WorldWideScience

Sample records for vivo immune responses

  1. In vivo optical imaging to visualize photodynamic therapy-induced immune responses

    Science.gov (United States)

    Mitra, Soumya; Foster, Thomas H.

    2009-02-01

    Motivated by recent successes in growing intradermal tumors in the ears of mice and establishing the feasibility of in vivo confocal imaging of anatomic vessels in these tumors using fluorophore-conjugated antibodies to CD31, we are exploring a number of applications of optical fluorescence imaging in superficial murine tumor models in vivo. Immune responses induced by photodynamic therapy (PDT) are dynamic processes that occur in a spatially and temporally specific manner. To visualize these processes noninvasively, we have made progress in developing optical molecular imaging strategies that take advantage of intradermal injection of fluorophore-conjugated-antibodies against surface antigens on immune cells. This enables confocal imaging of the fluorescently labeled host cells to depths of at least 100 microns, and using this technique we have achieved in vivo imaging of granulocyte (GR-1)- and major histocompatibility complex class II (MHC-II)-positive cell trafficking in tumors in response to PDT. The latter include macrophages and dendritic cells. Data from tumors that were subjected to PDT with the photosensitizer, HPPH, reveals a significantly enhanced level of GR-1+ cell infiltration compared to untreated control tumor. The temporal kinetics of GR-1+ and MHC-II+ cells at different time intervals post-PDT are being examined. The ability to image host responses in vivo without excising or perturbing the tissue has opened up opportunities to explore means of optimizing them to therapeutic advantage.

  2. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  3. Tetherin promotes the innate and adaptive cell-mediated immune response against retrovirus infection in vivo.

    Science.gov (United States)

    Li, Sam X; Barrett, Bradley S; Heilman, Karl J; Messer, Ronald J; Liberatore, Rachel A; Bieniasz, Paul D; Kassiotis, George; Hasenkrug, Kim J; Santiago, Mario L

    2014-07-01

    Tetherin/BST-2 is a host restriction factor that could directly inhibit retroviral particle release by tethering nascent virions to the plasma membrane. However, the immunological impact of Tetherin during retrovirus infection remains unknown. We now show that Tetherin influences antiretroviral cell-mediated immune responses. In contrast to the direct antiviral effects of Tetherin, which are dependent on cell surface expression, the immunomodulatory effects are linked to the endocytosis of the molecule. Mice encoding endocytosis-competent C57BL/6 Tetherin exhibited lower viremia and pathology at 7 d postinfection with Friend retrovirus (FV) compared with mice encoding endocytosis-defective NZW/LacJ Tetherin. Notably, antiretroviral protection correlated with stronger NK cell responses. In addition, Friend retrovirus infection levels were significantly lower in wild-type C57BL/6 mice than in Tetherin knockout mice at 2 wk postinfection, and antiretroviral protection correlated with stronger NK cell and virus-specific CD8+ T cell responses. The results demonstrate that Tetherin acts as a modulator of the cell-mediated immune response against retrovirus infection in vivo.

  4. Orange juice and hesperidin promote differential innate immune response in macrophages ex vivo.

    Science.gov (United States)

    Zanotti Simoes Dourado, Grace Kelly; de Abreu Ribeiro, Lívia C; Zeppone Carlos, Iracilda; Borges César, Thais

    2013-01-01

    The purpose of this study was to verify the immune response induced by intake of orange juice or hesperidin on macrophages through the secretion of cytokines and nitric oxide. Mice were divided in three groups treated orally with orange juice, hesperidin, or control for 2 weeks. Ex vivo macrophages from all groups of mice were cultured with or without lipopolysaccharide (LPS)-stimuli, and the levels of nitric oxide (NO) and of the cytokines IL-10, IL-12, and TNF-alpha were evaluated. Macrophages of non-LPS-stimulated, orange juice treatment increased IL-12 levels by 143 % and the other cytokines and NO levels were unchanged. Hesperidin treatment increased IL-12 levels by 72 % and strongly decreased the NO secretion. For LPS-stimulated macrophages the orange juice (OJ) treatment decreased TNF-alpha secretion by 100 % and did not alter other cytokines, while NO levels increased 41 %. Hesperidin treatment decreased NO, IL-10, IL-12, and TNF-alpha levels by 56 %, 47 %, 29 %, and 63 %, respectively. In conclusion, OJ and hesperidin showed different immune responses, suggesting that hesperidin displays a suppressive effect on inflammation generated by LPS, while OJ seems to enhance the functions of macrophages associated with antimicrobial activity.

  5. In Vivo Delivery of Antigens by Adenovirus Dodecahedron Induces Cellular and Humoral Immune Responses to Elicit Antitumor Immunity

    Science.gov (United States)

    Villegas-Mendez, Ana; Garin, Marina I; Pineda-Molina, Estela; Veratti, Eugenia; Bueren, Juan A; Fender, Pascal; Lenormand, Jean-Luc

    2010-01-01

    Cancer vaccines based on virus-like particles (VLPs) vectors may offer many advantages over other antigen-delivery systems and represent an alternative to the ex vivo cell therapy approach. In this study, we describe the use of penton-dodecahedron (Pt-Dd) VLPs from human adenovirus type 3 (Ad3) as cancer vaccine vehicle for specific antigens, based on its unique cellular internalization properties. WW domains from the ubiquitin ligase Nedd4 serve as an adapter to bind the antigen to Pt-Dd. By engineering fusion partners of WW with the model antigen ovalbumin (OVA), Pt-Dd can efficiently deliver WW-OVA in vitro and the Pt-Dd/WW complex can be readily internalized by dendritic cells (DCs). Immunization with WW-OVA/Pt-Dd results in 90% protection against B16-OVA melanoma implantation in syngeneic mice. This high level of protection correlates with the development of OVA-specific CD8+ T cells. Moreover, vaccination with WW-OVA Pt-Dd induces robust humoral responses in mice as shown by the high levels of anti-OVA antibodies (Abs) detected in serum. Importantly, treatment of mice bearing B16-OVA tumors with WW-OVA/Pt-Dd results in complete tumor regression in 100% of cases. Thus, our data supports a dual role of Pt-Dd as antigen-delivery vector and natural adjuvant, able to generate integrated cellular and humoral responses of broad immunogenic complexity to elicit specific antitumor immunity. Antigen delivery by Pt-Dd vector is a promising novel strategy for development of cancer vaccines with important clinical applications. PMID:20179681

  6. In Vivo Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane.

    Science.gov (United States)

    Hassanbhai, Ammar Mansoor; Lau, Chau Sang; Wen, Feng; Jayaraman, Praveena; Goh, Bee Tin; Yu, Na; Teoh, Swee-Hin

    2017-10-01

    Collagen has been used extensively in tissue engineering applications. However, the source of collagen has been primarily bovine and porcine. In view of the potential risk of zoonotic diseases and religious constraints associated with bovine and porcine collagen, fish collagen was examined as an alternative. The aim of this study is to use tilapia fish collagen to develop a cross-linked electrospun membrane to be used as a barrier membrane in guided bone regeneration. As there is limited data available on the cytotoxicity and immunogenicity of cross-linked tilapia collagen, in vitro and in vivo tests were performed to evaluate this in comparison to the commercially available Bio-Gide ® membrane. In this study, collagen was extracted and purified from tilapia skin and electrospun into a nanofibrous membrane. The resultant membrane was cross-linked to obtain a cross-linked electrospun tilapia collagen (CETC) membrane, which was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), degradation studies, cytotoxicity studies, and cell proliferation studies. The membranes were also implanted subcutaneously in rats and the host immune responses were examined. The DSC data showed that cross-linking increased the denaturation temperature of tilapia collagen to 58.3°C ± 1.4°C. The in vitro tests showed that CETC exhibited no cytotoxicity toward murine fibroblast L929 cells, and culture of murine preosteoblast MC3T3-E1 cells demonstrated better proliferation on CETC as compared to Bio-Gide. When implanted in rats, CETC caused a higher production of interleukin IL-6 at early time points as compared to Bio-Gide, but there was no long-term inflammatory responses after the acute inflammation phase. This finding was supported with histology data, which clearly illustrated that CETC has a decreased inflammatory response comparable to the benchmark control group. In all, this study demonstrated the viability for the use of CETC as a

  7. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  8. The effect of the food matrix on in vivo immune responses to purified peanut allergens.

    NARCIS (Netherlands)

    Wijk, F. van; Nierkens, S.; Hassing, I.; Feijen, M.; Koppelman, S.J.; Jong, G.A. de; Pieters, R.; Knippels, L.M.

    2005-01-01

    There is little knowledge about the factors that determine the allergenicity of food proteins. One aspect that remains to be elucidated is the effect of the food matrix on immune responses to food proteins. To study the intrinsic immunogenicity of allergens and the influence of the food matrix,

  9. Immune response

    Science.gov (United States)

    ... viruses, and substances that appear foreign and harmful. Information The immune system protects the body from possibly harmful substances by ... reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Immune System and Disorders Read more Latest Health News Read ...

  10. Requirement of CTLA-4 counter receptors for IL-4 but not IL-10 elevations during a primary systemic in vivo immune response

    NARCIS (Netherlands)

    Lu, P.; di Zhou, X.; Chen, S.J.; Moorman, M.; Schoneveld, A.; Morris, S.; Finkelman, F.D.; Linsley, P.; Claassen, E.; Gause, W.C.

    1995-01-01

    The CD28/CTLA-4 costimulatory signal is required for TCR-mediated T cell activation resulting in increased IL-2 production in vitro, but its role in IL-4 production is unclear and few studies have examined the function of CTLA-4/CD28 in the in vivo immune response. We have examined the in vivo

  11. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo

    Science.gov (United States)

    Lappalainen, Suvi; Pastor, Ana Ruth; Tamminen, Kirsi; López-Guerrero, Vanessa; Esquivel-Guadarrama, Fernando; Palomares, Laura A; Vesikari, Timo; Blazevic, Vesna

    2014-01-01

    Rotavirus (RV) is a common cause of severe gastroenteritis (GE) in children worldwide. Live oral RV vaccines protect against severe RVGE, but the immune correlates of protection are not yet clearly defined. Inner capsid VP6 protein is a highly conserved, abundant, and immunogenic RV protein, and VP6-specific mucosal antibodies, especially IgA, have been implicated to protect against viral challenge in mice. In the present study systemic and mucosal IgG and IgA responses were induced by immunizing BALB/c mice intranasally with a combination of recombinant RV VP6 protein (subgroup II [SGII]) and norovirus (NoV) virus-like particles (VLPs) used in a candidate vaccine. Following immunization mice were challenged orally with murine RV strain EDIMwt (SG non-I-non-II, G3P10[16]). In order to determine neutralizing activity of fecal samples, sera, and vaginal washes (VW) against human Wa RV (SGII, G1P1A[8]) and rhesus RV (SGI, G3P5B[3]), the RV antigen production was measured with an ELISA-based antigen reduction neutralization assay. Only VWs of immunized mice inhibited replication of both RVs, indicating heterotypic protection of induced antibodies. IgA antibody depletion and blocking experiments using recombinant VP6 confirmed that neutralization was mediated by anti-VP6 IgA antibodies. Most importantly, after the RV challenge significant reduction in viral shedding was observed in feces of immunized mice. These results suggest a significant role for mucosal RV VP6-specific IgA for the inhibition of RV replication in vitro and in vivo. In addition, these results underline the importance of non-serotype-specific immunity induced by the conserved subgroup-specific RV antigen VP6 in clearance of RV infection. PMID:25424814

  12. In vivo imaging of therapy-induced anti-cancer immune responses in humans

    NARCIS (Netherlands)

    Aarntzen, E.H.J.G.; Srinivas, M.; Radu, C.G.; Punt, C.J.A.; Boerman, O.C.; Figdor, C.G.; Oyen, W.J.G.; Vries, I.J.M. de

    2013-01-01

    Immunotherapy aims to re-engage and revitalize the immune system in the fight against cancer. Research over the past decades has shown that the relationship between the immune system and human cancer is complex, highly dynamic, and variable between individuals. Considering the complexity, enormous

  13. IN VIVO SCREENING OF CHEMICAL MODIFICATIONS OF siRNAs FOR EFFECT ON THE INNATE IMMUNE RESPONSE IN FISH

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Schyth, Brian Dall; Bramsen, J. B.

    Abstract Due to their sequence specific gene silencing activity siRNAs are regarded as promising new active compounds in gene medicine and functional studies. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNAs duplexes....... Cellular reactions towards double stranded RNAs include the 2´-5´ oligoadenylate synthetase system, the protein kinase R, RIG-I and Toll-like receptor activated pathways all resulting in antiviral defence mechanism. We have previously shown that antiviral innate immune reactions against injected siRNAs...... could be detected in vivo as reduced susceptibility to a fish pathogenic virus. This protection corresponded with an interferon response. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone and find that is possible to differentiate between...

  14. A model for personalized in vivo analysis of human immune responsiveness

    NARCIS (Netherlands)

    Kalscheuer, Hannes; Danzl, Nichole; Onoe, Takashi; Faust, Ted; Winchester, Robert; Goland, Robin; Greenberg, Ellen; Spitzer, Thomas R; Savage, David G; Tahara, Hiroyuki; Choi, Goda; Yang, Yong-Guang; Sykes, Megan

    2012-01-01

    Studies of human immune diseases are generally limited to the analysis of peripheral blood lymphocytes of heterogeneous patient populations. Improved models are needed to allow analysis of fundamental immunologic abnormalities predisposing to disease and in which to assess immunotherapies.

  15. Innate responses induced by whole inactivated virus or subunit influenza vaccines in cultured dendritic cells correlate with immune responses in vivo.

    Directory of Open Access Journals (Sweden)

    Maaike Stoel

    Full Text Available Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to a vaccine in vitro is in line with the immune response the vaccine evokes in vivo. To this end, we investigated the response of murine bone marrow-derived DCs to whole inactivated virus (WIV and subunit (SU influenza vaccine preparations. These vaccine preparations were chosen because they differ in the immune response they evoke in mice with WIV being superior to SU vaccine through induction of higher virus-neutralizing antibody titers and a more favorable Th1-skewed response phenotype. Stimulation of DCs with WIV, but not SU vaccine, resulted in a cytokine response that was comparable to that of DCs stimulated with live virus. Similarly, the gene expression profiles of DCs treated with WIV or live virus were similar and differed from that of SU vaccine-treated DCs. More specifically, exposure of DCs to WIV resulted in differential expression of genes in known antiviral pathways, whereas SU vaccine did not. The stronger antiviral and more Th1-related response of DCs to WIV as compared to SU vaccine correlates well with the superior immune response found in mice. These results indicate that in vitro stimulation of DCs with novel vaccine candidates combined with the assessment of multiple parameters, including gene signatures, may be a valuable tool for the selection of vaccine candidates.

  16. The immune responses to bacterial antigens encountered in vivo at mucosal surfaces.

    OpenAIRE

    Dougan, G; Ghaem-Maghami, M; Pickard, D; Frankel, G; Douce, G; Clare, S; Dunstan, S; Simmons, C

    2000-01-01

    Mammals have evolved a sophisticated immune system for handling antigens encountered at their mucosal surfaces. The way in which mucosally delivered antigens are handled influences our ability to design effective mucosal vaccines. Live attenuated derivatives of pathogens are one route towards the development of mucosal vaccines. However, some molecules, described as mucosal immunogens, are inherently immunogenic at mucosal surfaces. Studies on mucosal immunogens may facilitate the identificat...

  17. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  18. The in vivo effects of neutralizing antibodies against IFN-γ, IL-4, or IL-10 on the humoral immune response in young and aged mice

    NARCIS (Netherlands)

    Dobber, R.; Tielemans, M.; Nagelkerken, L.

    1995-01-01

    In the present study we investigated whether age-related changes in the composition and functional properties of murine CD4+ T cells are reflected in vivo by a changed humoral response to influenza vaccine in aged mice. After the primary immunization, the titers of influenza-specific IgM, IgG1,

  19. Adaptive Immune Response to Model Antigens Is Impaired in Murine Leukocyte-Adhesion Deficiency-1 Revealing Elevated Activation Thresholds In Vivo

    Directory of Open Access Journals (Sweden)

    Thorsten Peters

    2012-01-01

    Full Text Available Absence of β2 integrins (CD11/CD18 leads to leukocyte-adhesion deficiency-1 (LAD1, a rare primary immunodeficiency syndrome. Although extensive in vitro work has established an essential function of β2 integrins in adhesive and signaling properties for cells of the innate and adaptive immune system, their respective participation in an altered adaptive immunity in LAD1 patients are complex and only partly understood in vivo. Therefore, we investigated adaptive immune responses towards different T-dependent antigens in a murine LAD1 model of β2 integrin-deficiency (CD18−/−. CD18−/− mice generated only weak IgG responses after immunization with tetanus toxoid (TT. In contrast, robust hapten- and protein-specific immune responses were observed after immunization with highly haptenated antigens such as (4-hydroxy-3-nitrophenyl21 acetyl chicken γ globulin (NP21-CG, even though regularly structured germinal centers with specificity for the defined antigens/haptens in CD18−/− mice remained absent. However, a decrease in the hapten/protein ratio lowered the efficacy of immune responses in CD18−/− mice, whereas a mere reduction of the antigen dose was less crucial. Importantly, haptenation of TT with NP (NP-TT efficiently restored a robust IgG response also to TT. Our findings may stimulate further studies on a modification of vaccination strategies using highly haptenated antigens in individuals suffering from LAD1.

  20. The Role of B7 Ligand Interactions During an In Vivo Mucosal Immune Response

    Science.gov (United States)

    1998-07-22

    IgG2a elevations. This IFN-y dominant response is primarily host protective against bacteria , viruses, and intracellular parasites. In contrast. the... thymus or the periphery; however this requirement is unlikely, given recent findings which suggests that thymocyte development is normal in CTLA-4KO mice...mediated blockade ofT cell costimulation in patients with Psoriasis vulgaris . J. Invest. Dermatol. (Abstract). 108:570. Lenschow, D.J., Ho, S.C., Sattar, H

  1. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua

    2012-07-01

    Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses.

    Directory of Open Access Journals (Sweden)

    Jun-O Jin

    Full Text Available Fucoidan, a sulfated polysaccharide purified from brown algae, has a variety of immune-modulation effects, including promoting antigen uptake and enhancing anti-viral and anti-tumor effects. However, the effect of fucoidan in vivo, especially its adjuvant effect on in vivo anti-tumor immune responses, was not fully investigated. In this study, we investigated the effect of fucoidan on the function of spleen dendritic cells (DCs and its adjuvant effect in vivo. Systemic administration of fucoidan induced up-regulation of CD40, CD80 and CD86 expression and production of IL-6, IL-12 and TNF-α in spleen cDCs. Fucoidan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in an IL-12-dependent manner. When used as an adjuvant in vivo with ovalbumin (OVA antigen, fucoidan promoted OVA-specific antibody production and primed IFN-γ production in OVA-specific T cells. Moreover, fucoidan enhanced OVA-induced up-regulation of MHC class I and II on spleen cDCs and strongly prompted the proliferation of OVA-specific CD4 and CD8 T cells. Finally, OVA immunization with fucoidan as adjuvant protected mice from the challenge with B16-OVA tumor cells. Taken together, these results suggest that fucoidan can function as an adjuvant to induce Th1 immune response and CTL activation, which may be useful in tumor vaccine development.

  3. In Vivo Screening of Chemically Modified RNA duplexes for their Ability to Induce Innate Immune Responses

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Kjems, Jørgen

    Due to their sequence specific gene targeting activity siRNAs are regarded as promising active compounds in gene medicine. But one serious problem with delivering siRNAs as treatment is the now well-established non-specific activities of some RNA duplexes. Cellular reactions towards double stranded...... protection against a fish pathogenic virus. This protection corresponded with an interferon response in the fish. Here we use this fish model to screen siRNAs containing various chemical modifications of the RNA backbone for their antiviral activity, the overall aim being identification of an siRNA form...

  4. THE STUDY OF THE INFLUENCE OF MODEL MEAT SYSTEMS ON THE ALLERGIC IMMUNE RESPONSE IN VIVO

    Directory of Open Access Journals (Sweden)

    A. S. Dydykin

    2017-01-01

    Full Text Available This article presents the results of studying the effect of homogeneous model meat systems produced using enzyme preparation containing fungal protease and microbiological starter culture of Lactobacillus plantarum on the allergic reactions within specific immunity in vivo. According to the results, it is established that experimental products have no negative effect on the clinical parameters of laboratory animals. During the experiment, with the introduction of experimental products into diet, the dynamics of body weight changes in all groups of animals was positive. At the end of the experiment, there were smaller increase in the weight of rats and lower values of weight gain (Group 1 — 14.0 %, Group 2 — 15.9 %, Group 3 — 20.2 %. This is possibly due to the adaptation processes occurring in response to introduction of meat systems into the diet, which confirms the leveling of the daily weight gain of experimental and intact animals since the 16th day of the experiment. According to the results of clinical blood analysis of the animals consuming experimental products, an increase is detected in leukocytes and lymphocytes by up to 18 %; in granulocytes by up to 35 %; and in monocytes by up to 8 %; in hemoglobin concentration, hematocrit and mean corpuscular hemoglobin concentration by more than 3 %; in red cell distribution width and mean corpuscular volume by up to 2 %, in comparison with intact animals. The correlation of these data with ELISA parameters for serum of experimental animals (histamine and immunoglobulin E allowed to suggest the expression of reaginic antibodies and interaction on the surface of basophils and mast cells, which led to the degranulation and release (increase of histamine, as a vasoactive factor, by 40 % compared with intact animals.The overall conclusion of the studies is that experimental model meat systems may trigger the activation of specific immune responses in laboratory animals. This is

  5. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation....

  6. STAT3 Knockdown in B16 Melanoma by siRNA Lipopolyplexes Induces Bystander Immune Response In Vitro and In Vivo1

    OpenAIRE

    Alshamsan, Aws; Hamdy, Samar; Haddadi, Azita; Samuel, John; El-Kadi, Ayman O.S.; Uludağ, Hasan; Lavasanifar, Afsaneh

    2011-01-01

    Persistent activation of STAT3 plays a major role in cancer progression and immune escape. Therefore, targeting STAT3 in tumors is essential to enhance/reactivate antitumor immune response. In our previous studies, we demonstrated the efficacy of stearic acid-modified polyethylenimine (PEI-StA) in promoting small interfering RNA (siRNA) silencing of STAT3 in B16.F10 melanoma in vitro and in vivo. In the current study, we examine the immunologic impact of this intervention. Toward this goal, t...

  7. Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen.

    Science.gov (United States)

    Bergmann-Leitner, Elke S; Chaudhury, Sidhartha; Steers, Nicholas J; Sabato, Mark; Delvecchio, Vito; Wallqvist, Anders S; Ockenhouse, Christian F; Angov, Evelina

    2013-01-01

    Vaccine development efforts will be guided by algorithms that predict immunogenic epitopes. Such prediction methods rely on classification-based algorithms that are trained against curated data sets of known B and T cell epitopes. It is unclear whether this empirical approach can be applied prospectively to predict epitopes associated with protective immunity for novel antigens. We present a comprehensive comparison of in silico B and T cell epitope predictions with in vivo validation using an previously uncharacterized malaria antigen, CelTOS. CelTOS has no known conserved structural elements with any known proteins, and thus is not represented in any epitope databases used to train prediction algorithms. This analysis represents a blind assessment of this approach in the context of a novel, immunologically relevant antigen. The limited accuracy of the tested algorithms to predict the in vivo immune responses emphasizes the need to improve their predictive capabilities for use as tools in vaccine design.

  8. Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen.

    Directory of Open Access Journals (Sweden)

    Elke S Bergmann-Leitner

    Full Text Available Vaccine development efforts will be guided by algorithms that predict immunogenic epitopes. Such prediction methods rely on classification-based algorithms that are trained against curated data sets of known B and T cell epitopes. It is unclear whether this empirical approach can be applied prospectively to predict epitopes associated with protective immunity for novel antigens. We present a comprehensive comparison of in silico B and T cell epitope predictions with in vivo validation using an previously uncharacterized malaria antigen, CelTOS. CelTOS has no known conserved structural elements with any known proteins, and thus is not represented in any epitope databases used to train prediction algorithms. This analysis represents a blind assessment of this approach in the context of a novel, immunologically relevant antigen. The limited accuracy of the tested algorithms to predict the in vivo immune responses emphasizes the need to improve their predictive capabilities for use as tools in vaccine design.

  9. The Effects of Continuous In Vivo Administration of Nisin on Staphylococcus aureus Infection and Immune Response in Mice.

    Science.gov (United States)

    Brand, A M; Smith, C; Dicks, L M T

    2013-12-01

    Mice were intraperitoneally infected with 2 × 10(8) cfu Staphylococcus aureus Xen 36 and treated with 2,130 AU (arbitrary units) nisin (equivalent to 27.7 μg pure nisin), a class Ia lantibiotic, over 7 days. The metabolic activity of S. aureus Xen 36, concluded from changes in cell bioluminescence, declined for the first 3.5 h, but increased over the next 24 h and remained at this level for the remainder of the 7-day trial. Similar results were obtained with heat-inactivated (25 min at 121 °C) nisin, suggesting that the decline in metabolic activity of S. aureus Xen 36 cannot be attributed to the bacteriostatic activity of nisin. The decline in lymphocyte numbers in infected mice was of smaller magnitude after treatment with active nisin compared to inactive nisin, suggesting that active nisin limited the apoptosis of lymphocytes. The drastic increase in neutrophil versus lymphocyte (N:L) ratio observed in the presence of active nisin suggested that the decline in metabolic activity of S. aureus Xen 36 was due to an immune response triggered by the infection. Nisin, active or inactive, stimulated the activity of cytokines interleukin-6, interleukin-10 and tumour necrosis factor. However, the overall immune response triggered by both forms of nisin was too minute to trigger an abnormally high antigenic immune reaction.

  10. Evaluation of trained immunity by β-1, 3 (d)-glucan on murine monocytes in vitro and duration of response in vivo.

    Science.gov (United States)

    Garcia-Valtanen, Pablo; Guzman-Genuino, Ruth Marian; Williams, David L; Hayball, John D; Diener, Kerrilyn R

    2017-08-01

    The β-1, 3 (d)-glucan (β-glucan) present in the cell wall of Candida albicans induces epigenetic changes in human monocytes resulting in primed macrophages exhibiting increased cytokine responsiveness to reinfection. This phenomenon is referred to as trained immunity or innate immune memory. However, whether β-glucan can reprogramme murine monocytes in vitro or induce lasting effects in vivo has yet to be elucidated. Thus, purified murine spleen-derived monocytes were primed with β-glucan in vitro and assessed for markers of differentiation and survival. Important macrophage cell markers during monocyte-to-macrophage differentiation were downregulated and survival enhanced due to partial inhibition of apoptosis. Increased survival and not the β-glucan training effect explained the elevated production of tumour necrosis factor-α (TNFα) and interleukin-6 (IL-6) induced by subsequent lipopolysaccharide (LPS) challenge. In vivo, 4 days after systemic administration of β-glucan, mice were more responsive to LPS challenge as shown by the increased serum levels of TNFα, IL-6 and IL-10, an effect shown to be short lived as enhanced cytokine production was lost by day 20. Here, we have characterised murine macrophages derived from β-glucan-primed monocytes based on their surface marker expression and for the first time provide evidence that the training effect of β-glucan in vivo declines within a 3-week period.

  11. In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue.

    OpenAIRE

    Baumgarth, N.; Kelso, A

    1996-01-01

    Influenza virus infection induces the local production of gamma interferon (IFN-gamma) by T cells and non-T cells in the respiratory tract. To elucidate the possible functions of this cytokine, the humoral and local cellular immune responses to influenza virus were studied in BALB/c mice with or without in vivo neutralization of IFN-gamma by using monoclonal antibodies. Neutralization of IFN-gamma led to a significant reduction in virus-specific titers of immunoglobulins G2a and G3 in serum b...

  12. [Preclinical models to establish innovative therapy strategies : Ex‑vivo assessment of head and neck tumor chemo- and immune responses].

    Science.gov (United States)

    Wichmann, G; Dietz, A

    2016-07-01

    The pharmacological treatment of head and neck squamous cell carcinoma (HNSCC) is currently experiencing an expansion of the spectrum of targeting therapies. It can be expected that use of immune modulators, e.g., checkpoint-inhibitors, and their combination with chemotherapy will lead to a plethora of therapeutic options in the near future, from which the best one for the individual patient can be selected. HNSCCs are heterogeneous in their biology, and responses to chemotherapy are nonuniform and often only observable in subgroups. It would be valuable to know the chance of success of a particular treatment in advance. Evidence-based selection of the best individual treatment is difficult, since predictive biomarkers which are assessable prior to the treatment decision and reliably indicate the suitability of particular therapeutics are lacking. Pretherapeutic predictive ex-vivo chemoresponse testing of HNSCC biopsy specimens could enable identification of responders and allow a more suitable therapy regimen to be chosen for potential non-responders, without exposing them to likely ineffective therapy attempts. However, early ex-vivo assays failed regarding reliable prediction of therapeutic success, even with tolerable doses of pharmaceuticals and, in particular, their combinations. Predictive testing was hence deemed improper for the clinic. Improved methodology has now led to a reappraisal of predictive testing and its additional use in analysis of antitumor immune responses ex vivo. Here we describe recent advances and new results from ex-vivo chemoresponse testing of HNSCC and highlight their ability to facilitate establishment of innovative therapy strategies.

  13. In vivo effects of monoclonal anti-L3T4 antibody on immune responsiveness of mice infected with Schistosoma mansoni. Reduction of irradiated cercariae-induced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, E.A.; Colley, D.G.

    1988-04-15

    Mice can be partially protected against challenge infections of Schistosoma mansoni cercariae by either single or multiple exposure to irradiated cercariae (x-cerc). The participation of L3T4+ lymphocytes on this resistance phenomenon was evaluated by selectively depleting this cell population through in vivo administration of mAb anti-L3T4 at three different times in relationship to the challenge infections. Treatment with anti-L3T4 before challenge such that depletion was effective during the time of cercarial skin penetration and dermal/s.c. residence significantly reduced the level of resistance induced by x-cerc sensitization. When treatment was delayed until after challenge, depletion of L3T4+ cells coincided with either the lung or post-lung/liver phases of schistosomular migration, and normal levels of x-cerc-induced resistance were induced. In contrast to once-immunized mice, mice hyperimmunized by five exposures to x-cerc and then depleted of L3T4+ cells at the time of challenge still expressed resistance to the challenge. These data suggest that when mice are sensitized only once with x-cerc the challenge infection provides a necessary immunologic boost which requires L3T4+ cells for effective expression of resistance. The requirement for this anamnestic effect by the challenge infection can be circumvented by hyperimmunization. Evaluation of the immune response of one-time sensitized or hyperimmunized mice demonstrated that cellular Ag-specific proliferative responses and mitogen-induced lymphokine production were abrogated after any of the various in vivo regimens of anti-L3T4 antibody. In contrast, immunoblot analysis of humoral responsiveness revealed a correlation between the expression of resistance and the ability of sera from immunized and anti-L3T4 treated mice to recognize a 75-kDa parasite antigenic component.

  14. Innate Responses Induced by Whole Inactivated Virus or Subunit Influenza Vaccines in Cultured Dendritic Cells Correlate with Immune Responses In Vivo

    NARCIS (Netherlands)

    Stoel, Maaike; Pool - Kramer, Judith; de Vries-Idema, Jacqueline; Zaaraoui-Boutahar, Fatiha; Bijl, Maarten; Andeweg, Arno C.; Wilschut, Jan; Huckriede, Anke

    2015-01-01

    Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs) are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to

  15. Infectivity and cross-immunity studies of Theileria lestoquardi and Theileria annulata in sheep and cattle: I. In vivo responses.

    Science.gov (United States)

    Leemans, I; Brown, D; Hooshmand-Rad, P; Kirvar, E; Uggla, A

    1999-04-12

    In a series of experiments, sporozoite stabilates of a Theileria lestoquardi (Lahr) and a T. annulata (Ankara) stock prepared from Hyalomma anatolicum anatolicum ticks, were used to examine the infectivity of both parasite species for sheep and cattle and to study the development of cross-immunity between these parasite species. In the first experiment sheep and cattle were inoculated with T. lestoquardi sporozoites. Surviving animals and naive sheep and cattle were, in the second experiment, inoculated with T. annulata. In the third experiment, naive sheep and sheep previously infected with T. annulata, were inoculated with T. lestoquardi. The following responses to inoculations were monitored: clinical and haematological signs of infection, appearance of parasitic stages of the parasites in lymph node biopsies and in peripheral blood and serological response to T. lestoquardi and T. annulata schizont antigens. While T. lestoquardi readily infected sheep and caused severe disease, it did not infect cattle. On the other hand, T. annulata infected both cattle and sheep. However, whereas cattle became severely affected, infected sheep showed mild clinical symptoms only and piroplasms did not develop. Despite their different behaviour in the host species examined, cross-immunity studies suggested that the parasite species are very closely related. Experiments in sheep indicated that T. lestoquardi infection protected against subsequent T. annulata infection. On the other hand, recovery from T. annulata infection did not prevent infection by sporozoites of T. lestoquardi, resulting in the establishment of schizonts and their subsequent development into piroplasms, although it protected against the major clinical effects of T. lestoquardi infection.

  16. The Role of Costimulatory Molecules in the Development of Memory and Effector T Helper 2 Cells During an in vivo Immune Response to the Murine Gastrointestinal Parasite Heligmosomoides polygyrus

    Science.gov (United States)

    2002-09-24

    in serum IgG2a levels; this immune response is important for protection against intracellular pathogens such as viruses and bacteria . The Th2 immune...J. Noelle. 1993. In vivo CD40-gp39 interactions are essential for thymus -dependent immunity. II. Prolonged suppression of primary and secondary...J. G. Krueger, H. D. Ochs, S. L. Kelley, and S. Kang. 1999. CTLA4Ig- mediated blockade of T-cell costimulation in patients with psoriasis vulgaris

  17. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo.

    Directory of Open Access Journals (Sweden)

    Wenzhi Tian

    Full Text Available c-Rel is a member of the Rel/NF-kappaB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.

  18. Levamisole promotes murine bone marrow derived dendritic cell activation and drives Th1 immune response in vitro and in vivo.

    Science.gov (United States)

    Fu, Yubing; Wang, Ting; Xiu, Lei; Shi, Xiaojie; Bian, Ziyao; Zhang, Yongli; Ruhan, A; Wang, Xiao

    2016-02-01

    Our lab previously found that levamisole (LMS) as an adjuvant enhanced the efficacy of vaccine against infectious pathogens. However, the cellular and molecular mechanisms remain to be defined. In this study, we showed that BALB/c bone marrow-derived DC stimulated with LMS resulted in enhanced cell-surface expression of CD80, CD86, CD40 and MHC class II, as well as enhanced production of IL-12p70, TNF-α and IL-1β. Interestingly, the LMS activated DCs were able to stimulate CD4(+) T cell proliferation and facilitated Th1 differentiation by increasing the secretion of IFN-γ in an allogeneic mixed leukocyte reaction. Furthermore, to confirm the in vitro data, we investigated the effect of LMS on antigen-specific antibody and cytokine production in BALB/c mice. Immunization with LMS plus OVA showed that anti-OVA IgG2a and IFN-γ were increased significantly compared with OVA alone in BALB/c mice. In conclusion, our results suggested that murine bone marrow-derived DC, played a crucial role in the effect of LMS on the induction of Th1 responses, which probably was due to its ability to promote DC maturation and secrete proinflammatory cytokines. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Salmonella typhimurium ghost vaccine induces cytokine expression in vitro and immune responses in vivo and protects rats against homologous and heterologous challenges.

    Directory of Open Access Journals (Sweden)

    Nagarajan Vinod

    Full Text Available Salmonella enteritidis and Salmonella typhimurium are important food-borne bacterial pathogens, which are responsible for diarrhea and gastroenteritis in humans and animals. In this study, S. typhimurium bacterial ghost (STG was generated based on minimum inhibitory concentration (MIC of sodium hydroxide (NaOH. Experimental studies performed using in vitro and in vivo experimental model systems to characterize effects of STG as a vaccine candidate. When compared with murine macrophages (RAW 264.7 exposed to PBS buffer (98.1%, the macrophages exposed to formalin-killed inactivated cells (FKC, live wild-type bacterial cells and NaOH-induced STG at 1 × 108 CFU/mL showed 85.6%, 66.5% and 84.6% cell viability, respectively. It suggests that STG significantly reduces the cytotoxic effect of wild-type bacterial cells. Furthermore, STG is an excellent inducer for mRNAs of pro-inflammatory cytokine (TNF-α, IL-1β and factor (iNOS, anti-inflammatory cytokine (IL-10 and dual activities (IL-6 in the stimulated macrophage cells. In vivo, STG vaccine induced humoral and cellular immune responses and protection against homologous and heterologous challenges in rats. Furthermore, the immunogenicity and protective efficacy of STG vaccine were compared with those of FKC and non-vaccinated PBS control groups. The vaccinated rats from STG group exhibited higher levels of serum IgG antibody responses, serum bactericidal antibodies, and CD4+ and CD8+ T-cell populations than those of the FKC and PBS control groups. Most importantly, after challenge with homologous and heterologous strains, the bacterial loads in the STG group were markedly lower than the FKC and PBS control groups. In conclusion, these findings suggest that the STG vaccine induces protective immunity against homologous and heterologous challenges.

  20. Sequential Immune Responses: The Weapons of Immunity.

    Science.gov (United States)

    Mills, Charles D; Ley, Klaus; Buchmann, Kurt; Canton, Johnathan

    2015-01-01

    Sequential immune responses (SIR) is a new model that describes what 'immunity' means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different tempos) which together provide host protection. SIR1 uses rapidly activated enzymes like the NADPH oxidases and is present in all animal cells. SIR2 is mediated by the first 'immune' cells: macrophage-like cells. SIR3 evolved in animals like invertebrates and provides enhanced protection through advanced macrophage recognition and killing of pathogens and through other innate immune cells such as neutrophils. Finally, in vertebrates, macrophages developed SIR4: the ability to present antigens to T cells. Though much slower than SIR1-3, adaptive responses provide a unique new protection for higher vertebrates. Importantly, newer SIR responses were added on top of older, evolutionarily conserved functions to provide 'layers' of host protection. SIR transcends existing models by elucidating the different weapons of immunity that provide host protection in higher animals. © 2015 S. Karger AG, Basel.

  1. A novel hydrophobized polysaccharide/oncoprotein complex vaccine induces in vitro and in vivo cellular and humoral immune responses against HER2-expressing murine sarcomas.

    Science.gov (United States)

    Gu, X G; Schmitt, M; Hiasa, A; Nagata, Y; Ikeda, H; Sasaki, Y; Akiyoshi, K; Sunamoto, J; Nakamura, H; Kuribayashi, K; Shiku, H

    1998-08-01

    To elicit specific cellular immune responses against cancer, the development of efficient devices to deliver tumor antigen peptides to the MHC class I pathway constitutes a central issue. We report here a novel formula of hydrophobized polysaccharide nanoparticles, which can deliver a HER2 oncoprotein containing an epitope peptide to the MHC class I pathway. A protein consisting of the 147 amino-terminal amino acids of oncogene erbB-2/neu/HER2 (HER2) was complexed with two kinds of hydrophobized polysaccharides, cholesteryl group-bearing mannan (CHM) and cholesteryl group-bearing pullulan (CHP), to form nanoparticles (CHM-HER2 and CHP-HER2). CHM-HER2 and CHP-HER2 were able to induce CD3+/CD8+ CTLs against HER2-transfected syngeneic fibrosarcoma cell lines. In contrast, the oncoprotein alone failed to do so. These CTLs were Kd-restricted and specifically recognized a peptide (position 63-71) that was a part of a truncated HER2 protein used as an immunogen. In addition, vaccination by CHM-HER2 complexes led to a strongly enhanced production of IgG antibodies against HER2, whereas vaccination with HER2 proteins alone resulted in a production of antibodies at a marginal level. Mice immunized with CHM-HER2 or CHP-HER2 before tumor challenge successfully rejected HER2-transfected tumors. The complete rejection of tumors also occurred when CHM-HER2 was applied not later than 3 days after tumor implantation. In the effector phase of in vivo tumor rejection, CD8+ T cells played a major role. The results suggest that a sort of hydrophobized polysaccharide may help soluble proteins to induce cellular immunity as well enhance humoral immunity; hence, such a novel vaccine may be of potential benefit to cancer prevention and cancer therapy.

  2. In vivo relevance of polymorphic Interleukin 8 promoter haplotype for the systemic immune response to LPS in Holstein-Friesian calves.

    Science.gov (United States)

    Stojkovic, Bojan; McLoughlin, Rachel M; Meade, Kieran G

    2016-12-01

    Interleukin 8, also known as CXC chemokine ligand 8 (CXCL8), is a critical chemokine in the recruitment of leukocytes to sites of infection and is a potent mediator of inflammation. We previously discovered 29 polymorphic sites in the promoter region of the bovine Interleukin 8 gene, which segregate into two distinct haplotypes, denoted IL8-h1 and IL8-h2. Population genetic analysis of these two haplotypes showed significant inter-breed differences in haplotype frequency, which is suggestive of selection acting at this locus. Furthermore functional characterisation identified that IL8-h2 was more active in mammary epithelial cells stimulated with the bacterial endotoxin, LPS. However, the in vivo relevance of these functional differences in the IL8 gene has not been ascertained. Therefore, in the current study, we tested the hypothesis that IL8 haplotype would result in variation in the systemic immune response to LPS challenge in Holstein-Friesian (HF) calves. A Taqman assay was designed to genotype both Jersey and HF calves, from which 20 healthy HF calves (representing IL8-h1 and IL8-h2) from the same farm were subjected to LPS stimulation via jugular venepuncture (100ng/kg). Systemic immune profiling was subsequently performed up to 216h post-challenge. Haematological analysis showed perturbations in leukocyte populations of cells but only the lymphocyte response was significantly different between IL8-h1 and IL8-h2. IL8 expression levels were significantly different between haplogroups, at both the gene expression and protein levels (P<0.05). Circulating neutrophils were subsequently purified from each haplogroup to measure potential haplotype specific effects on neutrophil migration and bacterial killing but no significant differences were detected, which is likely due to the low circulating levels of IL8. We conclude that IL8 haplotype significantly affects IL8 expression profile in response to bacterial endotoxin in vivo, and the significant increase in IL8

  3. Assessment of immune response in periparturient dairy cows using ex vivo whole blood stimulation assay with lipopolysaccharides and carrageenan skin test.

    Science.gov (United States)

    Jahan, N; Minuti, A; Trevisi, E

    2015-06-15

    The transition period is known to be the most critical phase in the life of high yielding dairy cow. Changes in the immune functions have been observed during the transition period which may account for the onset of clinical and subclinical (e.g. inflammatory response) problems at calving or at the beginning of lactation however this relationship has not yet been adequately investigated. Thus, to establish the potential of the periparturient dairy cow's immune system to respond to stimuli, two challenges [an ex vivo whole blood stimulation assay (WBA) with lipopolysaccharides and a carrageenan skin test (CST)] were performed in addition to characterizing the metabolic and inflammatory profile. The WBA was performed using 0, 0.01 and 5 μg LPS/mL on whole blood and CST was administered by subcutaneous injection of 0.7 mL solution containing 4.2mg of carrageenan to the shoulder region of the cows. These tests were performed on 10 Holstein-Friesian cows at -45 ± 2, -20 ± 2, -3, 3, 7, 28 ± 2 days from parturition (DFP). Cows were also monitored for health status, body condition score, milk yield. The results demonstrate a higher production of IL-1β and IL-6 from leukocytes after LPS stimulation around calving (from -3 to 3 DFP) compared to -45 DFP (P response at the lower stimulus intensity (0.01 μg LPS/mL), maintaining a higher response over a longer time in early lactation. The release of higher levels of IL-6 in the transition period, with low LPS dose, suggests its crucial role in the regulation of inflammatory response around calving. The response of cows to CST decreased a few days before calving (-3 DFP) compared with response at -45 and 28 DFP (Pchanges in immunocompetence around calving. These tests are able to better describe the changes of the innate immune response at a local and systemic level, mainly when combined with conventional metabolic and inflammatory indices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  5. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen, II. Cellular but not humoral systemic immune responses against rabies virus immune stimulating complexes are macrophage dependent

    NARCIS (Netherlands)

    I.J.Th.M. Claassen (Ivo); A.D.M.E. Osterhaus (Albert); M.C.M. Poelen (Martien); N. Rooijen van; H.J.H.M. Claassen (Eric)

    1998-01-01

    textabstractIn this paper we describe the effect of depletion of splenic macrophages on the uptake, and immune response against, different formulations of rabies virus antigen. Splenic macrophages were removed by intravenous injection with clodronate liposomes. beta-propiolacton inactivated rabies

  6. Sequential Immune Responses: The Weapons of Immunity

    Science.gov (United States)

    Mills, Charles D.; Ley, Klaus; Buchmann, Kurt; Canton, Johnathan

    2016-01-01

    Sequential immune responses (SIR) is a new model that describes what ‘immunity’ means in higher animals. Existing models, such as self/nonself discrimination or danger, focus on how immune responses are initiated. However, initiation is not protection. SIR describes the actual immune responses that provide protection. SIR resulted from a comprehensive analysis of the evolution of immune systems that revealed that several very different types of host innate responses occur (and at different tempos) which together provide host protection. SIR1 uses rapidly activated enzymes like the NADPH oxidases and is present in all animal cells. SIR2 is mediated by the first ‘immune’ cells: macrophage-like cells. SIR3 evolved in animals like invertebrates and provides enhanced protection through advanced macrophage recognition and killing of pathogens and through other innate immune cells such as neutrophils. Finally, in vertebrates, macrophages developed SIR4: the ability to present antigens to T cells. Though much slower than SIR1–3, adaptive responses provide a unique new protection for higher vertebrates. Importantly, newer SIR responses were added on top of older, evolutionarily conserved functions to provide ‘layers’ of host protection. SIR transcends existing models by elucidating the different weapons of immunity that provide host protection in higher animals. PMID:25871013

  7. A trifunctional dextran-based nanovaccine targets and activates murine dendritic cells, and induces potent cellular and humoral immune responses in vivo.

    Directory of Open Access Journals (Sweden)

    Limei Shen

    Full Text Available Dendritic cells (DCs constitute an attractive target for specific delivery of nanovaccines for immunotherapeutic applications. Here we tested nano-sized dextran (DEX particles to serve as a DC-addressing nanocarrier platform. Non-functionalized DEX particles had no immunomodulatory effect on bone marrow (BM-derived murine DCs in vitro. However, when adsorbed with ovalbumine (OVA, DEX particles were efficiently engulfed by BM-DCs in a mannose receptor-dependent manner. A DEX-based nanovaccine containing OVA and lipopolysaccharide (LPS as a DC stimulus induced strong OVA peptide-specific CD4(+ and CD8(+ T cell proliferation both in vitro and upon systemic application in mice, as well as a robust OVA-specific humoral immune response (IgG1>IgG2a in vivo. Accordingly, this nanovaccine also raised both a more pronounced delayed-type hypersensitivity response and a stronger induction of cytotoxic CD8(+ T cells than obtained upon administration of OVA and LPS in soluble form. Therefore, DEX-based nanoparticles constitute a potent, versatile and easy to prepare nanovaccine platform for immunotherapeutic approaches.

  8. Mucosal immune responses induced by transcutaneous vaccines.

    Science.gov (United States)

    Lawson, L B; Clements, J D; Freytag, L C

    2012-01-01

    The skin has been investigated as a site for vaccine delivery only since the late 1990s. However, much has been discovered about the cell populations that reside in the skin, their active role in immune responses, and the fate of trans- cutaneously applied antigens. Transcutaneous immunization (TCI) is a safe, effective means of inducing immune responses against a number of pathogens. One of the most notable benefits of TCI is the induction of immune responses in both systemic and mucosal compartments. This chapter focuses on the transport of antigen into and beyond intact skin, the cutaneous sentinel cell populations that play a role in TCI, and the types of mucosal immune responses that have been generated. A number of in vivo studies in murine models have provided information about the broad responses induced by TCI. Cellular and humoral responses and protection against challenge have been noted in the gastrointestinal, reproductive, and respiratory tracts. Clinical trials have demonstrated the benefits of this vaccine delivery route in humans. As with other routes of immunization, the type of vaccine formulation and choice of adjuvant may be critical for achieving appropriate responses and can be tailored to activate specific immune-responsive cells in the skin to increase the efficacy of TCI against mucosal pathogens.

  9. Modulation of Immune Response of BALB/Mice Bearing Lymphoma L5178Y Treated with Bitter Yellow Juice of Aloe vera (L) in vivo.

    Science.gov (United States)

    Oronzo-Barocio, Arturo; Zaitseva, Galina; Chavez-Anaya, Azucena; Arceta-Gonzalez, Veronika I.; Puebla-Perez, Ana Marija; Alfaro-Bustamante, Fernando; Zimina, Irina V.; Arion, Vitaly Ya.

    1999-04-01

    Aloe vera (L), a plant of African origin, has been introduced in Mexico since XVIth century. It has been used in the treatment of many diseases of immune system. In the present study we investigated a specific and non-specific immune response of BALB/c mice, healthy and immunosuppressed with murine lymphoma L5178Y, treated with bitter yellow juice (extract) of Aloe vera (L). We observed that the immunosuppressed mice, treated with the whole extract of the bitter yellow juice achieved restoration of immunological parameters in cellular immune response and phagocytosis. On the other hand, the humoral immunity was not restored. Also, in the healthy rodents treated with the extract, it caused the stimulation of specific and non-specific responses, the results had significant differences with the obtained ones in untreated mice.

  10. In vivo expansion of regulatory T cells with IL-2/IL-2 mAb complexes prevents anti-factor VIII immune responses in hemophilia A mice treated with factor VIII plasmid-mediated gene therapy.

    Science.gov (United States)

    Liu, Chao-Lien; Ye, Peiqing; Yen, Benjamin C; Miao, Carol H

    2011-08-01

    Generation of transgene-specific immune responses can constitute a major complication following gene therapy treatment. An in vivo approach to inducing selective expansion of Regulatory T (Treg) cells by injecting interleukin-2 (IL-2) mixed with a specific IL-2 monoclonal antibody (JES6-1) was adopted to modulate anti-factor VIII (anti-FVIII) immune responses. Three consecutive IL-2 complexes treatments combined with FVIII plasmid injection prevented anti-FVIII formation and achieved persistent, therapeutic-level of FVIII expression in hemophilia A (HemA) mice. The IL-2 complexes treatment expanded CD4(+)CD25(+)Foxp3(+) Treg cells five- to sevenfold on peak day, and they gradually returned to normal levels within 7-14 days without changing other lymphocyte populations. The transiently expanded Treg cells are highly activated and display suppressive function in vitro. Adoptive transfer of the expanded Treg cells protected recipient mice from generation of high-titer antibodies following FVIII plasmid challenge. Repeated plasmid transfer is applicable in tolerized mice without eliciting immune responses. Mice treated with IL-2 complexes mounted immune responses against both T-dependent and T-independent neoantigens, indicating that IL-2 complexes did not hamper the immune system for long. These results demonstrate the important role of Treg cells in suppressing anti-FVIII immune responses and the potential of developing Treg cell expansion therapies that induce long-term tolerance to FVIII.

  11. Remune. Immune Response.

    Science.gov (United States)

    Lai, Derhsing; Jones, Taff

    2002-03-01

    The Immune Response Corp (IRC) is developing Remune, a potential HIV therapeutic vaccine. Remune is based on the Salk Immunogen, which is derived from an HIV isolate which has been inactivated by chemical depletion of glycoprotein 120 (gp120). Preliminary data suggested that Remune, in combination with antiviral drug therapy, results in undetectable levels of HIV. Phase III trials commenced in May 1997 and it was initially expected that registration filings would be made in 1999. However, following interim analysis of the 2500-patient, multicenter, double-blind, pivotal phase III study (study 806) in May 1999, an independent panel recommended concluding the clinical endpoint trial and IRC and licensee, Agouron, decided to pursue alternative regulatory strategies, including initiating two additional phase III surrogate marker trials. Despite this, Agouron gave IRC notice of termination of its continued development in July 2001. In August 2001, IRC informed Agouron that, due to the total number of endpoints to date falling short of that previously assumed by Agouron, it did not intend to continue Agouron's Study 202 of Remune. In July 2001, licensee Trinity Medical Group filed an NDA with the governing health authorities in Thailand for Remune. The Thai FDA certified Immune Response's Remune manufacturing facility as being in compliance with GMP standards, following an on site inspection by Thai officials in November 2001 that was performed as a requirement of Trinity's Thai NDA. As a result of this certification, Trinity expected that a "timely determination" could be made by the Thai FDA. Rhĵne-Poulenc Rorer discontinued its part in the development of Remune, with all manufacturing, marketing and distribution rights reverting to IRC. After Agouron returned rights to Remune in July 2001, IRC heldfull rights in the US, Europe and Japan, while collaborating with its partners Trinity Medical Group and Roemmers Laboratory in the Southeast Asian and Latin American

  12. Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant.

    Directory of Open Access Journals (Sweden)

    Arun T Kamath

    Full Text Available BACKGROUND: With the exception of some live vaccines, e.g. BCG, subunit vaccines formulated with "classical" adjuvants do not induce similar responses in neonates as in adults. The usual neonatal profile is characterized by lower levels of TH1-associated biomarkers. This has hampered the development of new neonatal vaccines for diseases that require early protection. Tuberculosis is one of the major targets for neonatal immunization. In this study, we assessed the immunogenicity of a novel candidate vaccine comprising a mycobacterial fusion protein, Ag85B-ESAT-6, in a neonatal murine immunization model. METHODS/FINDINGS: The Ag85B-ESAT-6 fusion protein was formulated either with a classical alum based adjuvant or with the novel IC31 adjuvant. Following neonatal or adult immunization, 3 parameters were studied in vivo: (1 CD4(+ T cell responses, (2 vaccine targeting/activation of dendritic cells (DC and (3 protection in a surrogate mycobacterial challenge model. Conversely to Alum, IC31 induced in both age groups strong Th1 and Th17 responses, characterized by multifunctional T cells expressing IL-2 and TNF-alpha with or without IFN-gamma. In the draining lymph nodes, a similarly small number of DC contained the adjuvant and/or the antigen following neonatal or adult immunization. Expression of CD40, CD80, CD86 and IL-12p40 production was focused on the minute adjuvant-bearing DC population. Again, DC targeting/activation was similar in adults and neonates. These DC/T cell responses resulted in an equivalent reduction of bacterial growth following infection with M. bovis BCG, whereas no protection was observed when Alum was used as adjuvant. CONCLUSION: Neonatal immunization with the IC31-adjuvanted Ag85B-ESAT-6 subunit vaccine elicited adult-like multifunctional protective anti-mycobacterial T cell responses through the induction of an adult pattern of in vivo DC activation.

  13. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses

    Directory of Open Access Journals (Sweden)

    Mahboubeh Ebrahimian

    2017-09-01

    Full Text Available Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs encapsulating antigen(s and adjuvant(s are promising vehicles to deliver antigen(s and adjuvant(s to antigen-presenting cells (APCs, allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI was physically conjugated to poly(lactic-co-glycolic acid (PLGA to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848 as toll-like receptor (TLR 7/8 agonist, or monophosphoryl lipid A (MPLA as TLR4 agonist and co-assembled with cytosine–phosphorothioate–guanine oligodeoxynucleotide (CpG ODN as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line. In the next step, PLGA (MPLA or R848/PEI (CpG ODN were co-delivered with ovalbumin (OVA encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β secretion and antibody (IgG1, IgG2a production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848/PEI (CpG ODN co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.

  14. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses

    Science.gov (United States)

    Ebrahimian, Mahboubeh; Hashemi, Maryam; Maleki, Mohsen; Hashemitabar, Gholamreza; Abnous, Khalil; Ramezani, Mohammad; Haghparast, Alireza

    2017-01-01

    Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine–phosphorothioate–guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development. PMID:28955328

  15. Beyond the basics: immune response.

    Science.gov (United States)

    Krost, William S; Mistovich, Joseph J; Limmer, Daniel D

    2008-06-01

    The human immune response is arguably among the most difficult processes for an EMS provider to understand. The immune system provides front-line defense to any potentially inflammatory process, with the goal of destroying or inactivating pathogens, abnormal cells and foreign substances. The system includes the thymus, spleen, lymph nodes, lymphoid tissues (as in the GI tract and bone marrow), macrophages, lymphocytes, including B and T cells, and antibodies, among others. On the surface, the skin and stomach acid serve as physical barriers to invasion. This article will primarily concentrate on the immune response to allergies, but will discuss some other immune disorders to illustrate the role of the immune system in common disease processes.

  16. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro, E-mail: takahiro-shiba@yakult.co.jp; Kawakami, Koji; Sasaki, Takashi; Makino, Ikuyo; Kato, Ikuo; Kobayashi, Toshihide; Uchida, Kazumi; Kaneko, Kimiyuki

    2014-01-15

    Protein fermentation by intestinal bacteria generates various compounds that are not synthesized by their hosts. An example is p-cresol, which is produced from tyrosine. Patients with chronic kidney disease (CKD) accumulate high concentrations of intestinal bacteria-derived p-cresyl sulfate (pCS), which is the major metabolite of p-cresol, in their blood, and this accumulation contributes to certain CKD-associated disorders. Immune dysfunction is a CKD-associated disorder that frequently contributes to infectious diseases among CKD patients. Although some studies imply pCS as an etiological factor, the relation between pCS and immune systems is poorly understood. In the present study, we investigated the immunological effects of pCS derived from intestinal bacteria in mice. For this purpose, we fed mice a tyrosine-rich diet that causes the accumulation of pCS in their blood. The mice were shown to exhibit decreased Th1-driven 2, 4-dinitrofluorobenzene-induced contact hypersensitivity response. The concentration of pCS in blood was negatively correlated with the degree of the contact hypersensitivity response. In contrast, the T cell-dependent antibody response was not influenced by the accumulated pCS. We also examined the in vitro cytokine responses by T cells in the presence of pCS. The production of IFN-γ was suppressed by pCS. Further, pCS decreased the percentage of IFN-γ-producing Th1 cells. Our results suggest that intestinal bacteria-derived pCS suppressesTh1-type cellular immune responses. - Highlights: • Mice fed a tyrosine-rich diet accumulated p-cresyl sulfate in their blood. • p-Cresyl sulfate negatively correlated with contact hypersensitivity response. • The in vitro production of IFN-γ was suppressed by p-cresyl sulfate. • p-Cresyl sulfate decreased the percentage of IFN-γ-producing Th1 cells in vitro.

  17. Delayed-type hypersensitivity and hepatitis B vaccine responses, in vivo markers of cellular and humoral immune function, and the risk of AIDS or death.

    Science.gov (United States)

    Patterson, Shane B; Landrum, Michael L; Okulicz, Jason F

    2014-06-05

    Delayed-type hypersensitivity (DTH) test responsiveness is associated with HIV disease progression; however it is unknown whether other immune markers, such as hepatitis B virus (HBV) vaccine seroresponse, also predict HIV outcomes. Eligible participants received HBV vaccine after HIV diagnosis, had non-anergic DTH testing at the time of last HBV vaccination, and available post-vaccine HBV antibody responses. The risk of progression to AIDS or death from the time of last HBV vaccination was evaluated. Of 369 eligible participants with non-anergic DTH responses, 148 (40%) were HBV vaccine responders. In a multivariate model adjusted for age, CD4 count, viral load, and number of vaccinations, HBV vaccine non-responders had an increased risk of progression to AIDS or death (HR 1.81; 95% CI, 1.03-3.19). HBV vaccine seroresponses were independent of DTH responses which suggest that non-response to HBV vaccine is not solely due to cell-mediated immune dysfunction in HIV-infected persons. Published by Elsevier Ltd.

  18. In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Jie; Ma, Qiang

    2016-09-01

    Pulmonary exposure to certain forms of carbon nanotubes (CNT) induces fibrosing lesions in the lungs that manifest an acute inflammation followed by chronic interstitial fibrosis. The mechanism of CNT-induced fibrogenesis is largely unknown. The biphasic development with drastically distinct pathologic manifestations suggests a junction of acute-to-chronic transition. Here we analyzed the molecular pathways and regulators underlying the pathologic development of CNT-induced lung fibrosis. Mice were exposed to multi-walled CNT (MWCNT; XNRI MWNT-7, Mitsui; 40 μg) by pharyngeal aspiration for 7 days along with vehicle and carbonaceous controls. Genome-wide microarray analyses of the lungs identified a range of differentially expressed genes that potentially function in the acute-to-chronic transition through pathways involving immune and inflammatory regulation, responses to stress and extracellular stimuli, and cell migration and adhesion. In particular, a T helper 2 (Th2)-driven innate immune response was significantly enriched. We then demonstrated that MWCNT induced the expression of Th2 cytokines interleukin (IL)-4 and IL-13, and a panel of signature downstream genes, such as Il4i1, Chia, and Ccl11/Eotaxin, time dependently. Induction of Th2 cytokines took place in CD4+ T lymphocytes indicating activation of Th2 cells. Furthermore, induction involved activation of a Th2 cell-specific signaling pathway through phosphorylation of STAT6 and up-regulation of GATA-3 to mediate the transcription of Th2 target genes. Our study uncovers activation of a Th2-driven immune/inflammatory response during pulmonary fibrosis development induced by MWCNT. The findings provide novel insights into the molecular events that control the transition from an acute inflammatory response to chronic fibrosis through Th2 functions in CNT-exposed lungs.

  19. Tracking immune cells in vivo using magnetic resonance imaging.

    Science.gov (United States)

    Ahrens, Eric T; Bulte, Jeff W M

    2013-10-01

    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and ¹⁹F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo.

  20. Immune responses in space flight

    Science.gov (United States)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  1. Immune Responses in Hookworm Infections

    Science.gov (United States)

    Loukas, Alex; Prociv, Paul

    2001-01-01

    Hookworms infect perhaps one-fifth of the entire human population, yet little is known about their interaction with our immune system. The two major species are Necator americanus, which is adapted to tropical conditions, and Ancylostoma duodenale, which predominates in more temperate zones. While having many common features, they also differ in several key aspects of their biology. Host immune responses are triggered by larval invasion of the skin, larval migration through the circulation and lungs, and worm establishment in the intestine, where adult worms feed on blood and mucosa while injecting various molecules that facilitate feeding and modulate host protective responses. Despite repeated exposure, protective immunity does not seem to develop in humans, so that infections occur in all age groups (depending on exposure patterns) and tend to be prolonged. Responses to both larval and adult worms have a characteristic T-helper type 2 profile, with activated mast cells in the gut mucosa, elevated levels of circulating immunoglobulin E, and eosinoophilia in the peripheral blood and local tissues, features also characteristic of type I hypersensitivity reactions. The longevity of adult hookworms is determined probably more by parasite genetics than by host immunity. However, many of the proteins released by the parasites seem to have immunomodulatory activity, presumably for self-protection. Advances in molecular biotechnology enable the identification and characterization of increasing numbers of these parasite molecules and should enhance our detailed understanding of the protective and pathogenetic mechanisms in hookworm infections. PMID:11585781

  2. The development of an “in vivo assay technique” as a tool for measuring protective immune responses of vaccine against myiasis in sheep

    Directory of Open Access Journals (Sweden)

    S. Partoutomo

    1998-12-01

    Full Text Available An “in vivo assay technique” is urgently needed for measuring protective immune effects of a myiasis vaccine in sheep. Such a technique is being developed simultaneously with the development of a vaccine against myiasis caused by the screwworm fly Chrysomya bezziana under a collaborative project undertaken by Balitvet, ITB and CSIRO (Australia and funded by ACIAR. Experiments were conducted in naive sheep. C. bezziana larvae were allowed to develop on abraded skin in aluminium rings which had been attached to the sheep by means of a glue (Aibon on the day prior to infection. Rings were arranged on clipped areas close to the mid line of the sheep’s back, two rings on the right side and two rings on the left. Four trials were performed, involving studies on the effects of including wet sponges in the rings to maintain humidity (Trial 1; the effects of sponge and blended meat as counting and transferring media during infection (Trial 2; the effects of the repellants citronella, eucalyptus oil and neem extract in assisting the recovery of larvae (Trial 3; and the effects of the reducing the infective dose from 50 to 25 1st instar larvae/ring and using a fine brush for counting and transferring larvae instead of using a forceps as in the previous groups (Trial 4 on the larval recovery rates (LRR. The results indicated that the inclusion of wet sponges in the rings, the use of sponge and blended meat as counting and transferring media during infection, and the application of repellants all increased the LRR to some extent; however, variations among individual rings remained high. On the other hand, the reduction of infective dose of larvae from 50 to 25 1st instar larvae/ring and using a fine brush for counting and transferring larvae sharply increased the LRR while substantially decreasing the coefficient variations.

  3. Selenium Nanoparticle-Enriched Lactobacillus Brevis Causes More Efficient Immune Responses In Vivo And Reduces The Liver Metastasis In Metastatic Form Of Mouse Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Esfandyar

    2013-04-01

    Full Text Available Background and the purpose of the study:Selenium enriched Lactobacillus has been reported as an immunostimulatory agent which can be used to increase the life span of cancer bearing animals. Lactic acid bacteria can reduce selenium ions to elemental selenium nanoparticles (SeNPs and deposit them in intracellular spaces. In this strategy two known immunostimulators, lactic acid bacteria (LAB and SeNPs, are concomitantly administered for enhancing of immune responses in cancer bearing mice.Methods:Forty five female inbred BALB/c mice were divided into three groups of tests and control, each containing 15 mice. Test mice were orally administered with SeNP-enriched Lactobacillus brevis or Lactobacillus brevis alone for 3 weeks before tumor induction. After that the administration was followed in three cycles of seven days on/three days off. Control group received phosphate buffer saline (PBS at same condition. During the study the tumor growth was monitored using caliper method. At the end of study the spleen cell culture was carried out for both NK cytotoxicity assay and cytokines measurement. Delayed type hypersensitivity (DTH responses were also assayed after 72h of tumor antigen recall. Serum lactate dehydrogenase (LDH and alkaline phosphatase (ALP levels were measured, the livers of mice were removed and prepared for histopathological analysis.Results:High level of IFN-γ and IL-17 besides the significant raised in NK cytotoxicity and DTH responses were observed in SeNP-enriched L. brevis administered mice and the extended life span and decrease in the tumor metastasis to liver were also recorded in this group compared to the control mice or L.brevis alone administered mice.Conclusion:Our results suggested that the better prognosis could be achieved by oral administration of SeNP-enriched L. brevis in highly metastatic breast cancer mice model.

  4. Translating cell biology in vitro to immunity in vivo

    Science.gov (United States)

    Boes, Marianne; Ploegh, Hidde L.

    2004-07-01

    The elimination of pathogens and pathogen-infected cells initially rests on the rapid deployment of innate immune defences. Should these defences fail, it is the lymphocytes - T cells and B cells - with their antigen-specific receptors that must rise to the task of providing adaptive immunity. Technological advances are now allowing immunologists to correlate data obtained in vitro with in vivo functions. A better understanding of T-cell activation in vivo could lead to more effective strategies for the treatment and prevention of infectious and autoimmmune diseases.

  5. Odontoblasts in the dental pulp immune response.

    Science.gov (United States)

    Farges, Jean-Christophe; Keller, Jean-François; Carrouel, Florence; Durand, Stephanie H; Romeas, Annick; Bleicher, Françoise; Lebecque, Serge; Staquet, Marie-Jeanne

    2009-07-15

    Recent studies have demonstrated that human dental pulp cells sense pathogens and elicit innate and/or adaptive immunity. Particular attention has been paid to odontoblasts that are situated at the pulp-dentin interface and constitute the first line of defense to cariogenic bacteria entering dentin after enamel disruption. In this review, recent in vitro and in vivo data suggesting that odontoblasts initiate immune/inflammatory events within the dental pulp in response to cariogenic bacteria are discussed. These data include sensing of pathogens by Toll-like receptors (TLRs), production of chemokines upon cell stimulation with microbial by-products and induction of dendritic cell migration. Additional results presented here reveal that all TLR genes are expressed in the healthy human dental pulp that is thus well equipped to combat pathogens entering the tissue. Seventeen chemokine genes including CXCL12, CCL2, CXCL9, CX3CL1, CCL8, CXCL10, CCL16, CCL5, CXCL2, CCL4, CXCL11 and CCL3, and 9 chemokine receptor genes including CXCR4, CCR1, CCR5, CX3CR1, CCR10 and CXCR3, are also expressed in pulp. TLR2, CCL2 and CXCL1 are upregulated in odontoblasts both under caries lesions and upon stimulation with pathogen by-products. These molecules thus appear as preferential targets for the design of therapeutic agents able to reduce the immune/inflammatory response to cariogenic bacteria and favor pulp healing. (c) 2008 Wiley-Liss, Inc.

  6. Cellular immune responses towards regulatory cells.

    Science.gov (United States)

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  7. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.|info:eu-repo/dai/nl/30484117X

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  8. Metabolic regulation of immune responses: therapeutic opportunities

    OpenAIRE

    Assmann, Nadine; Finlay, David K.

    2016-01-01

    Immune cell metabolism is dynamically regulated in parallel with the substantial changes in cellular function that accompany immune cell activation. While these changes in metabolism are important for facilitating the increased energetic and biosynthetic demands of activated cells, immune cell metabolism also has direct roles in controlling the functions of immune cells and shaping the immune response. A theme is emerging wherein nutrients, metabolic enzymes, and metabolites can act as an ext...

  9. Metabolic regulation of immune responses: therapeutic opportunities.

    Science.gov (United States)

    Assmann, Nadine; Finlay, David K

    2016-06-01

    Immune cell metabolism is dynamically regulated in parallel with the substantial changes in cellular function that accompany immune cell activation. While these changes in metabolism are important for facilitating the increased energetic and biosynthetic demands of activated cells, immune cell metabolism also has direct roles in controlling the functions of immune cells and shaping the immune response. A theme is emerging wherein nutrients, metabolic enzymes, and metabolites can act as an extension of the established immune signal transduction pathways, thereby adding an extra layer of complexity to the regulation of immunity. This Review will outline the metabolic configurations adopted by different immune cell subsets, describe the emerging roles for metabolic enzymes and metabolites in the control of immune cell function, and discuss the therapeutic implications of this emerging immune regulatory axis.

  10. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance.

    Science.gov (United States)

    Pearson, Ryan M; Casey, Liam M; Hughes, Kevin R; Miller, Stephen D; Shea, Lonnie D

    2017-05-15

    Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Immune response to fungal infection.

    Science.gov (United States)

    Diamond, R D

    1989-01-01

    In general, fungi are saprophytes that are well adapted to grow in nature supported by diverse nutritional substrates. For fungi, in contrast to many other microorganisms that infect humans, parasitism is an accidental phenomenon rather than an obligatory requirement for survival. Thus, with progressive improvement in our capabilities to prolong survival of patients with global defects in host defense mechanisms, clinical experience suggests that human tissues may support growth of numerous species of saprophytic fungi that share the capacity to grow at 37 degrees C. Normally, however, a broad array of natural and acquired host defense mechanisms make the occurrence of progressive, systemic, life-threatening mycoses extremely rare events. When one or another of these host defense mechanisms is compromised, one of a variety of significant fungal infections may then progress. Mycoses may be broadly categorized into those controlled largely by natural cellular defenses vs. acquired cell-mediated immunity. Notwithstanding data that permit such general classification of host factors controlling one or another invasive mycosis, the diverse structural and antigenic properties of individual fungi create unique patterns of infections in individual, characteristic host settings. Thus, while some broad generalizations are possible, definition of predisposing factors for specific individual mycoses (and, ultimately, prospects for corrective immunotherapy) requires careful characterization of diverse features of fungal forms mediating divergent immune responses.

  12. Computational and Experimental Validation of B and T-Cell Epitopes of the In Vivo Immune Response to a Novel Malarial Antigen

    Science.gov (United States)

    2013-08-16

    Walter Reed Army Institute of Research) accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International’’. Protein ...Improved technique for the preparation of water-in-oil emulsions containing protein antigens. BioTechniques 20: 797–800. 34. Greenbaum JA, Andersen PH...vivo validation using an previously uncharacterized malaria antigen, CelTOS. CelTOS has no known conserved structural elements with any known proteins

  13. Carbohydrate supplementation does not blunt the prolonged exercise-induced reduction of in vivo immunity.

    Science.gov (United States)

    Davison, Glen; Kehaya, Corinna; Diment, Bethany C; Walsh, Neil P

    2016-06-01

    Carbohydrate (CHO) supplementation during prolonged exercise is widely acknowledged to blunt in vitro immunoendocrine responses, but no study has investigated in vivo immunity. To determine the effect of CHO supplementation during prolonged exercise on in vivo immune induction using experimental contact hypersensitivity with the novel antigen diphenylcyclopropenone (DPCP). In a double-blind design, 32 subjects were randomly assigned to 120 min of treadmill exercise at 60 % [Formula: see text] with CHO (Ex-CHO) or placebo (Ex-PLA) supplementation. Responses were also compared to 16 resting control (CON) subjects from a previous study (for additional comparison with a resting non-exercise condition). Standardised diets (24 h pre-trial) and breakfasts (3.5 h pre-trial) were provided. Subjects received a primary DPCP exposure (sensitisation) 20 min after trial completion, and exactly 28 days later the strength of immune reactivity was quantified by magnitude of the cutaneous response (skin-fold thickness and erythema) to a low dose-series DPCP challenge. Stress hormones and leucocyte trafficking were also monitored. CHO supplementation blunted the cortisol and leucocyte trafficking responses, but there was no difference (P > 0.05) between Ex-CHO and Ex-PLA in the in vivo immune responses (e.g. both ~46 % lower than CON for skin-fold response). CHO supplementation does not influence the decrease in in vivo immunity seen after prolonged exercise. The effects with more stressful (or fasted) exercise remain to be determined. However, there appears to be no benefit under the conditions of the present study, which have practical relevance to what many athletes do in training or competition.

  14. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival

    National Research Council Canada - National Science Library

    Barth, Jr, Richard J; Fisher, Dawn A; Wallace, Paul K; Channon, Jacqueline Y; Noelle, Randolph J; Gui, Jiang; Ernstoff, Marc S

    2010-01-01

    To determine whether an autologous dendritic cell (DC) vaccine could induce antitumor immune responses in patients after resection of colorectal cancer metastases and whether these responses could be enhanced by activating DCs with CD40L...

  15. Cytokines and Immune Responses in Murine Atherosclerosis

    NARCIS (Netherlands)

    Kusters, Pascal J. H.; Lutgens, Esther

    2015-01-01

    Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and

  16. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío Ocampo

    2014-12-01

    Full Text Available The immune system maintains the integrity of the organisms through a complex network of molecules, cells, and tissues that recognize internal or external antigenic substances to neutralized and eliminate them. The mechanisms of immune response have evolved in a modular fashion, where members of a given module interact strongly among them, but weakly with members of other modules, providing robustness and evolvability to the immune system. Ancestral modules are the raw material for the generation of new modules through evolution. Thus, the study of immune systems in basal metazoans such as cnidarians seeks to determine the basic tool kit from which the metazoans started to construct their immune systems. In addition, understanding the immune mechanisms in cnidarians contributes to decipher the etiopathology of coral diseases of infectious nature that are affecting coral reefs worldwide.RESUMENEl sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  17. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  18. Visualization of Immune Responses in the Cornea.

    Science.gov (United States)

    Perez, Victor L

    2017-11-01

    The eye has become a useful site for the investigation and understanding of local and systemic immune responses. The ease of access and transparency of the cornea permits direct visualization of ocular structures, blood vessels, and lymphatic vessels, allowing for the tracking of normal and pathological biological processes in real time. As a window to the immune system, we have used the eye to dissect the mechanisms of corneal inflammatory reactions that include innate and adaptive immune responses. We have identified that the ocular microenvironment regulates these immune responses by recruiting different populations of inflammatory cells to the cornea through local production of selected chemokines. Moreover, crosstalk between T cells and macrophages is a common and crucial step in the development of ocular immune responses to corneal alloantigens. This review summarizes the data generated by our group using intravital fluorescent confocal microscopy to capture the tempo, magnitude, and function of innate and adaptive corneal immune responses.

  19. Noninvasive imaging of immune responses.

    Science.gov (United States)

    Rashidian, Mohammad; Keliher, Edmund J; Bilate, Angelina M; Duarte, Joao N; Wojtkiewicz, Gregory R; Jacobsen, Johanne Tracey; Cragnolini, Juanjo; Swee, Lee Kim; Victora, Gabriel D; Weissleder, Ralph; Ploegh, Hidde L

    2015-05-12

    At their margins, tumors often contain neutrophils, dendritic cells, and activated macrophages, which express class II MHC and CD11b products. The interplay between stromal cells, tumor cells, and migratory cells such as lymphocytes creates opportunities for noninvasive imaging of immune responses. We developed alpaca-derived antibody fragments specific for mouse class II MHC and CD11b products, expressed on the surface of a variety of myeloid cells. We validated these reagents by flow cytometry and two-photon microscopy to obtain images at cellular resolution. To enable noninvasive imaging of the targeted cell populations, we developed a method to site-specifically label VHHs [the variable domain (VH) of a camelid heavy-chain only antibody] with (18)F or (64)Cu. Radiolabeled VHHs rapidly cleared the circulation (t1/2 ≈ 20 min) and clearly visualized lymphoid organs. We used VHHs to explore the possibility of imaging inflammation in both xenogeneic and syngeneic tumor models, which resulted in detection of tumors with remarkable specificity. We also imaged the infiltration of myeloid cells upon injection of complete Freund's adjuvant. Both anti-class II MHC and anti-CD11b VHHs detected inflammation with excellent specificity. Given the ease of manufacture and labeling of VHHs, we believe that this method could transform the manner in which antitumor responses and/or infectious events may be tracked.

  20. Application of Ulex europaeus agglutinin I-modified liposomes for oral vaccine: Ex Vivo bioadhesion and in Vivo immunity.

    Science.gov (United States)

    Li, KeXin; Zhao, Xiuli; Xu, Shiyi; Pang, DaHai; Yang, ChunRong; Chen, DaWei

    2011-01-01

    The conjugation of Ulex europaeus agglutinin I (UEAI) onto surface of liposomes has been demonstrated to effectively improve the intestinal absorption of antigen, subsequently induced strong mucosal and systemic immune responses. In this context, we prepared bovine serum albumin (BSA)-encapsulating UEAI-modified liposomes (UEAI-LIP) and unmodified ones (LIP). The specific bioadhesion on mice gastro-intestinal mucosa was studied ex vivo. An important increase of interaction between UEAI-conjugated liposomes and the intestinal segments with Peyer's Patches (PPs) was observed compared with the unconjugated one (p<0.01). However, under the presence of α-L-fucose, which is the reported specific sugar for UEAI, specifically inhibited the activity of these conjugates. The immune-stimulating activity in vivo was studied by measuring immunoglobulin G (IgG) levels in serum and immunoglobulin A (IgA) levels in intestinal mucosal secretions following oral administration of BSA solution, LIP and UEAI-LIP in mice. Results indicate that antigen encapsulated in liposomes, especially the UEAI-modified ones, was favorable for inducing immune response. At 42 d after the first immunization, the highest IgG and IgA antibody levels produced by UEAI-LIP occurred, respectively showing 4.4-fold and 5-fold higher levels compared to those of the groups receiving BSA alone. This data demonstrated high potential of UEAI-modified liposomes for their use as carrier for oral vaccines.

  1. Virus-like nanostructures for tuning immune response

    Science.gov (United States)

    Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.

    2015-11-01

    Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.

  2. HYPOTHALAMIC NEUROHORMONES AND IMMUNE RESPONSES

    Directory of Open Access Journals (Sweden)

    J. Luis eQuintanar

    2013-08-01

    Full Text Available The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone, Corticotropin-releasing hormone and Gonadotropin-releasing hormone. In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.

  3. Impact on allergic immune response after treatment with vitamin A

    DEFF Research Database (Denmark)

    Matheu, Victor; Berggård, Karin; Barrios, Yvelise

    2009-01-01

    ABSTRACT: BACKGROUND: Vitamin A may have some influence on the immune system, but the role in allergy modulation is still unclear. OBJECTIVE: To clarify whether high levels of retinoic acid (RA) affects allergic response in vivo, we used a murine experimental model of airway allergic disease...... and 2,500 ug) every 2-days were used to assess the allergic immune response. RESULTS: Levels of total and specific-IgE in sera were increased in all groups of RA treated OVA/OVA and HDM/HDM mice. Percentage and total amount of recruited eosinophil in airways by bronchoalveolar lavage fluid (BALF) were....... METHODS: Ovalbumin (OVA)-immunization/OVA-challenge (OVA/OVA) and house dust mite (HDM)-immunization/HDM-challenge (HDM/HDM) experimental murine models of allergic airway disease, using C57Bl.10/Q groups of mice (n = 10) treated subcutaneously with different concentrations of all-trans RA (0, 50, 500...

  4. Tryptophan and the immune response

    National Research Council Canada - National Science Library

    Moffett, John R; Namboodiri, Ma Aryan

    2003-01-01

    ... that break down tryptophan through this pathway are found in numerous cell types, including cells of the immune system. Some of these enzymes are induced by immune activation, including the rate limiting enzyme present in macrophages and dendritic cells, indoleamine 2,3-dioxygenase (IDO). It has recently been found that inhibition of IDO can ...

  5. In Vivo Imaging of Influenza Virus Infection in Immunized Mice

    Directory of Open Access Journals (Sweden)

    Rita Czakó

    2017-05-01

    Full Text Available Immunization is the cornerstone of seasonal influenza control and represents an important component of pandemic preparedness strategies. Using a bioluminescent reporter virus, we demonstrate the application of noninvasive in vivo imaging system (IVIS technology to evaluate the preclinical efficacy of candidate vaccines and immunotherapy in a mouse model of influenza. Sequential imaging revealed distinct spatiotemporal kinetics of bioluminescence in groups of mice passively or actively immunized by various strategies that accelerated the clearance of the challenge virus at different rates and by distinct mechanisms. Imaging findings were consistent with conclusions derived from virus titers in the lungs and, notably, were more informative than conventional efficacy endpoints in some cases. Our findings demonstrate the reliability of IVIS as a qualitative approach to support preclinical evaluation of candidate medical countermeasures for influenza in mice.

  6. Social Behavior, Prolactin and the Immune Response

    Science.gov (United States)

    1989-04-01

    on the immune processes. (Locke, Ader, Besedovsky, Hall, Solomon & Strom, 1985). The term psychoneuroimmunology has been coined by researchers to...which demonstrate that experimental manipulations of hormone levels can either augment or depress immune responses and similar findings have been...34mind and immunity" covering a five year period (Locke and Hornig-Rohan, 1983) and a collection of seminal papers on psychoneuroimmunology (Locke, et

  7. Predictors of responses to immune checkpoint blockade in advanced melanoma

    DEFF Research Database (Denmark)

    Jacquelot, N; Roberti, M P; Enot, D P

    2017-01-01

    Immune checkpoint blockers (ICB) have become pivotal therapies in the clinical armamentarium against metastatic melanoma (MMel). Given the frequency of immune related adverse events and increasing use of ICB, predictors of response to CTLA-4 and/or PD-1 blockade represent unmet clinical needs....... Using a systems biology-based approach to an assessment of 779 paired blood and tumor markers in 37 stage III MMel patients, we analyzed association between blood immune parameters and the functional immune reactivity of tumor-infiltrating cells after ex vivo exposure to ICB. Based on this assay, we...... assays to identify potential prognostic/predictive biomarkers in circulating blood cells and in tumor-infiltrating lymphocytes from patients with resected stage III melanoma....

  8. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  9. Innate immune response to Burkholderia mallei.

    Science.gov (United States)

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  10. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response

    OpenAIRE

    Camps-Bossacoma, Mariona; Franch, ?ngels; P?rez-Cano, Francisco J.; Castell, Margarida

    2017-01-01

    Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA) plus Bordetella pertussis toxin and alum as the adjuv...

  11. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    Science.gov (United States)

    Graham, Caroline; Chooniedass, Rishma; Stefura, William P.; Becker, Allan B.; Sears, Malcolm R.; Turvey, Stuart E.; Mandhane, Piush J.; Subbarao, Padmaja

    2017-01-01

    Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense) or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus) is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD) cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20–57%, phealthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy. PMID:28636613

  12. Cellular immune response in intraventricular experimental neurocysticercosis.

    Science.gov (United States)

    Moura, Vania B L; Lima, Sarah B; Matos-Silva, Hidelberto; Vinaud, Marina C; Loyola, Patricia R A N; Lino, Ruy S

    2016-03-01

    Neurocysticercosis (NCC) is considered a neglected parasitic infection of the human central nervous system. Its pathogenesis is due to the host immune response, stage of evolution and location of the parasite. The aim of this study was to evaluate the in situ and systemic immune response through cytokines dosage (IL-4, IL-10, IL-17 and IFN-γ) as well as the local inflammatory response of the experimental NCC with Taenia crassiceps. The in situ and systemic cellular and inflammatory immune response were evaluated through the cytokines quantification at 7, 30, 60 and 90 days after inoculation and histopathological analysis. All cysticerci were found within the cerebral ventricles. There was a discrete intensity of inflammatory cells of mixed immune profile, polymorphonuclear and mononuclear cells, at the beginning of the infection and predominance of mononuclear cells at the end. The systemic immune response showed a significant increase in all the analysed cytokines and predominance of the Th2 immune profile cytokines at the end of the infection. These results indicate that the location of the cysticerci may lead to ventriculomegaly. The acute phase of the infection showed a mixed Th1/Th17 profile accompanied by high levels of IL-10 while the late phase showed a Th2 immune profile.

  13. Surviving Sepsis: Taming a Deadly Immune Response

    Science.gov (United States)

    ... Issues Subscribe August 2014 Print this issue Surviving Sepsis Taming a Deadly Immune Response En español Send ... Mouth? Looking at Lupus Wise Choices Signs of Sepsis Sepsis can be hard to spot, because its ...

  14. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  15. Innate immune response to Burkholderia mallei

    OpenAIRE

    Kamal U Saikh; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the no...

  16. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  17. The Immune Response to Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Marija Gubina

    2014-01-01

    Full Text Available The immune response to Helicobacter pylori involves different mechanisms that are both protective and damaging to the host. The innate and the adaptive immune responses lead to inflammatory as well as anti-inflammatory responses, allowing for persistence of many infections. Thus, developing new therapeutics and effective vaccines against H. pylori has proven to be arduous. Despite many immunisation experiments, using various routes of immunisation with classical as well as recombinant H. pylori vaccines (urease, CagA, HP-NAP, HspA, DNA, chimeric molecules, live vectors, microspheres, no effective vaccine is currently available for humans. New directions for successful vaccine construction should follow a profound knowledge of immunopathological events during natural H. pylori infection and factors leading to resolution of infection: mandatory is a new knowledge about the interplay of the innate response to H. pylori, mucosal inflammation, H. pylori virulence factors inducing immune responses, regulation of the adaptive responses to H. pylori as well as construction of novel vaccine platforms for achieving a broad immune response, leading to a sterilizing immunity.

  18. Immune Responses and Lassa Virus Infection

    Science.gov (United States)

    Russier, Marion; Pannetier, Delphine; Baize, Sylvain

    2012-01-01

    Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis. PMID:23202504

  19. Immune responsiveness in chronic fatigue syndrome.

    OpenAIRE

    Milton, J. D.; Clements, G. B.; Edwards, R. H.

    1991-01-01

    We have endeavoured to find immunological indications of chronic virus infection in patients with chronic fatigue syndrome (myalgic encephalomyelitis) and to investigate immune responsiveness to viruses in such patients in comparison with normal subjects and patients with muscular dystrophy. Levels of circulating IgM immune complexes were elevated (above the 95% normal control range) in 10 (17%) of 58 patients with chronic fatigue syndrome, which was not significantly different from the norma...

  20. Transcript profiling of the murine immune response to invasive aspergillosis.

    Science.gov (United States)

    Dhesi, Zaneeta; Herbst, Susanne; Armstrong-James, Darius

    2012-01-01

    Invasive aspergillosis is an opportunistic infection for which complex host-pathogen interactions determine infection outcome. In particular, immunosuppressive therapies and other host factors, such as neutropenia, need to be taken into account when modelling the immune response to aspergillosis. Mammalian models have been developed in order to gain a deeper understanding of these biological interactions, which cannot be easily replicated in vitro. In vivo transcript profiling is emerging as a valuable technique to gain an overview of host responses to invasive infections. This approach can be applied to specific tissue sections, whole organs, or peripheral blood leukocyte populations. Here we describe a microarray technique for analyzing transcript profiles from whole lung homogenates in the context of invasive aspergillosis. This approach has the advantage of enabling a broad overview of the immune responses that govern disease outcome. The generic techniques described, however, have wider application to other infectious processes and tissue types.

  1. Modeling cancer-immune responses to therapy.

    Science.gov (United States)

    dePillis, L G; Eladdadi, A; Radunskaya, A E

    2014-10-01

    Cancer therapies that harness the actions of the immune response, such as targeted monoclonal antibody treatments and therapeutic vaccines, are relatively new and promising in the landscape of cancer treatment options. Mathematical modeling and simulation of immune-modifying therapies can help to offset the costs of drug discovery and development, and encourage progress toward new immunotherapies. Despite advances in cancer immunology research, questions such as how the immune system interacts with a growing tumor, and which components of the immune system play significant roles in responding to immunotherapy are still not well understood. Mathematical modeling and simulation are powerful tools that provide an analytical framework in which to address such questions. A quantitative understanding of the kinetics of the immune response to treatment is crucial in designing treatment strategies, such as dosing, timing, and predicting the response to a specific treatment. These models can be used both descriptively and predictively. In this chapter, various mathematical models that address different cancer treatments, including cytotoxic chemotherapy, immunotherapy, and combinations of both treatments, are presented. The aim of this chapter is to highlight the importance of mathematical modeling and simulation in the design of immunotherapy protocols for cancer treatment. The results demonstrate the power of these approaches in explaining determinants that are fundamental to cancer-immune dynamics, therapeutic success, and the development of efficient therapies.

  2. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    to their occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained...

  3. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response.

    Directory of Open Access Journals (Sweden)

    Luisa Ojeda-Fernández

    2016-03-01

    Full Text Available Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT, or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Eng(fl/flLysMCre was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Eng(fl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.

  4. Immune responses to influenza virus infection.

    Science.gov (United States)

    Kreijtz, J H C M; Fouchier, R A M; Rimmelzwaan, G F

    2011-12-01

    Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Injury-induced immune responses in Hydra.

    Science.gov (United States)

    Wenger, Yvan; Buzgariu, Wanda; Reiter, Silke; Galliot, Brigitte

    2014-08-01

    The impact of injury-induced immune responses on animal regenerative processes is highly variable, positive or negative depending on the context. This likely reflects the complexity of the innate immune system that behaves as a sentinel in the transition from injury to regeneration. Early-branching invertebrates with high regenerative potential as Hydra provide a unique framework to dissect how injury-induced immune responses impact regeneration. A series of early cellular events likely require an efficient immune response after amputation, as antimicrobial defence, epithelial cell stretching for wound closure, migration of interstitial progenitors toward the wound, cell death, phagocytosis of cell debris, or reconstruction of the extracellular matrix. The analysis of the injury-induced transcriptomic modulations of 2636 genes annotated as immune genes in Hydra identified 43 genes showing an immediate/early pulse regulation in all regenerative contexts examined. These regulations point to an enhanced cytoprotection via ROS signaling (Nrf, C/EBP, p62/SQSMT1-l2), TNFR and TLR signaling (TNFR16-like, TRAF2l, TRAF5l, jun, fos-related, SIK2, ATF1/CREB, LRRC28, LRRC40, LRRK2), proteasomal activity (p62/SQSMT1-l1, Ced6/Gulf, NEDD8-conjugating enzyme Ubc12), stress proteins (CRYAB1, CRYAB2, HSP16.2, DnaJB9, HSP90a1), all potentially regulating NF-κB activity. Other genes encoding immune-annotated proteins such as NPYR4, GTPases, Swap70, the antiproliferative BTG1, enzymes involved in lipid metabolism (5-lipoxygenase, ACSF4), secreted clotting factors, secreted peptidases are also pulse regulated upon bisection. By contrast, metalloproteinases and antimicrobial peptide genes largely follow a context-dependent regulation, whereas the protease inhibitor α2macroglobulin gene exhibits a sustained up-regulation. Hence a complex immune response to injury is linked to wound healing and regeneration in Hydra. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights

  6. Damage signals in the insect immune response

    Directory of Open Access Journals (Sweden)

    Robert eKrautz

    2014-07-01

    Full Text Available Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (nonself patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.

  7. MEF2 is an in vivo immune-metabolic switch.

    Science.gov (United States)

    Clark, Rebecca I; Tan, Sharon W S; Péan, Claire B; Roostalu, Urmas; Vivancos, Valérie; Bronda, Kévin; Pilátová, Martina; Fu, Jingqi; Walker, David W; Berdeaux, Rebecca; Geissmann, Frédéric; Dionne, Marc S

    2013-10-10

    Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes--MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Humoral and cell-mediated immune response to crude antigens of Dermatophilus congolensis during experimental infection of rabbits.

    Science.gov (United States)

    Makinde, A A; Wilkie, B N

    1979-01-01

    Rabbits were infected with Dermatophilus congolensis and tested for humoral immune response by indirect haemagglutination and for cell-mediated immune response to crude antigens of D. congolensis. Lymphocyte transformation and macrophage migration inhibition assays were used as in vitro correlates of cell-mediated immune response while cutaneous delayed hypersensitivity was used in vivo. Endo-antigen and whole cell antigen were found to significantly induce cell-mediated immune response. In contrast, humoral responses were found to be more significantly induced by exo-antigen. A biphasic immune response was revealed by the lymphocyte transformation test.

  9. Strongyloides infection in rodents: immune response and immune regulation.

    Science.gov (United States)

    Breloer, Minka; Abraham, David

    2017-03-01

    The human pathogenic nematode Strongyloides stercoralis infects approximately 30-100 million people worldwide. Analysis of the adaptive immune response to S. stercoralis beyond descriptive studies is challenging, as no murine model for the complete infection cycle is available. However, the combined employment of different models each capable of modelling some features of S. stercoralis life cycle and pathology has advanced our understanding of the immunological mechanisms involved in host defence. Here we review: (i) studies using S. stercoralis third stage larvae implanted in diffusion chambers in the subcutaneous tissue of mice that allow analysis of the immune response to the human pathogenic Strongyloides species; (ii) studies using Strongyloides ratti and Strongyloides venezuelensis that infect mice and rats to extend the analysis to the parasites intestinal life stage and (iii) studies using S. stercoralis infected gerbils to analyse the hyperinfection syndrome, a severe complication of human strongyloidiasis that is not induced by rodent specific Strongyloides spp. We provide an overview of the information accumulated so far showing that Strongyloides spp. elicits a classical Th2 response that culminates in different, site specific, effector functions leading to either entrapment and killing of larvae in the tissues or expulsion of parasitic adults from the intestine.

  10. The Effect of Radiation on the Immune Response to Cancers

    Directory of Open Access Journals (Sweden)

    Bonggoo Park

    2014-01-01

    Full Text Available In cancer patients undergoing radiation therapy, the beneficial effects of radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized radiation to tumors often leads to systemic responses at distant sites, a phenomenon known as the abscopal effect which has been attributed to the induction and enhancement of the endogenous anti-tumor innate and adaptive immune response. The mechanisms surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and antigen presenting machinery and, induction of positive immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced enhancement of the anti-tumor response through its effect on the host immune system and explore potential combinational immune-based strategies such as adoptive cellular therapy using ex vivo expanded NK and T cells as a means of delivering a potent effector population in the context of radiation-enhanced anti-tumor immune environment.

  11. The immune response to fungal infections.

    Science.gov (United States)

    Shoham, Shmuel; Levitz, Stuart M

    2005-06-01

    During the past two decades, invasive fungal infections have emerged as a major threat to immunocompromised hosts. Patients with neoplastic diseases are at significant risk for such infections as a result of their underlying illness and its therapy. Aspergillus, Candida, Cryptococcus and emerging pathogens, such as the zygomycetes, dark walled fungi, Trichosporon and Fusarium, are largely opportunists, causing infection when host defences are breached. The immune response varies with respect to the fungal species and morphotype encountered. The risk for particular infections differs, depending upon which aspect of immunity is impaired. This article reviews the current understanding of the role and relative importance of innate and adaptive immunity to common and emerging fungal pathogens. An understanding of the host response to these organisms is important in decisions regarding use of currently available antifungal therapies and in the design of new therapeutic modalities.

  12. Extracellular adenosine mediates a systemic metabolic switch during immune response

    National Research Council Canada - National Science Library

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system...

  13. In vivo immune signatures of healthy human pregnancy: Inherently inflammatory or anti-inflammatory?

    Directory of Open Access Journals (Sweden)

    Caroline Graham

    Full Text Available Changes in maternal innate immunity during healthy human pregnancy are not well understood. Whether basal immune status in vivo is largely unaffected by pregnancy, is constitutively biased towards an inflammatory phenotype (transiently enhancing host defense or exhibits anti-inflammatory bias (reducing potential responsiveness to the fetus is unclear. Here, in a longitudinal study of healthy women who gave birth to healthy infants following uncomplicated pregnancies within the Canadian Healthy Infant Longitudinal Development (CHILD cohort, we test the hypothesis that a progressively altered bias in resting innate immune status develops. Women were examined during pregnancy and again, one and/or three years postpartum. Most pro-inflammatory cytokine expression, including CCL2, CXCL10, IL-18 and TNFα, was reduced in vivo during pregnancy (20-57%, p<0.0001. Anti-inflammatory biomarkers (sTNF-RI, sTNF-RII, and IL-1Ra were elevated by ~50-100% (p<0.0001. Systemic IL-10 levels were unaltered during vs. post-pregnancy. Kinetic studies demonstrate that while decreased pro-inflammatory biomarker expression (CCL2, CXCL10, IL-18, and TNFα was constant, anti-inflammatory expression increased progressively with increasing gestational age (p<0.0001. We conclude that healthy resting maternal immune status is characterized by an increasingly pronounced bias towards a systemic anti-inflammatory innate phenotype during the last two trimesters of pregnancy. This is resolved by one year postpartum in the absence of repeat pregnancy. The findings provide enhanced understanding of immunological changes that occur in vivo during healthy human pregnancy.

  14. Host immune responses to Toxoplasma gondii.

    Science.gov (United States)

    Sasai, Miwa; Pradipta, Ariel; Yamamoto, Masahiro

    2018-02-02

    Toxoplasma gondii can infect homoeothermic animals including humans and cause lethal toxoplasmosis in immunocompromised individuals. When hosts are infected with T. gondii, the cells induce immune responses against T. gondii. The pathogen infection is recognized by immune sensors that directly detect T. gondii structural components, leading to production of proinflammatory cytokines and chemokines. Antigen-presenting cells such as macrophages and dendritic cells strongly activate T cells and induce development of Th1 cells and antigen-specific killer CD8 T cells. These T cells and Group 1 innate lymphoid cells are main producers of IFN-γ, which robustly stimulates cell-autonomous immunity in cells infected with T. gondii. IFN-γ-inducible effectors such as IFN-inducible GTPases, inducible nitric oxide synthase and indoleamine-2,3-dioxygenase differentially play important roles in suppression of T. gondii growth and its direct killing in anti-T. gondii cell-autonomous immune responses. In this review, we will describe our current knowledge of innate, adaptive and IFN-γ-mediated cell-autonomous immunity against T. gondii infection. © The Japanese Society for Immunology. 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Innate Immune Sensing and Response to Influenza

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S.

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocom-promised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza. PMID:25078919

  16. HPV - immune response to infection and vaccination

    Directory of Open Access Journals (Sweden)

    Stanley Margaret

    2010-10-01

    Full Text Available Abstract HPV infection in the genital tract is common in young sexually active individuals, the majority of whom clear the infection without overt clinical disease. However most of those who develop benign lesions eventually mount an effective cell mediated immune (CMI response and the lesions regress. Failure to develop effective CMI to clear or control infection results in persistent infection and, in the case of the oncogenic HPVs, an increased probability of progression to CIN3 and invasive carcinoma. The prolonged duration of infection associated with HPV seems to be associated with effective evasion of innate immunity thus delaying the activation of adaptive immunity. Natural infections in animals show that neutralising antibody to the virus coat protein L1 is protective suggesting that this would be an effective prophylactic vaccine strategy. The current prophylactic HPV VLP vaccines are delivered i.m. circumventing the intra-epithelial immune evasion strategies. These vaccines generate high levels of antibody and both serological and B cell memory as evidenced by persistence of antibody and robust recall responses. However there is no immune correlate - no antibody level that correlates with protection. Recent data on how HPV infects basal epithelial cells and how antibody can prevent this provides a mechanistic explanation for the effectiveness of HPV VLP vaccines.

  17. Humoral immune response to AAV

    Directory of Open Access Journals (Sweden)

    Roberto eCalcedo

    2013-10-01

    Full Text Available Adeno-associated virus (AAV is a member of the family parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  18. Humoral Immune Response to AAV.

    Science.gov (United States)

    Calcedo, Roberto; Wilson, James M

    2013-10-18

    Adeno-associated virus (AAV) is a member of the family Parvoviridae that has been widely used as a vector for gene therapy because of its safety profile, its ability to transduce both dividing and non-dividing cells, and its low immunogenicity. AAV has been detected in many different tissues of several animal species but has not been associated with any disease. As a result of natural infections, antibodies to AAV can be found in many animals including humans. It has been shown that pre-existing AAV antibodies can modulate the safety and efficacy of AAV vector-mediated gene therapy by blocking vector transduction or by redirecting distribution of AAV vectors to tissues other than the target organ. This review will summarize antibody responses against natural AAV infections, as well as AAV gene therapy vectors and their impact in the clinical development of AAV vectors for gene therapy. We will also review and discuss the various methods used for AAV antibody detection and strategies to overcome neutralizing antibodies in AAV-mediated gene therapy.

  19. A model of auto immune response

    OpenAIRE

    Peterson, James K.; Kesson, Alison M.; King, Nicholas J. C.

    2017-01-01

    Background In this work, we develop a theoretical model of an auto immune response. This is based on modifications of standard second messenger trigger models using both signalling pathways and diffusion and a macro level dynamic systems approximation to the response of a triggering agent such as a virus, bacteria or environmental toxin. Results We show that there, in general, will be self damage effects whenever the triggering agent?s effect on the host can be separated into two distinct cla...

  20. Immunosuppressive Activity of 8-Gingerol on Immune Responses in Mice

    OpenAIRE

    Wenhui Qian; Guoren Huang; Xuming Deng; Guanghong Xie; Xue Shen; Shuang Guan; Jing Lu

    2011-01-01

    8-Gingerol is one of the principal components of ginger, which is widely used in China and elsewhere as a food, spice and herb. It shows immunosuppressive activity on the immune responses to ovalbumin (OVA) in mice. In the present study, we found that 8-gingerol suppressed lipopolysaccharide (LPS) and concanavalin A (ConA)-stimulated splenocyte proliferation in vitro. In vivo, 8-gingerol not only significantly suppressed Con A-, LPS- and OVA-induced splenocyte proliferation (P < 0.05) but a...

  1. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  2. Immune responses to Dermatophilus congolensis infections.

    Science.gov (United States)

    Ambrose, N; Lloyd, D; Maillard, J C

    1999-07-01

    Complex mechanisms underly the establishment of dermatophilosis, an exudative and proliferative skin disease of ruminants. This multicomponent system involves the bacterium Dermatophilus congolensis, transmission by various routes including flies, host genetic factors and immunosuppression by Amblyomma variegatum ticks. Here, Nick Ambrose and colleagues summarize recent evidence for an association between A. variegatum and severe chronic dermatophilosis in cattle. Breed-based differences in resistance to dermatophilosis are probably related to immunity to ticks or resistance to the immunosuppressive effects of ticks. Immunity to dermatophilosis might involve non-classic responses mediated by CD1 antigen presentation and gammadelta T cells. Progress towards vaccination is further complicated by strain-specific acquired immunity to D. congolensis.

  3. Immune Responses and Lassa Virus Infection

    Directory of Open Access Journals (Sweden)

    Sylvain Baize

    2012-11-01

    Full Text Available Lassa fever is a hemorrhagic fever endemic to West Africa and caused by Lassa virus, an Old World arenavirus. It may be fatal, but most patients recover from acute disease and some experience asymptomatic infection. The immune mechanisms associated with these different outcomes have not yet been fully elucidated, but considerable progress has recently been made, through the use of in vitro human models and nonhuman primates, the only relevant animal model that mimics the pathophysiology and immune responses induced in patients. We discuss here the roles of the various components of the innate and adaptive immune systems in Lassa virus infection and in the control of viral replication and pathogenesis.

  4. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  5. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  6. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  7. The innate and adaptive immune response to avian influenza virus

    Science.gov (United States)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  8. Evolutionary responses of innate Immunity to adaptive immunity

    Science.gov (United States)

    Innate immunity is present in all metazoans, whereas the evolutionarily more novel adaptive immunity is limited to jawed fishes and their descendants (gnathostomes). We observe that the organisms that possess adaptive immunity lack diversity in their innate pattern recognition receptors (PRRs), rais...

  9. Debugging how bacteria manipulate the immune response.

    Science.gov (United States)

    Sansonetti, Philippe J; Di Santo, James P

    2007-02-01

    Beyond the innate response that is elicited when tissues are infected, bacterial pathogens have evolved strategies to subvert the immune response and "recalibrate" it both qualitatively and quantitatively, thereby achieving a balance consistent with the survival of both the microbe and its infected host, a compromise that is likely the result of a long process of coevolution between pathogens and their hosts. By collaboratively studying the mechanisms employed, microbiologists and immunologists are fostering development of a renewed approach of infectious diseases that is expected to provide useful new concepts and applications for their control. In addition, the molecular strategies developed by bacteria to dampen immune mechanisms result from such strong and prolonged selective pressure for survival that they may point to original mechanisms and targets to conceive novel immunomodulatory, anti-inflammatory, and anti-infectious molecules.

  10. Inducers of salmon innate immunity: An in vitro and in vivo approach.

    Science.gov (United States)

    Estévez, Rosana A; Mostazo, Miriam G Contreras; Rodriguez, Eduardo; Espinoza, Juan Carlos; Kuznar, Juan; Jónsson, Zophonías O; Guðmundsson, Guðmundur H; Maier, Valerie H

    2018-01-01

    studied in vivo. Understanding the response of the innate immune system in different tissues and what effect this might have on infections and downstream cellular pathways is an interesting research topic for the future. Copyright © 2017. Published by Elsevier Ltd.

  11. Immune response and immunopathology during toxoplasmosis1

    Science.gov (United States)

    Dupont, Christopher D.; Christian, David A.; Hunter, Christopher A.

    2012-01-01

    Toxoplasma gondii is a protozoan parasite of medical and veterinary significance that is able to infect any warm-blooded vertebrate host. In addition to its importance to public health, several inherent features of the biology of T. gondii have made it an important model organism to study host-pathogen interactions. One factor is the genetic tractability of the parasite, which allows studies on the microbial factors that affect virulence and allows the development of tools that facilitate immune studies. Additionally, mice are natural hosts for T. gondii, and the availability of numerous reagents to study the murine immune system makes this an ideal experimental system to understand the functions of cytokines and effector mechanisms involved in immunity to intracellular microorganisms. In this article, we will review current knowledge of the innate and adaptive immune responses required for resistance to toxoplasmosis, the events that lead to the development of immunopathology, and the natural regulatory mechanisms that limit excessive inflammation during this infection. PMID:22955326

  12. Phenotype and functional evaluation of ex vivo generated antigen-specific immune effector cells with potential for therapeutic applications

    Science.gov (United States)

    Han, Shuhong; Huang, Yuju; Liang, Yin; Ho, Yuchin; Wang, Yichen; Chang, Lung-Ji

    2009-01-01

    Ex vivo activation and expansion of lymphocytes for adoptive cell therapy has demonstrated great success. To improve safety and therapeutic efficacy, increased antigen specificity and reduced non-specific response of the ex vivo generated immune cells are necessary. Here, using a complete protein-spanning pool of pentadecapeptides of the latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV), a weak viral antigen which is associated with EBV lymphoproliferative diseases, we investigated the phenotype and function of immune effector cells generated based on IFN-γ or CD137 activation marker selection and dendritic cell (DC) activation. These ex vivo prepared immune cells exhibited a donor- and antigen-dependent T cell response; the IFN-γ-selected immune cells displayed a donor-related CD4- or CD8-dominant T cell phenotype; however, the CD137-enriched cells showed an increased ratio of CD4 T cells. Importantly, the pentadecapeptide antigens accessed both class II and class I MHC antigen processing machineries and effectively activated EBV-specific CD4 and CD8 T cells. Phenotype and kinetic analyses revealed that the IFN-γ and the CD137 selections enriched more central memory T (Tcm) cells than did the DC-activation approach, and after expansion, the IFN-γ-selected effector cells showed the highest level of antigen-specificity and effector activities. While all three approaches generated immune cells with comparable antigen-specific activities, the IFN-γ selection followed by ex vivo expansion produced high quality and quantity of antigen-specific effector cells. Our studies presented the optimal approach for generating therapeutic immune cells with potential for emergency and routine clinical applications. PMID:19660111

  13. Immune Response to Exercise During Growth.

    Science.gov (United States)

    Radom-Aizik, Shlomit

    2017-02-01

    Two papers were selected for this commentary. The first paper (Citation 1) suggests that a 10-week, moderate-intensity exercise program performed early after allogeneic hematopoietic stem cell transplantation is feasible in this fragile population, and might improve cell cytotoxicity by redistributing subpopulations of NK cells. This study adds to the growing evidence that enhancing immune cell surveillance (e.g., NK cells) in response to exercise could benefit cancer patients. The second paper (Citation 2) studied neutrophil-related mediators of oxidative stress and inflammatory cytokines in response to exercise in children compared with adults. The authors found age/maturation-related differences in these responses. The paper provides a valuable introduction to the current knowledge of maturational changes in immune mediators' response to exercise. Data about leukocyte function in response to exercise in healthy children and in children with clinical conditions is scant. The need for prospective large scale pediatric clinical exercise studies is clear. Molecular approaches to understand the mechanisms through which physical activity can improve health will help to shape guidelines that optimize the mode, frequency, intensity, and duration of the training intervention.

  14. Antiviral immune responses of bats: a review.

    Science.gov (United States)

    Baker, M L; Schountz, T; Wang, L-F

    2013-02-01

    Despite being the second most species-rich and abundant group of mammals, bats are also among the least studied, with a particular paucity of information in the area of bat immunology. Although bats have a long history of association with rabies, the emergence and re-emergence of a number of viruses from bats that impact human and animal health has resulted in a resurgence of interest in bat immunology. Understanding how bats coexist with viruses in the absence of disease is essential if we are to begin to develop therapeutics to target viruses in humans and susceptible livestock and companion animals. Here, we review the current status of knowledge in the field of bat antiviral immunology including both adaptive and innate mechanisms of immune defence and highlight the need for further investigations in this area. Because data in this field are so limited, our discussion is based on both scientific discoveries and theoretical predictions. It is hoped that by provoking original, speculative or even controversial ideas or theories, this review may stimulate further research in this important field. Efforts to understand the immune systems of bats have been greatly facilitated in recent years by the availability of partial genome sequences from two species of bats, a megabat, Pteropus vampyrus, and a microbat, Myotis lucifugus, allowing the rapid identification of immune genes. Although bats appear to share most features of the immune system with other mammals, several studies have reported qualitative and quantitative differences in the immune responses of bats. These observations warrant further investigation to determine whether such differences are associated with the asymptomatic nature of viral infections in bats. © 2012 Blackwell Verlag GmbH.

  15. Immunosuppressive Activity of 8-Gingerol on Immune Responses in Mice

    Directory of Open Access Journals (Sweden)

    Wenhui Qian

    2011-03-01

    Full Text Available 8-Gingerol is one of the principal components of ginger, which is widely used in China and elsewhere as a food, spice and herb. It shows immunosuppressive activity on the immune responses to ovalbumin (OVA in mice. In the present study, we found that 8-gingerol suppressed lipopolysaccharide (LPS and concanavalin A (ConA-stimulated splenocyte proliferation in vitro. In vivo, 8-gingerol not only significantly suppressed Con A-, LPS- and OVA-induced splenocyte proliferation (P < 0.05 but also decreased the percentage of CD19+ B cells and CD3+ T cell (P < 0.05 at high doses (50, 100 mg/kg. Moreover, OVA-specific IgG, IgG1 and IgG2b levels in OVA-immunized mice were reduced by 8-gingerol at doses of 50, 100 mg/kg. These results suggest that 8-gingerol could suppress humoral and cellular immune responses in mice. The mechanism might be related to direct inhibition of sensitized T and B lymphocytes.

  16. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    Science.gov (United States)

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  17. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  18. Anti-tumor immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.

    2009-06-01

    Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp

  19. A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures

    Directory of Open Access Journals (Sweden)

    Yijian Li

    2006-01-01

    Full Text Available Abstract The dendritic cell (DC possesses the ability to stimulate both T helper 1 (Th1 and Th2 responses depending on activation stimuli. Although it is known that chemically or genetically modified DC can be used therapeutically to steer immune responses towards either Th1 or Th2, cellular therapy with ex vivo manipulated DC is clinically difficult. Here we demonstrate a novel method of switching immune responses from Th1 to Th2 through in vivo immune modulation by administration of siRNA. We demonstrate that siRNA targeting of the IL-12p35 gene leads to a Th2 bias in vitro through an IL-10 dependent mechanism. In vivo administration of siRNA admixed with the oil-based contrast agent lipiodol in the presence of antigen and adjuvant induced a deviation in recall response to reduced production of IFN-γ and augmented IL-4 response using either KLH or ovalbumin. This simple method of in vivo modification of immune response possesses therapeutic potential in Th1-mediated diseases such as multiple sclerosis and autoimmune diabetes.

  20. Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine

    Directory of Open Access Journals (Sweden)

    Zhu Yuanbo

    2016-01-01

    Full Text Available A probiotic strain Lactobacillus paracasei L9,which was isolated from human intestine, was investigated for its immunomodulatory activity in vivo. Results showed that L9 improved systemic immunity by enhancing the phagocytic activity of peritoneal macrophages, the proliferation ratio of splenocytes, the IgG level in the serum and the level of IgA in the mucosa. Further, L9induced theTh1-polarized immune response by elevating the IFN-γ/IL-4 ratio in the mucosa. This effect was confirmed by the enhanced IL-12-inducing activity of macrophages after in vitro stimulation of L9. Also detected was increased expression of TLR-2mRNA in the mucosa. We predict that L9 could enhance innate immunity by activating TLR-2 in the mucosa, and enhance acquired immunity by promoting Th1 polarization through induced production of IL-12 by macrophages.

  1. Autologous anti-metatype immune response in rabbits.

    Science.gov (United States)

    Voss, E W; Moore, J K; Weidner-McGufficke, K M; Denzin, L K; Bedzyk, W D; Voss, V H

    1992-02-01

    Rabbits hyperimmunized with fluorescyl-conjugated KLH exhibited bound ligand associated with a high affinity circulating IgG anti-fluorescein population. After cessation of immunogen administration the liganded complexes were eventually spontaneously cleared from the circulation. Individual rabbits synthesized autologous anti-metatype antibodies specific for ligand-antibody complexes. Autologous anti-metatype antibodies reacted optimally with autologous liganded anti-fluorescein antibodies. However, cross reactivity was noted with allogenic rabbit liganded antibodies from three affinity-purified pools. An autologous anti-metatype response, reminiscent of autoanti-idiotype responses, has important implications concerning in vivo clearance of antigen-antibody complexes and may serve as a model to study immune complex diseases.

  2. T cell metabolism and the immune response.

    Science.gov (United States)

    Verbist, Katherine C; Wang, Ruoning; Green, Douglas R

    2012-12-01

    As T cells respond to pathogens, they must transition from a quiescent, naïve state, to a rapidly proliferating, active effector state, and back again to a quiescent state as they develop into memory cells. Such transitions place unique metabolic demands on the differentiating cells. T cells meet these demands by altering their metabolic profiles, which are, in turn, regulated by distinct signaling cascades and transcriptional programs. Here, we examine the metabolic profiles of T cells during an acute immune response and discuss the signal and transcriptional regulators of these metabolic changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Flavobacterium psychrophilum - Experimental challenge and immune response

    DEFF Research Database (Denmark)

    Henriksen, Maya Maria Mihályi

    The disease rainbow trout fry syndrome (RTFS) is caused by the bacterial fish pathogen Flavobacterium psychrophilum. It has been the cause of great losses of rainbow trout in aquacultures both in Denmark and around the world. It was estimated that RTFS resulted in the death of 88 million fry......) Establish an experimental infection model imitating natural infection, 2) examine the immune response in blood and selected organs, and 3) examine potential portals of entry for the bacterium. Previous experimental immersion-challenges involving F. psychrophilum have resulted in none or low mortality...

  4. Immune Response of Amebiasis and Immune Evasion by Entamoeba histolytica

    Science.gov (United States)

    Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi

    2016-01-01

    Entamoeba histolytica is a protozoan parasite and the causative agent of amebiasis. It is estimated approximately 1% of humans are infected with E. histolytica, resulting in an estimate of 100,000 deaths annually. Clinical manifestations of amebic infection range widely from asymptomatic to severe symptoms, including dysentery and extra-intestinal abscesses. Like other infectious diseases, it is assumed that only ~20% of infected individuals develop symptoms, and genetic factors of both the parasite and humans as well as the environmental factors, e.g., microbiota, determine outcome of infection. There are multiple essential steps in amebic infection: degradation of and invasion into the mucosal layer, adherence to the intestinal epithelium, invasion into the tissues, and dissemination to other organs. While the mechanisms of invasion and destruction of the host tissues by the amebae during infection have been elucidated at the molecular levels, it remains largely uncharacterized how the parasite survive in the host by evading and attacking host immune system. Recently, the strategies for immune evasion by the parasite have been unraveled, including immunomodulation to suppress IFN-γ production, elimination of immune cells and soluble immune mediators, and metabolic alterations against reactive oxygen and nitrogen species to fend off the attack from immune system. In this review, we summarized the latest knowledge on immune reaction and immune evasion during amebiasis. PMID:27242782

  5. [Cerebral infarct and the immune response].

    Science.gov (United States)

    Bartko, D; Lesický, O; Buc, M

    1997-06-01

    There are only few data available regarding the immunological mechanisms for cerebral infarction. The aim of this study was to find out the humoral and cell-mediated immunity under the conditions of focal brain ischemia (CI). As a method for humoral immunity, the complement consumption test against a panel of 8 antigens, quantitative analysis of immunoglobins and fractionized sedimentation of erythrocytes were used in the group of pts with CI, and the group of atherosclerotics (AS) and hypertonics (VH), potential victims of focal brain ischemia. It was found that the occurrence of antibodies against the whole panel of antigens in the group of CI is significantly higher as compared with the healthy controls, but it is lower than that in the group of AS and VH. The occurrence of antibodies exclusively against only brain antigens and that in CSF is similar. No correlation to the location of ischemic lesion and the degree of neurological deficit score was found. These findings didn't change in 2 and 4 weeks as well as in 1 year after the onset of CI. The quantitative analysis of immunoglobins revealed statistically higher levels of IgA and lower levels of IgM in comparison with the controls. IgG were higher, but without statistical significance. Statistically significant higher levels of all immunoglobins in CSF were found. As similar trend of changes found also in the group of AS and VH. These results of humoral immunity confirmed by the results of fractionized sedimentation of erythrocytes with EP. The results can be interpreted as a possible change or disorder of central regulation of immunizing processes due to the latent (in AS and VH) of manifest (in CI) lesions of the brain. But the quality and quantity of this response might have been affected by the entire case history of the patients who survived cerebral infarction. The changes in immunity response of the organism in CI was shown also in cell-mediated immunity. The results a statistically significant

  6. Systemic protein delivery by muscle-gene transfer is limited by a local immune response

    OpenAIRE

    Wang, Lixin; Dobrzynski, Eric; Schlachterman, Alexander; Cao, Ou; Herzog, Roland W.

    2005-01-01

    Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene ...

  7. Augmentation of humoral and cell mediated immune responses by Thujone.

    Science.gov (United States)

    Siveen, K S; Kuttan, Girija

    2011-12-01

    Thujone, a naturally occurring monoterpene, was found to enhance the total WBC count, bone marrow cellularity, number of α-esterase positive cells, number of plaque forming cells in spleen and circulating antibody titer in Balb/c mice (1mg/kg body weight, intraperitoneally for 5 days). Thujone treatment enhanced proliferation of splenocytes and thymocytes, both in the presence and absence of specific mitogens. Administration of Thujone was found to stimulate the cell-mediated immunological response in normal and tumor bearing Balb/c mice. A significant enhancement in natural killer (NK) cell mediated cytotoxicity, antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement mediated cytotoxicity (ACC) in both normal as well as tumor-bearing animals was observed after the administration of Thujone. Production of cytokines such as IL-2 and IFN-γ was significantly enhanced by the administration of Thujone. The stimulatory effect of Thujone on cytotoxic T lymphocyte (CTL) generation was determined by Winn's neutralization assay using CTL sensitive EL4 thymoma cells. Thujone treatment showed a significant increase in CTL production in both the in vivo and in vitro models, as indicated by a significant increase in the life span of tumor bearing animals. All these results indicate that administration of Thujone could enhance the immune response of mice. There was a significant reduction in solid tumor development, mediated by the presence of alert immune responses during Thujone administration. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Immune responses to coiled coil supramolecular biomaterials.

    Science.gov (United States)

    Rudra, Jai S; Tripathi, Pulak K; Hildeman, David A; Jung, Jangwook P; Collier, Joel H

    2010-11-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2016-09-01

    Full Text Available Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts' immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines.This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS, respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18 or activated (e.g. miR155-5p in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including 'Transforming Growth Factor Beta (TGFβ signaling', 'Production of Nitric Oxide in Macrophages', 'Toll-like Receptor (TLRs Signaling', 'Death Receptor Signaling' and 'IL17 Signaling'. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed.In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq. This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines.

  10. Neuroendocrine and Immune System Responses with Spaceflights

    Science.gov (United States)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  11. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice.

    Science.gov (United States)

    Nair-Gill, Evan; Wiltzius, Stephanie M; Wei, Xiao X; Cheng, Donghui; Riedinger, Mireille; Radu, Caius G; Witte, Owen N

    2010-06-01

    Clinical tools that measure changes in immune cell metabolism would improve the diagnosis and treatment of immune dysfunction. PET, utilizing probes for specific metabolic processes, detects regions of immune activation in vivo. In this study we investigated the immune cell specificity of PET probes for two different metabolic pathways: [18F]-2-fluorodeoxyglucose ([18F]-FDG) for glycolysis and [18F]-2-fluoro-D-(arabinofuranosyl)cytosine ([18F]-FAC) for deoxycytidine salvage. We isolated innate and adaptive immune cells from tissues of mice challenged with a retrovirus-induced sarcoma and measured their ability to accumulate FDG and FAC. We determined that the two probes had distinct patterns of accumulation: FDG accumulated to the highest levels in innate immune cells, while FAC accumulated predominantly in CD8+ T cells in a manner that correlated with cellular proliferation. This study demonstrates that innate and adaptive cell types differ in glycolytic and deoxycytidine salvage demands during an immune response and that these differential metabolic requirements can be detected with specific PET probes. Our findings have implications for the interpretation of clinical PET scans that use [18F]-FDG or [18F]-FAC to assess immune function in vivo and suggest potential applications of metabolic PET to monitor the effects of targeted immune modulation.

  12. Gender difference in the non-specific and specific immune response in humans

    NARCIS (Netherlands)

    Schipper, M; Heineman, MJ; Faas, MM; Bouman, Annechien

    PROBLEM: The purpose of this present ex vivo study is to get insight in the sex differences of the basic non-specific and specific immune response. METHOD OF STUDY: Intracellular types 1 and 2 cytokine production by stimulated male and female lymphocytes and monocytes in a whole blood preparation

  13. Ex vivo engineered immune organoids for controlled germinal center reactions.

    Science.gov (United States)

    Purwada, Alberto; Jaiswal, Manish K; Ahn, Haelee; Nojima, Takuya; Kitamura, Daisuke; Gaharwar, Akhilesh K; Cerchietti, Leandro; Singh, Ankur

    2015-09-01

    Ex vivo engineered three-dimensional organotypic cultures have enabled the real-time study and control of biological functioning of mammalian tissues. Organs of broad interest where its architectural, cellular, and molecular complexity has prevented progress in ex vivo engineering are the secondary immune organs. Ex vivo immune organs can enable mechanistic understanding of the immune system and more importantly, accelerate the translation of immunotherapies as well as a deeper understanding of the mechanisms that lead to their malignant transformation into a variety of B and T cell malignancies. However, till date, no modular ex vivo immune organ has been developed with an ability to control the rate of immune reaction through tunable design parameter. Here we describe a B cell follicle organoid made of nanocomposite biomaterials, which recapitulates the anatomical microenvironment of a lymphoid tissue that provides the basis to induce an accelerated germinal center (GC) reaction by continuously providing extracellular matrix (ECM) and cell-cell signals to naïve B cells. Compared to existing co-cultures, immune organoids provide a control over primary B cell proliferation with ∼100-fold higher and rapid differentiation to the GC phenotype with robust antibody class switching. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Learned helplessness and immunization: sensitivity to response-reinforcer independence in immunized rats.

    Science.gov (United States)

    Warren, D A; Rosellini, R A; Plonsky, M; DeCola, J P

    1985-10-01

    In experiments 1 and 2, we examined the learned helplessness and immunization effects using a test in which appetitive responding was extinguished by delivering noncontingent reinforcers. Contrary to learned helplessness theory, "immunized" animals showed performance virtually identical to that of animals exposed only to inescapable shock, and different from nonshocked controls. Experiment 2 suggests that the helplessness effect and the lack of immunization are not due to direct response suppression resulting from shock. In Experiment 3, where the immunization effect was assessed by measuring the acquisition of a response to obtain food when there was a positive response-reinforcer contingency, immunization was observed. These results cannot be explained on the basis of proactive interference, but suggest that animals exposed to the immunization procedure acquire an expectancy of response-reinforcer independence during inescapable shock. Thus, immunization effects may reflect the differential expression of expectancies, rather than their differential acquisition as learned helplessness theory postulates.

  15. Enhancement of anamnestic immunospecific antibody response in orally immunized chickens

    DEFF Research Database (Denmark)

    Mayo, Susan; Carlsson, Hans-Erik; Zagon, Andrea

    2008-01-01

    Production of immunospecific egg yolk antibodies (IgY antibodies) in egg laying hens through oral immunization is an attractive alternative to conventional antibody production in mammals for economic reasons as well as for animal welfare reasons. Oral immunization results in a systemic humoral...... of the immunization in week 18, demonstrating the presence of memory cells following the two initial oral immunizations. Considering that oral immunization results in approximately ten times lower concentrations of immunospecific antibodies in the egg yolk, compared to traditional subcutaneous immunization schemes...... response, but oral booster immunizations lack efficiency. The aim of the present study was to develop immunization schemes in which the concentration of immunospecific IgY would increase following oral booster immunizations. Two groups of egg laying hens (5 in each group) were immunized orally (each...

  16. Using vaccinations to assess in vivo immune function in psychoneuroimmunology.

    Science.gov (United States)

    Burns, Victoria E

    2012-01-01

    Finding clinically relevant measures of immune function is an important challenge in psychoneuroimmunological research. Here, we discuss the advantages of the vaccination model, and provide guidance on the methodological decisions that are important to consider in the use of this technique. These include the choice of vaccination, timing of assessments, and the available outcome measures.

  17. In vivo approaches for immune-mediated drug hypersensitivity research

    NARCIS (Netherlands)

    Kwast, L.M.

    2017-01-01

    Drug allergies, immune-mediated drug hypersensitivity reactions (IDHRs) or drug induced liver injury (DILI) are important causes of black box warnings and drug withdrawals, and thus a major problem in the development of drugs. Also drug induced liver injury Despite the high demand for preclinical

  18. Zinc/copper imbalance reflects immune dysfunction in human leishmaniasis: an ex vivo and in vitro study

    Directory of Open Access Journals (Sweden)

    Carvalho Edgar M

    2004-11-01

    Full Text Available Abstract Background The process of elimination of intracellular pathogens, such as Leishmania, requires a Th1 type immune response, whereas a dominant Th2 response leads to exacerbated disease. Experimental human zinc deficiency decreases Th1 but not Th2 immune response. We investigated if zinc and copper levels differ in different clinical forms of leishmaniasis, and if these trace metals might be involved in the immune response towards the parasite. Methods Blood was collected from 31 patients with either localized cutaneous (LCL, mucosal (ML or visceral (VL leishmaniasis, as well as from 25 controls from endemic and non-endemic areas. Anti-Leishmania humoral and cellular immune response were evaluated by quantifying specific plasma IgG, lymphoproliferation and cytokine production, respectively. Plasma levels of Cu and Zn were quantified by atomic absorption spectrophotometry. Results A significant decrease in plasma Zn was observed in all three patient groups (p Leishmania IgG (Spearman r = 0.65, p = 0.0028. Cu/Zn ratios were highest in patients with deficient cellular (VLLCL>ML immune response. Ex vivo production of parasite-induced IFN-γ was negatively correlated to plasma Cu levels in LCL (r = -0.57, p = 0.01. In vitro, increased Cu levels inhibited IFN-γ production. Conclusions 1. Zn deficiency in VL and ML indicate possible therapeutic administration of Zn in these severe forms of leishmaniasis. 2. Plasma Cu positively correlates to humoral immune response across patient groups. 3. Environmentally or genetically determined increases in Cu levels might augment susceptibility to infection with intracellular pathogens, by causing a decrease in IFN-γ production.

  19. immune response can measuring immunity to hiv during ...

    African Journals Online (AJOL)

    2005-11-01

    Nov 1, 2005 ... Failure to maintain T-cell homeostasis during HIV-1 infection11-13 results in compromised immunity, allowing development of opportunistic infections and progression to. AIDS. Loss of CD4+ T cells due to direct and indirect mechanisms14,15 is the primary cause of this imbalance and assessment of ...

  20. Cell-autonomous stress responses in innate immunity.

    Science.gov (United States)

    Moretti, Julien; Blander, J Magarian

    2017-01-01

    The innate immune response of phagocytes to microbes has long been known to depend on the core signaling cascades downstream of pattern recognition receptors (PRRs), which lead to expression and production of inflammatory cytokines that counteract infection and induce adaptive immunity. Cell-autonomous responses have recently emerged as important mechanisms of innate immunity. Either IFN-inducible or constitutive, these processes aim to guarantee cell homeostasis but have also been shown to modulate innate immune response to microbes and production of inflammatory cytokines. Among these constitutive cell-autonomous responses, autophagy is prominent and its role in innate immunity has been well characterized. Other stress responses, such as metabolic stress, the ER stress/unfolded protein response, mitochondrial stress, or the DNA damage response, seem to also be involved in innate immunity, although the precise mechanisms by which they regulate the innate immune response are not yet defined. Of importance, these distinct constitutive cell-autonomous responses appear to be interconnected and can also be modulated by microbes and PRRs, which add further complexity to the interplay between innate immune signaling and cell-autonomous responses in the mediation of an efficient innate immune response. © Society for Leukocyte Biology.

  1. Generalized immune activation and innate immune responses in simian immunodeficiency virus infection.

    Science.gov (United States)

    Bosinger, Steven E; Sodora, Donald L; Silvestri, Guido

    2011-09-01

    Chronic immune activation is a key factor driving the immunopathogenesis of AIDS. During pathogenic HIV/simian immunodeficiency virus (SIV) infections, innate and adaptive antiviral immune responses contribute to chronic immune activation. In contrast, nonpathogenic SIV infections of natural hosts such as sooty mangabeys and African green monkeys (AGMs) are characterized by low immune activation despite similarly high viremia. This review focuses on the role of innate immune responses in SIV infection. Several studies have examined the role of innate immune responses to SIV as potential drivers of immune activation. The key result of these studies is that both pathogenic SIV infection of macaques and nonpathogenic SIV infections of natural hosts are associated with strong innate immune responses to the virus, high production of type I interferons by plasmacytoid dendritic cells, and upregulation of interferon-stimulated genes (ISGs). However, SIV-infected sooty mangabeys and AGMs (but not SIV-infected macaques) rapidly downmodulate the interferon response within 4-6 weeks of infection, thus resulting in a state of limited immune activation during chronic infection. Studies in nonhuman primates suggest that chronic innate/interferon responses may contribute to AIDS pathogenesis. Further, the ability of natural host species to resolve innate immune responses after infection provides a novel avenue for potential immunotherapy.

  2. Meeting report VLPNPV: Session 3: Immune responses.

    Science.gov (United States)

    Morrison, Trudy G

    2014-01-01

    Virus-like particles (VLPs) and nano-particles (NP) are increasingly considered for both prophylactic and therapeutic vaccines for a wide variety of human and animal diseases. Indeed, 2 VLPs have already been licensed for use in humans, the human papilloma virus vaccine and the hepatitis B virus vaccine. (1) Reflecting this increased interest, a second international conference with a specific focus on VLPs and NP was held at the Salk Institute for Biological Studies in La Jolla, California, in June 2014. Approximately 100 attendees, hailing from many nations, came from academic institutions, research institutes, and biotech companies. A wide variety of topics were discussed, ranging from development and characterization of specific VLP and NP vaccine candidates to methods of production of these particles. Session three was focused on the general question of immune responses to VLPs.

  3. The rate of immune escape vanishes when multiple immune responses control an HIV infection.

    Science.gov (United States)

    van Deutekom, Hanneke W M; Wijnker, Gilles; de Boer, Rob J

    2013-09-15

    During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most of these escapes evolve early, and that the rate of immune escape slows down considerably. To investigate why the evolution of immune escape slows down over the time of infection, we have extended a consensus mathematical model to allow several immune responses to control the virus together. In the extended model, most escapes also occur early, and the immune escape rate becomes small later, and typically only a minority of the epitopes escape. We show that escaping one of the many immune responses provides little advantage after viral setpoint has been approached because the total killing rate hardly depends on the breadth of the immune response. If the breadth of the immune response slowly wanes during disease progression, the model predicts an increase in the rate of immune escape at late stages of infection. Overall, the most striking prediction of the model is that HIV evolves a small number of immune escapes, in both relative and absolute terms, when the CTL immune response is broad.

  4. Population-expression models of immune response

    Science.gov (United States)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  5. Immune Responses to HCV and Other Hepatitis Viruses

    Science.gov (United States)

    Park, Su-Hyung; Rehermann, Barbara

    2014-01-01

    Summary Five human hepatitis viruses cause most acute and chronic liver disease worldwide. Over the past 25 years hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation impairs the development of successful adaptive immune responses. Comparative immunology furthermore provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses. PMID:24439265

  6. Staphylococcus aureus strategies to evade the host acquired immune response.

    Science.gov (United States)

    Goldmann, Oliver; Medina, Eva

    2017-09-15

    Staphylococcus aureus poses a significant public-health problem. Infection caused by S. aureus can manifest as acute or long-lasting persistent diseases that are often refractory to antibiotic and are associated with significant morbidity and mortality. To develop more effective strategies for preventing or treating these infections, it is crucial to understand why the immune response is incapable to eradicate the bacterium. When S. aureus first infect the host, there is a robust activation of the host innate immune responses. Generally, S. aureus can survive this initial interaction due to the expression of a wide array of virulence factors that interfere with the host innate immune defenses. After this initial interaction the acquired immune response is the arm of the host defenses that will try to clear the pathogen. However, S. aureus is capable of maintaining infection in the host even in the presence of a robust antigen-specific immune response. Thus, understanding the mechanisms underlying the ability of S. aureus to escape immune surveillance by the acquired immune response will help uncover potentially important targets for the development of immune-based adjunctive therapies and more efficient vaccines. There are several lines of evidence that lead us to believe that S. aureus can directly or indirectly disable the acquired immune response. This review will discuss the different immune evasion strategies used by S. aureus to modulate the different components of the acquired immune defenses. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. The effects of vaccination and immunity on bacterial infection dynamics in vivo.

    Directory of Open Access Journals (Sweden)

    Chris Coward

    2014-09-01

    Full Text Available Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.

  8. In vivo induction of regulatory T cells for immune tolerance in hemophilia.

    Science.gov (United States)

    Wang, Xiaomei; Terhorst, Cox; Herzog, Roland W

    2016-03-01

    Current therapy for the X-linked coagulation disorder hemophilia is based on intravenous infusion of the specifically deficient coagulation factor. However, 20-30% of hemophilia A patients (factor VIII, FVIII, deficiency) generate inhibitory antibodies against FVIII. While formation of inhibitors directed against factor IX, FIX, resulting from hemophilia B treatment is comparatively rare, a serious complication that is often associated with additional immunotoxicities, e.g. anaphylaxis, occurs. Current immune tolerance protocols to eradiate inhibitors are lengthy, expensive, not effective in all patients, and there are no prophylactic tolerance regimens to prevent inhibitor formation. The outcomes of recent experiments in animal models of hemophilia demonstrate that regulatory CD4(+) T cells (Treg) are of paramount importance in controlling B cell responses to FVIII and FIX. This article reviews several novel strategies designed to in vivo induce coagulation factor-specific Treg cells and discusses the subsets of Treg that may promote immune tolerance in hemophilia. Among others, drug- and gene transfer-based protocols, lymphocyte transplant, and oral tolerance are reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. In Vivo Imaging Sheds Light on Immune Cell Migration and Function in Cancer.

    Science.gov (United States)

    Torcellan, Tommaso; Stolp, Jessica; Chtanova, Tatyana

    2017-01-01

    There is ample evidence for both beneficial and harmful involvement of the immune system in tumor development and spread. Immune cell recruitment to tumors is essential not only for the success of anticancer immune therapies but also for tumor-induced immune suppression. Now that immune-based therapies are playing an increasingly important role in treatment of solid tumors such as metastatic melanomas, precise analysis of the in vivo contributions of different leukocyte subsets in tumor immunity has become an even greater priority. Recently, this goal has been markedly facilitated by the use of intravital microscopy, which has enabled us to visualize the dynamic interactions between cells of the immune system and tumor targets in the context of the tumor microenvironment. For example, intravital imaging techniques have shed new light on T cell infiltration of tumors, the mechanisms of cancer cell killing, and how myeloid cells contribute to tumor tolerance and spread. This mini-review summarizes the recent advances made to our understanding of the roles of innate and adaptive immune cells in cancer based on the use of these in vivo imaging approaches.

  10. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  11. Dendritic Cell Immune Responses in HIV-1 Controllers.

    Science.gov (United States)

    Martin-Gayo, Enrique; Yu, Xu G

    2017-02-01

    Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.

  12. Complexity of immune responses to AAV transgene products - Example of factor IX.

    Science.gov (United States)

    Herzog, Roland W

    2017-05-29

    After two decades of research, in vivo gene transfer with adeno-associated viral (AAV) vectors has now resulted in successful treatments and even cures for several human diseases. However, the potential for immune responses against the therapeutic gene products remains one of the concerns as this approach is broadened to more patients, diverse diseases, and target organs. Immune responses following gene transfer of coagulation factor IX (FIX) for the treatment of the bleeding disorder hemophilia B has been extensively investigated in multiple animal models. Findings from these studies have not only influenced clinical trial design but have broader implications for other diseases. The impact of vector design and dose, as well as target organ/route of administration on humoral and cellular immune responses are reviewed. Furthermore, the potential for tolerance induction by hepatic gene transfer or combination with immune modulation is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Gravitational physiology of human immune cells: a review of in vivo, ex vivo and in vitro studies

    Science.gov (United States)

    Cogoli, A.

    1996-01-01

    The study of the function of immune cells in microgravity has been studied for more than 20 years in several laboratories. It is clear today that the immune system is depressed in more than 50% of the astronauts during and after space flight and that the activation of T lymphocytes by mitogens in vitro changes dramatically. This article gives an overview of the gravitational studies conducted by our laboratory in Spacelab, in MIR station, in sounding rockets and on the ground in the clinostat and the centrifuge. Three experimental approaches are followed in our work: (i) Ex vivo studies are performed with blood samples drawn from astronauts; (ii) in vivo studies are based on the application of seven antigens to the skin of the astronauts; (iii) in vitro studies are carried out with immune cells purified from the blood of healthy donors (not astronauts). The data from our in vivo and ex vivo studies are in agreement with those of other laboratories and show that the immunological function is depressed in the majority of astronauts as a consequence of the stress of space flight rather than by a direct influence of gravity on the cell. Immune depression may become a critical hazard on long duration flights on space stations or to other planets. In vitro experiments show that cultures of free-floating lymphocytes and monocytes undergo a dramatic depression of activation by the mitogen concanavalin A, while activation is more than doubled when the cells are attached to microcarrier beads. Such effects may be attributed to both direct and indirect effects of gravitational unloading on basic biological mechanisms of the cell. While the in vitro data are very important to clarify certain aspects of the biological mechanism of T cells activation, they are not descriptive of the changes of the immunological function of the astronauts.

  14. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    assay (ELISA), while cellular immune response was investigated by analysis of spleen cytokine profile. (TNFα, IFN γ and IL2) ... Keywords: Hepatitis B virus, Plasmid DNA, Vaccine, Spleen cytokines, Humoral and cellular immune responses. Tropical ..... factors associated with non-response to hepatitis. B vaccine included ...

  15. Vaccines against Human Carcinomas: Strategies to Improve Antitumor Immune Responses

    Directory of Open Access Journals (Sweden)

    Claudia Palena

    2010-01-01

    Full Text Available Multiple observations in preclinical and clinical studies support a role for the immune system in controlling tumor growth and progression. Various components of the innate and adaptive immune response are able to mediate tumor cell destruction; however, certain immune cell populations can also induce a protumor environment that favors tumor growth and the development of metastasis. Moreover, tumor cells themselves are equipped with various mechanisms that allow them to evade surveillance by the immune system. The goal of cancer vaccines is to induce a tumor-specific immune response that ultimately will reduce tumor burden by tipping the balance from a protumor to an antitumor immune environment. This review discusses common mechanisms that govern immune cell activation and tumor immune escape, and some of the current strategies employed in the field of cancer vaccines aimed at enhancing activation of tumor-specific T-cells with concurrent reduction of immunosuppression.

  16. Long-Term immune responses to Coxiella burnetii after vaccination.

    Science.gov (United States)

    Kersh, Gilbert J; Fitzpatrick, Kelly A; Self, Joshua S; Biggerstaff, Brad J; Massung, Robert F

    2013-02-01

    Q fever is a zoonotic disease caused by infection with the bacterium Coxiella burnetii. Infection with C. burnetii results in humoral and cellular immune responses, both of which are thought to contribute to protection against subsequent infection. Whole-cell formalin-inactivated vaccines have also been shown to induce both humoral and cellular immunity and provide protection. Whether measurement of cellular or humoral immunity is a better indicator of immune protection is not known, and the duration of immunity induced by natural infection or vaccination is also poorly understood. To better understand the measurement and duration of C. burnetii immunity, 16 people vaccinated against Q fever (0.2 to 10.3 years before analysis) and 29 controls with a low risk of Q fever exposure were tested for immune responses to C. burnetii by an indirect fluorescent-antibody test (IFA) to measure circulating antibody and by a gamma interferon release assay (IGRA) to measure cellular immunity. Among vaccinated subjects, the IFA detected antibodies in 13/16, and the IGRA also detected positive responses in 13/16. All of the vaccinated subjects had a positive response in at least one of the assays, whereas 8/29 control subjects were positive in at least one assay. There was not a correlation between time since vaccination and responses in these assays. These results show that IFA and IGRA perform similarly in detection of C. burnetii immune responses and that Q fever vaccination establishes long-lived immune responses to C. burnetii.

  17. Targeting the tumor microenvironment to enhance antitumor immune responses

    Science.gov (United States)

    Van der Jeught, Kevin; Bialkowski, Lukasz; Daszkiewicz, Lidia; Broos, Katrijn; Goyvaerts, Cleo; Renmans, Dries; Van Lint, Sandra; Heirman, Carlo; Thielemans, Kris; Breckpot, Karine

    2015-01-01

    The identification of tumor-specific antigens and the immune responses directed against them has instigated the development of therapies to enhance antitumor immune responses. Most of these cancer immunotherapies are administered systemically rather than directly to tumors. Nonetheless, numerous studies have demonstrated that intratumoral therapy is an attractive approach, both for immunization and immunomodulation purposes. Injection, recruitment and/or activation of antigen-presenting cells in the tumor nest have been extensively studied as strategies to cross-prime immune responses. Moreover, delivery of stimulatory cytokines, blockade of inhibitory cytokines and immune checkpoint blockade have been explored to restore immunological fitness at the tumor site. These tumor-targeted therapies have the potential to induce systemic immunity without the toxicity that is often associated with systemic treatments. We review the most promising intratumoral immunotherapies, how these affect systemic antitumor immunity such that disseminated tumor cells are eliminated, and which approaches have been proven successful in animal models and patients. PMID:25682197

  18. Babassu aqueous extract (BAE as an adjuvant for T helper (Th1-dependent immune responses in mice of a Th2 immune response-prone strain

    Directory of Open Access Journals (Sweden)

    Nascimento Flavia RF

    2011-01-01

    Full Text Available Abstract Background The aqueous extract of a Brazilian palm-tree fruit - the babassu - (BAE exerts a clear immunostimulative activity in vivo. In the present work, the possibility that BAE can promote Th1 immune responses in mice of a Th2 immune response-prone strain - the BALB/c was investigated. BAE itself, and preparations consisting of Leishmania amazonensis promastigote extract (LE, adsorbed or not to Al(OH3, and in the presence or not of BAE, were used as immunogens. LE and Al(OH3 have been shown to preferentially elicit Th2 immune responses. Results The addition of BAE to LE-containing immunogenic preparations, adsorbed or not to Al(OH3, clearly promoted the in vitro production of interferon γ (IFN-γ, a major Th1-dependent cytokine, and not of interleukin (IL-4 (a Th2-dependent cytokine, by LE-stimulated splenocytes of immunized BALB/c mice. It also promoted the in vivo formation of IgG2a anti-LE antibodies. However, immunization with LE by itself led to an increased production of IL-4 by LE-stimulated splenocytes, and this production, albeit not enhanced, was not reduced by the addition of BAE to the immunogen. On the other hand, the IL-4 production by LE-stimulated splenocytes was significantly lower in mice immunized with a preparation containing Al(OH3-adsorbed LE and BAE than in mice immunized with the control preparation of Al(OH3-adsorbed LE without BAE. Moreover, an increased production of IFN-γ, and not of IL-4, was observed in the culture supernatants of splenocytes, from BAE-immunized mice, which were in vitro stimulated with BAE or which received no specific in vitro stimulus. No differences in IL-10 (an immunoregulatory cytokine levels in the supernatants of splenocytes from mice that were injected with BAE, in relation to splenocytes from control mice, were observed. The spontaneous ex vivo production of NO by splenocytes of mice that had been injected with BAE was significantly higher than the production of NO by

  19. Immune function trade-offs in response to parasite threats.

    Science.gov (United States)

    Kirschman, Lucas J; Quade, Adam H; Zera, Anthony J; Warne, Robin W

    2017-04-01

    Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Immune Response And Anamnestic Immune Response In Children After A 3-Dose Primary Hepatitis B Vaccination.

    Science.gov (United States)

    Afzal, Muhammad Faheem; Sultan, Muhammad Ashraf; Saleemi, Ahmad Imran

    2016-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response & anamnestic immune response in children, 9 months-10 years of age, after a 3dose primary Hepatitis B vaccination. This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, documented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum antiHBsAb by ELIZA was measured. Children with antiHBs titers ≥10 mIU/mL were considered to be immune. Those with anti HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Of the 200 children, protective antibody response was found in 58%. Median serological response was 18.60 (range 2.82 - 65.15). Antibody levels were found to have a statistically significant ( pvalue 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vacci ne was administered to all nonresponders, with each registering a statistically significant (pvalue 0.00) anamnestic response. The vaccination schedule with short dosage interval was unable to provide protection to 42% of the study population

  1. Protocol for a human in vivo model of acute cigarette smoke inhalation challenge in smokers with COPD: monitoring the nasal and systemic immune response using a network biology approach

    Science.gov (United States)

    Ross, Clare L; Galloway-Phillipps, Neil; Armstrong, Paul C; Mitchell, Jane A; Warner, Timothy D; Brearley, Christopher; Ito, Mari; Tunstall, Tanushree; Elkin, Sarah; Kon, Onn Min; Hansel, Trevor T; Paul-Clark, Mark J

    2015-01-01

    Introduction Cigarette smoke contributes to a diverse range of diseases including chronic obstructive pulmonary disease (COPD), cardiovascular disorders and many cancers. There currently is a need for human challenge models, to assess the acute effects of a controlled cigarette smoke stimulus, followed by serial sampling of blood and respiratory tissue for advanced molecular profiling. We employ precision sampling of nasal mucosal lining fluid by absorption to permit soluble mediators measurement in eluates. Serial nasal curettage was used for transcriptomic analysis of mucosal tissue. Methods and analysis Three groups of strictly defined patients will be studied: 12 smokers with COPD (GOLD Stage 2) with emphysema, 12 matched smokers with normal lung function and no evidence of emphysema, and 12 matched never smokers with normal spirometry. Patients in the smoking groups are current smokers, and will be given full support to stop smoking immediately after this study. In giving a controlled cigarette smoke stimulus, all patients will have abstained from smoking for 12 h, and will smoke two cigarettes with expiration through the nose in a ventilated chamber. Before and after inhalation of cigarette smoke, a series of samples will be taken from the blood, nasal mucosal lining fluid and nasal tissue by curettage. Analysis of plasma nicotine and metabolites in relation to levels of soluble inflammatory mediators in nasal lining fluid and blood, as well as assessing nasal transcriptomics, ex vivo blood platelet aggregation and leucocyte responses to toll-like receptor agonists will be undertaken. Implications Development of acute cigarette smoke challenge models has promise for the study of molecular effects of smoking in a range of pathological processes. Ethics and dissemination This study was approved by the West London National Research Ethics Committee (12/LO/1101). The study findings will be presented at conferences and will be reported in peer-reviewed journals

  2. Saccharomyces uvarum mannoproteins stimulate a humoral immune response in mice

    Directory of Open Access Journals (Sweden)

    Fernanda Patrícia Brito Darpossolo

    2012-08-01

    Full Text Available Yeasts discarded in industrial processes can be used as a nutritional supplement and to extract cellular components with biotechnological aims. In this study, the humoral immune response of Swiss mice treated with mannoproteins (MP from the yeast Saccharomyces uvarum was evaluated. The mice were treated with MPs at different doses and times and inoculated with 2% sheep red blood cells. An increase in total Ig in mice treated with 100 μg of MP at the time of immunization or 24 h before was observed in the primary immune response; in the secondary immune response, an increase was observed in total Ig values for all groups, and an increase of IgG was observed in the mice treated with MPs (100 μg at the time of immunization or 24 h before. These results show that S. uvarum MPs present an immunostimulatory action on the humoral immune response in mice.

  3. Seasonal changes in human immune responses to malaria

    DEFF Research Database (Denmark)

    Hviid, L; Theander, T G

    1993-01-01

    Cellular as well as humorol immune responses to malaria antigens fluctuate in time in individuals living in molono-endemic areas, particularly where malaria transmission is seasonal. The most pronounced changes are seen in association with clinical attacks, but osymptomatic infection can also lead...... to apparent immune depression. However, recent data have shown that seasonal variation in cellular immune responses may occur even in the absence of detectable porositaemia. Here, Lars Hviid and Thor G. Theonder review the seasonal variation in human immune responses to malaria, and discuss its possible...... causes and implications....

  4. Ex Vivo Innate Immune Cytokine Signature of Enhanced Risk of Relapsing Brucellosis

    Science.gov (United States)

    Feldman, Kristyn E.; Loriaux, Paul M.; Saito, Mayuko; Tuero, Iskra; Villaverde, Homarh; Siva, Tenaya; Gotuzzo, Eduardo; Gilman, Robert H.; Hoffmann, Alexander; Vinetz, Joseph M.

    2013-01-01

    Background Brucellosis, a zoonotic infection caused by one of the Gram-negative intracellular bacteria of the Brucella genus, is an ongoing public health problem in Perú. While most patients who receive standard antibiotic treatment recover, 5–40% suffer a brucellosis relapse. In this study, we examined the ex vivo immune cytokine profiles of recovered patients with a history of acute and relapsing brucellosis. Methodology/Principal Findings Blood was taken from healthy control donors, patients with a history of acute brucellosis, or patients with a history of relapsing brucellosis. Peripheral blood mononuclear cells were isolated and remained in culture without stimulation or were stimulated with a panel of toll-like receptor agonists or heat-killed Brucella melitensis (HKBM) isolates. Innate immune cytokine gene expression and protein secretion were measured by quantitative real-time polymerase chain reaction and a multiplex bead-based immunoassay, respectively. Acute and relapse patients demonstrated consistently elevated cytokine gene expression and secretion levels compared to controls. Notably, these include: basal and stimulus-induced expression of GM-CSF, TNF-α, and IFN-γ in response to LPS and HKBM; basal secretion of IL-6, IL-8, and TNF-α; and HKBM or Rev1-induced secretion of IL-1β, IL-2, GM-CSF, IFN-Υ, and TNF-α. Although acute and relapse patients were largely indistinguishable by their cytokine gene expression profiles, we identified a robust cytokine secretion signature that accurately discriminates acute from relapse patients. This signature consists of basal IL-6 secretion, IL-1β, IL-2, and TNF-α secretion in response to LPS and HKBM, and IFN-γ secretion in response to HKBM. Conclusions/Significance This work demonstrates that informative cytokine variations in brucellosis patients can be detected using an ex vivo assay system and used to identify patients with differing infection histories. Targeted diagnosis of this signature may

  5. L-carnitine: a partner between immune response and lipid metabolism ?

    Directory of Open Access Journals (Sweden)

    Giuseppe Famularo

    1993-01-01

    Full Text Available The authors demonstrated that in vivo administered L-carnitine strongly ameliorated the immune response in both healthy individuals receiving Intralipid and ageing subjects with cardiovascular diseases, as shown by the enhancement of mixed lymphocyte reaction. Notably, in the latter group L-carnitine treatment also resulted in a significant reduction of serum levels of both cholesterol and triglycerides. Therefore, the hypothesis is that L-carnitine supplementation could ameliorate both the dysregulated immune response and the abnormal lipid metabolism in several conditions.

  6. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    Directory of Open Access Journals (Sweden)

    Christophe Côme

    Full Text Available The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects.

  7. Factors Associated With Pediatrician Responses to Alternative Immunization Schedule Requests.

    Science.gov (United States)

    Mohanty, Salini; Feemster, Kristen A; Buttenheim, Alison; Moser, Charlotte A; Field, Robert I; Mayer, Whitney; Carroll-Scott, Amy

    2017-02-01

    We conducted a cross-sectional online survey among 4 chapters of the American Academy of Pediatrics from July through October 2014 to describe characteristics of pediatricians and practices associated with practice-level responses to alternative immunization schedule requests. Among 374 pediatricians, 58% reported frequent alternative immunization schedule requests and 24% reported feeling comfortable using them. Pediatricians who work in practices that accommodate alternative immunization schedule requests have increased odds of having a high frequency of alternative immunization schedule requests, and beliefs that relationships with families would be negatively affected if they refused requests. Practices that discontinue care to families who request alternative immunization schedules have increased odds of being a private group practice and having a formal office vaccine policy. Pediatricians are frequently asked to use alternative immunization schedules and many are not comfortable using them. Practice-level responses to alternative immunization schedules are associated with characteristics of pediatricians and practices.

  8. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  9. Salidroside liposome formulation enhances the activity of dendritic cells and immune responses.

    Science.gov (United States)

    Zhao, Xiaojuan; Lu, Yu; Tao, Yang; Huang, Yee; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Yu, Yun; Liu, Cui

    2013-12-01

    Salidroside, the important composition, of Rhodiola rosea L. has been reported to have various pharmacological properties. Liposome is known to be effective as drug carriers and immune adjuvant. Therefore, the aim of this study is to investigate immunological adjuvant activity of salidroside liposome. Here we reported the preparation, the effect on DCs in vitro and the immune response in vivo. The immunological adjuvant activity of salidroside liposome formulation was compared with that of salidroside and liposome. The result showed that salidroside liposome formulation not only could promote the maturation of DCs, the stimulation of DCs on MLR proliferation and the antigen presenting ability, but also induced the sustained cellular immune and humoral immune response. Overall, the results showed that salidroside liposome formulation had the potential to act as effective sustained release vaccine delivery systems. © 2013.

  10. Probiotics and the immune response to vaccines.

    Science.gov (United States)

    MacDonald, Thomas T; Bell, Iona

    2010-08-01

    Probiotics are bacteria, but sometimes fungi, which when taken by the oral route may give some health benefits. The most compelling evidence for beneficial effects of probiotics is in the prevention and reduction in the duration of symptoms related to gut infectious disease. There is also evidence to show that some specific probiotics are beneficial in Clostridium difficile diarrhoea in the elderly. As further and better controlled clinical studies have appeared, some specific probiotics also appear to have beneficial effects in perhaps preventing and reducing the duration of symptoms due to acquired upper respiratory tract infections. In an attempt to explain these effects, attention has turned to the effects of some specific probiotics on the immune system. There is evidence that some specific probiotics can alter monocyte and natural killer cell function in the blood. Evidence is also accumulating that taking some specific probiotics can boost antibody responses to oral and systemically administered vaccines. The effect when shown is modest and is not always seen in different studies to all vaccines, but there is enough of a trend to make the area worthy of further investigation, particularly to tease out the mechanisms involved.

  11. Importins and Exportins Regulating Allergic Immune Responses

    Directory of Open Access Journals (Sweden)

    Ankita Aggarwal

    2014-01-01

    Full Text Available Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS present on cargo molecules to be imported while nuclear export signals (NES on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.

  12. Frequent adaptive immune responses against arginase-1

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Mortensen, Rasmus Erik Johansson; Hansen, Morten

    2018-01-01

    The enzyme arginase-1 reduces the availability of arginine to tumor-infiltrating immune cells, thus reducing T-cell functionality in the tumor milieu. Arginase-1 is expressed by some cancer cells and by immune inhibitory cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated...

  13. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    2012-11-02

    Nov 2, 2012 ... Background. The therapeutic goal of antiretroviral therapy (ART) is sustained immune recovery and viral suppression. However, some patients experience poor CD4 cell count responses despite achieving viral suppression. Such discordant immune responses have been associated with poor clinical ...

  14. Standardized Whole-Blood Transcriptional Profiling Enables the Deconvolution of Complex Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Alejandra Urrutia

    2016-09-01

    Full Text Available Systems approaches for the study of immune signaling pathways have been traditionally based on purified cells or cultured lines. However, in vivo responses involve the coordinated action of multiple cell types, which interact to establish an inflammatory microenvironment. We employed standardized whole-blood stimulation systems to test the hypothesis that responses to Toll-like receptor ligands or whole microbes can be defined by the transcriptional signatures of key cytokines. We found 44 genes, identified using Support Vector Machine learning, that captured the diversity of complex innate immune responses with improved segregation between distinct stimuli. Furthermore, we used donor variability to identify shared inter-cellular pathways and trace cytokine loops involved in gene expression. This provides strategies for dimension reduction of large datasets and deconvolution of innate immune responses applicable for characterizing immunomodulatory molecules. Moreover, we provide an interactive R-Shiny application with healthy donor reference values for induced inflammatory genes.

  15. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    National Research Council Canada - National Science Library

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen‐Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    ... (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression...

  16. [The effect of psychic stress on the immune response].

    Science.gov (United States)

    Zimecki, Michał; Artym, Jolanta

    2004-03-24

    Linkage between the central nervous system and the immune system is obvious and is accomplished through the hypothalamus-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes. This review focuses on the effects of psychic stress in animals and humans on immune system function. The effects of stress depend on its duration, type, and intensity. Generally, mild stress enhances the immune response. The effects of stress also depend on the animal's behavioral profile, genetic background and preexposure to stressful conditions. Prenatal stress modifies the immune response of the offspring. Stress also modifies autoimmune reactions in animals and humans. Knowledge of the mediators and their receptors involved in the functioning of the HPA and SAM axes allows pharmacological intervention to alleviate the harmful effects of stress on the immune system. Our studies revealed a benefit of oral lactoferrin application in reversing stress-induced changes in the humoral and cellular immune response in mice.

  17. Lack of host gut microbiota alters immune responses and intestinal granuloma formation during schistosomiasis.

    Science.gov (United States)

    Holzscheiter, M; Layland, L E; Loffredo-Verde, E; Mair, K; Vogelmann, R; Langer, R; Wagner, H; Prazeres da Costa, C

    2014-02-01

    Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial T helper type 1 (Th1) responses and our previous studies demonstrated that myeloid differentiation primary response gene 88 (Myd88)-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release proinflammatory cytokines in vitro. Since Schistosoma mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally administered antibiotics and anti-mycotics we analysed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine, which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and faecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses. © 2013 British Society for Immunology.

  18. Live Imaging of the Skin Immune Responses: Visualization of the Contact Hypersensitivity Response.

    Science.gov (United States)

    Egawa, Gyohei; Honda, Tetsuya; Kabashima, Kenji

    2018-01-01

    A variety of immune cells are involved in cutaneous immune responses. Over the last decade, intravital imaging has become an important technique used to capture the dynamic behavior of immune cells in the physiological context. In this chapter, we describe essential techniques for visualizing immune cells in the skin, focusing on the contact hypersensitivity response. Using fluorescent dyes and transgenic reporter animals, many kinds of immune cells and skin components can be visualized in three dimensions and in a noninvasive manner.

  19. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  20. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

    Science.gov (United States)

    Yuba, Eiji; Sakaguchi, Naoki; Kanda, Yuhei; Miyazaki, Maiko; Koiwai, Kazunori

    2017-11-04

    (1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  1. Systemic protein delivery by muscle-gene transfer is limited by a local immune response.

    Science.gov (United States)

    Wang, Lixin; Dobrzynski, Eric; Schlachterman, Alexander; Cao, Ou; Herzog, Roland W

    2005-06-01

    Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8(+) T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4(+) cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA-transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols.

  2. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2017-11-01

    Full Text Available (1 Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2 Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3 Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4 Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  3. PBMC transcription profiles of pigs with divergent humoral immune responses and lean growth performance.

    Science.gov (United States)

    Adler, Marcel; Murani, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus

    2013-01-01

    The identification of key genes and regulatory networks in the transcriptomic responses of blood cells to antigen stimulation could facilitate the understanding of host defence and disease resistance. Moreover, genetic relationships between immunocompetence and the expression of other phenotypes, such as those of metabolic interest, are debated but incompletely understood in farm animals. Both positive and negative associations between immune responsiveness and performance traits such as weight gain or lean growth have been reported. We designed an in vivo microarray study of transcriptional changes in porcine peripheral blood mononuclear cells (PBMCs) during the immune response to tetanus toxoid (TT) as a model antigen for combined cellular (Th1) and humoral (Th2) responses. The aim of the study was to investigate the responsiveness of PBMCs against the background of divergent lean growth (LG) performance and anti-TT antibody (AB) titers and to compare lean growth and humoral immune performance phenotypes. In general, high LG phenotypes had increased cellular immune response transcripts, while low AB phenotypes had increased transcripts for canonical pathways that represented processes of intracellular and second messenger signaling and immune responses. Comparison of lean growth phenotypes in the context of high AB titers revealed higher cellular immune response transcripts in high LG phenotypes. Similar comparisons in the context of low AB titers failed to identify any corresponding pathways. When high and low AB titer phenotypes were differentially compared, low AB phenotypes had higher cellular immune response transcripts on a low LG background and higher cell signaling, growth, and proliferation transcripts on a high LG background. Divergent phenotypes of both lean growth performance and humoral immune response are affected by significant and functional transcript abundance changes throughout the immune response. The selected high-performance phenotypes

  4. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  5. Pre-Clinical Assessment of Immune Responses to Adeno-Associated Virus (AAV) Vectors.

    Science.gov (United States)

    Basner-Tschakarjan, Etiena; Bijjiga, Enoch; Martino, Ashley T

    2014-01-01

    Transitioning to human trials from pre-clinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL) responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity and explored methods for bypassing these responses. Many efforts toward measuring innate immunity have utilized Toll-like receptor deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T-cells as well as cytotoxicity toward AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T-cell proliferation, but actual transgene level reduction and parameters of cytotoxicity toward transduced target cells have only been shown in one model. The model utilized adoptive transfer of capsid-specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells as well as modulating the response pharmacologically has also

  6. Rotavirus immune responses and correlates of protection

    OpenAIRE

    Angel, Juana; Franco, Manuel A.; Greenberg, Harry B.

    2012-01-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses have developed multiple mechanisms to evade interferon-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at...

  7. Molecular Components of the Sporothrix schenckii Complex that Induce Immune Response.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Romo-Lozano, Yolanda; López-Romero, Everardo; Ruiz-Baca, Estela

    2016-08-01

    Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.

  8. Preclinical Assessment of Immune Responses to AAV (adeno-associated virus Vectors

    Directory of Open Access Journals (Sweden)

    Etiena eBasner-Tschakarjan

    2014-02-01

    Full Text Available Transitioning to human trials from preclinical models resulted in the emergence of inhibitory AAV vector immune responses which has become a hurdle for sustained correction. Early animal studies did not predict the full range of host immunity to the AAV vector in human studies. While pre-existing antibody titers against AAV vectors has been a lingering concern, cytotoxic T-cell (CTL responses against the input capsid can prevent long-term therapy in humans. These discoveries spawned more thorough profiling of immune response to rAAV in pre-clinical models, which have assessed both innate and adaptive immunity, and explored methods for bypassing these responses. Many efforts towards measuring innate immunity have utilized Toll-Like Receptor (TLR deficient models and have focused on differential responses to viral capsid and genome. From adaptive studies, it is clear that humoral responses are relevant for initial vector transduction efficiency while cellular responses impact long-term outcomes of gene transfer. Measuring humoral responses to AAV vectors has utilized in vitro neutralizing antibody (NAb assays and transfer of seropositive serum to immunodeficient mice. Overcoming antibodies using CD20 inhibitors, plasmapheresis, altering route of delivery and using different capsids have been explored. CTL responses were measured using in vitro and in vivo models. In in vitro assays expansion of antigen-specific T cells as well as cytotoxicity towards AAV transduced cells can be shown. Many groups have successfully mimicked antigen-specific T cell proliferation, but actual transgene level reduction and parameters of cytotoxicity towards transduced target cells has only been shown in one model. The model utilized adoptive transfer of capsid specific in vitro expanded T-cells isolated from immunized mice with LPS as an adjuvant. Finally, the development of immune tolerance to AAV vectors by enriching regulatory T-cells has also been explored as well

  9. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Immune Response in Thyroid Cancer: Widening the Boundaries

    Science.gov (United States)

    Ward, Laura Sterian

    2014-01-01

    The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756

  11. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  12. Enhancing the Immune Response to Recombinant Plague Antigens

    Science.gov (United States)

    2007-05-01

    protection against rotavirus infection of mice stimulated by intranasal immunization with chimeric VP4 or VP6 protein. J Virol 1999;73(9):7574–81. [13] Choi...McNeal MM, Rae MN, Bean JA, Ward RL. Antibody-dependent and -independent protection following intranasal immunization of mice with rotavirus particles. J...Williamson ED, Sharp GJ, Eley SM, Vesey PM, Pepper TC, Titball RW, et al. Local and systemic immune response to a microencapsu- lated sub-unit vaccine for

  13. PDT-apoptotic tumor cells induce macrophage immune response

    Science.gov (United States)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  14. The Bidirectional Relationship between Metabolism and Immune Responses.

    Science.gov (United States)

    Raval, Forum M; Nikolajczyk, Barbara S

    Immunometabolism investigates the multiple links between the immune system and metabolism. One main focus of immunometabolism investigates how obesity impacts the immune system and pro-inflammatory immune cell function, leading to metabolic diseases, including type 2 diabetes (T2D). The second focus stresses the metabolic changes that dictate immune cell activation. Several groups have studied these two arms of the field individually, but work that integrates both topics will be required to develop an accurate understanding of how immune cells and metabolic pathways collaborate in obesity and obesity-associated T2D. Investigations of the relationships among obesity-induced changes in the nutritional environment, immune cell activation, and immune cell metabolism may lead to novel and efficacious therapies for obesity-associated disorders such as insulin resistance (IR) and T2D. This review outlines recent insights into two related processes: 1. the role that energy utilization plays in immune responses and 2. the immune cell functions that drive obesity and T2D. Herein, we begin to consider how shifts in available fuel sources in obesity and T2D impact the immune response to both pathogens and chronic over nutrition.

  15. The Role of the Immune Response in Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Triozzi, Pierre L., E-mail: triozzp@ccf.org [Taussig Cancer Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States); Fernandez, Anthony P. [Departments of Dermatology and Anatomic Pathology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195 (United States)

    2013-02-28

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is implicated in its pathogenesis. Immune mechanisms are also implicated. Patients who are immunosuppressed have an increased risk. There is evidence that high intratumoral T-cell counts and immune transcripts are associated with favorable survival. Spontaneous regressions implicate immune effector mechanisms. Immunogenicity is also supported by observation of autoimmune paraneoplastic syndromes. Case reports suggest that immune modulation, including reduction of immune suppression, can result in tumor regression. The relationships between MCPyV infection, the immune response, and clinical outcome, however, remain poorly understood. Circulating antibodies against MCPyV antigens are present in most individuals. MCPyV-reactive T cells have been detected in both MCC patients and control subjects. High intratumoral T-cell counts are also associated with favorable survival in MCPyV-negative MCC. That the immune system plays a central role in preventing and controlling MCC is supported by several observations. MCCs often develop, however, despite the presence of humoral and cellular immune responses. A better understanding on how MCPyV and MCC evade the immune response will be necessary to develop effective immunotherapies.

  16. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells.

    Science.gov (United States)

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-18

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis.

  17. The influence of atopy and asthma on immune responses in inner-city adults.

    Science.gov (United States)

    Kakumanu, Sujani; Jaffee, Katy; Visness, Cynthia M; Dresen, Amy; Burger, Melissa; Witter, Frank R; O'Connor, George T; Cruikshank, William W; Shreffler, Wayne G; Bacharier, Leonard B; Gern, James E

    2016-03-01

    Asthma in the inner-city population is usually atopic in nature, and is associated with significant morbidity and mortality. However, the underlying immune abnormalities that underlie asthma in urban adults have not been well defined. We investigated the influence of atopy and asthma on cytokine responses of inner-city adult women to define immune abnormalities associated with asthma and atopy. Blood samples were collected from 509 of 606 inner-city women enrolled in the Urban Environment and Childhood Asthma (URECA) study. We tested for associations between atopy and asthma status and cytokine responses in peripheral blood mononuclear cells incubated ex vivo with a panel of innate and adaptive immune stimulants. Atopic subjects had heightened Th2 cytokine responses (IL-4, IL-5, IL-13) to cockroach and dust mite antigens, tetanus toxoid, and phytohemagglutinin (P atopy was broadly related to increased Th2-like responses to all antigens and PHA, while asthma was only weakly related to mitogen-induced IL-4 and IL-5 responses. There were few asthma or allergy-related differences in responses to innate stimuli, including IFN-α and IFN-γ responses. In this inner-city adult female population, atopy is associated with enhanced Th2 responses to allergens and other stimuli, and there was little or no additional signal attributable to asthma. In particular, these data indicate that altered systemic interferon and innate immune responses are not associated with allergies and/or asthma in inner-city women.

  18. Immuno-thermal ablations - boosting the anticancer immune response.

    Science.gov (United States)

    Slovak, Ryan; Ludwig, Johannes M; Gettinger, Scott N; Herbst, Roy S; Kim, Hyun S

    2017-10-17

    The use of immunomodulation to treat malignancies has seen a recent explosion in interest. The therapeutic appeal of these treatments is far reaching, and many new applications continue to evolve. In particular, immune modulating drugs have the potential to enhance the systemic anticancer immune effects induced by locoregional thermal ablation. The immune responses induced by ablation monotherapy are well documented, but independently they tend to be incapable of evoking a robust antitumor response. By adding immunomodulators to traditional ablative techniques, several researchers have sought to amplify the induced immune response and trigger systemic antitumor activity. This paper summarizes the work done in animal models to investigate the immune effects induced by the combination of ablative therapy and immunomodulation. Combination therapy with radiofrequency ablation, cryoablation, and microwave ablation are all reviewed, and special attention has been paid to the addition of checkpoint blockades.

  19. A review of immune therapy in cancer and a question: can thermal therapy increase tumor response?

    Science.gov (United States)

    Bull, Joan M C

    2017-11-03

    Immune therapy is a successful cancer treatment coming into its own. This is because checkpoint molecules, adoptive specific lymphocyte transfer and chimeric antigen T-cell (CAR-T) therapy are able to induce more durable responses in an increasing number of malignancies compared to chemotherapy. In addition, immune therapies are able to treat bulky disease, whereas standard cytotoxic therapies cannot treat large tumour burdens. Checkpoint inhibitor monoclonal antibodies are becoming widely used in the clinic and although more complex, adoptive lymphocyte transfer and CAR-T therapies show promise. We are learning that there are nuances to predicting the successful use of the checkpoint inhibitors as well as to specific-antigen adoptive and CAR-T therapies. We are also newly aware of a here-to-fore unrealised natural force, the status of the microbiome. However, despite better understanding of mechanisms of action of the new immune therapies, the best responses to the new immune therapies remain 20-30%. Likely the best way to improve this somewhat low response rate for patients is to increase the patient's own immune response. Thermal therapy is a way to do this. All forms of thermal therapy, from fever-range systemic thermal therapy, to high-temperature HIFU and even cryotherapy improve the immune response pre-clinically. It is time to test the immune therapies with thermal therapy in vivo to test for optimal timing of the combinations that will best enhance tumour response and then to begin to test the immune therapies with thermal therapy in the clinic as soon as possible.

  20. War and peace: Factor VIII and the adaptive immune response.

    Science.gov (United States)

    Georgescu, Maria T; Lai, Jesse D; Hough, Christine; Lillicrap, David

    2016-03-01

    The development of neutralizing anti-factor VIII (FVIII) antibodies (inhibitors) remains a major challenge for FVIII replacement therapy in hemophilia A patients. The adaptive immune response plays a crucial role in the development and maintenance of inhibitors. In this review, we focus on our current understanding of FVIII interactions with cells of the adaptive immune system and the phenotype of the resultant response. Additionally, we examine both current and novel FVIII tolerance induction methods that function at the level of the adaptive immune response. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Innate Immune Responses to Bladder Infection.

    Science.gov (United States)

    Hayes, Byron W; Abraham, Soman N

    2016-12-01

    Urinary tract infections are one of the most frequent bacterial infections of mankind. In spite of this frequency, the study of the immune system in the urinary tract has not attracted much attention. This could, in part, be attributable to the widespread use of antibiotics and similar antimicrobial agents, which for many decades have been both highly effective and relatively inexpensive to administer. In light of the emergence of multidrug-resistant bacteria among urinary tract infection isolates, interest in understanding the immune system in the urinary tract has grown. Several recent studies have revealed the existence of a powerful and highly coordinated innate immune system in the urinary tract designed to rapidly clear infecting pathogens; however, it also evokes harmful side effects.

  2. Rotavirus immune responses and correlates of protection.

    Science.gov (United States)

    Angel, Juana; Franco, Manuel A; Greenberg, Harry B

    2012-08-01

    Selected topics in the field of rotavirus immunity are reviewed focusing on recent developments that may improve efficacy and safety of current and future vaccines. Rotaviruses (RVs) have developed multiple mechanisms to evade interferon (IFN)-mediated innate immunity. Compared to more developed regions of the world, protection induced by natural infection and vaccination is reduced in developing countries where, among other factors, high viral challenge loads are common and where infants are infected at an early age. Studies in developing countries indicate that rotavirus-specific serum IgA levels are not an optimal correlate of protection following vaccination, and better correlates need to be identified. Protection against rotavirus following vaccination is substantially heterotypic; nonetheless, a role for homotypic immunity in selection of circulating postvaccination strains needs further study. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review

    Directory of Open Access Journals (Sweden)

    Akash M. Mehta

    2017-01-01

    Full Text Available The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.

  4. Nifurtimox-induced alterations in the cell-mediated immune response to PPD tin guinea-pigs.

    Science.gov (United States)

    Lelchuk, R; Cardoni, R L; Levis, S

    1977-01-01

    Positive skin reactions to PPD in guinea-pigs immunized with Freund's complete adjuvant (FCA) were reversed after treatment with 10 mg/kg/day nifurtimox for 12 days. The in vitro migration of peripheral blood leucocytes from FCA-immunized guinea-pigs was inhibited with PPD, but it returned to normal values after nifurtimox treatment. Furthermore, the cell-free supernatant from PPD-stimulated lymphocytes from FCA-immunized nifurtimox-treated guinea-pigs did not inhibit the migration of normal cells. Thus the administration of nifurtimox impaired the specific cell-mediated immune response to PPD both in vivo and in vitro. PMID:414870

  5. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    It is well-known that the innate immune mechanisms in fish serve as the first line of defence against wide variety of pathogens. In most of the situations, innate responses get induced and enhanced after the pathogen invasion. It would be interesting to look into the inducibility of various innate immune mechanisms and the ...

  6. Evidence of a humoral immune response against the prokaryotic ...

    Indian Academy of Sciences (India)

    Although the BVDV non-structural N-terminal protease (Npro) acts as an interferon antagonist and subverts the host innate immunity, little is known about its immunogenicity. Hence, we expressed a recombinant BVDV Npro–His fusion protein (28 kDa) in E. coli and determined the humoral immune response generated by it ...

  7. Modulation of the immune response by emotional stress

    NARCIS (Netherlands)

    Croiset, G; Heijnen, C J; Veldhuis, H D; de Wied, D; Ballieux, R E

    1987-01-01

    The influence of mild, emotional stress was investigated for its effect on the immune system by subjecting rats to the one-trial-learning passive avoidance test. The reactivity of the immune system was tested by determining the proliferative response after mitogenic stimulation in vitro as well as

  8. Hepatitis B Virus Vaccine immune response in Egyptian children 15 ...

    African Journals Online (AJOL)

    Egypt J Pediatr Allergy Immunol 2015;13(2):45-48. 45. Hepatitis B Virus Vaccine immune response in ... history suggestive of either chronic liver disease or chronic extrahepatic disease. All study candidates ... adolescents. Their ages ranged from 16-18 year with a definite history of receiving the primary immunization for ...

  9. Q fever in pregnant goats: humoral and cellular immune responses

    NARCIS (Netherlands)

    Roest, H.I.J.; Post, J.; Gelderen, van E.; Zijderveld, van F.G.; Rebel, J.M.J.

    2013-01-01

    Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are

  10. Photoactivated Spatiotemporally-Responsive Nanosensors of in Vivo Protease Activity.

    Science.gov (United States)

    Dudani, Jaideep S; Jain, Piyush K; Kwong, Gabriel A; Stevens, Kelly R; Bhatia, Sangeeta N

    2015-12-22

    Proteases play diverse and important roles in physiology and disease, including influencing critical processes in development, immune responses, and malignancies. Both the abundance and activity of these enzymes are tightly regulated and highly contextual; thus, in order to elucidate their specific impact on disease progression, better tools are needed to precisely monitor in situ protease activity. Current strategies for detecting protease activity are focused on functionalizing synthetic peptide substrates with reporters that emit detection signals following peptide cleavage. However, these activity-based probes lack the capacity to be turned on at sites of interest and, therefore, are subject to off-target activation. Here we report a strategy that uses light to precisely control both the location and time of activity-based sensing. We develop photocaged activity-based sensors by conjugating photolabile molecules directly onto peptide substrates, thereby blocking protease cleavage by steric hindrance. At sites of disease, exposure to ultraviolet light unveils the nanosensors to allow proteases to cleave and release a reporter fragment that can be detected remotely. We apply this spatiotemporally controlled system to probe secreted protease activity in vitro and tumor protease activity in vivo. In vitro, we demonstrate the ability to dynamically and spatially measure metalloproteinase activity in a 3D model of colorectal cancer. In vivo, veiled nanosensors are selectively activated at the primary tumor site in colorectal cancer xenografts to capture the tumor microenvironment-enriched protease activity. The ability to remotely control activity-based sensors may offer a valuable complement to existing tools for measuring biological activity.

  11. Human placenta-derived adherent cells induce tolerogenic immune responses

    Science.gov (United States)

    Liu, Wei; Morschauser, Andrew; Zhang, Xin; Lu, Xiaohua; Gleason, Joseph; He, Shuyang; Chen, Hong-Jung; Jankovic, Vladimir; Ye, Qian; Labazzo, Kristen; Herzberg, Uri; Albert, Vivian R; Abbot, Stewart E; Liang, Bitao; Hariri, Robert

    2014-01-01

    Human placenta-derived adherent cells (PDAC cells) are a culture expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory and anti-inflammatory properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. To elucidate the mechanisms underlying the immunoregulatory properties of PDAC cells, we investigated their effects on immune cell populations, including T cells and dendritic cells (DC) in vitro and in vivo. PDAC cells suppressed T-cell proliferation in an OT-II T-cell adoptive transfer model, reduced the severity of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis and ameliorated inflammation in a delayed type hypersensitivity response model. In vitro, PDAC cells suppressed T-cell proliferation and inhibited Th1 and Th17 differentiation. Analysis of tissues derived from PDAC cell-treated animals revealed diminished CD86 expression on splenic DC, suggesting that they can also modulate DC populations. Furthermore, PDAC cells modulate the differentiation and maturation of mouse bone marrow-derived DC. Similarly, human DC differentiated from CD14+ monocytes in the presence of PDAC cells acquired a tolerogenic phenotype. These tolerogenic DC failed to induce allogeneic T-cell proliferation and differentiation toward Th1, but skewed T-cell differentiation toward Th2. Inhibition of cyclo-oxygenase-2 activity resulted in a significant, but not complete, abrogation of PDAC cells' effects on DC phenotype and function, implying a role for prostaglandin E2 in PDAC-mediated immunomodulation. This study identifies modulation of DC differentiation toward immune tolerance as a key mechanism underlying the immunomodulatory activities of PDAC cells. PMID:25505962

  12. Increased interferon-mediated immunity following in vitro and in vivo Modafinil treatment on peripheral immune cells.

    Science.gov (United States)

    Zager, Adriano; Brandão, Wesley Nogueira; Margatho, Rafael Oliveira; Cruz, Daniel Sanzio Gimenes; Peron, Jean Pierre; Tufik, Sergio; Andersen, Monica Levy; Moresco, Monica; Pizza, Fabio; Plazzi, Giuseppe; Kornum, Birgitte Rahbek; Palermo-Neto, João

    2018-02-02

    The wake-promoting drug Modafinil has been used for treatment of sleep disorders, such as Narcolepsy, excessive daytime sleepiness and sleep apnea, due to its stimulant action. Despite the known effect of Modafinil on brain neurochemistry, particularly on brain dopamine system, recent evidence support an immunomodulatory role for Modafinil treatment in neuroinflammatory models. Here, we aimed to study the effects of in vitro and in vivo Modafinil treatment on activation, proliferation, cell viability, and cytokine production by immune cells in splenocytes culture from mice. The results show that in vitro treatment with Modafinil increased Interferon (IFN)-γ, Interleukin (IL)-2 and IL-17 production and CD25 expression by T cells. In turn, in vivo Modafinil treatment enhanced splenocyte production of IFN-γ, IL-6 and tumor necrosis factor (TNF), and increased the number of IFN-γ producing cells. Next, we addressed the translational value of the observed effects by testing PBMCs from Narcolepsy type 1 patients that underwent Modafinil treatment. We reported increased number of IFN-γ producing cells in PBMCs from Narcolepsy type 1 patients following continuous Modafinil treatment, corroborating our animal data. Taken together, our results show, for the first time, a pro-inflammatory action of Modafinil, particularly on IFN-mediated immunity, in mice and in patients with Narcolepsy type 1. The study suggests a novel effect of this drug treatment, which should be taken into consideration when given concomitantly with an ongoing inflammatory or autoimmune process. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  14. Augmented primary humoral immune response and decreased cell-mediated immunity by Murraya koenigii in rats.

    Science.gov (United States)

    Kaur, Inderjit; Bhatia, Sneh; Bhati, Yogendra; Sharma, Vinay; Mediratta, Pramod K; Bhattacharya, Swapan K

    2014-05-01

    Murraya koenigii (Rutaceae) (curry patta: Hindi) of the family Rutaceae is used in the traditional Indian system of medicine for its immunomodulatory properties. The essential oil of the leaves of M. koenigii possesses antimicrobial, antifungal, and pesticidal activities and is used for the treatment of amebiasis, diabetes, and hepatitis. The present study was performed to evaluate the effect of M. koenigii on humoral and cell-mediated immune responses in rats. Aqueous extract of M. koenigii leaves was administered orally in a dose of 350 mg/kg. Cell-mediated immunity was assessed by measuring foot pad thickness following sensitization by injection of keyhole limpet hemocyanin and subsequent challenge by the same. Humoral immunity was assessed by measurement of hemagglutination titer to sheep red blood cells (SRBCs). In the humoral immune response, the administration of M. koenigii [350 mg/kg per os (p.o.)] from day 1 to day 7 after sensitization with SRBC on day 0 caused a significant increase in the primary anti-SRBC titer. However, the secondary immune response was decreased significantly (pkoenigii (350 mg/kg, p.o.), when administered for 14 days, produced a significant (pkoenigii augments primary humoral immune response and decreases cell-mediated immunity.

  15. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Science.gov (United States)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  16. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Directory of Open Access Journals (Sweden)

    Thomas Kieber-Emmons

    2011-11-01

    Full Text Available Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs. To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I, and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  17. Subversion of the Immune Response by Rabies Virus

    Directory of Open Access Journals (Sweden)

    Terence P. Scott

    2016-08-01

    Full Text Available Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.

  18. Immune response capacity after human splenic autotransplantation - Restoration of response to individual pneumococcal vaccine subtypes

    NARCIS (Netherlands)

    Leemans, R; Manson, W; Snijder, JAM; Smit, JW; Klasen, HJ; The, TH; Timens, W

    Objective To evaluate features of general immune function, in particular the restoration of the humoral immune response to pneumococcal capsular polysaccharides, in humans undergoing a spleen autotransplantation after splenectomy because of trauma. Summary Background Data After splenectomy, patients

  19. Nanoparticles for nasal delivery of vaccines : monitoring adaptive immune responses

    NARCIS (Netherlands)

    Keijzer, C.

    2013-01-01

    The continuous emergence of new pathogens and growing drug resistance of microorganisms asks for innovative vaccination strategies. An alternative to conventional multiple injection vaccines is the nasal route of vaccine delivery. The immune response induced following nasal antigen delivery depends

  20. Intestinal dysbiosis and innate immune responses in axial spondyloarthritis.

    Science.gov (United States)

    Ciccia, Francesco; Ferrante, Angelo; Triolo, Giovanni

    2016-07-01

    Inflammatory innate and adaptive immune cell responses to commensal bacteria underlie the pathogenesis of human chronic inflammatory diseases. Intestinal dysbiosis has been described in patients with spondyloarthritis (SpA) and seems to be correlated with histologic and immunologic alterations. Purpose of this review is to discuss the relationship occurring between intestinal dysbiosis and innate immune responses in patients with axial SpA. Intestinal dysbiosis and differential activation of intestinal immune responses in patients with SpA have been demonstrated. Furthermore, innate cells that appear to be involved in the pathogenesis of SpA may control intestinal homeostasis through induction of apoptotic cell death and deletion of activated commensal bacteria-specific T cells. Although the evidence shows that dysbiosis occurs in SpA, it is not clear the role of dysbiosis in regulating innate immune responses in SpA. Relationships between cause and effect remain to be answered. http://links.lww.com/COR/A34.

  1. Autophagy suppresses host adaptive immune responses toward Borrelia burgdorferi

    NARCIS (Netherlands)

    Buffen, Kathrin; Oosting, Marije; Li, Yang; Kanneganti, Thirumala-Devi; Netea, Mihai G.; Joosten, Leo A. B.

    Inhibition of autophagy increases the severity of murine Lyme arthritis and human adaptive immune responses against B. burgdorferi. We have previously demonstrated that inhibition of autophagy increased the Borrelia burgdorferi induced innate cytokine production in vitro, but little is known

  2. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Keywords: Hepatitis B virus, Plasmid DNA, Vaccine, Spleen cytokines, Humoral and cellular immune responses. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African.

  3. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Humoral and cellular immune responses to modified hepatitis B plasmid DNA vaccine in mice. Mounir M Salem-Bekhit, Mohamed Osman Gad El Rab, Mahmoud M Tawfick, Mohammad Raish, Mohamed Dahmani Fathallah, Mohsen Bayomi ...

  4. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice

    Science.gov (United States)

    Mizuno, Kazue; Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Ono, Ryo

    2017-03-01

    Plasma is known to activate immune cells in vitro; however, its effect on cancer immunotherapy is not well understood in vivo. In this study, we report B16-F10 tumor growth suppression at a non-irradiated site on a mouse leg after a nanosecond pulsed streamer discharge was applied to the tumor on the other leg. The tumor growth suppression at non-irradiated remote sites was observed from the day next to that of plasma irradiation: the rapid abscopal effect suggests innate immune response activation. Additionally, the production of inflammatory cytokines from splenocytes was enhanced after plasma irradiation. This suggests the activation of adaptive immune response specific to B16-F10 melanoma by plasma irradiation.

  5. Effect of probiotic administration on the immune response: a systematic review of experimental models in rats

    Directory of Open Access Journals (Sweden)

    Viviam de Oliveira Silva

    2012-10-01

    Full Text Available The probiotic influence on the immune system, especially under pathogenic challenge conditions, still remains controversial. To address this, a systematic review of current studies concerning the efficacy of probiotics on the immune response of rats subjected to experimental challenges was conducted. The survey was conducted using PubMed, ISI Web of Science and Scielo databases. Only studies which tested probiotics in vivo in rats were included. The experimental design, methodological quality, and results of the articles were analyzed. In total 21 articles were selected for this study. The most commonly used microorganisms in the experiments were those of the genus Lactobacillus, which was reported in 12 articles. The second most often used genus was Bifidobacterium (B. animalis and B.longum. In general, the probiotics use against experimental pathogenic challenges was successful: 86% of the selected articles reported a beneficial effect on the immune response associated with the use of probiotics.

  6. DNA Damage Response and Immune Defence: Links and Mechanisms

    Directory of Open Access Journals (Sweden)

    Björn Schumacher

    2016-08-01

    Full Text Available DNA damage plays a causal role in numerous human pathologies including cancer, premature aging and chronic inflammatory conditions. In response to genotoxic insults, the DNA damage response (DDR orchestrates DNA damage checkpoint activation and facilitates the removal of DNA lesions. The DDR can also arouse the immune system by for example inducing the expression of antimicrobial peptides as well as ligands for receptors found on immune cells. The activation of immune signalling is triggered by different components of the DDR including DNA damage sensors, transducer kinases, and effectors. In this review, we describe recent advances on the understanding of the role of DDR in activating immune signalling. We highlight evidence gained into (i which molecular and cellular pathways of DDR activate immune signalling, (ii how DNA damage drives chronic inflammation, and (iii how chronic inflammation causes DNA damage and pathology in humans.

  7. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  8. Chemical modifications on siRNAs avoid Toll-like-receptor-mediated activation of the hepatic immune system in vivo and in vitro.

    Science.gov (United States)

    Broering, Ruth; Real, Catherine I; John, Matthias J; Jahn-Hofmann, Kerstin; Ickenstein, Ludger M; Kleinehr, Kathrin; Paul, Andreas; Gibbert, Kathrin; Dittmer, Ulf; Gerken, Guido; Schlaak, Joerg F

    2014-01-01

    The therapeutic application of small interfering RNAs (siRNAs) is limited by the induction of severe off-target effects, especially in the liver. Therefore, we assessed the potential of differently modified siRNAs to induce the hepatic innate immune system in vitro and in vivo. Primary isolated liver cells were transfected with siRNAs against apolipoprotein B1 (APOB1), luciferase (LUC) or galactosidase (GAL). For in vivo use, siRNAs were formulated in lipid nanoparticles (LNPs) and administered intravenously to C57BL/6 mice. Liver tissue was collected 6-48 h after injection and knock-down efficiency or immune responses were determined by quantitative reverse-transcription-linked PCR. Unmodified GAL siRNA transiently induced the expression of TNF-α, IL-6, IL-10, IFN-β and IFN-sensitive gene 15 in vivo, whereas a formulation of 2'-O-methylated-LUC siRNA had no such effects. Formulation of unmodified APOB1-specific siRNA suppressed APOB1 mRNA levels by ~80% in the liver 48h after application. The results were paralleled in vitro, where transfection of liver cells with unmodified siRNAs, but not with chemically modified siRNAs, led to cell-type-specific induction of immune genes. These immune responses were not observed in MYD88-deficient mice or in chloroquine-treated cells in vitro. Our data indicate that siRNAs activate endosomal Toll-like receptors in different liver-derived cell types to various degrees, in vitro. LNP-formulated siRNA selectively leads to hepatic knock-down of target genes in vivo. Here, off-target immune responses are restricted to non-parenchymal liver cells. However, 2'-O-methyl modifications of siRNA largely avoid immune-stimulatory effects, which is a crucial prerequisite for the development of safe and efficient RNA-interference-based therapeutics.

  9. Transcriptional events defining plant immune responses.

    Science.gov (United States)

    Birkenbihl, Rainer P; Liu, Shouan; Somssich, Imre E

    2017-08-01

    Rapid and massive transcriptional reprogramming upon pathogen recognition is the decisive step in plant-phytopathogen interactions. Plant transcription factors (TFs) are key players in this process but they require a suite of other context-specific co-regulators to establish sensory transcription regulatory networks to bring about host immunity. Molecular, genetic and biochemical studies, particularly in the model plants Arabidopsis and rice, are continuously uncovering new components of the transcriptional machinery that can selectively impact host resistance toward a diverse range of pathogens. Moreover, detailed studies on key immune regulators, such as WRKY TFs and NPR1, are beginning to reveal the underlying mechanisms by which defense hormones influence the function of these factors. Here we provide a short update on such recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Immune Response to Tumors as a Tool toward Immunotherapy

    Directory of Open Access Journals (Sweden)

    F. Pandolfi

    2011-01-01

    Immunotherapy of tumors has developed several techniques: immune cell transfer, vaccines, immunobiological molecules such as monoclonal antibodies that improve the immune responses to tumors. This can be achieved by blocking pathways limiting the immune response, such as CTLA-4 or Tregs. Immunotherapy may also use cytokines especially proinflammatory cytokines to enhance the activity of cytotoxic T cells (CTLs derived from tumor infiltrating lymphocytes (TILs. The role of newly discovered cytokines remains to be investigated. Alternatively, an other mechanism consists in enhancing the expression of TAAs on tumor cells. Finally, monoclonal antibodies may be used to target oncogenes.

  11. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  12. Bystander T cells in human immune responses to dengue antigens

    Directory of Open Access Journals (Sweden)

    Suwannasaen Duangchan

    2010-09-01

    Full Text Available Abstract Background Previous studies of T cell activation in dengue infection have focused on restriction of specific T cell receptors (TCRs and classical MHC molecules. However, bystander T cell activation, which is TCR independent, occurs via cytokines in other viral infections, both in vitro and in vivo, and enables T cells to bypass certain control checkpoints. Moreover, clinical and pathological evidence has pointed to cytokines as the mediators of dengue disease severity. Therefore, we investigated bystander T cell induction by dengue viral antigen. Results Whole blood samples from 55 Thai schoolchildren aged 13-14 years were assayed for in vitro interferon-gamma (IFN-γ induction in response to inactivated dengue serotype 2 antigen (Den2. The contribution of TCR-dependent and independent pathways was tested by treatment with cyclosporin A (CsA, which inhibits TCR-dependent activation of T cells. ELISA results revealed that approximately 72% of IFN-γ production occurred via the TCR-dependent pathway. The major IFN-γ sources were natural killer (NK (mean ± SE = 55.2 ± 3.3, CD4+T (24.5 ± 3.3 and CD8+T cells (17.9 ± 1.5, respectively, as demonstrated by four-color flow cytometry. Interestingly, in addition to these cells, we found CsA-resistant IFN-γ producing T cells (CD4+T = 26.9 ± 3.6% and CD8+T = 20.3 ± 2.1% implying the existence of activated bystander T cells in response to dengue antigen in vitro. These bystander CD4+ and CD8+T cells had similar kinetics to NK cells, appeared after 12 h and were inhibited by anti-IL-12 neutralization indicating cytokine involvement. Conclusions This study described immune cell profiles and highlighted bystander T cell activation in response to dengue viral antigens of healthy people in an endemic area. Further studies on bystander T cell activation in dengue viral infection may reveal the immune mechanisms that protect or enhance pathogenesis of secondary dengue infection.

  13. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  14. Erythroid Suppressor Cells Compromise Neonatal Immune Response against Bordetella pertussis.

    Science.gov (United States)

    Dunsmore, Garett; Bozorgmehr, Najmeh; Delyea, Cole; Koleva, Petya; Namdar, Afshin; Elahi, Shokrollah

    2017-09-15

    Newborns are highly susceptible to infection. The underlying mechanism of neonatal infection susceptibility has generally been associated with neonatal immune cell immaturity. In this study, we challenged this notion and built upon our recent discovery that neonates are physiologically enriched with erythroid TER119(+)CD71(+) cells (Elahi et al. 2013. Nature 504: 158-162). We have used Bordetella pertussis, a common neonatal respiratory tract infection, as a proof of concept to investigate the role of these cells in newborns. We found that CD71(+) cells have distinctive immune-suppressive properties and suppress innate immune responses against B. pertussis infection. CD71(+) cell ablation unleashed innate immune response and restored resistance to B. pertussis infection. In contrast, adoptive transfer of neonatal CD71(+) cells into adult recipients impaired their innate immune response to B. pertussis infection. Enhanced innate immune response to B. pertussis was characterized by increased production of protective cytokines IFN-γ, TNF-α, and IL-12, as well as recruitment of NK cells, CD11b(+), and CD11c(+) cells in the lung. Neonatal and human cord blood CD71(+) cells express arginase II, and this enzymatic activity inhibits phagocytosis of B. pertussis in vitro. Thus, our study challenges the notion that neonatal infection susceptibility is due to immune cell-intrinsic defects and instead highlights active immune suppression mediated by abundant CD71(+) cells in the newborn. Our findings provide additional support for the novel theme in neonatal immunology that immunosuppression is essential to dampen robust immune responses in the neonate. We anticipate that our results will spark renewed investigation in modulating the function of these cells and developing novel strategies for enhancing host defense to infections in newborns. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Differentiated implication of Lactobacillus GG and L. gasseri TMC0356 to immune responses of murine Peyer's patch.

    Science.gov (United States)

    Harata, Gaku; He, Fang; Kawase, Manabu; Hosono, Akira; Takahashi, Kyoko; Kaminogawa, Shuichi

    2009-08-01

    Lactobacillus GG and L. gasseri TMC0356 were examined for their potential to alter the immune responses of murine PP cells in vitro and in vivo. Lactobacillus GG and L. gasseri TMC0356 characteristically stimulated the production of IL-12, IL-6, IFN-gamma and IgA from isolated PP cells in vitro. Anatomical analysis indicated uptake of these bacteria by the PP tissue after giving orally in mice. Isolated PP cells exposed to Lactobacillus GG in vivo secreted more IFN-gamma, IL-6 and total IgA, whereas those exposed to L. gasseri TMC0356 in vivo did not exhibit altered immune responses in terms of cytokine and IgA production. Therefore, these two bacteria might exhibit different immunodulatory effects in host animals by strain-dependent interaction with gut-associated lymphoid tissues in vivo.

  16. Ex Vivo Expanded Human NK Cells Survive and Proliferate in Humanized Mice with Autologous Human Immune Cells.

    Science.gov (United States)

    Vahedi, Fatemeh; Nham, Tina; Poznanski, Sophie M; Chew, Marianne V; Shenouda, Mira M; Lee, Dean; Ashkar, Ali A

    2017-09-21

    Adoptive immune cell therapy is emerging as a promising immunotherapy for cancer. Particularly, the adoptive transfer of NK cells has garnered attention due to their natural cytotoxicity against tumor cells and safety upon adoptive transfer to patients. Although strategies exist to efficiently generate large quantities of expanded NK cells ex vivo, it remains unknown whether these expanded NK cells can persist and/or proliferate in vivo in the absence of exogenous human cytokines. Here, we have examined the adoptive transfer of ex vivo expanded human cord blood-derived NK cells into humanized mice reconstituted with autologous human cord blood immune cells. We report that ex vivo expanded NK cells are able to survive and possibly proliferate in vivo in humanized mice without exogenous cytokine administration, but not in control mice that lack human immune cells. These findings demonstrate that the presence of autologous human immune cells supports the in vivo survival of ex vivo expanded human NK cells. These results support the application of ex vivo expanded NK cells in cancer immunotherapy and provide a translational humanized mouse model to test the lifespan, safety, and functionality of adoptively transferred cells in the presence of autologous human immune cells prior to clinical use.

  17. Pyriproxyfen enhances the immunoglobulin G immune response in mice.

    Science.gov (United States)

    Sharmin, Tanjina; Satho, Tomomitsu; Irie, Keiichi; Watanabe, Mineo; Hosokawa, Masato; Hiramatsu, Yukihiro; Talukder, Parimal; Okuno, Takahiro; Tsuruda, Shodai; Uyeda, Saori; Fukmits, Yuki; Tamura, Yukie; Nakashima, Yukihiko; Imoto, Masumi; Toda, Akihisa; Kashige, Nobuhiro; Miake, Fumio

    2013-04-01

    Pyriproxyfen is a juvenile hormone mimic of vital importance for insect development with little risk to humans. This study was performed to investigate whether large doses of pyriproxyfen affect the immune response in mammals. Mice were immunized thrice with ovalbumin in 5% ethanol, with or without pyriproxyfen or alum. Large doses of pyriproxyfen (9 or 15 mM) significantly enhanced specific total IgG immune response. This enhancement was no longer present 24 hr after treatment with pyriproxyfen. These results suggest that pyriproxyfen is a safe chemical. Moreover, pyriproxyfen induced higher titers of IgG2a and enhanced tumor necrosis factor-alpha and gamma-interferon responses whereas alum induced IgG1 with enhanced interleukin-4 and -10. These observations indicate that the mechanism of immune enhancement by pyriproxyfen may differ from that of alum. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  18. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model.

    Science.gov (United States)

    Narayana, Jayaram Lakshmaiah; Huang, Han-Ning; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-05-30

    Helicobacter pylori infection is marked by a strong association with various gastric diseases, including gastritis, ulcers, and gastric cancer. Antibiotic treatment regimens have low success rates due to the rapid occurrence of resistant H. pylori strains, necessitating the development of novel anti-H. pylori strategies. Here, we investigated the therapeutic potential of a novel peptide, Tilapia Piscidin 4 (TP4), against multidrug resistant gastric pathogen H. pylori, based on its in vitro and in vivo efficacy.TP4 inhibited the growth of both antibiotic-sensitive and -resistant H. pylori (CagA+, VacA+) via membrane micelle formation, which led to membrane depolarization and extravasation of cellular constituents. During colonization of gastric tissue, H. pylori infection maintains high T regulatory subsets and a low Th17/Treg ratio, and results in expression of both pro- and anti-inflammatory cytokines. Treatment with TP4 suppressed Treg subset populations and pro- and anti- inflammatory cytokines. TP4 restored the Th17/Treg balance, which resulted in early clearance of H. pylori density and recovery of gastric morphology. Toxicity studies demonstrated that TP4 treatment has no adverse effects in mice or rabbits. The results of this study indicate that TP4 may be an effective and safe monotherapeutic agent for the treatment of multidrug resistant H. pylori infections.

  19. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  20. Modulation of inflammatory and immune responses by vitamin D.

    Science.gov (United States)

    Colotta, Francesco; Jansson, Birger; Bonelli, Fabrizio

    2017-12-01

    Vitamin D (VitD) is a prohormone most noted for the regulation of calcium and phosphate levels in circulation, and thus of bone metabolism. Inflammatory and immune cells not only convert inactive VitD metabolites into calcitriol, the active form of VitD, but also express the nuclear receptor of VitD that modulates differentiation, activation and proliferation of these cells. In vitro, calcitriol upregulates different anti-inflammatory pathways and downregulates molecules that activate immune and inflammatory cells. Administration of VitD has beneficial effects in a number of experimental models of autoimmune disease. Epidemiologic studies have indicated that VitD insufficiency is frequently associated with immune disorders and infectious diseases, exacerbated by increasing evidence of suboptimal VitD status in populations worldwide. To date, however, most interventional studies in human inflammatory and immune diseases with VitD supplementation have proven to be inconclusive. One of the reasons could be that the main VitD metabolite measured in these studies was the 25-hydroxyVitD (25OHD) rather than its active form calcitriol. Although our knowledge of calcitriol as modulator of immune and inflammatory reactions has dramatically increased in the past decades, further in vivo and clinical studies are needed to confirm the potential benefits of VitD in the control of immune and inflammatory conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Immune allergic response in Asperger syndrome.

    Science.gov (United States)

    Magalhães, Elizabeth S; Pinto-Mariz, Fernanda; Bastos-Pinto, Sandra; Pontes, Adailton T; Prado, Evandro A; deAzevedo, Leonardo C

    2009-11-30

    Asperger's syndrome is a subgroup of autism characterized by social deficits without language delay, and high cognitive performance. The biological nature of autism is still unknown but there are controversial evidence associating an immune imbalance and autism. Clinical findings, including atopic family history, serum IgE levels as well as cutaneous tests showed that incidence of atopy was higher in the Asperger group compared to the healthy controls. These findings suggest that atopy is frequent in this subgroup of autism implying that allergic inflammation might be an important feature in Asperger syndrome.

  2. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  3. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial.

    Science.gov (United States)

    Vandamme, Céline; Adjali, Oumeya; Mingozzi, Federico

    2017-11-01

    Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.

  4. The serological response to heartwater immunization in cattle is an indicator of protective immunity

    DEFF Research Database (Denmark)

    Lawrence, J A; Tjørnehøj, Kirsten; Whiteland, A P

    1995-01-01

    A significant correlation was demonstrated in Friesian-cross steers between the serological response to previous vaccination with the Ball 3 strain of Cowdria ruminantium and the development of protective immunity against the Kalota isolate from Malawi. Of 10 animals which seroconverted after...... vaccination, all were completely or partially immune to challenge. Ten of the 14 animals which failed to seroconvert were immune but the proportion was not significantly different from that in the unvaccinated controls (4/10). Of 29 animals vaccinated and treated simultaneously with a slow-release doxycycline...

  5. The immune response of the human brain to abdominal surgery

    DEFF Research Database (Denmark)

    Forsberg, Anton; Cervenka, Simon; Jonsson Fagerlund, Malin

    2017-01-01

    OBJECTIVE: Surgery launches a systemic inflammatory reaction that reaches the brain and associates with immune activation and cognitive decline. Although preclinical studies have in part described this systemic-to-brain signaling pathway, we lack information on how these changes appear in humans....... This study examines the short- and long-term impact of abdominal surgery on the human brain immune system by positron emission tomography (PET) in relation to blood immune reactivity, plasma inflammatory biomarkers, and cognitive function. METHODS: Eight males undergoing prostatectomy under general...... to change in [(11) C]PBR28 binding (p = 0.027). INTERPRETATION: This study translates preclinical data on changes in the brain immune system after surgery to humans, and suggests an interplay between the human brain and the inflammatory response of the peripheral innate immune system. These findings may...

  6. The intermediate host immune response in cystic echinococcosis.

    Science.gov (United States)

    Tamarozzi, F; Mariconti, M; Neumayr, A; Brunetti, E

    2016-03-01

    Cystic echinococcosis (CE) is a chronic, complex and neglected zoonotic infection. In most cases, CE cysts and the intermediate host co-habit for a long time in the absence of symptoms and elicit very little inflammation. However, the immune interplay between the parasite and the host is complex, encompassing effective parasite-killing immune mechanisms implemented by the host, which in turn are modulated by the parasite. The immune response to the parasite has been exploited for the diagnosis of the disease and for the development of an effective vaccine to use in the natural intermediate host, but the mechanisms of parasite killing and immunomodulation are still unknown. Here, we reviewed the immune effector mechanisms and the strategies of immune evasion in the intermediate host. © 2015 John Wiley & Sons Ltd.

  7. Responsive corneosurfametry following in vivo skin preconditioning.

    Science.gov (United States)

    Uhoda, E; Goffin, V; Pierard, G E

    2003-12-01

    Skin is subjected to many environmental threats, some of which altering the structure and function of the stratum corneum. Among them, surfactants are recognized factors that may influence irritant contact dermatitis. The present study was conducted to compare the variations in skin capacitance and corneosurfametry (CSM) reactivity before and after skin exposure to repeated subclinical injuries by 2 hand dishwashing liquids. A forearm immersion test was performed on 30 healthy volunteers. 2 daily soak sessions were performed for 5 days. At inclusion and the day following the last soak session, skin capacitance was measured and cyanoacrylate skin-surface strippings were harvested. The latter specimens were used for the ex vivo microwave CSM. Both types of assessments clearly differentiated the 2 hand dishwashing liquids. The forearm immersion test allowed the discriminant sensitivity of CSM to increase. Intact skin capacitance did not predict CSM data. By contrast, a significant correlation was found between the post-test conductance and the corresponding CSM data. In conclusion, a forearm immersion test under realistic conditions can discriminate the irritation potential between surfactant-based products by measuring skin conductance and performing CSM. In vivo skin preconditioning by surfactants increases CSM sensitivity to the same surfactants.

  8. Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles.

    Directory of Open Access Journals (Sweden)

    Reid A Roberts

    Full Text Available Nanomedicine has the potential to transform clinical care in the 21(st century. However, a precise understanding of how nanomaterial design parameters such as size, shape and composition affect the mammalian immune system is a prerequisite for the realization of nanomedicine's translational promise. Herein, we make use of the recently developed Particle Replication in Non-wetting Template (PRINT fabrication process to precisely fabricate particles across and the nano- and micro-scale with defined shapes and compositions to address the role of particle design parameters on the murine innate immune response in both in vitro and in vivo settings. We find that particles composed of either the biodegradable polymer poly(lactic-co-glycolic acid (PLGA or the biocompatible polymer polyethylene glycol (PEG do not cause release of pro-inflammatory cytokines nor inflammasome activation in bone marrow-derived macrophages. When instilled into the lungs of mice, particle composition and size can augment the number and type of innate immune cells recruited to the lungs without triggering inflammatory responses as assayed by cytokine release and histopathology. Smaller particles (80×320 nm are more readily taken up in vivo by monocytes and macrophages than larger particles (6 µm diameter, yet particles of all tested sizes remained in the lungs for up to 7 days without clearance or triggering of host immunity. These results suggest rational design of nanoparticle physical parameters can be used for sustained and localized delivery of therapeutics to the lungs.

  9. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  10. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  11. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    Science.gov (United States)

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice

    OpenAIRE

    Nair-Gill, Evan; Wiltzius, Stephanie M.; Wei, Xiao X.; Cheng, Donghui; Riedinger, Mireille; Radu, Caius G.; Witte, Owen N.

    2010-01-01

    Clinical tools that measure changes in immune cell metabolism would improve the diagnosis and treatment of immune dysfunction. PET, utilizing probes for specific metabolic processes, detects regions of immune activation in vivo. In this study we investigated the immune cell specificity of PET probes for two different metabolic pathways: [18F]–2-fluorodeoxyglucose ([18F]-FDG) for glycolysis and ...

  13. Immune response during disease and recovery in the elderly.

    Science.gov (United States)

    Lesourd, B

    1999-02-01

    The present article reviews immune ageing and its relationship with nutritional ageing, with a particular insight into the influences of disease on both ageing processes. Immune ageing can be described primarily as the progressive appearance of immune dysregulations, mainly acquired immunity (mature: immature, naive: memory T lymphocyte subset decreases) leading to gradual increases in T-helper 2: T-helper 1 cells. This change is due initially to decreased thymic function, and later to accumulative antigen pressure over the lifespan. In contrast, innate immunity (macrophage functions) is preserved during the ageing process and in the elderly this leads to macrophage-lymphocyte dysequilibrium, which is particularly critical during on-going disease. Indeed, any disease induces long-lasting acute-phase reactions in aged patients and leads to body nutritional reserve (mainly protein) losses. Episodes of disease in the aged patient progressively deplete body nutritional reserves and lead to protein-energy malnutrition, undernutrition-associated immunodeficiency, and finally cachexia. Undernutrition is a common symptom in the elderly; protein-energy malnutrition is found in more than 50% of hospitalized elderly patients and in most elderly diseased subjects. In addition, micronutrient deficit or low levels are common in home-living self-sufficient apparently-healthy elderly subjects. All these nutritional deficits induce decreased immune responses, and micronutrient deficits are now thought to be partly responsible for the decreased immune responses (immune ageing?) observed in the apparently-healthy elderly. Indeed, several studies have shown that micronutrient supplements induce increased immune responses in the healthy elderly. The progression of infectious diseases depends on immune responses and on nutritional status before the onset of illness in aged subjects. In addition, recovery depends on the intensity of acute-phase responses in the undernourished elderly. In

  14. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers.

    Science.gov (United States)

    Pfortmueller, Carmen Andrea; Meisel, Christian; Fux, Michaela; Schefold, Joerg C

    2017-10-23

    In critically ill patients, organ dysfunctions are routinely assessed, monitored, and treated. Mounting data show that substantial critical illness-induced changes in the immune system can be observed in most ICU patients and that not only "hyper-inflammation" but also persistence of an anti-inflammatory phenotype (as in sepsis-associated immunosuppression) is associated with increased morbidity and mortality. Despite common perception, changes in functional immunity cannot be adequately assessed by routine inflammatory biomarkers such as C-reactive protein, procalcitonin, or numerical analysis of leukocyte (sub)-counts. Cytokines appear also not suited due to their short half-life and pleiotropy, their unexclusive origin from immune cells, and their potential to undergo antagonization by circulating inactivating molecules. Thus, beyond leukocyte quantification and use of routine biomarkers, direct assessment of immune cell function seems required to characterize the immune systems' status. This may include determination of, e.g., ex vivo cellular cytokine release, phagocytosis activity, and/or antigen-presenting capacity. In this regard, standardized flow-cytometric assessment of the major histocompatibility-II complex human leukocyte antigen (-D related) (HLA-DR) has gained particular interest. Monocytic HLA-DR (mHLA-DR) controls the interplay between innate and adaptive immunity and may serve as a "global" biomarker of injury-associated immunosuppression, and its decreased expression is associated with adverse clinical outcomes (e.g., secondary infection risk, mortality). Importantly, recent data demonstrate that injury-associated immunosuppression can be reversed-opening up new therapeutic avenues in affected patients. Here we discuss the potential scientific and clinical value of assessment of functional immunity with a focus on monocytes/macrophages and review the current state of knowledge and potential perspectives for affected critically ill patients.

  15. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  16. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  17. Activation and Regulation of DNA-Driven Immune Responses

    Science.gov (United States)

    2015-01-01

    SUMMARY The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed. PMID:25926682

  18. Mosquito hemocyte-mediated immune responses.

    Science.gov (United States)

    Hillyer, Julián F; Strand, Michael R

    2014-09-01

    Hemocytes are a key component of the mosquito immune system that kill pathogens via phagocytic, lytic and melanization pathways. Individual mosquitoes contain between 500 and 4,000 hemocytes, which are divided into three populations named granulocytes, oenocytoids and prohemocytes. Hemocytes can also be divided by their anatomical location with 75% of hemocytes circulating in the hemocoel (circulating hemocytes) and 25% of hemocytes attaching themselves to tissues (sessile hemocytes). Greater than 85% of the hemocytes in adult mosquitoes are granulocytes, which primarily kill pathogens by phagocytosis or lysis. Oenocytoids, on the other hand, are the major producers of the enzymes required for melanization while prohemocytes are small cells that participate in phagocytosis. Both circulating and sessile hemocytes engage in defense against pathogens. The circulatory system of mosquitoes also interacts with hemocytes and facilitates elimination of potential pathogens that enter the hemocoel.

  19. A unique dermal dendritic cell subset that skews the immune response toward Th2.

    Directory of Open Access Journals (Sweden)

    Ryuichi Murakami

    Full Text Available Dendritic cell (DC subsets in the skin and draining lymph nodes (LNs are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b was found distinct from migratory Langerhans cells (LCs or CD103(+ dermal DCs (dDCs. Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2(+ dDCs than in CD103(+ dDCs. Transfer of MGL2(+ dDCs but not CD103(+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2(+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2(+ dDCs, are complementary to those of CD103(+ dDCs and skew the immune response toward a Th2-type response.

  20. Immune Response Modulation of Conjugated Agonists with Changing Linker Length.

    Science.gov (United States)

    Ryu, Keun Ah; Slowinska, Katarzyna; Moore, Troy; Esser-Kahn, Aaron

    2016-12-16

    We report immune response modulation with linked Toll-like receptor (TLR) agonists. Conjugating two agonists of synergistic TLRs induce an increase in immune activity compared to equal molarity of soluble agonists. Additionally, varying the distance between the agonists by changing the linker length alters the level of macrophage NF-κB activity as well as primary bone marrow derived dendritic cell IL-6 production. This modulation is effected by the size of the agonists and the pairing of the stimulated TLRs. The sensitivity of linker-length-dependent immune activity of conjugated agonists provides the potential for developing application specific therapeutics.

  1. The nature of immune responses to urinary tract infections.

    Science.gov (United States)

    Abraham, Soman N; Miao, Yuxuan

    2015-10-01

    The urinary tract is constantly exposed to microorganisms that inhabit the gastrointestinal tract, but generally the urinary tract resists infection by gut microorganisms. This resistance to infection is mainly ascribed to the versatility of the innate immune defences in the urinary tract, as the adaptive immune responses are limited particularly when only the lower urinary tract is infected. In recent years, as the strengths and weaknesses of the immune system of the urinary tract have emerged and as the virulence attributes of uropathogens are recognized, several potentially effective and unconventional strategies to contain or prevent urinary tract infections have emerged.

  2. Modulation of Human Immune Response by Fungal Biocontrol Agents

    Science.gov (United States)

    Konstantinovas, Cibele; de Oliveira Mendes, Tiago A.; Vannier-Santos, Marcos A.; Lima-Santos, Jane

    2017-01-01

    Although the vast majority of biological control agents is generally regarded as safe for humans and environment, the increased exposure of agriculture workers, and consumer population to fungal substances may affect the immune system. Those compounds may be associated with both intense stimulation, resulting in IgE-mediated allergy and immune downmodulation induced by molecules such as cyclosporin A and mycotoxins. This review discusses the potential effects of biocontrol fungal components on human immune responses, possibly associated to infectious, inflammatory diseases, and defective defenses. PMID:28217107

  3. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cells...... in peripheral blood of healthy volunteers and cancer patients. These immune responses were directed against a HLA-A2-restricted peptide epitope derived from Foxp3. Foxp3-reactive T cells were characterized as cytotoxic CD8+ T cells. These cells recognized dendritic cells incubated with recombinant Foxp3 protein...... readily killed by the Foxp3-specific cytotoxic T lymphocytes. The spontaneous presence of Foxp3-specific cytotoxic T-cell responses suggest a general role of such T cells in the complex network of immune regulation as such responses may eliminate Tregs, that is, suppression of the suppressors...

  4. Wolf's Isotopic Response: Varicella Within a Prior Immunization Reaction Site.

    Science.gov (United States)

    Wu, Sam; McShane, Diana B; Burkhart, Craig N; Morrell, Dean S

    2015-01-01

    Wolf's isotopic response describes the occurrence of a dermatologic condition at the site of a prior healed unrelated condition. Our report details a case of varicella occurring as a secondary condition at the site of a prior immunization reaction; herpesvirus infection has not been reported as a secondary condition in cases of Wolf's isotopic response before. Current hypotheses favor the involvement of neurohormonal modulation of local immunity in response to various forms of injury as a model for explaining these phenomena. © 2015 Wiley Periodicals, Inc.

  5. Shigella hacks host immune responses by reprogramming the host epigenome.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2014-11-18

    Bacterial pathogens alter host transcriptional programs to promote infection. Shigella OspF is an essential virulence protein with a unique phosphothreonine lyase activity. A new study in The EMBO Journal (Harouz et al, 2014) reveals a novel function of OspF: targeting of heterochromatin protein 1γ (HP1γ) and downregulation of a subset of immune genes. These results illustrate how bacterial pathogens exploit epigenetic modifications to counteract host immune responses.

  6. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  7. The architects of B and T cell immune responses.

    Science.gov (United States)

    Lane, Peter J L

    2008-08-15

    Published work links adult lymphoid tissue-inducer cells (LTi) with T cell-dependent antibody responses. In this issue of Immunity, Tsuji et al. (2008) associate LTi with T cell-independent IgA antibody responses in the gut.

  8. Heterogeneity of the humoral immune response following Staphylococcus aureus bacteremia

    NARCIS (Netherlands)

    N.J. Verkaik (Nelianne); H.A.M. Boelens (Hélène); C.P. de Vogel (Corné); M. Tavakol (Mehri); L.G.M. Bode (Lonneke); H.A. Verbrugh (Henri); A.F. van Belkum (Alex); W.J.B. van Wamel (Willem)

    2010-01-01

    textabstractExpanding knowledge on the humoral immune response in Staphylococcus aureus-infected patients is a mandatory step in the development of vaccines and immunotherapies. Here, we present novel insights into the antibody responses following S. aureus bacteremia. Fifteen bacteremic patients

  9. Arginine and Citrulline and the Immune Response in Sepsis

    Directory of Open Access Journals (Sweden)

    Karolina A.P. Wijnands

    2015-02-01

    Full Text Available Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.

  10. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  11. Assessment of the innate immune response in the periparturient cow.

    Science.gov (United States)

    Trevisi, Erminio; Minuti, Andrea

    2017-12-05

    The transition period is the most critical phase in the life of high yielding dairy cows. Within a few weeks, cows are submitted to many challenges (physiological, nutritional, psychological, management) that require prompt and effective adaptive responses. The immune system is involved in this process, and many changes of the cow's immune system components have been observed around calving. Cows are considered to be immunosuppressed in late lactation, and available data suggest that the immune system is dysregulated around parturition. Significant attention has been focused on modification of cellular functions (e.g. the reduction of phagocytosis and diapedesis), but growing interest concerns the components of the innate immune system, which often exhibits increased responses such as susceptibility to inflammatory events and the related acute phase response (APR). Systemic inflammation plays a significant role in early lactation, affects many liver functions and has been associated with the impairment of cow performance (i.e. reduced feed intake, milk yield, fertility, welfare). The assessment of variations in immune-metabolic indices offers opportunities to predict the onset of the health troubles and to anticipate the proper therapies needed to guarantee health, good welfare and fertility in the following lactation. The frequency of diseases (metabolic and infectious) before calving is rare, but several clues suggest that various metabolic and immune variations can begin during the dry period. Interesting preliminary results encourage this perspective and possible candidates are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  13. Immune responses to chlamydial antigens in humans.

    Science.gov (United States)

    Hanna, L; Kerlan, R; Senyk, G; Stites, D P; Juster, R P; Jawetz, E

    1982-01-01

    Antibody titer, lymphocyte stimulation and leukocyte migration inhibition with chlamydial antigens were determined repeatedly over many months on human subjects. The volunteers were retrospectively placed into four groups on the basis of clinical, laboratory and epidemiologic criteria. Group A consisted of persons with proven or probable chlamydial infection, including an illness confirmed by chlamydial isolation or seroconversion, or a clinically compatible illness with positive serologic results. Group B were sexual partners or close contacts of group A individuals. Group C were laboratory workers with prolonged exposure to viable chlamydiae or their antigens. Group D included persons of comparable age as those in groups A and B, but lacking a history of symptomatic chlamydial infection or of contact with chlamydiae. Individual cases illustrated the rise of antibody and some cell mediated immunity reactions (CMI) with active chlamydial infection. By contrast, laboratory exposure resulted in elevation of CMI but not of antibody. Statistical analysis of the results in 46 volunteers tested repeatedly indicated a strong association of specific antibody with lymphocyte stimulation, but not with leukocyte migration inhibition. Regression analysis suggested that the type of exposure markedly influenced the relationship between antibody and lymphocyte stimulation. Measurement of immunotype-specific antibody titer by microimmunofluorescence (or an equally sensitive method) remains the best laboratory indicator of past chlamydial infection. Neither antibody nor CMI can, as yet, be definitely related to resistance to re-infection in humans.

  14. Inferring cardiac phase response curve in vivo

    Science.gov (United States)

    Pikovsky, Arkady; Kralemann, Bjoern; Fruehwirth, Matthias; Rosenblum, Michael; Kenner, Thomas; Schaefer, Jochen; Moser, Maximilian

    2014-03-01

    Characterizing properties of biological oscillators with phase response cirves (PRC) is one of main theoretical tools in neuroscience, cardio-respiratory physiology, and chronobiology. We present a technique that allows the extraction of the PRC from a non-invasive observation of a system consisting of two interacting oscillators, in this case heartbeat and respiration, in its natural environment and under free-running conditions. We use this method to obtain the phase coupling functions describing cardio-respiratory interactions and the phase response curve of 17 healthy humans. We show at which phase the cardiac beat is susceptible to respiratory drive and extract the respiratory-related component of heart rate variability. This non-invasive method of bivariate data analysis for the determination of phase response curves of coupled oscillators may find application in other biological and physical systems.

  15. Neutrophils negatively regulate induction of mucosal IgA responses after sublingual immunization.

    Science.gov (United States)

    Jee, J; Bonnegarde-Bernard, A; Duverger, A; Iwakura, Y; Cormet-Boyaka, E; Martin, T L; Steiner, H E; Bachman, R C; Boyaka, P N

    2015-07-01

    Induction of mucosal immunoglobulin-A (IgA) capable of providing a first line of defense against bacterial and viral pathogens remains a major goal of needle-free vaccines given via mucosal routes. Innate immune cells are known to play a central role in induction of IgA responses by mucosal vaccines, but the relative contribution of myeloid cell subsets to these responses has not firmly been established. Using an in vivo model of sublingual vaccination with Bacillus anthracis edema toxin (EdTx) as adjuvant, we examined the role of myeloid cell subsets for mucosal secretory IgA responses. Sublingual immunization of wild-type mice resulted in a transient increase of neutrophils in sublingual tissues and cervical lymph nodes. These mice later developed Ag-specific serum IgG responses, but not serum or mucosal IgA. Interestingly, EdTx failed to increase neutrophils in sublingual tissues and cervical lymph nodes of IKKβ(ΔMye) mice, and these mice developed IgA responses. Partial depletion of neutrophils before immunization of wild-type mice allowed the development of both mucosal and serum IgA responses. Finally, co-culture of B cells with neutrophils from either wild-type or IKKβ(ΔMye) mice suppressed secretion of IgA, but not IgM or IgG. These results identify a new role for neutrophils as negative regulators of IgA responses.

  16. MECHANISMS OF IMMUNE RESPONSES IN CNIDARIANS

    Directory of Open Access Journals (Sweden)

    Iván Darío OCAMPO

    2015-01-01

    Full Text Available El sistema inmune mantiene la integridad de los organismos vivos por medio de una red compleja de moléculas, células y tejidos que reconocen sustancias antigénicas internas o externas para neutralizarlas y eliminarlas. Los mecanismos de respuesta inmune han evolucionado de una manera modular, en donde miembros de un módulo dado interactúan fuertemente entre sí, pero débilmente con componentes de otros módulos, otorgando así robustez y potencial evolutivo al sistema inmune. Módulos ancestrales representan el material básico para la generación de nuevos módulos durante el proceso evolutivo. Así, el estudio de sistemas inmunes en metazoarios basales como los cnidarios busca determinar cuales son los módulos ancestrales a partir de los cuales se constituyen los sistemas inmunes de animales derivados. Adicionalmente, el entendimiento de los mecanismos de respuesta inmune en cnidarios eventualmente contribuirá a descifrar la etiopatología de las enfermedades de corales de carácter infeccioso que está afectando los corales en el mundo.

  17. Time-course evaluation and treatment of skin inflammatory immune response after ultraviolet B irradiation.

    Science.gov (United States)

    Paz, Mariela L; Ferrari, Alejandro; Weill, Federico S; Leoni, Juliana; Maglio, Daniel H Gonzalez

    2008-10-01

    Skin exposure to high doses of ultraviolet B (UVB) radiation generates a severe inflammatory skin response. In the present study we aim to investigate, using in vitro and in vivo models, the time-course of the inflammatory skin immune response after an acute exposure to UVB irradiation, as well as its modulation by a topical non-steroidal anti-inflammatory drug (NSAID) treatment, naproxen. PGE2 production and TNF-alpha levels increase in a post-irradiation time-dependent manner both in vivo and in vitro. This production pattern is also reflected in the iNOS expression levels in vivo and in the IL-6 levels in vitro. Changes observed in these mediators are correlated with histological alterations and dermal infiltration after the acute UVB irradiation. Naproxen treatment notably reduces PGE2 production and iNOS expression, reflecting the COX-NOS crosstalk already reported, although it causes an important increment in TNF-alpha synthesis in the epidermis of irradiated mice. Taken together, our data indicates that the epidermis is severely damaged by UVB radiation but then it is able to fully recover, and that the immune response is modulated by the NSAID treatment, since it is able to reduce the levels of some mediators as well as it can increase others.

  18. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    Science.gov (United States)

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  19. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  20. In vivo exposure of Mytilus edulis to living enteric bacteria: a threat for immune competency?

    Science.gov (United States)

    Gauthier-Clerc, Sophie; Boily, Isabelle; Fournier, Michel; Lemarchand, Karine

    2013-02-01

    Mussels are widespread in coastal environments and experience various physical, chemical, and bacteriological conditions. Owing to the increase of coastal urbanization, mussels are now commonly exposed not only to indigenous bacteria, but also to enteric bacteria originating from pulsed and chronic sewage discharges into coastal environments. Due to its broad resilience to environmental variations, the blue mussel Mytilus edulis is commonly used as an indicator of environmental quality in bio-monitoring programs. However, since mussel immune system capabilities may be affected by the presence of exogenous fecal bacteria in coastal seawater subjected to sewage discharges, we aimed to determine the effect of in vivo bacterial challenges on mussels' immune competency by using two exogenous enteric bacterial strains, Escherichia coli and Enterococcus faecalis, and an indigenous bacterial strain Vibrio splendidus (as control). Bacterial strains were tested individually, by injection into the posterior adductor muscle at three different cell densities (10(2), 10(3), and 10(4) cells). Unlike classic in vitro experiments using higher bacterial concentrations, neither the enteric bacteria nor the indigenous strain induced significant increase or decrease of either cell-mediated (phagocytosis, reactive oxygen species, and NO(x) production) or humoral components (prophenoloxidase-like, acid phosphatase, and L-leucine-aminopeptidase production) of the immune system. This study demonstrates that, at low concentrations, E. coli and E. faecalis do not represent an additional threat that could impair M. edulis immune competency and, as a consequence, its potential of survival in coastal areas subjected to sewage discharges.

  1. Probiotics, antibiotics and the immune responses to vaccines

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M.; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-01-01

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. PMID:25964456

  2. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  3. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  6. Sexual dimorphism in immune response genes as a function of puberty

    Directory of Open Access Journals (Sweden)

    Rosen Antony

    2006-02-01

    Full Text Available Abstract Background Autoimmune diseases are more prevalent in females than in males, whereas males have higher mortality associated with infectious diseases. To increase our understanding of this sexual dimorphism in the immune system, we sought to identify and characterize inherent differences in immune response programs in the spleens of male and female mice before, during and after puberty. Results After the onset of puberty, female mice showed a higher expression of adaptive immune response genes, while males had a higher expression of innate immune genes. This result suggested a requirement for sex hormones. Using in vivo and in vitro assays in normal and mutant mouse strains, we found that reverse signaling through FasL was directly influenced by estrogen, with downstream consequences of increased CD8+ T cell-derived B cell help (via cytokines and enhanced immunoglobulin production. Conclusion These results demonstrate that sexual dimorphism in innate and adaptive immune genes is dependent on puberty. This study also revealed that estrogen influences immunoglobulin levels in post-pubertal female mice via the Fas-FasL pathway.

  7. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells. Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies.

  8. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Franch, Àngels; Pérez-Cano, Francisco J.; Castell, Margarida

    2017-01-01

    Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA) plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL) composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN)-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells) and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells). Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies. PMID:28587283

  9. Immune Responses in Rhinovirus-Induced Asthma Exacerbations.

    Science.gov (United States)

    Steinke, John W; Borish, Larry

    2016-11-01

    Acute asthma exacerbations are responsible for urgent care visits and hospitalizations; they interfere with school and work productivity, thereby driving much of the morbidity and mortality associated with asthma. Approximately 80 to 85 % of asthma exacerbations in children, adolescents, and less frequently adults are associated with viral upper respiratory tract viral infections, and rhinovirus (RV) accounts for ∼60-70 % of these virus-associated exacerbations. Evidence suggests that it is not the virus itself but the nature of the immune response to RV that drives this untoward response. In particular, evidence supports the concept that RV acts to exacerbate an ongoing allergic inflammatory response to environmental allergens present at the time of the infection. The interaction of the ongoing IgE- and T cell-mediated response to allergen superimposed on the innate and adaptive immune responses to the virus and how this leads to triggering of an asthma exacerbation is discussed.

  10. Microgravity and immune responsiveness: implications for space travel.

    Science.gov (United States)

    Borchers, Andrea T; Keen, Carl L; Gershwin, M Eric

    2002-10-01

    To date, several hundred cosmonauts and astronauts have flown in space, yet knowledge about the adaptation of their immune system to space flight is rather limited. It is evident that a variety of immune parameters are changed during and after space flight, but the magnitude and pattern of these changes can differ dramatically between missions and even between crew members on the same mission. A literature search was conducted involving a total of 335 papers published between 1972 and 2002 that dealt with the key words immune response, microgravity and astronauts/cosmonauts, isolation, gravity, and human health. The data from multiple studies suggested that major discrepancies in outcome are due to methodologic differences. However, the data also suggested major factors that affect and modulate the immune response during space travel. In part at least, these discrepancies can be attributed to methodologic differences. In addition, a variety of other features, in particular the types and extent of stressors encountered during space missions, are likely to contribute to the variability of immune responses during and after space flight. That stress plays an important role in the effects of space flight on immunologic parameters is suggested by the frequent findings that stress hormones are upregulated during and after space flight. Unfortunately, however, the existing data on hormonal parameters are almost as varied as those on immunologic changes, and correlations between the two datasets have only rarely been attempted. The functional implications of space flight-induced alterations in immune response largely remain to be elucidated, but the data suggest that long-term travel will be associated with the development of immune-compromised hosts.

  11. MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses.

    Directory of Open Access Journals (Sweden)

    Jong W Yu

    Full Text Available CARMA-BCL10-MALT1 signalosomes play important roles in antigen receptor signaling and other pathways. Previous studies have suggested that as part of this complex, MALT1 functions as both a scaffolding protein to activate NF-κB through recruitment of ubiquitin ligases, and as a protease to cleave and inactivate downstream inhibitory signaling proteins. However, our understanding of the relative importance of these two distinct MALT1 activities has been hampered by a lack of selective MALT1 protease inhibitors with suitable pharmacologic properties. To fully investigate the role of MALT1 protease activity, we generated mice homozygous for a protease-dead mutation in MALT1. We found that some, but not all, MALT1 functions in immune cells were dependent upon its protease activity. Protease-dead mice had defects in the generation of splenic marginal zone and peritoneal B1 B cells. CD4+ and CD8+ T cells displayed decreased T cell receptor-stimulated proliferation and IL-2 production while B cell receptor-stimulated proliferation was partially dependent on protease activity. In dendritic cells, stimulation of cytokine production through the Dectin-1, Dectin-2, and Mincle C-type lectin receptors was also found to be partially dependent upon protease activity. In vivo, protease-dead mice had reduced basal immunoglobulin levels, and showed defective responses to immunization with T-dependent and T-independent antigens. Surprisingly, despite these decreased responses, MALT1 protease-dead mice, but not MALT1 null mice, developed mixed inflammatory cell infiltrates in multiple organs, suggesting MALT1 protease activity plays a role in immune homeostasis. These findings highlight the importance of MALT1 protease activity in multiple immune cell types, and in integrating immune responses in vivo.

  12. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  13. Plant immune responses triggered by beneficial microbes

    NARCIS (Netherlands)

    Wees, A.C.M. van; Ent, S. van der; Pieterse, C.M.J.

    2008-01-01

    Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi,can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated

  14. Activation of the innate immune response by endogenous retroviruses.

    Science.gov (United States)

    Hurst, Tara P; Magiorkinis, Gkikas

    2015-06-01

    The human genome comprises 8 % endogenous retroviruses (ERVs), the majority of which are defective due to deleterious mutations. Nonetheless, transcripts of ERVs are found in most tissues, and these transcripts could either be reverse transcribed to generate ssDNA or expressed to generate proteins. Thus, the expression of ERVs could produce nucleic acids or proteins with viral signatures, much like the pathogen-associated molecular patterns of exogenous viruses, which would enable them to be detected by the innate immune system. The activation of some pattern recognition receptors (PRRs) in response to ERVs has been described in mice and in the context of human autoimmune diseases. Here, we review the evidence for detection of ERVs by PRRs and the resultant activation of innate immune signalling. This is an emerging area of research within the field of innate antiviral immunity, showing how ERVs could initiate immune signalling pathways and might have implications for numerous inflammatory diseases. © 2015 The Authors.

  15. Nanotechnology, neuromodulation & the immune response: discourse, materiality & ethics.

    Science.gov (United States)

    Fins, Joseph J

    2015-04-01

    Drawing upon the American Pragmatic tradition in philosophy and the more recent work of philosopher Karen Barad, this paper examines how scientific problems are both obscured, and resolved by our use of language describing the natural world. Using the example of the immune response engendered by neural implants inserted in the brain, the author explains how this discourse has been altered by the advent of nanotechnology methods and devices which offer putative remedies that might temper the immune response in the central nervous system. This emergent nanotechnology has altered this problem space and catalyzed one scientific community to acknowledge a material reality that was always present, if not fully acknowledged.

  16. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  17. Divergent Immune Responses to Mycobacterium avium subsp. paratuberculosis Infection Correlate with Kinome Responses at the Site of Intestinal Infection

    Science.gov (United States)

    Määttänen, Pekka; Trost, Brett; Scruten, Erin; Potter, Andrew; Kusalik, Anthony; Griebel, Philip

    2013-01-01

    Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease (JD) in cattle. M. avium subsp. paratuberculosis infects the gastrointestinal tract of calves, localizing and persisting primarily in the distal ileum. A high percentage of cattle exposed to M. avium subsp. paratuberculosis do not develop JD, but the mechanisms by which they resist infection are not understood. Here, we merge an established in vivo bovine intestinal segment model for M. avium subsp. paratuberculosis infection with bovine-specific peptide kinome arrays as a first step to understanding how infection influences host kinomic responses at the site of infection. Application of peptide arrays to in vivo tissue samples represents a critical and ambitious step in using this technology to understand host-pathogen interactions. Kinome analysis was performed on intestinal samples from 4 ileal segments subdivided into 10 separate compartments (6 M. avium subsp. paratuberculosis-infected compartments and 4 intra-animal controls) using bovine-specific peptide arrays. Kinome data sets clustered into two groups, suggesting unique binary responses to M. avium subsp. paratuberculosis. Similarly, two M. avium subsp. paratuberculosis-specific immune responses, characterized by different antibody, T cell proliferation, and gamma interferon (IFN-γ) responses, were also observed. Interestingly, the kinomic groupings segregated with the immune response groupings. Pathway and gene ontology analyses revealed that differences in innate immune and interleukin signaling and particular differences in the Wnt/β-catenin pathway distinguished the kinomic groupings. Collectively, kinome analysis of tissue samples offers insight into the complex cellular responses induced by M. avium subsp. paratuberculosis in the ileum and provides a novel method to understand mechanisms that alter the balance between cell-mediated and antibody responses to M. avium subsp. paratuberculosis infection. PMID

  18. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity.

    Science.gov (United States)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter; Joosten, Leo A B; de Jong, Dirk; van der Meer, Jos W M; Benn, Christine Stabell; van Crevel, Reinout; Netea, Mihai G

    2015-12-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects were less strong than those induced by live BCG. γBCG vaccination in volunteers had only minimal effects on innate immunity, whereas a significant increase in heterologous Th1/Th17 immunity was observed. Our results indicate that γBCG induces long-term training of innate immunity in vitro. In vivo, γBCG induces mainly heterologous effects on the adaptive-immune system, whereas effects on innate cytokine production are limited. © Society for Leukocyte Biology.

  19. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer.

    Science.gov (United States)

    Mingozzi, Federico; Liu, Yi-Lin; Dobrzynski, Eric; Kaufhold, Antje; Liu, Jian Hua; Wang, YuQin; Arruda, Valder R; High, Katherine A; Herzog, Roland W

    2003-05-01

    Gene replacement therapy is an attractive approach for treatment of genetic disease, but may be complicated by the risk of a neutralizing immune response to the therapeutic gene product. There are examples of humoral and cellular immune responses against the transgene product as well as absence of such responses, depending on vector design and the underlying mutation in the dysfunctional gene. It has been unclear, however, whether transgene expression can induce tolerance to the therapeutic antigen. Here, we demonstrate induction of immune tolerance to a secreted human coagulation factor IX (hF.IX) antigen by adeno-associated viral gene transfer to the liver. Tolerized mice showed absence of anti-hF.IX and substantially reduced in vitro T cell responses after immunization with hF.IX in adjuvant. Tolerance induction was antigen specific, affected a broad range of Th cell subsets, and was favored by higher levels of transgene expression as determined by promoter strength, vector dose, and mouse strain. Hepatocyte-derived hF.IX expression induced regulatory CD4(+) T cells that can suppress anti-hF.IX formation after adoptive transfer. With a strain-dependent rate of success, tolerance to murine F.IX was induced in mice with a large F.IX gene deletion, supporting the relevance of these data for treatment of hemophilia B and other genetic diseases.

  20. Photodynamic therapy for cancer and activation of immune response

    Science.gov (United States)

    Mroz, Pawel; Huang, Ying-Ying; Hamblin, Michael R.

    2010-02-01

    Anti-tumor immunity is stimulated after PDT for cancer due to the acute inflammatory response, exposure and presentation of tumor-specific antigens, and induction of heat-shock proteins and other danger signals. Nevertheless effective, powerful tumor-specific immune response in both animal models and also in patients treated with PDT for cancer, is the exception rather than the rule. Research in our laboratory and also in others is geared towards identifying reasons for this sub-optimal immune response and discovering ways of maximizing it. Reasons why the immune response after PDT is less than optimal include the fact that tumor-antigens are considered to be self-like and poorly immunogenic, the tumor-mediated induction of CD4+CD25+foxP3+ regulatory T-cells (T-regs), that are able to inhibit both the priming and the effector phases of the cytotoxic CD8 T-cell anti-tumor response and the defects in dendritic cell maturation, activation and antigen-presentation that may also occur. Alternatively-activated macrophages (M2) have also been implicated. Strategies to overcome these immune escape mechanisms employed by different tumors include combination regimens using PDT and immunostimulating treatments such as products obtained from pathogenic microorganisms against which mammals have evolved recognition systems such as PAMPs and toll-like receptors (TLR). This paper will cover the use of CpG oligonucleotides (a TLR9 agonist found in bacterial DNA) to reverse dendritic cell dysfunction and methods to remove the immune suppressor effects of T-regs that are under active study.

  1. The microbiota and immune response during Clostridium difficile infection.

    Science.gov (United States)

    Buonomo, Erica L; Petri, William A

    2016-10-01

    Clostridium difficile is a gram-positive, spore forming anaerobe that infects the gut when the normal microbiota has been disrupted. C. difficile infection (CDI) is the most common cause of hospital acquired infection in the United States, and the leading cause of death due to gastroenteritis. Patients suffering from CDI have varying symptoms which range from mild diarrhea to pseudomembranous colitis and death. The involvement of the immune response to influence disease severity is just beginning to be investigated. There is evidence that the immune response can facilitate either protective or pathogenic phenotypes, suggesting it plays a multifaceted role during CDI. In addition to the immune response, the microbiota is pivotal in dictating the pathogenesis to CDI. A healthy microbiota effectively inhibits infection by restricting the ability of C. difficile to expand in the colon. Thus, understanding which immune mediators and components of the microbiota play beneficial roles during CDI will be important to future therapeutic developments. This review outlines how the microbiota can modulate specific immune mediators, such as IL-23 and others, to influence disease outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of produced water on cod (Gadus morhua) immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Hamoutene, D.; Mabrouk, G.; Samuelson, S.; Mansour, A.; Lee, K. [Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Region, Ocean Sciences Division; Volkoff, H.; Parrish, C. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada); Mathieu, A. [Oceans Ltd., St. John' s, NL (Canada)

    2007-07-01

    Studies have shown that produced water (PW) discharged from North Sea offshore platforms affects the biota at greater distances from operational platforms than originally presumed. According to PW dispersion simulations, dilution by at least 240 times occurs within 50-100 m, and up to 9000 times by 20 km from the discharge. In this study, the effect of PW on cod immunity was investigated by exposing fish to 0, 100 ppm (x 10,000 dilution) or 200 ppm (x 500) of PW for 76 days. Immune responses were evaluated at the end of the exposure. Fish from the 3 groups were injected with Aeromonas salmonicida lipopolysaccharides (LPS). Blood cell observation and flow cytometry were used to investigate the serum cortisol levels and gill histology along with ratios and respiratory burst (RB) responses of both circulating and head-kidney white blood cells (WBCs). The study revealed that baseline immunity and stress response were not affected by PW, other than an irritant-induced change in gill cells found in treated cod. In all groups, LPS injection resulted in a pronounced decrease in RB of head-kidney cells and an increase in serum cortisol and protein levels. However, the group exposed to 200 ppm of PW exhibited the most significant changes. LPS injection was also shown to influence WBC ratios, but further studies are needed to determine if this impact is stronger in fish exposed to PW. This study suggested an effect of PW on cod immunity after immune challenge with LPS.

  3. Biomaterials innovation for next generation ex vivo immune tissue engineering.

    Science.gov (United States)

    Singh, Ankur

    2017-06-01

    Primary and secondary lymphoid organs are tissues that facilitate differentiation of B and T cells, leading to the induction of adaptive immune responses. These organs are present in the body from birth and are also recognized as locations where self-reactive B and T cells can be eliminated during the natural selection process. Many insights into the mechanisms that control the process of immune cell development and maturation in response to infection come from the analysis of various gene-deficient mice that lack some or all hallmark features of lymphoid tissues. The complexity of such animal models limits our ability to modulate the parameters that control the process of immune cell development, differentiation, and immunomodulation. Engineering functional, living immune tissues using biomaterials can grant researchers the ability to reproduce immunological events with tunable parameters for more rapid development of immunotherapeutics, cell-based therapy, and enhancing our understanding of fundamental biology as well as improving efforts in regenerative medicine. Here the author provides his review and perspective on the bioengineering of primary and secondary lymphoid tissues, and biomaterials innovation needed for the construction of these immune organs in tissue culture plates and on-chip. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Leishmania major infection in humanized mice induces systemic infection and provokes a nonprotective human immune response.

    Directory of Open Access Journals (Sweden)

    Anja Kathrin Wege

    Full Text Available BACKGROUND: Leishmania (L. species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. CONCLUSIONS/SIGNIFICANCE: This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral leishmaniasis allowing the investigation of human immune response, side effects of the drug

  5. The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity

    Science.gov (United States)

    2006-07-06

    expression affect the inflammatory response (Friedland et al., 1995; Wellmer et al., 2002). Heat-inactivation destroys the cytotoxic and cytokine...clearance of Brucella abortus. Infect. Immun. 73: 5137-5143. Wellmer , A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H

  6. miRNAs associated with immune response in teleost fish.

    Science.gov (United States)

    Andreassen, Rune; Høyheim, Bjørn

    2017-10-01

    MicroRNAs (miRNAs) have been identified as important post transcriptional regulators of gene expression. In higher vertebrates, a subset of miRNAs has been identified as important regulators of a number of key genes in immune system gene networks, and this paper review recent studies on miRNAs associated with immune response in teleost fish. Challenge studies conducted in several species have identified differently expressed miRNAs associated with viral or bacterial infection. The results from these studies point out several miRNAs that are likely to have evolutionary conserved functions that are related to immune response in teleost fish. Changed expression levels of mature miRNAs from the five miRNA genes miRNA-462, miRNA-731, miRNA-146, miRNA-181 and miRNA-223 are observed following viral as well as bacterial infection in several teleost fish. Furthermore, significant changes in expression of mature miRNAs from the five genes miRNA-21, miRNA-155, miRNA-1388, miRNA-99 and miRNA-100 are observed in multiple studies of virus infected fish while changes in expression of mature miRNA from the three genes miRNA-122, miRNA-192 and miRNA-451 are observed in several studies of fish with bacterial infections. Interestingly, some of these genes are not present in higher vertebrates. The function of the evolutionary conserved miRNAs responding to infection depends on the target gene(s) they regulate. A few target genes have been identified while a large number of target genes have been predicted by in silico analysis. The results suggest that many of the targets are genes from the host's immune response gene networks. We propose a model with expected temporal changes in miRNA expression if they target immune response activators/effector genes or immune response inhibitors, respectively. The best way to understand the function of a miRNA is to identify its target gene(s), but as the amount of genome resources for teleost fish is limited, with less well characterized genomes

  7. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    Directory of Open Access Journals (Sweden)

    Adriana Secatto

    Full Text Available 5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  8. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight

    Science.gov (United States)

    Taylor, G. R.; Janney, R. P.

    1992-01-01

    The cell-mediated immune (CMI) mechanism was evaluated in 10 space shuttle astronauts by measuring their delayed-type hypersensitivity response to seven common recall antigens. The Multitest CMI test system was used to administer antigens of tetanus, diphtheria, Streptococcus, Proteus, old tuberculin, Candida, and Trichophyton to the forearm 46 h before nominal mission termination; readings were conducted 2 h after landing. The mean number of reactions was reduced from 4.5 preflight to 3.0 inflight, and the mean reaction score was reduced from 21.4 to 13.7 mm inflight. The data presented suggest that the CMI system is still being degraded by space flight conditions on day 4 and that between day 5 and day 10, the depression maximizes and the system begins to adjust to the new conditions. The relation of these in vivo findings to previously reported in vitro results is discussed.

  9. The immune response in patients with cutaneous leishmaniasis and the influence of zinc supplementation.

    Science.gov (United States)

    Guzman-Rivero, Miguel; Verduguez-Orellana, Aleida; Montaño, Karen; Cloetens, Lieselotte; Rojas, Ernesto; Åkesson, Björn; Sejas, Edgar

    2015-02-01

    Cutaneous leishmaniasis triggers a varied immune response depending on parasite and host factors, which in turn can be influenced by nutrients. The resistance to the infection is associated with the Th1 type of cytokine production. The Th1 type can be reduced as a consequence of zinc deficiency, which may increase the risk for chronicity of the infection. Using in vitro and ex vivo models, we studied the influence of zinc supplementation on the immune response in patients with cutaneous leishmaniasis treated with antimony and the data were also compared to those of matched controls. Twenty-nine patients with cutaneous leishmaniasis (n=14 in zinc-supplemented group [45mg/day] and n=15 in placebo group) were treated by intramuscular injections of antimony for 20 days and took supplements for 60 days. Immunoglobulins in plasma and cell proliferation, IFN-γ production and CD markers of isolated peripheral blood mononuclear cells (PBMC) were measured. It was found that the cellular immune response of the patients maintained its activity as assessed by the ability of the PBMC to proliferate and produce IFN-γ in response to concanavalin A. Moreover, there was no difference in these variables between the zinc-supplemented and placebo groups after 60 days. The addition of zinc sulphate in vitro to PBMC reduced the IFN-γ production in the placebo group only. It is concluded that the cellular immune response of the cutaneous leishmaniasis patients remained active during treatment by antimony when compared to that of controls. It was not possible to document an additional effect of zinc supplementation for 60 days on the immune response. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Aberrant response to commensal Bacteroides thetaiotaomicron in Crohn's disease: an ex vivo human organ culture study.

    Science.gov (United States)

    Edwards, L A; Lucas, M; Edwards, E A; Torrente, F; Heuschkel, R B; Klein, N J; Murch, S H; Bajaj-Elliott, M; Phillips, A D

    2011-05-01

    Human ex vivo evidence indicating that an inappropriate immune response(s) to nonpathogenic bacteria contributes to disease pathogenesis in pediatric Crohn's disease (CD) is limited. The aim of the present study was to compare and contrast the early innate immune response of pediatric "healthy" versus CD mucosa to pathogenic, probiotic, and commensal bacteria. "Healthy control" and CD pediatric mucosal biopsies (terminal ileum and transverse colon) were cocultured for 8 hours with E. coli O42, Lactobacillus GG (LGG), Bacteroidesthetaiotaomicron (B. theta), or stimulated with interleukin (IL)-1β (positive control). Matched nonstimulated biopsies served as experimental controls. IL-8 was the immune marker of choice. IL-8 mRNA and protein levels were quantified by quantitative polymerase chain reaction and sandwich enzyme-linked immunosorbent assay, respectively. IL-8 secretion was observed when control, ileal biopsies were exposed to pathogenic O42 and probiotic LGG, with no response noted to commensal B. theta. In comparison, Crohn's ileal biopsies showed impaired ability to induce IL-8 in response to O42 and LGG. Control colonic tissue showed a limited response to O42 or B. theta and LGG significantly reduced IL-8 secretion. Unlike control tissue, however, Crohn's ileal and colonic tissue did respond to B. theta, with more enhanced expression in the colon. We provide the first ex vivo data to support the notion that aberrant mucosal recognition of commensal bacteria may contribute to pediatric CD. While IL-8 responses to O42 and LGG varied with disease status and anatomical location, B. theta consistently induced significant IL-8 both in ileal and colonic CD tissue, which was not seen in control, healthy tissue. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  11. C5a negatively regulates toll-like receptor 4-induced immune responses.

    Science.gov (United States)

    Hawlisch, Heiko; Belkaid, Yasmine; Baelder, Ralf; Hildeman, David; Gerard, Craig; Köhl, Jörg

    2005-04-01

    The complement system and the Toll-like receptors (TLRs) are two central arms of innate immunity that are critical to host defense as well as the development of adaptive immunity. Most pathogens activate both complement and TLRs, suggesting the potential for crosstalk between the two systems. We show here that the complement-derived C5a anaphylatoxin negatively regulates TLR4- and CD40-induced synthesis of IL-12 family cytokines (IL-12, IL-23, and IL-27) from inflammatory macrophages (M phi s) by extracellular signal-regulated kinase- and phosphoinositide 3 kinase-dependent pathways. This decreased cytokine response translates into a decreased T helper type 1 (Th1) response in vitro and in vivo. Accordingly, we found enhanced Th1 immunity in C5a receptor-deficient mice, something that conferred protection from Leishmania major infection. Our findings identify the negative impact of C5a on IL-12 family cytokines as an important mechanism for regulating Th1 polarization in response to innate and adaptive immune network activation.

  12. Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague.

    Science.gov (United States)

    Sebbane, Florent; Lemaître, Nadine; Sturdevant, Daniel E; Rebeil, Roberto; Virtaneva, Kimmo; Porcella, Stephen F; Hinnebusch, B Joseph

    2006-08-01

    Yersinia pestis causes bubonic plague, characterized by an enlarged, painful lymph node, termed a bubo, that develops after bacterial dissemination from a fleabite site. In susceptible animals, the bacteria rapidly escape containment in the lymph node, spread systemically through the blood, and produce fatal sepsis. The fulminant progression of disease has been largely ascribed to the ability of Y. pestis to avoid phagocytosis and exposure to antimicrobial effectors of innate immunity. In vivo microarray analysis of Y. pestis gene expression, however, revealed an adaptive response to nitric oxide (NO)-derived reactive nitrogen species and to iron limitation in the extracellular environment of the bubo. Polymorphonuclear neutrophils recruited to the infected lymph node expressed abundant inducible NO synthase, and several Y. pestis homologs of genes involved in the protective response to reactive nitrogen species were up-regulated in the bubo. Mutation of one of these genes, which encodes the Hmp flavohemoglobin that detoxifies NO, attenuated virulence. Thus, the ability of Y. pestis to destroy immune cells and remain extracellular in the bubo appears to limit exposure to some but not all innate immune effectors. High NO levels induced during plague may also influence the developing adaptive immune response and contribute to septic shock.

  13. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  14. Ubiquitin enzymes in the regulation of immune responses.

    Science.gov (United States)

    Ebner, Petra; Versteeg, Gijs A; Ikeda, Fumiyo

    2017-08-01

    Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.

  15. Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis.

    Science.gov (United States)

    Rizzuto, Gabrielle; Tagliani, Elisa; Manandhar, Priyanka; Erlebacher, Adrian; Bakardjiev, Anna I

    2017-08-01

    The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6Chi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses. Copyright © 2017 American Society for Microbiology.

  16. Durable and sustained immune tolerance to ERT in Pompe disease with entrenched immune responses.

    Science.gov (United States)

    Kazi, Zoheb B; Prater, Sean N; Kobori, Joyce A; Viskochil, David; Bailey, Carrie; Gera, Renuka; Stockton, David W; McIntosh, Paul; Rosenberg, Amy S; Kishnani, Priya S

    2016-07-21

    Enzyme replacement therapy (ERT) has prolonged survival and improved clinical outcomes in patients with infantile Pompe disease (IPD), a rapidly progressive neuromuscular disorder. Yet marked interindividual variability in response to ERT, primarily attributable to the development of antibodies to ERT, remains an ongoing challenge. Immune tolerance to ongoing ERT has yet to be described in the setting of an entrenched immune response. Three infantile Pompe patients who developed high and sustained rhGAA IgG antibody titers (HSAT) and received a bortezomib-based immune tolerance induction (ITI) regimen were included in the study and were followed longitudinally to monitor the long-term safety and efficacy. A trial to taper the ITI protocol was attempted to monitor if true immune tolerance was achieved. Bortezomib-based ITI protocol was safely tolerated and led to a significant decline in rhGAA antibody titers with concomitant sustained clinical improvement. Two of the 3 IPD patients were successfully weaned off all ITI protocol medications and continue to maintain low/no antibody titers. ITI protocol was significantly tapered in the third IPD patient. B cell recovery was observed in all 3 IPD patients. This is the first report to our knowledge on successful induction of long-term immune tolerance in patients with IPD and HSAT refractory to agents such as cyclophosphamide, rituximab, and methotrexate, based on an approach using the proteasome inhibitor bortezomib. As immune responses limit the efficacy and cost-effectiveness of therapy for many conditions, proteasome inhibitors may have new therapeutic applications. This research was supported by a grant from the Genzyme Corporation, a Sanofi Company (Cambridge, Massachusetts, USA), and in part by the Lysosomal Disease Network, a part of NIH Rare Diseases Clinical Research Network (RDCRN).

  17. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    Science.gov (United States)

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.

  18. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1.

    Directory of Open Access Journals (Sweden)

    Mohlopheni J Marakalala

    Full Text Available The β-glucan receptor Dectin-1 is a member of the C-type lectin family and functions as an innate pattern recognition receptor in antifungal immunity. In both mouse and man, Dectin-1 has been found to play an essential role in controlling infections with Candida albicans, a normally commensal fungus in man which can cause superficial mucocutaneous infections as well as life-threatening invasive diseases. Here, using in vivo models of infection, we show that the requirement for Dectin-1 in the control of systemic Candida albicans infections is fungal strain-specific; a phenotype that only becomes apparent during infection and cannot be recapitulated in vitro. Transcript analysis revealed that this differential requirement for Dectin-1 is due to variable adaptation of C. albicans strains in vivo, and that this results in substantial differences in the composition and nature of their cell walls. In particular, we established that differences in the levels of cell-wall chitin influence the role of Dectin-1, and that these effects can be modulated by antifungal drug treatment. Our results therefore provide substantial new insights into the interaction between C. albicans and the immune system and have significant implications for our understanding of susceptibility and treatment of human infections with this pathogen.

  19. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  20. [Immune response of Hansen's disease. Review].

    Science.gov (United States)

    Rada, Elsa; Aranzazu, Nacarid; Convit, Jacinto

    2009-12-01

    Hansen's disease presents a wide spectrum of clinical and histopathological manifestations that reflect the nature of the immunological response of the host towards diverse Mycobacterium leprae components. The immunological system, composed by both innate and adaptive immunology, offers protection towards infections of various etiologies, among them bacterial. Bacteria, of course, have developed multiple strategies for evading host defenses, based on either very complex or simple mechanisms, but with a single purpose: to "resist" host attacks and to be able to survive. We have tried to summarize some recent studies in Hansen's disease, with more emphasis in the inmunology area. We think that in the future, all illnesses should also be very strongly related to other important aspects such as the social, environmental and economic, and whose development is not solved in a laboratory.

  1. Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways.

    Science.gov (United States)

    Bourque, Daniel L; Bhuiyan, Taufiqur Rahman; Genereux, Diane P; Rashu, Rasheduzzaman; Ellis, Crystal N; Chowdhury, Fahima; Khan, Ashraful I; Haq Alam, Nur; Lazina Hossain, Anik Paul; Mayo-Smith, Leslie M; Charles, Richelle C; Weil, Ana A; LaRocque, Regina C; Calderwood, Stephen B; Ryan, Edward T; Karlsson, Elinor K; Qadri, Firdausi; Harris, Jason B

    2017-11-13

    To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of eleven Bangladeshi adults with cholera, using biopsies obtained immediately after rehydration and at 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, MAPK, and TLR-mediated signaling pathways, which unexpectedly persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across eleven participants. These genes included the endosomal toll like receptor, TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that IRF7 and interferons β1 and α2 were among the top upstream regulators activated during cholera. Among innate immune effectors, we found that DUOX2, an NADPH-oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when stimulating Caco-2 or THP-1 cells, respectively, with live V. cholerae but not with heat killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding mucosal immune signaling pathways and effectors activated in vivo following cholera. Copyright © 2017 American Society for Microbiology.

  2. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  3. Virus and Vaccine with the Immune Responses of Guinea Fowls

    African Journals Online (AJOL)

    Dr Olaleye

    ABSTRACT. The interference of Infectious bursal disease (IBD) virus and vaccine with the immune response of the grey brested guinea fowl (Numida meleagridis galeata palas) to Newcastle desease (ND) “LaSota” vaccine was studied using hemagglutination inhibition (HI) test for detection of ND virus antibody and agar.

  4. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated. DNA vaccines were ...

  5. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    Humoral and cellular immune responses to modified hepatitis B plasmid DNA vaccine in mice. ... Journal Home > Vol 15, No 4 (2016) > ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for ...

  6. The interplay between central metabolism and innate immune responses

    NARCIS (Netherlands)

    Cheng, S.C.; Joosten, L.A.B.; Netea, M.G.

    2014-01-01

    A growing body of recent studies bring into light an important cross-talk between immune response and metabolism not only at the level of the organism as a whole, but also at the level of the individual cells. Cellular bioenergetics functions not only as a power plant to fuel up the cells, but the

  7. Optimal Control Strategy for Abnormal Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Jinying Tan

    2015-01-01

    Full Text Available Innate immune response plays an important role in control and clearance of pathogens following viral infection. However, in the majority of virus-infected individuals, the response is insufficient because viruses are known to use different evasion strategies to escape immune response. In this study, we use optimal control theory to investigate how to control the innate immune response. We present an optimal control model based on an ordinary-differential-equation system from a previous study, which investigated the dynamics and regulation of virus-triggered innate immune signaling pathways, and we prove the existence of a solution to the optimal control problem involving antiviral treatment or/and interferon therapy. We conduct numerical experiments to investigate the treatment effects of different control strategies through varying the cost function and control efficiency. The results show that a separate treatment, that is, only inhibiting viral replication (u1(t or enhancing interferon activity (u2(t, has more advantages for controlling viral infection than a mixed treatment, that is, controlling both (u1(t and (u2(t simultaneously, including the smallest cost and operability. These findings would provide new insight for developing effective strategies for treatment of viral infectious diseases.

  8. Effect of partially purified fumonisins on cellular immune response in ...

    African Journals Online (AJOL)

    Paracoccidioidomycosis (PCM), caused by the fungus Paracoccodioides brasiliensis (Pb), is one of the most important systemic mycoses in Latin America. The aim of this ... After 7 days, cellular immune response was evaluated by delayed-type hypersensitivity (DTH) and lymphoproliferative assays (LA) using spleen cells.

  9. Investigating Human Dendritic Cell Immune Responses to Borrelia burgdorferi

    NARCIS (Netherlands)

    Mason, Lauren M. K.; Hovius, Joppe W. R.

    2018-01-01

    Dendritic cells (DCs) are professional antigen-presenting cells that recognize and phagocytose pathogens, and help to orchestrate adaptive immune responses to combat them. DCs are abundant in the skin where Borrelia burgdorferi first enters the body during a tick bite, and are thus critical in

  10. Trypanosomiasis-Induced Th17-Like Immune Responses in Carp

    NARCIS (Netherlands)

    Ribeiro, Carla M. S.; Pontes, Maria J. S. L.; Bird, Steve; Chadzinska, Magdalena; Scheer, Marleen; Verburg-van Kemenade, B. M. Lidy; Savelkoul, Huub F. J.; Wiegertjes, Geert F.

    2010-01-01

    Background: In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of the

  11. Trypanosomiasis-induced Th17-like immune responses in carp

    NARCIS (Netherlands)

    Ribeiro, C.M.S.; Pontes, M.J.S.L.; Bird, S.; Chadzinska, M.K.; Scheer, M.H.; Verburg-van Kemenade, B.M.L.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2010-01-01

    Background - In mammalian vertebrates, the cytokine interleukin (IL)-12 consists of a heterodimer between p35 and p40 subunits whereas interleukin-23 is formed by a heterodimer between p19 and p40 subunits. During an immune response, the balance between IL-12 and IL-23 can depend on the nature of

  12. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...

  13. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...

  14. Immune responses of pigs inoculated with a recombinant fowlpox ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... 1Departmet of Animal Science and Technology, Qingdao Agricultural University, Qingdao,Shandong 266109, PR China. 2Military ... Mongolia)/FMDV (O/NY00) and neutralizing antibody, PK15 cells (BHK21) inoculated with recombinant ... Key words: PCV2, rFPV, FMDV, immune response, prime-boost.

  15. Sharing the burden: antigen transport and firebreaks in immune responses.

    Science.gov (United States)

    Handel, Andreas; Yates, Andrew; Pilyugin, Sergei S; Antia, Rustom

    2009-05-06

    Communication between cells is crucial for immune responses. An important means of communication during viral infections is the presentation of viral antigen on the surface of an infected cell. Recently, it has been shown that antigen can be shared between infected and uninfected cells through gap junctions, connexin-based channels, that allow the transport of small molecules. The uninfected cell receiving antigen can present it on its surface. Cells presenting viral antigen are detected and killed by cytotoxic T lymphocytes. The killing of uninfected cells can lead to increased immunopathology. However, the immune response might also profit from killing those uninfected bystander cells. One benefit might be the removal of future 'virus factories'. Another benefit might be through the creation of 'firebreaks', areas void of target cells, which increase the diffusion time of free virions, making their clearance more likely. Here, we use theoretical models and simulations to explore how the mechanism of gap junction-mediated antigen transport (GMAT) affects the dynamics of the virus and immune response. We show that under the assumption of a well-mixed system, GMAT leads to increased immunopathology, which always outweighs the benefit of reduced virus production due to the removal of future virus factories. By contrast, a spatially explicit model leads to quite different results. Here we find that the firebreak mechanism reduces both viral load and immunopathology. Our study thus shows the potential benefits of GMAT and illustrates how spatial effects may be crucial for the quantitative understanding of infection dynamics and immune responses.

  16. A multiherbal formulation influencing immune response in vitro.

    Science.gov (United States)

    Menghini, L; Leporini, L; Scanu, N; Pintore, G; Ferrante, C; Recinella, L; Orlando, G; Vacca, M; Brunetti, L

    2012-02-01

    Aim of this study was to evaluate the effects of phytocomplexes of Uncaria, Shiitake and Ribes in terms of viability and inflammatory response on immune cell-derived cultures. Standardized extracts of Uncaria, Shitake and Ribes and their commercial formulation were tested on cell lines PBMC, U937 and macrophage. The activity was evaluated in terms of cell viability (MTT test), variations of oxidative marker release (ROS and PGE2) and modulatory effects on immune response (gene expression of IL-6, IL-8 and TNFα, RT-PCR). Cell viability was not affected by extracts, except subtle variations observed only at higher doses (>250 µg/mL). The extract mixture was well tolerated, with no effects on cell viability up to doses of 500 µg/mL. Pre-treatment of macrophages with subtoxic doses of the extracts reduced the basal release of oxidative markers and enhanced the cell response to exogenous oxidant stimulation, as revealed by ROS and PGE2 release reduction. The same treatment on macrophage resulted in a selective modulation of the immune response, as shown by an increase of IL-6 mRNA and, partially, IL-8 mRNA, while a reduction was observed for TNFα mRNA. Data confirm that extracts and their formulations can act as regulator of the immune system with mechanisms involving the oxidative stress and the release of selected proinflammatory cytokines.

  17. Induction of protective immune responses in mice by double DNA ...

    African Journals Online (AJOL)

    Purpose: To investigate the efficacy of a double DNA vaccine encoding of Brucella melitensis omp31 gene and of Escherichia coli eae gene in inducing protective immune response in a mouse model. Methods: After performing PCR assays and cloning both the eae and omp31 genes, the generated DNA vaccines were ...

  18. Immune and clinical response to honeybee venom in beekeepers

    Directory of Open Access Journals (Sweden)

    Jan Matysiak

    2016-03-01

    CONCLUSIONS:The differences in the immune response to a bee sting between the beekeepers and individuals not exposed to bees were probably due to the high exposure of the beekeepers to honeybee venom allergens. This may suggest a different approach to the bee venom allergy diagnostic tests in this occupational group.

  19. Mucosal immune response in common carp (Cyprinus carpio L.)

    DEFF Research Database (Denmark)

    Przybylska, Dominika Alicja

    of the biological impact of two commercially available ß-glucan enriched products on the wound healing process in common carp (Cyprinus carpio L.) in sterile, controlled conditions; 2. investigation of potential impact of intravenously injected ß-glucan on mucosal immune response and immunoglobulin switch...

  20. [Influence of natural gut flora on immune response].

    Science.gov (United States)

    Strzępa, Anna; Szczepanik, Marian

    2013-08-29

    Our intestines are habitat for trillions of microorganisms such as bacteria, viruses and eukaryotes, known as microbiota. They are indispensable for our well-being due to their metabolic activities. Microbiota digests complex plant polysaccharides, which are normally unprocessed by humans; as well it retrieves other essential nutrients. It is well established that microbiota is crucial for proper development of intestinal as well systemic immune compartments. Recent results indicate that composition of natural gut flora is responsible for shaping of immune response. Alerted bacterial profile, known as dysbiosis precedes development of allergy in children. Many autoimmune conditions are associated with shift in intestinal bacterial profile. Apart of direct association between gut flora and systemic immune compartment little is known about the mechanisms by which microbiota exerts its immunoregulatory function. At the moment several bacterial strains as well some bacterial products were recognized as immunomodulators. This review describes the composition of normal gut flora as well disease-associated microbiota. It deals with unique mechanisms, found in GALT, that favor induction of tolerance towards orally administrated antigens as well discriminate between commensal and pathogens to minimize induction of inflammatory response. Further, the review tries to establish the connection between microbiota and systemic immune response. Finally the factors that modulate the composition of our gut flora are described.

  1. Aberrant immune responses in a mouse with behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Yong Heo

    Full Text Available BTBR T+tf/J (BTBR mice have recently been reported to have behaviors that resemble those of autistic individuals, in that this strain has impairments in social interactions and a restricted repetitive and stereotyped pattern of behaviors. Since immune responses, including autoimmune responses, are known to affect behavior, and individuals with autism have aberrant immune activities, we evaluated the immune system of BTBR mice, and compared their immunity and degree of neuroinflammation with that of C57BL/6 (B6 mice, a highly social control strain, and with F1 offspring. Mice were assessed at postnatal day (pnd 21 and after behavioral analysis at pnd70. BTBR mice had significantly higher amounts of serum IgG and IgE, of IgG anti-brain antibodies (Abs, and of IgG and IgE deposited in the brain, elevated expression of cytokines, especially IL-33 IL-18, and IL-1β in the brain, and an increased proportion of MHC class II-expressing microglia compared to B6 mice. The F1 mice had intermediate levels of Abs and cytokines as well as social activity. The high Ab levels of BTBR mice are in agreement with their increased numbers of CD40(hi/I-A(hi B cells and IgG-secreting B cells. Upon immunization with KLH, the BTBR mice produced 2-3 times more anti-KLH Abs than B6 mice. In contrast to humoral immunity, BTBR mice are significantly more susceptible to listeriosis than B6 or BALB/c mice. The Th2-like immune profile of the BTBR mice and their constitutive neuroinflammation suggests that an autoimmune profile is implicated in their aberrant behaviors, as has been suggested for some humans with autism.

  2. Parasitic infection and the polarized Th2 immune response can alter a vaccine-induced immune response.

    Science.gov (United States)

    Robinson, Tara M; Nelson, Robin G; Boyer, Jean D

    2003-06-01

    The AIDS epidemic in the Developing World represents a major global crisis. It is imperative that we develop an effective vaccine. Vaccines are economically the most efficient means of controlling viral infections. However, the development of a vaccine against HIV-1 has been a formidable task, and in developing countries chronic parasitic infection adds another level of complexity to AIDS vaccine development. Helminthic and protozoan infections, common in developing countries, can result in a constant state of immune activation that is characterized by a dominant Th2 type of cytokine profile, high IgE levels, and eosinophilia. Such an immune profile may have an adverse impact on the efficacy of vaccines, in particular, an HIV-1 vaccine. Indeed, the CD8 cellular immune response and the corresponding Th1 type cytokines that enhance the CD8 cellular immune response are important for clearing many viral infections. It is believed that an antigen specific CD8 cellular immune response will be an important component of an HIV-1 vaccine.

  3. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Directory of Open Access Journals (Sweden)

    Ana M. Calderón de la Barca

    2013-10-01

    Full Text Available Celiac disease (CD is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.

  4. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients.

    Science.gov (United States)

    Ortiz-Sánchez, Juan P; Cabrera-Chávez, Francisco; de la Barca, Ana M Calderón

    2013-10-21

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.

  5. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  6. Ebola haemorrhagic fever virus: pathogenesis, immune responses, potential prevention.

    Science.gov (United States)

    Marcinkiewicz, Janusz; Bryniarski, Krzysztof; Nazimek, Katarzyna

    2014-01-01

    Ebola zoonotic RNA filovirus represents human most virulent and lethal pathogens, which induces acute hemorrhagic fever and death within few days in a range of 60-90% of symptomatic individuals. Last outbreak in 2014 in West Africa caused panic that Ebola epidemic can be spread to other continents. Number of deaths in late December reached almost 8,000 individuals out of more than 20,000 symptomatic patients. It seems that only a coordinated international response could counteract the further spread of Ebola. Major innate immunity mechanisms against Ebola are associated with the production of interferons, that are inhibited by viral proteins. Activation of host NK cells was recognized as a leading immune function responsible for recovery of infected people. Uncontrolled cell infection by Ebola leads to an impairment of immunity with cytokine storm, coagulopathy, systemic bleeding, multi-organ failure and death. Tested prevention strategies to induce antiviral immunity include: i. recombinant virus formulations (vaccines); ii. cocktail of monoclonal antibodies (serotherapy); iii. alternative RNA-interference-based antiviral methods. Maintaining the highest standards of aseptic and antiseptic precautions is equally important. Present brief review summarizes a current knowledge concerning pathogenesis of Ebola hemorrhagic disease and the virus interaction with the immune system and discusses recent advances in prevention of Ebola infection by vaccination and serotherapy.

  7. Host immune responses accelerate pathogen evolution.

    Science.gov (United States)

    Trivedi, Pankaj; Wang, Nian

    2014-03-01

    Pathogens face a hostile and often novel environment when infecting a new host, and adaptation is likely to be an important determinant of the success in colonization and establishment. We hypothesized that resistant hosts will impose stronger selection on pathogens than susceptible hosts, which should accelerate pathogen evolution through selection biased toward effector genes. To test this hypothesis, we conducted an experimental evolution study on Xanthomonas citri subsp. citri (Xcc) in a susceptible plant species and a resistant plant species. We performed 55 rounds of repeated reinoculation of Xcc through susceptible host grapefruit (isolates G1, G2, G3) and resistant host kumquat (isolates K1, K2, K3). Consequently, only K1 and K3 isolates lost their ability to elicit a hypersensitive response (HR) in kumquat. Illumina sequencing of the parental and descendant strains P, G1, G2, G3, K1, K2 and K3 revealed that fixed mutations were biased toward type three secretion system effectors in isolates K1 and K3. Parallel evolution was observed in the K1 and K3 strains, suggesting that the mutations result from selection rather than by random drift. Our results support our hypothesis and suggest that repeated infection of resistant hosts by pathogens should be prevented to avoid selecting for adaptive pathogens.

  8. Deciphering the Adaptive Immune Response to Ovarian Cancer

    Science.gov (United States)

    2013-10-01

    associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013 Jan 15;108(1):155...Epub 2012 Jan 27. PubMed PMID: 22282309. 14. West NR, Murphy LC, Watson PH. Oncostatin M suppresses oestrogen receptor-α expression and is...K, Tempfer C, Kucera E, Hefler L, Zeisler H, Kainz C, et al. Humoral p53 antibody response is a prognostic parameter in ovarian cancer. Anticancer Res

  9. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    epigenetic mechanisms in the regulation of autophagy gene expression in healthy donors. Completion of these studies will provide novel insights into...induction of highly specific B and T cell responses against viral infections. Despite recent progress in vaccine development, the molecular mechanisms ...BMI 31±8 36±5 The purpose of this application is to find mechanisms that could improve B cell mediated immune response to influenza. This

  10. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  11. Correlated responses in tissue weights measured in vivo by ...

    African Journals Online (AJOL)

    The aim of this study was to estimate correlated responses in lean, fat and bone weights in vivo in Dorset Down sheep selected for lean tissue growth. Over the period 1986-1992 inclusive, the lean tissue growth line had been selected using two economic indices for an increased aggregate breeding value incorporating ...

  12. Superovulation Response and In vivo Embryo Production Potential ...

    African Journals Online (AJOL)

    Holstein, respectively. And hence, Boran cows' response to superovulation and yield of better quality and number of embryo than their Boran*Holstein counterparts showed the high potential of the breed for in-vivo and in-vitro embyo production.

  13. Memory B-Cell and Antibody Responses Induced by Plasmodium falciparum Sporozoite Immunization

    NARCIS (Netherlands)

    Nahrendorf, W.; Scholzen, A.; Bijker, E.M.; Teirlinck, A.C.; Bastiaens, G.J.H.; Schats, R.; Hermsen, C.C.; Visser, L.G.; Langhorne, J.; Sauerwein, R.W.

    2014-01-01

    BACKGROUND: Immunization of healthy volunteers during receipt of chemoprophylaxis with Plasmodium falciparum sporozoites (CPS-immunization) induces sterile protection from malaria. Antibody responses have long been known to contribute to naturally acquired immunity against malaria, but their

  14. Characterization of murine immune responses to allergenic diisocyanates.

    Science.gov (United States)

    Dearman, R J; Spence, L M; Kimber, I

    1992-02-01

    Chemicals may cause contact allergy. Some allergens may, in addition, cause respiratory sensitization. In previous investigations we have found that contact and respiratory sensitizers induce differential immune responses in mice characteristic of TH1 and TH2 T helper cell activation, respectively. In the present study we have examined immune responses in mice following topical exposure to three allergenic diisocyanates; diphenylmethane-4,4'-diisocyanate (MDI), dicyclohexylmethane-4,4'-diisocyanate (HMDI), and isophorone diisocyanate (IPDI). All three chemicals are contact allergens. MDI is in addition a known human respiratory allergen. HMDI and IPDI appear not to induce respiratory sensitization or at least do so very rarely. Exposure of mice to all chemicals resulted in a vigorous lymphocyte proliferative response in lymph nodes draining the site of application, and each caused contact sensitization. In common with other respiratory allergens, MDI induced an increase in the serum concentration of IgE and provoked considerably more IgG2b than IgG2a anti-hapten antibody; responses consistent with a preferential activation of TH2 cells. In contrast, under conditions where both caused lymph node cell proliferation and contact sensitization, neither HMDI nor IPDI induced a measurable antibody response of any class. These data provide additional evidence that different classes of chemical allergen cause divergent immune responses in mice. The possibility that these characteristics may facilitate not only the identification, but also classification, of chemical allergens is discussed.

  15. The Influence of Innate and Adaptive Immune Responses on Atherosclerosis

    Science.gov (United States)

    Witztum, Joseph L.; Lichtman, Andrew H.

    2014-01-01

    Both the chronic development of atherosclerotic lesions and the acute changes in lesion phenotype that lead to clinical cardiovascular events are significantly influenced by the innate and adaptive immune responses to lipoprotein deposition and oxidation in the arterial wall. The rapid pace of discovery of mechanisms of immunologic recognition, effector functions, and regulation has significantly influenced the study of atherosclerosis, and our new knowledge is beginning to affect how we treat this ubiquitous disease. In this review, we discuss recent advances in our understanding of how innate and adaptive immunity contribute to atherosclerosis, as well as therapeutic opportunities that arise from this knowledge. PMID:23937439

  16. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses.

    Science.gov (United States)

    Coyle, A J; Lehar, S; Lloyd, C; Tian, J; Delaney, T; Manning, S; Nguyen, T; Burwell, T; Schneider, H; Gonzalo, J A; Gosselin, M; Owen, L R; Rudd, C E; Gutierrez-Ramos, J C

    2000-07-01

    While CD28 is critical for expansion of naive T cells, recent evidence suggests that the activation of effector T cells is largely independent of CD28/B7. We suggest that ICOS, the third member of the CD28/CTLA-4 family, plays an important role in production of IL-2, IL-4, IL-5, and IFNgamma from recently activated T cells and contributes to T cell-dependent B help in vivo. Inhibition of ICOS attenuates lung mucosal inflammation induced by Th2 but not Th1 effector populations. Our data indicate a critical function for the third member of the CD28 family in T cell-dependent immune responses.

  17. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  19. Host Immune Status and Response to Hepatitis E Virus Infection

    Science.gov (United States)

    Krain, Lisa J.; Nelson, Kenrad E.

    2014-01-01

    SUMMARY Hepatitis E virus (HEV), identified over 30 years ago, remains a serious threat to life, health, and productivity in developing countries where access to clean water is limited. Recognition that HEV also circulates as a zoonotic and food-borne pathogen in developed countries is more recent. Even without treatment, most cases of HEV-related acute viral hepatitis (with or without jaundice) resolve within 1 to 2 months. However, HEV sometimes leads to acute liver failure, chronic infection, or extrahepatic symptoms. The mechanisms of pathogenesis appear to be substantially immune mediated. This review covers the epidemiology of HEV infection worldwide, the humoral and cellular immune responses to HEV, and the persistence and protection of antibodies produced in response to both natural infection and vaccines. We focus on the contributions of altered immune states (associated with pregnancy, human immunodeficiency virus [HIV], and immunosuppressive agents used in cancer and transplant medicine) to the elevated risks of chronic infection (in immunosuppressed/immunocompromised patients) and acute liver failure and mortality (among pregnant women). We conclude by discussing outstanding questions about the immune response to HEV and interactions with hormones and comorbid conditions. These questions take on heightened importance now that a vaccine is available. PMID:24396140

  20. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo.

    Science.gov (United States)

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Felder, Paul; Cusumano, Andrew; Moley, Kelle H

    2017-08-24

    Male exposure to cigarette smoke is associated with seminal defects and with congenital anomalies and childhood cancers in offspring. In mice, paternal exposure to cigarette smoke condensate (CSC) causes molecular defects in germ cells and phenotypic effects in their offspring. Here we used an ex vivo testicular explant model and in vivo exposure to determine the concentration at which CSC impairs spermatogenesis and offspring development. We explanted testis tissue at postnatal day (P)5.5 and cultured it until P11.5. Assessment of growth parameters by analyzing expression of cell-specific markers revealed that the explant system maintained structural and functional integrity. We exposed the P5.5 to -11.5 explants to various concentrations (40-160 µg/ml) of CSC and confirmed that nicotine in the CSC was metabolized to cotinine. We assessed various growth and differentiation parameters, as well as testosterone production, and observed that many spermatogenesis features were impaired at 160 µg/ml CSC. The same parameters were impaired by a similar CSC concentration in vivo Finally, females mated to males that were exposed to 160 µg/ml CSC neonatally had increased rates of pup resorption. We conclude that male exposure to CSC impairs offspring development and that the concentration at which CSC impairs spermatogenesis is similar in vivo and ex vivo. Given that the concentrations of CSC we used contained similar doses of nicotine as human smokers are exposed to, we argue that our model mimics human male reproductive effects of smoking.-Esakky, P., Hansen, D. A., Drury, A. M., Felder, P., Cusumano, A., Moley, K. H. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo. © FASEB.

  1. Aging and the Immune Response to Tetanus Toxoid: Diminished Frequency and Level of Cellular Immune Reactivity to Antigenic Stimulation

    OpenAIRE

    Schatz, Desmond; Ellis, Tamir; Ottendorfer, Eric; Jodoin, Eric; Barrett, Douglas; Atkinson, Mark

    1998-01-01

    The period of efficacious immune reactivity afforded by tetanus immunization and the need for continuing some forms of tetanus vaccination programs have been the subjects of recent debates. Our studies demonstrate that the level of antitetanus immunity based on immunological memory (i.e., cellular immune responsiveness) varies dramatically as a function of age, with older individuals constituting a population which is increasingly susceptible to tetanus infection.

  2. Effect of high-dose vitamin A supplementation on the immune response to Bacille Calmette-Guerin vaccine

    DEFF Research Database (Denmark)

    Diness, Birgitte R; Fisker, Ane B; Roth, Adam

    2007-01-01

    BACKGROUND: Vitamin A supplementation (VAS) at birth has been associated with decreased mortality in Asia. Bacille Calmette-Guérin (BCG) vaccine is given at birth in tuberculosis-endemic countries. Previous studies suggest that VAS may influence the immune response to vaccines. OBJECTIVE: Our...... objective was to examine whether VAS influences the immune response to simultaneously administered BCG vaccine. DESIGN: Within a randomized trial of 50,000 IU vitamin A or placebo given with BCG vaccine at birth in Guinea-Bissau, 2710 infants were examined for BCG scar formation and delayed...... scar was not affected by VAS. The ex vivo interferon-gamma response to PPD was increased by VAS (means ratio: 1.40; 95% CI: 1.03, 1.91). CONCLUSIONS: VAS with BCG vaccination does not appear to interfere with the long-term immune response to BCG. However, VAS temporarily altered the DTH reaction to PPD...

  3. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  4. Immune Response to Coccidioidomycosis and the Development of a Vaccine

    Directory of Open Access Journals (Sweden)

    Natalia Castro-Lopez

    2017-03-01

    Full Text Available Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens.

  5. Myristoylation: An Important Protein Modification in the Immune Response

    Directory of Open Access Journals (Sweden)

    Daniel Ikenna Udenwobele

    2017-06-01

    Full Text Available Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.

  6. Regulation of mucosal immune responses in effector sites.

    Science.gov (United States)

    Bailey, M; Plunkett, F J; Rothkötter, H J; Vega-Lopez, M A; Haverson, K; Stokes, C R

    2001-11-01

    In human disease and rodent models, immune responses in the intestinal mucosa can be damaging. Damage is characterised by villus atrophy, crypt hyperplasia and reduced ability to digest and absorb nutrients. In normal individuals active responses to harmless environmental antigens associated with food and commensal bacteria are controlled by the development of immunological tolerance. Similar pathological changes occur in piglets weaned early from their mothers. Active immune responses to food antigens are observed in these piglets, and we and others have hypothesised that the changes occur as a result of transient allergic immune responses to novel food or bacteria antigens. The normal mechanism for producing tolerance to food antigens may operate at induction (Peyer's patches and mesenteric lymph nodes) or at the effector stage (intestinal lamina propria). In our piglet studies immunological tolerance occurs despite the initial active response. Together with evidence from rodents, this observation suggests that active responses are likely to be controlled at the effector stage, within the intestinal lamina propria. Support for this mechanism comes from the observation that human and pig intestinal T-cells are susceptible to apoptosis, and that this process is accelerated by antigen. We suggest that the role of the normal mature intestinal lamina propria is a balance between immunological effector and regulatory function. In neonatal animals this balance develops slowly and is dependant on contact with antigen. Immunological insults such as weaning may tip the balance of the developing mucosal immune system into excessive effector or regulatory function resulting in transient or chronic allergy or disease susceptibility.

  7. Viral load affects the immune response to HBV in mice with humanized immune system and liver.

    Science.gov (United States)

    Dusséaux, Mathilde; Masse-Ranson, Guillemette; Darche, Sylvie; Ahodantin, James; Li, Yan; Fiquet, Oriane; Beaumont, Elodie; Moreau, Pierrick; Rivière, Lise; Neuveut, Christine; Soussan, Patrick; Roingeard, Philippe; Kremsdorf, Dina; Di Santo, James P; Strick-Marchand, Helene

    2017-08-26

    Hepatitis B virus (HBV) infects hepatocytes, but the mechanisms of the immune response against the virus, and how it affects disease progression, are unclear. We performed studies with BALB/c Rag2(-/-)Il2rg(-/-)Sirpa(NOD)Alb-uPA(tg/tg) mice, stably engrafted with human hepatocytes (HUHEP) with or without a human immune system (HIS). HUHEP and HIS-HUHEP mice were given an intraperitoneal injection of HBV. Mononuclear cells were isolated from spleen and liver for analysis by flow cytometry. Liver was analyzed by immunohistochemistry and mRNA levels were measured by quantitative reverse transcription PCR. Plasma levels of HBV DNA was quantified by quantitative PCR, and antigen-specific antibodies were detected by immunocytochemistry of HBV transfected BHK-21 cells. Following HBV infection, a complete viral life cycle, with production of HBV DNA, hepatitis B e, core (HBc) and surface (HBs) antigens, and covalently closed circular DNA, was observed in HUHEP and HIS-HUHEP mice. HBV replicated unrestricted in HUHEP mice resulting in high viral titers without pathologic effects. In contrast, HBV-infected HIS-HUHEP mice developed chronic hepatitis with 10-fold lower titers and antigen-specific IgGs, (anti-HBs, anti-HBc), consistent with partial immune control. HBV-infected HIS-HUHEP livers contained infiltrating Kupffer cells, mature activated natural killer cells (CD69+), and PD-1+ effector memory T cells (CD45RO+). Reducing the viral inoculum resulted in more efficient immune control. Plasma from HBV-infected HIS-HUHEP mice had increased levels of inflammatory and immune-suppressive cytokines (C-X-C motif chemokine ligand 10 and interleukin 10), which correlated with populations of intrahepatic CD4+ T cells (CD45RO+PD-1+). Mice with high levels of viremia had HBV-infected liver progenitor cells. Giving the mice the nucleoside analogue entecavir reduced viral loads and decreased liver inflammation. In HIS-HUHEP mice, HBV infection completes a full life cycle and

  8. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response.

    Directory of Open Access Journals (Sweden)

    Milena Novakova

    Full Text Available Extra-cellular adenosine is an important regulator of inflammatory responses. It is generated from released ATP by a cascade of ectoenzymes and degraded by adenosine deaminase (ADA. There are two types of enzymes with ADA activity: ADA1 and ADGF/ADA2. ADA2 activity originates from macrophages and dendritic cells and is associated with inflammatory responses in humans and rats. Drosophila possesses a family of six ADGF proteins with ADGF-A being the main regulator of extra-cellular adenosine during larval stages. Herein we present the generation of a GFP reporter for ADGF-A expression by a precise replacement of the ADGF-A coding sequence with GFP using homologous recombination. We show that the reporter is specifically expressed in aggregating hemocytes (Drosophila immune cells forming melanotic capsules; a characteristic of inflammatory response. Our vital reporter thus confirms ADA expression in sites of inflammation in vivo and demonstrates that the requirement for ADA activity during inflammatory response is evolutionary conserved from insects to vertebrates. Our results also suggest that ADA activity is achieved specifically within sites of inflammation by an uncharacterized post-transcriptional regulation based mechanism. Utilizing various mutants that induce melanotic capsule formation and also a real immune challenge provided by parasitic wasps, we show that the acute expression of the ADGF-A protein is not driven by one specific signaling cascade but is rather associated with the behavior of immune cells during the general inflammatory response. Connecting the exclusive expression of ADGF-A within sites of inflammation, as presented here, with the release of energy stores when the ADGF-A activity is absent, suggests that extra-cellular adenosine may function as a signal for energy allocation during immune response and that ADGF-A/ADA2 expression in such sites of inflammation may regulate this role.

  9. Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi.

    Science.gov (United States)

    Reyes-Becerril, Martha; Alamillo, Erika; Sánchez-Torres, Luvia; Ascencio-Valle, Felipe; Perez-Urbiola, Juan C; Angulo, Carlos

    2016-12-01

    Vibrio parahaemolyticus is a serious pathogen that affects aquaculture. Nonetheless, to the best of our knowledge, no studies have focused on its immunological implications in Totoaba macdonaldi. Thus, the early immune response to V. parahaemolyticus in juveniles of totoaba was studied at 24 h post-infection with an in vivo study. In addition, changes in cellular innate immune parameters - phagocytosis, respiratory burst activity and viability (annexin V/propidium iodide) - were evaluated in vitro in head-kidney, spleen and thymus leukocytes at 6 and 24 h after bacterial stimulation by flow cytometry. Simultaneously, the expression levels of two immune-relevant genes (IL-1β and IL-8) were measured by using real time PCR. During in vivo study, mRNA transcripts of IL-1β were highly expressed in spleen, thymus and intestine and down-regulated in liver after 24 h post-infection. IL-8 gene expression was upregulated in spleen, intestine and liver compared to that of non-infected fish and down-regulated in thymus after 24 h post-infection. Generally, the results showed a significant decrease in cellular immune responses during the infection, principally in phagocytic ability and respiratory burst. The survival or viability of stimulated leukocytes was significantly reduced causing necrosis and apoptosis, indicating a robust killing response by V. parahaemolyticus. Finally the in vitro analysis showed that transcript levels of IL-1β and IL-8 were up-regulated during stimulation with V. parahaemolyticus in head-kidney, spleen and intestine and down-regulated in thymus at any time of the experiment. Although V. parahaemolyticus has been reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of early-immune response in juvenile totoaba and these immune parameters may be reliable indicators and can be useful in the health control of this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  11. The immune response to Prevotella bacteria in chronic inflammatory disease.

    Science.gov (United States)

    Larsen, Jeppe Madura

    2017-08-01

    The microbiota plays a central role in human health and disease by shaping immune development, immune responses and metabolism, and by protecting from invading pathogens. Technical advances that allow comprehensive characterization of microbial communities by genetic sequencing have sparked the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation. Intriguingly, Prevotella abundance is reduced within the lung microbiota of patients with asthma and chronic obstructive pulmonary disease. Increased Prevotella abundance is associated with augmented T helper type 17 (Th17) -mediated mucosal inflammation, which is in line with the marked capacity of Prevotella in driving Th17 immune responses in vitro. Studies indicate that Prevotella predominantly activate Toll-like receptor 2, leading to production of Th17-polarizing cytokines by antigen-presenting cells, including interleukin-23 (IL-23) and IL-1. Furthermore, Prevotella stimulate epithelial cells to produce IL-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells and various stromal cells. These findings indicate that some Prevotella strains may be clinically important pathobionts that can participate in human disease by promoting chronic

  12. Long-term in vitro and in vivo effects of γ-irradiated BCG on innate and adaptive immunity

    DEFF Research Database (Denmark)

    Arts, Rob J W; Blok, Bastiaan A; Aaby, Peter

    2015-01-01

    BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity but not in immunoco......BCG vaccination is associated with a reduced mortality from nonmycobacterial infections. This is likely to be mediated by a combination of innate-immune memory ("trained immunity") and heterologous effects on adaptive immunity. As such, BCG could be used to boost host immunity...... but not in immunocompromised hosts, as it is a live, attenuated vaccine. Therefore, we assessed whether killed γBCG has similar potentiating effects. In an in vitro model of trained immunity, human monocytes were incubated with γBCG for 24 h and restimulated after 6 d. Cytokine production and the role of pattern recognition...... receptors and histone methylation markers were assessed. The in vivo effects of γBCG vaccination were studied in a proof-of-principle trial in 15 healthy volunteers. γBCG induced trained immunity in vitro via the NOD2 receptor pathway and up-regulation of H3K4me3 histone methylation. However, these effects...

  13. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  14. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Science.gov (United States)

    Radomska, Katarzyna A; Vaezirad, Mahdi M; Verstappen, Koen M; Wösten, Marc M S M; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-01

    Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20-40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  15. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.

    Science.gov (United States)

    Griffin, Diane E

    2016-10-12

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  16. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers of an appropr......Vaccines have been a major innovation in the history of mankind and still have the potential to address the challenges posed by chronic intracellular infections including tuberculosis, HIV and malaria which are leading causes of high morbidity and mortality across the world. Markers......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  17. Host immune responses to rhinovirus: Mechanisms in asthma

    Science.gov (United States)

    Kelly, John T.; Busse, William W.

    2014-01-01

    Viral respiratory infections can have a profound effect on many aspects of asthma including its inception, exacerbations, and, possibly, severity. Of the many viral respiratory infections that influence asthma, the common cold virus, rhinovirus, has emerged as the most frequent illness associated with exacerbations and other aspects of asthma. The mechanisms by which rhinovirus influences asthma are not fully established, but current evidence indicates that the immune response to this virus is critical in this process. Many airway cell types are involved in the immune response to rhinovirus, but most important are respiratory epithelial cells and possibly macrophages. Infection of epithelial cells generates a variety of proinflammatory mediators to attract inflammatory cells to the airway with a subsequent worsening of underlying disease. Furthermore, there is evidence that the epithelial airway antiviral response to rhinovirus may be defective in asthma. Therefore, understanding the immune response to rhinovirus is a key step in defining mechanisms of asthma, exacerbations, and, perhaps most importantly, improved treatment. PMID:19014757

  18. 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype.

    Science.gov (United States)

    Yi, B; Rykova, M; Feuerecker, M; Jäger, B; Ladinig, C; Basner, M; Hörl, M; Matzel, S; Kaufmann, I; Strewe, C; Nichiporuk, I; Vassilieva, G; Rinas, K; Baatout, S; Schelling, G; Thiel, M; Dinges, D F; Morukov, B; Choukèr, A

    2014-08-01

    During interplanetary exploration, chronic stress caused by long term isolation and confinement in the spacecraft is one of the major concerns of physical and psychological health of space travelers. And for human on Earth, more and more people live in an isolated condition, which has become a common social problem in modern western society. Collective evidences have indicated prolonged chronic stress could bring big influence to human immune function, which may lead to a variety of health problems. However, to what extent long-term isolation can affect the immune system still remains largely unknow. A simulated 520-d Mars mission provided an extraordinary chance to study the effect of prolonged isolation. Six healthy males participated in this mission and their active neuroendocrine and immune conditions were studied with saliva and blood samples from all participants on chosen time points during the isolation period. As a typical neuroendocrine parameter, stress hormone cortisol was measured in the morning saliva samples. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. Using an ex vivo viral infection simulation assay we assessed the immune response changes characterized by the ability to produce representative endogenous pro-inflammatory cytokines. The results of this study revealed elevated cortisol levels, increased lymphocyte amount and heightened immune responses, suggesting that prolonged isolation acting as chronic stressors are able to trigger leukocyte phenotype changes and poorly controlled immune responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Immune responses of Helicoverpa armigera to different kinds of pathogens

    Directory of Open Access Journals (Sweden)

    Zhao Xiao-Fan

    2010-03-01

    Full Text Available Abstract Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C and Gram-Negative Bacteria-Binding Protein (HaGNBP, and antimicrobial peptides (AMPs such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3, lysozyme (HaLys, attacin (HaAtt, gallerimycin-like (HaGall, gloverin-like (HaGlo, moricin-like (HaMor, cobatoxin-like (HaCob, galiomicin-like (HaGali, and immune inducible protein (HaIip appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the

  20. FEATURES OF THE IMMUNE RESPONSE DURING VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    G. A. Borisov

    2015-01-01

    Full Text Available The aim of the investigation was to select using cluster analysis and comparatively characterize immune disorders types in acute and chronic viral infections. Patients with acute and chronic viral infections (n = 896 were examined: 77 patients with acute viral hepatitis B, 94 — chronic viral hepatitis B, 119 — chronic hepatitis C, 531 — recurrent herpes, 75 — human papillomavirus infection. Healthy persons (n = 466 were examined as control. The research of blood lymphocyte phenotype was performed by flow cytometry. Four-color immunophenotyping were used in the following panels: Т-lymphocytes (CD3+CD19–CD16/56–CD45+, Т-helpers (CD3+CD4+CD45+, cytotoxic Т-cells (CD3+CD8+CD45+, NKcells (CD3–CD16/56+CD45+, B-lymphocytes (CD3–CD19+CD16/56+CD45+. Absolute values were obtained on a dualplatform technology using the results of haematological analysis. The immunoglobulin concentrations were determined by ELISA. The clustering was performed by a single linkage method. The number of clusters was determined on the basis of calculating the values of the Euclidean distance between the mean group values. It was found that the parameters, characterizing the functional state of the various parts of the immune system in acute and chronic viral infections, considerable diversity values. Custer analysis allows to allocate 6 immunotypes defined different states of innate and adaptive immunity: characterized by activation of the innate (increasing the number of neutrophils and NK-cells and adaptive immunity humoral response (increasing the concentration of IgG, characterized by hyperreaction of adaptive immunity (a significant increase in the concentration of IgG, discoordinated (multidirectional changes in the values of immunological parameters, immunodeficiency and unresponsiveness (did not differ from the control parameters immunotypes. It is proved that in patients with viral infections most often determined by the

  1. Sleep deprivation decreases neuronal excitability and responsiveness in rats both in vivo and ex vivo.

    Science.gov (United States)

    Borbély, Sándor; Világi, Ildikó; Haraszti, Zsófia; Szalontai, Örs; Hajnik, Tünde; Tóth, Attila; Détári, László

    2017-12-11

    Sleep deprivation has severe consequences for higher nervous functions. Its effects on neuronal excitability may be one of the most important factors underlying functional deterioration caused by sleep loss. In the present work, excitability changes were studied using two complementary in vivo and ex vivo models. Auditory evoked potentials were recorded from freely-moving animals in vivo. Amplitude of evoked responses showed a near-continuous decrease during deprivation. Prevention of sleep also reduced synaptic efficacy ex vivo, measured from brain slices derived from rats that underwent sleep deprivation. While seizure susceptibility was not affected significantly by sleep deprivation in these preparations, the pattern of spontaneous seizure activity was altered. If seizures developed, they lasted longer and tended to contain more spikes in slices obtained from sleep-deprived than from control rats. Current-source density analysis revealed that location and sequence of activation of local cortical networks recruited by seizures did not change by sleep deprivation. Moderate differences seen in the amplitude of individual sinks and sources might be explained by smaller net transmembrane currents as a consequence of decreased excitability. These findings contradict the widely accepted conception of synaptic homeostasis suggesting gradual increase of excitability during wakefulness. Our results also indicate that decreased neuronal excitability caused by sleep deprivation is preserved in slices prepared from rats immediately after deprivation. This observation might mean new opportunities to explore the effects of sleep deprivation in ex vivo preparations that allow a wider range of experimental manipulations and more sophisticated methods of analysis than in vivo preparations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of helium and air inhalation on the innate and early adaptive immune system in healthy volunteers ex vivo.

    Science.gov (United States)

    Oei, Gezina T M L; Smit, Kirsten F; vd Vondervoort, Djai; Brevoord, Daniel; Hoogendijk, Arjan; Wieland, Catharina W; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2012-09-24

    Helium inhalation protects myocardium, brain and endothelium against ischemia/reperfusion injury in animals and humans, when applied according to specific "conditioning" protocols. Before widespread use of this "conditioning" agent in clinical practice, negative side effects have to be ruled out. We investigated the effect of prolonged helium inhalation on the responsiveness of the human immune response in whole blood ex vivo. Male healthy volunteers inhaled 30 minutes heliox (79%He/21%O(2)) or air in a cross over design, with two weeks between measurements. Blood was withdrawn at T0 (baseline), T1 (25 min inhalation) and T2-T5 (1, 2, 6, 24 h after inhalation) and incubated with lipopolysaccharide (LPS), lipoteichoic acid (LTA), T-cell stimuli anti-CD3/ anti-CD28 (TCS) or RPMI (as control) for 2, 4 and 24 hours or not incubated (0 h). An additional group of six volunteers inhaled 60 minutes of heliox or air, followed by blood incubation with LPS and RPMI. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ) and interleukin-2 (IL-2) was analyzed by cytometric bead array. Statistical analysis was performed by the Wilcoxon test for matched samples. Incubation with LPS, LTA or TCS significantly increased TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to incubation with RPMI alone. Thirty min of helium inhalation did not influence the amounts of TNF-α, IL-1β, IL-6, IL-8, IFN-γ and IL-2 in comparison to air. Sixty min of helium inhalation did not affect cytokine production after LPS stimulation. We conclude that 79% helium inhalation does not affect the responsiveness of the human immune system in healthy volunteers. Dutch Trial Register: http://www.trialregister.nl/ NTR2152.

  3. Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40(+) monocyte differentiation.

    Science.gov (United States)

    Dai, Jin; Fang, Pu; Saredy, Jason; Xi, Hang; Ramon, Cueto; Yang, William; Choi, Eric T; Ji, Yong; Mao, Wei; Yang, Xiaofeng; Wang, Hong

    2017-07-24

    Adaptive immunity is critical for disease progression and modulates T cell (TC) and antigen-presenting cell (APC) functions. Three signals were initially proposed for adaptive immune activation: signal 1 antigen recognition, signal 2 co-stimulation or co-inhibition, and signal 3 cytokine stimulation. In this article, we propose to term signal 2 as an immune checkpoint, which describes interactions of paired molecules leading to stimulation (stimulatory immune checkpoint) or inhibition (inhibitory immune checkpoint) of an immune response. We classify immune checkpoint into two categories: one-way immune checkpoint for forward signaling towards TC only, and two-way immune checkpoint for both forward and reverse signaling towards TC and APC, respectively. Recently, we and others provided evidence suggesting that metabolic risk factors (RF) activate innate and adaptive immunity, involving the induction of immune checkpoint molecules. We summarize these findings and suggest a novel theory, metabolism-associated danger signal (MADS) recognition, by which metabolic RF activate innate and adaptive immunity. We emphasize that MADS activates the reverse immune checkpoint which leads to APC inflammation in innate and adaptive immunity. Our recent evidence is shown that metabolic RF, such as uremic toxin or hyperhomocysteinemia, induced immune checkpoint molecule CD40 expression in monocytes (MC) and elevated serum soluble CD40 ligand (sCD40L) resulting in CD40(+) MC differentiation. We propose that CD40(+) MC is a novel pro-inflammatory MC subset and a reliable biomarker for chronic kidney disease severity. We summarize that CD40:CD40L immune checkpoint can induce TC and APC activation via forward stimulatory, reverse stimulatory, and TC contact-independent immune checkpoints. Finally, we modeled metabolic RF-induced two-way stimulatory immune checkpoint amplification and discussed potential signaling pathways including AP-1, NF-κB, NFAT, STAT, and DNA methylation and their

  4. Disrupted glucocorticoid--Immune interactions during stress response in schizophrenia.

    Science.gov (United States)

    Chiappelli, Joshua; Shi, Qiaoyun; Kodi, Priyadurga; Savransky, Anya; Kochunov, Peter; Rowland, Laura M; Nugent, Katie L; Hong, L Elliot

    2016-01-01

    Glucocorticoid and immune pathways typically interact dynamically to optimize adaptation to stressful environmental challenges. We tested the hypothesis that a dysfunctional glucocorticoid-immune relationship contributes to abnormal stress response in schizophrenia. Saliva samples from 34 individuals with schizophrenia (20 male, 14 female) and 40 healthy controls (20 male, 20 female) were collected prior to and at 3 time points following completion of a computerized psychological challenge meant to be frustrating. Salivary concentrations of cortisol and interleukin-6 (IL-6) and their response to the challenge were examined. Both cortisol and IL-6 significantly increased in response to stress in the combined sample (both pschizophrenia patients (r=.379, p=.027). The trends were significantly different (Z=3.7, p=.0002). This stress paradigm induces a rise in both cortisol and IL-6. In healthy controls, a more robust acute cortisol response was associated with a steeper decline of IL-6 levels following stress, corresponding to the expected anti-inflammatory effects of cortisol. Patients exhibited the opposite relationship, suggesting an inability to down-regulate inflammatory responses to psychological stress in schizophrenia; or even a paradoxical increase of IL-6 response. This finding may partially underlie abnormalities in inflammatory and stress pathways previously found in the illness, implicating dysregulated stress response in the chronic inflammatory state in schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The crystal structure of titanium dioxide nanoparticles influences immune activity in vitro and in vivo.

    Science.gov (United States)

    Vandebriel, Rob J; Vermeulen, Jolanda P; van Engelen, Laurens B; de Jong, Britt; Verhagen, Lisa M; de la Fonteyne-Blankestijn, Liset J; Hoonakker, Marieke E; de Jong, Wim H

    2018-01-30

    The use of engineered nanoparticles (NP) is widespread and still increasing. There is a great need to assess their safety. Newly engineered NP enter the market in a large variety; therefore safety evaluation should preferably be in a high-throughput fashion. In vitro screening is suitable for this purpose. TiO 2 NP exist in a large variety (crystal structure, coating and size), but information on their relative toxicities is scarce. TiO 2 NP may be inhaled by workers in e.g. paint production and application. In mice, inhalation of TiO 2 NP increases allergic reactions. Dendritic cells (DC) form an important part of the lung immune system, and are essential in adjuvant activity. The present study aimed to establish the effect of a variety of TiO 2 NP on DC maturation in vitro. Two NP of different crystal structure but similar in size, uncoated and from the same supplier, were evaluated for their adjuvant activity in vivo. Immature DC were differentiated in vitro from human peripheral blood monocytes. Exposure effects of a series of fourteen TiO 2 NP on cell viability, CD83 and CD86 expression, and IL-12p40 and TNF-α production were measured. BALB/c mice were intranasally sensitized with ovalbumin (OVA) alone, OVA plus anatase TiO 2 NP, OVA plus rutile TiO 2 NP, and OVA plus Carbon Black (CB; positive control). The mice were intranasally challenged with OVA. OVA-specific IgE and IgG1 in serum, cellular inflammation in bronchoalveolar lavage fluid (BALF) and IL-4 and IL-5 production in draining bronchial lymph nodes were evaluated. All NP dispersions contained NP aggregates. The anatase NP and anatase/rutile mixture NP induced a higher CD83 and CD86 expression and a higher IL-12p40 production in vitro than the rutile NP (including coated rutile NP and a rutile NP of a 10-fold larger primary diameter). OVA-specific serum IgE and IgG1 were increased by anatase NP, rutile NP, and CB, in the order rutile

  6. Targeted in vitro and in vivo gene transfer into T Lymphocytes: potential of direct inhibition of allo-immune activation

    Directory of Open Access Journals (Sweden)

    Mehra Mandeep R

    2006-11-01

    Full Text Available Abstract Background Successful inhibition of alloimmune activation in organ transplantation remains one of the key events in achieving a long-term graft survival. Since T lymphocytes are largely responsible for alloimmune activation, targeted gene transfer of gene of cyclin kinase inhibitor p21 into T cells might inhibit their aberrant proliferation. A number of strategies using either adenoviral or lentiviral vectors linked to mono or bispecific antibodies directed against T cell surface markers/cytokines did not yield the desired results. Therefore, this study was designed to test if a CD3promoter-p21 chimeric construct would in vitro and in vivo transfer p21 gene to T lymphocytes and result in inhibition of proliferation. CD3 promoter-p21 chimeric constructs were prepared with p21 in the sense and antisense orientation. For in vitro studies EL4-IL-2 thyoma cells were used and for in vivo studies CD3p21 sense and antisense plasmid DNA was injected intramuscularly in mice. Lymphocyte proliferation was quantified by 3H-thymidine uptake assay; IL-2 mRNA expression was studied by RT-PCR and using Real Time PCR assay, we monitored the CD3, p21, TNF-α and IFN-γ mRNA expression. Results Transfection of CD3p21 sense and antisense in mouse thyoma cell line (EL4-IL-2 resulted in modulation of mitogen-induced proliferation. The intramuscular injection of CD3p21 sense and antisense plasmid DNA into mice also modulated lymphocyte proliferation and mRNA expression of pro-inflammatory cytokines. Conclusion These results demonstrate a novel strategy of in vitro and in vivo transfer of p21 gene to T cells using CD3-promoter to achieve targeted inhibition of lymphocyte proliferation and immune activation.

  7. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  8. Photodynamic therapy induces an immune response against a bacterial pathogen.

    Science.gov (United States)

    Huang, Ying-Ying; Tanaka, Masamitsu; Vecchio, Daniela; Garcia-Diaz, Maria; Chang, Julie; Morimoto, Yuji; Hamblin, Michael R

    2012-07-01

    Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin(®). PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease.

  9. Affective immunology: where emotions and the immune response converge.

    Science.gov (United States)

    D'Acquisto, Fulvio

    2017-03-01

    Affect and emotion are defined as "an essential part of the process of an organism's interaction with stimuli." Similar to affect, the immune response is the "tool" the body uses to interact with the external environment. Thanks to the emotional and immunological response, we learn to distinguish between what we like and what we do not like, to counteract a broad range of challenges, and to adjust to the environment we are living in. Recent compelling evidence has shown that the emotional and immunological systems share more than a similarity of functions. This review article will discuss the crosstalk between these two systems and the need for a new scientific area of research called affective immunology. Research in this field will allow a better understanding and appreciation of the immunological basis of mental disorders and the emotional side of immune diseases.

  10. Mechanisms of cardioprotection via modulation of the immune response.

    Science.gov (United States)

    Grilo, Gabriel A; Shaver, Patti R; de Castro Brás, Lisandra E

    2017-04-01

    Both morbidity and mortality as a result of cardiovascular disease remain significant worldwide and account for approximately 31% of annual deaths in the US. Current research is focused on novel therapeutic strategies to protect the heart during and after ischemic events and from subsequent adverse myocardial remodeling. After cardiac insult, the immune system is activated and plays an essential role in the beginning, development, and resolution of the healing cascade. Uncontrolled inflammatory responses can cause chronic disease and exacerbate progression to heart failure and therefore, constitute a major area of focus of cardiac therapies. In the present overview, we share novel insights and promising therapeutic cardioprotective strategies that target the immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Attenuating Immune Response of Macrophage by Enhancing Hydrophilicity of Ti Surface

    Directory of Open Access Journals (Sweden)

    Xiaohan Dai

    2015-01-01

    Full Text Available Immune responses can determine the in vivo fate of implanted materials. The strategy for developing implants has shifted towards using materials with immunomodulatory activity. However, the immunoregulatory effect of hydrophilicity of titanium surface on the macrophage behavior and its underlying mechanism remain poorly understood. Here, the Ti surface hydrophilicity-dependent behavior of murine RAW264.7 macrophages was investigated in vitro. Two laboratory models with significantly different surface hydrophilicity and similar roughness were established with Ti-polished and Ti-H2O2 surfaces. The results of cell morphology observation showed that the Ti-H2O2 surface yielded enhanced cell adhesion and less multinucleated cell formation. CCK-8 assay indicated that the growth rate of macrophage on Ti-H2O2 surface is higher than that of Ti-polished. ELISA assay result revealed lower level of proinflammatory factor TNF-α and higher level of anti-inflammatory factor IL-10 on the Ti-H2O2 surface compared to Ti-polished. Subsequently, immunofluorescence and western blotting analysis showed that activation of the NF-κB-TNF-α pathway might be involved in the modulation of the immune response by surface hydrophilicity. Together, these results suggested that relative high hydrophilic Ti surface might attenuate the immune response of macrophage by activating NF-κB signaling. These findings could provide new insights into designing implant devices for orthopedic applications.

  12. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge.

    Science.gov (United States)

    Catalán, Tamara P; Wozniak, Aniela; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-03-01

    Although the study of thermoregulation in insects has shown that infected animals tend to prefer higher temperatures than healthy individuals, the immune response and energetic consequences of this preference remain unknown. We examined the effect of environmental temperature and the energetic costs associated to the activation of the immune response of Tenebrio molitor larvae following a lipopolysaccharide (LPS) challenge. We measured the effect of temperature on immune parameters including phenoloxidase (PO) activity and antibacterial responses. Further as proximal and distal costs of the immune response we determined the standard metabolic rate (SMR) and the loss of body mass (m(b)), respectively. Immune response was stronger at 30°C than was at 10 or 20°C. While SMR at 10 and 20°C did not differ between immune treatments, at 30°C SMR of LPS-treated larvae was almost 25-60% higher than SMR of PBS-treated and naïve larvae. In addition, the loss in m(b) was 1.9 and 4.2 times higher in LPS-treated larvae than in PBS-treated and naïve controls. The immune responses exhibited a positive correlation with temperature and both, SMR and m(b) change, were sensitive to environmental temperature. These data suggest a significant effect of environmental temperature on the immune response and on the energetic costs of immunity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Prophenoloxidase-Mediated Ex Vivo Immunity to Delay Fungal Infection after Insect Ecdysis

    Science.gov (United States)

    Zhang, Jie; Huang, Wuren; Yuan, Chuanfei; Lu, Yuzhen; Yang, Bing; Wang, Cheng-Yuan; Zhang, Peng; Dobens, Leonard; Zou, Zhen; Wang, Chengshu; Ling, Erjun

    2017-01-01

    Skin immunity protects animals from airborne pathogen infection. Unlike mammals, arthropods, including insects, undergo periodic ecdysis to grow and develop. Newly molted insects emerge with unsclerotized thin cuticles but successfully escape pathogenic infections during the post-molt period. Here we show that prophenoloxidases (PPOs) in molting fluids remain bioactive on the integument and impede fungal infection after ecdysis. We found that the purified plasma PPOs or recombinant PPOs could effectively bind to fungal spores (conidia) by targeting the cell wall components chitin and β-1,3-glucan. Pretreatment of the spores of the fungal pathogen Beauveria bassiana with PPOs increased spore hydrophilicity and reduced spore adhesion activity, resulting in a significant decrease in virulence as compared with mock infection. We also identified a spore-secreted protease BPS8, a member of peptidase S8 family of protease that degrade PPOs at high levels to benefit fungal infection, but which at lower doses activate PPOs to inhibit spore germination after melanization. These data indicate that insects have evolved a distinct strategy of ex vivo immunity to survive pathogen infections after ecdysis using PPOs in molting fluids retained on the underdeveloped and tender integument of newly molted insects for protection against airborne fungal infection.

  14. Adaptive Immune Responses Regulate the Pathophysiology of Lymphedema

    Science.gov (United States)

    2012-09-01

    Pathophysiology of Lymphedema PRINCIPAL INVESTIGATOR: Jamie Zampell, M.D. CONTRACTING ORGANIZATION: Sloan-Kettering Institute for...Immune Responses Regulate the Pathophysiology of Lymphedema 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-1-0495 5c. PROGRAM ELEMENT... Lymphedema is a debilitating disorder affecting as many as 1 in 8 cancer survivors. Despite wide prevalence, limited understanding of disease

  15. Immune response to racotumomab in a child with relapsed neuroblastoma

    Directory of Open Access Journals (Sweden)

    CLAUDIA VANESA SAMPOR

    2012-12-01

    Full Text Available Immunotherapy targeting ganglioside antigens is a powerful tool for the treatment of high risk neuroblastoma. However, only treatment with anti-GD2 antibodies has been used in clinical practice and other options may be pursued. We report the use of racotumomab, an anti-idiotype vaccine against N-glycolyl neuraminic acid (NeuGc- containing gangliosides, eliciting an immune response in a child with relapsed neuroblastoma expressing the NeuGcGM3 ganglioside.

  16. Predictive computational modeling of the mucosal immune responses during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Adria Carbo

    Full Text Available T helper (Th cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE-based and agent-based modeling (ABM to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches

  17. Predictive Computational Modeling of the Mucosal Immune Responses during Helicobacter pylori Infection

    Science.gov (United States)

    Carbo, Adria; Bassaganya-Riera, Josep; Pedragosa, Mireia; Viladomiu, Monica; Marathe, Madhav; Eubank, Stephen; Wendelsdorf, Katherine; Bisset, Keith; Hoops, Stefan; Deng, Xinwei; Alam, Maksudul; Kronsteiner, Barbara; Mei, Yongguo; Hontecillas, Raquel

    2013-01-01

    T helper (Th) cells play a major role in the immune response and pathology at the gastric mucosa during Helicobacter pylori infection. There is a limited mechanistic understanding regarding the contributions of CD4+ T cell subsets to gastritis development during H. pylori colonization. We used two computational approaches: ordinary differential equation (ODE)-based and agent-based modeling (ABM) to study the mechanisms underlying cellular immune responses to H. pylori and how CD4+ T cell subsets influenced initiation, progression and outcome of disease. To calibrate the model, in vivo experimentation was performed by infecting C57BL/6 mice intragastrically with H. pylori and assaying immune cell subsets in the stomach and gastric lymph nodes (GLN) on days 0, 7, 14, 30 and 60 post-infection. Our computational model reproduced the dynamics of effector and regulatory pathways in the gastric lamina propria (LP) in silico. Simulation results show the induction of a Th17 response and a dominant Th1 response, together with a regulatory response characterized by high levels of mucosal Treg) cells. We also investigated the potential role of peroxisome proliferator-activated receptor γ (PPARγ) activation on the modulation of host responses to H. pylori by using loss-of-function approaches. Specifically, in silico results showed a predominance of Th1 and Th17 cells in the stomach of the cell-specific PPARγ knockout system when compared to the wild-type simulation. Spatio-temporal, object-oriented ABM approaches suggested similar dynamics in induction of host responses showing analogous T cell distributions to ODE modeling and facilitated tracking lesion formation. In addition, sensitivity analysis predicted a crucial contribution of Th1 and Th17 effector responses as mediators of histopathological changes in the gastric mucosa during chronic stages of infection, which were experimentally validated in mice. These integrated immunoinformatics approaches characterized the

  18. Immune responses to pertussis antigens in infants and toddlers after immunization with multicomponent acellular pertussis vaccine.

    Science.gov (United States)

    Fadugba, Olajumoke O; Wang, Li; Chen, Qingxia; Halasa, Natasha B

    2014-12-01

    Given the resurgence of pertussis despite high rates of vaccination with the diphtheria-tetanus-acellular pertussis (DTaP) vaccine, a better understanding of vaccine-induced immune responses to Bordetella pertussis is needed. We investigated the antibody, cell-mediated, and cytokine responses to B. pertussis antigens in children who received the primary vaccination series (at 2, 4, and 6 months) and first booster vaccination (at 15 to 18 months) with 5-component acellular pertussis (aP) vaccine. The majority of subjects demonstrated a 4-fold increase in antibody titer to all four pertussis antigens (pertussis toxin [PT], pertactin [PRN], filamentous hemagglutinin [FHA], and fimbriae [FIM]) following the primary series and booster vaccination. Following the primary vaccine series, the majority of subjects (52 to 67%) mounted a positive T cell proliferative response (stimulation index of ≥ 3) to the PT and PRN antigens, while few subjects (7 to 12%) mounted positive proliferative responses to FHA and FIM. One month after booster vaccination (age 16 to 19 months), our study revealed significant increase in gamma interferon (IFN-γ) production in response to the PT and FIM antigens, a significant increase in IL-2 production with the PT, FHA, and PRN antigens, and a lack of significant interleukin-4 (IL-4) secretion with any of the antigens. While previous reports documented a mixed Th1/Th2 or Th2-skewed response to DTaP vaccine in children, our data suggest that following the first DTaP booster, children aged 16 to 19 months have a cytokine profile consistent with a Th1 response, which is known to be essential for clearance of pertussis infection. To better define aP-induced immune responses following the booster vaccine, further studies are needed to assess cytokine responses pre- and postbooster in DTaP recipients. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  20. Effects of gender and sex steroids on the immune response.

    Science.gov (United States)

    Schuurs, A H; Verheul, H A

    1990-02-01

    Elevated immune responses and the higher incidence of autoimmune diseases in female (compared to male) humans and animals have been known for a long time. However, the scientific interest in this interrelationship has been limited both amongst immunologists and endocrinologists. It is mainly in the last ten years that investigations in this area have been intensifying. A number of fairly recent review articles confirm the increased interest in various aspects of this "interdiscipline" [1-4]. In the present paper we should like to make a new assessment of the state of knowledge. We shall firstly discuss heteroimmune response differences between males and females in humans, rodents and birds and then the roles of gender and sex hormones in autoimmune disease in various species. The general conclusions are the following. Gender and sex hormones have a clear effect on various hetero- and auto-immune responses but the mechanisms of action are still unknown; starting from sex hormones, steroids can be devised which have favourable effects on immune processes but lack undesirable hormonal effects; such hormonomimetics should be, in principle, applicable for the treatment of autoimmune disease.

  1. Immune Responses of Wistar Rat (Rattus novergicus on Adduction of Humid Acid from Borneo Peat Soil

    Directory of Open Access Journals (Sweden)

    Diah Wulandari Rousdy

    2016-11-01

    Full Text Available Peat soil is a type of soil that dominates the island of Borneo. Typical compounds in peat soil is humic acid. Various in vitro studies performed have shown peat subtropical humic compounds can stimulate the immune system. However, in vivo study on animal has not been done. This study aimed to determine the effect of humic acid extracted from peat soil of Borneo against the immune system, both of non-specific and specific immunity Wistar rats (Rattus novergicus. Research using a completely randomized design with five treatments and five replicates, the normal controls, a positive control (isoprinosine, humic acid 125; 250; 500 mg/kg. Humic acid was administered orally for 10 days. The results showed humic acid adduction did not significantly affect levels of hemoglobin, erythrocytes and hematocrit. Humic acid adduction of 125 mg/kg significantly affects the total leukocyte count and differential leukocyte. Humic acid 125 mg/kg also showed increased phagocytic index better than normal controls. All humic acid treatments do not provide a significant effect on the total amount of antibody. The results of this study can be used for the development of Borneo tropical peat resources as natural imunostimulant.How to CiteRousdy, D. W., Rahmawati, R. & Kurniatuhadi, R. (2016. Immune Responses of Wistar Rat (Rattus novergicus on Adduction of Humid Acid from Borneo Peat Soil. Biosaintifika: Journal of Biology & Biology Education, 8(3, 401-406. 

  2. INJURY AND IMMUNE RESPONSE: APPLYING THE DANGER THEORY IN MOSQUITOES

    Directory of Open Access Journals (Sweden)

    Miguel eMoreno-García

    2014-09-01

    Full Text Available The insect immune response can be activated by the recognition of both non-self and molecular by-products of tissue damage. Since pathogens and tissue damage usually arise at the same time during infection, the specific mechanisms of the immune response to microorganisms and to tissue damage have not been unraveled. Consequently, some aspects of damage caused by microorganisms in vector-borne arthropods have been neglected. We herein reassess the Anopheles-Plasmodium interaction, incorporating Matzinger’s danger/damage hypothesis and George Salt’s injury assumptions. The invasive forms of the parasite cross the peritrophic matrix and midgut epithelia to reach the basal lamina and differentiate into an oocyst. The sporozoites produced in the oocyst are released into the haemolymph, and from there enter the salivary gland. During parasite development, wounds to midgut tissue and the basement membrane are produced. We describe the response of the different compartments where the parasite interacts with the mosquito. In the midgut, the response includes the expression of antimicrobial peptides, production of reactive oxygen species and possible activation of midgut regenerative cells. In the basal membrane, wound repair mainly involves the production of molecules and the recruitment of haemocytes. We discuss the susceptibility to damage in tissues, and how the place and degree of damage may influence the differential response and the expression of damage associated molecular patterns (DAMPs. Knowledge about damage caused by parasites may lead to a deeper understanding of the relevance of tissue damage and the immune response it generates, as well as the origins and progression of infection in this insect-parasite interaction.

  3. Strategies to potentiate immune response after photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Hamblin, Michael R.

    2017-02-01

    Photodynamic therapy (PDT) has been used as a cancer therapy for forty years but has not yet advanced to a mainstream cancer treatment. Although PDT has been shown to be an efficient photochemical way to destroy local tumors by a combination of non-toxic dyes and harmless visible light, it is its additional effects in mediating the stimulation of the host immune system that gives PDT a great potential to become more widely used. Although the stimulation of tumor-specific cytotoxic T-cells that can destroy distant tumor deposits after PDT has been reported in some animal models, it remains the exception rather than the rule. This realization has prompted several investigators to test various combination approaches that could potentiate the immune recognition of tumor antigens that have been released after PDT. Some of these combination approaches use immunostimulants including various microbial preparations that activate Toll-like receptors and other receptors for pathogen associated molecular patterns. Other approaches use cytokines and growth factors whether directly administered or genetically encoded. A promising approach targets regulatory T-cells. We believe that by understanding the methods employed by tumors to evade immune response and neutralizing them, more precise ways of potentiating PDT-induced immunity can be devised.

  4. Immune response of shrimp (Penaeus monodon against Vibrios furnissii pathogen

    Directory of Open Access Journals (Sweden)

    Kumaran Subramanian

    2014-04-01

    Full Text Available Objective: To analyse experimental infection and immune system of shrimp (Penaeus monodon against Vibrios furnissii (V. furnissii. Methods: Experimental animals were collected and acclimatized by maintaining specific temperature, pH and salinity to avoid mortality. Shrimps were experimentally infected with V. furnissii and their immune responses were monitored. After the infection all the shrimps were monitored for any symptoms, death rate in 0, 12, 24, 36, 48 h. Then haemolymph were collected and tetrahydrocannabinol, phenol oxidase, nitroblue tetrazolium and lysozyme were monitored in every 12 h at the interval of 48 h. Results: Shrimps infected by live V. furnissii had showed gradual increase in tetrahydrocannabinol, phenol oxidase activity, nitro-blue-tetrazolium and lysozyme activity comparing with the killed and control. Conclusions: The live V. furnissii had showed infection in the shrimp immune system. The live V. furnissii shows infection in experimental shrimps comparing with killed V. furnissii. So the V. furnissii in nature cause the infection in shrimp Penaeus monodon immune system. This report could be applied to control of the infection in shrimp hatchery.

  5. DMPD: ITAM-based signaling beyond the adaptive immune response. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16332394 ITAM-based signaling beyond the adaptive immune response. Fodor S, Jakus Z...TAM-based signaling beyond the adaptive immune response. PubmedID 16332394 Title ITAM-based signaling beyond the adaptive

  6. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...ses during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ, Math

  7. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host

    Directory of Open Access Journals (Sweden)

    Yingru eLiu

    2011-03-01

    Full Text Available It is well known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host’s immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory- immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.

  8. Immunization with truncated envelope protein of Zika virus induces protective immune response in mice.

    Science.gov (United States)

    Han, Jian-Feng; Qiu, Yang; Yu, Jiu-Yang; Wang, Hong-Jiang; Deng, Yong-Qiang; Li, Xiao-Feng; Zhao, Hui; Sun, Han-Xiao; Qin, Cheng-Feng

    2017-08-30

    The global spread of Zika virus (ZIKV) as well as its unexpected link to infant microcephaly have resulted in serious public health concerns. No antiviral drugs against ZIKV is currently available, and vaccine development is of high priority to prepare for potential ZIKV pandemic. In the present study, a truncated E protein with the N-terminal 90% region reserved (E90) from a contemporary ZIKV strain was cloned and expressed in Escherichia coli, purified by a Ni-NTA column, and characterized by Western blotting assays. Immunization with recombinant E90 induced robust ZIKV-specific humoral response in adult BALB/c mice. Passive transfer of the antisera from E90-immunized mice conferred full protection against lethal ZIKV challenge in a neonatal mice model. Our results indicate that recombinant ZIKV E90 described here represents as a promising ZIKV subunit vaccine that deserves further clinical development.

  9. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Science.gov (United States)

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  10. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Directory of Open Access Journals (Sweden)

    Ervin E Kara

    2014-02-01

    Full Text Available Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H1/T(H2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  11. Host immune responses that promote initial HIV spread.

    Science.gov (United States)

    Wendelsdorf, K; Dean, G; Hu, Shuhua; Nordone, S; Banks, H T

    2011-11-21

    The host inflammatory response to HIV invasion is a necessary component of the innate antiviral activity that vaccines and early interventions seek to exploit/enhance. However, the response is dependent on CD4+ T-helper cell 1 (Th1) recruitment and activation. It is this very recruitment of HIV-susceptible target cells that is associated with the initial viral proliferation. Hence, global enhancement of the inflammatory response by T-cells and dendritic cells will likely feed viral propagation. Mucosal entry sites contain inherent pathways, in the form of natural regulatory T-cells (nTreg), that globally dampen the inflammatory response. We created a model of this inflammatory response to virus as well as inherent nTreg-mediated regulation of Th1 recruitment and activation. With simulations using this model we sought to address the net effect of nTreg activation and its specific functions as well as identify mechanisms of the natural inflammatory response that are best targeted to inhibit viral spread without compromising initial antiviral activity. Simulation results provide multiple insights that are relevant to developing intervention strategies that seek to exploit natural immune processes: (i) induction of the regulatory response through nTreg activation expedites viral proliferation due to viral production by nTreg itself and not to reduced Natural Killer (NK) cell activity; (ii) at the same time, induction of the inflammation response through either DC activation or Th1 activation expedites viral proliferation; (iii) within the inflammatory pathway, the NK response is an effective controller of viral proliferation while DC-mediated stimulation of T-cells is a significant driver of viral proliferation; and (iv) nTreg-mediated DC deactivation plays a significant role in slowing viral proliferation by inhibiting T-cell stimulation, making this function an aide to the antiviral immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. IFNγ-inducible proteasome components in immune responses

    OpenAIRE

    de Graaf, N.

    2011-01-01

    Protein degradation results in the production of peptides that can be presented to CD8 T cells in MHC class I molecules on the cell surface. The proteasome is the main protease responsible for protein degradation. Especially the IFNγ-inducible proteasome components (proteasome activator PA28 and the immunoproteasome subunits LMP2, LMP7 and MECL-1) play a central role in MHC I antigen processing, as well as in other aspects of immune responses. We studied the function of IFNγ-inducible proteas...

  13. Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Fites, J Scott; Reinert, Laura K; Chappell, Timothy M; Rollins-Smith, Louise A

    2014-11-01

    Amphibians are suffering unprecedented global declines. A leading cause is the infectious disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis. Chytridiomycosis is a skin disease which disrupts transport of essential ions leading to death. Soluble factors produced by B. dendrobatidis impair amphibian and mammalian lymphocytes in vitro, but previous studies have not shown the effects of these inhibitory factors in vivo. To demonstrate in vivo inhibition of immunity by B. dendrobatidis, a modified delayed-type-hypersensitivity (DTH) protocol was developed to induce innate and adaptive inflammatory swelling in the feet of Xenopus laevis by injection of killed bacteria or phytohemagglutinin (PHA). Compared to previous protocols for PHA injection in amphibians, this method induced up to 20-fold greater inflammatory swelling. Using this new protocol, we measured DTH responses induced by killed bacteria or PHA in the presence of B. dendrobatidis supernatants. Swelling induced by single injection of PHA or killed bacteria was not significantly affected by B. dendrobatidis supernatants. However, swelling caused by a secondary injection of PHA, was significantly reduced by B. dendrobatidis supernatants. As previously described in vitro, factors from B. dendrobatidis appear to inhibit lymphocyte-mediated inflammatory swelling but not swelling caused by an inducer of innate leukocytes. This suggests that B. dendrobatidis is capable of inhibiting lymphocytes in a localized response to prevent adaptive immune responses in the skin. The modified protocol used to induce inflammatory swelling in the present study may be more effective than previous methods to investigate amphibian immune competence, particularly in nonmodel species. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Immunostimulatory oligodeoxynucleotide from Bifidobacterium longum suppresses Th2 immune responses in a murine model

    Science.gov (United States)

    Takahashi, N; Kitazawa, H; Iwabuchi, N; Xiao, J Z; Miyaji, K; Iwatsuki, K; Saito, T

    2006-01-01

    We have reported previously that novel immunostimulatory sequence (ISS) oligodeoxynucleotide (ODN) BL07S from a probiotic strain of Bifidobacterium longum inhibited immunoglobulin (Ig) E production in vitro. However, whether ISS-ODNs from probiotics regulate T helper type 2 (Th2)-polarized immune reactions in vivo remains unclear. To evaluate the inhibitory effects of ODN BL07S on type I allergic response, BALB/c mice were injected with or without ODN BL07S in the presence of ovalbumin (OVA) on days 0 and 14. Serum Ig levels (IgE, IgG1 and IgG2a) and cytokine levels (interferon (IFN)-γ, interleukin (IL)-12, IL-4, IL-5, IL-10 and IL-13) were investigated in splenocyte cultures from days 14–28. Production of OVA-specific and total IgE were significantly suppressed by administration of ODN BL07S, but not by ODN BL06S, a non-ISS-ODN. Compared to controls, ODN BL07S induced significantly lower levels of Th2 cytokines (IL-4 and IL-5) in splenocyte cultures, and significantly higher levels of serum OVA-specific IgG2a. These effects of ODN BL07S on modulation of Th2 immune response were dose-dependent. The present results demonstrate that ODN BL07S from genomic DNA of B. longum BB536 prevents antigen-induced Th2 immune responses in vivo, suggesting that ISS-ODNs from probiotics might be useful in preventing allergic disease. PMID:16792683

  15. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice1

    Science.gov (United States)

    Lalani, Almin I.; Moore, Carissa R.; Luo, Chang; Kreider, Benjamin Z.; Liu, Yan; Morse, Herbert C.; Xie, Ping

    2014-01-01

    Myeloid cells, including granulocytes, monocytes, macrophages and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNF receptor and Toll-like receptor (TLR) families, whose signals are transduced by TRAF molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I interferon production, but the in vivo function of TRAF3 in myeloid cells remains unknown. Here we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3−/−) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyI:C (a viral mimic), M-TRAF3−/− mice exhibited an altered profile of cytokine production. M-TRAF3−/− mice immunized with T cell-independent (TI) and -dependent (TD) antigens displayed elevated TI IgG3 as well as TD IgG2b responses. Interestingly, 15–22 month old M-TRAF3−/− mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice. PMID:25422508

  16. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    Directory of Open Access Journals (Sweden)

    Seth M Barribeau

    Full Text Available Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming, preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways.

  17. Transition between immune and disease states in a cellular automaton model of clonal immune response

    CERN Document Server

    Bezzi, M; Ruffo, S; Seiden, P E; Bezzi, Michele; Celada, Franco; Ruffo, Stefano; Seiden, Philip E.

    1997-01-01

    In this paper we extend the Celada-Seiden (CS) model of the humoral immune response to include infectious virus and cytotoxic T lymphocytes (cellular response). The response of the system to virus involves a competition between the ability of the virus to kill the host cells and the host's ability to eliminate the virus. We find two basins of attraction in the dynamics of this system, one is identified with disease and the other with the immune state. There is also an oscillating state that exists on the border of these two stable states. Fluctuations in the population of virus or antibody can end the oscillation and drive the system into one of the stable states. The introduction of mechanisms of cross-regulation between the two responses can bias the system towards one of them. We also study a mean field model, based on coupled maps, to investigate virus-like infections. This simple model reproduces the attractors for average populations observed in the cellular automaton. All the dynamical behavior connect...

  18. The effect of sugar cane molasses on the immune and male reproductive systems using in vitro and in vivo methods.

    Science.gov (United States)

    Rahiman, Farzana; Pool, Edmund John

    2016-10-01

    Sugar cane molasses is a commonly used ingredient in several food products. Contrasting reports suggest that molasses may have potential adverse or beneficial effects on human health. However, little evidence exists that examines the effects of molasses on the different physiological systems. This study investigated the effects of sugar cane molasses on various physiological systems using in vivo and in vitro methods. Molasses was administered orally to BALB/c, male mice and animals were randomly assigned into either a treatment or control group. General physiological changes, body weight and molasses intake of animals were monitored. At the end of the exposure period, collected blood samples were evaluated for potential toxicity using plasma biomarkers and liver enzyme activity. Immunised treated and untreated mice were evaluated for antibody titre to determine the effect of molasses on the immune response. To investigate the impact of molasses on testicular steroidogenesis, testes from both treated and control groups were harvested, cultured and assayed for testosterone synthesis. Findings suggest that fluid intake by molasses-treated animals was significantly increased and these animals showed symptoms of loose faeces. Molasses had no significant effect on body weight, serum biomarkers or liver enzyme activity (P>0.05). Immunoglobulin-gamma anti-antigen levels were significantly suppressed in molasses-treated groups (P=0.004). Animals subjected to molasses exposure also exhibited elevated levels of testosterone synthesis (P=0.001). Findings suggests that molasses adversely affects the humoral immune response. The results also promote the use of molasses as a supplement to increase testosterone levels.

  19. The effect of sugar cane molasses on the immune and male reproductive systems using in vitro and in vivo methods

    Directory of Open Access Journals (Sweden)

    Farzana Rahiman

    2016-10-01

    Full Text Available Objective(s: Sugar cane molasses is a commonly used ingredient in several food products. Contrasting reports suggest that molasses may have potential adverse or beneficial effects on human health. However, little evidence exists that examines the effects of molasses on the different physiological systems. This study investigated the effects of sugar cane molasses on various physiological systems using in vivo and in vitro methods. Materials and Methods: Molasses was administered orally to BALB/c, male mice and animals were randomly assigned into either a treatment or control group. General physiological changes, body weight and molasses intake of animals were monitored. At the end of the exposure period, collected blood samples were evaluated for potential toxicity using plasma biomarkers and liver enzyme activity. Immunised treated and untreated mice were evaluated for antibody titre to determine the effect of molasses on the immune response. To investigate the impact of molasses on testicular steroidogenesis, testes from both treated and control groups were harvested, cultured and assayed for testosterone synthesis.  Results: Findings suggest that fluid intake by molasses-treated animals was significantly increased and these animals showed symptoms of loose faeces. Molasses had no significant effect on body weight, serum biomarkers or liver enzyme activity (P>0.05.  Immunoglobulin-gamma anti-antigen levels were significantly suppressed in molasses-treated groups (P=0.004. Animals subjected to molasses exposure also exhibited elevated levels of testosterone synthesis (P=0.001. Conclusion: Findings suggests that molasses adversely affects the humoral immune response. The results also promote the use of molasses as a supplement to increase testosterone levels.

  20. A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.

    Science.gov (United States)

    Naessens, Elodie; Dubreuil, Géraldine; Giordanengo, Philippe; Baron, Olga Lucia; Minet-Kebdani, Naïma; Keller, Harald; Coustau, Christine

    2015-07-20

    Aphids attack virtually all plant species and cause serious crop damages in agriculture. Despite their dramatic impact on food production, little is known about the molecular processes that allow aphids to exploit their host plants. To date, few aphid salivary proteins have been identified that are essential for aphid feeding, and their nature and function remain largely unknown. Here, we show that a macrophage migration inhibitory factor (MIF) is secreted in aphid saliva. In vertebrates, MIFs are important pro-inflammatory cytokines regulating immune responses. MIF proteins are also secreted by parasites of vertebrates, including nematodes, ticks, and protozoa, and participate in the modulation of host immune responses. The finding that a plant parasite secretes a MIF protein prompted us to question the role of the cytokine in the plant-aphid interaction. We show here that expression of MIF genes is crucial for aphid survival, fecundity, and feeding on a host plant. The ectopic expression of aphid MIFs in leaf tissues inhibits major plant immune responses, such as the expression of defense-related genes, callose deposition, and hypersensitive cell death. Functional complementation analyses in vivo allowed demonstrating that MIF1 is the member of the MIF protein family that allows aphids to exploit their host plants. To our knowledge, this is the first report of a cytokine that is secreted by a parasite to modulate plant immune responses. Our findings suggest a so-far unsuspected conservation of infection strategies among parasites of animal and plant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multi-scale modeling of the CD8 immune response

    Science.gov (United States)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  2. Multi-scale modeling of the CD8 immune response

    Energy Technology Data Exchange (ETDEWEB)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)

    2016-06-08

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  3. Effects of anti-schistosomal chemotherapy on immune responses, protection and immunity. II. Concomitant immunity and immunization with irradiated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.F.; Colley, D.G.

    1986-01-01

    Resistance of mice to challenge infections of Schistosoma mansoni was evaluated before and after elimination of their primary, established S. mansoni infections with the chemotherapeutic drug praziquantel. Mice treated after either 10 or 20 weeks of primary infection were challenged 6 or 10 weeks after treatment. Mice infected for for 10 weeks prior to treatment expressed progressively less resistance 6 and 10 weeks after treatment. By 10 weeks after treatment significant levels of protection were no longer observed. Resistance waned more slowly if mice were treated 20 weeks after infection, and there was still significant expression of resistance to challenge 10 weeks after treatment. A separate set of experiments evaluated the use of highly irradiated cercariae as a vaccine in mice that had been previously infected with S. mansoni and cured with praziquantel. It was observed that effective immunizations were possible in previously infected mice. These studies demonstrate that established resistance waned after treatment and the rate of loss of protection was dependent upon the duration of infection prior to treatment. Furthermore, the irradiated cercarial vaccine studies indicate that in the murine model induction of immunological resistance was feasible following chemotherapeutic treatment of infected populations.

  4. Mitochondria-Endoplasmic Reticulum Contact Sites Mediate Innate Immune Responses.

    Science.gov (United States)

    Misawa, Takuma; Takahama, Michihiro; Saitoh, Tatsuya

    2017-01-01

    Mitochondria and the endoplasmic reticulum (ER) are fundamental organelles that coordinate high-order cell functions. Mitochondria are centers of energy production, whereas the ER is responsible for folding, transport, and degradation of proteins. In addition to their specific functions, mitochondria and ER actively communicate with each other to promote a variety of cellular events, such as material transfer and signal transduction. Recent studies have shown the critical involvement of these organelles in regulation of the innate immune system, which functions in host defense. The innate immune system utilizes a wide range of germ-line-encoded pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and induces inflammatory and antiviral responses. Contact sites between mitochondria and the ER function in assembly of the NLR family pyrin domain containing 3 (NLRP3)-inflammasome to promote the inflammatory response. The NLRP3-inflammasome is a protein complex composed of the receptor NLRP3 on the ER side and the adaptor apoptosis-associated speck-like protein containing a CARD on the mitochondrial side; it induces caspase-1-dependent maturation of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Furthermore, ER-mitochondria contact sites function in initiation and mediation of signal transduction pathways downstream of intracellular PRRs, such as retinoic acid-inducible gene I-like receptor and cyclic GMP-AMP synthase, to promote the antiviral response. Therefore, ER-mitochondria contact sites, also known as mitochondria-associated membranes, play key roles in regulation of innate immune responses.

  5. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response.

    Directory of Open Access Journals (Sweden)

    Rami Makki

    2010-08-01

    Full Text Available The posterior signalling centre (PSC, a small group of specialised cells, controls hemocyte (blood cell homeostasis in the Drosophila larval hematopoietic organ, the lymph gland. This role of the PSC is very reminiscent of the "niche," the micro-environment of hematopoietic stem cells in vertebrates. We have recently shown that the PSC acts in a non-cell-autonomous manner to maintain janus tyrosine kinase/signal transducers and activators of transcription (JAK/STAT signalling in hematopoietic progenitors (prohemocytes, thereby preserving the multipotent character necessary for their differentiation into lamellocytes, a cryptic and dedicated immune cell type required to fight specific immune threats such as wasp parasitism. In this report, on the basis of a knock out generated by homologous recombination, we show that a short type I cytokine-related receptor CG14225/Latran is required for switching off JAK/STAT signalling in prohemocytes. This is a prerequisite to massive differentiation of lamellocytes upon wasp parasitisation. In vivo and cell culture assays indicate that Latran forms heteromers with Domeless, the Drosophila type I cytokine signalling receptor related to mammalian GP130, and antagonises Domeless activity in a dose-dependent manner. Our analysis further shows that a primary immune response to wasp parasitism is a strong decrease in cytokine mRNA levels in the lymph gland, followed by an increase in the latran/domeless ratio. We propose that this sequence of events culminates in the complete inhibition of residual JAK/STAT signalling by Latran. JAK/STAT activity has been associated with several human diseases including leukaemia while knock-out studies in mice point to a central role of this pathway in hematopoiesis and regulation of immune functions. The specific function of Drosophila Latran is, to our knowledge, the first in vivo example of a role for a nonsignalling receptor in controlling a dedicated immune response, and

  6. Paramyxovirus activation and inhibition of innate immune responses.

    Science.gov (United States)

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells. © 2013.

  7. Dynamics of immune response and drug resistance in malaria infection

    Directory of Open Access Journals (Sweden)

    Gurarie David

    2006-10-01

    Full Text Available Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains, drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-inferior, strains to dominate. Methods Here a mathematical model is developed to analyse how these and more subtle effects of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites, drug pharmacokinetic parameters, dose and treatment frequency. Results The model quantifies possible effects of single and multiple (periodic treatment on the outcome of parasite competition. In the absence of further inoculation, the dosage and/or treatment frequency required for complete clearance can be estimated. With persistent superinfection, time-average parasite densities can be derived in terms of the basic immune-regulating parameters, the drug efficacy and treatment regimen. Conclusion The functional relations in the model are applicable to a wide range of conditions and transmission environments, allowing predictions to be made on both the individual and the community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite dominance to be projected on both levels.

  8. Simulating the immune response on a distributed parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Castiglione, F. [Univ. of Catania (Italy); Bernaschi, M. [Via Shanghai, Rome (Italy); Succi, S. [IAC/CNR, Rome (Italy)

    1997-06-01

    The application of ideas and methods of statistical mechanics to problems of biological relevance is one of the most promising frontiers of theoretical and computational mathematical physics. Among others, the computer simulation of the immune system dynamics stands out as one of the prominent candidates for this type of investigations. In the recent years immunological research has been drawing increasing benefits from the resort to advanced mathematical modeling on modern computers. Among others, Cellular Automata (CA), i.e., fully discrete dynamical systems evolving according to boolean laws, appear to be extremely well suited to computer simulation of biological systems. A prominent example of immunological CA is represented by the Celada-Seiden automaton, that has proven capable of providing several new insights into the dynamics of the immune system response. To date, the Celada-Seiden automaton was not in a position to exploit the impressive advances of computer technology, and notably parallel processing, simply because no parallel version of this automaton had been developed yet. In this paper we fill this gap and describe a parallel version of the Celada-Seiden cellular automaton aimed at simulating the dynamic response of the immune system. Details on the parallel implementation as well as performance data on the IBM SP2 parallel platform are presented and commented on.

  9. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetranscript...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation of genetranscript

  10. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune resp...onse to viral infection. PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  11. Systemic increased immune response to Nocardia brasiliensis co-exists with local immunosuppressive microenvironment.

    Science.gov (United States)

    Salinas-Carmona, Mario Cesar; Rosas-Taraco, Adrian Geovanni; Welsh, Oliverio

    2012-10-01

    Human diseases produced by pathogenic actinomycetes are increasing because they may be present as opportunistic infections. Some of these microbes cause systemic infections associated with immunosuppressive conditions, such as chemotherapy for cancer, immunosuppressive therapy for transplant, autoimmune conditions, and AIDS; while others usually cause localized infection in immunocompetent individuals. Other factors related to this increase in incidence are: antibiotic resistance, not well defined taxonomy, and a delay in isolation and identification of the offending microbe. Examples of these infections are systemic disease and brain abscesses produced by Nocardia asteroides or the located disease by Nocardia brasiliensis, named actinomycetoma. During the Pathogenic Actinomycetes Symposium of the 16th International Symposium on Biology of Actinomycetes (ISBA), held in Puerto Vallarta, Mexico, several authors presented recent research on the mechanisms by which N. brasiliensis modulates the immune system to survive in the host and advances in medical treatment of human actinomycetoma. Antibiotics and antimicrobials that are effective against severe actinomycetoma infections with an excellent therapeutic outcome and experimental studies of drugs that show promising bacterial inhibition in vivo and in vitro were presented. Here we demonstrate a systemic strong acquired immune response in humans and experimental mice at the same time of a local dominance of anti inflammatory cytokines environment. The pathogenic mechanisms of some actinomycetes include generation of an immunosuppressive micro environment to evade the protective immune response. This information will be helpful in understanding pathogenesis and to design new drugs for treatment of actinomycetoma.

  12. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  13. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  14. The immune response to Prevotella bacteria in chronic inflammatory disease

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura

    2017-01-01

    the hunt for disease-modulating bacteria. Emerging studies in humans have linked the increased abundance of Prevotella species at mucosal sites to localized and systemic disease, including periodontitis, bacterial vaginosis, rheumatoid arthritis, metabolic disorders and low-grade systemic inflammation......-8, IL-6 and CCL20, which can promote mucosal Th17 immune responses and neutrophil recruitment. Prevotella-mediated mucosal inflammation leads to systemic dissemination of inflammatory mediators, bacteria and bacterial products, which in turn may affect systemic disease outcomes. Studies in mice...... support a causal role of Prevotella as colonization experiments promote clinical and inflammatory features of human disease. When compared with strict commensal bacteria, Prevotella exhibit increased inflammatory properties, as demonstrated by augmented release of inflammatory mediators from immune cells...

  15. Impact of Bee Venom Enzymes on Diseases and Immune Responses

    Directory of Open Access Journals (Sweden)

    Md. Sakib Hossen

    2016-12-01

    Full Text Available Bee venom (BV is used to treat many diseases and exhibits anti-inflammatory, anti-bacterial, antimutagenic, radioprotective, anti-nociceptive immunity promoting, hepatocyte protective and anti-cancer activity. According to the literature, BV contains several enzymes, including phospholipase A2 (PLA2, phospholipase B, hyaluronidase, acid phosphatase and α-glucosidase. Recent studies have also reported the detection of different classes of enzymes in BV, including esterases, proteases and peptidases, protease inhibitors and other important enzymes involved in carbohydrate metabolism. Nevertheless, the physiochemical properties and functions of each enzyme class and their mechanisms remain unclear. Various pharmacotherapeutic effects of some of the BV enzymes have been reported in several studies. At present, ongoing research aims to characterize each enzyme and elucidate their specific biological roles. This review gathers all the current knowledge on BV enzymes and their specific mechanisms in regulating various immune responses and physiological changes to provide a basis for future therapies for various diseases.

  16. The immune response of horses to tetanus toxoid.

    Science.gov (United States)

    Jansen, B C; Knoetze, P C

    1979-12-01

    An intramuscular injection of 8-16 Lf tetanus toxoid in water-in-oil emulsion protected adult horses against tetanus for at least 128 weeks. A booster dose of 8 Lf toxoid in aqueous solution protected them for a further period of at least 3 1/2 years. Colostral immunity protected foals for at least 10 weeks. An intramuscular injection of 8 Lf toxoid in water-in-oil emulsion given to foals from immune dams when they were 10-18 weeks old did not elicit any antibody response. They did respond, however, to a booster injection of 8 Lf toxoid in aqueous solution given 12 weeks after the first dose. New-born foals were shown to be inherently unable to respond to an injection of tetanus toxoid.

  17. The Synthetic Triterpenoid, CDDO-Me, Modulates the Proinflammatory Response to In Vivo Lipopolysaccharide Challenge

    Science.gov (United States)

    Alabran, Jennifer L.; Kim, Byung-Gyu; Meyer, Colin J.; Letterio, John J.

    2010-01-01

    The synthetic triterpenoid, CDDO-Me, has potent antiproliferative and antioxidant properties. However, its immunomodulatory effects in the context of LPS challenge are incompletely defined. Pretreatment with oral CDDO-Me significantly improved survival following lethal-dose LPS challenge in mice. To define this protection further, we measured effects of CDDO-Me pretreatment on splenocyte populations and cytokine production following LPS challenge, using low-level LPS pretreatment as an in vivo control for reducing cytokine production. Despite similar decreases in levels of LPS-inducible, circulating proinflammatory cytokines (IL-12p70, IFN-γ, IL-6, IL-17, and IL-23) and increases in heme oxygenase 1 (HO-1) protein expression, low-dose LPS and CDDO-Me pretreatments markedly differed in their overall response profiles. Splenocytes from LPS-pretreated mice contained reduced numbers of dendritic cells, increased percentages of Th17 and T-regulatory cells, lower levels of TLR-inducible IL-6, and higher levels of TLR-inducible IL-10. In contrast, CDDO-Me protection against LPS challenge had no impact on absolute numbers or distribution of splenocyte subsets, despite attenuating in vivo induction of proinflammatory cytokines in an IL-10-independent manner. Together, these results suggest that CDDO-Me pretreatment uniquely confers protection against LPS challenge by modulating the in vivo immune response to LPS. Thus, CDDO-Me potentially represents a novel oral agent for use in LPS-mediated inflammatory diseases. PMID:20626291

  18. Protective Immunity and Defects in the Neonatal and Elderly Immune Response to Sepsis

    Science.gov (United States)

    Gentile, Lori F.; Nacionales, Dina C.; Lopez, M. Cecilia; Vanzant, Erin; Cuenca, Angela; Cuenca, Alex G.; Ungaro, Ricardo; Szpila, Ben E.; Larson, Shawn; Joseph, Anna; Moore, Frederick; Leeuwenburgh, Christiaan; Baker, Henry V.; Moldawer, Lyle L.; Efron, Philip A.

    2014-01-01

    Populations encompassing extremes of age, including neonates and elderly, have greater mortality from sepsis. We propose that the increased mortality observed in the neonatal and elderly populations after sepsis is due to fundamental differences in host protective immunity, and are manifested at the level of the leukocyte transcriptome. Neonatal (5–7 days), young adult (6–12 weeks), or elderly (20–24 months) mice underwent a cecal slurry model of intra-abdominal sepsis. Both neonatal and elderly mice exhibited significantly greater mortality to sepsis (pNeonates in particular exhibited significant attenuation of their inflammatory response (pneonatal and elderly mice have profoundly different responses to sepsis that are manifested at the level of their circulating leukocyte transcriptome, although the net result of increased mortality, is similar. Considering these differences are fundamental aspects of the genomic response to sepsis, interventional therapies will require individualization based on the age of the population. PMID:24591376

  19. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses.

    Science.gov (United States)

    Li, Man; Li, You; Peng, Ke; Wang, Ying; Gong, Tao; Zhang, Zhirong; He, Qin; Sun, Xun

    2017-10-10

    Intranasal mRNA vaccination provides immediate immune protection against pandemic diseases. Recent studies have shown that diverse forms of polyethyleneimine (PEI) have potent mucosal adjuvant activity, which could significantly facilitate the delivery of intranasal mRNA vaccines. Nevertheless, optimizing the chemical structure of PEI to maximize its adjuvanticity and decrease its toxicity remains a challenge. Here we show that the chemical structure of PEI strongly influences how well nanocomplexes of PEI and mRNA migrate to the lymph nodes and elicit immune responses. Conjugating cyclodextrin (CD) with PEI600 or PEI2k yielded CP (CD-PEI) polymers with different CD/PEI ratios. We analyzed the delivery efficacy of CP600, CP2k, and PEI25k as intranasal mRNA vaccine carriers by evaluating the lymph nodes migration and immune responses. Among these polymers, CP2k/mRNA showed significantly higher in vitro transfection efficiency, stronger abilities to migrate to lymph nodes and stimulate dendritic cells maturation in vivo, which further led to potent humoral and cellular immune responses, and showed lower local and systemic toxicity than PEI25k/mRNA. These results demonstrate the potential of CD-PEI2k/mRNA nanocomplex as a self-adjuvanting vaccine delivery vehicle that traffics to lymph nodes with high efficiency. As we face outbreaks of pandemic diseases such as Zika virus, intranasal mRNA vaccination provides instant massive protection against highly variant viruses. Various polymer-based delivery systems have been successfully applied in intranasal vaccine delivery. However, the influence of molecular structure of the polymeric carriers on the lymph node trafficking and dendritic cell maturation is seldom studied for intranasal vaccination. Therefore, engineering polymer-based vaccine delivery system and elucidating the relationship between molecular structure and the intranasal delivery efficiency are essential for maximizing the immune responses. We hereby

  20. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    Science.gov (United States)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  1. Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Arteaga Blanco, Luis Andrés; Crispim, Josicelli Souza; Fernandes, Kenner Morais; de Oliveira, Leandro Licursi; Pereira, Monalessa Fábia; Bazzolli, Denise Mara Soares; Martins, Gustavo Ferreira

    2017-10-01

    In the present work, we have investigate the cellular immune response of Galleria mellonella larvae against three strains of the gram-negative bacterium Actinobacillus pleuropneumoniae: low-virulence (780), high-virulence (1022) and the serotype 8 reference strain (R8). Prohemocytes, plasmatocytes, granulocytes, oenocytoids and spherulocytes were distinguished according to their size and morphology, their molecular markers and dye-staining properties and their role in the immune response. Total hemocyte count, differential hemocyte count, lysosome activity, autophagic response, cell viability and caspase-3 activation were determined in circulating hemocytes of naive and infected larvae. The presence of the autophagosome protein LC3 A/B within the circulating hemocytes of G. mellonella was dependent on and related to the infecting A. pleuropneumoniae strain and duration of infection. Hemocytes treated with the high-virulence strain expressed higher levels of LC3 A/B, whereas treatment with the low-virulence strain induced lower expression levels of this protein in the cells. Moreover, our results showed that apoptosis in circulating hemocytes of G. mellonella larvae after exposure to virulent bacterial strains occurred simultaneously with excessive cell death response induced by stress and subsequent caspase-3 activation.

  2. ANTI-ERGOTYPIC RESPONSE: ROLE IN NORMAL IMMUNE RESPONSE AND AUTOIMMUNE PATHOLOGY IN EXPERIMENTAL MODEL

    Directory of Open Access Journals (Sweden)

    N. A. Ilyina

    2011-01-01

    Full Text Available Abstract. Anti-ergotypic cells are a part of peripheral regulatory network, and they are thought to control autoreactive T cells by recognition of certain clonotypic and ergotypic determinants on the surface of activated T cells. The aim of our study was to investigate ability of anti-CD3 activated syngeneic splenocytes to induce anti-ergotypic  response  and  to  assess  immune  response  in  delayed-type hypersensitivity (DTH reaction.DTH response in experimental group was significantly greater than in control and intact groups. Upon crossadministration, DTH response was minimal and there were no significant differences between the groups. No changes in cellular and humoral immune response were observed under such conditions. These results suggest a development of immune response to activated antigen-nonspecific cells. In a model of chronic GvHD, donor immunization was shown to exert a protective effect, with regard of proteinuria dynamics in recipients, whereas immunization of recipients did not alter the GvHD dynamics. (Med. Immunol., 2011, vol. 13, N 1, pp 29-34

  3. Synchronous Immune Alterations Mirror Clinical Response During Allergen Immunotherapy.

    Science.gov (United States)

    Renand, Amedee; Shamji, Mohamed H; Harris, Kristina M; Qin, Tielin; Wambre, Erik; Scadding, Guy W; Wurtzen, Peter A; Till, Stephen J; Togias, Alkis; Nepom, Gerald T; Kwok, William W; Durham, Stephen R

    2017-11-08

    Three years treatment with either sublingual or subcutaneous allergen immunotherapy has been shown to be effective and to induce long-term tolerance. The GRASS(∗) trial demonstrated that two years treatment via either route was effective in suppressing the response to nasal allergen challenge, although was insufficient for inhibition one year after discontinuation. To examine in the GRASS trial the time-course of immunologic changes during two years sublingual and subcutaneous immunotherapy and for one year after treatment discontinuation. We performed multi-modal immunomonitoring to assess allergen-specific CD4 T cell properties, in parallel with analysis of local mucosal cytokine responses induced by nasal allergen exposure and humoral immune responses that included IgE-dependent basophil activation and measurement of serum inhibitory activity for allergen-IgE binding to B cells (IgE-Facilitated Allergen Binding). All three of these distinct arms of the immune response displayed significant and coordinate alterations during 2 years allergen desensitization, followed by reversal at 3 years, reflecting a lack of a durable immunological effect. Whereas frequencies of antigen-specific Th2 cells in peripheral blood determined by HLA class II tetramer analysis most closely paralleled clinical outcomes, IgE-antibody dependent functional assays remained partially inhibited one year following discontinuation. Two years of allergen immunotherapy were effective but insufficient for long-term tolerance. Allergen-specific Th2 cells most closely paralleled the transient clinical outcome and it is likely that recurrence of the T cell 'drivers' of allergic immunity abrogated the potential for durable tolerance. On the other hand, persistence of IgE-blocking antibody one year after discontinuation may be an early indicator of a pro-tolerogenic mechanism. Copyright © 2017. Published by Elsevier Inc.

  4. Immune Response to Sipuleucel-T in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David I. Quinn

    2012-04-01

    Full Text Available Historically, chemotherapy has remained the most commonly utilized therapy in patients with metastatic cancers. In prostate cancer, chemotherapy has been reserved for patients whose metastatic disease becomes resistant to first line castration or androgen deprivation. While chemotherapy palliates, decreases serum prostate specific antigen and improves survival, it is associated with significant side effects and is only suitable for approximately 60% of patients with castrate-resistant prostate cancer. On that basis, exploration of other therapeutic options such as active secondary hormone therapy, bone targeted treatments and immunotherapy are important. Until recently, immunotherapy has had no role in the treatment of solid malignancies aside from renal cancer and melanoma. The FDA-approved autologous cellular immunotherapy sipuleucel-T has demonstrated efficacy in improving overall survival in patients with metastatic castrate-resistant prostate cancer in randomized clinical trials. The proposed mechanism of action is reliant on activating the patients’ own antigen presenting cells (APCs to prostatic acid phosphatase (PAP fused with granulocyte-macrophage colony stimulating factor (GM-CSF and subsequent triggered T-cell response to PAP on the surface of prostate cancer cells in the patients body. Despite significant prolongation of survival in Phase III trials, the challenge to health care providers remains the dissociation between objective changes in serum PSA or on imaging studies after sipleucel-T and survival benefit. On that basis there is an unmet need for markers of outcome and a quest to identify immunologic or clinical surrogates to fill this role. This review focuses on the impact of sipuleucel-T on the immune system, the T and B cells, and their responses to relevant antigens and prostate cancer. Other therapeutic modalities such as chemotherapy, corticosteroids and GM-CSF and host factors can also affect immune response. The

  5. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  6. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    Science.gov (United States)

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  7. Molecular immune response of the American lobster (Homarus americanus) to the White Spot Syndrome Virus.

    Science.gov (United States)

    Clark, K Fraser; Greenwood, Spencer J; Acorn, Adam R; Byrne, Philip J

    2013-11-01

    The adult American lobster (Homarus americanus) is susceptible to few naturally occurring pathogens, and no viral pathogen is known to exist. Despite this, relatively little is known about the H. americanus immune system and nothing is known about its potential viral immune response. Hundreds of rural communities in Atlantic Canada rely on the lobster fishery for their economic sustainability and could be devastated by large-scale pathogen-mediated mortality events. The White Spot Syndrome Virus is the most economically devastating viral pathogen to global shrimp aquaculture production and has been proposed to be capable of infecting all decapod crustaceans including the European Lobster. An in vivo WSSV injection challenge was conducted in H. americanus and WSSV was found to be capable of infecting and replicating within lobsters held at 20°C. The in vivo WSSV challenge also generated the first viral disease model of H. americanus and allowed for the high-throughput examination of transcriptomic changes that occur during viral infection. Microarray analysis found 136 differentially expressed genes and the expression of a subset of these genes was verified using RT-qPCR. Anti-lipopolysaccharide isoforms and acute phase serum amyloid protein A expression did not change during WSSV infection, contrary to previous findings during bacterial and parasitic infection of H. americanus. This, along with the differential gene expression of thioredoxin and trypsin isoforms, provides compelling evidence that H. americanus is capable of mounting an immune response specific to infection by different pathogen classes. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Muscles provide protection during microbial infection by activating innate immune response pathways in Drosophila and zebrafish

    Directory of Open Access Journals (Sweden)

    Arunita Chatterjee

    2016-06-01

    Full Text Available Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual.

  9. Delivering HIV Gagp24 to DCIR Induces Strong Antibody Responses In Vivo.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Flamar

    Full Text Available Targeting dendritic cell-specific endocytic receptors using monoclonal antibodies fused to desired antigens is an approach widely used in vaccine development to enhance the poor immunogenicity of protein-based vaccines and to induce immune responses. Here, we engineered an anti-human DCIR recombinant antibody, which cross-reacts with the homologous cynomolgous macaque receptor and was fused via the heavy chain C-terminus to HIV Gagp24 protein (αDCIR.Gagp24. In vitro, αDCIR.Gagp24 expanded multifunctional antigen-specific memory CD4+ T cells recognizing multiple Gagp24 peptides from HIV-infected patient peripheral blood mononuclear cells. In non human primates, priming with αDCIR.Gagp24 without adjuvant elicited a strong anti-Gagp24 antibody response after the second immunization, while in the non-targeted HIV Gagp24 protein control groups the titers were weak. The presence of the double-stranded RNA poly(I:C adjuvant significantly enhanced the anti-Gagp24 antibody response in all the groups and reduced the discrimination between the different vaccine groups. The avidity of the anti-Gagp24 antibody responses was similar with either αDCIR.Gagp24 or Gagp24 immunization, but increased from medium to high avidity in both groups when poly(I:C was co-administered. This data provides a comparative analysis of DC-targeted and non-targeted proteins for their capacity to induce antigen-specific antibody responses in vivo. This study supports the further development of DCIR-based DC-targeting vaccines for protective durable antibody induction, especially in the absence of adjuvant.

  10. Cell-mediated immune responses to chlamydial antigens in guinea pigs injected with inactivated chlamydiae.

    Science.gov (United States)

    Senyk, G; Sharp, M; Stites, D P; Hanna, L; Keshishyan, H; Jawetz, E

    1980-01-01

    Cell-mediated immunity (CMI) to chlamydial antigens was readily induced in guinea pigs by a single injection of Betaprone-inactivated chlamydiae in complete Freund adjuvant. The CMI was measured in vivo by delayed hypersensitivity skin tests, and in vitro by inhibition of migration of peritoneal exudate cells and by proliferation of lymph node lymphocytes. There was an overall correlation between in vivo and in vitro responses. Of the in vitro assays, migration inhibition reflected the state of sensitization, as judged by skin tests, more uniformly than lymphocyte stimulation. Extensive inter- and intra-species cross-reactivity was noted between LB-1, a strain of C. trachomatis, and three strains of C. psittaci, 6BC, GPIC, and 562F. Cross-reactivity between LB-1 and 6BC was one-way only, by all three parameters: LB-1 elicited strong cross-reactions in 6BC-immunized animals but not vice versa. Antichlamydial antibodies could not be demonstrated in any of the animals by microimmunofluorescence.

  11. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  12. Importance of immune response genes in hemophilia A

    Directory of Open Access Journals (Sweden)

    Josiane Bazzo de Alencar

    2013-01-01

    Full Text Available Hemophilia A is a disease caused by a deficiency of coagulation factor VIII resulting from genetic inheritance linked to chromosome X. One treatment option is the administration of plasma or recombinant FVIII. However, some patients develop inhibitors or antibodies against this factor. Inhibitors are alloantibodies that bind to the epitope of factor VIII causing it to be recognized by the immune system as a foreign peptide. This is the most serious complication in hemophilia patients in respect to replacement therapy. Some studies have suggested that genetic factors influence the development of factor VIII inhibitors such as ethnicity, family history, mutations in the factor VIII gene and in genes of the immune system. The aim of this study was to conduct a literature review to assess the influence of genetic factors of immune response genes, especially genes of the major histocompatibility complex and cytokines, which may be related to the development of factor VIII inhibitors in hemophilia A patients. Understanding these risk factors will help to determine future differential treatment in the control and prevention of the development of inhibitors.

  13. Immune Response of Cattle Infected with African Trypanosomes

    Directory of Open Access Journals (Sweden)

    Katherine A Taylor

    1999-03-01

    Full Text Available Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.

  14. Immunological aspects of the immune response induced by mosquito allergens.

    Science.gov (United States)

    Cantillo, José Fernando; Fernández-Caldas, Enrique; Puerta, Leonardo

    2014-01-01

    Allergies caused by mosquito bites may produce local or systemic reactions. The inhalation of mosquito allergens may also cause asthma and/or allergic rhinoconjunctivitis in sensitized individuals. The mechanisms implicated in the development of these immune responses involve IgE antibodies, different subtypes of IgG and proinflammatory cytokines as well as basophils, eosinophils and mast cells. Several allergenic components have been identified in the saliva and bodies of mosquitoes and some of these are present in different mosquito species. The most common species implicated in allergic reactions belong to the genera Aedes, Culex and Anopheles. Several Aedes aegypti allergens have been cloned and sequenced. The recombinant molecules show IgE reactivity similar to that of the native allergens, making them good candidates for the diagnosis of mosquito allergies. Allergen-specific immunotherapy with mosquito extracts induces a protective response characterized by a decreased production of IgE antibodies, increased IgG levels, a reduction in the severity of cutaneous and respiratory symptoms and the need for medication. The aims of this review are to summarize the progress made in the characterization of mosquito allergens and discuss the types of immune responses induced by mosquito bites and the inhalation of mosquito allergens in atopic individuals. © 2015 S. Karger AG, Basel

  15. Immune responses to alpha1,3 galactosyltransferase knockout pigs.

    Science.gov (United States)

    Puga Yung, Gisella; Schneider, Mårten K J; Seebach, Jörg D

    2009-04-01

    To summarize the current knowledge of the immune response generated against xenografts stemming from alpha1,3-galactosyltransferase knockout (GalT-KO) pigs. In particular, we will address the nature of potentially remaining Gal epitopes, the role of non-Gal xenoantigens, and the cellular response directed against GalT-KO tissues. New findings support the view that porcine cells do not express isoglobotrihexosylceramide 3, and GalT-KO pigs, if at all, express negligible levels of Gal. The anti-non-Gal antibody response to GalT-KO cells allowed the identification of several potentially relevant porcine xenoantigens, mainly carbohydrates. Coculture of wildtype pig aortic endothelial cells but not of GalT-KO pig aortic endothelial cells with whole human blood induces the secretion of porcine and human cytokines and the upregulation of E-selectin; in contrast, the transmigration of human leukocytes across porcine endothelium is not regulated by Gal. New immunological problems are arising after the elimination of Gal by the generation of GalT-KO pigs; these include non-Gal antibodies and the identification of their elusive antigens, as well as cellular components of the immune system, including neutrophils, macrophages, natural killer cells, and T cells.

  16. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  17. Cellular immune response to cryptic epitopes during therapeutic gene transfer.

    Science.gov (United States)

    Li, Chengwen; Goudy, Kevin; Hirsch, Matt; Asokan, Aravind; Fan, Yun; Alexander, Jeff; Sun, Junjiang; Monahan, Paul; Seiber, David; Sidney, John; Sette, Alessandro; Tisch, Roland; Frelinger, Jeff; Samulski, R Jude

    2009-06-30

    The immune response has been implicated as a critical factor in determining the success or failure of clinical gene therapy trials. Generally, such a response is elicited by the desired transgene product or, in some cases, the delivery system. In the current study, we report the previously uncharacterized finding that a therapeutic cassette currently being used for human investigation displays alternative reading frames (ARFs) that generate unwanted protein products to induce a cytotoxic T lymphocyte (CTL) response. In particular, we tested the hypothesis that antigenic epitopes derived from an ARF in coagulation factor IX (F9) cDNA can induce CTL reactivity, subsequently killing F9-expressing hepatocytes. One peptide (p18) of 3 candidates from an ARF of the F9 transgene induced CD8(+) T cell reactivity in mice expressing the human MHC class I molecule B0702. Subsequently, upon systemic administration of adeno-associated virus (AAV) serotype 2 vectors packaged with the F9 transgene (AAV2/F9), a robust CD8(+) CTL response was elicited against peptide p18. Of particular importance is that the ARF epitope-specific CTLs eliminated AAV2/F9-transduced hepatocytes but not AAV2/F9 codon-optimized (AAV2/F9-opt)-transduced liver cells in which p18 epitope was deleted. These results demonstrate a previously undiscovered mechanism by which CTL responses can be elicited by cryptic epitopes generated from a therapeutic transgene and have significant implications for all gene therapy modalities. Such unforeseen epitope generation warrants careful analysis of transgene sequences for ARFs to reduce the potential for adverse events arising from immune responses during clinical gene therapy protocols.

  18. Immune response and histology of humoral rejection in kidney transplantation.

    Science.gov (United States)

    González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo

    2016-01-01

    The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Orally administered lactoferrin restores humoral immune response in immunocompromised mice.

    Science.gov (United States)

    Artym, Jolanta; Zimecki, Michal; Paprocka, Maria; Kruzel, Marian L

    2003-10-09

    Cyclophosphamide (CP) is an anti-tumor drug commonly used in the chemotherapy of human cancer and autoimmune diseases. In our previous studies, we have demonstrated that lactoferrin (LF), given orally to CP-immunosuppressed mice, could reconstitute a T cell mediated immune response by the renewal of the T cell population. The aim of this present study was to evaluate the effects of LF on humoral responses in mice treated with cyclophosphamide. We demonstrate that a single, sublethal dose of cyclophosphamide (400 mg/kg body weight) profoundly inhibited the humoral immune response of CBA mice to sheep red blood cells (SRBC), as measured by the number of antibody forming cells (AFC) in the spleen after 5 weeks following CP treatment. Administration of 0.5% bovine LF in drinking water for 5 weeks partially reconstituted the AFC number (30-40% of the control values, but 7-10x more than in CP-treated controls). Determination of T and B cell levels in the spleens by flow cytometry revealed that the content of CD3+ and CD4+ as well as Ig+ splenocytes was elevated in the immunocompromised mice treated with LF. In addition, the number of peritoneal macrophages was partially restored following LF treatment. Evaluation of the proliferative response to concanavalin A (ConA) and pokeweed mitogen (PWM) demonstrated that the diminished reactivity of splenocytes from CP-treated mice was significantly enhanced by LF. In summary, we conclude that the prolonged, oral treatment of immunocompromised mice with LF led to partial reconstitution of the humoral response, associated with elevation of T and B cell and macrophage content and the proliferative response of splenocytes to mitogens.

  20. Serum lipoproteins: Trojan horses of the immune response?

    Science.gov (United States)

    Schümann, Jens; De Libero, Gennaro

    2006-02-01

    T cells recognizing lipid antigens presented by CD1 molecules have an important role in the immune response. Several lipid antigens for CD1-restricted T cells have been identified, as have some rules of CD1 loading and CD1-restricted presentation. Little is known, however, about the delivery of lipid antigens from either extracellular compartments or CD1-negative cells to CD1-expressing antigen-presenting cells (APCs). A recent study provides evidence for a role for apolipoprotein E in binding lipid antigens and delivering them to APCs.

  1. Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Valérie Abadie

    Full Text Available BACKGROUND: Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate