein released in vivo and in vitro with diagnostic potential in lymph node tuberculosis

    Directory of Open Access Journals (Sweden)

    Shende N

    2008-01-01

    Full Text Available Purpose: To determine role of antigens released in vivo and in vitro in immunodiagnosis of tuberculosis (TB. Methods: In vivo released circulating tuberculosis antigen (CTA was obtained from TB sera by ammonium sulphate precipitation and in vitro released excretory-secretory (ES antigens from Mycobacterium tuberculosis culture filtrate. CTA and ES antigens were fractionated by SDS-PAGE and electro-eluted gel fractions were analysed for antigen by ELISA. Results: Low molecular weight proteins CTA-9 and ES-9 showed high titre of antigen activity. To explore the diagnostic potential of low molecular weight ES antigen, M. tuberculosis ES antigen was further fractionated by gel filtration chromatography followed by purification on anion exchange column using fast protein liquid chromatography and a highly seroreactive ESG-5D (ES-20 antigen was obtained. Competitive inhibition showed that CTA-9 and ES-9 antigens inhibit the binding of ES-20 antigen to its antibody. Seroanalysis showed sensitivity of 83 and 80% for ES-20 antigen and antibody detection, respectively, in pulmonary TB and 90% in lymph node TB. Conclusions: Seroreactivity studies using M. tuberculosis ES-20 antigen showed usefulness in detection of TB; in particular, lymph node TB.

  12. Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo

    Directory of Open Access Journals (Sweden)

    Sandkühler Jürgen

    2008-05-01

    Full Text Available Abstract Inflammation, trauma or nerve injury trigger low-level activity in C-fibres and may cause long-lasting hyperalgesia. Long-term potentiation (LTP at synapses of primary afferent C-fibres is considered to underlie some forms of hyperalgesia. In previous studies, high- but not low-frequency conditioning stimulation of C-fibres has, however, been used to induce LTP in pain pathways. Recently we could show that also conditioning low-frequency stimulation (LFS at C-fibre intensity induces LTP in vitro as well as in the intact animal, i.e. with tonic descending inhibition fully active. In the slice preparation, this form of LTP requires a rise in postsynaptic Ca2+-concentration and activation of Ca2+-dependent signalling pathways. Here, we investigated the signalling mechanisms underlying this novel form of LTP in vivo. We found that the signal transduction pathways causing LFS-induced LTP in vivo include activation of neurokinin 1 and N-methyl-D-aspartate receptors, rise of [Ca2+]i from intracellular stores and via T-type voltage-dependent Ca2+ channels, activation of phospholipase C, protein kinase C and Ca2+-calmodulin dependent kinase II. These pathways match those leading to hyperalgesia in behaving animals and humans. We thus propose that LTP induced by low-level activity in C-fibres may underlie some forms of hyperalgesia.

  13. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models.

    Science.gov (United States)

    D'Aronzo, Martina; Vinciguerra, Manlio; Mazza, Tommaso; Panebianco, Concetta; Saracino, Chiara; Pereira, Stephen P; Graziano, Paolo; Pazienza, Valerio

    2015-07-30

    Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. Short-term fasting cycles have been shown to potentiate the efficacy of chemotherapy against glioma. The aim of this study was to assess the effect of fasting cycles on the efficacy of gemcitabine, a standard treatment for PC patients, in vitro and in an in vivo pancreatic cancer mouse xenograft model. BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in standard and fasting mimicking culturing condition to evaluate the effects of gemcitabine. Pancreatic cancer xenograft mice were subjected to 24h starvation prior to gemcitabine injection to assess the tumor volume and weight as compared to mice fed ad libitum. Fasted pancreatic cancer cells showed increased levels of equilibrative nucleoside transporter (hENT1), the transporter of gemcitabine across the cell membrane, and decreased ribonucleotide reductase M1 (RRM1) levels as compared to those cultured in standard medium. Gemcitabine was more effective in inducing cell death on fasted cells as compared to controls. Consistently, xenograft pancreatic cancer mice subjected to fasting cycles prior to gemcitabine injection displayed a decrease of more than 40% in tumor growth. Fasting cycles enhance gemcitabine effect in vitro and in the in vivo PC xenograft mouse model. These results suggest that restrictive dietary interventions could enhance the efficacy of existing cancer treatments in pancreatic cancer patients.

  14. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems.

    Science.gov (United States)

    Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee

    2015-01-01

    The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

  15. In vivo evaluation of PEGylated ⁶⁴Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT.

    Science.gov (United States)

    Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager; Binderup, Tina; Elema, Dennis Ringkjøbing; Rasmussen, Palle Hedengran; Hag, Anne Mette; Kjær, Andreas; Andresen, Thomas Lars

    2016-05-01

    The objective of this study was to evaluate the potential of PEGylated (64)Cu-liposomes in clinical diagnostic positron emission tomography (PET) imaging and PEGylated (177)Lu-liposomes in internal tumor radiotherapy through in vivo characterization and dosimetric analysis in a human xenograft mouse model. Liposomes with 5 and 10 mol% PEG were characterized with respect to size, charge, and (64)Cu- and (177)Lu-loading efficiency. The tumor imaging potential of (64)Cu-loaded liposomes was evaluated in terms of in vivo biodistribution, tumor accumulation and tumor-to-muscle (T/M) ratios, using PET imaging. The potential of PEGylated liposomes for diagnostic and therapeutic applications was further evaluated through dosimetry analysis using OLINDA/EXM software. The (64)Cu-liposomes were used as biological surrogates to estimate the organ and tumor kinetics of (177)Lu-liposomes. High remote loading efficiency (>95 %) was obtained for both (64)Cu and (177)Lu radionuclides with PEGylated liposomes, and essentially no leakage of the encapsulated radionuclide was observed upon storage and after serum incubation for 24 h at 37 °C. The 10 mol% PEG liposomes showed higher tumor accumulation (6.2 ± 0.2 %ID/g) than the 5 mol% PEG liposomes, as evaluated by PET imaging. The dosimetry analysis of the (64)Cu-liposomes estimated an acceptable total effective dose of 3.3·10(-2) mSv/MBq for diagnostic imaging in patients. A high absorbed tumor dose (114 mGy/MBq) was estimated for the potential radiotherapeutic (177)Lu-liposomes. The overall preclinical profile of PEGylated (64)Cu-liposomes showed high potential as a new PET theranostic tracer for imaging in humans. Dosimetry results predicted that initial administered activity of 200 MBq of (64)Cu-liposomes should be acceptable in patients. Work is in progress to validate the utility of PEGylated (64)Cu-liposomes in a clinical research programme. The high absorbed tumor dose (114 mGy/MBq) estimated for (177)Lu-liposomes and

  16. In vivo evaluation of PEGylated {sup 64}Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Anncatrine Luisa; Andresen, Thomas Lars [Technical University of Denmark, Department of Micro- and Nanotechnology, Lyngby (Denmark); Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Henriksen, Jonas Rosager [Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Technical University of Denmark, Department of Chemistry, Lyngby (Denmark); Binderup, Tina; Hag, Anne Mette; Kjaer, Andreas [University of Copenhagen, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Elema, Dennis Ringkjoebing [Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Technical University of Denmark, Center for Nuclear Technologies, Hevesy Laboratory, Roskilde (Denmark); Rasmussen, Palle Hedengran [Technical University of Denmark, Center for Nuclear Technologies, Hevesy Laboratory, Roskilde (Denmark)

    2016-05-15

    The objective of this study was to evaluate the potential of PEGylated {sup 64}Cu-liposomes in clinical diagnostic positron emission tomography (PET) imaging and PEGylated {sup 177}Lu-liposomes in internal tumor radiotherapy through in vivo characterization and dosimetric analysis in a human xenograft mouse model. Liposomes with 5 and 10 mol% PEG were characterized with respect to size, charge, and {sup 64}Cu- and {sup 177}Lu-loading efficiency. The tumor imaging potential of {sup 64}Cu-loaded liposomes was evaluated in terms of in vivo biodistribution, tumor accumulation and tumor-to-muscle (T/M) ratios, using PET imaging. The potential of PEGylated liposomes for diagnostic and therapeutic applications was further evaluated through dosimetry analysis using OLINDA/EXM software. The {sup 64}Cu-liposomes were used as biological surrogates to estimate the organ and tumor kinetics of {sup 177}Lu-liposomes. High remote loading efficiency (>95 %) was obtained for both {sup 64}Cu and {sup 177}Lu radionuclides with PEGylated liposomes, and essentially no leakage of the encapsulated radionuclide was observed upon storage and after serum incubation for 24 h at 37 C. The 10 mol% PEG liposomes showed higher tumor accumulation (6.2 ± 0.2 %ID/g) than the 5 mol% PEG liposomes, as evaluated by PET imaging. The dosimetry analysis of the {sup 64}Cu-liposomes estimated an acceptable total effective dose of 3.3.10{sup -2} mSv/MBq for diagnostic imaging in patients. A high absorbed tumor dose (114 mGy/MBq) was estimated for the potential radiotherapeutic {sup 177}Lu-liposomes. The overall preclinical profile of PEGylated {sup 64}Cu-liposomes showed high potential as a new PET theranostic tracer for imaging in humans. Dosimetry results predicted that initial administered activity of 200 MBq of {sup 64}Cu-liposomes should be acceptable in patients. Work is in progress to validate the utility of PEGylated {sup 64}Cu-liposomes in a clinical research programme. The high absorbed tumor dose

  17. The Potential for Cellular Therapy Combined with Growth Factors in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Jack Rosner

    2012-01-01

    Full Text Available Any traumatic spinal cord injury (SCI may cause symptoms ranging from pain to complete loss of motor and sensory functions below the level of the injury. Currently, there are over 2 million SCI patients worldwide. The cost of their necessary continuing care creates a burden for the patient, their families, and society. Presently, few SCI treatments are available and none have facilitated neural regeneration and/or significant functional improvement. Research is being conducted in the following areas: pathophysiology, cellular therapies (Schwann cells, embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, olfactory ensheathing cells, growth factors (BDNF, inhibitory molecules (NG2, myelin protein, and combination therapies (cell grafts and neurotrophins, cotransplantation. Results are often limited because of the inhibitory environment created following the injury and the limited regenerative potential of the central nervous system. Therapies that show promise in small animal models may not transfer to nonhuman primates and humans. None of the research has resulted in remarkable improvement, but many areas show promise. Studies have suggested that a combination of therapies may enhance results and may be more effective than a single therapy. This paper reviews and discusses the most promising new SCI research including combination therapies.

  18. CYP2E1 Potentiates Ethanol-induction of Hypoxia and HIF-1α in vivo

    Science.gov (United States)

    Wang, Xiaodong; Wu, Defeng; Yang, Lili; Gan, Lixia; Cederbaum, Arthur I

    2013-01-01

    Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver and liver injury. The current study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild type (WT), CYP2E1-knockin (KI) and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolylhydroxlase 2 which promotes HIF-1α degradation were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were co-localized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells which express CYP2E1 with ethanol plus arachidonic (AA) acid or ethanol plus buthionine sulfoximine (BSO) which depletes GSH caused loss of cell viability to greater extent than in HepG2 C34 cells which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced

  19. Feasibility, acceptability, and potential effectiveness of dignity therapy for people with motor neurone disease.

    Directory of Open Access Journals (Sweden)

    Brenda Bentley

    Full Text Available BACKGROUND: Motor neurone disease (MND practice guidelines suggest developing interventions that will promote hope, meaning, and dignity to alleviate psychological distress, but very little research has been done. This study begins to address this need by exploring the use of dignity therapy with people with MND. Dignity therapy is a brief psychotherapy that promotes hope, meaning and dignity, and enhances the end of life for people with advanced cancer. The aims of this study are to assess the feasibility, acceptability, and potential effectiveness of dignity therapy for people with MND. METHODS/DESIGN: This cross-sectional feasibility study used a one-group pre-test post-test design with 29 people diagnosed with MND. Study participants completed the following self-report questionnaires: Herth Hope Index, FACIT-sp, Patient Dignity Inventory, ALS Assessment Questionnaire, ALS Cognitive Behavioural Screen, and a demographic and health history questionnaire. Acceptability was measured with a 25-item feedback questionnaire. Feasibility was assessed by examining the length of time taken to complete dignity therapy and how symptoms common in MND affected the intervention. Generalised linear mixed models and reliable change scores were used to analyse the data. RESULTS: There were no significant pre-test post-test changes for hopefulness, spirituality or dignity on the group level, but there were changes in hopefulness on the individual level. The results of the feedback questionnaire indicates dignity therapy is highly acceptable to people with MND, who report benefits similar to those in the international randomised controlled trial on dignity therapy, a population who primarily had end-stage cancer. Benefits include better family relationships, improved sense of self and greater acceptance. Dignity therapy with people with MND is feasible if the therapist can overcome time and communication difficulties. CONCLUSIONS: Dignity therapy for people with

  20. Traditional Medicinal Herbs and Food Plants Have the Potential to Inhibit Key Carbohydrate Hydrolyzing Enzymes In Vitro and Reduce Postprandial Blood Glucose Peaks In Vivo

    Directory of Open Access Journals (Sweden)

    M. Fawzi Mahomoodally

    2012-01-01

    Full Text Available We hypothesized that some medicinal herbs and food plants commonly used in the management of diabetes can reduce glucose peaks by inhibiting key carbohydrate hydrolyzing enzymes. To this effect, extracts of Antidesma madagascariense (AM, Erythroxylum macrocarpum (EM, Pittosporum senacia (PS, and Faujasiopsis flexuosa (FF, Momordica charantia (MC, and Ocimum tenuiflorum (OT were evaluated for α-amylase and α-glucosidase inhibitory effects based on starch-iodine colour changes and PNP-G as substrate, respectively. Only FF and AM extracts/fractions were found to inhibit α-amylase activity significantly (P<0.05 and coparable to the drug acarbose. Amylase bioassay on isolated mouse plasma confirmed the inhibitory potential of AM and FF extracts with the ethyl acetate fraction of FF being more potent (P<0.05 than acarbose. Extracts/fractions of AM and MC were found to inhibit significantly (P<0.05 α-glucosidase activity, with IC50 comparable to the drug 1-deoxynojirimycin. In vivo studies on glycogen-loaded mice showed significant (P<0.05 depressive effect on elevation of postprandial blood glucose following ingestion of AM and MC extracts. Our findings tend to provide a possible explanation for the hypoglycemic action of MC fruits and AM leaf extracts as alternative nutritional therapy in the management of diabetes.

  1. Leveraging concept-based approaches to identify potential phyto-therapies.

    Science.gov (United States)

    Sharma, Vivekanand; Sarkar, Indra Neil

    2013-08-01

    The potential of plant-based remedies has been documented in both traditional and contemporary biomedical literature. Such types of text sources may thus be sources from which one might identify potential plant-based therapies ("phyto-therapies"). Concept-based analytic approaches have been shown to uncover knowledge embedded within biomedical literature. However, to date there has been limited attention towards leveraging such techniques for the identification of potential phyto-therapies. This study presents concept-based analytic approaches for the retrieval and ranking of associations between plants and human diseases. Focusing on identification of phyto-therapies described in MEDLINE, both MeSH descriptors used for indexing and MetaMap inferred UMLS concepts are considered. Furthermore, the identification and ranking consider both direct (i.e., plant concepts directly correlated with disease concepts) and inferred (i.e., plant concepts associated with disease concepts based on shared signs and symptoms) relationships. Based on the two scoring methodologies used in this study, it was found that a Vector Space Model approach outperformed probabilistic reliability based inferences. An evaluation of the approach is provided based on therapeutic interventions catalogued in both ClinicalTrials.gov and NDF-RT. The promising findings from this feasibility study highlight the challenges and applicability of concept-based analytic strategies for distilling phyto-therapeutic knowledge from text based knowledge sources like MEDLINE. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Potential role of platelet-leukocyte aggregation in trauma-induced coagulopathy: Ex vivo findings.

    Science.gov (United States)

    Zipperle, Johannes; Altenburger, Katrin; Ponschab, Martin; Schlimp, Christoph J; Spittler, Andreas; Bahrami, Soheyl; Redl, Heinz; Schöchl, Herbert

    2017-05-01

    Platelet dysfunction has been identified as an important contributor of trauma-induced coagulopathy, but the underlying mechanism still remains to be elucidated. Trauma-associated proinflammatory stimuli strongly activate leukocytes, which in turn bind activated platelets. Therefore, we investigated the role of platelet-leukocyte aggregation (PLA) as a potential feature of trauma-induced platelet dysfunction. Whole blood from 10 healthy donors was exposed to selective and collective platelet and leukocyte agonists in order to simulate differential states of activation. PLA formation and CD11b expression as a measure of leukocyte activation were determined by flow cytometry. Platelet-mediated hemostatic function was measured by thromboelastometry (ROTEM) and impedance aggregometry (Multiplate). Activation of platelets and leukocytes was associated with diminished platelet-mediated hemostatic potential. Aggregation of platelets with monocytes rather than granulocytes resulted in a reduction of hemostatic function, as indicated by an impaired responsiveness in platelet aggregometry and a reduction of thromboelastometric maximum clot firmness. This finding was irrespective of CD11b expression and was not paralleled by a reduction of measurable platelet counts. PLA formation occurs primarily between monocytes and activated platelets and is associated with impaired platelet-mediated hemostatic function. PLA formation was not paralleled by a reduction in platelet complete blood counts.

  3. The potential of proton beam radiation therapy in lung cancer (including mesothelioma)

    Energy Technology Data Exchange (ETDEWEB)

    Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A Swedish group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. It is estimated that about 350 patients with lung cancer and about 20 patients with mesothelioma annually may benefit from proton beam therapy.

  4. Preparation of (/sup 11/C)buprenorphine - a potential radioligand for the study of the opiate receptor system in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Luthra, S.K.; Pike, V.W.; Brady, F.; Horlock, P.L.; Prenant, C.; Crouzel, C.

    1987-01-01

    A method is described for the preparation of (/sup 11/C)buprenorphine in high specific activity, based on the reaction of N-(de-cyclopropylmethyl)buprenorphine with ''no carrier added'' (1-/sup 11/C)cyclopropanecarbonyl chloride followed by reduction with lithium aluminium hydride. The (1-/sup 11/C)cyclopropanecarbonyl chloride is itself prepared from cyclotron-produced (/sup 11/C)carbon dioxide. The overall preparation time is 57 min from the end of radionuclide production, and the radiochemical yield is ca 20%, (decay-corrected from (/sup 11/C)-carbon dioxide). (/sup 11/C)Buprenophine has potential as a radio-ligand for the study of the opiate receptor system in vivo by means of position emission tomography.

  5. Accumulation of arginine-rich cell-penetrating peptides in tumors and the potential for anticancer drug delivery in vivo.

    Science.gov (United States)

    Nakase, Ikuhiko; Konishi, Yusuke; Ueda, Masashi; Saji, Hideo; Futaki, Shiroh

    2012-04-30

    We investigated the biodistribution of arginine-rich cell-penetrating peptides (CPPs) in tumor-xenografted nude mice after intravenous injection of fluorescently labeled CPPs using in vivo imaging. The CPPs used included HIV-1 Tat (48-60), penetratin, and the L- and D-enantiomers of oligoarginines (8, 12, and 16 residues), all of which are reported to have high cell penetration. Among the tested peptides, high accumulation in tumors was observed for the D-form of octaarginine (r8), and glycosaminoglycans played a key role. Injection of an r8-doxorubicin conjugate (4mg doxorubicin/kg) effectively suppressed tumor proliferation, with no significant decrease in mouse weight, whereas administration of doxorubicin itself (6mg/kg), yielding a similar degree of tumor-growth suppression, resulted in significant weight loss. These results suggest the potential of r8 as a prototypic tumor-targeting vector. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. The potential role of in vivo optical coherence tomography for evaluating oral soft tissue: A systematic review.

    Science.gov (United States)

    Gentile, Enrica; Maio, Claudio; Romano, Antonio; Laino, Luigi; Lucchese, Alberta

    2017-11-01

    The introduction of optical coherence tomography (OCT) in dentistry enabled the integration of already existing clinical and laboratory investigations in the study of the oral cavity. This systematic review presents an overview of the literature, to evaluate the usefulness of in vivo OCT for diagnosing oral soft tissues lesions, to compare the OCT results with traditional histology, and to identify limitations in prior studies so as to improve OCT applications. We performed a review of the literature using different search engines (PubMed, ISI Web of Science, and the Cochrane Library) employing MeSH terms such as "optical coherence tomography" and "OCT" in conjunction with other terms. We utilized the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) method to define our study eligibility criteria. Initial results were 3155. In conclusion, there were only 27 studies which met our selection criteria. We decided to allocate the 27 selected items into three groups: healthy mucosa; benign, premalignant, and malignant lesions; and oral manifestations of systemic therapies or pathological conditions. Although the OCT is an easy-to-perform test and it offers an attractive diagnostic and monitoring prospect for soft tissues of the oral cavity, further studies are needed to complete the current knowledge of this imaging technique. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. In vitro effects of heparin and tissue factor pathway inhibitor on factor VII assays. possible implications for measurements in vivo after heparin therapy

    DEFF Research Database (Denmark)

    Bladbjerg, E-M; Larsen, L F; Ostergaard, P

    2000-01-01

    The coagulant activity of blood coagulation factor VII (FVII:C) can be lowered by changes in lifestyle and by therapeutic intervention, e.g. heparin infusion. The question is, however, whether FVII:C determined ex vivo is a valid measure of the FVII activity in vivo. We measured plasma FVII......:C, activated FVII (FVIIa), FVII protein (FVII:Ag), tissue factor pathway inhibitor (TFPI), triglycerides, and free fatty acids (FFA) before and 15 min after infusion of a bolus of unfractionated heparin (50 IU/kg body weight) in 12 healthy subjects. Additionally, we conducted in vitro experiments...... activity by means of FVII clotting assays. These assays should therefore not be used to measure the coagulation status of patients in heparin therapy, unless extraordinary precautions are taken to eliminate TFPI and heparin effects ex vivo. The observed effect of heparin on FVII:Ag should be investigated...

  8. Amodiaquine-Ciprofloxacin: a potential combination therapy against drug resistant malaria.

    Science.gov (United States)

    Falajiki, Y F; Akinola, O; Abiodun, O O; Happi, C T; Sowunmi, A; Gbotosho, G O

    2015-05-01

    Emergence of malaria parasites resistant to artemisinin necessitates the need for development of new antimalarial therapies. Ciprofloxacin (CFX) a second generation quinolone antibiotic possesses some antimalarial activities. We investigated the in vivo antimalarial activities of CFX in combination with amodiaquine in mice infected with chloroquine-resistant Plasmodium berghei ANKA. Animals were treated orally with 80 or 160 mg kg-1 body weight of CFX alone given twice daily or in combination with amodiaquine (AQ) 10 mg kg-1 body weight. Parasitological activity and survival of the animals were assessed over 21 days. Peak parasitaemia in the untreated control group was 72.51%. Treatment with AQ alone resulted in clearance of parasitaemia by day 4 while treatment with CFX 80 and 160 mg kg-1 alone suppressed parasitaemia by 13.94-54.64% and 35.6-92.7%, respectively. However, the combination of CFX with AQ significantly enhanced response of infection in the animals to treatment (P malaria.

  9. Investigation of in vivo potential of scorpion venom against skin tumorigenesis in mice via targeting markers associated with cancer development

    Directory of Open Access Journals (Sweden)

    Al Asmari AK

    2016-10-01

    Full Text Available Abdulrahman K Al Asmari, Abdul Quaiyoom Khan Research Centre, Prince Sultan Military Medical City, Riyadh, Saudi Arabia Abstract: Cancer is the leading cause of morbidity and mortality all over the world in spite of the advances made in its management. In this study, we investigated the in vivo antitumorigenic potential of the venom obtained from a medically important scorpion species Leiurus quinquestriatus on chemically induced skin cancer in mice. Animals were divided into five groups, with 13 animals in each group. All the treatments were given topically on the shaved dorsal surface of the skin. Animals in Group 1 received vehicle only (0.2 mL acetone. Moreover, 7,12-dimethylbenz[a]anthracene (DMBA, 400 nmol per mouse was applied to all the animals in the remaining four groups. After 1 week, different concentrations of venom (17.5 µg, 35 µg, and 52.5 µg per animal were applied to each animal in the Groups III–V. Thirty minutes after the application of venom, croton oil was applied on the same position where venom was administered to the animals of Groups III–V. Animals in Group II were treated as the positive control (without venom and received croton oil as in Groups III–V. The findings of this study revealed that venom extract of L. quinquestriatus inhibits DMBA + croton oil-induced mouse skin tumor incidence and tumor multiplicity. Venom treatment also decreased the expression of proinflammatory cytokines. Immunohistochemistry results showed a downregulation of the expression of molecular markers such as Ki-67, nuclear factor kappa-B, cyclooxygenase-2, B-cell lymphoma-2, and vascular endothelial growth factor, in venom-treated animals. Our findings suggest that the venom of L. quinquestriatus possesses in vivo anticancer potential and may be used in the development of anticancer molecules. Keywords: Leiurus quinquestriatus, skin cancer, apoptosis, immunosuppression

  10. The application of a compact multispectral imaging system with integrated excitation source to in vivo monitoring of fluorescence during topical photodynamic therapy of superficial skin cancers.

    Science.gov (United States)

    Hewett, J; Nadeau, V; Ferguson, J; Moseley, H; Ibbotson, S; Allen, J W; Sibbett, W; Padgett, M

    2001-03-01

    A novel, compact and low-cost multispectral fluorescence imaging system with an integrated excitation light source is described. Data are presented demonstrating the application of this method to in vivo monitoring of fluorescence before, during and after topical 5-aminolevulinic acid photodynamic therapy of superficial skin cancers. The excitation source comprised a fluorescent tube with the phosphor selected to emit broadband violet light centered at 394 nm. The camera system simultaneously captured spectrally specific images of the fluorescence of the photosensitizer, protoporphyrin IX, the illumination profile and the skin autofluorescence. Real-time processing enabled images to be manipulated to create a composite image of high contrast. The application and validation of this method will allow further detailed studies of the characteristics and time-course of protoporphyrin IX fluorescence, during topical photodynamic therapy in human skin in vivo.

  11. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles.

    Science.gov (United States)

    Singla, Rubbel; Soni, Sourabh; Patial, Vikram; Kulurkar, Pankaj Markand; Kumari, Avnesh; S, Mahesh; Padwad, Yogendra S; Yadav, Sudesh Kumar

    2017-12-01

    In diabetes, hyperglycemic state immensely hinders the wound healing. Here, nanobiocomposites (NCs) developed by impregnation of in situ prepared silver nanoparticles in the matrix of bamboo cellulose nanocrystals were investigated for their ability to hasten the progress of healing events in streptozotocin induced diabetic mice model. Wounds treated with topically applied NCs (hydrogels) showed full recovery (98-100%) within 18days post wounding in contrast to the various control groups where incomplete healing (88-92%) was noticed. Biochemical estimations documented a marked decrease in the levels of pro-inflammatory cytokines IL-6 and TNF-α leading to decreased inflammation in NCs treated mice. Significantly increased expression of collagen and growth factors (FGF, PDGF, VEGF) upon NCs treatment resulted in improved re-epithelialization, vasculogenesis and collagen deposition as compared to control groups. Hence, developed nanobiocomposites showcased potential to serve as highly effective and biocompatible wound dressings for diabetic patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hepatoprotective potential of polyphenol rich extract of Murraya koenigii L.: an in vivo study.

    Science.gov (United States)

    Desai, Swati N; Patel, Dipak K; Devkar, Ranjitsinh V; Patel, Prabhudas V; Ramachandran, A V

    2012-02-01

    The present study investigates hepatoprotective effects of polyphenol rich Murraya koenigii L. (MK) hydro-ethanolic leaf extract in CCl(4) treated hepatotoxic rats. Plasma markers of hepatic damage, lipid peroxidation levels, enzymatic, and non-enzymatic antioxidants in liver and histopathological changes were investigated in control and treated rats. MK pretreated rats with different doses (200, 400 and 600mg/kg body weight) showed significant decrement in activity levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total protein, and bilirubin. Also, MK treated rats recorded a dose dependent increment in hepatic super oxide dismutase, catalase, reduced glutathione and ascorbic acid and, a decrement in lipid peroxidation. Microscopic evaluations of liver revealed CCl(4)-induced lesions and related toxic manifestations that were minimal in liver of rats pretreated with MK extract. These results demonstrate that hydro-ethanolic leaf extract of MK possesses hepatoprotective potentials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The role of autophagy in Alzheimer's disease and its potential for therapy

    Directory of Open Access Journals (Sweden)

    Min LIU

    2014-05-01

    Full Text Available Autophagy, the basic intracellular mechanism for catabolic and continuous clearance of unnecessary or dysfunctional components, occupies a crucial role in Alzheimer's disease (AD. Multiple studies both in vitro and in vivo have demonstrated that amyloid-β protein (Aβ can be generated during autophagy, while lysosomal system is also directly implicated in the elimination of A β and tau protein. Pathophysically, both in AD models and AD patients, lysosomal dysfunction and autophagic vacuoles accumulation provide direct and objective evidence of impaired dynamic process of autophagy, which leads to the aggregation of Aβ and tau and thus contributes to the pathogenesis of AD. Accumulating studies in vivo have shown promising therapies targeting autophagic process, as activating autophagy may be beneficial to the early stages of AD and restoring lysosomal proteolysis may be favorable for the late stages of AD. This review mainly discusses the mechanism of autophagy-induced AD and the promising autophagy-related treatments for AD. doi: 10.3969/j.issn.1672-6731.2014.05.015

  14. In vivo study of transepithelial potential difference (TEPD) in proximal convoluted tubules of rat kidney by synchronization modulation electric field.

    Science.gov (United States)

    Clausell, Mathis; Fang, Zhihui; Chen, Wei

    2014-07-01

    Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.

  15. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity

    Science.gov (United States)

    Jochems, Caroline; Schlom, Jeffrey

    2011-01-01

    Numerous studies have now documented a link between the immune infiltrate in several human carcinoma types and prognosis and response to therapy. The most comprehensive of these studies were in colorectal cancer with similar conclusions by numerous groups. Analyses of immune infiltrate of several other carcinoma types also showed general correlations between immune infiltrate and prognosis, but with some conflicting results. This review will attempt to summarize the current state of this field and point out what factors may be responsible for some of the conflicting findings. Nonetheless, the breadth of reports drawing similar conclusions for some cancer cell types leads one to more seriously consider the link between immune cell infiltrate and tumor prognosis and/or response to therapy, and the potential for combining conventional cancer therapy with active immunotherapy employing therapeutic cancer vaccines. PMID:21486861

  16. Evaluation of immunomodulatory activity of two potential probiotic Lactobacillus strains by in vivo tests.

    Science.gov (United States)

    Ren, Dayong; Li, Chang; Qin, Yanqing; Yin, Ronglan; Du, Shouwen; Liu, Hongfeng; Zhang, Yanfang; Wang, Cuiyan; Rong, Fengjun; Jin, Ningyi

    2015-10-01

    Here we evaluate the immunomodulatory function of two potential probiotic strains, Lactobacillus salivarius CICC 23174 and Lactobacillus plantarum CGMCC 1.557. Mice were fed with each Lactobacillus strain at different doses for several consecutive days. The effects of the two probiotic strains on immune organs, immune cells and immune molecules were investigated on days 10 and 20. Both Lactobacillus strains increased the spleen index, improved the spleen lymphocyte transformation rate, enhanced sIgA production and improved the number of CD11c(+) CD80(+) double-positive cells. L. plantarum CGMCC 1.557 was the more active strain in enhancing the phagocytic activity of macrophages, while, L. salivarius CICC 23174 was the more effective strain at maintaining the Th1/Th2 balance. This study suggests that these two Lactobacillus strains have beneficial effects on regulation of immune responses, which has promising implications for the development of ecological agents and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Acetazolamide potentiates the afferent drive to prefrontal cortex in vivo.

    Science.gov (United States)

    Bueno-Junior, Lezio S; Ruggiero, Rafael N; Rossignoli, Matheus T; Del Bel, Elaine A; Leite, Joao P; Uchitel, Osvaldo D

    2017-01-01

    The knowledge on real-time neurophysiological effects of acetazolamide is still far behind the wide clinical use of this drug. Acetazolamide - a carbonic anhydrase inhibitor - has been shown to affect the neuromuscular transmission, implying a pH-mediated influence on the central synaptic transmission. To start filling such a gap, we chose a central substrate: hippocampal-prefrontal cortical projections; and a synaptic phenomenon: paired-pulse facilitation (a form of synaptic plasticity) to probe this drug's effects on interareal brain communication in chronically implanted rats. We observed that systemic acetazolamide potentiates the hippocampal-prefrontal paired-pulse facilitation. In addition to this field electrophysiology data, we found that acetazolamide exerts a net inhibitory effect on prefrontal cortical single-unit firing. We propose that systemic acetazolamide reduces the basal neuronal activity of the prefrontal cortex, whereas increasing the afferent drive it receives from the hippocampus. In addition to being relevant to the clinical and side effects of acetazolamide, these results suggest that exogenous pH regulation can have diverse impacts on afferent signaling across the neocortex. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Antimicrobial effect of photodynamic therapy in carious lesions in vivo, using culture and real-time PCR methods.

    Science.gov (United States)

    Araújo, Patricia Valente; Correia-Silva, Jeane de Fátima; Gomez, Ricardo Santiago; Massara, Maria de Lourdes de Andrade; Cortes, Maria Esperanza; Poletto, Luiz Thadeu de Abreu

    2015-09-01

    The aim of this study was to evaluate the antimicrobial effect of photodynamic therapy (PDT) in carious lesions in vivo by culture and real-time PCR methods. Ten teeth with deep active carious lesions were selected and five portions of carious dentin were removed for each tooth. Two increments were used as control, to represent the superficial and deep dentin, respectively. Methylene blue at 100mg/L was placed in contact with the cavity for 5min, before being irradiated with a halogen light source for 1min. Then, after PDT, other three portions were removed. The samples were processed in laboratory and the number of viable cfu was obtained. The real-time PCR analyses were performed in two increments of carious dentin, removed before and after PDT. The Streptococcus mutans DNA was isolated from carious dentin samples and amplification and detection of DNA were performed with real-time PCR. The cavities were then restored with glass-ionomer cement. Using conventional culture methods, the results demonstrated that viable bacteria were significantly reduced in all of the agar plates following photosensitization. No difference was found between both groups regarding S. mutans DNA quantification by real-time PCR. Although PDT may not affect the number of S. mutans DNA copies immediately after the treatment, clear reduction of the number of cfu was found. Despite its promising use for eliminating bacteria in dental caries treatment, further studies are necessary to establish an effective clinical protocol for the PDT. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation.

    Science.gov (United States)

    Chassaing, Benoit; Van de Wiele, Tom; De Bodt, Jana; Marzorati, Massimo; Gewirtz, Andrew T

    2017-08-01

    The intestinal microbiota plays a central role in the development of many chronic inflammatory diseases including IBD and metabolic syndrome. Administration of substances that alter microbiota composition, including the synthetic dietary emulsifiers polysorbate 80 (P80) and carboxymethylcellulose (CMC), can promote such inflammatory disorders. However, that inflammation itself impacts microbiota composition has obfuscated defining the extent to which these compounds or other substances act directly upon the microbiota versus acting on host parameters that promote inflammation, which subsequently reshapes the microbiota. We examined the direct impact of CMC and P80 on the microbiota using the mucosal simulator of the human intestinal microbial ecosystem (M-SHIME) model that maintains a complex stable human microbiota in the absence of a live host. This approach revealed that both P80 and CMC acted directly upon human microbiota to increase its proinflammatory potential, as revealed by increased levels of bioactive flagellin. The CMC-induced increase in flagellin was rapid (1 day) and driven by altered microbiota gene expression. In contrast, the P80-induced flagellin increase occurred more slowly and was closely associated with altered species composition. Transfer of both emulsifier-treated M-SHIME microbiotas to germ-free recipient mice recapitulated many of the host and microbial alterations observed in mice directly treated with emulsifiers. These results demonstrate a novel paradigm of deconstructing host-microbiota interactions and indicate that the microbiota can be directly impacted by these commonly used food additives, in a manner that subsequently drives intestinal inflammation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Eucalyptus Essential Oil as a Natural Food Preservative: In Vivo and In Vitro Antiyeast Potential

    Directory of Open Access Journals (Sweden)

    Amit Kumar Tyagi

    2014-01-01

    Full Text Available In this study, the application of eucalyptus essential oil/vapour as beverages preservative is reported. The chemical composition of eucalyptus oil was determined by gas chromatography-mass spectrometry (GC-MS and solid phase microextraction GC-MS (SPME/GC-MS analyses. GC-MS revealed that the major constituents were 1,8-cineole (80.5%, limonene (6.5%, α-pinene (5%, and γ-terpinene (2.9% while SPME/GC-MS showed a relative reduction of 1,8-cineole (63.9% and an increase of limonene (13.8%, α-pinene (8.87%, and γ-terpinene (3.98%. Antimicrobial potential of essential oil was initially determined in vitro against 8 different food spoilage yeasts by disc diffusion, disc volatilization, and microdilution method. The activity of eucalyptus vapours was significantly higher than the eucalyptus oil. Minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC varied from 0.56 to 4.50 mg/mL and from 1.13 to 9 mg/mL, respectively. Subsequently, the combined efficacy of essential oil and thermal treatment were used to evaluate the preservation of a mixed fruit juice in a time-dependent manner. These results suggest eucalyptus oil as a potent inhibitor of food spoilage yeasts not only in vitro but also in a real food system. Currently, this is the first report that uses eucalyptus essential oil for fruit juice preservation against food spoiling yeast.

  1. Potential for Enhanced Therapeutic Activity of Biological Cancer Therapies with Doxycycline Combination

    Science.gov (United States)

    Tang, Hui; Sampath, Padma; Yan, Xinmin; Thorne, Stephen H

    2012-01-01

    Despite significant strides made in the clinical translation of adoptive immune cell therapies, it is apparent that many tumors incorporate strategies to avoid recognition by receptors expressed on the immune cells, such as NKG2D. Strategies that stabilize the expression of ligands for these receptors may enhance the therapeutic potential of these and related therapies. Doxycycline inhibits matrix metalloproteinases (MMPs) that act to cleave the extracellular domain of MICA/B, ligands for the NKG2D receptor. Doxycycline treatment blocked shedding of MICA/B from a panel of human tumor cells, but also acted to increase their expression and cell surface translocation, possibly through its action on ATM. This meant that many tumor cells displayed increased MICA/B expression and enhanced susceptibility to CIK cells. Interestingly, doxycycline also selectively enhanced the replication of oncolytic vaccinia in many tumor cell lines, leading to increased sensitivity to these therapies. Combination (CIK-oncolytic vaccinia) therapies used in conjunction with doxycyline led to increased anti-tumor effects. The unexpected and pleiotropic beneficial anti-tumor effects of doxycycline on both immune cell and oncolytic viral therapies make it an excellent candidate for rapid clinical testing. PMID:23282955

  2. Reversible acylation of factor Xa as a potential therapy for hemophilia.

    Science.gov (United States)

    Lin, P H; Laibelman, A M; Sinha, U

    1997-11-15

    Current therapies for treatment of hemophilia A involve infusion of factor VIII, but are ineffective for patients who develop inhibitory antibodies. We have previously proposed that bypassing the intrinsic pathway (VIIIa/IXa) with reversibly acylated factor Xa offers an improvement on existing therapies as it provides a time-dependent release of procoagulant activity without the addition of factors VIII or IX. The present study was designed to determine the effect of substituted 4-amidinophenyl benzoates on the acylation of factor Xa, as well as the subsequent deacylation rates of the resulting acyl Xa. A subset of this series of acyl Xa's were incorporated into the prothrombinase complex and recovery of catalytic activity was measured by activation of prothrombin to thrombin. Similarly, some acyl Xa's were also evaluated for their capacity to enhance clotting times of human plasma. Our study indicates that by choosing the appropriate acyl Xa, the time course of factor Xa regeneration can be modulated extensively. Animal studies will be required to show that the use of acyl Xa as a procoagulant agent is feasible in an in vivo system.

  3. Effects of inhaled anesthetic isoflurane on long-term potentiation of CA3 pyramidal cell afferents in vivo

    Directory of Open Access Journals (Sweden)

    Ballesteros KA

    2012-11-01

    Full Text Available Kristen A Ballesteros,1 Angela Sikorski,2 James E Orfila,3 Joe L Martinez Jr41Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; 2Texas A&M University Texarkana, Texarkana, TX, USA; 3University of Colorado in Denver, Denver, CO, USA; 4University of Illinois in Chicago, Chicago, IL, USAAbstract: Isoflurane is a preferred anesthetic, due to its properties that allow a precise concentration to be delivered continually during in vivo experimentation. The major mechanism of action of isoflurane is modulation of the γ-amino butyric acid (GABAA receptor-chloride channel, mediating inhibitory synaptic transmission. Animal studies have shown that isoflurane does not cause cell death, but it does inhibit cell growth and causes long-term hippocampal learning deficits. As there are no studies characterizing the effects of isoflurane on electrophysiological aspects of long-term potentiation (LTP in the hippocampus, it is important to determine whether isoflurane alters the characteristic responses of hippocampal afferents to cornu ammonis region 3 (CA3. We investigated the effects of isoflurane on adult male rats during in vivo induction of LTP, using the mossy fiber pathway, the lateral perforant pathway, the medial perforant pathway, and the commissural CA3 (cCA3 to CA3, with intracranial administration of Ringer’s solution, naloxone, RS-aminoindan-1, 5-dicarboxylic acid (AIDA, or 3-[(R-2-carboxypiperazin-4-yl]-propo-2-enyl-1-phosphonic acid (CPP. Then, we compared these responses to published electrophysiological data, using sodium pentobarbital as an anesthetic, under similar experimental conditions. Our results showed that LTP was exhibited in animals anesthetized with isoflurane under vehicle conditions. With the exception of AIDA in the lateral perforant pathway, the defining characteristics of the four pathways appeared to remain intact, except for the observation that LTP was markedly reduced in animals

  4. TINAGL1 and B3GALNT1 are potential therapy target genes to suppress metastasis in non-small cell lung cancer.

    Science.gov (United States)

    Umeyama, Hideaki; Iwadate, Mitsuo; Taguchi, Y-h

    2014-01-01

    Non-small cell lung cancer (NSCLC) remains lethal despite the development of numerous drug therapy technologies. About 85% to 90% of lung cancers are NSCLC and the 5-year survival rate is at best still below 50%. Thus, it is important to find drugable target genes for NSCLC to develop an effective therapy for NSCLC. Integrated analysis of publically available gene expression and promoter methylation patterns of two highly aggressive NSCLC cell lines generated by in vivo selection was performed. We selected eleven critical genes that may mediate metastasis using recently proposed principal component analysis based unsupervised feature extraction. The eleven selected genes were significantly related to cancer diagnosis. The tertiary protein structure of the selected genes was inferred by Full Automatic Modeling System, a profile-based protein structure inference software, to determine protein functions and to specify genes that could be potential drug targets. We identified eleven potentially critical genes that may mediate NSCLC metastasis using bioinformatic analysis of publically available data sets. These genes are potential target genes for the therapy of NSCLC. Among the eleven genes, TINAGL1 and B3GALNT1 are possible candidates for drug compounds that inhibit their gene expression.

  5. Integrating photoluminescence, magnetism and thermal conversion for potential photothermal therapy and dual-modal bioimaging.

    Science.gov (United States)

    Sui, Jingting; Liu, Guixia; Song, Yan; Li, Dan; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2018-01-15

    Multifunctional nanocomposites (NCs) incorporating magnetic, luminescent and photothermal conversion properties are endowed with potential application in many fields such as imaging, tumor detection, drug delivery and therapy. Here, multifunctional MWCNTs-NaGdF4:Yb3+, Er3+, Eu3+ NCs, which offer the potential for integrated bioimaging and photothermal therapy (PTT) were fabricated by a facile hydrothermal method. The resulting sample exhibits uniform morphology, bright dual-modal luminescence and intrinsic paramagnetic properties. Under near-infrared laser excitation, NCs have excellent photothermal conversion properties. In addition, the MTT assay in HeLa cells shows that the NCs have good biocompatibility. Moreover, the up-conversion luminescence (UCL) imaging, X-ray computed tomography (CT) imaging and PTT in vitro of NCs were investigated. The results indicate that NCs can be used for dual-modal imaging-guided diagnose and PTT of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models

    Science.gov (United States)

    Mazza, Tommaso; Panebianco, Concetta; Saracino, Chiara; Pereira, Stephen P.; Graziano, Paolo; Pazienza, Valerio

    2015-01-01

    Background/aims Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. Short-term fasting cycles have been shown to potentiate the efficacy of chemotherapy against glioma. The aim of this study was to assess the effect of fasting cycles on the efficacy of gemcitabine, a standard treatment for PC patients, in vitro and in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in standard and fasting mimicking culturing condition to evaluate the effects of gemcitabine. Pancreatic cancer xenograft mice were subjected to 24h starvation prior to gemcitabine injection to assess the tumor volume and weight as compared to mice fed ad libitum. Results Fasted pancreatic cancer cells showed increased levels of equilibrative nucleoside transporter (hENT1), the transporter of gemcitabine across the cell membrane, and decreased ribonucleotide reductase M1 (RRM1) levels as compared to those cultured in standard medium. Gemcitabine was more effective in inducing cell death on fasted cells as compared to controls. Consistently, xenograft pancreatic cancer mice subjected to fasting cycles prior to gemcitabine injection displayed a decrease of more than 40% in tumor growth. Conclusion Fasting cycles enhance gemcitabine effect in vitro and in the in vivo PC xenograft mouse model. These results suggest that restrictive dietary interventions could enhance the efficacy of existing cancer treatments in pancreatic cancer patients. PMID:26176887

  7. Assessing potential harmful effects of CdSe quantum dots by using Drosophila melanogaster as in vivo model

    Energy Technology Data Exchange (ETDEWEB)

    Alaraby, Mohamed [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); Sohag University, Faculty of Sciences, Zoology Department, 82524-Campus, Sohag (Egypt); Demir, Esref [Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya (Turkey); Hernández, Alba [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-10-15

    Since CdSe QDs are increasingly used in medical and pharmaceutical sciences careful and systematic studies to determine their biosafety are needed. Since in vivo studies produce relevant information complementing in vitro data, we promote the use of Drosophila melanogaster as a suitable in vivo model to detect toxic and genotoxic effects associated with CdSe QD exposure. Taking into account the potential release of cadmium ions, QD effects were compared with those obtained with CdCl{sub 2}. Results showed that CdSe QDs penetrate the intestinal barrier of the larvae reaching the hemolymph, interacting with hemocytes, and inducing dose/time dependent significant genotoxic effects, as determined by the comet assay. Elevated ROS production, QD biodegradation, and significant disturbance in the conserved Hsps, antioxidant and p53 genes were also observed. Overall, QD effects were milder than those induced by CdCl{sub 2} suggesting the role of Cd released ions in the observed harmful effects of Cd based QDs. To reduce the observed side-effects of Cd based QDs biocompatible coats would be required to avoid cadmium's undesirable effects. - Highlights: • CdSe QDs were able to cross the intestinal barrier of Drosophila. • Elevated ROS induction was detected in larval hemocytes. • Changes in the expression of Hsps and p53 genes were observed. • Primary DNA damage was induced by CdSe QDs in hemocytes. • Overall, CdSe QD effects were milder than those induced by CdCl{sub 2}.

  8. Repositioning FDA Drugs as Potential Cruzain Inhibitors from Trypanosoma cruzi: Virtual Screening, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Isidro Palos

    2017-06-01

    Full Text Available Chagas disease (CD is a neglected disease caused by the parasite Trypanosoma cruzi, which affects underdeveloped countries. The current drugs of choice are nifurtimox and benznidazole, but both have severe adverse effects and less effectivity in chronic infections; therefore, the need to discover new drugs is essential. A computer-guided drug repositioning method was applied to identify potential FDA drugs (approved and withdrawn as cruzain (Cz inhibitors and trypanocidal effects were confirmed by in vitro and in vivo studies. 3180 FDA drugs were virtually screened using a structure-based approach. From a first molecular docking analysis, a set of 33 compounds with the best binding energies were selected. Subsequent consensus affinity binding, ligand amino acid contact clustering analysis, and ranked position were used to choose four known pharmacological compounds to be tested in vitro. Mouse blood samples infected with trypomastigotes from INC-5 and NINOA strains were used to test the trypanocidal effect of four selected compounds. Among these drugs, one fibrate antilipemic (etofyllin clofibrate and three β-lactam antibiotics (piperacillin, cefoperazone, and flucloxacillin showed better trypanocidal effects (LC50 range 15.8–26.1 μg/mL in comparison with benznidazole and nifurtimox (LC50 range 33.1–46.7 μg/mL. A short-term in vivo evaluation of these compounds showed a reduction of parasitemia in infected mice (range 90–60% at 6 h, but this was low compared to benznidazole (50%. This work suggests that four known FDA drugs could be used to design and obtain new trypanocidal agents.

  9. In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest.

    Science.gov (United States)

    de Souza, Giovana A G; da Silva, Nazaré C; de Souza, Juarez; de Oliveira, Karen R M; da Fonseca, Amanda L; Baratto, Leopoldo C; de Oliveira, Elaine C P; Varotti, Fernando de Pilla; Moraes, Waldiney P

    2017-01-15

    In view of the wide variety of the flora of the Amazon region, many plants have been studied in the search for new antimalarial agents. Copaifera reticulata is a tree distributed throughout the Amazon region which contains an oleoresin rich in sesquiterpenes and diterpenes with β-caryophyllene as the major compound. The oleoresin has demonstrated antiparasitic activity against Leishmania amazonensis. Because of this previously reported activity, this oleoresin would be expected to also have antimalarial activity. In this study we evaluated the in vitro and in vivo antimalarial potential of C. reticulata oleoresin. In vitro assays were done using P. falciparum W2 and 3D7 strains and the human fibroblast cell line 26VA Wi-4. For in vivo analysis, BALB/c mice were infected with approximately 106 erythrocytes parasitized by P. berghei and their parasitemia levels were observed over 7 days of treatment with C. reticulata; hematological and biochemical parameters were analyzed at the end of experiment. The oleoresin of C. reticulata containing the sesquiterpenes β-caryophyllene (41.7%) and β-bisabolene (18.6%) was active against the P. falciparum W2 and 3D7 strains (IC50 = 1.66 and 2.54 µg/ml, respectively) and showed low cytotoxicity against the 26VA Wi-4 cell line (IC50 > 100 µg/ml). The C. reticulata oleoresin reduced the parasitemia levels of infected animals and doses of 200 and 100 mg/kg/day reached a rate of parasitemia elimination resembling that obtained with artemisinin 100 mg/kg/day. In addition, treatment with oleoresin improved the hypoglycemic, hematologic, hepatic and renal parameters of the infected animals. The oleoresin of C. reticulata has antimalarial properties and future investigations are necessary to elucidate its mechanism of action. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Short-term in vitro and in vivo analyses for assessing the tumor-promoting potentials of cigarette smoke condensates.

    Science.gov (United States)

    Curtin, Geoffrey M; Hanausek, Margaret; Walaszek, Zbigniew; Mosberg, Arnold T; Slaga, Thomas J

    2004-09-01

    Previous studies found that repeated application of smoke condensate from tobacco-burning reference cigarettes to chemically initiated SENCAR mouse skin promoted the development of tumors in a statistically significant and dose-dependent manner, while condensate from prototype cigarettes that primarily heat tobacco promoted statistically fewer tumors. Based on the recognized correlation between sustained, potentiated epidermal hyperplasia and tumor promotion, we conducted tests to examine the utility of selected short-term analyses for discriminating between condensates exhibiting significantly different promotion activities. In vitro analyses assessing the potential for inducing cytotoxicity (ATP bioluminescence) or free radical production (cytochrome c reduction, salicylate trapping) demonstrated significant reductions when comparing condensate collected from prototype cigarettes to reference condensate. Short-term in vivo analyses conducted within the context of a mouse skin, tumor-promotion protocol (i.e., comparative measures of epidermal thickness, proliferative index, myeloperoxidase activity, leukocyte invasion, mutation of Ha-ras, and formation of modified DNA bases) provided similar results. Reference condensate induced statistically significant and dose-dependent increases (relative to vehicle control) for nearly all indices examined, while prototype condensate possessed a significantly reduced potential for inducing changes that we regarded as consistent with sustained epidermal hyperplasia and/or inflammation. Collectively, these data support the contention that selected short-term analyses associated with sustained hyperplasia and/or inflammation are capable of discriminating between smoke condensates with dissimilar tumor-promotion potentials. Moreover, our results suggest that comparative measures of proliferative index and myeloperoxidase activity, both possessing favorable correlation coefficients relative to tumor formation (i.e., > or = 0

  11. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo.

    Directory of Open Access Journals (Sweden)

    Áine M Egan

    Full Text Available The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0 were fed either T1 basal diet or T2 basal diet plus 1000 ppm chitosan (n = 20 gilts per group for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001, had lower intake per visit (P<0.001, spent less time eating per day (P<0.001, had a lower eating rate (P<0.01 and had reduced feed intake and final body weight (P< 0.001 compared to animals offered the basal diet. There was a treatment (P<0.05 and time effect (P<0.05 on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05, Peroxisome proliferator activated receptor gamma (P<0.01, neuromedin B (P<0.05, neuropeptide Y receptor 5 (P<0.05 in hypothalamic nuclei and neuropeptide Y (P<0.05 in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05. In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo.

  12. In Vivo Chronic Stimulation Unveils Autoreactive Potential of Wiskott–Aldrich Syndrome Protein-Deficient B Cells

    Directory of Open Access Journals (Sweden)

    Anna Villa

    2017-05-01

    Full Text Available Wiskott–Aldrich syndrome (WAS is a primary immunodeficiency caused by mutations in the gene encoding the hematopoietic-specific WAS protein (WASp. WAS is frequently associated with autoimmunity, indicating a critical role of WASp in maintenance of tolerance. The role of B cells in the induction of autoreactive immune responses in WAS has been investigated in several settings, but the mechanisms leading to the development of autoimmune manifestations have been difficult to evaluate in the mouse models of the disease that do not spontaneously develop autoimmunity. We performed an extensive characterization of Was−/− mice that provided evidence of the potential alteration in B cell selection, because of the presence of autoantibodies against double-stranded DNA, platelets, and tissue antigens. To uncover the mechanisms leading to the activation of the potentially autoreactive B cells in Was−/− mice, we performed in vivo chronic stimulations with toll-like receptors agonists (LPS and CpG and apoptotic cells or infection with lymphocytic choriomeningitis virus. All treatments led to increased production of autoantibodies, increased proteinuria, and kidney tissue damage in Was−/− mice. These findings demonstrate that a lower clearance of pathogens and/or self-antigens and the resulting chronic inflammatory state could cause B cell tolerance breakdown leading to autoimmunity in WAS.

  13. Criteria that optimize the potential of murine embryonic stem cells for in vitro and in vivo developmental studies.

    Science.gov (United States)

    Brown, D G; Willington, M A; Findlay, I; Muggleton-Harris, A L

    1992-01-01

    Cultured mouse embryonic stem (ES) cells are used for both in vitro and in vivo studies. The uncommitted pluripotent cells provide a model system with which to study cellular differentiation and development; they can also be used as vectors to carry specific mutations into the mouse genome by homologous recombination. To ensure successful integration into the germ line, competent totipotent diploid ES cell lines are selected using a cell injection bioassay that is both time consuming and technically demanding. The prolonged in vitro culture of rapidly dividing ES cells can lead to accumulated changes and chromosomal abnormalities that will compromise the biological function and abrogate germ line transmission of chimeric mice carrying novel genetic mutations. Such in vitro conditions will vary between individual laboratories; for example, differences in the serums used for maintenance. Using a number of different criteria we attempt in this paper to define the parameters that we found to be key factors for optimization of the biological potential of established ES cell lines. The successful integration into the germ line is dependant on acquiring or deriving a competent totipotent mouse ES diploid cell line. In this paper parameters and criteria are defined which we found to be key factors for the optimization of the biological potential of established ES cell lines.

  14. In Vivo Evaluation of Biocompatibility and Chondrogenic Potential of a Cell-Free Collagen-Based Scaffold

    Directory of Open Access Journals (Sweden)

    Giovanna Calabrese

    2017-11-01

    Full Text Available Injured articular cartilage has a limited innate regenerative capacity, due to the avascular nature and low cellularity of the tissue itself. Although several approaches have been proposed to repair the joint cartilage, none of them has proven to be effective. The absence of suitable therapeutic options has encouraged tissue-engineering approaches combining specific cell types and biomaterials. In the present work, we have evaluated the potential of a cell-free Collagen I-based scaffold to promote the augmentation of cartilage-like phenotype after subcutaneous implantation in the mouse. Forty female mice were grafted subcutaneously with scaffolds, while four additional mice without scaffold were used as negative controls. The effects of scaffold were evaluated at 1, 2, 4, 8, or 16 weeks after implantation. Immunohistochemical analysis shows the expression of typical cartilage markers, including type-II Collagen, Aggrecan, Matrilin-1 and Sox 9. These data are also confirmed by qRT-PCR that further show that both COL2A1 and COL1A1 increase over time, but the first one increases more rapidly, thus suggesting a typical cartilage-like address. Histological analysis shows the presence of some pericellular lacunae, after 8 and 16 weeks. Results suggest that this scaffold (i is biocompatible in vivo, (ii is able to recruit host cells (iii induce chondrogenic differentiation of host cells. Such evidences suggest that this cell-free scaffold is promising and represents a potential approach for cartilage regeneration.

  15. Anti-atrial Fibrillatory Versus Proarrhythmic Potentials of Amiodarone: A New Protocol for Safety Evaluation In Vivo.

    Science.gov (United States)

    Matsukura, Suchitra; Nakamura, Yuji; Cao, Xin; Wada, Takeshi; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Sugiyama, Atsushi

    2017-04-01

    Anti-atrial fibrillatory and proarrhythmic potentials of amiodarone were simultaneously analyzed by using the halothane-anesthetized beagle dogs (n = 4) in order to begin to prepare standard protocol for clarifying both efficacy and adverse effects of anti-atrial fibrillatory drugs. Intravenous administration of 0.3 mg/kg of amiodarone hydrochloride decreased the heart rate and mean blood pressure. Additional administration of 3 mg/kg of amiodarone hydrochloride prolonged the QT interval besides the effects observed by the low dose, whereas it showed 1.6 times larger prolongation in the effective refractory period of the atrium than that of the ventricle, which may explain its clinical efficacy against atrial arrhythmias. However, no significant change was detected by either dose in the early repolarization assessed by corrected J-T peak or the late repolarization done by T peak-T end in the electrocardiogram, although the former tended to be shortened and the reverse was true for the latter. Lack of prolongation in the early repolarization will make it feasible to better understand why amiodarone lacks proarrhythmic potential in spite of the QT-interval prolongation. Thus, these results of amiodarone obtained by current protocol may become a guidance on assessing efficacy and adverse effects of new anti-atrial fibrillatory drugs in vivo.

  16. Potential clinical applications of adult human mesenchymal stem cell (Prochymal® therapy

    Directory of Open Access Journals (Sweden)

    Patel AN

    2011-11-01

    Full Text Available Amit N Patel, Jorge GenoveseUniversity of Utah School of Medicine, Salt Lake City, UT, USAAbstract: In vitro, in vivo animal, and human clinical data show a broad field of application for mesenchymal stem cells (MSCs. There is overwhelming evidence of the usefulness of MSCs in regenerative medicine, tissue engineering, and immune therapy. At present, there are a significant number of clinical trials exploring the use of MSCs for the treatment of various diseases, including myocardial infarction and stroke, in which oxygen suppression causes widespread cell death, and others with clear involvement of the immune system, such as graft-versus-host disease, Crohn's disease, and diabetes. With no less impact, MSCs have been used as cell therapy to treat defects in bone and cartilage and to help in wound healing, or in combination with biomaterials in tissue engineering development. Among the MSCs, allogeneic MSCs have been associated with a regenerative capacity due to their unique immune modulatory properties. Their immunosuppressive capability without evidence of immunosuppressive toxicity at a global level define their application in the treatment of diseases with a pathogenesis involving uncontrolled activity of the immune system. Until now, the limitation in the number of totally characterized autologous MSCs available represents a major obstacle to their use for adult stem cell therapy. The use of premanufactured allogeneic MSCs from controlled donors under optimal conditions and their application in highly standardized clinical trials would lead to a better understanding of their real applications and reduce the time to clinical translation.Keywords: regeneration, immunomodulation, tissue engineering, allogeneic, mesenchymal stem cells

  17. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells.

    Science.gov (United States)

    Lee, Ming-Jen; Hung, Shih-Hsuan; Huang, Mu-Ching; Tsai, Tsuimin; Chen, Chin-Tin

    2017-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST). There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo.

  18. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells.

    Directory of Open Access Journals (Sweden)

    Ming-Jen Lee

    Full Text Available Neurofibromatosis type 1 (NF1 is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST. There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA mediated PDT (ALA-PDT has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo.

  19. Evaluation of Lentiviral-Mediated Expression of Sodium Iodide Symporter in Anaplastic Thyroid Cancer and the Efficacy of In Vivo Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    2011-01-01

    Full Text Available Anaplastic thyroid carcinoma (ATC is one of the most deadly cancers. With intensive multimodalities of treatment, the survival remains low. ATC is not sensitive to 131I therapy due to loss of sodium iodide symporter (NIS gene expression. We have previously generated a stable human NIS-expressing ATC cell line, ARO, and the ability of iodide accumulation was restored. To make NIS-mediated gene therapy more applicable, this study aimed to establish a lentiviral system for transferring hNIS gene to cells and to evaluate the efficacy of in vitro and in vivo radioiodide accumulation for imaging and therapy. Lentivirus containing hNIS cDNA were produced to transduce ARO cells which do not concentrate iodide. Gene expression, cell function, radioiodide imaging and treatment were evaluated in vitro and in vivo. Results showed that the transduced cells were restored to express hNIS and accumulated higher amount of radioiodide than parental cells. Therapeutic dose of 131I effectively inhibited the tumor growth derived from transduced cells as compared to saline-treated mice. Our results suggest that the lentiviral system efficiently transferred and expressed hNIS gene in ATC cells. The transduced cells showed a promising result of tumor imaging and therapy.

  20. Radioiodine therapy of benign non-toxic goitre. Potential role of recombinant human TSH

    DEFF Research Database (Denmark)

    Fast, S; Bonnema, S J; Hegedüs, L

    2011-01-01

    This review provides an update on recombinant human TSH (rh-TSH) augmented radioiodine (¹³¹I) therapy and outlines its potential role in the treatment of symptomatic benign multinodular non-toxic goitre. In some countries, ¹³¹I has been used for three decades to reduce the size of nodular goitres......-reduction (equality) strategy is attractive in terms of minimizing post-therapeutic restrictions and in reducing the potential risk of radiation-induced malignancy. Adverse effects like temporary thyroid swelling and thyroid hormone excess are to a large extent dose-dependent and generally 0.1mg rh-TSH or less...

  1. Potential role of radiation therapy in augmenting the activity of immunotherapy for gynecologic cancers

    Science.gov (United States)

    Son, Christina H; Fleming, Gini F; Moroney, John W

    2017-01-01

    Immune checkpoint inhibitors have become an area of intense interest in oncology and are actively being studied in a variety of cancer types with a wide range of success. In vitro data suggest mechanisms by which radiation can activate the immune system, and ongoing studies are exploring the potential interaction of checkpoint inhibitors with radiotherapy in both preclinical and clinical settings. Gynecologic malignancies are a heterogeneous group of tumors with varying prognoses, intrinsic immunogenicity, and potential for response to immune-based therapies. In this review, we focus on the rationale for immunotherapy and opportunities for augmentation by photon radiotherapy in cancers of the cervix, endometrium, and ovary. PMID:29184441

  2. A novel gastroretentive porous microparticle for anti-Helicobacter pylori therapy: preparation, in vitro and in vivo evaluation.

    Science.gov (United States)

    Hao, Shilei; Wang, Yazhou; Wang, Bochu; Zou, Quanming; Zeng, Hao; Chen, Xiaoliang; Liu, Xi; Liu, Junyu; Yu, Songke

    2014-03-10

    Gastroretentive drug delivery system is a promising option for the treatment of Helicobacter pylori infection, which can prolong gastric residence time and supply high drug concentration in the stomach. In the present study, a low density system of metronidazole-loaded porous Eudragit® RS microparticle with high drug loading capacity (>25%) was fabricated via electrospray method. The porous structure and size distribution of microparticles were affected by polymer concentration and flow rate of solution. FTIR and XRD analyses indicated that drug has been entrapped into the porous microparticles. In addition, sustained release profiles and slight cytotoxicity in vitro were detected. Gamma scintigraphy study in vivo demonstrated that ¹³¹I-labeled microparticles retained in stomach for over 8h, and about 65.50% radioactive counts were finally detected in the region of interest. The biodistribution study confirmed that hotspot of radioactivity was remaining in the stomach. Furthermore, metronidazole-loaded porous microparticles can eradicate H. pylori completely with lower dose and administration frequency of antibiotic compared with pure drug, which were also more helpful for the healing of mucosal damages. These results suggest that prepared porous microparticle has the potential to provide better treatment for H. pylori infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Efficacy of Postnatal In Vivo Nonsense Suppression Therapy in a Pax6 Mouse Model of Aniridia

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-06-01

    Full Text Available Nonsense mutations leading to premature stop codons are common occurring in approximately 12% of all human genetic diseases. Thus, pharmacological nonsense mutation suppression strategies would be beneficial to a large number of patients if the drugs could be targeted to the affected tissues at the appropriate time. Here, we used nonsense suppression to manipulate Pax6 dosage at different developmental times in the eye of the small eye (Pax6Sey/+; G194X mouse model of aniridia. Efficacy was assessed by functional assays for visual capacity, including electroretinography and optokinetic tracking (OKT, in addition to histological and biochemical studies. Malformation defects in the Pax6Sey/+ postnatal eye responded to topically delivered nonsense suppression in a dose- and time-dependent manner. Elevated levels of Mmp9, a direct downstream target of Pax6 in the cornea, were observed with the different treatment regimens. The lens capsule was particularly sensitive to Pax6 dosage, revealing a potential new role for Pax6 in lens capsule maintenance and development. The remarkable capacity of malformed ocular tissue to respond postnatally to Pax6 dosage in vivo demonstrates that the use of nonsense suppression could be a valuable therapeutic approach for blinding diseases caused by nonsense mutations.

  4. The HGF inhibitory peptide HGP-1 displays promising in vitro and in vivo efficacy for targeted cancer therapy

    Science.gov (United States)

    Chen, Lisha; Li, Chunlin; Zhu, Yimin

    2015-01-01

    HGF/MET pathway mediates cancer initiation and development. Thus, inhibition on HGF-initiated MET signaling pathway would provide a new approach to cancer targeted therapeutics. In our study, we identified a targeting peptide candidate binding to HGF which was named HGF binding peptide-1 (HGP-1) via bacterial surface display methods coupled with fluorescence-activated cell sorting (FACS). HGP-1 showed the moderate affinity when determined with surface plasmon resonance (SPR) technique and high specificity in binding to HGF while assessed by fluorescence-based ELISA assay. The results from MTT and in vitro migration assay indicated that HGF-dependent cell proliferation and migration could be inhibited by HGP-1. In vivo administration of HGP-1 led to an effective inhibitory effect on tumor growth in A549 tumor xenograft models. Moreover, findings from Western Blots revealed that HGP-1 could down-regulated the phosphorylation levels of MET and ERK1/2 initiated by HGF, which suggested that HGP-1 could disrupt the activation of HGF/MET signaling to influence the cell activity. All the data highlighted the potential of HGP-1 to be a potent inhibitor for HGF/MET signaling. PMID:26254225

  5. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice.

    Science.gov (United States)

    Guenancia, Charles; Li, Na; Hachet, Olivier; Rigal, Eve; Cottin, Yves; Dutartre, Patrick; Rochette, Luc; Vergely, Catherine

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran-iron (125-1000μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Potential implications of adjuvant endocrine therapy for the oral health of postmenopausal women with breast cancer

    Science.gov (United States)

    Taichman, L. Susan; Havens, Aaron M.

    2012-01-01

    Current adjuvant treatment modalities for breast cancer that express the estrogen receptor or progesterone receptor include adjuvant anti-estrogen therapies, and tamoxifen and aromatase inhibitors. Bone, including the jaw, is an endocrine-sensitive organ, as are other oral structures. This review examines the potential links between adjuvant anti-estrogen treatments in postmenopausal women with hormone receptor positive breast cancer and oral health. A search of PubMed, EMBASE, CENTRAL, and the Web of Knowledge was conducted using combinations of key terms “breast,” “cancer,” “neoplasm,” “Tamoxifen,” “Aromatase Inhibitor,” “chemotherapy,” “hormone therapy,” “alveolar bone loss,” “postmenopausal bone loss,” “estrogen,” “SERM,” “hormone replacement therapy,” and “quality of life.” We selected articles published in peer-reviewed journals in the English. The authors found no studies reporting on periodontal diseases, alveolar bone loss, oral health, or oral health-related quality of life in association with anti-estrogen breast cancer treatments in postmenopausal women. Periodontal diseases, alveolar bone density, tooth loss, and conditions of the soft tissues of the mouth have all been associated with menopausal status supporting the hypothesis that the soft tissues and bone of the oral cavity could be negatively affected by anti-estrogen therapy. As a conclusion, the impact of adjuvant endocrine breast cancer therapy on the oral health of postmenopausal women is undefined. The structures of the oral cavity are influenced by estrogen; therefore, anti-estrogen therapies may carry the risk of oral toxicities. Oral health care for breast cancer patients is an important but understudied aspect of cancer survivorship. PMID:22986813

  7. Penicillin (cloxacillin)-tolerant Staphylococcus aureus from bovine mastitis: identification and lack of correlation between tolerance in vitro and response to therapy in vivo.

    Science.gov (United States)

    Craven, N; Anderson, J C; Wilson, C D

    1983-05-01

    Twenty-four isolates of Staphylococcus aureus from naturally occurring cases of bovine mastitis were examined in vitro for resistance to cloxacillin. All strains produced penicillinase and none showed intrinsic resistance (methicillin resistance) to cloxacillin. The minimum inhibitory concentration of cloxacillin for all these strains was normal (low) but differences were found between them in their sensitivities to the bactericidal action. Three were considered to be tolerant to cloxacillin and a further five possibly so. In a mouse model of mastitis there was no difference in the response to intramammary therapy with cloxacillin between cloxacillin-sensitive or tolerant strains of S aureus and a known methicillin-resistant strain was similarly sensitive to cloxacillin therapy in vivo. It is concluded that cloxacillin tolerance may have little clinical significance in mastitis therapy.

  8. Music technology in music therapy - A study of the possibilities, potential and problems around the use of music technologies in music therapy with youths and adolescents

    OpenAIRE

    Misje, René

    2013-01-01

    Music technology in music therapy - A study of the possibilities, potential and problems around the use of music technologies in music therapy with youths and adolescents. This qualitative study explores the usefulness of music technology in music therapeutic practice with youth and adolescents. Four music therapist`s reflections on their use of music technologies and on the possibilities, potential and problems of this use are explored through semi-structured intervi...

  9. Heterogeneity in primary colorectal cancer and its corresponding metastases: a potential reason of EGFR-targeted therapy failure?

    Science.gov (United States)

    Li, Zhongqi; Jin, Ketao; Lan, Huanrong; Teng, Lisong

    2011-01-01

    Epidermal growth factor receptor (EGFR)-targeted therapy represents an important approach in metastatic colorectal cancer (CRC) therapy. However, a number of CRC patients show intrinsic or acquired resistance to EGFR-targeted therapy. EGFR antibody therapy is established in CRC patients with wild-type KRAS. However, up to half of these patients do not respond to this therapy. This phenomenon implied some potential mechanisms of resistance to EGFR inhibitors might exist. One of the potential reasons to explain this phenomenon is heterogeneity of CRC. The heterogeneity of CRC has been well described at the morphological, molecular and genomic levels. This review discussed the potential relationship of heterogeneity, including intratumor heterogeneity of CRC and heterogeneity in primary CRC and its corresponding metastases, to EGFR-targeted therapy failure.

  10. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair.

    Science.gov (United States)

    Alaee, F; Sugiyama, O; Virk, M S; Tang, H; Drissi, H; Lichtler, A C; Lieberman, J R

    2014-02-01

    'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.

  11. Concise review: Adult salivary gland stem cells and a potential therapy for xerostomia.

    Science.gov (United States)

    Pringle, Sarah; Van Os, Ronald; Coppes, Robert P

    2013-04-01

    The ability to speak, swallow, masticate, taste food, and maintain a healthy oral cavity is heavily reliant on the presence of saliva, the hugely important effect of which on our everyday lives is often unappreciated. Hyposalivation, frequently experienced by people receiving radiation therapy for head and neck cancers, results in a plethora of symptoms whose combined effect can drastically reduce quality of life. Although artificial lubricants and drugs stimulating residual function are available to ameliorate the consequences of hyposalivation, their effects are at best transient. Such management techniques do not address the source of the problem: a lack of functional saliva-producing acinar cells, resulting from radiation-induced stem cell sterilization. Post-radiotherapy stimulation of cell proliferation only results in improved saliva secretion when part of the tissue has been spared or when the dose to the salivary gland (SG) remains below a certain level. Therefore, stem cell replacement therapy may be a good option to treat radiation-induced hyposalivation. Substantial progress has been made lately in the understanding of cell turnover in the SG, and the recent identification of stem and progenitor cell populations in the SG provides a basis for studies toward development of a stem cell-based therapy for xerostomia. Here, we review the current state of knowledge of SG stem cells and their potential for use in a cell-based therapy that may provide a more durable cure for hyposalivation. Copyright © 2013 AlphaMed Press.

  12. Efficacy of Combined Therapy with Amantadine, Oseltamivir, and Ribavirin In Vivo against Susceptible and Amantadine-Resistant Influenza A Viruses

    NARCIS (Netherlands)

    Nguyen, Jack T.; Smee, Donald F.; Barnard, Dale L.; Julander, Justin G.; Gross, Matthew; de Jong, Menno D.; Went, Gregory T.

    2012-01-01

    The limited efficacy of existing antiviral therapies for influenza - coupled with widespread baseline antiviral resistance highlights the urgent need for more effective therapy. We describe a triple combination antiviral drug (TCAD) regimen composed of amantadine, oseltamivir, and ribavirin that is

  13. Dual targeting of Bcl-2 and VEGF: a potential strategy to improve therapy for prostate cancer.

    Science.gov (United States)

    Anai, Satoshi; Sakamoto, Noboru; Sakai, Yoshihisa; Tanaka, Motoyoshi; Porvasnik, Stacy; Urbanek, Cydney; Cao, Wengang; Goodison, Steve; Rosser, Charles J

    2011-01-01

    We previously demonstrated that Bcl-2 overexpression stimulates angiogenesis in PC-3 human prostate cancer cells, thus giving these tumors a growth advantage. To further elucidate the relationship between Bcl-2 and vascular endothelial growth factor (VEGF) in PC-3-Bcl-2 cells, tumorigenicity and angiogenesis were evaluated in our in vitro and in vivo model treated with antisense Bcl-2 oligodeoxynucleotide (ASO) and bevacizumab. In vitro and in vivo angiogenesis assays, as well as a xenograft tumor model of the human prostate cancer cell line PC-3-Bcl-2, were subjected to ASO alone, bevacizumab alone, or the combination of ASO and bevacizumab. Protein-based assays (e.g., immunohistochemical staining and enzyme-linked immunosorbent assay [ELISA]) were utilized to detect molecular changes. Interestingly, targeting Bcl-2 with ASO resulted in the inhibition of in vitro tube formation and inhibition of angiogenesis in Matrigel plugs similar to treatment with bevacizumab. In our PC-3-Bcl-2 xenograft model, ASO alone resulted in 41% reduction in tumor size, bevacizumab alone resulted in a 50% reduction in tumor size, whereas the combination of ASO with bevacizumab was associated with >95% reduction in tumor volume. Reduction in tumor size in all groups was associated with reduction in Bcl-2 and VEGF expression, induction of apoptosis, and inhibition of angiogenesis and its associated chemokine production. These findings confirm that Bcl-2 is a pivotal target for cancer therapy and thus, further study of this novel combination of Bcl-2 reduction and angiogenic targeting in human tumors is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A self-immolative prodrug nanosystem capable of releasing a drug and a NIR reporter for in vivo imaging and therapy.

    Science.gov (United States)

    Wang, Ziqian; Wu, Hao; Liu, Peilian; Zeng, Fang; Wu, Shuizhu

    2017-09-01

    In vivo monitoring of the biodistribution and activation of prodrugs is highly attractive, and the self-immolative dendritic architecture is deemed as a promising approach for constructing theranostic prodrug in which the release/activation of different payloads is needed. Herein, A GSH-triggered and self-immolative dendritic platform comprising an anticancer drug camptothecin (CPT), a cleavable linker and a two-photon NIR fluorophore (dicyanomethylene-4H-pyran, DCM) has been developed for in situ tracking of drug release and antitumour therapy. In vitro experiments demonstrate that, the presence of glutathione (GSH) induces the cleavage of the self-immolative linker, resulting in comitant release of the drug and the dye. Upon cell internalization and under one- or two-photon excitation, prominent intracellular fluorescence can be observed, indicating the release of the payloads in live cells. Upon loaded in phospholipid vesicles, the prodrug has also been successfully utilized for in vivo and in situ tracking of drug release and cancer therapy in a mouse model. Several hours post injection, the prodrug generates strong fluorescence on tumour sites, demonstrating the prodrug's capability of monitoring the on-site drug release. Moreover, the prodrug shows considerable high activity and exerts obvious inhibition towards tumour growth. This work suggests that the prodrug with self-immolative dendritic structure can work well in vivo and this strategy may provide an alternative approach for designing theranostic drug delivery systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy

    Directory of Open Access Journals (Sweden)

    Song Peng

    2017-01-01

    Full Text Available Neuropeptide Y (NPY, a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.

  16. Mucoadhesive polyacrylamide nanogel as a potential hydrophobic drug carrier for intravesical bladder cancer therapy.

    Science.gov (United States)

    Lu, Shengjie; Neoh, Koon Gee; Kang, En-Tang; Mahendran, Ratha; Chiong, Edmund

    2015-05-25

    In this paper, amine-functionalized polyacrylamide nanogels (PAm-NH2) loaded with docetaxel (DTX) were evaluated as a mucoadhesive and sustained intravesical drug delivery (IDD) system for potential bladder cancer therapy. Nanogels have not been applied for such therapy before. The mucoadhesiveness of the PAm-NH2 nanogels, which is a critical factor for IDD application, was investigated using the mucin-particle method and by analyzing the direct attachment of the PAm-NH2 nanogels onto the luminal surface of porcine urinary bladder. DTX, as a model hydrophobic drug, was successfully loaded into hydrophilic PAm-NH2 nanogels with high loading efficiency (>90%), and sustained release of DTX from the nanogels over 9 days in artificial urine was achieved. The nanogels were also taken in by bladder cancer cells in a concentration-dependent manner. The efficiency of the DTX-loaded nanogels in killing UMUC3 and T24 bladder cancer cells was determined to be equivalent to free DTX, and the morphology of the bladder urothelium was not adversely altered by the PAm-NH2 nanogels. These findings indicate that such mucoadhesive nanogels are potentially a promising candidate for intravesical delivery of hydrophobic drugs in bladder cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  18. In vivo skin irritation potential of a Castanea sativa (Chestnut) leaf extract, a putative natural antioxidant for topical application.

    Science.gov (United States)

    Almeida, Isabel F; Valentão, Patrícia; Andrade, Paula B; Seabra, Rosa M; Pereira, Teresa M; Amaral, M Helena; Costa, Paulo C; Bahia, M Fernanda

    2008-11-01

    Topical application of natural antioxidants has proven to be effective in protecting the skin against ultraviolet-mediated oxidative damage and provides a straightforward way to strengthen the endogenous protection system. However, natural products can provoke skin adverse effects, such as allergic and irritant contact dermatitis. Skin irritation potential of Castanea sativa leaf ethanol:water (7:3) extract was investigated by performing an in vivo patch test in 20 volunteers. Before performing the irritation test, the selection of the solvent and extraction method was guided by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging test and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron-chelating activity and the phenolic composition (high performance liquid chromatography/diode array detection) were evaluated for the extract obtained under optimized conditions. The extraction method adopted consisted in 5 short extractions (10 min.) with ethanol:water (7:3), performed at 40 degrees. The IC(50) found for the iron chelation and DPPH scavenging assays were 132.94 +/- 9.72 and 12.58 +/- 0.54 microg/ml (mean +/- S.E.M.), respectively. The total phenolic content was found to be 283.8 +/- 8.74 mg GAE/g extract (mean +/- S.E.M.). Five phenolic compounds were identified in the extract, namely, chlorogenic acid, ellagic acid, rutin, isoquercitrin and hyperoside. The patch test carried out showed that, with respect to irritant effects, this extract can be regarded as safe for topical application.

  19. In Vivo Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects.

    Science.gov (United States)

    Bishop, Lindsey; Cena, Lorenzo; Orandle, Marlene; Yanamala, Naveena; Dahm, Matthew M; Birch, M Eileen; Evans, Douglas E; Kodali, Vamsi K; Eye, Tracy; Battelli, Lori; Zeidler-Erdely, Patti C; Casuccio, Gary; Bunker, Kristin; Lupoi, Jason S; Lersch, Traci L; Stefaniak, Aleksandr B; Sager, Tina; Afshari, Aliakbar; Schwegler-Berry, Diane; Friend, Sherri; Kang, Jonathan; Siegrist, Katelyn J; Mitchell, Constance A; Lowry, David T; Kashon, Michael L; Mercer, Robert R; Geraci, Charles L; Schubauer-Berigan, Mary K; Sargent, Linda M; Erdely, Aaron

    2017-09-26

    Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.

  20. Magnesium stearate, a widely-used food additive, exhibits a lack of in vitro and in vivo genotoxic potential.

    Science.gov (United States)

    Hobbs, Cheryl A; Saigo, Kazuhiko; Koyanagi, Mihoko; Hayashi, Shim-Mo

    2017-01-01

    Magnesium stearate is widely used in the production of dietary supplement and pharmaceutical tablets, capsules and powders as well as many food products, including a variety of confectionery, spices and baking ingredients. Although considered to have a safe toxicity profile, there is no available information regarding its potential to induce genetic toxicity. To aid safety assessment efforts, magnesium sulfate was evaluated in a battery of tests including a bacterial reverse mutation assay, an in vitro chromosome aberration assay, and an in vivo erythrocyte micronucleus assay. Magnesium stearate did not produce a positive response in any of the five bacterial strains tested, in the absence or presence of metabolic activation. Similarly, exposure to magnesium stearate did not lead to chromosomal aberrations in CHL/IU Chinese hamster lung fibroblasts, with or without metabolic activation, or induce micronuclei in the bone marrow of male CD-1 mice. These studies have been used by the Japanese government and the Joint FAO/WHO Expert Committee on Food Additives in their respective safety assessments of magnesium stearate. These data indicate a lack of genotoxic risk posed by magnesium stearate consumed at current estimated dietary exposures. However, health effects of cumulative exposure to magnesium via multiple sources present in food additives may be of concern and warrant further evaluation.

  1. Development and characterization of erythrosine nanoparticles with potential for treating sinusitis using photodynamic therapy.

    Science.gov (United States)

    Garapati, Chandrasekhar; Clarke, Brandon; Zadora, Steven; Burney, Charles; Cameron, Brent D; Fournier, Ronald; Baugh, Reginald F; Boddu, Sai H S

    2015-03-01

    Antimicrobial therapy for sinusitis has been shown to reduce or eliminate pathologic bacteria associated with rhinosinusitis and improve the symptoms associated with the disease. However, the continuing rise in antibiotic resistance, the ongoing problem with patient compliance, and the intrinsic difficulty in eradication of biofilms complicates antibiotic therapy. The introduction of photodynamic antimicrobial therapy (PAT) using erythrosine, a photosensitizer, could eliminate the bacteria without inducing antibiotic resistance or even requiring daily dosing. In the present study, erythrosine nanoparticles were prepared using poly-lactic-co-glycolic acid (PLGA) and evaluated for their potential in PAT against Staphylococcus aureus cells. PLGA nanoparticles of erythrosine were prepared by nanoprecipitation technique. Erythrosine nanoparticles were characterized for size, zeta potential, morphology and in vitro release. Qualitative and quantitative uptake studies of erythrosine nanoparticles were carried out in S. aureus cells. Photodynamic inactivation of S. aureus cells in the presence of erythrosine nanoparticles was investigated by colony forming unit assay. Nanoprecipitation technique resulted in nanoparticles with a mean diameter of 385nm and zeta potential of -9.36mV. Erythrosine was slowly released from nanoparticles over a period of 120h. The qualitative study using flow cytometry showed the ability of S. aureus cells to internalize erythrosine nanoparticles. Moreover, erythrosine nanoparticles exhibited a significantly higher uptake and antimicrobial efficacy compared to pure drug in S. aureus cells. In conclusion, erythrosine-loaded PLGA nanoparticles can be a potential long term drug delivery system for PAT and are useful for the eradication of S. aureus cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The potential of proton beam radiation therapy in intracranial and ocular tumours

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, Erik [Univ. Hospital, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology; Bjelkengren, Goeran [Univ. Hospital, Malmoe (Sweden). Dept. of Oncology; Glimelius, Bengt [Karolinska Inst., Stockholm (Sweden). Dept. of Oncology and Pathology; Akademiska sjukhuset, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology

    2005-12-01

    A group of oncologists and hospital physicists have estimated the number of patients in Sweden suitable for proton beam therapy. The estimations have been based on current statistics of tumour incidence, number of patients potentially eligible for radiation treatment, scientific support from clinical trials and model dose planning studies and knowledge of the dose-response relations of different tumours and normal tissues. In intracranial benign and malignant tumours, it is estimated that between 130 and 180 patients each year are candidates for proton beam therapy. Of these, between 50 and 75 patients have malignant glioma, 30-40 meningeoma, 20-25 arteriovenous malformations, 20-25 skull base tumours and 10-15 pituitary adenoma. In addition, 15 patients with ocular melanoma are candidates.

  3. New strategies in radiation therapy: exploiting the full potential of protons.

    Science.gov (United States)

    Mohan, Radhe; Mahajan, Anita; Minsky, Bruce D

    2013-12-01

    Protons provide significant dosimetric advantages compared with photons because of their unique depth-dose distribution characteristics. However, they are more sensitive to the effects of intra- and intertreatment fraction anatomic variations and uncertainties in treatment setup. Furthermore, in the current practice of proton therapy, the biologic effectiveness of protons relative to photons is assumed to have a generic fixed value of 1.1. However, this is a simplification, and it is likely higher in different portions of the proton beam. Current clinical practice and trials have not fully exploited the unique physical and biologic properties of protons. Intensity-modulated proton therapy, with its ability to manipulate energies (in addition to intensities), provides an entirely new dimension, which, with ongoing research, has considerable potential to increase the therapeutic ratio. ©2013 AACR.

  4. Potential Proinvasive or Metastatic Effects of Preclinical Antiangiogenic Therapy Are Prevented by Concurrent Chemotherapy.

    Science.gov (United States)

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S

    2015-12-15

    To resolve a controversy involving the therapeutic impact of antiangiogenic drugs and particularly antibodies targeting the VEGF pathway, namely, a body of preclinical mouse therapy studies showing such drugs can promote invasion and/or distant metastasis when used as monotherapies. In contrast, clinical studies have not shown such promalignancy effects. However, most such clinical studies have involved patients also treated with concurrent chemotherapy highlighting the possibility that chemotherapy may prevent any potential promalignancy effect caused by an antiangiogenic drug treatment. The impact of antiangiogenic therapy using DC101, an antibody targeting mouse VEGFR-2 with or without concurrent chemotherapy was assessed in multiple human breast cancer xenograft models, where impact on orthotopic primary tumors was evaluated. Metastasis was also assessed during adjuvant and neoadjuvant plus adjuvant therapy, after surgical resection of primary tumors, with the same combination therapies. Antiangiogenic therapy, while blunting tumor volume growth, was found to increase local invasion in multiple primary tumor models, including a patient-derived xenograft, but this effect was blocked by concurrent chemotherapy. Similarly, the combination of paclitaxel with DC101 caused a marked reduction of micro- or macrometastatic disease in contrast to DC101 monotherapy, which was associated with small increases in metastatic disease. Conventional wisdom is that targeted biologic antiangiogenic agents such as bevacizumab when used with chemotherapy increase the efficacy of the chemotherapy treatment. Our results suggest the reverse may be true as well-chemotherapy may improve the impact of antiangiogenic drug treatment and, as a result, overall efficacy. Clin Cancer Res; 21(24); 5488-98. ©2015 AACR. ©2015 American Association for Cancer Research.

  5. Clinical potential of regulatory T cell therapy in liver diseases: An overview and current perspectives

    Directory of Open Access Journals (Sweden)

    Hannah Claire Jeffery

    2016-09-01

    Full Text Available The increasing demand for liver transplantation and the decline in donor organs has highlighted the need for alternative novel therapies to prevent chronic active hepatitis, which eventually leads to liver cirrhosis and liver cancer. Liver histology of chronic hepatitis is composed of both effector and regulatory lymphocytes. The human liver contains different subsets of effector lymphocytes, that are kept in check by a subpopulation of T cells known as Regulatory T cells (Treg. The balance of effector and regulatory lymphocytes generally determines the outcome of hepatic inflammation: resolution, fulminant hepatitis or chronic active hepatitis. Thus, maintaining and adjusting this balance is crucial in immunological manipulation of liver diseases. One of the options to restore this balance is to enrich Treg in the liver disease patients.Advances in the knowledge of Treg biology and development of clinical grade isolation reagents, cell sorting equipment and Good Manufacturing Practice (GMP facilities have paved the way to apply Treg cells as a potential therapy to restore peripheral self-tolerance in autoimmune liver diseases, chronic rejection and post-transplantation. Past and on-going studies have applied Treg in type-1 diabetes mellitus, systemic lupus erythematosus, graft versus host diseases (GVHD and solid organ transplantations. There have not been any new therapies for the autoimmune liver diseases for more than three decades; thus the clinical potential for the application of autologous Treg cell therapy to treat autoimmune liver disease is an attractive and novel option. However, it is fundamental to understand the deep immunology, genetic profiles, biology, homing behavior and microenvironment of Treg before applying the cells to the patients.

  6. EGFR/HER2 inhibitors effectively reduce the malignant potential of MDR breast cancer evoked by P-gp substrates in vitro and in vivo.

    Science.gov (United States)

    Jin, Yiting; Zhang, Wei; Wang, Hongying; Zhang, Zijing; Chu, Chengyu; Liu, Xiuping; Zou, Qiang

    2016-02-01

    Multidrug resistance (MDR) induced by chemotherapy in breast cancer frequently leads to tumor invasion, metastasis and poor clinical outcome. We preliminarily found that the epidermal growth factor receptor (EGFR) is involved in enhancing the malignant potential of MDR breast cancer cells, but the mechanism remains unclear. In the present study, we demonstrated in vitro and in vivo that EGFR/HER2 promote the invasive and metastatic abilities of MDR breast cancer. More importantly, a new function of EGFR/HER2 inhibitors was revealed for the first time, which could improve the treatment efficacy of breast cancer by reversing the MDR process rather than by inhibiting tumor growth. Firstly, using quantitative real‑time PCR and western blot analysis, we found that overexpression of EGFR/HER2 in MCF7/Adr cells upregulated CD147 and MMP2/9 at both the transcription and protein expression levels, which promoted tumor cell migration, as determined using an in vitro invasion assay. Secondly, the upregulated levels of CD147 and MMP2/9 were decreased when EGFR/HER2 activity was inhibited, and therefore tumor invasion was also significantly inhibited. These phenomena were also demonstrated in nude mouse assays. Additionally, in MDR breast cancer patients, we found that overexpression of EGFR and P‑gp levels led to shorter overall survival (OS) and disease‑free survival (DFS) by IHC assays and Kaplan‑Meier survival analysis. In conclusion, EGFR/HER2 play a crucial role in enhancing CD147 and MMP expression to establish favorable conditions for invasion/metastasis in MDR breast cancer. The scope of application of EGFR/HER2 inhibitors may be expanded in EGFR/HER2‑positive patients. We suggest that MDR breast cancer patients may benefit from novel therapies targeting EGFR/HER2.

  7. Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies.

    Science.gov (United States)

    Wen, Xiang; Zhang, Xiaoshen; Szewczyk, Grzegorz; El-Hussein, Ahmed; Huang, Ying-Ying; Sarna, Tadeusz; Hamblin, Michael R

    2017-07-01

    Rose bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation for several years. While RB is highly active against Gram-positive bacteria, it is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the nontoxic salt potassium iodide (100 mM) potentiates green light (540-nm)-mediated killing by up to 6 extra logs with the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium methicillin-resistant Staphylococcus aureus, and the fungal yeast Candida albicans The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals and, finally, forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing the levels of killing achieved in three different scenarios: (i) cells, RB, and KI are mixed together and then illuminated with green light; (ii) cells and RB are centrifuged, and then KI is added and the mixture is illuminated with green light; and (iii) RB and KI are illuminated with green light, and then cells are added after illumination with the light. We also showed that KI could potentiate RB photodynamic therapy in a mouse model of skin abrasions infected with bioluminescent P. aeruginosa. Copyright © 2017 American Society for Microbiology.

  8. In vivo inhibition of neutral endopeptidase enhances the diagnostic potential of truncated gastrin (111)In-radioligands.

    Science.gov (United States)

    Kaloudi, Aikaterini; Nock, Berthold A; Lymperis, Emmanouil; Sallegger, Werner; Krenning, Eric P; de Jong, Marion; Maina, Theodosia

    2015-11-01

    Radiolabeled gastrin analogs represent attractive candidates for diagnosis and therapy of cholecystokinin subtype-2 receptor (CCK2R)-expressing tumors. Radiolabeled des(Glu)5-gastrins show favorably low renal accumulation, but localize poorly in CCK2R-positive lesions. We introduce herein three truncated [DOTA-DGlu(10)]gastrin(10-17) analogs, with oxidation-susceptible Met(15) replaced by: (1), (2), or (3), and study the profile of [(111)In]1/2/3 during in vivo inhibition of neutral endopeptidase (NEP) in comparison to the non-truncated [ ([(111)In]4) reference. Blood samples collected from mice 5 min postinjection (pi) of [(111)In]1/2/3/4 without or with phosphoramidon (PA) coinjection were analyzed by RP-HPLC. Biodistribution was conducted in SCID mice bearing A431-CCK2R(+) or AR42J xenografts 4h after administration of [(111)In]1/2/3/4 without or with PA coinjection. Firstly, we observed remarkable increases in the amount of radiopeptides detected intact in the blood of PA-treated mice at 5 min pi compared to controls. Secondly, we noted impressive enhancement of [(111)In]1/2/3 localization in AR42J and A431-CCK2R(+) tumors in mice after PA coinjection. Specifically, the uptake of [(111)In]1 at 4h pi increased from 2.6 ± 0.3%ID/g to 13.3 ± 3.5%ID/g in the AR42J tumors and from 4.3 ± 0.6%ID/g to 20.4 ± 3.6%ID/g in the A431-CCK2R(+) xenografts, with comparable improvements noted for [(111)In]2 and [(111)In]3 as well. Thirdly, renal uptake remained favorably low and unaffected by PA (85%ID/g) increased even further by PA (>140%ID/g). In situ inhibition of NEP represents a promising new tool to enhance the diagnostic efficacy of biodegradable gastrin radioligands in the visualization of CCK2R-positive lesions in man. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Studying Closed Hydrodynamic Models of "In Vivo" DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans.

    Science.gov (United States)

    Sendra, Luis; Miguel, Antonio; Pérez-Enguix, Daniel; Herrero, María José; Montalvá, Eva; García-Gimeno, María Adelaida; Noguera, Inmaculada; Díaz, Ana; Pérez, Judith; Sanz, Pascual; López-Andújar, Rafael; Martí-Bonmatí, Luis; Aliño, Salvador F

    2016-01-01

    Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT) gene are compared to reference standards in order to evaluate their potential clinical interest. A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3) with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4) with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7) successfully hydrofected with hAAT and healthy human liver segments (n = 4) were evaluated. Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ) reached higher tissue protein levels (4x10^5- copies/cell) than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell) and hydrofected mouse liver (10^6- copies/cell). However, protein levels in plasma were lower (pcases. Hydrofection of hAAT DNA to "in vivo" isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and surgically closed models mediate high tissue protein expression. Impairment of protein secretion to plasma

  10. Studying Closed Hydrodynamic Models of "In Vivo" DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans.

    Directory of Open Access Journals (Sweden)

    Luis Sendra

    Full Text Available Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT gene are compared to reference standards in order to evaluate their potential clinical interest.A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3 with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4 with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7 successfully hydrofected with hAAT and healthy human liver segments (n = 4 were evaluated.Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ reached higher tissue protein levels (4x10^5- copies/cell than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell and hydrofected mouse liver (10^6- copies/cell. However, protein levels in plasma were lower (p<0.001 than the reference standards in all cases.Hydrofection of hAAT DNA to "in vivo" isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and surgically closed models mediate high tissue protein

  11. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy

    Science.gov (United States)

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy. PMID:26574156

  12. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues.

    Science.gov (United States)

    N'Djin, W A; Burtnyk, M; Lipsman, N; Bronskill, M; Kucharczyk, W; Schwartz, M L; Chopra, R

    2014-09-01

    The recent clinical emergence of minimally invasive image-guided therapy has demonstrated promise in the management of brain metastasis, although control over the spatial pattern of heating currently remains limited. Based on experience in other organs, the delivery of high-intensity contact ultrasound energy from minimally invasive applicators can enable accurate spatial control of energy deposition, large treatment volumes, and high treatment rate. In this acute study, the feasibility of active MR-Temperature feedback control of dynamic ultrasound heat deposition for interstitial thermal ablation in brain was evaluatedin vivo. A four-element linear ultrasound transducer (f=8.2 MHz) originally developed for transurethral ultrasound therapy was used in a porcine model for generating thermal ablations in brain interstitially. First, the feasibility of treating and retreating preciselyin vivo brain tissues using stationary (non-rotating device) ultrasound exposures was studied in two pigs. Experimental results were compared to numerical simulations for maximum surface acoustic intensities ranging from 5 to 20 W cm(-2). Second, active MRT feedback-controlled ultrasound treatments were performed in three pigs with a rotating device to coagulate target volumes of various shapes. The acoustic power and rotation rate of the device were adjusted in real-time based on MR-thermometry feedback control to optimize heat deposition at the target boundary. Modeling of in vivo treatments were performed and compared to observed experimental results. Overall, the time-space evolution of the temperature profiles observedin vivo could be well estimated from numerical simulations for both stationary and dynamic interstitial ultrasound exposures. Dynamic exposures performed under closed-loop temperature control enabled accurate elevation of the brain tissues within the targeted region above the 55 °C threshold necessary for the creation of irreversible thermal damage. Treatment

  13. Non-formal Therapy and Learning Potentials through Human Gesture Synchronised to Robotic Gesture

    DEFF Research Database (Denmark)

    Petersson, Eva; Brooks, Tony

    2007-01-01

    for use as a supplement to traditional rehabilitation therapy sessions. The process involves the capturing of gesture data through an intuitive non-intrusive interface. The interface is invisible to the naked eye and offers a direct and immediate association between the child's physical feed......-forward gesture and the physical reaction (feedback) of the robotic device. Results from multiple sessions with four children with severe physical disability suggest that the potential of non-intrusive interaction with a multimedia robotic device that is capable of giving synchronized physical response offers...

  14. An exploration of the potential benefits of pet-facilitated therapy.

    Science.gov (United States)

    Brodie, S J; Biley, F C

    1999-07-01

    There is mounting evidence to suggest that those who keep pets are likely to benefit from various improvements in health. Despite founders of nursing such as Florence Nightingale advocating the importance of animals within the care environment, their integration into hospitals and other health care settings has been slow. The literature on animal-induced health benefits is reviewed and the conclusion is drawn that the potential benefits of pet therapy are considerable. It is suggested that nurses can assume an active role in advocating ward pet or pet-visiting schemes.

  15. Linking Binge Alcohol-Induced Neurodamage to Brain Edema and Potential Aquaporin-4 Upregulation: Evidence in Rat Organotypic Brain Slice Cultures and In Vivo

    OpenAIRE

    Sripathirathan, Kumar; Brown, James; Neafsey, Edward J.; Collins, Michael A.

    2009-01-01

    Brain edema and derived oxidative stress potentially are critical events in the hippocampal-entorhinal cortical (HEC) neurodegeneration caused by binge alcohol (ethanol) intoxication and withdrawal in adult rats. Edema's role is based on findings that furosemide diuretic antagonizes binge alcohol–dependent brain overhydration and neurodamage in vivo and in rat organotypic HEC slice cultures. However, evidence that furosemide has significant antioxidant potential and knowledge that alcohol can...

  16. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release

    Science.gov (United States)

    Zhang, Jinfeng; Li, Shengliang; An, Fei-Fei; Liu, Juan; Jin, Shubin; Zhang, Jin-Chao; Wang, Paul C.; Zhang, Xiaohong; Lee, Chun-Sing; Liang, Xing-Jie

    2015-08-01

    The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed to improve their drug loading capacities (which are typically self-carried nanodrug delivery strategies without using inert carriers is highly desirable. In this study, we developed a self-carried curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environments with drug loading capacities >78 wt%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescence ``OFF-ON'' activation and real-time monitoring of the Cur molecule release. In vitro and in vivo experiments clearly show that the therapeutic efficacy of the PEGylated Cur NPs is considerably better than that of free Cur. This self-carried strategy with real-time monitoring of drug release may open a new way for simultaneous cancer therapy and monitoring.The use of different nanocarriers for delivering hydrophobic pharmaceutical agents to tumor sites has garnered major attention. Despite the merits of these nanocarriers, further studies are needed to improve their drug loading capacities (which are typically self-carried nanodrug delivery strategies without using inert carriers is highly desirable. In this study, we developed a self-carried curcumin (Cur) nanodrug for highly effective cancer therapy in vitro and in vivo with real-time monitoring of drug release. With a biocompatible C18PMH-PEG functionalization, the Cur nanoparticles (NPs) showed excellent dispersibility and outstanding stability in physiological environments with drug loading capacities >78 wt%. Both confocal microscopy and flow cytometry confirmed the cellular fluorescence ``OFF-ON'' activation and real

  17. A treatment planning study of the potential of geometrical tracking for intensity modulated proton therapy of lung cancer

    DEFF Research Database (Denmark)

    Munck af Rosenschöld, Per; Aznar, Marianne; Nygaard, Ditte Eklund

    2010-01-01

    Proton therapy of lung cancer holds the potential for a reduction of the volume of irradiated normal lung tissue. In this work we investigate the robustness of intensity modulated proton therapy (IMPT) plans to motion, and evaluate a geometrical tumour tracking method to compensate for tumour...

  18. A treatment planning study of the potential of geometrical tracking for intensity modulated proton therapy of lung cancer

    DEFF Research Database (Denmark)

    af Rosenschöld, Per Munck; Aznar, Marianne C; Nygaard, Ditte E

    2010-01-01

    Proton therapy of lung cancer holds the potential for a reduction of the volume of irradiated normal lung tissue. In this work we investigate the robustness of intensity modulated proton therapy (IMPT) plans to motion, and evaluate a geometrical tumour tracking method to compensate for tumour mot...

  19. [Pattern visual evoked potentials in normal-vision eyes of post-therapy amblyopia].

    Science.gov (United States)

    Xiao, Manyi; Wei, Xin; Li, Yunping; Xiong, Wei; Xu, Shuxian

    2013-07-01

    To evaluate the clinical significance of pattern visual evoked potential (P-VEP) parameters on amblyopic patients with normal-vision after pleoptic therapy. We investigated 60 amblyopic children (8-12 years old) who gained normal-vision after pleoptic therapy. These patients were assigned to a unilateral amblyopia group (40 patients) and a bilateral amblyopia group (20 patients). Another 20 healthy children served as a control group. All patients underwent a full initial ophthalmologic and orthoptic evaluation. P-VEP test was performed in all. Amplitude and latencies were analyzed and compared among groups. The latencies of P100 waves in the amblyopic eyes were used to generate a multiple linear regression formula from sex, first treatment age, baseline visual acuity, and cycloplegic refraction. There was no significant difference in the mean levels of best-corrected visual acuity among groups (P>0.05). A significant prolongation of the latency and a decrease of amplitude of P100 waves were observed in the unilateral amblyopia group and the bilateral amblyopia group compared with the healthy control group (Pamblyopia group were abnormal compared with the healthy control group (Ptreatment age, baseline visual acuity, and cycloplegic refraction (R(2)= 0.52, Ptreatment age, baseline visual acuity, and cycloplegic refraction. Traditional amblyopic therapy may be not enough for vision function recovery.

  20. STAT1 pathway mediates amplification of metastatic potential and resistance to therapy.

    Directory of Open Access Journals (Sweden)

    Nikolai N Khodarev

    Full Text Available BACKGROUND: Traditionally IFN/STAT1 signaling is connected with an anti-viral response and pro-apoptotic tumor-suppressor functions. Emerging functions of a constitutively activated IFN/STAT1 pathway suggest an association with an aggressive tumor phenotype. We hypothesized that tumor clones that constitutively overexpress this pathway are preferentially selected by the host microenvironment due to a resistance to STAT1-dependent cytotoxicity and demonstrate increased metastatic ability combined with increased resistance to genotoxic stress. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that clones of B16F1 tumors grown in the lungs of syngeneic C57BL/6 mice demonstrate variable transcriptional levels of IFN/STAT1 pathway expression. Tumor cells that constitutively overexpress the IFN/STAT1 pathway (STAT1(H genotype are selected by the lung microenvironment. STAT1(H tumor cells also demonstrate resistance to IFN-gamma (IFNgamma, ionizing radiation (IR, and doxorubicin relative to parental B16F1 and low expressors of the IFN/STAT1 pathway (STAT1(L genotype. Stable knockdown of STAT1 reversed the aggressive phenotype and decreased both lung colonization and resistance to genotoxic stress. CONCLUSIONS: Our results identify a pathway activated by tumor-stromal interactions thereby selecting for pro-metastatic and therapy-resistant tumor clones. New therapies targeted against the IFN/STAT1 signaling pathway may provide an effective strategy to treat or sensitize aggressive tumor clones to conventional cancer therapies and potentially prevent distant organ colonization.

  1. Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy

    Science.gov (United States)

    López-Ozuna, Vanessa M.; Hachim, Ibrahim Y.; Hachim, Mahmood Y.; Lebrun, Jean-Jacques; Ali, Suhad

    2016-01-01

    Triple negative breast cancer (TNBC) is a heterogeneous disease associated with poor clinical outcome and lack of targeted therapy. Here we show that prolactin (PRL) and its signaling pathway serve as a sub-classifier and predictor of pro-differentiation therapy in TNBC. Using immunohistochemistry and various gene expression in silica analyses we observed that prolactin receptor (PRLR) protein and mRNA levels are down regulated in TNBC cases. In addition, examining correlation of PRLR gene expression with metagenes of TNBC subtypes (580 cases), we found that PRLR gene expression sub-classifies TNBC patients into a new subgroup (TNBC-PRLR) characterized by epithelial-luminal differentiation. Importantly, gene expression of PRL signaling pathway components individually (PRL, PRLR, Jak2 and Stat5a), or as a gene signature is able to predict TNBC patients with significantly better survival outcomes. As PRL hormone is a druggable target we determined the biological role of PRL in TNBC biology. Significantly, restoration/activation of PRL pathway in TNBC cells representative of mesenchymal or TNBC-PRLR subgroups led to induction of epithelial phenotype and suppression of tumorigenesis. Altogether, these results offer potential new modalities for TNBC stratification and development of personalized therapy based on PRL pathway activation. PMID:27480353

  2. Potential of microneedles in enhancing delivery of photosensitising agents for photodynamic therapy.

    Science.gov (United States)

    Kearney, Mary-Carmel; Brown, Sarah; McCrudden, Maelíosa T C; Brady, Aaron J; Donnelly, Ryan F

    2014-12-01

    Photodynamic therapy can be used in the treatment of pre-malignant and malignant diseases. It offers advantages over other therapies currently used in the treatment of skin lesions including avoidance of damage to surrounding tissue and minimal or no scarring. Unfortunately, systemic delivery of photosensitising agents can result in adverse effects, such as prolonged cutaneous photosensitivity; while topical administration lacks efficacy in the clearance of deeper skin lesions and those with a thick overlying keratotic layer. Therefore, enhancement of conventional photosensitiser delivery is desired. However, the physicochemical properties of photosensitising agents, such as extreme hydrophilicity or lipophilicity and large molecular weights make this challenging. This paper reviews the potential of microneedles as a viable method to overcome these delivery-limiting physicochemical characteristics and discusses the current benefits and limitations of solid, dissolving and hydrogel-forming microneedles. Clinical studies in which microneedles have successfully improved photodynamic therapy are also discussed, along with benefits which microneedles offer, such as precise photosensitiser localisation, painless application and reduction in waiting times between photosensitiser administration and irradiation highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Drug design with Cdc7 kinase: a potential novel cancer therapy target

    Directory of Open Access Journals (Sweden)

    Masaaki Sawa

    2008-11-01

    Full Text Available Masaaki Sawa1, Hisao Masai21Carna Biosciences, Inc., Kobe, Japan; 2Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, JapanAbstract: Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 of less than 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.Keywords: Cdc7 kinase, cell cycle, replication fork, genome stability, DNA damages, ATP-binding pocket, kinase inhibitor

  4. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ding X

    2016-03-01

    Full Text Available Xiaojie Ding,1,2,* Lijuan Qiu,1,2,* Lijuan Zhang,3 Juemin Xi,1,2 Duo Li,1,2 Xinwei Huang,1,2 Yujiao Zhao,1,2 Xiaodang Wang,1,2 Qiangming Sun1,2 1Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, 3Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Provincial Tumor Hospital, Kunming, People’s Republic of China*These authors contributed equally to this workBackground: Semaphorin 4D (Sema4D belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current antiangiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC, however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF backgrounds.Methods: The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays.Results: Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF

  5. In vivo antimicrobial potentials of garlic against Clostridium perfringens and its promotant effects on performance of broiler chickens.

    Science.gov (United States)

    Jimoh, A A; Ibitoye, E B; Dabai, Y U; Garba, S

    2013-12-15

    This study was conducted to investigate in vivo antimicrobial potential of garlic against Clostridium perferinges and resultant promotant effects on performance of the broiler chickens. Garlic powder was used as an alternative to GPAs (Growth Promotant Antibiotics) to prevent subclinical Necrotic Enteritis (NE) due to C. perferinges. 120 day-old broiler chicks were randomly distributed to six treatment groups of 20 chicks each (2 replicates(-10) chicks). Six isonutrient diets supplemented with garlic at graded levels of 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5 g kg(-1) were fed to the birds for seven weeks. Data were collected weekly on performance parameters including feed intake, weight gain and feed conversion ratio (FCR). Also, on the 21 35 and 49th days of the study, two birds per group were randomly selected, slaughtered and dissected. 1 g of caecal contents per each bird were sampled into labelled sterile sample bottles. The samples were subjected to culturing, bacterial identification and colony counting. All data were subjected to analysis of variance. Results showed that garlic significantly (p > 0.05) depressed feed intake (3310 g feed/bird at 1.0 g kg(-1) supplementation) but improved FCR. The supplement has no significant effect on weight gain but C. perfringens colony counts in the treated groups, were numerically reduced (lowest count, 0.93 x 10(5) cfu g(-1) at 1.0 g kg(-1) supplementation), as compared to the control. It is therefore concluded that diets could be supplemented with garlic at dose range of 1.0 to 1.5 g kg(-1) to prevent subclinical NE and achieve improved performance in birds.

  6. Identification and nanoentrapment of polyphenolic phytocomplex from Fraxinus angustifolia: in vitro and in vivo wound healing potential.

    Science.gov (United States)

    Moulaoui, Kenza; Caddeo, Carla; Manca, Maria Letizia; Castangia, Ines; Valenti, Donatella; Escribano, Elvira; Atmani, Djebbar; Fadda, Anna Maria; Manconi, Maria

    2015-01-07

    The aim of the present study was to elucidate the polyphenolic composition of Fraxinus angustifolia leaf and bark extracts, and to evaluate their efficacy in wound healing. Quercetin, catechin, rutin and tannic acid were identified as the main components of the extracts. In order to improve their skin bioavailability, the polyphenolic phytocomplexes were incorporated in different nanovesicles, namely ethosomes and phospholipid vesicles containing Transcutol(®) P (Trc) or ethylene glycol (EG). The latter had never been used before as a component of phospholipid vesicles, and it was found to play a key role in improving extract efficacy in wound healing. Results of cryogenic transmission electron microscopy (cryo-TEM), Photon Correlation Spectroscopy (PCS) and Small-Angle X-ray Scattering (SAXS) showed that ethosomes and EG-PEVs were small, monodispersed, unilamellar vesicles, while Trc-PEVs were larger, less homogeneously dispersed and multilamellar, with a large bilayer thickness. Free extracts did not show relevant ability to protect in vitro human keratinocytes from H2O2 damages, while when entrapped in nanovesicles, they significantly inhibited H2O2 stress damages, probably related to a higher level of cell uptake. On the other hand, in vivo results showed that the highest antioxidant and anti-inflammatory effects were provided by the phytocomplexes in EG-PEVs, which favoured wound healing. Moreover, non-entrapped F. angustifolia extracts showed a marginal effect, comparable to that of free quercetin dispersion (control). In conclusion, our results depict that these extracts may find potential applications in biomedicine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    Science.gov (United States)

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  8. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence.

    Science.gov (United States)

    Fardet, Anthony; Rock, Edmond

    2017-10-02

    The antioxidant potential (AP) is an important nutritional property of foods, as increased oxidative stress is involved in most diet-related chronic diseases. In dairy products, the protein fraction contains antioxidant activity, especially casein. Other antioxidants include: antioxidant enzymes; lactoferrin; conjugated linoleic acid; coenzyme Q10; vitamins C, E, A and D3; equol; uric acid; carotenoids; and mineral activators of antioxidant enzymes. The AP of dairy products has been extensively studied in vitro, with few studies in animals and human subjects. Available in vivo studies greatly differ in their design and objectives. Overall, on a 100 g fresh weight-basis, AP of dairy products is close to that of grain-based foods and vegetable or fruit juices. Among dairy products, cheeses present the highest AP due to their higher protein content. AP of milk increases during digestion by up to 2·5 times because of released antioxidant peptides. AP of casein is linked to specific amino acids, whereas β-lactoglobulin thiol groups play a major role in the AP of whey. Thermal treatments such as ultra-high temperature processing have no clear effect on the AP of milk. Raw fat-rich milks have higher AP than less fat-rich milk, because of lipophilic antioxidants. Probiotic yoghurts and fermented milks have higher AP than conventional yoghurt and milk because proteolysis by probiotics releases antioxidant peptides. Among the probiotics, Lactobacillus casei/acidophilus leads to the highest AP. The data are insufficient for cheese, but fermentation-based changes appear to make a positive impact on AP. In conclusion, AP might participate in the reported dairy product-protective effects against some chronic diseases.

  9. [Effects of BmKIM on sodium current of isolated cardiomyocytes, transmembrane action potential and aconitine induced arrhythmia in vivo in rabbits].

    Science.gov (United States)

    Wang, Teng; Huang, Cong-Xin; Jiang, Hong; Tang, Qi-Zhu; Yang, Bo; Li, Geng-Shan

    2009-02-01

    To investigate the effects of recombinant BmKIM (poly-peptide derived from Asian Scorpion Buthus martensi Karsch) on the sodium current (I(Na)) of isolated ventricular myocytes, transmembrane action potential and aconitine induced arrhythmia in vivo in rabbits. Ventricular myocytes were enzymatically dissociated from adult rabbits. Whole-cell patch-clamp technique was used to record voltage-dependent I(Na). Standard transmembrane action potentials in rabbit hearts in vivo were recorded by using floating glass microelectrodes. Incidence of arrhythmias, the early after depolarization (EAD) and/or delay after depolarization (DAD) were measured in vivo in rabbits post aconitine (100 microg/kg, iv) in the absence or presence of BmKIM (50 microg/kg iv). (1) BmKIM significantly inhibited I(Na) in a voltage-dependent manner and significantly shifted the I-V curves of I(Na) upward. BmKIM left shifted the inactivation curve of I(Na) and voltages at 50% inactivation of I(Na) were changed from (-70.8 +/- 2.6) mV to (-84.8 +/- 3.5) mV (P action potential duration (APD(50) and APD(90)), and reduced action potential amplitude (APA), declined maximum up stroke velocity of action potential (V(max)) in vivo. The Q-T duration was shortened and heart rate significantly increased post BmKIM injection. (3) Incidence of aconitine induced ventricular arrhythmias (77.8%) was significantly reduced by BmKIM (22.2%, P action potential duration and reduce action potential amplitude and reduce the incidence of aconitine induced arrhythmias.

  10. Nodal Melanoma Metastasis under Infliximab Therapy in a Patient with Nevoid Melanoma First Misdiagnosed as Benign Nevus: A Potentially Dangerous Diagnostic Pitfall in the Era of Biologic Therapies

    OpenAIRE

    Gilles Safa; Sophie Fromentoux; Laure Darrieux; Jean-Anastase Hogenhuis; Laurent Tisseau

    2013-01-01

    We report the case of a 53-year-old Caucasian woman who developed nodal melanoma metastasis under infliximab therapy 2 years after the removal of a nevoid melanoma, which was initially misdiagnosed as a benign compound nevus. This case illustrates the potential link between tumor necrosis factor (TNF)-α inhibition and the reactivation of latent melanoma. Furthermore, this case highlights the need for a complete skin examination before using anti-TNF-α therapy to rule out atypical malignant le...

  11. Drug repurposing strategy against Trypanosoma cruzi infection: In vitro and in vivo assessment of the activity of metronidazole in mono- and combined therapy.

    Science.gov (United States)

    Simões-Silva, M R; De Araújo, J S; Oliveira, G M; Demarque, K C; Peres, R B; D'Almeida-Melo, I; Batista, D G J; Da Silva, C F; Cardoso-Santos, C; Da Silva, P B; Batista, M M; Bahia, M T; Soeiro, M N C

    2017-12-01

    Metronidazole (Mtz) is a commercial broad-spectrum nitroimidazolic derivative with relevant antimicrobial activity and relative safety profile. Therefore, it is fair to consider Mtz a candidate for drug repurposing for other neglected conditions such as Chagas disease (CD), a parasitic pathology caused by Trypanosoma cruzi. CD is treated only with benznidazole (Bz) and nifurtimox, both introduced in clinics decades ago despite important limitations, including low efficacy on the later disease stage (chronic form) and severe side effects. New cheap and fast alternative treatments for CD are needed, thus the repurposing of Mtz was assessed in vitro and in vivo in mono- and combined therapy. In vitro assays demonstrated EC50>200µM for Mtz, while for Bz the values ranged from 2.51µM (intracellular forms) to 11.5µM (bloodstream trypomastigotes). When both drugs were combined in fixed-ratio proportions, Mtz promoted Bz potency (lower EC50 values). In vivo toxicity assays for Mtz in mice showed no adverse effects neither histopathological alterations up to 2000mg/kg. Regarding experimental T. cruzi infection, Bz 100mg/kg suppressed parasitemia while Mtz (up to 1000mg/kg) in monotherapy did not, but prolonged animal survival at 250 and 500 regimen doses. The combination of both drugs (Bz 10+Mtz 250) prevented mortality (70%) besides protected against electric cardiac alterations triggered by the parasite infection. Although not able to reduce parasite load, the combination therapy prevented animal mortality; this was possibly due to a protection of the electric cardiac physiology that is normally altered in experimental infection of T. cruzi. It also suggested that the interaction with Mtz could have improved the pharmacokinetics of Bz. Our study emphasizes the importance of drug repurposing and combined therapy for CD to contribute to alternative therapies for this neglected and silent pathology. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. In vivo mitochondrial function in HIV-infected persons treated with contemporary anti-retroviral therapy: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Brendan A I Payne

    Full Text Available Modern anti-retroviral therapy is highly effective at suppressing viral replication and restoring immune function in HIV-infected persons. However, such individuals show reduced physiological performance and increased frailty compared with age-matched uninfected persons. Contemporary anti-retroviral therapy is thought to be largely free from neuromuscular complications, whereas several anti-retroviral drugs previously in common usage have been associated with mitochondrial toxicity. It has recently been established that patients with prior exposure to such drugs exhibit irreversible cellular and molecular mitochondrial defects. However the functional significance of such damage remains unknown. Here we use phosphorus magnetic resonance spectroscopy ((31P-MRS to measure in vivo muscle mitochondrial oxidative function, in patients treated with contemporary anti-retroviral therapy, and compare with biopsy findings (cytochrome c oxidase (COX histochemistry. We show that dynamic oxidative function (post-exertional ATP (adenosine triphosphate resynthesis was largely maintained in the face of mild to moderate COX defects (affecting up to ∼10% of fibers: τ½ ADP (half-life of adenosine diphosphate clearance, HIV-infected 22.1±9.9 s, HIV-uninfected 18.8±4.4 s, p = 0.09. In contrast, HIV-infected patients had a significant derangement of resting state ATP metabolism compared with controls: ADP/ATP ratio, HIV-infected 1.24±0.08×10(-3, HIV-uninfected 1.16±0.05×10(-3, p = 0.001. These observations are broadly reassuring in that they suggest that in vivo mitochondrial function in patients on contemporary anti-retroviral therapy is largely maintained at the whole organ level, despite histochemical (COX defects within individual cells. Basal energy requirements may nevertheless be increased.

  13. Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Hardeep Kataria

    Full Text Available Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha, the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.

  14. Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas.

    Science.gov (United States)

    Kataria, Hardeep; Wadhwa, Renu; Kaul, Sunil C; Kaur, Gurcharan

    2013-01-01

    Neuroblastoma is an aggressive childhood disease of the sympathetic nervous system. Treatments are often ineffective and have serious side effects. Conventional therapy of neuroblastoma includes the differentiation agents. Unlike chemo-radiotherapy, differentiation therapy shows minimal side effects on normal cells, because normal non-malignant cells are already differentiated. Keeping in view the limited toxicity of Withania somnifera (Ashwagandha), the current study was aimed to investigate the efficacy of Ashwagandha water extract (ASH-WEX) for anti-proliferative potential in neuroblastoma and its underlying signalling mechanisms. ASH-WEX significantly reduced cell proliferation and induced cell differentiation as indicated by morphological changes and NF200 expression in human IMR-32 neuroblastoma cells. The induction of differentiation was accompanied by HSP70 and mortalin induction as well as pancytoplasmic translocation of the mortalin in ASH-WEX treated cells. Furthermore, the ASH-WEX treatment lead to induction of neural cell adhesion molecule (NCAM) expression and reduction in its polysialylation, thus elucidating its anti-migratory potential, which was also supported by downregulation of MMP 2 and 9 activity. ASH-WEX treatment led to cell cycle arrest at G0/G1 phase and increase in early apoptotic population. Modulation of cell cycle marker Cyclin D1, anti-apoptotic marker bcl-xl and Akt-P provide evidence that ASH-WEX may prove to be a promising phytotherapeutic intervention in neuroblatoma related malignancies.

  15. Production of recombinant streptokinase from Streptococcus pyogenes isolate and its potential for thrombolytic therapy.

    Science.gov (United States)

    Assiri, Abdullah S; El-Gamal, Basiouny A; Hafez, Elsayed E; Haidara, Mohamed A

    2014-12-01

    To produce an effective recombinant streptokinase (rSK) from pathogenic Streptococcus pyogenes isolate in yeast, and evaluate its potential for thrombolytic therapy. This study was conducted from November 2012 to December 2013 at King Khalid University, Abha, Kingdom of Saudi Arabia (KSA). Throat swabs collected from 45 pharyngitis patients in Asser Central Hospital, Abha, KSA were used to isolate Streptococcus pyogenes. The bacterial DNA was used for amplification of the streptokinase gene (1200 bp). The gene was cloned and in vitro transcribed in an eukaryotic expression vector that was transformed into yeast Pichia pastoris SMD1168, and the rSK protein was purified and tested for its thrombolytic activity. The Streptococcus pyogenes strain was isolated and its DNA nucleotide sequence revealed similarity to other Streptococcus pyogenes in the Gene bank. Sequencing of the amplified gene based on DNA nucleotide sequence revealed a SK gene closely related to other SK genes in the Gene bank. However, based on deduced amino acids sequence, the gene formed a separate cluster different from clusters formed by other examined genes, suggesting a new bacterial isolate and accordingly a new gene. The purified protein showed 82% clot lysis compared to a commercial SK (81%) at an enzyme concentration of 2000 U/ml. The present yeast rSK showed similar thrombolytic activity in vitro as that of a commercial SK, suggesting its potential for thrombolytic therapy and large scale production. 

  16. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs.

    Science.gov (United States)

    Combes, Robert D; Shah, Atul B

    2016-07-01

    Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement). 2016 FRAME.

  17. Inducible In Vivo Silencing of Brd4 Identifies Potential Toxicities of Sustained BET Protein Inhibition

    Directory of Open Access Journals (Sweden)

    Jessica E. Bolden

    2014-09-01

    Full Text Available BET family proteins are novel therapeutic targets for cancer and inflammation and represent the first chromatin readers against which small-molecule inhibitors have been developed. First-generation BET inhibitors have shown therapeutic efficacy in preclinical models, but the consequences of sustained BET protein inhibition in normal tissues remain poorly characterized. Using an inducible and reversible transgenic RNAi mouse model, we show that strong suppression of the BET protein Brd4 in adult animals has dramatic effects in multiple tissues. Brd4-depleted mice display reversible epidermal hyperplasia, alopecia, and decreased cellular diversity and stem cell depletion in the small intestine. Furthermore, Brd4-suppressed intestines are sensitive to organ stress and show impaired regeneration following irradiation, suggesting that concurrent Brd4 suppression and certain cytotoxic therapies may induce undesirable synergistic effects. These findings provide important insight into Brd4 function in normal tissues and, importantly, predict several potential outcomes associated with potent and sustained BET protein inhibition.

  18. Benzofuran-chalcone hybrids as potential multifunctional agents against Alzheimer's disease: synthesis and in vivo studies with transgenic Caenorhabditis elegans.

    Science.gov (United States)

    Sashidhara, Koneni V; Modukuri, Ram K; Jadiya, Pooja; Dodda, Ranga Prasad; Kumar, Manoj; Sridhar, Balasubramaniam; Kumar, Vikash; Haque, Rizwanul; Siddiqi, Mohammad Imran; Nazir, Aamir

    2014-12-01

    In the search for effective multifunctional agents for the treatment of Alzheimer's disease (AD), a series of novel hybrids incorporating benzofuran and chalcone fragments were designed and synthesized. These hybrids were screened by using a transgenic Caenorhabditis elegans model that expresses the human β-amyloid (Aβ) peptide. Among the hybrids investigated, (E)-3-(7-methyl-2-(4-methylbenzoyl)benzofuran-5-yl)-1-phenylprop-2-en-1-one (4 f), (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-phenylprop-2-en-1-one (4 i), and (E)-3-(2-benzoyl-7-methylbenzofuran-5-yl)-1-(thiophen-2-yl)prop-2-en-1-one (4 m) significantly decreased Aβ aggregation and increased acetylcholine (ACh) levels along with the overall availability of ACh at the synaptic junction. These compounds were also found to decrease acetylcholinesterase (AChE) levels, reduce oxidative stress in the worms, lower lipid content, and to provide protection against chemically induced cholinergic neurodegeneration. Overall, the multifunctional effects of these hybrids qualify them as potential drug leads for further development in AD therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Total sesquiterpene lactones prepared from Inula helenium L. has potentials in prevention and therapy of rheumatoid arthritis.

    Science.gov (United States)

    Gao, Shuang; Wang, Qun; Tian, Xin-Hui; Li, Hui-Liang; Shen, Yun-Heng; Xu, Xi-Ke; Wu, Guo-Zhen; Hu, Zhen-Lin; Zhang, Wei-Dong

    2017-01-20

    Inula helenium L. is an herb with anti-inflammatory properties. Sesquiterpene lactones (SLs), mainly alantolactone (AL) and isoalantolactone (IAL), are considered as its active ingredients. However, the anti-inflammatory effects of SL-containing extracts of I. helenium have not been explored. Here we prepared total SLs from I. helenium (TSL-IHL), analyzed its chemical constituents, and performed cellular and animal studies to evaluate its anti-inflammatory activities. The chemical profile of TSL-IHL was analyzed by HPLC-UV. Its in vitro effects on the activation of signaling pathways and expression of inflammatory genes were examined by western blotting and quantitative real-time PCR, respectively, and compared with those of AL and IAL. Its in vivo anti-inflammatory effects were evaluated in adjuvant- and collagen-induced arthritis rat models. Chemical analysis showed that AL and IAL represent major constituents of TSL-IHL. TSL-IHL, as well as AL and IAL, could inhibit TNF-α-induced activation of NF-κB and MAPK pathways in b. End3 cells, suppress the expressions of MMP-3, MCP-1, and IL-1 in TNF-α-stimulated synovial fibroblasts, and IL-1, IL-6, and iNOS in LPS-activated RAW 264.7 cells in a dose-dependent manner in the range of 0.6-2.4μg/mL. Oral administration of TSL-IHL at 12.5-50mg/kg could dose-dependently alleviate the arthritic severity and paw swelling in either developing or developed phases of arthritis of rats induced by adjuvant or collagen CONCLUSIONS: These results indicated potentials of TSL-IHL in prevention and therapy of rheumatoid arthritis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Measuring airway surface liquid depth in ex vivo mouse airways by x-ray imaging for the assessment of cystic fibrosis airway therapies.

    Directory of Open Access Journals (Sweden)

    Kaye S Morgan

    Full Text Available In the airways of those with cystic fibrosis (CF, the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.

  1. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma.

    Science.gov (United States)

    Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin

    2016-08-05

    For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.

  2. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Hor-Yue Tan

    2016-08-01

    Full Text Available For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC cell lines and human umbilical vein endothelial cells (HUVEC were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.

  3. RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo.

    Science.gov (United States)

    Wang, Wei; Liu, Zhimin; Sun, Peng; Fang, Cheng; Fang, Hongwei; Wang, Yueming; Ji, Jiajia; Chen, Jun

    2015-07-17

    Gastric cancer, a high-risk malignancy, is a genetic disease developing from a cooperation of multiple gene mutations and a multistep process. Gene therapy is a novel treatment method for treating gastric cancer. Here, we developed a novel Arg-Gly-Asp (RGD) peptides conjugated copolymers nanoparticles-based gene delivery system in order to actively targeting inhibit the growth of gastric cancer cells. These transcription factor (AP-2α) expression plasmids were also encapsulated into pluronic triblock copolymers nanoparticles which was constituted of poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol) (PEO-block-PPO-block-PEO, P123). The size, morphology and composition of prepared nanocomposites were further characterized by nuclear magnetic resonance (NMR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). In MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide) analysis, these nanocomposites have minor effects on the proliferation of GES-1 cells but significantly decreased the viability of MGC-803, suggesting they own low cytotoxicity but good antitumor activity. The following in vivo evaluation experiments confirmed that these nanocomposites could prevent the growth of gastric cancer cells in the tumor xenograft mice model. In conclusion, these unique RGD peptides conjugated P123 encapsulated AP-2α nanocomposites could selectively and continually kill gastric cancer cells by over-expression of AP-2α in vitro and in vivo; this exhibits huge promising applications in clinical gastric cancer therapy.

  4. RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-07-01

    Full Text Available Gastric cancer, a high-risk malignancy, is a genetic disease developing from a cooperation of multiple gene mutations and a multistep process. Gene therapy is a novel treatment method for treating gastric cancer. Here, we developed a novel Arg-Gly-Asp (RGD peptides conjugated copolymers nanoparticles-based gene delivery system in order to actively targeting inhibit the growth of gastric cancer cells. These transcription factor (AP-2α expression plasmids were also encapsulated into pluronic triblock copolymers nanoparticles which was constituted of poly(ethylene glycol-block-poly(propylene glycol- block-poly(ethylene glycol (PEO-block-PPO-block-PEO, P123. The size, morphology and composition of prepared nanocomposites were further characterized by nuclear magnetic resonance (NMR, transmission electron microscopy (TEM and dynamic light scattering (DLS. In MTT (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyltetrazolium bromide analysis, these nanocomposites have minor effects on the proliferation of GES-1 cells but significantly decreased the viability of MGC-803, suggesting they own low cytotoxicity but good antitumor activity. The following in vivo evaluation experiments confirmed that these nanocomposites could prevent the growth of gastric cancer cells in the tumor xenograft mice model. In conclusion, these unique RGD peptides conjugated P123 encapsulated AP-2α nanocomposites could selectively and continually kill gastric cancer cells by over-expression of AP-2α in vitro and in vivo; this exhibits huge promising applications in clinical gastric cancer therapy.

  5. In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29.

    Science.gov (United States)

    Park, Jong-Hwan; Ahn, Mee-Young; Kim, Yong-Chul; Kim, Soo-A; Moon, Yeon-Hee; Ahn, Sang-Gun; Yoon, Jung-Hoon

    2012-01-01

    Photodynamic therapy (PDT) has been recommended as an alternative therapy for various diseases including microbial infection. Recently, we developed a new method for the preparation of highly pure chlorin e(6) (Ce(6)), which has been widely used as a second-generation photosensitizer. PDT using Ce(6) was very effective for inhibition of in vitro growth of several bacterial strains. To clarify a possibility for its clinical application, in this study, we examined in vitro and in vivo antimicrobial effects of Ce(6)-mediated PDT in mice model of skin infection of Staphylococcus aureus Xen29. Inhibition zone analysis and colony forming unit (CFU) count revealed that Ce(6)-mediated PDT inhibited effectively in vitro bacterial growth. In addition, biofilm formation ability of S. aureus Xen29 was decreased by Ce(6)-mediated PDT. In vivo experiment, mice receiving Ce(6)-mediated PDT exhibited less intensity of bioluminescent signal, showing significant inhibition of bacterial growth. Furthermore, in histopathological examination, marked neutrophilic infiltration and massive bacterial colonies were seen in control mice and mice receiving laser or Ce(6) alone, but not in mice treated with PDT. These results suggest that PDT using Ce(6) extracted by our new method can be clinically useful against bacterial infectious diseases.

  6. Cognitive behaviour therapy and inflammation: A systematic review of its relationship and the potential implications for the treatment of depression.

    Science.gov (United States)

    Lopresti, Adrian L

    2017-06-01

    There is growing evidence confirming increased inflammation in a subset of adults with depression. The impact of this relationship has mostly been considered in biologically based interventions; however, it also has potential implications for psychological therapies. Cognitive behaviour therapy is the most commonly used psychological intervention for the treatment of depression with theories around its efficacy primarily based on psychological mechanisms. However, cognitive behaviour therapy may have an effect on, and its efficacy influenced by, physiological processes associated with depression. Accordingly, the purpose of this systematic review was to examine the relationship between cognitive behaviour therapy and inflammation. Studies examining the anti-inflammatory effects of cognitive behaviour therapy in people with depression and other medical conditions (e.g. cancer, diabetes and heart disease) were examined. In addition, the relationship between change in inflammatory markers and change in depressive symptoms following cognitive behaviour therapy, and the influence of pre-treatment inflammation on cognitive behaviour therapy treatment response were reviewed. A total of 23 studies investigating the anti-inflammatory effects of cognitive behaviour therapy were identified. In 14 of these studies, at least one reduction in an inflammatory marker was reported, increases were identified in three studies and no change was found in six studies. Three studies examined the relationship between change in inflammation and change in depressive symptoms following cognitive behaviour therapy. In two of these studies, change in depressive symptoms was associated with a change in at least one inflammatory marker. Finally, three studies examined the influence of pre-treatment inflammation on treatment outcome from cognitive behaviour therapy, and all indicated a poorer treatment response in people with higher premorbid inflammation. Preliminary evidence suggests

  7. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    Science.gov (United States)

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  8. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma

    OpenAIRE

    Camerin, Monica; Moreno, Miguel; Marín, María J.; Schofield, Claire L; Chambrier, Isabelle; Cook, Michael J; Coppellotti, Olimpia; Jori, Giulio; Russell, David A.

    2016-01-01

    Photodynamic therapy (PDT) is a treatment of cancer whereby tumours are destroyed by reactive oxygen species generated upon photoactivation of a photosensitizer drug. Hydrophobic photosensitizers are known to be ideal for PDT; however, their hydrophobicity necessitates that they are typically administered using emulsions. Here, a delivery vehicle for photodynamic therapy based on the co-self-assembly of both a Zn(ii)-phthalocyanine derivative photosensitizer and a polyethylene glycol (PEG) de...

  9. A new preclinical approach for treating chronic osteomyelitis induced by Staphylococcus aureus: in vitro and in vivo study on photodynamic antimicrobial therapy (PAmT).

    Science.gov (United States)

    dos Reis, João Alves; de Carvalho, Fabíola Bastos; Trindade, Renan Ferreira; de Assis, Patrícia Nascimento; de Almeida, Paulo Fernando; Pinheiro, Antônio Luiz Barbosa

    2014-03-01

    Osteomyelitis is an acute or chronic inflammation in the marrow spaces in the superficial or cortical bone, and can be associated with bacterial or fungal infections. Chronic osteomyelitis represents a major health problem due to its difficult treatment and increased morbidity. Photodynamic antimicrobial therapy (PAmT) is a treatment based on a cytotoxic photochemical reaction in which a bright light produced by a laser system and an active photosensitizer absorbed by cells leads to a process of activation that induces a series of metabolic reactions that culminates a bacterial killing. The aim of the present randomized study was to evaluate, by in vitro and in vivo microbiological analysis, the effects of PAmT on tibial surgical bone defects in rats infected by Staphylococcus aureus using bacterial counts carried out immediately and after 30 days after treatment as outcome measure. In the preliminary in vitro study, a diode laser (λ660 nm; 40 mW; ϕ = 0.4 cm(2); 5 or 10 J/cm(2)) and 5, 10, and 15 μg/mL toluidine blue were tested, and the best parameter was chosen for the in vivo study. The concentration of 5 μg/mL was selected to perform the decontamination of S. aureus-infected tibial bone defects in rats. The findings were subjected to statistical analysis. For all PAmTs groups, with the different concentrations, treatment showed significant reductions (p < 0.001) in the amount of bacteria. The in vivo study PAmT group presented a bacterial reduction of 97.4% (p < 0.001). The PAmT using toluidine blue was effective in reducing the number of S. aureus in both in vitro and in vivo studies.

  10. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy.

    Science.gov (United States)

    Li, Jin; Maguy, Ange; Duverger, James Elber; Vigneault, Patrick; Comtois, Philippe; Shi, Yanfen; Tardif, Jean-Claude; Thomas, Dierk; Nattel, Stanley

    2014-11-01

    Autoantibodies directed against various cardiac receptors have been implicated in cardiomyopathy and heart rhythm disturbances. In a previous study among patients with dilated cardiomyopathy, autoantibodies targeting the cardiac voltage-gated KCNQ1 K(+) channel were associated with shortened corrected QT intervals (QTc). However, the electrophysiologic actions of KCNQ1 autoimmunity have not been assessed experimentally in a direct fashion. The purpose of this study was to investigate the cardiac electrophysiologic effects of KCNQ1 autoantibody production induced by vaccination in a rabbit model. Rabbits were immunized with KCNQ1 channel peptide. ECG recordings were obtained during a 1-month follow-up period. Rabbits then underwent in vivo electrophysiologic study, after which cardiomyocytes were isolated for analysis of slow delayed rectifier current (IKs) and action potential properties via patch-clamp. KCNQ1-immunized rabbits exhibited shortening of QTc compared to sham-immunized controls. Reduced ventricular effective refractory periods and increased susceptibility to ventricular tachyarrhythmia induction were noted in KCNQ1-immunized rabbits upon programmed ventricular stimulation. Action potential durations were shortened in cardiomyocytes isolated from KCNQ1-immunized rabbits compared to the sham group. IKs step and tail current densities were enhanced after KCNQ1 immunization. Functional and structural changes of the heart were not observed. The potential therapeutic significance of KCNQ1 immunization was then explored in a dofetilide-induced long QT rabbit model. KCNQ1 immunization prevented dofetilide-induced QTc prolongation and attenuated long QT-related arrhythmias. Induction of KCNQ1 autoimmunity accelerates cardiac repolarization and increases susceptibility to ventricular tachyarrhythmia induction through IKs enhancement. On the other hand, vaccination against KCNQ1 ameliorates drug-induced QTc prolongation and might be useful therapeutically to

  11. In vivo

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  12. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  13. In vitro evaluation of wound healing and antimicrobial potential of ozone therapy.

    Science.gov (United States)

    Borges, Gabriel Álvares; Elias, Silvia Taveira; da Silva, Sandra Márcia Mazutti; Magalhães, Pérola Oliveira; Macedo, Sergio Bruzadelli; Ribeiro, Ana Paula Dias; Guerra, Eliete Neves Silva

    2017-03-01

    Although ozone therapy is extensively applied when wound repair and antimicrobial effect are necessary, little is known about cellular mechanisms regarding this process. Thus, this study aimed to evaluate ozone cytotoxicity in fibroblasts (L929) and keratinocytes (HaCaT) cell lines, its effects on cell migration and its antimicrobial activity. Cells were treated with ozonated phosphate-buffered saline (8, 4, 2, 1, 0.5 and 0.25 μg/mL ozone), chlorhexidine 0.2% or buffered-solution, and cell viability was determined through MTT assay. The effect of ozone on cell migration was evaluated through scratch wound healing and transwell migration assays. The minimum inhibitory concentrations for Candida albicans and Staphylococcus aureus were determined. Ozone showed no cytotoxicity for the cell lines, while chlorhexidine markedly reduced cell viability. Although no significant difference between control and ozone-treated cells was observed in the scratch assay, a considerable increase in fibroblasts migration was noticed on cells treated with 8 μg/mL ozonated solution. Ozone alone did not inhibit growth of microorganisms; however, its association with chlorhexidine resulted in antimicrobial activity. This study confirms the wound healing and antimicrobial potential of ozone therapy and presents the need for studies to elucidate the molecular mechanisms through which it exerts such biological effects. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  14. Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds.

    Science.gov (United States)

    Marfia, Giovanni; Navone, Stefania Elena; Di Vito, Clara; Ughi, Nicola; Tabano, Silvia; Miozzo, Monica; Tremolada, Carlo; Bolla, Gianni; Crotti, Chiara; Ingegnoli, Francesca; Rampini, Paolo; Riboni, Laura; Gualtierotti, Roberta; Campanella, Rolando

    2015-01-01

    Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing. In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies. Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging. Current and future treatment approaches are discussed with an emphasis on recent advances.

  15. Long-acting muscarinic antagonists: a potential add-on therapy in the treatment of asthma?

    Directory of Open Access Journals (Sweden)

    William W. Busse

    2016-03-01

    Full Text Available Asthma is a chronic inflammatory disorder of the airways that is a major global burden on both individuals and healthcare systems. Despite guideline-directed treatment, a significant proportion of patients with asthma do not achieve control. This review focuses on the potential use of long-acting anticholinergics as bronchodilators in the treatment of asthma, with results published from clinical trials of glycopyrrolate, umeclidinium and tiotropium. The tiotropium clinical trial programme is the most advanced, with data available from a number of phase II and III studies of tiotropium as an add-on to inhaled corticosteroid maintenance therapy, with or without a long-acting β2-agonist, in patients across asthma severities. Recent studies using the Respimat Soft Mist inhaler have identified 5 µg once daily as the preferred dosing regimen, which has shown promising results in adults, adolescents and children with asthma. Tiotropium Respimat has recently been incorporated into the Global Initiative for Asthma 2015 treatment strategy as a recommended alternative therapy at steps 4 and 5 in adult patients with a history of exacerbations. The increasing availability of evidence from ongoing and future clinical trials will be beneficial in determining where long-acting anticholinergic agents fit in future treatment guidelines across a variety of patient populations and disease severities.

  16. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy.

    Science.gov (United States)

    González-Vallinas, Margarita; Reglero, Guillermo; Ramírez de Molina, Ana

    2015-01-01

    Cancer remains an important cause of mortality nowadays and, therefore, new therapeutic approaches are still needed. Rosemary (Rosmarinus officinalis L.) has been reported to possess antitumor activities both in vitro and in animal studies. Some of these activities were attributed to its major components, such as carnosic acid, carnosol, ursolic acid, and rosmarinic acid. Initially, the antitumor effects of rosemary were attributed to its antioxidant activity. However, in recent years, a lack of correlation between antioxidant and antitumor effects exerted by rosemary was reported, and different molecular mechanisms were related to its tumor inhibitory properties. Moreover, supported by the U.S. Food and Drug Administration and the European Food and Safety Authority, specific compositions of rosemary extract were demonstrated to be safe for human health and used as antioxidant additive in foods, suggesting the potential easy application of this agent as a complementary approach in cancer therapy. In this review, we aim to summarize the reported anticancer effects of rosemary, the demonstrated molecular mechanisms related to these effects and the interactions between rosemary and currently used anticancer agents. The possibility of using rosemary extract as a complementary agent in cancer therapy in comparison with its isolated components is discussed.

  17. Arsenic trioxide re-sensitizes ERα-negative breast cancer cells to endocrine therapy by restoring ERα expression in vitro and in vivo.

    Science.gov (United States)

    Zhang, Weijie; Wang, Liuxing; Fan, Qingxia; Wu, Xinai; Wang, Feng; Wang, Rui; Ma, Zhijun; Yang, Jianhua; Lu, Shih Hsin

    2011-09-01

    Approximately one-third of breast cancers lack estrogen receptor α (ERα) because of the hypermethylation of the CpG island in the receptor's promoter. These tumors are associated with poorer histological differentiation, a higher growth fraction, are rarely responsive to endocrine therapy and have a worse clinical outcome. Thus, re-expression of ERα in ERα-negative breast cancers may restore the sensitivity of antiestrogen therapy. The ERα-negative breast cancer cell line MDA-MB-435s was treated with different concentrations of arsenic trioxide (As2O3). MS-PCR was used to detect the change in the methylation status of ERα. RT-PCR, immunohistochemistry and Western blot analyses were used to detect changes in the mRNA and protein expression of DNA methyl-transferase-1 (DNMT1) and ERα. Cell proliferation was examined using the MTT assay. A xenograft model in nude mice was used to further examine the results we observed in vitro. The ERα gene was demethylated after As2O3 treatment of MDA-MB-435s cells. RT-PCR, immunohistochemistry and Western blot analyses revealed that DNMT1 expression was inhibited and ERα was re-expressed in a concentration-dependent manner after As2O3 treatment. The MTT assay showed that cell proliferation was significantly suppressed after exposure to different concentrations of As2O3. Addition of tamoxifen (TAM) further suppressed levels of cell proliferation. In vivo, the xenograft tumor volumes of As2O3-treated mice were smaller than those observed in untreated and TAM-treated mice. Treatment with a combination of As2O3+TAM resulted in further suppression. As2O3 can act as a demethylation agent to restore ERα expression in ERα-negative breast cancer cells and re-sensitize these cells to endocrine therapy in vitro and in vivo.

  18. Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy in Vitro and in Vivo.

    Science.gov (United States)

    Zhang, Jinfeng; Liang, Yu-Chuan; Lin, Xudong; Zhu, Xiaoyue; Yan, Li; Li, Shengliang; Yang, Xia; Zhu, Guangyu; Rogach, Andrey L; Yu, Peter K N; Shi, Peng; Tu, Lung-Chen; Chang, Chia-Ching; Zhang, Xiaohong; Chen, Xianfeng; Zhang, Wenjun; Lee, Chun-Sing

    2015-10-27

    Theranostic nanomedicine is capable of diagnosis, therapy, and monitoring the delivery and distribution of drug molecules and has received growing interest. Herein, a self-monitored and self-delivered photosensitizer-doped FRET nanoparticle (NP) drug delivery system (DDS) is designed for this purpose. During preparation, a donor/acceptor pair of perylene and 5,10,15,20-tetro (4-pyridyl) porphyrin (H2TPyP) is co-doped into a chemotherapeutic anticancer drug curcumin (Cur) matrix. In the system, Cur works as a chemotherapeutic agent. In the meantime, the green fluorescence of Cur molecules is quenched (OFF) in the form of NPs and can be subsequently recovered (ON) upon release in tumor cells, which enables additional imaging and real-time self-monitoring capabilities. H2TPyP is employed as a photodynamic therapeutic drug, but it also emits efficient NIR fluorescence for diagnosis via FRET from perylene. By exploiting the emission characteristics of these two emitters, the combinatorial drugs provide a real-time dual-fluorescent imaging/tracking system in vitro and in vivo, and this has not been reported before in self-delivered DDS which simultaneously shows a high drug loading capacity (77.6%Cur). Overall, our carrier-free DDS is able to achieve chemotherapy (Cur), photodynamic therapy (H2TPyP), and real-time self-monitoring of the release and distribution of the nanomedicine (Cur and H2TPyP). More importantly, the as-prepared NPs show high cancer therapeutic efficiency both in vitro and in vivo. We expect that the present real-time self-monitored and self-delivered DDS with multiple-therapeutic and multiple-fluorescent ability will have broad applications in future cancer therapy.

  19. Aluminum and other metals in Alzheimer's disease: a review of potential therapy with chelating agents.

    Science.gov (United States)

    Domingo, Jose L

    2006-11-01

    Alzheimer's disease (AD) is characterized by the presence of neuritic plaques and neurofibrillary tangles in the brain. Although the causes of AD remain still unknown, it seems that certain environmental factors may be involved in the etiology and pathogenesis of the disease. While AD is associated with the abnormal aggregation of beta-amyloid protein in the brain, evidence shows that certain metals play a role in the precipitation and cytotoxicity of this protein. Among these metals, the potential role of aluminum as a possible ethiopathogenic factor in AD has been especially controversial. This review is mainly focused on the role of aluminum and metals such as copper and zinc in AD, as well as on metal chelator therapy as a potential treatment for AD. The effects of desferrioxamine and other Al chelating agents have been reviewed. The role of the metal chelator clioquinol in AD, which has been reported to reduce beta-amyloid plaques, presumably by chelation associated with copper and zinc, is also revised. Finally, the potential role of silicon in AD is also discussed.

  20. In vivo evaluation of a MR-guided 980nm laser interstitial thermal therapy system for ablations in porcine liver.

    Science.gov (United States)

    Garcia-Medina, Oscar; Gorny, Krzysztof; McNichols, Roger; Friese, Jeremy; Misra, Sanjay; Amrami, Kimberly; Bjarnason, Haraldur; Callstrom, Matthew; Woodrum, David

    2011-04-01

    To evaluate the use of a 980-nm diode laser for magnetic resonance-guided laser interstitial thermal therapy (MR-guided LITT) ablations in liver tissue in an in vivo porcine model. MR-guided guided LITT was performed on nine juvenile pigs placed under general anesthesia. Target ablation sites were selected in the left and right lobes of the liver. Laser applicators were placed in the liver using intermittent MR guidance. Up to four separate ablations were performed in each animal using a 15 or 30 W laser generator using one or two applicators. During the ablations, continuous MR-based temperature mapping (MR-thermal mapping), using a proton resonance frequency technique, was performed to monitor the size of the ablation in real-time. Extent of thermal tissue damage was continuously estimated based on Arrhenius model. Two-minute ablations were performed at each site. MR-thermal mapping of ablations within the posteroinferior liver were accomplished with continuous breathing at low tidal volume. In the mid right lobe of the liver, due to motion artefacts, MR-thermometry was performed intermittently during breath hold periods. In the left lobe of the liver, ablations were performed with ventilation using positive end expiratory pressure (PEEP) of 10 cm of water. Upon completion, MR imaging with gadolinium contrast was performed to assess the extent of treatment. Thermal lesions were subsequently measured using both, MR-thermal dose and MR gadolinium images, for comparison. Following the animal euthanasia, the liver was harvested and subjected to formalin fixation and paraffin embedding for histological examination. Between one and four focal liver ablations (total 24 ablations) were successfully performed in nine animals with either a 15 or 30 W laser generator. For the 15-W laser generator, the average single applicator ablation size was (2.0 ± 0.5) × (2.6 ± 0.4) cm(2) , as measured by magnetic resonance (MR) thermometry, or (1.7 ± 0.4)

  1. Assessment of (10)B concentration in boron neutron capture therapy: potential of image-guided therapy using (18)FBPA PET.

    Science.gov (United States)

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of (10)B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The (10)B concentration in normal organs after loading with (10)B, however, has not been established in humans. In this study, we performed 4-borono-2-[(18)F]-fluoro-phenylalanine ((18)FBPA) PET in healthy volunteers and estimated the chronological changes in the (10)B concentrations of normal organs. In 6 healthy volunteers, whole-body (18)FBPA PET scans were repeated 7 times during 1 h, and the mean (18)FBPA distributions of 13 organs were measured. Based on the (18)FBPA PET data, we then estimated the changes in the (10)B concentrations of the organs when the injection of a therapeutic dose of (10)BPA-fructose complex ((10)BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean (18)FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean (18)FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of (10)BPA-fr was assumed, the estimated mean (10)B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean (10)B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean (10)B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. (18)FBPA PET has a potential to estimate (10)B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  2. The potential of intravenous immunoglobulins for cancer therapy: a road that is worth taking?

    Science.gov (United States)

    Corbí, Angel L; Sánchez-Ramón, Silvia; Domínguez-Soto, Angeles

    2016-05-01

    Much has been learned recently about the role of immunoglobulins as effector molecules of the adaptive immunity and as active elements in the maintenance of immune homeostasis. The increasing number of pathologies where intravenous immunoglobulins (IVIg) display a beneficial action illustrates their therapeutic relevance. Considering recent findings on the ability of IVIg to modulate macrophage polarization, herein we review evidences on the antitumoral activity of IVIg. Fragmentary and nonconclusive, available evidences are just suggestive of the potential of IVIg in antitumoral therapy, but encourage for the generation of additional evidences through well-designed clinical trials, and for additional studies to address the molecular effects of IVIg as a means to avoid the extrapolation of data gathered from animal models.

  3. Flavonoids and Wnt/β-Catenin Signaling: Potential Role in Colorectal Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Nathália G. Amado

    2014-07-01

    Full Text Available It is now well documented that natural products have played an important role in anticancer therapy. Many studies focus on the ability of these natural compounds to modulate tumor-related signaling pathways and the relationship of these properties to an anticancer effect. According to the World Health Organization (WHO, colorectal cancer (CRC is the third most common cancer and the fourth leading cause of cancer death among men and women. Therefore, finding strategies to fight against CRC is an emergent health problem. CRC has a strong association with deregulation of Wnt/β-catenin signaling pathway. As some types of natural compounds are capable of modulating the Wnt/β-catenin signaling, one important question is whether they could counteract CRC. In this review, we discuss the role of flavonoids, a class of natural compounds, on Wnt/β-catenin regulation and its possible potential for therapeutic usage on colorectal cancer.

  4. Application of the holographic interference microscope for investigation of ozone therapy influence on blood erythrocytes of patients in vivo

    Science.gov (United States)

    Tishko, Tatyana V.; Titar, V. P.; Barchotkina, T. M.; Tishko, D. N.

    2004-09-01

    The holographic methods of phase micro-objects visualization (the holographic phase contrast method and the method of holographic interferometry) are considered. Comparative analysis of classical and holographic methods in microscopy of phase micro-objects is carried out. An arrangement of the holographic interference microscope realizing the holographic methods and experimental results of 3-D imaging of native blood erythrocytes are presented. It is shown that 3-D morphology of blood erythrocytes reflects and determines the state of a human organism and those different physical and chemical factors and internal pathologies influence erythrocytes morphology. The holographic interference microscope was used for investigation of ozone therapy influence on human blood erythrocytes. Blood samples of 60 patients of different age with neurosensoric hardness of hearing before and after ozone therapy were investigated. It was shown that all patients have changed erythrocytes mrophology. Ozone therapy treatment results in normalization of erythrocytes morphology of patients.

  5. Retrospective analysis of antiretroviral therapy uptake and retention of male clients receiving methadone maintenance therapy in two provinces in Vietnam: potential synergy of the two therapies.

    Science.gov (United States)

    Pham, Linh Thi Thuy; Kitamura, Akiko; Do, Hoa Mai; Lai, Kim Anh; Le, Nhan Tuan; Nguyen, Van Thi Thuy; Kato, Masaya

    2017-02-17

    Vietnam has a concentrated HIV epidemic with injection drug use being the dominant mode of HIV transmission. Vietnam has rapidly expanded antiretroviral therapy (ART) and methadone maintenance therapy (MMT). This study aims to analyze ART uptake and retention among male clients receiving MMT in Vietnam in the early phase of the MMT program. The male clients (age ≥18) who were newly enrolled in care or started ART at two HIV clinics in Hanoi (2009 to 2011) and three HIV clinics in Can Tho (2010 to 2012) were included for the analysis. The CD4 lymphocyte count at HIV care enrollment and ART initiation and retention on ART were retrospectively analyzed. The values of those receiving MMT were compared with the values of two groups: those in whom injection drug use (IDU) status was documented, but were not receiving MMT, and all male clients not receiving MMT. To analyze retention, survival analysis with log rank test and Cox proportional hazard model was used. During the study period, 663 adult men were newly enrolled in HIV care (237 had IDU status documented) and 456 initiated ART (167 had IDU status documented). Among those who initiated ART, 28 were receiving MMT. At care enrolment, those receiving MMT had a median CD4 count of 230 (IQR 57-308) cells/mm3, while men self-reporting IDU and not receiving MMT and all men not receiving MMT had a median CD4 count of 158 (IQR 50-370) cells/mm3 and 143 (IQR 35-366) cells/mm3, respectively. At ART initiation, men receiving MMT had significantly higher CD4 count with median at 203 (IQR 64-290) cells/mm3 than men self-reporting IDU and not receiving MMT (80, IQR 40-220, cells/mm3, p = 0.038) and all men not receiving MMT (76, IQR 20-199, cells/mm3, p = 0.009). Those receiving MMT had a significantly higher retention rate than those self-reporting IDU but not receiving MMT (hazard ratio = 0.18, p = 0.019) and men not receiving MMT (hazard ratio = 0.20, p = 0.041). Our analysis suggests that men receiving MMT

  6. Efficacy of rifampicin combination therapy for the treatment of enterococcal infections assessed in vivo using a Galleria mellonella infection model.

    Science.gov (United States)

    Skinner, Kirsty; Sandoe, Jonathan A T; Rajendran, Ranjith; Ramage, Gordon; Lang, Sue

    2017-04-01

    Enterococci are a leading cause of healthcare-associated infection worldwide and display increasing levels of resistance to many of the commonly used antimicrobials, making treatment of their infections challenging. Combinations of antibiotics are occasionally employed to treat serious infections, allowing for the possibility of synergistic killing. The aim of this study was to evaluate the effects of different antibacterial combinations against enterococcal isolates using an in vitro approach and an in vivo Galleria mellonella infection model. Five Enterococcus faecalis and three Enterococcus faecium strains were screened by paired combinations of rifampicin, tigecycline, linezolid or vancomycin using the chequerboard dilution method. Antibacterial combinations that displayed synergy were selected for in vivo testing using a G. mellonella larvae infection model. Rifampicin was an effective antibacterial enhancer when used in combination with tigecycline or vancomycin, with minimum inhibitory concentrations (MICs) of each individual antibiotic being reduced by between two and four doubling dilutions, generating fractional inhibitory concentration index (FICI) values between 0.31 and 0.5. Synergy observed with the chequerboard screening assays was subsequently observed in vivo using the G. mellonella model, with combination treatment demonstrating superior protection of larvae post-infection in comparison with antibiotic monotherapy. In particular, rifampicin in combination with tigecycline or vancomycin significantly enhanced larvae survival. Addition of rifampicin to anti-enterococcal treatment regimens warrants further investigation and may prove useful in the treatment of enterococcal infections whilst prolonging the clinically useful life of currently active antibiotics. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Incorporating peer support during in vivo exposure to reverse dropout from prolonged exposure therapy for posttraumatic stress disorder: Clinical outcomes.

    Science.gov (United States)

    Hernandez-Tejada, Melba A; Hamski, Stephanie; Sánchez-Carracedo, David

    2017-01-01

    Objective Prolonged exposure is characterized by reported dropout rates ranging from 25% to 40%. This premature attrition is also observed in other evidence-based treatments for posttraumatic stress disorder. While home-based telehealth delivery of prolonged exposure resolves logistical barriers to care such as travel time and cost, dropout appears unaffected. A previous study on dropouts from prolonged exposure delivered via telehealth found that Veterans, particularly those receiving care via telehealth, reported problems with in vivo exposure and that having a peer to offer support during in vivo exposure assignments might have prevented their attrition from treatment. Methods The present pilot study treatment was designed in a manner consistent with the aforementioned Veteran suggestions, specifically to involve peers offering verbal support and encouragement during in vivo exposure homework. Such a treatment modification might be particularly useful for those receiving care via telehealth, given increased difficulties with exposure reported when this treatment delivery modality is used. It was hypothesized that dropouts would agree to reengage in treatment with a peer and would subsequently evince improvement in posttraumatic stress disorder and depression scores as a result of this treatment reengagement. Results Of 82 dropouts from prolonged exposure, 29 reentered treatment when offered peer support during exposure (12 in telehealth and 17 in person). Conclusion Treatment reentry was effective insofar as indices of both posttraumatic stress disorder and depression were significantly reduced in both telehealth and in person groups, indicating that using peers in this way may be an effective means by which to return Veterans to care, and ultimately reduce symptomatology.

  8. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy.

    Science.gov (United States)

    Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V

    2017-02-01

    Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  9. Potential usage of ING family members in cancer diagnostics and molecular therapy.

    Science.gov (United States)

    Gunduz, Mehmet; Demircan, Kadir; Gunduz, Esra; Katase, Naoki; Tamamura, Ryo; Nagatsuka, Hitoshi

    2009-05-01

    The Inhibitor of Growth (ING) gene family is an emerging putative type II tumor suppressor gene (TSG). Proteins of INGs (ING1-5), critical modulator of the histone code via PHD fingers, are able to suppress cell growth and proliferation, induce apoptosis, and modulate cell cycle progression. ING proteins are involved in transcriptional regulation of genes, such as the p53-inducible gene p21. ING proteins also serve as shuttling proteins between nucleus and cytoplasm, and dysregulation of this nucleocytoplasmic traffic has been shown in some cancer cells. In cancer cells, ING mRNA levels are often lost or suppressed but the genes are rarely mutated. Recently the potential roles of ING proteins as prognostic biomarkers, detection of aggressive behavior of the tumor as well as prediction of chemo-radiotherapy response have also emerged. In this review, we summarize the up-to-date knowledge on functions of the ING proteins, the protein status in human tumors and discuss as a potential target in the molecular diagnostics and therapy of cancer.

  10. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    Directory of Open Access Journals (Sweden)

    Magdalena Działo

    2016-02-01

    Full Text Available Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  11. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders.

    Science.gov (United States)

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-02-18

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract.

  12. Rat models of spinal cord injury: from pathology to potential therapies

    Directory of Open Access Journals (Sweden)

    Jacob Kjell

    2016-10-01

    Full Text Available A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials.

  13. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  14. Vitamin D as an adjunctive therapy in asthma. Part 1: A review of potential mechanisms.

    LENUS (Irish Health Repository)

    Kerley, Conor P

    2015-02-27

    Vitamin D deficiency (VDD) is highly prevlalent worldwide. The classical role for vitamin D is to regulate calcium absorption form the gastrointestinal tract and influence bone health. Recently vitamin D receptors and vitamin D metabolic enzymes have been discovered in numerous sites systemically supporting diverse extra-skeletal roles of vitamin D, for example in asthmatic disease. Further, VDD and asthma share several common risk factors including high latitude, winter season, industrialization, poor diet, obesity, and dark skin pigmentation. Vitamin D has been demonstrated to possess potent immunomodulatory effects, including effects on T cells and B cells as well as increasing production of antimicrobial peptides (e.g. cathelicidin). This immunomodulation may lead to asthma specific clinical benefits in terms of decreased bacterial\\/viral infections, altered airway smooth muscle-remodeling and -function as well as modulation of response to standard anti-asthma therapy (e.g. glucocorticoids and immunotherapy). Thus, vitamin D and its deficiency have a number of biological effects that are potentially important in altering the course of disease pathogenesis and severity in asthma. The purpose of this first of a two-part review is to review potential mechanisms whereby altering vitamin D status may influence asthmatic disease.

  15. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders

    Science.gov (United States)

    Działo, Magdalena; Mierziak, Justyna; Korzun, Urszula; Preisner, Marta; Szopa, Jan; Kulma, Anna

    2016-01-01

    Phenolic compounds constitute a group of secondary metabolites which have important functions in plants. Besides the beneficial effects on the plant host, phenolic metabolites (polyphenols) exhibit a series of biological properties that influence the human in a health-promoting manner. Evidence suggests that people can benefit from plant phenolics obtained either by the diet or through skin application, because they can alleviate symptoms and inhibit the development of various skin disorders. Due to their natural origin and low toxicity, phenolic compounds are a promising tool in eliminating the causes and effects of skin aging, skin diseases, and skin damage, including wounds and burns. Polyphenols also act protectively and help prevent or attenuate the progression of certain skin disorders, both embarrassing minor problems (e.g., wrinkles, acne) or serious, potentially life-threatening diseases such as cancer. This paper reviews the latest reports on the potential therapy of skin disorders through treatment with phenolic compounds, considering mostly a single specific compound or a combination of compounds in a plant extract. PMID:26901191

  16. Eph receptor A10 has a potential as a target for a prostate cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Kazuya [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 (Japan); Yamashita, Takuya [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 (Japan); Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Inoue, Masaki [Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi