WorldWideScience

Sample records for vivo human skin

  1. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  2. An ex vivo human skin model for studying skin barrier repair.

    Science.gov (United States)

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Skin friction: a novel approach to measuring in vivo human skin

    OpenAIRE

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into three parts. The first part is an introduction to skin friction and to current knowledge on skin friction. The second part presents the RevoltST, the tribometer that was specially developed for skin...

  4. The use of ex vivo human skin tissue for genotoxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Reus, Astrid A.; Usta, Mustafa [TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist (Netherlands); Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl [TNO, Utrechtseweg 48, 3704 HE Zeist (Netherlands)

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  5. The use of ex vivo human skin tissue for genotoxicity testing

    International Nuclear Information System (INIS)

    Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M.

    2012-01-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  6. Characterisation of mechanical behaviour of human skin in vivo

    NARCIS (Netherlands)

    Douven, L.F.A.; Meijer, R.; Oomens, C.W.J.

    2000-01-01

    Characterization of the biomechanical properties of human skin in vivo is studied both experimentally and by numerical modeling. These properties can be important in the evaluation of skin condition (e.g. aging) as well as skin disorders. In this study the authors focus on the static behavior of the

  7. Multiphoton spectroscopy of human skin in vivo

    Science.gov (United States)

    Breunig, Hans G.; Weinigel, Martin; König, Karsten

    2012-03-01

    In vivo multiphoton-intensity images and emission spectra of human skin are reported. Optical sections from different depths of the epidermis and dermis have been measured with near-infrared laser-pulse excitation. While the intensity images reveal information on the morphology, the spectra show emission characteristics of main endogenous skin fluorophores like keratin, NAD(P)H, melanin, elastin and collagen as well as of second harmonic generation induced by the excitation-light interaction with the dermal collagen network.

  8. In vivo study of human skin using pulsed terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Pickwell, E [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Cole, B E [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Fitzgerald, A J [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom); Pepper, M [Semiconductor Physics Group, Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE (United Kingdom); Wallace, V P [TeraView Ltd, Unit 302/4 Cambridge Science Park, Cambridge CB4 0WG (United Kingdom)

    2004-05-07

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation.

  9. In vivo study of human skin using pulsed terahertz radiation

    International Nuclear Information System (INIS)

    Pickwell, E; Cole, B E; Fitzgerald, A J; Pepper, M; Wallace, V P

    2004-01-01

    Studies in terahertz (THz) imaging have revealed a significant difference between skin cancer (basal cell carcinoma) and healthy tissue. Since water has strong absorptions at THz frequencies and tumours tend to have different water content from normal tissue, a likely contrast mechanism is variation in water content. Thus, we have previously devised a finite difference time-domain (FDTD) model which is able to closely simulate the interaction of THz radiation with water. In this work we investigate the interaction of THz radiation with normal human skin on the forearm and palm of the hand in vivo. We conduct the first ever systematic in vivo study of the response of THz radiation to normal skin. We take in vivo reflection measurements of normal skin on the forearm and palm of the hand of 20 volunteers. We compare individual examples of THz responses with the mean response for the areas of skin under investigation. Using the in vivo data, we demonstrate that the FDTD model can be applied to biological tissue. In particular, we successfully simulate the interaction of THz radiation with the volar forearm. Understanding the interaction of THz radiation with normal skin will form a step towards developing improved imaging algorithms for diagnostic detection of skin cancer and other tissue disorders using THz radiation

  10. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on

  11. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables.This study has used a large dataset to identify the effect of variables on the

  12. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  13. Dynamic in vivo mapping of model moisturiser ingress into human skin by GARfield MRI.

    Science.gov (United States)

    Ciampi, Elisabetta; van Ginkel, Michael; McDonald, Peter J; Pitts, Simon; Bonnist, Eleanor Y M; Singleton, Scott; Williamson, Ann-Marie

    2011-02-01

    We describe the development of in vivo one-dimensional MRI (profiling) using a GARField (Gradient At Right angles to Field) magnet for the characterisation of side-of-hand human skin. For the first time and in vivo, we report measurements of the NMR longitudinal and transverse relaxation parameters and self-diffusivity of the upper layers of human skin with a nominal spatial resolution better than 10 µm. The results are correlated with in vivo confocal Raman spectroscopy measurements of water concentration and natural moisturiser factors, and discussed in terms of known skin biology and microstructure of the stratum corneum and viable epidermis. The application of model moisturiser solutions to the skin is followed and their dynamics of ingress are characterised using the MRI methodology developed. Selected hydrophilic and lipophilic formulations are studied. The results are corroborated by standard in vivo measurements of transepidermal water loss and hydration status. A further insight into moisturisation mechanisms is gained. The effect of two different penetration enhancers on a commonly used skin care oil is also discussed, and different timescales of oil penetration into the skin are reported depending on the type of enhancer. Copyright © 2010 John Wiley & Sons, Ltd.

  14. In-Vivo Human Skin to Textiles Friction Measurements

    Science.gov (United States)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  15. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However......, the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7...

  16. Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method

    International Nuclear Information System (INIS)

    Jeong, Sang Hoon; Kim, Jae Hwan; Yi, Sang Min; Lee, Jung Pyo; Kim, Jin Ho; Sohn, Kyung Hee; Park, Kui Lea; Kim, Meyoung-Kon; Son, Sang Wook

    2010-01-01

    Quantum dots (QDs) are rapidly emerging as an important class of nanoparticles (NPs) with potential applications in medicine. However, little is known about penetration of QDs through human skin. This study investigated skin penetration of QDs in both in vivo and in vitro human skin. Using the tape stripping method, this study demonstrates for the first time that QDs can actually penetrate through the stratum corneum (SC) of human skin. Transmission electron microscope (TEM) and energy diverse X-ray (EDX) analysis showed accumulation of QDs in the SC of a human skin equivalent model (HSEM) after dermal exposure to QDs. These findings suggest possible transdermal absorption of QDs after dermal exposure over a relatively long period of time.

  17. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Aguirre, Juan; Ntziachristos, Vasilis

    2016-01-01

    Optical imaging plays a major role in disease detection in dermatology. However, current optical methods are limited by lack of three-dimensional detection of pathophysiological parameters within skin. It was recently shown that single-wavelength optoacoustic (photoacoustic) mesoscopy resolves skin morphology, i.e. melanin and blood vessels within epidermis and dermis. In this work we employed illumination at multiple wavelengths for enabling three-dimensional multispectral optoacoustic mesoscopy (MSOM) of natural chromophores in human skin in vivo operating at 15-125 MHz. We employ a per-pulse tunable laser to inherently co-register spectral datasets, and reveal previously undisclosed insights of melanin, and blood oxygenation in human skin. We further reveal broadband absorption spectra of specific skin compartments. We discuss the potential of MSOM for label-free visualization of physiological biomarkers in skin in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  19. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles.

    Science.gov (United States)

    Leite-Silva, Vânia R; Liu, David C; Sanchez, Washington Y; Studier, Hauke; Mohammed, Yousuf H; Holmes, Amy; Becker, Wolfgang; Grice, Jeffrey E; Benson, Heather Ae; Roberts, Michael S

    2016-05-01

    We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.

  20. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    Science.gov (United States)

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  1. Advanced tools for in vivo skin analysis.

    Science.gov (United States)

    Cal, Krzysztof; Zakowiecki, Daniel; Stefanowska, Justyna

    2010-05-01

    A thorough examination of the skin is essential for accurate disease diagnostics, evaluation of the effectiveness of topically applied drugs and the assessment of the results of dermatologic surgeries such as skin grafts. Knowledge of skin parameters is also important in the cosmetics industry, where the effects of skin care products are evaluated. Due to significant progress in the electronics and computer industries, sophisticated analytic devices are increasingly available for day-to-day diagnostics. The aim of this article is to review several advanced methods for in vivo skin analysis in humans: magnetic resonance imaging, electron paramagnetic resonance, laser Doppler flowmetry and time domain reflectometry. The molecular bases of these techniques are presented, and several interesting applications in the field are discussed. Methods for in vivo assessment of the biomechanical properties of human skin are also reviewed.

  2. Impact of Humidity on In Vitro Human Skin Permeation Experiments for Predicting In Vivo Permeability.

    Science.gov (United States)

    Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi

    2015-12-01

    In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Physiological and Molecular Effects of in vivo and ex vivo Mild Skin Barrier Disruption.

    Science.gov (United States)

    Pfannes, Eva K B; Weiss, Lina; Hadam, Sabrina; Gonnet, Jessica; Combardière, Béhazine; Blume-Peytavi, Ulrike; Vogt, Annika

    2018-01-01

    The success of topically applied treatments on skin relies on the efficacy of skin penetration. In order to increase particle or product penetration, mild skin barrier disruption methods can be used. We previously described cyanoacrylate skin surface stripping as an efficient method to open hair follicles, enhance particle penetration, and activate Langerhans cells. We conducted ex vivo and in vivo measurements on human skin to characterize the biological effect and quantify barrier disruption-related inflammation on a molecular level. Despite the known immunostimulatory effects, this barrier disruption and hair follicle opening method was well accepted and did not result in lasting changes of skin physiological parameters, cytokine production, or clinical side effects. Only in ex vivo human skin did we find a discrete increase in IP-10, TGF-β, IL-8, and GM-CSF mRNA. The data underline the safety profile of this method and demonstrate that the procedure per se does not cause substantial inflammation or skin damage, which is also of interest when applied to non-invasive sampling of biomarkers in clinical trials. © 2018 S. Karger AG, Basel.

  4. Intravital multiphoton tomography as a novel tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2010-02-01

    Atopic Dermatitis (AD) is an inflammatory disease of human skin. Its pathogenesis is still unknown; however, dysfunctions of the epidermal barrier and the immune response are regarded as key factors for the development of AD. In our study we applied intravital multiphoton tomography (5D-IVT), equipped with a spectral-FLIM module for in-vivo and ex-vivo analysis of human skin affected with AD. In addition to the morphologic skin analysis, FLIM technology gain access to the metabolic status of the epidermal cells referring to the NADH specific fluorescence lifetime. We evaluated a characteristic 5D-IVT skin pattern of AD in comparison to histological sections and detected a correlation with the disease activity measured by SCORAD. FLIM analysis revealed a shift of the mean fluorescence lifetime (taum) of NADH, indicating an altered metabolic activity. Within an ex-vivo approach we have investigated cryo-sections of human skin with or without barrier defects. Spectral-FLIM allows the detection of autofluorescent signals that reflect the pathophysiological conditions of the defect skin barrier. In our study the taum value was shown to be different between healthy and affected skin. Application of the 5D-IVT allows non-invasive in-vivo imaging of human skin with a penetration depth of 150 μm. We could show that affected skin could be distinguished from healthy skin by morphological criteria, by FLIM and by spectral-FLIM. Further studies will evaluate the application of the 5D-IVT technology as a diagnostic tool and to monitor the therapeutic efficacy.

  5. Inter-individual and inter-cell type variation in residual DNA damage after in vivo irradiation of human skin

    International Nuclear Information System (INIS)

    Chua, Melvin Lee Kiang; Somaiah, Navita; Bourne, Sara; Daley, Frances; A'Hern, Roger; Nuta, Otilia; Davies, Sue; Herskind, Carsten; Pearson, Ann; Warrington, Jim; Helyer, Sarah; Owen, Roger; Yarnold, John; Rothkamm, Kai

    2011-01-01

    Purpose: The aim of this study was to compare inter-individual and inter-cell type variation in DNA double-strand break (DSB) repair following in vivo irradiation of human skin. Materials and methods: Duplicate 4 mm core biopsies of irradiated and unirradiated skin were collected from 35 patients 24 h after 4 Gy exposure using 6 MeV electrons. Residual DSB were quantified by scoring 53BP1 foci in dermal fibroblasts, endothelial cells, superficial keratinocytes and basal epidermal cells. Results: Coefficients of inter-individual variation for levels of residual foci 24 h after in vivo irradiation of skin were 39.9% in dermal fibroblasts, 44.3% in endothelial cells, 32.9% in superficial keratinocytes and 46.4% in basal epidermal cells (p < 0.001, ANOVA). In contrast, the coefficient of inter-cell type variation for residual foci levels was only 11.3% in human skin between the different epidermal and dermal cells (p = 0.034, ANOVA). Foci levels between the different skin cell types were correlated (Pearson's R = 0.855-0.955, p < 0.001). Conclusions: Patient-specific factors appear to be more important than cell type-specific factors in determining residual foci levels following in vivo irradiation of human skin.

  6. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo

    Science.gov (United States)

    Popov, Alexey P.; Bykov, Alexander V.; Meglinski, Igor V.

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters.

  7. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J [Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin (Germany); Gonchukov, S A [National Research Nuclear University ' ' MEPhI' ' (Russian Federation); Koenig, K [JenLab GmbH, Schillerstr. 1, 07745 Jena (Germany)

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  8. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Science.gov (United States)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  9. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    International Nuclear Information System (INIS)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J; Gonchukov, S A; Koenig, K

    2014-01-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  10. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  11. Ex vivo study of the home-use TriPollar RF device using an experimental human skin model.

    Science.gov (United States)

    Boisnic, Sylvie; Branchet, Marie Christine

    2010-09-01

    A wide variety of professional radio frequency (RF) aesthetic treatments for anti-aging are available aiming at skin tightening. A new home-use RF device for facial treatments has recently been developed based on TriPollar technology. To evaluate the mechanism of the new home-use device, in the process of collagen remodeling, using an ex vivo skin model. Human skin samples were collected in order to evaluate the anti-aging effect of a home-use device for facial treatments on an ex vivo human skin model. Skin tightening was evaluated by dermal histology, quantitative analysis of collagen fibers and dosage of collagen synthesis. Significant collagen remodeling following RF treatment with the device was found in the superficial and mid-deep dermis. Biochemical measurement of newly synthesized collagen showed an increase of 41% in the treated samples as compared to UV-aged control samples. The new home-use device has been demonstrated to affect significant collagen remodeling, in terms of the structural and biochemical improvement of dermal collagen on treated skin samples.

  12. In vivo THz imaging of human skin: Accounting for occlusion effects.

    Science.gov (United States)

    Sun, Qiushuo; Parrott, Edward P J; He, Yuezhi; Pickwell-MacPherson, Emma

    2018-02-01

    In vivo terahertz (THz) imaging of human skin needs to be done in reflection geometry due to the high attenuation of THz light by water in the skin. To aid the measurement procedure, there is typically an imaging window onto which the patient places the area of interest. The window enables better pulse alignment and helps keep the patient correctly positioned during the measurement. In this paper, we demonstrate how the occlusion caused by the skin contact with the imaging window during the measurement affects the THz response. By studying both rapid point measurements and imaging over an area of a human volar forearm, we find that even 5 seconds of occlusion affects the THz response. As the occlusion time increases, the skin surface water content increases, resulting in the reduction of the amplitude of the reflected THz pulse, especially in the first 3 minutes. Furthermore, it was found that the refractive index of the volar forearm increased by 10% to 15% after 20 minutes of occlusion. In this work, we examine and propose a model for the occlusion effects due to the quartz window with a view to compensating for its influence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...... graft only. The study demonstrates limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo....

  14. Development, standardization and testing of a bacterial wound infection model based on ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Christoph Schaudinn

    Full Text Available Current research on wound infections is primarily conducted on animal models, which limits direct transferability of these studies to humans. Some of these limitations can be overcome by using-otherwise discarded-skin from cosmetic surgeries. Superficial wounds are induced in fresh ex vivo skin, followed by intradermal injection of Pseudomonas aeruginosa under the wound. Subsequently, the infected skin is incubated for 20 hours at 37°C and the CFU/wound are determined. Within 20 hours, the bacteria count increased from 107 to 109 bacteria per wound, while microscopy revealed a dense bacterial community in the collagen network of the upper wound layers as well as numerous bacteria scattered in the dermis. At the same time, IL-1alpha and IL-1beta amounts increased in all infected wounds, while-due to bacteria-induced cell lysis-the IL-6 and IL-8 concentrations rose only in the uninfected samples. High-dosage ciprofloxacin treatment resulted in a decisive decrease in bacteria, but consistently failed to eradicate all bacteria. The main benefits of the ex vivo wound model are the use of healthy human skin, a quantifiable bacterial infection, a measureable donor-dependent immune response and a good repeatability of the results. These properties turn the ex vivo wound model into a valuable tool to examine the mechanisms of host-pathogen interactions and to test antimicrobial agents.

  15. In vitro-in vivo correlation in skin permeation.

    Science.gov (United States)

    Mohammed, D; Matts, P J; Hadgraft, J; Lane, M E

    2014-02-01

    In vitro skin permeation studies have been used extensively in the development and optimisation of delivery of actives in vivo. However, there are few reported correlations of such in vitro studies with in vivo data. The aim of this study was to investigate the skin permeation of a model active, niacinamide, both in vitro and in vivo. Conventional diffusion cell studies were conducted in human skin to determine niacinamide permeation from a range of vehicles which included dimethyl isosorbide (DMI), propylene glycol (PG), propylene glycol monolaurate (PGML), N-methyl 2-pyrrolidone (NMP), Miglyol 812N® (MG), and mineral oil (MO). Single, binary or ternary systems were examined. The same vehicles were subsequently examined to investigate niacinamide delivery in vivo. For this proof-of-concept study one donor was used for the in vitro studies and one volunteer for the in vivo investigations to minimise biovariability. Analysis of in vitro samples was conducted using HPLC and in vivo uptake of niacinamide was evaluated using Confocal Raman spectroscopy (CRS). The amount of niacinamide permeated through skin in vitro was linearly proportional to the intensity of the niacinamide signal determined in the stratum corneum in vivo. A good correlation was observed between the signal intensities of selected vehicles and niacinamide signal intensity. The findings provide further support for the use of CRS to monitor drug delivery into and across the skin. In addition, the results highlight the critical role of the vehicle and its disposition in skin for effective dermal delivery.

  16. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.

    Science.gov (United States)

    Parra, Alexander; Clares, Beatriz; Rosselló, Ana; Garduño-Ramírez, María L; Abrego, Guadalupe; García, María L; Calpena, Ana C

    2016-03-30

    The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. On in-vivo skin topography metrology and replication techniques

    International Nuclear Information System (INIS)

    Rosen, B-G; Blunt, L; Thomas, T R

    2005-01-01

    Human skin metrology is an area of growing interest for many disciplines both in research and for commercial purposes. Changes in the skin topography are an early stage diagnosis tool not only for diseases but also give indication of the response to medical and cosmetic treatment. This paper focuses on the evaluation of in vivo and in vitro methodologies for accurate measurements of skin and outlines the quantitative characterisation of the skin topography. The study shows the applicability of in-vivo skin topography characterisation and also the advantages and limitations compared to conventional replication techniques. Finally, aspects of stripe projection methodology and 3D characterisation are discussed as a background to the proposed methodology in this paper

  18. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin.

    Science.gov (United States)

    Balu, Mihaela; Lentsch, Griffin; Korta, Dorota Z; König, Karsten; Kelly, Kristen M; Tromberg, Bruce J; Zachary, Christopher B

    2017-08-01

    Improvements in skin appearance resulting from treatment with fractionated picosecond-lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non-invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome. The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high-resolution, label-free imaging technique, to characterize in vivo the skin response to a fractionated non-ablative picosecond-laser treatment. Two areas on the arm of a volunteer were treated with a fractionated picosecond laser at the Dermatology Clinic, UC Irvine. The skin response to treatment was imaged in vivo with a clinical MPM-based tomograph at 3 hours and 24 hours after treatment and seven additional time points over a 4-week period. MPM revealed micro-injuries present in the epidermis. Pigmented cells were particularly damaged in the process, suggesting that melanin is likely the main absorber for laser induced optical breakdown. Damaged individual cells were distinguished as early as 3 hours post pico-laser treatment with the 532 nm wavelength, and 24 hours post-treatment with both 532 and 1064 nm wavelengths. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. After 24 hours of treatment, inflammatory cells were imaged in the proximity of epidermal micro-injuries. The epidermal injuries were exfoliated over a 4-week period. This observational and descriptive pilot study demonstrates that in vivo MPM imaging can be used non-invasively to provide label-free contrast for describing changes in human skin following a fractionated non-ablative laser treatment. The results presented in this study represent the groundwork for future longitudinal investigations on an expanded number of subjects to understand the response to treatment

  19. Microdialysis of the interstitial water space in human skin in vivo

    DEFF Research Database (Denmark)

    Petersen, L J; Kristensen, J K; Bülow, J

    1992-01-01

    The purpose of this study was to evaluate the usefulness of a microdialysis technique for measurement of substances in the interstitial water space in intact human skin. Glucose was selected to validate the method. The cutaneous glucose concentration was measured by microdialysis and compared...... to that in venous blood. Single dialysis fibers (length 20 mm, 2,000 Da molecular weight cutoff) were glued to nylon tubings and inserted in forearm skin by means of a fine needle. Dialysis fibers were inserted in duplicate. Seven subjects were investigated after an overnight fast. Intradermal position...... of the dialysis probes was established by C-mode ultrasound scanning. The implantation trauma lasted 90-135 min as measured by laser Doppler flowmetry. Each dialysis fiber was calibrated in vivo by perfusing it with four to five different glucose concentrations. The perfusion rate was 3 microliters...

  20. Using a portable terahertz spectrometer to measure the optical properties of in vivo human skin

    Science.gov (United States)

    Echchgadda, Ibtissam; Grundt, Jessica A.; Tarango, Melissa; Ibey, Bennett L.; Tongue, Thomas; Liang, Min; Xin, Hao; Wilmink, Gerald J.

    2013-12-01

    Terahertz (THz) time-domain spectroscopy systems permit the measurement of a tissue's hydration level. This feature makes THz spectrometers excellent tools for the noninvasive assessment of skin; however, current systems are large, heavy and not ideal for clinical settings. We previously demonstrated that a portable, compact THz spectrometer permitted measurement of porcine skin optical properties that were comparable to those collected with conventional systems. In order to move toward human use of this system, the goal for this study was to measure the absorption coefficient (μa) and index of refraction (n) of human subjects in vivo. Spectra were collected from 0.1 to 2 THz, and measurements were made from skin at three sites: the palm, ventral and dorsal forearm. Additionally, we used a multiprobe adapter system to measure each subject's skin hydration levels, transepidermal water loss, and melanin concentration. Our results suggest that the measured optical properties varied considerably for skin tissues that exhibited dissimilar hydration levels. These data provide a framework for using compact THz spectrometers for clinical applications.

  1. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    Science.gov (United States)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  2. The isolated perfused human skin flap model: A missing link in skin penetration studies?

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Flaten, Gøril Eide; Holsæter, Ann Mari; Škalko-Basnet, Nataša

    2017-01-01

    Development of effective (trans)dermal drug delivery systems requires reliable skin models to evaluate skin drug penetration. The isolated perfused human skin flap remains metabolically active tissue for up to 6h during in vitro perfusion. We introduce the isolated perfused human skin flap as a close-to-in vivo skin penetration model. To validate the model's ability to evaluate skin drug penetration the solutions of a hydrophilic (calcein) and a lipophilic (rhodamine) fluorescence marker were applied. The skin flaps were perfused with modified Krebs-Henseleit buffer (pH7.4). Infrared technology was used to monitor perfusion and to select a well-perfused skin area for administration of the markers. Flap perfusion and physiological parameters were maintained constant during the 6h experiments and the amount of markers in the perfusate was determined. Calcein was detected in the perfusate, whereas rhodamine was not detectable. Confocal images of skin cross-sections shoved that calcein was uniformly distributed through the skin, whereas rhodamine accumulated in the stratum corneum. For comparison, the penetration of both markers was evaluated on ex vivo human skin, pig skin and cellophane membrane. The proposed perfused flap model enabled us to distinguish between the penetrations of the two markers and could be a promising close-to-in vivo tool in skin penetration studies and optimization of formulations destined for skin administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold.

    Science.gov (United States)

    Mazlyzam, A L; Aminuddin, B S; Fuzina, N H; Norhayati, M M; Fauziah, O; Isa, M R; Saim, L; Ruszymah, B H I

    2007-05-01

    Our aim of this study was to develop a new methodology for constructing a bilayer human skin equivalent to create a more clinical compliance skin graft composite for the treatment of various skin defects. We utilized human plasma derived fibrin as the scaffold for the development of a living bilayer human skin equivalent: fibrin-fibroblast and fibrin-keratinocyte (B-FF/FK SE). Skin cells from six consented patients were culture-expanded to passage 1. For B-FF/FK SE formation, human fibroblasts were embedded in human fibrin matrix and subsequently another layer of human keratinocytes in human fibrin matrix was stacked on top. The B-FF/FK SE was then transplanted to athymic mice model for 4 weeks to evaluate its regeneration and clinical performance. The in vivo B-FF/FK SE has similar properties as native human skin by histological analysis and expression of basal Keratin 14 gene in the epidermal layer and Collagen type I gene in the dermal layer. Electron microscopy analysis of in vivo B-FF/FK SE showed well-formed and continuous epidermal-dermal junction. We have successfully developed a technique to engineer living bilayer human skin equivalent using human fibrin matrix. The utilization of culture-expanded human skin cells and fibrin matrix from human blood will allow a fully autologous human skin equivalent construction.

  4. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    International Nuclear Information System (INIS)

    Woo June Choi; Wang, R K

    2014-01-01

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  5. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  6. Thermal Response of In Vivo Human Skin to Fractional Radiofrequency Microneedle Device

    Directory of Open Access Journals (Sweden)

    Woraphong Manuskiatti

    2016-01-01

    Full Text Available Background. Fractional radiofrequency microneedle system (FRMS is a novel fractional skin resurfacing system. Data on thermal response to this fractional resurfacing technique is limited. Objectives. To investigate histologic response of in vivo human skin to varying energy settings and pulse stacking of a FRMS in dark-skinned subjects. Methods. Two female volunteers who were scheduled for abdominoplasty received treatment with a FRMS with varying energy settings at 6 time periods including 3 months, 1 month, 1 week, 3 days, 1 day, and the time immediately before abdominoplasty. Biopsy specimens were analyzed using hematoxylin and eosin (H&E, Verhoeff-Van Gieson (VVG, colloidal iron, and Fontana-Masson stain. Immunohistochemical study was performed by using Heat Shock Protein 70 (HSP70 antibody and collagen III monoclonal antibody. Results. The average depth of radiofrequency thermal zone (RFTZ ranged from 100 to 300 μm, correlating with energy levels. Columns of cell necrosis and collagen denaturation followed by inflammatory response were initially demonstrated, with subsequent increasing of mucin at 1 and 3 months after treatment. Immunohistochemical study showed positive stain with HSP70. Conclusion. A single treatment with a FRMS using appropriate energy setting induces neocollagenesis. This wound healing response may serve as a mean to improve the appearance of photodamaged skin and atrophic scars.

  7. Percutaneous absorption and skin decontamination of PCBs: In vitro studies with human skin and in vivo studies in the rhesus monkey

    International Nuclear Information System (INIS)

    Wester, R.C.; Maibach, H.I.; Bucks, D.A.; McMaster, J.; Mobayen, M.; Sarason, R.; Moore, A.

    1990-01-01

    Knowledge of the entry of polychlorinated biphenyls through the skin into the body and subsequent disposition aids estimation of potential for human health hazard. [14C]Aroclor 1242 and [14C]Aroclor 1254 were separately administered intravenously and topically to rhesus monkeys. Following iv administration, 30-d excretion was 39.4 +/- 5.9% urine and 16.1 +/- 0.8% feces (total 55.5 +/- 5.1%) for Aroclor 1242, and 7.0 +/- 2.2% urine and 19.7 +/- 5.8% feces (total 26.7 +/- 7.5%) for Aroclor 1254. Mineral oil and trichlorobenzene are common PCB cosolvents in transformers. Skin absorption of Aroclor 1242 was 20.4 +/- 8.5% formulated in mineral oil and 18.0 +/- 3.8% in trichlorobenzene (p greater than .05). Absorption of Aroclor 1254 was 20.8 +/- 8.3% in mineral oil and 14.6 +/- 3.6% in trichlorobenzene (p greater than .05). PCBs are thus absorbed through skin, and excretion from the body is slow. Vehicle (trichlorobenzene or mineral oil) did not affect percutaneous absorption. In vitro skin absorption in human cadaver skin did not correlate with in vivo findings. This was due to lack of PCB partition from skin into the water receptor fluid, even with addition of 6% Oleth 20 (Volpo 20) solubilizer. Skin decontamination of PCBs showed soap and water to be as effective as or better than the solvent ethanol, mineral oil, and trichlorobenzene in removing PCBs from skin. There is a dynamic time lapse for PCBs between initial skin contact and skin absorption (irreversible removal). Thus initially most PCBs could be removed from skin, but this ability decreased with time to the point where at 24 h only about 25% of the initial PCB skin dose could be recovered with skin washing

  8. Intradermal indocyanine green for in vivo fluorescence laser scanning microscopy of human skin: a pilot study.

    Directory of Open Access Journals (Sweden)

    Constanze Jonak

    Full Text Available BACKGROUND: In clinical diagnostics, as well as in routine dermatology, the increased need for non-invasive diagnosis is currently satisfied by reflectance laser scanning microscopy. However, this technique has some limitations as it relies solely on differences in the reflection properties of epidermal and dermal structures. To date, the superior method of fluorescence laser scanning microscopy is not generally applied in dermatology and predominantly restricted to fluorescein as fluorescent tracer, which has a number of limitations. Therefore, we searched for an alternative fluorophore matching a novel skin imaging device to advance this promising diagnostic approach. METHODOLOGY/PRINCIPAL FINDINGS: Using a Vivascope®-1500 Multilaser microscope, we found that the fluorophore Indocyanine-Green (ICG is well suited as a fluorescent marker for skin imaging in vivo after intradermal injection. ICG is one of few fluorescent dyes approved for use in humans. Its fluorescence properties are compatible with the application of a near-infrared laser, which penetrates deeper into the tissue than the standard 488 nm laser for fluorescein. ICG-fluorescence turned out to be much more stable than fluorescein in vivo, persisting for more than 48 hours without significant photobleaching whereas fluorescein fades within 2 hours. The well-defined intercellular staining pattern of ICG allows automated cell-recognition algorithms, which we accomplished with the free software CellProfiler, providing the possibility of quantitative high-content imaging. Furthermore, we demonstrate the superiority of ICG-based fluorescence microscopy for selected skin pathologies, including dermal nevi, irritant contact dermatitis and necrotic skin. CONCLUSIONS/SIGNIFICANCE: Our results introduce a novel in vivo skin imaging technique using ICG, which delivers a stable intercellular fluorescence signal ideal for morphological assessment down to sub-cellular detail. The application of

  9. Effects of various vehicles on skin hydration in vivo.

    Science.gov (United States)

    Wiedersberg, S; Leopold, C S; Guy, R H

    2009-01-01

    The stratum corneum, the outermost layer of the skin, regulates the passive loss of water to the environment. Furthermore, it is well accepted that drug penetration is influenced by skin hydration, which may be manipulated by the application of moisturizing or oleaginous vehicles. Measurements of transepidermal water loss (TEWL), and of skin hydration using a corneometer, were used to assess the effect of different vehicles on stratum corneum barrier function in vivo in human volunteers. A microemulsion significantly increased skin hydration relative to a reference vehicle based on medium chain triglycerides; in contrast, Transcutol(R) lowered skin hydration. TEWL measurements confirmed these observations. Copyright 2009 S. Karger AG, Basel.

  10. Dermal uptake and percutaneous penetration of ten flame retardants in a human skin ex vivo model

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Vorkamp, Katrin; Jensen, Niels Martin

    2016-01-01

    The dermal uptake and percutaneous penetration of ten organic flame retardants was measured using an ex vivo human skin model. The studied compounds were DBDPE, BTBPE, TBP-DBPE, EH-TBB, BEH-TEBP, α, β and γ-HBCDD as well as syn- and anti-DDC-CO. Little or none of the applied flame retardants...

  11. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    Science.gov (United States)

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human

  12. Polarimetry based partial least square classification of ex vivo healthy and basal cell carcinoma human skin tissues.

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ikram, Masroor

    2016-06-01

    Optical polarimetry was employed for assessment of ex vivo healthy and basal cell carcinoma (BCC) tissue samples from human skin. Polarimetric analyses revealed that depolarization and retardance for healthy tissue group were significantly higher (ppolarimetry together with PLS statistics hold promise for automated pathology classification. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 Tesla.

    Science.gov (United States)

    Laistler, Elmar; Poirier-Quinot, Marie; Lambert, Simon A; Dubuisson, Rose-Marie; Girard, Olivier M; Moser, Ewald; Darrasse, Luc; Ginefri, Jean-Christophe

    2015-02-01

    To demonstrate the feasibility of a highly sensitive superconducting surface coil for microscopic MRI of the human skin in vivo in a clinical 1.5 Tesla (T) scanner. A 12.4-mm high-temperature superconducting coil was used at 1.5T for phantom and in vivo skin imaging. Images were inspected to identify fine anatomical skin structures. Signal-to-noise ratio (SNR) improvement by the high-temperature superconducting (HTS) coil, as compared to a commercial MR microscopy coil was quantified from phantom imaging; the gain over a geometrically identical coil made from copper (cooled or not) was theoretically deduced. Noise sources were identified to evaluate the potential of HTS coils for future studies. In vivo skin images with isotropic 80 μm resolution were demonstrated revealing fine anatomical structures. The HTS coil improved SNR by a factor 32 over the reference coil in a nonloading phantom. For calf imaging, SNR gains of 380% and 30% can be expected over an identical copper coil at room temperature and 77 K, respectively. The high sensitivity of HTS coils allows for microscopic imaging of the skin at 1.5T and could serve as a tool for dermatology in a clinical setting. © 2013 Wiley Periodicals, Inc.

  14. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Science.gov (United States)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  15. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Directory of Open Access Journals (Sweden)

    P. Behm

    2017-11-01

    Full Text Available We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  16. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 3D bioprinting of functional human skin: production and in vivo analysis.

    Science.gov (United States)

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  18. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  19. Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo.

    Science.gov (United States)

    Mohiti-Asli, M; Saha, S; Murphy, S V; Gracz, H; Pourdeyhimi, B; Atala, A; Loboa, E G

    2017-02-01

    This article presents successful incorporation of ibuprofen in polylactic acid (PLA) nanofibers to create scaffolds for the treatment of both acute and chronic wounds. Nanofibrous PLA scaffolds containing 10, 20, or 30 wt % ibuprofen were created and ibuprofen release profiles quantified. In vitro cytotoxicity to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) of the three scaffolds with varying ibuprofen concentrations were evaluated and compared to pure PLA nanofibrous scaffolds. Thereafter, scaffolds loaded with ibuprofen at the concentration that promoted human skin cell viability and proliferation (20 wt %) were evaluated in vivo in nude mice using a full thickness skin incision model to determine the ability of these scaffolds to promote skin regeneration and/or assist with scarless healing. Both acellular and HEK and HDF cell-seeded 20 wt % ibuprofen loaded nanofibrous bandages reduced wound contraction compared with wounds treated with Tegaderm™ and sterile gauze. Newly regenerated skin on wounds treated with cell-seeded 20 wt % ibuprofen bandages exhibited significantly greater blood vessel formation relative to acellular ibuprofen bandages. We have found that degradable anti-inflammatory scaffolds containing 20 wt % ibuprofen promote human skin cell viability and proliferation in vitro, reduce wound contraction in vivo, and when seeded with skin cells, also enhance new blood vessel formation. The approaches and results reported here hold promise for multiple skin tissue engineering and wound healing applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 327-339, 2017. © 2015 Wiley Periodicals, Inc.

  20. Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin.

    Science.gov (United States)

    Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D

    2018-01-01

    The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.

  1. Analysis of human skin tissue by millimeter-wave reflectometry

    NARCIS (Netherlands)

    Smulders, P.F.M.

    2013-01-01

    Background/pupose: Millimeter-wave reflectometry is a potentially interesting technique to analyze the human skin in vivo in order to determine the water content locally in the skin. Purpose of this work is to investigate the possibility of skin-tissue differentiation. In addition, it addresses the

  2. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    Science.gov (United States)

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-09-15

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  3. In vivo analysis of tissue by Raman microprobe: examination of human skin lesions and esophagus Barrett's mucosa on an animal model

    Science.gov (United States)

    Tfayli, Ali; Piot, Olivier; Derancourt, Sylvie; Cadiot, Guillaume; Diebold, Marie D.; Bernard, Philippe; Manfait, Michel

    2006-02-01

    In the last few years, Raman spectroscopy has been increasingly used for the characterization of normal and pathological tissues. A new Raman system, constituted of optic fibers bundle coupled to an axial Raman spectrometer (Horiba Jobin Yvon SAS), was developed for in vivo investigations. Here, we present in vivo analysis on two tissues: human skin and esophagus mucosa on a rat model. The skin is a directly accessible organ, representing a high diversity of lesions and cancers. Including malignant melanoma, basal cell carcinoma and the squamous cell carcinoma, skin cancer is the cancer with the highest incidence worldwide. Several Raman investigations were performed to discriminate and classify different types of skin lesions, on thin sections of biopsies. Here, we try to characterize in vivo the different types of skin cancers in order to be able to detect them in their early stages of development and to define precisely the exeresis limits. Barrett's mucosa was also studied by in vivo examination of rat's esophagus. Barrett's mucosa, induced by gastro-esophageal reflux, is a pretumoral state that has to be carefully monitored due to its high risk of evolution in adenocarcinoma. A better knowledge of the histological transformation of esophagus epithelium in a Barrett's type will lead to a more efficient detection of the pathology for its early diagnosis. To study these changes, an animal model (rats developing Barrett's mucosa after duodenum - esophagus anastomosis) was used. Potential of vibrational spectroscopy for Barrett's mucosa identification is assessed on this model.

  4. Analysis of the in vivo confocal Raman spectral variability in human skin

    Science.gov (United States)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  5. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    Science.gov (United States)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  6. Effectiveness of hand washing on the removal of iron oxide nanoparticles from human skin ex vivo.

    Science.gov (United States)

    Lewinski, Nastassja A; Berthet, Aurélie; Maurizi, Lionel; Eisenbeis, Antoine; Hopf, Nancy B

    2017-08-01

    In this study, the effectiveness of washing with soap and water in removing nanoparticles from exposed skin was investigated. Dry, nanoscale hematite (α-Fe 2 O 3 ) or maghemite (γ-Fe 2 O 3 ) powder, with primary particle diameters between 20-30 nm, were applied to two samples each of fresh and frozen ex vivo human skin in two independent experiments. The permeation of nanoparticles through skin, and the removal of nanoparticles after washing with soap and water were investigated. Bare iron oxide nanoparticles remained primarily on the surface of the skin, without penetrating beyond the stratum corneum. Skin exposed to iron oxide nanoparticles for 1 and 20 hr resulted in removal of 85% and 90%, respectively, of the original dose after washing. In the event of dermal exposure to chemicals, removal is essential to avoid potential local irritation or permeation across skin. Although manufactured at an industrial scale and used extensively in laboratory experiments, limited data are available on the removal of engineered nanoparticles after skin contact. Our finding raises questions about the potential consequences of nanoparticles remaining on the skin and whether alternative washing methods should be proposed. Further studies on skin decontamination beyond use of soap and water are needed to improve the understanding of the potential health consequences of dermal exposure to nanoparticles.

  7. Expression of intercellular adhesion molecule-1 in UVA-irradiated human skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Treina, G.; Scaletta, C.; Frenk, E.; Applegate, L.A.; Fourtanier, A.; Seite, S.

    1996-01-01

    Ultraviolet A (UVA) radiation represents an important oxidative stress to human skin and certain forms of oxidative stress have been shown to modulate intercellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 has been shown to play an important part in many immune reactions and the perturbations of this molecule by ultraviolet radiation could have implications in many inflammatory responses. An enhancement immunohistochemical method with avidin/biotin was used for analysing the early effects of UVA radiation on human cell cultures and human skin (340-400 nm). Both in vitro and in vivo data show that ICAM-1 staining in epidermal keratinocytes, which was expressed constitutively, decreased in a UVA dose-dependent manner. The decrease was most noted at 3-6 h following UVA radiation with some ICAM-1 staining returning by 48 h post-UVA. ICAM-1 positive staining in the dermis was specific for vascular structures and was increased 24 h after UVA radiation. Cultured dermal fibroblasts exhibited ICAM-1 staining which increased slightly within 6-48 h post-UVA radiation. As epidermal ICAM-1 expression is depleted following UVA radiation and dermal expression increases due to an increase in the vascular structures, ICAM-1 provides a valuable marker following UVA radiation in human skin that can be readily measured in situ. (author)

  8. Reconstructing in-vivo reflectance spectrum of pigmented skin lesion by Monte Carlo simulation

    Science.gov (United States)

    Wang, Shuang; He, Qingli; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2012-03-01

    In dermatology applications, diffuse reflectance spectroscopy has been extensively investigated as a promising tool for the noninvasive method to distinguish melanoma from benign pigmented skin lesion (nevus), which is concentrated with the skin chromophores like melanin and hemoglobin. We carried out a theoretical study to examine melanin distribution in human skin tissue and establish a practical optical model for further pigmented skin investigation. The theoretical simulation was using junctional nevus as an example. A multiple layer skin optical model was developed on established anatomy structures of skin, the published optical parameters of different skin layers, blood and melanin. Monte Carlo simulation was used to model the interaction between excitation light and skin tissue and rebuild the diffuse reflectance process from skin tissue. A testified methodology was adopted to determine melanin contents in human skin based on in vivo diffuse reflectance spectra. The rebuild diffuse reflectance spectra were investigated by adding melanin into different layers of the theoretical model. One of in vivo reflectance spectra from Junctional nevi and their surrounding normal skin was studied by compare the ratio between nevus and normal skin tissue in both the experimental and simulated diffuse reflectance spectra. The simulation result showed a good agreement with our clinical measurements, which indicated that our research method, including the spectral ratio method, skin optical model and modifying the melanin content in the model, could be applied in further theoretical simulation of pigmented skin lesions.

  9. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.

    Science.gov (United States)

    Zahouani, H; Pailler-Mattei, C; Sohm, B; Vargiolu, R; Cenizo, V; Debret, R

    2009-02-01

    The study of changes in skin structure with age is becoming all the more important with the increase in life. The atrophy that occurs during aging is accompanied by more profound changes, with a loss of organization within the elastic collagen network and alterations in the basal elements. The aim of this study is to present a method to determine the mechanical properties of total human skin in vivo compared with dermal equivalents (DEs) using indentation and static friction tests. A new bio-tribometer working at a low contact pressure for the characterization the mechanical properties of the skin has been developed. This device, based on indentation and static friction tests, also allows to characterize the skin in vivo and reconstructed DEs in a wide range of light contact forces, stress and strain. This original bio-tribometer shows the ability to assess the skin elasticity and friction force in a wide range of light normal load (0.5-2 g) and low contact pressure (0.5-2 kPa). The results obtained by this approach show identical values of the Young's modulus E(*) and the shear modulus G(*) of six DEs obtained from a 62-year-old subject (E(*)=8.5+/-1.74 kPa and G(*)=3.3+/-0.46 kPa) and in vivo total skin of 20 subjects aged 55 to 70 years (E(*)=8.3+/-2.1 kPa, G(*)=2.8+/-0.8 kpa).

  10. Isolation of Human Skin Dendritic Cell Subsets.

    Science.gov (United States)

    Gunawan, Merry; Jardine, Laura; Haniffa, Muzlifah

    2016-01-01

    Dendritic cells (DCs) are specialized leukocytes with antigen-processing and antigen-presenting functions. DCs can be divided into distinct subsets by anatomical location, phenotype and function. In human, the two most accessible tissues to study leukocytes are peripheral blood and skin. DCs are rare in human peripheral blood (skin covering an average total surface area of 1.8 m(2) has approximately tenfold more DCs than the average 5 L of total blood volume (Wang et al., J Invest Dermatol 134:965-974, 2014). DCs migrate spontaneously from skin explants cultured ex vivo, which provide an easy method of cell isolation (Larsen et al., J Exp Med 172:1483-1493, 1990; Lenz et al., J Clin Invest 92:2587-2596, 1993; Nestle et al., J Immunol 151:6535-6545, 1993). These factors led to the extensive use of skin DCs as the "prototype" migratory DCs in human studies. In this chapter, we detail the protocols to isolate DCs and resident macrophages from human skin. We also provide a multiparameter flow cytometry gating strategy to identify human skin DCs and to distinguish them from macrophages.

  11. In vivo transformation of human skin with human papillomavirus type 11 from condylomatot acuminata

    International Nuclear Information System (INIS)

    Kreider, J.W.; Howett, M.K.; Lill, N.L.; Bartlett, G.L.; Zaino, R.J.; Sedlacek, T.V.; Mortel, R.

    1986-01-01

    Human papillomaviruses (HPVs) have been implicated in the development of a number of human malignancies, but direct tests of their involvement have not been possible. The authors describe a system in which human skin from various skin from various sites was infected with HPV type 11 (HPV-11) extracted from vulvar condylomata and was grafted beneath the renal capsule of athymic mice. Most of the skin grafts so treated underwent morphological transformation, resulting in the development of condylomata identical to those which occur spontaneously in patients. Foreskins responded with the most vigorous proliferative response to HPV-11. The lesions produced the characteristic intranuclear group-specific antigen of papillomaviruses. Both dot blot and Southern blot analysis of DNA from the lesions revealed the presence of HPV-11 DNA in the transformed grafts. These results demonstrate the first laboratory system for the study of the interaction of human skin with an HPV. The method may be useful in understanding the mechanisms of HPV transformation and replication and is free of the ethical restraints which have impeded study. This system will allow the direct study of factors which permit neoplastic progression of HPV-induced cutaneous lesions in human tissues

  12. In vivo spectroscopy of healthy skin and pathology in terahertz frequency range

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Gavdush, Arseniy A; Chernomyrdin, Nikita V; Karasik, Valeriy E; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    Biomedical applications of terahertz (THz) technology and, in particular, THz pulsed spectroscopy have attracted considerable interest in the scientific community. A lot of papers have been dedicated to studying the ability for human disease diagnosis, including the diagnosis of human skin cancers. In this paper we have studied the THz material parameters and THz dielectric properties of human skin and pathology in vivo, and THz pulsed spectroscopy has been utilized for this purpose. We have found a contrast between material parameters of basal cell carcinoma and healthy skin, and we have also compared the THz material parameters of dysplastic and non-dysplastic pigmentary nevi in order to study the ability for early melanoma diagnosis. Significant differences between the THz material parameters of healthy skin and pathology have been detected, thus, THz pulsed spectroscopy promises to be become an effective tool for non-invasive diagnosis of skin neoplasms

  13. Diffusion of [2-14C]diazepam across hairless mouse skin and human skin

    International Nuclear Information System (INIS)

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-01-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. [ 14 C]Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the 14 C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber

  14. In-vitro percutaneous absorption of losartan potassium in human skin and prediction of human skin permeability

    Directory of Open Access Journals (Sweden)

    Petkar K.C.

    2007-05-01

    Full Text Available This study describes the feasibility of transdermal controlled administration of Losartan potassium (LP across human cadaver skin. Study also defines the influence of capsaicin, sex and site of application on permeation characteristics and determined an appropriate animal model for human skin permeability. The permeation of LP of various formulations was studied using Keshary-Chein diffusion cell. Optimized controlled formulation (without capsaicin released 42.17% (±1.85 of LP in 12 hr whereas treatment formulation (with capsaicin 0.028 % w/v released 48.94% (±1.71 of LP with significant difference on null hypothesis. Influence of sex showed statistically significant difference for permeation of LP through male and female rats, as well as male and female mice across both the abdominal and dorsal sides of the skin (p<0.05. Similarly statistically significant differences were noted for permeation of LP across male and female mice abdomen-dorsal, but not for male rat abdomen-dorsal and female rat abdomen-dorsal. Furthermore, in-vitro permeation of LP across human skin was compared with the permeation across rat and mice skins. Male rat and male mice dorsal skin was found to have closer permeability characteristics to human than other skin membranes, but the Factor of Difference values were < 3 for all membranes which were used suggesting the membranes are good models for human skin permeability. In conclusion simple transdermal adhesive patches formulations incorporating high molecular weight of LP can deliver a dose in-vivo and proposed model skin membranes can be utilized for future pharmacokineic and toxicokinetic studies as well as metabolism studies of LP

  15. Skin metabolism of aminophenols: Human keratinocytes as a suitable in vitro model to qualitatively predict the dermal transformation of 4-amino-2-hydroxytoluene in vivo

    International Nuclear Information System (INIS)

    Goebel, C.; Hewitt, N.J.; Kunze, G.; Wenker, M.; Hein, D.W.; Beck, H.; Skare, J.

    2009-01-01

    4-Amino-2-hydroxytolune (AHT) is an aromatic amine ingredient in oxidative hair colouring products. As skin contact occurs during hair dyeing, characterisation of dermal metabolism is important for the safety assessment of this chemical class. We have compared the metabolism of AHT in the human keratinocyte cell line HaCaT with that observed ex-vivo in human skin and in vivo (topical application versus oral (p.o.) and intravenous (i.v.) route). Three major metabolites of AHT were excreted, i.e. N-acetyl-AHT, AHT-sulfate and AHT-glucuronide. When 12.5 mg/kg AHT was applied topically, the relative amounts of each metabolite were altered such that N-acetyl-AHT product was the major metabolite (66% of the dose in comparison with 37% and 32% of the same applied dose after i.v. and p.o. administration, respectively). N-acetylated products were the only metabolites detected in HaCaT cells and ex-vivo whole human skin discs for AHT and p-aminophenol (PAP), an aromatic amine known to undergo N-acetylation in vivo. Since N-acetyltransferase 1 (NAT1) is the responsible enzyme, kinetics of AHT was further compared to the standard NAT1 substrate p-aminobenzoic acid (PABA) in the HaCaT model revealing similar values for K m and V max . In conclusion NAT1 dependent dermal N-acetylation of AHT represents a 'first-pass' metabolism effect in the skin prior to entering the systemic circulation. Since the HaCaT cell model represents a suitable in vitro assay for addressing the qualitative contribution of the skin to the metabolism of topically-applied aromatic amines it may contribute to a reduction in animal testing

  16. Thyrotropin-releasing hormone (TRH promotes wound re-epithelialisation in frog and human skin.

    Directory of Open Access Journals (Sweden)

    Natalia T Meier

    Full Text Available There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression. Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters.

  17. Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin

    Science.gov (United States)

    Zhang, Guo-You; Emelianov, Vladimir; Paredes, Roberto; Debus, Sebastian; Augustin, Matthias; Funk, Wolfgang; Amaya, Enrique; Kloepper, Jennifer E.; Hardman, Matthew J.; Paus, Ralf

    2013-01-01

    There remains a critical need for new therapeutics that promote wound healing in patients suffering from chronic skin wounds. This is, in part, due to a shortage of simple, physiologically and clinically relevant test systems for investigating candidate agents. The skin of amphibians possesses a remarkable regenerative capacity, which remains insufficiently explored for clinical purposes. Combining comparative biology with a translational medicine approach, we report the development and application of a simple ex vivo frog (Xenopus tropicalis) skin organ culture system that permits exploration of the effects of amphibian skin-derived agents on re-epithelialisation in both frog and human skin. Using this amphibian model, we identify thyrotropin-releasing hormone (TRH) as a novel stimulant of epidermal regeneration. Moving to a complementary human ex vivo wounded skin assay, we demonstrate that the effects of TRH are conserved across the amphibian-mammalian divide: TRH stimulates wound closure and formation of neo-epidermis in organ-cultured human skin, accompanied by increased keratinocyte proliferation and wound healing-associated differentiation (cytokeratin 6 expression). Thus, TRH represents a novel, clinically relevant neuroendocrine wound repair promoter that deserves further exploration. These complementary frog and human skin ex vivo assays encourage a comparative biology approach in future wound healing research so as to facilitate the rapid identification and preclinical testing of novel, evolutionarily conserved, and clinically relevant wound healing promoters. PMID:24023889

  18. Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin

    Directory of Open Access Journals (Sweden)

    Paulina Carvajal-Vidal

    2017-11-01

    Full Text Available Halobetasol propionate (HB is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient’s needs, and the inflammatory characteristics of the disease.

  19. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rakesh, E-mail: rs05h@fsu.ed [Departments of Chemical Engineering and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2010-07-21

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  20. Skin age testing criteria: characterization of human skin structures by 500 MHz MRI multiple contrast and image processing

    International Nuclear Information System (INIS)

    Sharma, Rakesh

    2010-01-01

    Ex vivo magnetic resonance microimaging (MRM) image characteristics are reported in human skin samples in different age groups. Human excised skin samples were imaged using a custom coil placed inside a 500 MHz NMR imager for high-resolution microimaging. Skin MRI images were processed for characterization of different skin structures. Contiguous cross-sectional T1-weighted 3D spin echo MRI, T2-weighted 3D spin echo MRI and proton density images were compared with skin histopathology and NMR peaks. In all skin specimens, epidermis and dermis thickening and hair follicle size were measured using MRM. Optimized parameters TE and TR and multicontrast enhancement generated better MRI visibility of different skin components. Within high MR signal regions near to the custom coil, MRI images with short echo time were comparable with digitized histological sections for skin structures of the epidermis, dermis and hair follicles in 6 (67%) of the nine specimens. Skin % tissue composition, measurement of the epidermis, dermis, sebaceous gland and hair follicle size, and skin NMR peaks were signatures of skin type. The image processing determined the dimensionality of skin tissue components and skin typing. The ex vivo MRI images and histopathology of the skin may be used to measure the skin structure and skin NMR peaks with image processing may be a tool for determining skin typing and skin composition.

  1. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  2. Ex vivo human skin evaluation of localized fat reduction and anti-aging effect by TriPollar radio frequency treatments.

    Science.gov (United States)

    Boisnic, Sylvie; Branchet, Marie Christine

    2010-02-01

    A wide variety of radio frequency (RF) treatments for localized fat and cellulite reduction as well as anti-aging are available nowadays, but only a few have shown the biological mechanism responsible for the clinical results. To determine the biological mechanism of the TriPollar RF device for localized fat and cellulite reduction as well as the collagen remodeling effect. Human skin samples were collected from abdominoplasty surgery and facial lifts, in order to evaluate the lipolytic and anti-aging effects of the apollo device powered by TriPollar RF technology using an ex vivo human skin model. The anti-cellulite effect was evaluated by the dosage of released glycerol and histological analysis of the hypodermis. Skin tightening was evaluated by morphometric analysis of collagen fibers and the dosage of collagen synthesis. Following TriPollar treatment, a significant increase of glycerol release by skin samples was found. The structure of fat cells was altered in shape and a modification of the fibrous tract was also detected in the fat layer. Additional findings indicated stimulation of the dermal fibroblasts with increased collagen synthesis. The detected alteration in the hypodermal layer is manifested by fat and cellulite reduction accompanied by structural and biochemical improvement of dermal collagen, which result in overall skin tightening.

  3. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  4. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    International Nuclear Information System (INIS)

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J

    2014-01-01

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  5. Cellular features of psoriatic skin: imaging and quantification using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Teussink, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2011-01-01

    BACKGROUND: In vivo reflectance confocal microscopy (RCM) is a novel, exciting imaging technique. It provides images of cell-and tissue structures and dynamics in situ, in real time, without the need for ex vivo tissue samples. RCM visualizes the superficial part of human skin up to a depth of 250

  6. Minimally-invasive Sampling of Interleukin-1α and Interleukin-1 Receptor Antagonist from the Skin: A Systematic Review of In vivo Studies in Humans.

    Science.gov (United States)

    Falcone, Denise; Spee, Pieter; van de Kerkhof, Peter C M; van Erp, Piet E J

    2017-10-02

    Interleukin-1α (IL-1α) and its receptor antagonist IL-1RA play a pivotal role in skin homeostasis and disease. Although the use of biopsies to sample these cytokines from human skin is widely employed in dermatological practice, knowledge about less invasive, in vivo sampling methods is scarce. The aim of this study was to provide an overview of such methods by systematically reviewing studies in Medline, EMBASE, Web of Science and Cochrane Library using combinations of the terms "IL-1α", IL-1RA", "skin", "human", including all possible synonyms. Quality was assessed using the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) checklist. The search, performed on 14 October 2016, revealed 10 different sampling methods, with varying degrees of invasiveness and wide application spectrum, including assessment of both normal and diseased skin, from several body sites. The possibility to sample quantifiable amounts of cytokines from human skin with no or minimal discomfort holds promise for linking clinical outcomes to molecular profiles of skin inflammation.

  7. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Science.gov (United States)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  8. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  9. In vivo percutaneous absorption of boric acid, borax, and disodium octaborate tetrahydrate in humans compared to in vitro absorption in human skin from infinite and finite doses.

    Science.gov (United States)

    Wester, R C; Hui, X; Hartway, T; Maibach, H I; Bell, K; Schell, M J; Northington, D J; Strong, P; Culver, B D

    1998-09-01

    Literature from the first half of this century report concern for toxicity from topical use of boric acid, but assessment of percutaneous absorption has been impaired by lack of analytical sensitivity. Analytical methods in this study included inductively coupled plasma-mass spectrometry which now allows quantitation of percutaneous absorption of 10B in 10B-enriched boric acid, borax, and disodium octaborate tetrahydrate (DOT) in biological matrices. This made it possible, in the presence of comparatively large natural dietary boron intakes for the in vivo segment of this study, to quantify the boron passing through skin. Human volunteers were dosed with 10B-enriched boric acid, 5.0%, borax, 5.0%, or disodium octaborate tetrahydrate, 10%, in aqueous solutions. Urinalysis, for boron and changes in boron isotope ratios, was used to measure absorption. Boric acid in vivo percutaneous absorption was 0.226 (SD = 0.125) mean percentage dose, with flux and permeability constant (Kp) calculated at 0.009 microgram/cm2/h and 1.9 x 10(-7) cm/h, respectively. Borax absorption was 0.210 (SD = 0.194) mean percentage of dose, with flux and Kp calculated at 0.009 microgram/cm2/h and 1.8 x 10(-7) cm/h, respectively. DOT absorption was 0.122 (SD = 0.108) mean percentage, with flux and Kp calculated at 0.01 microgram/cm2/h and 1.0 x 10(-7) cm/h, respectively. Pretreatment with the potential skin irritant 2% sodium lauryl sulfate had no effect on boron skin absorption. In vitro human skin percentage of doses of boric acid absorbed were 1.2 for a 0.05% solution, 0.28 for a 0.5% solution, and 0.70 for a 5.0% solution. These absorption amounts translated into flux values of, respectively, 0.25, 0.58, and 14.58 micrograms/cm2/h and permeability constants (Kp) of 5.0 x 10(-4), 1.2 x 10(-4), and 2.9 x 10(-4) cm/h for the 0.05, 0.5, and 5.0% solutions. The above in vitro doses were at infinite, 1000 microliters/cm2 volume. At 2 microliters/cm2 (the in vivo dosing volume), flux decreased some

  10. Development and Evaluation of Lipid Nanoparticles Containing Natural Botanical Oil for Sun Protection: Characterization and in vitro and in vivo Human Skin Permeation and Toxicity.

    Science.gov (United States)

    Andréo-Filho, Newton; Bim, Antonio Vinicius Kosiski; Kaneko, Telma Mary; Kitice, Nidia Ayumi; Haridass, Isha N; Abd, Eman; Santos Lopes, Patricia; Thakur, Sachin S; Parekh, Harendra S; Roberts, Michael S; Grice, Jeffrey E; Benson, Heather A E; Leite-Silva, Vânia Rodrigues

    2018-01-01

    The use of sunscreen products is widely promoted by schools, government agencies, and health-related organizations to minimize sunburn and skin damage. In this study, we developed stable solid lipid nanoparticles (SLNs) containing the chemical UV filter octyl methoxycinnamate (OMC). In parallel, we produced similar stable SLNs in which 20% of the OMC content was replaced by the botanical urucum oil. When these SLNs were applied to the skin of human volunteers, no changes in fluorescence lifetimes or redox ratios of the endogenous skin fluorophores were seen, suggesting that the formulations did not induce toxic responses in the skin. Ex vivo (skin diffusion) tests showed no significant penetration. In vitro studies showed that when 20% of the OMC was replaced by urucum oil, there was no reduction in skin protection factor (SPF), suggesting that a decrease in the amount of chemical filter may be a viable alternative for an effective sunscreen, in combination with an antioxidant-rich vegetable oil, such as urucum. There is a strong trend towards increasing safety of sun protection products through reduction in the use of chemical UV filters. This work supports this approach by producing formulations with lower concentrations of OMC, while maintaining the SPF. Further investigations of SPF in vivo are needed to assess the suitability of these formulations for human use. © 2017 S. Karger AG, Basel.

  11. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    International Nuclear Information System (INIS)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-01-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery. (paper)

  12. Assessment of laser-induced acceleration effects in optical clearing of in vivo human skin by optical coherence tomography

    Science.gov (United States)

    Zhan, Zhigang; Wei, Huajiang; Jin, Ying

    2015-02-01

    Laser irradiation is considered to be a promising innovative technology which has been developed in an attempt to increase transdermal drug delivery. In this study, a near-infrared CW diode laser (785 nm) was applied to increase permeability of glycerol solutions in human skin in vivo and improve the optical clearing efficacy. Results show that for both 15%v/v and 30%v/v glycerol, the permeability coefficient increased significantly if the detected area of the skin tissue was treated with laser irradiation before optical clearing agents (OCAs) were applied. This study based on optical coherence tomography imaging technique and optical clearing effect finds laser irradiation a new approach for enhancing the penetration of OCAs and accelerating the rate of transdermal drug delivery.

  13. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, J.M.; Young, A.R

    2000-07-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  14. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    International Nuclear Information System (INIS)

    Sheehan, J.M.; Young, A.R.

    2000-01-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  15. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers.

    Science.gov (United States)

    Döge, Nadine; Hönzke, Stefan; Schumacher, Fabian; Balzus, Benjamin; Colombo, Miriam; Hadam, Sabrina; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Schäfer-Korting, Monika; Schindler, Anke; Rühl, Eckart; Skov, Per Stahl; Church, Martin K; Hedtrich, Sarah; Kleuser, Burkhard; Bodmeier, Roland; Vogt, Annika

    2016-11-28

    Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for

  16. A novel approach to measuring the frictional behaviour of human skin in vivo

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2012-01-01

    Friction involving human skin plays a key role in human life. The availability of a portable tribometer improves the accessibility to large number of both subjects and anatomical sites. This is the first mobile device suitable to measure skin friction with a controlled and variable normal load

  17. In vivo observation of age-related structural changes of dermal collagen in human facial skin using collagen-sensitive second harmonic generation microscope equipped with 1250-nm mode-locked Cr:Forsterite laser

    Science.gov (United States)

    Yasui, Takeshi; Yonetsu, Makoto; Tanaka, Ryosuke; Tanaka, Yuji; Fukushima, Shu-ichiro; Yamashita, Toyonobu; Ogura, Yuki; Hirao, Tetsuji; Murota, Hiroyuki; Araki, Tsutomu

    2013-03-01

    In vivo visualization of human skin aging is demonstrated using a Cr:Forsterite (Cr:F) laser-based, collagen-sensitive second harmonic generation (SHG) microscope. The deep penetration into human skin, as well as the specific sensitivity to collagen molecules, achieved by this microscope enables us to clearly visualize age-related structural changes of collagen fiber in the reticular dermis. Here we investigated intrinsic aging and/or photoaging in the male facial skin. Young subjects show dense distributions of thin collagen fibers, whereas elderly subjects show coarse distributions of thick collagen fibers. Furthermore, a comparison of SHG images between young and elderly subjects with and without a recent life history of excessive sun exposure show that a combination of photoaging with intrinsic aging significantly accelerates skin aging. We also perform image analysis based on two-dimensional Fourier transformation of the SHG images and extracted an aging parameter for human skin. The in vivo collagen-sensitive SHG microscope will be a powerful tool in fields such as cosmeceutical sciences and anti-aging dermatology.

  18. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  19. A Guide to Studying Human Hair Follicle Cycling In Vivo.

    Science.gov (United States)

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan; Kim, Moonkyu; Paus, Ralf; Plikus, Maksim V

    2016-01-01

    Hair follicles (HFs) undergo lifelong cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative "quiescence" (telogen). Given that HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. Although available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. In this article, we present such a guide, which uses objective, well-defined, and reproducible criteria, and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in suboptimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. In vivo optical coherence tomography imaging of dissolution of hyaluronic acid microneedles in human skin (Conference Presentation)

    Science.gov (United States)

    Song, Seungri; Kim, Jung Dong; Bae, Jung-hyun; Chang, Sooho; Kim, Soocheol; Lee, Hyungsuk; Jeong, Dohyeon; Kim, Hong Kee; Joo, Chulmin

    2017-02-01

    Transdermal drug delivery (TDD) has been recently highlighted as an alternative to oral delivery and hypodermic injections. Among many methods, drug delivery using a microneedle (MN) is one of the promising administration strategies due to its high skin permeability, mininal invasiveness, and ease of injection. In addition, microneedle-based TDD is explored for cosmetic and therapeutic purposes, rapidly developing market of microneedle industry for general population. To date, visualization of microneedles inserted into biological tissue has primarily been performed ex vivo. MRI, CT and ultrasound imaging do not provide sufficient spatial resolution, and optical microscopy is not suitable because of their limited imaging depth; structure of microneedles located in 0.2 1mm into the skin cannot be visulalized. Optical coherence tomography (OCT) is a non-invasive, cross-sectional optical imaging modality for biological tissue with high spatial resolution and acquisition speed. Compared with ultrasound imaging, it exhibits superior spatial resolution (1 10 um) and high sensitivity, while providing an imaging depth of biological tissue down to 1 2 mm. Here, we present in situ imaging and analysis of the penetration and dissolution characteristics of hyaluronic acid based MNs (HA-MN) with various needle heights in human skin in vivo. In contrast to other studies, we measured the actual penetration depths of the HA-MNs by considering the experimentally measured refractive index of HA in the solid state. For the dissolution dynamics of the HA-MNs, time-lapse structural alteration of the MNs could be clearly visualized, and the volumetric changes of the MNs were measured with an image analysis algorithm.

  1. Monitoring UV-induced signalling pathways in an ex vivo skin organ culture model using phospho-antibody array.

    Science.gov (United States)

    Lenain, Christelle; Gamboa, Bastien; Perrin, Agnes; Séraïdaris, Alexia; Bertino, Béatrice; Rival, Yves; Bernardi, Mathieu; Piwnica, David; Méhul, Bruno

    2018-05-01

    We investigated UV-induced signalling in an ex vivo skin organ culture model using phospho-antibody array. Phosphorylation modulations were analysed in time-course experiments following exposure to solar-simulated UV and validated by Western blot analyses. We found that UV induced P-p38 and its substrates, P-ERK1/2 and P-AKT, which were previously shown to be upregulated by UV in cultured keratinocytes and in vivo human skin. This indicates that phospho-antibody array applied to ex vivo skin organ culture is a relevant experimental system to investigate signalling events following perturbations. As the identified proteins are components of pathways implicated in skin tumorigenesis, UV-exposed skin organ culture model could be used to investigate the effect on these pathways of NMSC cancer drug candidates. In addition, we found that phospho-HCK is induced upon UV exposure, producing a new candidate for future studies investigating its role in the skin response to UV and UV-induced carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Confocal histopathology of irritant contact dermatitis in vivo and the impact of skin color (black vs white)

    NARCIS (Netherlands)

    Hicks, Shari P.; Swindells, Kirsty J.; Middelkamp-Hup, Maritza A.; Sifakis, Martine A.; González, Ernesto; González, Salvador

    2003-01-01

    BACKGROUND: The pathogenesis of irritant contact dermatitis and its modulation according to skin color is not well understood. Reflectance confocal microscopy (RCM) enables high-resolution, real-time, in-vivo imaging of human skin. OBJECTIVE: The goal of our study was to use RCM to determine whether

  3. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    Science.gov (United States)

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  4. Despite the presence of UVB-induced DNA damage, HLA-DR+ cells from ex vivo UVB-exposed human skin are able to migrate and show no impaired allostimulatory capacity

    NARCIS (Netherlands)

    Kremer, I. B.; Sylva-Steenland, R. M.; Bos, J. D.; Teunissen, M. B.

    1997-01-01

    In this study, we investigated the effect of ultraviolet B radiation on human Langerhans cell function. Normal human skin was irradiated ex vivo with single doses of ultraviolet B. For assessment of T-cell stimulatory function, cells that spontaneously migrated from epidermal sheets were used,

  5. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: Significance of the skin reservoir and prediction of systemic absorption

    International Nuclear Information System (INIS)

    Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.

    2008-01-01

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing 3 H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose. In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid

  6. Ultrasonic evaluation of local human skin anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tokar, Daniel; Převorovský, Zdeněk; Hradilová, Jana

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : anisotropy * ultrasonic testing * human skin in-vivo * fabric-fiber composite * signal processing Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Paper/324_Tokar.pdf

  7. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  8. Examination of wound healing after curettage by multiphoton tomography of human skin in vivo.

    Science.gov (United States)

    Springer, S; Zieger, M; Böttcher, A; Lademann, J; Kaatz, M

    2017-11-01

    The multiphoton tomography (MPT) has evolved into a useful tool for the non-invasive investigation of morphological and biophysical characteristics of human skin in vivo. Until now, changes of the skin have been evaluated mainly by using clinical and histological techniques. In this study, the progress of wound healing was investigated by MPT over 3 weeks with a final examination after 24 months. Especially, the collagen degradation, reepithelization and tissue formation were examined. As specific parameter for wound healing and its course the second-harmonic generation-to-autofluorescence aging index of dermis (SAAID) was used. About 10 volunteers aged between 25 and 58 years were examined. Acute wounds were scanned with three Z-stacks taken per visit. The stacks were taken up to a depth of 225 μm at increments of 5 μm and a scan time for 3 seconds per scan. Subsequently, the SAAID was evaluated as an indicator for wound healing. Furthermore, single scans were taken for morphological investigations. The evaluation revealed a distinct difference in the SAAID behavior between the Z-stacks taken at each visit. Furthermore, the degradation of collagen and cells and their reappearance could be shown in the course of the visits. Clear differences in the curve behavior of the SAAID at every visit were shown in this study. The SAAID curves and morphological images could be correlated with findings of the clinical examination of different wound healing phases. Therefore, SAAID curves and morphological MPT imaging could provide a non-invasive tool for the determination of wound healing phases in patients in vivo. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2018-02-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  10. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    Science.gov (United States)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  11. Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with atopic dermatitis

    Science.gov (United States)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.

    2011-03-01

    Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.

  12. In vivo evaluation of Fe in the human skin and swins mice skin through the X-rays fluorescence technique

    International Nuclear Information System (INIS)

    Estevam, Marcelo

    2005-01-01

    Recent technological improvements allow the method of in vivo XRF to supply useful sensibility for diagnostics or monitoring in biomedical applications. In cases of hereditary sanguine disorders as the β-Thalassaemia or a genetic disorder like Haemochromatosis, there is a high concentration of elements as Fe, Zn and Cu in the skin and internal organs, due to the treatment of those abnormalities or due to the own dysfunction caused by the disease. The levels of Fe related to the patient bearers of the β-Thalassaemia are determined, at the moment, measuring a protein in the sanguine current, called ferritin. The monitoring of the protein is ineffective in several situations, such as when the patient suffers any disturbance of health. Nowadays, the main forms of measuring the levels of those metals through hepatic storage are the biopsy of the liver, that is invasive and potentially dangerous, presenting a rate of mortality of 0,1%, and through magnetic susceptibilities that employs a quantum superconductor, which is highly expensive and there are only three main world medical centers with this equipment. This work investigates the use of a Si PIN-diode detector and a 238Pu source (13 and 17 keV; 13%; 95.2 mCi; 86y) for the measurement of Fe skin levels compatible with those associated to the disease β-Thalassaemia. XRF spectra were analyzed using a set of AXIL-WinQXAS programs elaborated and disseminated by the IAEA. The determination coefficient of the calibration model (sensitivity curve) was 0.97. Measurements on skin phantoms containing concentrations of Fe in the range from 15 to 150 parts per million (ppm), indicate that we are able to detect Fe at levels of the order of 13 ppm, using monitoring periods of 50 seconds and skin entrance dose less than 10 mSv. The literature reports skin Fe levels from 15.0 to 60.0 ppm in normal persons and from 70 to 150 ppm in thalassaemic patients. So, the employed methodology allows the in vivo measurement of the skin Fe

  13. Characterisation of human skin models - stability, metabolic capacity and comparative investigations in percutaneous absorption

    OpenAIRE

    Schreiber, Sylvia

    2010-01-01

    In recent years, the demand for alternative test methods in safety assessment of cosmetics, risk assessment of chemicals, and testing of pharmaceuticals was increasingly included in the EU directives. Thereby, alternative test methods for the determination of percutaneous absorption should achieve a more reliable in vivo prediction of the response of human skin than animal skin. Even though freshly excised human skin is considered as a preferred test matrix its routine use is often difficult ...

  14. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Muya Shu

    Full Text Available Bacterial interference creates an ecological competition between commensal and pathogenic bacteria. Through fermentation of milk with gut-friendly bacteria, yogurt is an excellent aid to balance the bacteriological ecosystem in the human intestine. Here, we demonstrate that fermentation of glycerol with Propionibacterium acnes (P. acnes, a skin commensal bacterium, can function as a skin probiotic for in vitro and in vivo growth suppression of USA300, the most prevalent community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA. We also promote the notion that inappropriate use of antibiotics may eliminate the skin commensals, making it more difficult to fight pathogen infection. This study warrants further investigation to better understand the role of fermentation of skin commensals in infectious disease and the importance of the human skin microbiome in skin health.

  15. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  16. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    International Nuclear Information System (INIS)

    Bal, S; Kruithof, A C; Bouwstra, J; Liebl, H; Tomerius, M; Lademann, J; Meinke, M

    2010-01-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface

  17. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    Science.gov (United States)

    Bal, S.; Kruithof, A. C.; Liebl, H.; Tomerius, M.; Bouwstra, J.; Lademann, J.; Meinke, M.

    2010-03-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface.

  18. Evaluation of 3D-human skin equivalents for assessment of human dermal absorption of some brominated flame retardants.

    Science.gov (United States)

    Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart

    2015-11-01

    Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  20. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    Science.gov (United States)

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  1. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling.

    Science.gov (United States)

    Arno, Anna I; Amini-Nik, Saeid; Blit, Patrick H; Al-Shehab, Mohammed; Belo, Cassandra; Herer, Elaine; Tien, Col Homer; Jeschke, Marc G

    2014-02-24

    The prevalence of nonhealing wounds is predicted to increase due to the growing aging population. Despite the use of novel skin substitutes and wound dressings, poorly vascularized wound niches impair wound repair. Mesenchymal stem cells (MSCs) have been reported to provide paracrine signals to promote wound healing, but the effect of human Wharton's jelly-derived MSCs (WJ-MSCs) has not yet been described in human normal skin. Human WJ-MSCs and normal skin fibroblasts were isolated from donated umbilical cords and normal adult human skin. Fibroblasts were treated with WJ-MSC-conditioned medium (WJ-MSC-CM) or nonconditioned medium. Expression of genes involved in re-epithelialization (transforming growth factor-β2), neovascularization (hypoxia-inducible factor-1α) and fibroproliferation (plasminogen activator inhibitor-1) was upregulated in WJ-MSC-CM-treated fibroblasts (P≤0.05). WJ-MSC-CM enhanced normal skin fibroblast proliferation (P≤0.001) and migration (P≤0.05), and promoted wound healing in an excisional full-thickness skin murine model. Under our experimental conditions, WJ-MSCs enhanced skin wound healing in an in vivo mouse model.

  2. Genome Wide Evaluation of Normal Human Tissue in Response to Controlled, In vivo Low-Dose Low LET Ionizing Radiation Exposure: Pathways and Mechanisms Final Report, September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rocke, David M. [University of California Davis

    2013-09-09

    During course of this project, we have worked in several areas relevant to low-dose ionizing radiation. Using gene expression to measure biological response, we have examined the response of human skin exposed in-vivo to radation, human skin exposed ex-vivo to radiation, and a human-skin model exposed to radiation. We have learned a great deal about the biological response of human skin to low-dose ionizing radiation.

  3. Colony size distributions according to in vitro aging in human skin fibroblasts

    International Nuclear Information System (INIS)

    Kim, Jun Sang; Kim, Jae Sung; Cho, Moon June; Park, Jeong Kyu; Paik, Tae Hyun

    1999-01-01

    To investigate the percentage of colonies with 16 or more cells distribution of human skin fibroblast according to in vitro aging, and to evaluate the relationship between percentage of colonies with 16 or more cells and in vivo donor age in human skin fibroblast culture. C1, C2, C3a, and C3b human skin fibroblast samples from three breast cancer patients were used as subjects. The C1, C2, and C3a donor were 44, 54, and 55 years old, respectively. C3a and C3b cells were isolated from the same person. Single cell suspension of skin fibroblasts was prepared with primary explant technique. One hundred cells are plated into 100ml tissue culture flask and cultured for two weeks. The colony size was defined as colonies with 16 or more cells. The cultured cell was stained with crystal violet, and number of cells in each colony was determined with stereo microscope at x 10 magnification. Passage number of C1, C2, C3a and C3b skin fibroblast were 12th, 17th, and 14th, respectively. Percentage of colonies with 16 or more cells of skin fibroblast samples decreased with increasing in vitro passage number. In contrast, cumulative population doublings of skin fibroblast sample increased with increasing in vitro passage number. Percentage of colonies with 16 or more cells also decreased with increasing population doublings in human skin fibroblast culture. There was strong correlation with percentage of colonised with 16 or more cells and population doublings in C3a skin fibroblast sample. At the same point of population doublings, the percentage of colonies with 16 or more cells of the young C1 donor was higher level than the old C3a donor. The population doublings increased with increasing in vitro passage number but percentage of colonies with 16 or more cells decreased. The results of this study imply that percentage of colonies with 16 or more cells is useful as a indicator of in vitro human skin fibroblast aging and may estimate the in vivo donor age

  4. Spectra from 2.5-15 μm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    International Nuclear Information System (INIS)

    Viator, John A; Choi, Bernard; Peavy, George M; Kimel, Sol; Nelson, J Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 μm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, Topicare TM ), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 μm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 μm. Dermis was similar to water, with collagen structure evident in the 6-10 μm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 μm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μ ir is used. In such cases, overestimating μ ir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth. (note)

  5. Stratum corneum damage and ex vivo porcine skin water absorption - a pilot study

    DEFF Research Database (Denmark)

    Duch Lynggaard, C; Bang Knudsen, D; Jemec, G B E

    2009-01-01

    A simple ex vivo screening technique would be of interest for mass screening of substances for potential barrier disruptive qualities. Ex vivo water absorption as a marker of skin barrier integrity was studied on pig ear skin. Skin water absorption was quantified by weighing and weight changes were...... found to reflect prehydration barrier damage. It is suggested that this simple model may be elaborated to provide a rapid, economical screening tool for potential skin irritants....

  6. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    International Nuclear Information System (INIS)

    Woodward, Ruth M; Cole, Bryan E; Wallace, Vincent P; Pye, Richard J; Arnone, Donald D; Linfield, Edmund H; Pepper, Michael

    2002-01-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo

  7. Bee venom processes human skin lipids for presentation by CD1a.

    Science.gov (United States)

    Bourgeois, Elvire A; Subramaniam, Sumithra; Cheng, Tan-Yun; De Jong, Annemieke; Layre, Emilie; Ly, Dalam; Salimi, Maryam; Legaspi, Annaliza; Modlin, Robert L; Salio, Mariolina; Cerundolo, Vincenzo; Moody, D Branch; Ogg, Graham

    2015-02-09

    Venoms frequently co-opt host immune responses, so study of their mode of action can provide insight into novel inflammatory pathways. Using bee and wasp venom responses as a model system, we investigated whether venoms contain CD1-presented antigens. Here, we show that venoms activate human T cells via CD1a proteins. Whereas CD1 proteins typically present lipids, chromatographic separation of venoms unexpectedly showed that stimulatory factors partition into protein-containing fractions. This finding was explained by demonstrating that bee venom-derived phospholipase A2 (PLA2) activates T cells through generation of small neoantigens, such as free fatty acids and lysophospholipids, from common phosphodiacylglycerides. Patient studies showed that injected PLA2 generates lysophospholipids within human skin in vivo, and polyclonal T cell responses are dependent on CD1a protein and PLA2. These findings support a previously unknown skin immune response based on T cell recognition of CD1a proteins and lipid neoantigen generated in vivo by phospholipases. The findings have implications for skin barrier sensing by T cells and mechanisms underlying phospholipase-dependent inflammatory skin disease. © 2015 Bourgeois et al.

  8. In vivo studies of aquaporins 3 and 10 in human stratum corneum

    DEFF Research Database (Denmark)

    Jungersted, Jakob Mutanu; Bomholt, Julie; Bajraktari, Niada

    2013-01-01

    migration and proliferation with consequences for the antimicrobial defense of the skin. AQP3 and AQP10 are aqua-glyceroporins, known to transport glycerol as well as water. AQP3 is the predominant AQP in human skin and has previously been demonstrated in the basal layer of epidermis in normal human skin......, but not in stratum corneum (SC). AQP10 has not previously been identified in human skin. Previous studies have demonstrated the presence of AQP3 and AQP10 mRNA in keratinocytes. In this study, our aim was to investigate if these aquaporin proteins were actually present in human SC cells. This can be seen as a first...... step toward elucidating the possible functional role of AQP3 and AQP10 in SC hydration. Specifically we investigate the presence of AQP3 and AQP10 in vivo in human SC using “minimal-invasive” technique for obtaining SC samples. SC samples were obtained from six healthy volunteers. Western blotting...

  9. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Science.gov (United States)

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  10. Design and fabrication of human skin by three-dimensional bioprinting.

    Science.gov (United States)

    Lee, Vivian; Singh, Gurtej; Trasatti, John P; Bjornsson, Chris; Xu, Xiawei; Tran, Thanh Nga; Yoo, Seung-Schik; Dai, Guohao; Karande, Pankaj

    2014-06-01

    Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.

  11. Pulsed Er:YAG- and 308 nm UV-excimer laser: an in vitro and in vivo study of skin-ablative effects

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, R.; Hibst, R.

    1989-01-01

    Using a pulsed XeCl excimer laser (308 nm) and a pulsed Er:YAG laser (2,940 nm), we investigated skin ablation as a function of pulse number, radiant energy, and repetition rate. In vitro analysis of lesions performed in freshly excised human skin were consistent with in vivo results obtained from experiments on pig skin. Pulsed 308 nm laser radiation caused considerable nonspecific thermal tissue injury followed by an inflammatory reaction and impaired healing of lesions in vivo. These findings were especially pronounced with higher repetition rates, which would be required for efficient destruction of larger lesions. On the other hand, the 2.94 microns Er:YAG laser radiation produced clean and precise lesions with only minimal adjacent injury. In vivo skin ablation caused intraoperative bleeding with deeper penetration. The Er:YAG laser offers a promising surgical tool for careful removal of superficial epidermal lesions, if higher repetition rates, and an appropriate laser beam delivery system are available for clinical use.

  12. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    Science.gov (United States)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  13. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    International Nuclear Information System (INIS)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; König, Karsten; Lademann, Jürgen; Darvin, Maxim E; Sterry, Wolfram

    2013-01-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented. (letter)

  14. Clinical coherent anti-Stokes Raman scattering and multiphoton tomography of human skin with a femtosecond laser and photonic crystal fiber

    Science.gov (United States)

    Breunig, Hans Georg; Weinigel, Martin; Bückle, Rainer; Kellner-Höfer, Marcel; Lademann, Jürgen; Darvin, Maxim E.; Sterry, Wolfram; König, Karsten

    2013-02-01

    We report on in vivo coherent anti-Stokes Raman scattering spectroscopy (CARS), two-photon fluorescence and second-harmonic-generation imaging on human skin with a novel multimodal clinical CARS/multiphoton tomograph. CARS imaging is realized by a combination of femtosecond pulses with broadband continuum pulses generated by a photonic crystal fiber. The images reveal the microscopic distribution of (i) non-fluorescent lipids, (ii) endogenous fluorophores and (iii) the collagen network inside the human skin in vivo with subcellular resolution. Examples of healthy as well as cancer-affected skin are presented.

  15. Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin

    Directory of Open Access Journals (Sweden)

    Bing-rong Zhou

    2016-01-01

    Full Text Available Aim. We explored the effects of soy oligopeptides (SOP in ultraviolet B- (UVB- induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI, melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2 for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs, p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.

  16. Impact of chemical peeling combined with negative pressure on human skin.

    Science.gov (United States)

    Kim, S J; Kang, I J; Shin, M K; Jeong, K H; Baek, J H; Koh, J S; Lee, S J

    2016-10-01

    In vivo changes in skin barrier function after chemical peeling with alpha hydroxyacids (AHAs) have been previously reported. However, the additional effects of physical treatment with chemical agents on skin barrier function have not been adequately studied. This study measured the degree of acute skin damage and the time required for skin barrier repair using non-invasive bioengineering methods in vivo with human skin to investigate the additional effect of a 4% AHA chemical jet accelerated at supersonic velocities. Thirteen female subjects (average age: 29.54 ± 4.86 years) participated in this study. The faces of the subjects were divided into half according to the block randomization design and were then assigned to receive AHA peeling alone or AHA peeling combined with pneumatic pressure on each side of the face. Transepidermal water loss (TEWL), skin colour and skin blood flow were evaluated at baseline and at 30 min, 2, 5 and 7 days after treatment. The TEWL and skin blood flow were significantly increased after 30 min in chemodermabrasion compared with chemical peeling alone (P peeling alone (P < 0.05). Chemodermabrasion can temporarily impair skin barriers, but it is estimated that it can enhance the skin barrier function after 7 days compared to the use of a chemical agent alone. In addition, chemodermabrasion has a more effective impact in the dermis and relatively preserves the skin barrier. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  18. Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model.

    Science.gov (United States)

    Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša

    2017-12-01

    Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Novel Tissue Models of Junctional Epidermolysis Bullosa to Characterize Functional Mechanisms of Sulfur Mustard Injury to Human Skin

    National Research Council Canada - National Science Library

    Garlick, Joanthan

    2003-01-01

    In the second year of our research, our laboratory has extensively studied skin pathophysiology in response to SM by adapting in vivo, human skin/nude mouse chimera to further understand mechanisms...

  20. Multimode optical dermoscopy (SkinSpect) analysis for skin with melanocytic nevus

    Science.gov (United States)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf; Kelly, Kristen M.; Maly, Tyler; Chave, Robert; Booth, Nicholas; Durkin, Anthony J.; Farkas, Daniel L.

    2016-04-01

    We have developed a multimode dermoscope (SkinSpect™) capable of illuminating human skin samples in-vivo with spectrally-programmable linearly-polarized light at 33 wavelengths between 468nm and 857 nm. Diffusely reflected photons are separated into collinear and cross-polarized image paths and images captured for each illumination wavelength. In vivo human skin nevi (N = 20) were evaluated with the multimode dermoscope and melanin and hemoglobin concentrations were compared with Spatially Modulated Quantitative Spectroscopy (SMoQS) measurements. Both systems show low correlation between their melanin and hemoglobin concentrations, demonstrating the ability of the SkinSpect™ to separate these molecular signatures and thus act as a biologically plausible device capable of early onset melanoma detection.

  1. Free water content and monitoring of healing processes of skin burns studied by microwave dielectric spectroscopy in vivo

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Miura, Nobuhiro; Shinyashiki, Naoki; Yagihara, Shin

    2005-01-01

    We have investigated the dielectric properties of human skin in vivo at frequencies up to 10 GHz using a time-domain reflectometry method with open-ended coaxial probes. Since γ-dispersion results from the reorientation of free water molecules, the free water content of skin is quantitatively determined by dielectric measurements. The free water content of finger skin increased by about 10% after soaking in 37 0 C water for 30 min, and it systematically decreased again through the drying process, as expected. Thus this analytical method has been applied to the study of skin burns. The free water content of burned human cheek skin due to hydrofluoric acid was significantly lower than that of normal skin, and the burned skin recovered through the healing process. In the case of a human hand skin burn due to heat, although the free water content was almost the same as that of normal skin at the beginning, it decreased during the healing process for the first 10 days, then began to increase. Although the number of test subjects was one for each experiment, it was shown that free water content is a good indicator for evaluating skin health and can be well monitored by dielectric spectroscopy

  2. Skin Diseases: Cross-section of human skin

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Cross-section of human skin Past Issues / Fall 2008 Table of Contents For ... Logical Images, Inc. I n the areas of skin health and skin diseases, the NIH's National Institute ...

  3. Validating in vivo Raman spectroscopy of bone in human subjects

    Science.gov (United States)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  4. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  5. Histamine is not released in acute thermal injury in human skin in vivo: a microdialysis study

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Pedersen, Juri Lindy; Skov, Per Stahl

    2009-01-01

    BACKGROUND: Animal models have shown histamine to be released from the skin during the acute phase of a burn injury. The role of histamine during the early phase of thermal injuries in humans remains unclear. PURPOSE: The objectives of this trial were to study histamine release in human skin during...

  6. In vivo classification of human skin burns using machine learning and quantitative features captured by optical coherence tomography

    Science.gov (United States)

    Singla, Neeru; Srivastava, Vishal; Singh Mehta, Dalip

    2018-02-01

    We report the first fully automated detection of human skin burn injuries in vivo, with the goal of automatic surgical margin assessment based on optical coherence tomography (OCT) images. Our proposed automated procedure entails building a machine-learning-based classifier by extracting quantitative features from normal and burn tissue images recorded by OCT. In this study, 56 samples (28 normal, 28 burned) were imaged by OCT and eight features were extracted. A linear model classifier was trained using 34 samples and 22 samples were used to test the model. Sensitivity of 91.6% and specificity of 90% were obtained. Our results demonstrate the capability of a computer-aided technique for accurately and automatically identifying burn tissue resection margins during surgical treatment.

  7. Formation of a protection film on the human skin by microparticles

    International Nuclear Information System (INIS)

    Lademann, J; Schanzer, S; Richter, H; Knorr, F; Sterry, W; Patzelt, A; Antoniou, C

    2008-01-01

    Laser scanning microscopy and tape stripping, in combination with optical methods, were used to analyze the distribution and penetration of a barrier cream into the horny layer (stratum corneum) of the human skin under in vivo conditions. The barrier cream contained microparticles of 10 – 100 μm loaded with antioxidant substances. The cream was designed for protection of the skin surface against the destructive action of free radicals, produced by systemically applied chemotherapeutic agents reaching the skin surface via the sweat. Both methods were able to demonstrate that the barrier cream was distributed homogeneously on the skin surface forming a protection film. A penetration into deeper parts of the stratum corneum (SC) was not observed

  8. Encapsulation of the UV filters ethylhexyl methoxycinnamate and butyl methoxydibenzoylmethane in lipid microparticles: effect on in vivo human skin permeation.

    Science.gov (United States)

    Scalia, S; Mezzena, M; Ramaccini, D

    2011-01-01

    Lipid microparticles loaded with the UVB filter ethylhexyl methoxycinnamate (EHMC) and the UVA filter butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the sunscreen agent's percutaneous penetration. Microparticles loaded with EHMC or BMDBM were prepared by the melt emulsification technique using stearic acid or glyceryl behenate as lipidic material, respectively, and hydrogenate phosphatidylcholine as the surfactant. Nonencapsulated BMDBM and EHMC in conjunction with blank microparticles or equivalent amounts of the 2 UV filters loaded in the lipid microparticles were introduced into oil-in-water emulsions and applied to human volunteers. Skin penetration was investigated in vivo by the tape-stripping technique. For the cream with the nonencapsulated sunscreen agents, the percentages of the applied dose diffused into the stratum corneum were 32.4 ± 4.1% and 30.3 ± 3.3% for EHMC and BMDBM, respectively. A statistically significant reduction in the in vivo skin penetration to 25.3 ± 5.5% for EHMC and 22.7 ± 5.4% for BMDBM was achieved by the cream containing the microencapsulated UV filters. The inhibiting effect on permeation attained by the lipid microparticles was more marked (45-56.3% reduction) in the deeper stratum corneum layers. The reduced percutaneous penetration of BMDBM and EHMC achieved by the lipid microparticles should preserve the UV filter efficacy and limit potential toxicological risks. Copyright © 2011 S. Karger AG, Basel.

  9. Flexible Nanosomes (SECosomes) Enable Efficient siRNA Delivery in Cultured Primary Skin Cells and in the Viable Epidermis of Ex Vivo Human Skin

    NARCIS (Netherlands)

    Geusens, Barbara; Van Gele, Mireille; Braat, Sien; De Smedt, Stefaan C.; Stuart, Marc C. A.; Prow, Tarl W.; Sanchez, Washington; Roberts, Michael S.; Sanders, Niek N.; Lambert, Jo

    2010-01-01

    The extent to which nanoscale-engineered systems cross intact human skin and can exert pharmacological effects in viable epidermis is controversial. This research seeks to develop a new lipid-based nanosome that enables the effective delivery of siRNA into human skin. The major finding is that an

  10. New Approaches towards the Elucidation of Epidermal-Dermal Separation in Sulfur Mustard-Exposed Human Skin and Directions for Therapy

    National Research Council Canada - National Science Library

    Mol, Marijke

    2005-01-01

    .... Results of experiments with a human skin ex vivo model show that apoptosis and metalloprotease activity are key elements in HD-induced skin pathogenesis, and that intervention in these two processes...

  11. Electrical measurement of the hydration state of the skin surface in vivo.

    Science.gov (United States)

    Tagami, H

    2014-09-01

    Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.

  12. A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread.

    Science.gov (United States)

    Troupin, Andrea; Shirley, Devon; Londono-Renteria, Berlin; Watson, Alan M; McHale, Cody; Hall, Alex; Hartstone-Rose, Adam; Klimstra, William B; Gomez, Gregorio; Colpitts, Tonya M

    2016-12-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Antiaging effects of a novel facial serum containing L-ascorbic acid, proteoglycans, and proteoglycan-stimulating tripeptide: ex vivo skin explant studies and in vivo clinical studies in women

    Directory of Open Access Journals (Sweden)

    Garre A

    2018-05-01

    Full Text Available Aurora Garre,1 Mridvika Narda,1 Palmira Valderas-Martinez,1 Jaime Piquero,2 Corinne Granger1 1Innovation and Development, ISDIN SA, Barcelona, Spain; 2Dermik Clinic, Barcelona, Spain Background: With age, decreasing dermal levels of proteoglycans, collagen, and elastin lead to the appearance of aged skin. Oxidation, largely driven by environmental factors, plays a central role.Aim: The aim of this study was to assess the antiaging efficacy of a topical serum containing l-ascorbic acid, soluble proteoglycans, low molecular weight hyaluronic acid, and a tripeptide in ex vivo and in vivo clinical studies.Methods: Photoaging and photo-oxidative damage were induced in human skin explants by artificial solar radiation. Markers of oxidative stress – reactive oxygen species (ROS, total glutathione (GSH, and cyclobutane pyrimidine dimers (CPDs – were measured in serum-treated explants and untreated controls. Chronological aging was simulated using hydrocortisone. In both ex vivo studies, collagen, elastin, and proteoglycans were determined as measures of dermal matrix degradation. In women aged 21–67 years, hydration was measured up to 24 hours after a single application of serum, using Corneometer and hygrometer. Subjects’ perceptions of efficacy and acceptability were assessed via questionnaire after once-daily serum application for 4 weeks. Studies were performed under the supervision of a dermatologist.Results: In the photoaging study, irradiation induced changes in ROS, CPD, GSH, collagen, and elastin levels; these changes were reversed by topical serum application. The serum also protected against hydrocortisone-induced reduction in collagen, elastin, and proteoglycan levels, which were significantly higher in the serum-treated group vs untreated hydrocortisone-control explants. In clinical studies, serum application significantly increased skin moisture for 6 hours. Healthy volunteers perceived the product as efficient in making the

  14. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  15. In vivo evaluation of wound bed reaction and graft performance after cold skin graft storage: new targets for skin tissue engineering.

    Science.gov (United States)

    Knapik, Alicia; Kornmann, Kai; Kerl, Katrin; Calcagni, Maurizio; Schmidt, Christian A; Vollmar, Brigitte; Giovanoli, Pietro; Lindenblatt, Nicole

    2014-01-01

    Surplus harvested skin grafts are routinely stored at 4 to 6°C in saline for several days in plastic surgery. The purpose of this study was to evaluate the influence of storage on human skin graft performance in an in vivo intravital microscopic setting after transplantation. Freshly harvested human full-thickness skin grafts and split-thickness skin grafts (STSGs) after storage of 0, 3, or 7 days in moist saline at 4 to 6°C were transplanted into the modified dorsal skinfold chamber, and intravital microscopy was performed to evaluate vessel morphology and angiogenic change of the wound bed. The chamber tissue was harvested 10 days after transplantation for evaluation of tissue integrity and inflammation (hematoxylin and eosin) as well as for immunohistochemistry (human CD31, murine CD31, Ki67, Tdt-mediated dUTP-biotin nick-end labelling). Intravital microscopy results showed no differences in the host angiogenic response between fresh and preserved grafts. However, STSGs and full-thickness skin grafts exhibited a trend toward different timing and strength in capillary widening and capillary bud formation. Preservation had no influence on graft quality before transplantation, but fresh STSGs showed better quality 10 days after transplantation than 7-day preserved grafts. Proliferation and apoptosis as well as host capillary in-growth and graft capillary degeneration were equal in all groups. These results indicate that cells may activate protective mechanisms under cold conditions, allowing them to maintain function and morphology. However, rewarming may disclose underlying tissue damage. These findings could be translated to a new approach for the design of full-thickness skin substitutes.

  16. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging.

    Science.gov (United States)

    Kim, Eun Ju; Jin, Xing-Ji; Kim, Yeon Kyung; Oh, In Kyung; Kim, Ji Eun; Park, Chi-Hyun; Chung, Jin Ho

    2010-01-01

    Although fatty acids are known to be important in various skin functions, their roles on photoaging in human skin are poorly understood. We investigated the alteration of lipid metabolism in the epidermis by photoaging and acute UV irradiation in human skin. UV irradiated young volunteers (21-33 years, n=6) and elderly volunteers (70-75 years, n=7) skin samples were obtained by punch biopsy. Then the epidermis was separated from dermis and lipid metabolism was investigated. We observed that the amounts of free fatty acids (FFA) and triglycerides (TG) in the epidermis of photoaged or acutely UV irradiated human skin were significantly decreased. The expressions of genes related to lipid synthesis, including acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD), sterol regulatory element binding proteins (SREBPs), and peroxisome proliferator-activated receptors (PPARgamma) were also markedly decreased. To elucidate the significance of these changes of epidermal lipids in human skin, we investigated the effects of TG or various inhibitors for the enzymes involved in TG synthesis on the expression of matrix metalloproteinase-1 (MMP-1) in cultured human epidermal keratinocytes. We demonstrated that triolein (TG) reduced basal and UV-induced MMP-1 mRNA expression. In addition, each inhibitor for various lipid synthesis enzymes, such as TOFA (ACC inhibitor), cerulenin (FAS inhibitor) and trans-10, cis-12-CLA (SCD inhibitor), increased the MMP-1 expression significantly in a dose-dependent manner. We also demonstrated that triolein could inhibit cerulenin-induced MMP-1 expression. Furthermore, topical application of triolein (10%) significantly prevented UV-induced MMP-13, COX-2, and IL-1beta expression in hairless mice. Our results suggest that TG and FFA may play important roles in photoaging of human skin. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Use of Clotted Human Plasma and Aprotinin in Skin Tissue Engineering: A Novel Approach to Engineering Composite Skin on a Porous Scaffold.

    Science.gov (United States)

    Paul, Michelle; Kaur, Pritinder; Herson, Marisa; Cheshire, Perdita; Cleland, Heather; Akbarzadeh, Shiva

    2015-10-01

    Tissue-engineered composite skin is a promising therapy for the treatment of chronic and acute wounds, including burns. Providing the wound bed with a dermal scaffold populated by autologous dermal and epidermal cellular components can further entice host cell infiltration and vascularization to achieve permanent wound closure in a single stage. However, the high porosity and the lack of a supportive basement membrane in most commercially available dermal scaffolds hinders organized keratinocyte proliferation and stratification in vitro and may delay re-epithelization in vivo. The objective of this study was to develop a method to enable the in vitro production of a human skin equivalent (HSE) that included a porous scaffold and dermal and epidermal cells expanded ex vivo, with the potential to be used for definitive treatment of skin defects in a single procedure. A collagen-glycosaminoglycan dermal scaffold (Integra(®)) was populated with adult fibroblasts. A near-normal skin architecture was achieved by the addition of coagulated human plasma to the fibroblast-populated scaffold before seeding cultured keratinocytes. This resulted in reducing scaffold pore size and improving contact surfaces. Skin architecture and basement membrane formation was further improved by the addition of aprotinin (a serine protease inhibitor) to the culture media to inhibit premature clot digestion. Histological assessment of the novel HSE revealed expression of keratin 14 and keratin 10 similar to native skin, with a multilayered neoepidermis morphologically comparable to human skin. Furthermore, deposition of collagen IV and laminin-511 were detected by immunofluorescence, indicating the formation of a continuous basement membrane at the dermal-epidermal junction. The proposed method was efficient in producing an in vitro near native HSE using the chosen off-the-shelf porous scaffold (Integra). The same principles and promising outcomes should be applicable to other biodegradable

  18. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    Science.gov (United States)

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  19. Percutaneous penetration of 2-phenoxyethanol through rat and human skin.

    Science.gov (United States)

    Roper, C S; Howes, D; Blain, P G; Williams, F M

    1997-01-01

    2-Phenoxyethanol applied in methanol was absorbed (64 +/- 4.4% at 24 hr) through unoccluded rat skin in vitro in the static diffusion cell with ethanol/water as receptor fluid. By comparison (43 +/- 3.7% in 24 hr) was absorbed in the flow-through diffusion system with tissue culture medium as receptor fluid. 2-Phenoxyethanol applied in methanol was absorbed (59.3 +/- 7.0% at 6 hr) through unoccluded human skin in vitro in the flow-through diffusion cell with tissue culture medium. With both unoccluded cells, 2-phenoxyethanol was lost by evaporation but occlusion of the static cell reduced evaporation and increased total absorption to 98.8 +/- 7.0%. Skin, post mitochondrial fraction, metabolized phenoxyethanol to phenoxyacetic acid at 5% of the rate for liver. Metabolism was inhibited by 1 mM pyrazole, suggesting involvement of alcohol dehydrogenase. However, first-pass metabolism of phenoxyethanol to phenoxyacetic acid was not detected during percutaneous penetration through viable rat skin in the flow-through system. First-pass metabolism in the skin does not therefore have an influence on systemic availability of dermally absorbed phenoxyethanol. These measures of phenoxyethanol absorption through rat and human skin in vitro agree well with those obtained previously in vivo.

  20. In vivo laser scanning microscopic investigation of the decontamination of hazardous substances from the human skin

    International Nuclear Information System (INIS)

    Lademann, J; Patzelt, A; Schanzer, S; Richter, H; Sterry, W; Gross, I; Menting, K H; Frazier, L; Antoniou, C

    2010-01-01

    The stimulation of the penetration of topically applied substances into the skin is a topic of intensive dermatological and pharmacological research. In this context, it was found that in addition to the intercellular penetration, the follicular penetration also represents an efficient penetration pathway. The hair follicles act as a long-term reservoir for topically applied substances. They are surrounded by all important target structures, such as blood capillaries, stem and dendritic cells. Therefore, the hair follicles, as well as the skin, need to be protected from hazardous substances. The traditional method of decontamination after respective accidental contacts consists of an intensive washing of the skin. However, during this mechanical procedure, the substances can be pushed even deeper into the hair follicles. In the present study, absorbent materials were applied to remove a fluorescent model substance from the skin without inducing mechanical stress. The results were compared to the decontamination effects obtained by intensive washing. Investigations were performed by means of in vivo laser scanning microscopy (LSM). The comparison revealed that decontamination with absorbent materials is more effective than decontamination with washing processes

  1. First identification of the herpes simplex virus by skin-dedicated ex vivo fluorescence confocal microscopy during herpetic skin infections.

    Science.gov (United States)

    Cinotti, E; Perrot, J L; Labeille, B; Campolmi, N; Thuret, G; Naigeon, N; Bourlet, T; Pillet, S; Cambazard, F

    2015-06-01

    Skin-dedicated ex vivo fluorescence confocal microscopy (FCM) has so far been used to identify cutaneous tumours on freshly excised samples using acridine orange as fluorochrome. To use FCM for a new indication, namely, the identification of the herpes simplex virus (HSV) in skin lesions, using fluorescent antibodies. Six roof samples from skin vesicles suspicious for HSV lesions were incubated with anti-HSV-1 and anti-HSV-2 antibodies coupled with fluorescein isothiocyanate, and examined under skin-dedicated ex vivo FCM. The positive controls were swabs taken from the floor of each vesicle and observed under conventional direct fluorescence assay (DFA) and by viral cultures. Roof samples from three bullae of bullous pemphigoid were the negative controls. Using ex vivo FCM, the samples from the lesions clinically suspicious for HSV infection were seen to be fluorescent after incubation with anti-HSV-1, and were negative after incubation with anti-HSV-2 antibodies. Conventional DFA with an optical microscope and cultures confirmed the presence of HSV-1 infection. By using fluorescent antibodies to identify precise structures, ex vivo FCM can be used for indications other than tumour identification. More specifically, it can be an additional diagnostic tool for HSV infection. © 2014 British Association of Dermatologists.

  2. Diffuse Reflectance Spectroscopy of Human Skin Using a Commercial Fiber Optic Spectrometer

    International Nuclear Information System (INIS)

    Atencio, J. A. Delgado; Rodriguez, M. Cunill; Montiel, S. Vazquez y; Castro, Jorge; Rodriguez, A. Cornejo; Gutierrez, J. L.; Martinez, F.; Gutierrez, B.; Orozco, E.

    2008-01-01

    Diffuse reflectance spectroscopy is a reliable and easy to implement technique in human tissue characterization. In this work we evaluate the performance of the commercial USB4000 miniature fiber optic spectrometer in the in-vivo measurement of the diffuse reflectance spectra of different healthy skin sites and lesions in a population of 54 volunteers. Results show, that this spectrometer reproduces well the typical signatures of skin spectra over the 400-1000 nm region. Remarkable spectral differences exist between lesions and normal surrounding skin. A diffusion-based model was used to simulate reflectance spectra collected by the optical probe of the system

  3. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  4. Human skin volatiles: a review.

    Science.gov (United States)

    Dormont, Laurent; Bessière, Jean-Marie; Cohuet, Anna

    2013-05-01

    Odors emitted by human skin are of great interest to biologists in many fields; applications range from forensic studies to diagnostic tools, the design of perfumes and deodorants, and the ecology of blood-sucking insect vectors of human disease. Numerous studies have investigated the chemical composition of skin odors, and various sampling methods have been used for this purpose. The literature shows that the chemical profile of skin volatiles varies greatly among studies, and the use of different sampling procedures is probably responsible for some of these variations. To our knowledge, this is the first review focused on human skin volatile compounds. We detail the different sampling techniques, each with its own set of advantages and disadvantages, which have been used for the collection of skin odors from different parts of the human body. We present the main skin volatile compounds found in these studies, with particular emphasis on the most frequently studied body regions, axillae, hands, and feet. We propose future directions for promising experimental studies on odors from human skin, particularly in relation to the chemical ecology of blood-sucking insects.

  5. Evaluating low dose ionizing radiation effects on gene expression in human skin biopsy cores

    International Nuclear Information System (INIS)

    Goldberg, Z.; Schwietert, C.; Stern, R.L.; Lehnert, B.E.

    2003-01-01

    Significant biological effects can occur in animals, animal cells, immortalized human cell lines, and primary human cells after exposure to doses of ionizing radiation (IR) in the <1-10 cGy region. However it is unclear how these observations mimic or even pertain to the actual in vivo condition in humans, though such knowledge is required for reducing the uncertainty of assessing human risks due to low dose IR (LDIR) exposures. Further, low dose effects have increasing clinical relevance in the radiotherapeutic management of cancer as the volume of tissue receiving only LDIR increases as more targeted radiotherapy (i.e. IMRT) becomes more widely used. Thus, human translational data must be obtained with which to correlate in vitro experimental findings and evaluate their 'real-life' applicability. To evaluate LDIR effects in human tissue we have obtained freshly explanted full thickness human skin samples obtained from aesthetic surgery, and subjected them to ex vivo irradiation as a translational research model system of a complex human tissue. Ionizing radiation (IR) exposures were delivered at 1, 10, or 100 cGy. The temporal response to IR was assessed by harvesting RNA at multiple time points out to 24 hours post IR. Gene expression changes were assessed by real time PCR. We have shown that RNA can be reliably extracted with fidelity from 3 mm diameter punch biopsies of human tissue and provide good quality sample for the real time PCR evaluation. Genes of interest include those reported to have altered expression following LDIR from in vitro cell culture models. These include genes associated with cell cycle regulation, DNA repair and various cytokines. These feasibility studies in human skin irradiated ex vivo, have demonstrated that gene expression can be measured accurately from very small human tissue samples, thus setting the stage for biopsy acquisition of tissue irradiated in vivo from patients-volunteers. The clinical study has begun and the data from

  6. Confocal laser scanning microscopy in vivo for diagnosing melanocytic skin neoplasms

    Directory of Open Access Journals (Sweden)

    A. A. Kubanova

    2014-01-01

    Full Text Available The authors discuss the use of confocal laser scanning microscopy in vivo (CLSM for diagnosing melanocytic skin neoplasms and its value for early diagnostics of melanoma. CLSM is an innovation noninvasive visual examination method for real-time multiple and painless examinations of the patient’s skin without injuring the skin integument. The method ensures early diagnostics of skin melanomas with high sensitivity and specificity, which makes it possible to use CLSM for screening melanocytic skin neoplasms for the sake of the early onset of treatment to save patient life and health.

  7. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation

    DEFF Research Database (Denmark)

    Philipsen, P A; Knudsen, L; Gniadecka, M

    2013-01-01

    and skin tumour diagnostics in vivo. We obtained Raman spectra in vivo from the normal skin of 55 healthy persons with different skin pigmentation (Fitzpatrick skin type I-VI) and in vivo from 25 basal cell carcinomas, 41 pigmented nevi and 15 malignant melanomas. Increased skin pigmentation resulted...

  8. High resolution SAW elastography for ex-vivo porcine skin specimen

    Science.gov (United States)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  9. Essential role of RAB27A in determining constitutive human skin color.

    Directory of Open Access Journals (Sweden)

    Yasuko Yoshida-Amano

    Full Text Available Human skin color is predominantly determined by melanin produced in melanosomes within melanocytes and subsequently distributed to keratinocytes. There are many studies that have proposed mechanisms underlying ethnic skin color variations, whereas the processes involved from melanin synthesis in melanocytes to the transfer of melanosomes to keratinocytes are common among humans. Apart from the activities in the melanogenic rate-limiting enzyme, tyrosinase, in melanocytes and the amounts and distribution patterns of melanosomes in keratinocytes, the abilities of the actin-associated factors in charge of melanosome transport within melanocytes also regulate pigmentation. Mutations in genes encoding melanosome transport-related molecules, such as MYO5A, RAB27A and SLAC-2A, have been reported to cause a human pigmentary disease known as Griscelli syndrome, which is associated with diluted skin and hair color. Thus we hypothesized that process might play a role in modulating skin color variations. To address that hypothesis, the correlations of expression of RAB27A and its specific effector, SLAC2-A, to melanogenic ability were evaluated in comparison with tyrosinase, using human melanocytes derived from 19 individuals of varying skin types. Following the finding of the highest correlation in RAB27A expression to the melanogenic ability, darkly-pigmented melanocytes with significantly higher RAB27A expression were found to transfer significantly more melanosomes to keratinocytes than lightly-pigmented melanocytes in co-culture and in human skin substitutes (HSSs in vivo, resulting in darker skin color in concert with the difference observed in African-descent and Caucasian skins. Additionally, RAB27A knockdown by a lentivirus-derived shRNA in melanocytes concomitantly demonstrated a significantly reduced number of transferred melanosomes to keratinocytes in co-culture and a significantly diminished epidermal melanin content skin color intensity (

  10. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    Science.gov (United States)

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our

  11. In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography

    Science.gov (United States)

    Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin

    2010-07-01

    The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.

  12. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  13. Contrasting effects of ultraviolet-A and ultraviolet B exposure on induction of contact sensitivity in human skin

    DEFF Research Database (Denmark)

    Skov, Lone; Hansen, Henrik; Barker, J. N.

    1997-01-01

    Ultraviolet-B (UVB), in addition to direct effects on DNA, induces immunological changes in the skin that predispose to the development of skin cancer. Whether ultraviolet-A (UVA) induces similar changes is unknown. This effect can be investigated in humans in vivo using epicutaneous antigens...... as a model of tumour antigens. Volunteers (n = 46) were randomly assigned to received no sensitization, sensitization with the allergen diphenylcyclopropenone (DPCP) on non-UV-exposed normal skin, or sensitization with DPCP on skin exposed to three minimal erythema doses (MED) of either UVA or UVB radiation...... the immunization rate compared with sensitization on non-irradiated skin (P UVA radiation did not result in a decreased immunization rate compared with non-irradiated skin. These results indicate that in humans erythemagenic...

  14. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Directory of Open Access Journals (Sweden)

    Zou Y

    2017-10-01

    Full Text Available Ying Zou,1,2,* Anna Celli,2,3,* Hanjiang Zhu,2,* Akram Elmahdy,2 Yachao Cao,2 Xiaoying Hui,2 Howard Maibach2 1Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China; 2Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3San Francisco Veterans Medical Center, San Francisco, CA, USA *These authors contributed equally to this work Objective: With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration.Methods: Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy.Results: NPs were localized in the stratum corneum (SC and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not.Conclusion: Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. Keywords: nanoparticles, skin penetration, stratum corneum, confocal laser scanning microscopy, tape stripping

  15. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  16. Characterization of a Cryopreserved Split-Thickness Human Skin Allograft-TheraSkin.

    Science.gov (United States)

    Landsman, Adam; Rosines, Eran; Houck, Amanda; Murchison, Angela; Jones, Alyce; Qin, Xiaofei; Chen, Silvia; Landsman, Arnold R

    2016-09-01

    The purpose of this study was to examine the characteristics of a cryopreserved split-thickness skin allograft produced from donated human skin and compare it with fresh, unprocessed human split-thickness skin. Cutaneous wound healing is a complex and organized process, where the body re-establishes the integrity of the injured tissue. However, chronic wounds, such as diabetic or venous stasis ulcers, are difficult to manage and often require advanced biologics to facilitate healing. An ideal wound care product is able to directly influence wound healing by introducing biocompatible extracellular matrices, growth factors, and viable cells to the wound bed. TheraSkin (processed by LifeNet Health, Virginia Beach, Virginia, and distributed by Soluble Systems, Newport News, Virginia) is a minimally manipulated, cryopreserved split-thickness human skin allograft, which contains natural extracellular matrices, native growth factors, and viable cells. The authors characterized TheraSkin in terms of the collagen and growth factor composition using ELISA, percentage of apoptotic cells using TUNEL analysis, and cellular viability using alamarBlue assay (Thermo Fisher Scientific, Waltham, Massachusetts), and compared these characteristics with fresh, unprocessed human split-thickness skin. It was found that the amount of the type I and type III collagen, as well as the ratio of type I to type III collagen in TheraSkin, is equivalent to fresh unprocessed human split-thickness skin. Similar quantities of vascular endothelial growth factor, insulinlike growth factor 1, fibroblast growth factor 2, and transforming growth factor β1 were detected in TheraSkin and fresh human skin. The average percent of apoptotic cells was 34.3% and 3.1% for TheraSkin and fresh skin, respectively. Cellular viability was demonstrated in both TheraSkin and fresh skin.

  17. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.

    Science.gov (United States)

    Kim, Byoung Soo; Kwon, Yang Woo; Kong, Jeong-Sik; Park, Gyu Tae; Gao, Ge; Han, Wonil; Kim, Moon-Bum; Lee, Hyungseok; Kim, Jae Ho; Cho, Dong-Woo

    2018-06-01

    3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo.

    Directory of Open Access Journals (Sweden)

    Chi-Fang Chen

    Full Text Available BACKGROUND: Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR(cy17 (killer line, which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR(+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR(+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR(+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR(+ fluorescent signaling. CONCLUSION/SIGNIFICANCE: The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and

  19. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo.

    Science.gov (United States)

    Li, Wen-Hwa; Wong, Heng-Kuan; Serrano, José; Randhawa, Manpreet; Kaur, Simarna; Southall, Michael D; Parsa, Ramine

    2017-05-01

    Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.

  20. Parameterization using Fourier series expansion of the diffuse reflectance of human skin to vary the concentration of the melanocytes

    Science.gov (United States)

    Narea, J. Freddy; Muñoz, Aarón A.; Castro, Jorge; Muñoz, Rafael A.; Villalba, Caroleny E.; Martinez, María. F.; Bravo, Kelly D.

    2013-11-01

    Human skin has been studied in numerous investigations, given the interest in knowing information about physiology, morphology and chemical composition. These parameters can be determined using non invasively optical techniques in vivo, such as the diffuse reflectance spectroscopy. The human skin color is determined by many factors, but primarily by the amount and distribution of the pigment melanin. The melanin is produced by the melanocytes in the basal layer of the epidermis. This research characterize the spectral response of the human skin using the coefficients of Fourier series expansion. Simulating the radiative transfer equation for the Monte Carlo method to vary the concentration of the melanocytes (fme) in a simplified model of human skin. It fits relating the Fourier series coefficient a0 with fme. Therefore it is possible to recover the skin biophysical parameter.

  1. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. Recovery of aging-related size increase of skin epithelial cells: in vivo mouse and in vitro human study.

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    Full Text Available The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment. An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8. A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20-40% for cells of older passage (6-8 passages whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.

  3. Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration

    International Nuclear Information System (INIS)

    Xu, Songmei; Sang, Lin; Zhang, Yaping; Wang, Xiaoliang; Li, Xudong

    2013-01-01

    The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120–220 μm and the porosity > 90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration. - Highlights: ► Preparation of highly-interconnected human hair keratin scaffolds. ► Long-term cell culturing and in vivo animal experiments with keratin scaffolds. ► Biodegradation is dependent on implantation site and function ► Early vascularization and better repair in treating full-thickness skin wounds. ► A thicker epidermis, less contraction and newly formed hair follicles are observed.

  4. Dermal absorption behavior of fluorescent molecules in nanoparticles on human and porcine skin models.

    Science.gov (United States)

    Debotton, Nir; Badihi, Amit; Robinpour, Mano; Enk, Claes D; Benita, Simon

    2017-05-30

    The percutaneous passage of poorly skin absorbed molecules can be improved using nanocarriers, particularly biodegradable polymeric nanospheres (NSs) or nanocapsules (NCs). However, penetration of the encapsulated molecules may be affected by other factors than the nanocarrier properties. To gain insight information on the skin absorption of two fluorescent cargos, DiIC 18 (5) and coumarin-6 were incorporated in NSs or NCs and topically applied on various human and porcine skin samples. 3D imaging techniques suggest that NSs and NCs enhanced deep dermal penetration of both probes similarly, when applied on excised human skin irrespective of the nature of the cargo. However, when ex vivo pig skin was utilized, the cutaneous absorption of DiIC 18 (5) was more pronounced by means of PLGA NCs than NSs. In contrast, PLGA NSs noticeably improved the porcine skin penetration of coumarin-6, as compared to the NCs. Furthermore, the porcine skin results were reproducible when triplicated whereas from various human skin samples, as expected, the results were not sufficiently reproducible and large deviations were observed. The overall findings from this comprehensive comparison emphasize the potential of PLGA NCs or NSs to promote cutaneous bioavailability of encapsulated drugs, exhibiting different physicochemical properties but depending on the nature of the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation

    Directory of Open Access Journals (Sweden)

    Ugne Cizauskaite

    2018-06-01

    Full Text Available The increased interest in natural cosmetics has resulted in a higher market demand for preservative-free products based on herbal ingredients. An innovative W/O/W type emulsions containing herbal extracts were prepared directly; its cation form was induced by an ethanolic rosemary extract and stabilized using weak herbal gels. Due to the wide phytochemical composition of herbal extracts and the presence of alcohol in the emulsion system, which can cause skin irritation, sensitization or dryness when applied topically, the safety of the investigated drug delivery system is necessary. The aim of our study was to estimate the potential of W/O/W emulsions based on natural ingredients for skin irritation and phototoxicity using reconstructed 3D epidermis models in vitro and to evaluate in vivo its effect on human skin moisture, sebum content and pigmentation by biomedical examination using a dermatoscopic camera and corneometer. According to the results obtained after in vitro cell viability test the investigated emulsion was neither irritant nor phototoxic to human skin keratinocytes. W/O/W emulsion did not cause skin dryness in vivo, despite the fact that it contained ethanol. We can conclude that the emulsion is safe for use as a leave-on product due to the positive effect on human skin characteristics or as a semisolid pharmaceutical base where active compounds could be encapsulated.

  6. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    Science.gov (United States)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  7. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    Science.gov (United States)

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  8. Human atopic dermatitis skin-derived T cells can induce a reaction in mouse keratinocytes in vivo

    DEFF Research Database (Denmark)

    Martel, Britta C; Blom, Lars; Dyring-Andersen, Beatrice

    2015-01-01

    . In comparison, blood -derived in vitro differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in mouse skin through induction of a proliferative response in the mouse keratinocytes. This article is protected......In atopic dermatitis (AD), the inflammatory response between skin infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice...... through keratinocyte activation and consequently cause development of eczematous lesions. Punch biopsies of lesional skin from AD patients were used to establish skin-derived T cell cultures and which were transferred into NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that subcutaneous...

  9. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction.

    Science.gov (United States)

    Manconi, Maria; Caddeo, Carla; Sinico, Chiara; Valenti, Donatella; Mostallino, Maria Cristina; Biggio, Giovanni; Fadda, Anna Maria

    2011-05-01

    Recently, we described a novel family of liposomes, the Penetration Enhancer-containing Vesicles (PEVs), as carriers for enhanced (trans)dermal drug delivery. In this study, to go deeply into the potential of these new vesicles and suggest the possible mechanism of vesicle-skin interaction, we investigated transcutol containing PEVs as carriers for diclofenac, in the form of either acid or sodium salt. PEVs, prepared with soy phosphatidylcholine and aqueous solutions containing different concentrations of transcutol, were characterized by size distribution, zeta potential, incorporation efficiency, thermotropic behavior, and stability. (Trans)dermal diclofenac delivery from PEVs was investigated ex vivo through new born pig skin using conventional liposomes and a commercial gel as controls. The mode of action of the vesicles was also studied by performing a pre-treatment test and confocal laser scanning microscopy (CLSM) analyses. Results of the all skin permeation experiments showed an improved diclofenac (both acid and sodium salt) delivery to and through the skin when PEVs were used (especially in comparison with the commercial gel) thus suggesting intact PEVs' penetration through the pig skin. Images of the qualitative CLSM analyses support this conclusion. Thus, this work shows the superior ability of the PEVs to enhance ex vivo drug transport of both hydrophilic and lipophilic diclofenac forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The analytical utility of thermally desorbed polydimethylsilicone membranes for in-vivo sampling of volatile organic compounds in and on human skin.

    Science.gov (United States)

    Riazanskaia, S; Blackburn, G; Harker, M; Taylor, D; Thomas, C L P

    2008-08-01

    A thermally-desorbed polydimethylsilicone (PDMS) membrane approach with analysis by gas chromatography-mass spectrometry has been developed and characterised, to enable the VOC arising in, and on skin, from glandular secretions, exogenous materials, products of perfusion from blood, and microbiological metabolites to be sampled in a single procedure. In-vitro studies using a series of volatile fatty acid standards indicated that the recovery efficiency of the technique increased with decreasing volatility; for example, the recovery of hexanoic acid was 3.3 times greater than that for 2-methylpropanoic acid. The relative standard deviation of the methodology decreased with decreasing volatility; RSD = 19% for 2-methylpropanoic acid and RSD = 7% for hexanoic acid. Sampled-mass vs. response relationships were modelled satisfactorily using linear regression analysis with regression coefficients in the range 0.95 to 0.998. In-vivo reproducibility was assessed though the analysis of the responses of 1-dodecane, 3,7-dimethyloct-1-ene, 2-propenoic acid, 2-ethylhexyl ester, 2-ethylhexan-1-ol, butanoic, 2-ethylhexylester, and junipen (1,4-methanoazulene, decahydro-4,8,8-trimethyl-9-methylene-); six compounds selected at random retention times from a GC-MS chromatographic VOC profile of human skin containing several hundred resolved and partially resolved compounds. Five samples were obtained simultaneously from the forearm of a healthy male participant. The in-vivo sample masses were estimated to be in the range 50 pg to 100 ng per sample with observed RSD falling between 15% and 32%; in line with a Horwitz trend. Increasing the sample time from 5 min to 120 min generally resulted in an enrichment of the VOC recovered, and for many VOC substantial increases in sensitivity (x7) were observed over this time range as the PDMS sampling-patch approached equilibrium with the underlying skin. Nevertheless, more volatile components, 2,4,6-trimethylcarbazole for instance, were

  11. Resveratrol-Loaded Lipid Nanocarriers: Correlation between In Vitro Occlusion Factor and In Vivo Skin Hydrating Effect

    Directory of Open Access Journals (Sweden)

    Lucia Montenegro

    2017-12-01

    Full Text Available Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions (NEs, solid lipid nanoparticles (SLNs and nanostructured lipid carriers (NLCs. These lipid nanocarriers were loaded with trans-resveratrol (RSV and incorporated in gel vehicles. In vitro occlusion factor was in the order SLNs > NLCs > NEs. Gels containing unloaded or RSV loaded lipid nanocarriers were applied on the back of a hand of 12 healthy volunteers twice a day for one week, recording skin hydration changes using the instrument Soft Plus. An increase of skin hydration was observed for all lipid nanocarriers (SLNs > NLCs > NEs. RSV loading into these nanocarriers did not affect in vitro and in vivo lipid nanocarriers effects. A linear relationship (r2 = 0.969 was observed between occlusion factor and in vivo increase of skin hydration. Therefore, the results of this study showed the feasibility of using the occlusion factor to predict in vivo skin hydration resulting from topical application of different lipid nanocarriers loading an active ingredient with no inherent hydrating activity.

  12. Resident CD141 (BDCA3)+ dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation.

    Science.gov (United States)

    Chu, Chung-Ching; Ali, Niwa; Karagiannis, Panagiotis; Di Meglio, Paola; Skowera, Ania; Napolitano, Luca; Barinaga, Guillermo; Grys, Katarzyna; Sharif-Paghaleh, Ehsan; Karagiannis, Sophia N; Peakman, Mark; Lombardi, Giovanna; Nestle, Frank O

    2012-05-07

    Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.

  13. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  14. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption.

    Science.gov (United States)

    Döge, Nadine; Avetisyan, Araks; Hadam, Sabrina; Pfannes, Eva Katharina Barbosa; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Vogt, Annika

    2017-07-01

    Topical dermatotherapy is intended to be used on diseased skin. Novel drug delivery systems even address differences between intact and diseased skin underlining the need for pre-clinical assessment of different states of barrier disruption. Herein, we studied how short-term incubation in culture media compared to incubation in humidified chambers affects human skin barrier function and viability. On both models we assessed different types and intensities of physical and chemical barrier disruption methods with regard to structural integrity, biophysical parameters and cytokine levels. Tissue degeneration and proliferative activity limited the use of tissue cultures to 48h. Viability is better preserved in cultured tissue. Tape-stripping (50×TS) and 4h sodium lauryl sulfate (SLS) pre-treatment were identified as highly reproducible and effective procedures for barrier disruption. Transepidermal water loss (TEWL) values reproducibly increased with the intensity of disruption while sebum content and skin surface pH were of limited value. Interleukin (IL)-6/8 and various chemokines and proteases were increased in tape-stripped skin which was more pronounced in SLS-treated skin tissue extracts. Thus, albeit limited to 48h, cultured full-thickness skin maintained several barrier characteristics and responded to different intensities of barrier disruption. Potentially, these models can be used to assess pre-clinically the efficacy and penetration of anti-inflammatory compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electroosmotic pore transport in human skin.

    Science.gov (United States)

    Uitto, Olivia D; White, Henry S

    2003-04-01

    To determine the pathways and origin of electroosmotic flow in human skin. Iontophoretic transport of acetaminophen in full thickness human cadaver skin was visualized and quantified by scanning electrochemical microscopy. Electroosmotic flow in the shunt pathways of full thickness skin was compared to flow in the pores of excised stratum corneum and a synthetic membrane pore. The penetration of rhodamine 6G into pore structures was investigated by laser scanning confocal microscopy. Electroosmotic transport is observed in shunt pathways in full thickness human skin (e.g., hair follicles and sweat glands), but not in pore openings of freestanding stratum corneum. Absolute values of the diffusive and iontophoretic pore fluxes of acetaminophen in full thickness human skin are also reported. Rhodamine 6G is observed to penetrate to significant depths (approximately 200 microm) along pore pathways. Iontophoresis in human cadaver skin induces localized electroosmotic flow along pore shunt paths. Electroosmotic forces arise from the passage of current through negatively charged mesoor nanoscale pores (e.g., gap functions) within cellular regions that define the pore structure beneath the stratum corneum.

  16. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    Directory of Open Access Journals (Sweden)

    Nikolaos Kourkoumelis

    2015-06-01

    Full Text Available Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i assembling the technical specifications of portable systems and (ii analyzing the spectral characteristics of in vivo measurements.

  17. Development of ultraviolet- and visible-light one-shot spectral domain optical coherence tomography and in situ measurements of human skin

    Science.gov (United States)

    Hirayama, Heijiro; Nakamura, Sohichiro

    2015-07-01

    We have developed ultraviolet (UV)- and visible-light one-shot spectral domain (SD) optical coherence tomography (OCT) that enables in situ imaging of human skin with an arbitrary wavelength in the UV-visible-light region (370-800 nm). We alleviated the computational burden for each color OCT image by physically dispersing the irradiating light with a color filter. The system consists of SD-OCT with multicylindrical lenses; thus, mechanical scanning of the mirror or stage is unnecessary to obtain an OCT image. Therefore, only a few dozens of milliseconds are necessary to obtain single-image data. We acquired OCT images of one subject's skin in vivo and of a skin excision ex vivo for red (R, 650±20 nm), green (G, 550±20 nm), blue (B, 450±20 nm), and UV (397±5 nm) light. In the visible-light spectrum, R light penetrated the skin and was reflected at a lower depth than G or B light. On the skin excision, we demonstrated that UV light reached the dermal layer. We anticipated that basic knowledge about the spectral properties of human skin in the depth direction could be acquired with this system.

  18. Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations

    KAUST Repository

    Flynn, Cormac

    2011-03-11

    Determining the mechanical properties of an individual\\'s skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior forearm and posterior upper arm under a rich set of three-dimensional deformations. We investigated the suitability of the Ogden and Tong and Fung strain energy functions along with a quasi-linear viscoelastic law. Using non-linear optimization techniques, we found material parameters and in vivo pre-stresses for different volunteers. The model simulated the experiments with errors-of-fit ranging from 13.7 to 21.5%. Pre-stresses ranging from 28 to 92 kPa were estimated. We show that using only in-plane experimental data in the parameter optimization results in a poor prediction of the out-of-plane response. The identifiability of the model parameters, which are evaluated using different determinability criteria, improves by increasing the number of deformation orientations in the experiments. © 2011 Biomedical Engineering Society.

  19. Ex vivo nonlinear microscopy imaging of Ehlers-Danlos syndrome-affected skin.

    Science.gov (United States)

    Kiss, Norbert; Haluszka, Dóra; Lőrincz, Kende; Kuroli, Enikő; Hársing, Judit; Mayer, Balázs; Kárpáti, Sarolta; Fekete, György; Szipőcs, Róbert; Wikonkál, Norbert; Medvecz, Márta

    2018-07-01

    Ehlers-Danlos syndrome (EDS) is the name for a heterogenous group of rare genetic connective tissue disorders with an overall incidence of 1 in 5000. The histological characteristics of EDS have been previously described in detail in the late 1970s and early 1980s. Since that time, the classification of EDS has undergone significant changes, yet the description of the histological features of collagen morphology in different EDS subtypes has endured the test of time. Nonlinear microscopy techniques can be utilized for non-invasive in vivo label-free imaging of the skin. Among these techniques, two-photon absorption fluorescence (TPF) microscopy can visualize endogenous fluorophores, such as elastin, while the morphology of collagen fibers can be assessed by second-harmonic generation (SHG) microscopy. In our present work, we performed TPF and SHG microscopy imaging on ex vivo skin samples of one patient with classical EDS and two patients with vascular EDS and two healthy controls. We detected irregular, loosely dispersed collagen fibers in a non-parallel arrangement in the dermis of the EDS patients, while as expected, there was no noticeable impairment in the elastin content. Based on further studies on a larger number of patients, in vivo nonlinear microscopic imaging could be utilized for the assessment of the skin status of EDS patients in the future.

  20. Ex-Vivo Cow Skin Viscoelastic Effect for Tribological Aspects in Endoprosthesis

    Science.gov (United States)

    Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H.; Chisiu, G.

    2018-01-01

    The viscoelastic behavior of ex-vivo cow skin was experimentally studied by applied load from different indenter types (circle, square and triangle, all types have the same area) for different times (10 sec, 30 sec, and 60 sec). The viscoelastic tests were carried out using a UMT series (UMT-II, CETR Corporation). The experimental results collected at different operating conditions showed that the cow skin has a higher reaction against the triangle indenter compared to the other shapes. Whereas the hysteresis of cow skin was lower at low applied load time and it's increased when the time increased.

  1. OCT imaging of skin cancer and other dermatological diseases

    DEFF Research Database (Denmark)

    Mogensen, Mette; Thrane, Lars; Jørgensen, Thomas Martini

    2009-01-01

    Optical coherence tomography (OCT) provides clinicians and researchers with micrometer-resolution, in vivo, cross-sectional images of human skin up to several millimeter depth. This review of OCT imaging applied within dermatology covers the application of OCT to normal skin, and reports on a lar...... number of applications in the fields of non-melanoma skin cancer, malignant melanomas, psoriasis and dermatitis, infestations, bullous skin diseases, tattoos, nails, haemangiomas, and other skin diseases. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)......Optical coherence tomography (OCT) provides clinicians and researchers with micrometer-resolution, in vivo, cross-sectional images of human skin up to several millimeter depth. This review of OCT imaging applied within dermatology covers the application of OCT to normal skin, and reports on a large...

  2. An ex vivo porcine skin model to evaluate pressure-reducing devices of different mechanical properties used for pressure ulcer prevention.

    Science.gov (United States)

    Yeung, Ching-Yan C; Holmes, David F; Thomason, Helen A; Stephenson, Christian; Derby, Brian; Hardman, Matthew J

    2016-11-01

    Pressure ulcers are complex wounds caused by pressure- and shear-induced trauma to skin and underlying tissues. Pressure-reducing devices, such as dressings, have been shown to successfully reduce pressure ulcer incidence, when used in adjunct to pressure ulcer preventative care. While pressure-reducing devices are available in a range of materials, with differing mechanical properties, understanding of how a material's mechanical properties will influence clinical efficacy remains limited. The aim of this study was to establish a standardized ex vivo model to allow comparison of the cell protection potential of two gel-like pressure-reducing devices with differing mechanical properties (elastic moduli of 77 vs. 35 kPa). The devices also displayed differing energy dissipation under compressive loading, and resisted strain differently under constant load in compressive creep tests. To evaluate biological efficacy we employed a new ex vivo porcine skin model, with a confirmed elastic moduli closely matching that of human skin (113 vs. 119 kPa, respectively). Static loads up to 20 kPa were applied to porcine skin ex vivo with subsequent evaluation of pressure-induced cell death and cytokine release. Pressure application alone increased the percentage of epidermal apoptotic cells from less than 2% to over 40%, and increased cellular secretion of the pro-inflammatory cytokine TNF-alpha. Co-application of a pressure-reducing device significantly reduced both cellular apoptosis and cytokine production, protecting against cellular damage. These data reveal new insight into the relationship between mechanical properties of pressure-reducing devices and their biological effects. After appropriate validation of these results in clinical pressure ulcer prevention with all tissue layers present between the bony prominence and external surface, this ex vivo porcine skin model could be widely employed to optimize design and evaluation of devices aimed at reducing pressure

  3. Wave propagation as a marker of structural and topographic properties of human skin

    Science.gov (United States)

    Djaghloul, M.; Abdouni, A.; Thieulin, C.; Zahouani, H.

    2018-06-01

    Chronological skin ageing is a phenomenon which imposes structural and functional changes on the cutaneous tissue. Mechanically, these changes can be related to structural rearrangements of the cutaneous tissue on surface and in volume (layers thickness). At the micro-structural level, the constitutional elements of the skin, collagen and elastin fibres, undergo also this rearrangement. The evolution of skin’s mechanical properties at this level is the origin of a primordial in-vivo mechanical characteristic known as the natural pretension. In the context of understanding the in-vivo skin mechanical behaviour, related to the natural pretension, a lot of instrumentations have been demonstrated in the literature. They are mainly based on the interaction between dynamic adapted solicitation and the observed reaction on the skin. In this study, we evaluate the mechanical behaviour of human skin, following an impact which induces wave propagation. The use of impact solicitation allows the direct correlation between the dynamic induced reaction (vibration, and wave propagation) of the cutaneous tissue and its mechanical property. In our development, impact solicitation is contactless, with an air blast as generator of local deformation. The estimation of the speed of wave propagation enables the characterization of the mechanical behaviour of the skin. In order to validate the developed approaches, to understand the chronological ageing, gender and anisotropy effects on the skin properties, measurements have been realized on 77 healthy volunteers separated in five age groups. The obtained results are consistent with earlier works and confirm the efficiency of the developed instrumentation to estimate the changes of mechanical behaviour of the skin under age and gender effects.

  4. High resolution in-vivo imaging of skin with full field optical coherence tomography

    Science.gov (United States)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  5. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin.

    Science.gov (United States)

    Wenande, Emily; Tam, Joshua; Bhayana, Brijesh; Schlosser, Steven Kyle; Ishak, Emily; Farinelli, William A; Chlopik, Agata; Hoang, Mai P; Pinkhasov, Omar R; Caravan, Peter; Rox Anderson, R; Haedersdal, Merete

    2018-04-10

    The effectiveness of topical drugs for treatment of non-melanoma skin cancer is greatly reduced by insufficient penetration to deep skin layers. Ablative fractional lasers (AFLs) are known to enhance topical drug uptake by generating narrow microchannels through the skin, but information on AFL-drug delivery in in vivo conditions is limited. In this study, we examined pharmacokinetics, biodistribution and toxicity of two synergistic chemotherapy agents, cisplatin and 5-fluorouracil (5-FU), following AFL-assisted delivery alone or in combination in in vivo porcine skin. Detected at 0-120 h using mass spectrometry techniques, we demonstrated that fractional CO 2 laser pretreatment (196 microchannels/cm 2 , 852 μm ablation depth) leads to rapid drug uptake in 1500 μm deep skin layers, with a sixfold enhancement in peak cisplatin concentrations versus non-laser-treated controls (5 h, P = 0.005). Similarly, maximum 5-FU deposition was measured within an hour of AFL-delivery, and exceeded peak deposition in non-laser-exposed skin that had undergone topical drug exposure for 5 days. Overall, this accelerated and deeper cutaneous drug uptake resulted in significantly increased inflammatory and histopathological effects. Based on clinical scores and transepidermal water loss measurement, AFL intensified local toxic responses to drugs delivered alone and in combination, while systemic drug exposure remained undetectable. Quantitative histopathologic analyses correspondingly revealed significantly reduced epidermal proliferation and greater cellular apoptosis after AFL-drug delivery; particularly after combined cisplatin + 5-FU exposure. In sum, by overcoming the primary limitation of topical drug penetration and providing accelerated, enhanced and deeper delivery, AFL-assisted combination chemotherapy may represent a promising treatment strategy for non-melanoma skin cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Differences in pyrimidine dimer removal between rat skin cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Mullaart, E.; Lohman, P.H.; Vijg, J.

    1988-01-01

    Pyrimidine dimers, the most abundant type of DNA lesions induced by ultraviolet light (UV), are rapidly repaired in human skin fibroblasts in vitro. In the same cell type from rats, however, there is hardly any removal of such dimers. To investigate whether this low capacity of rat skin cells to repair lesions in their DNA is an inherent characteristic of this species or an artifact due to cell culturing, we measured the removal of UV-induced pyrimidine dimers from rat epidermal keratinocytes both in vitro and in vivo. Epidermal keratinocytes in vitro were unable to remove any dimers over the first 3 h after UV-irradiation, while only about 20% was removed during a repair period of 24 h. In this respect, these cells were not different from cultured rat fibroblasts. In contrast to the results obtained with keratinocytes in vitro, we observed a rapid repair of pyrimidine dimers in UV-irradiated keratinocytes in vivo over the first 3 h; this rapid repair phase was followed by a much slower repair phase between 3 and 24 h. These results are discussed in terms of the possibility that mammalian cells are able to switch from one DNA repair pathway to another

  7. Analysis of hemodynamics in human skin using photothermal radiometry and diffuse reflectance spectroscopy

    Science.gov (United States)

    Verdel, Nina; Marin, Ana; Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2017-07-01

    We present a novel methodology for quantitative analysis of hemodynamics in human skin in vivo. Our approach combines pulsed photothermal radiometry (i.e., time-resolved measurements of midinfrared emission from sample surface after exposure to a short light pulse) and diffuse reflectance spectroscopy in visible part of the spectrum. Experimental data are fitted with predictions of a numerical model of light transport in a four-layer skin model (i.e., inverse Monte Carlo), which allows assessment of the layer thicknesses, chromophore contents (e.g., melanin, oxy- and deoxy-hemoglobin), as well as scattering properties. The performance is tested in comparison analysis of healthy skin before and during application of a blood pressure cuff (at 200 mm Hg) for 5 minutes.

  8. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus.

    Science.gov (United States)

    Favazza, Christopher P; Jassim, Omar; Cornelius, Lynn A; Wang, Lihong V

    2011-01-01

    In several human volunteers, photoacoustic microscopy (PAM) has been utilized for noninvasive cutaneous imaging of the skin microvasculature and a melanocytic nevus. Microvascular networks in both acral and nonacral skin were imaged, and multiple features within the skin have been identified, including the stratum corneum, epidermal-dermal junction, and subpapillary vascular plexus. Several vascular and structural differences between acral and nonacral skin were also observed in the photoacoustic images. In addition, a nevus was photoacoustically imaged, excised, and histologically analyzed. The photoacoustic images allowed for in vivo measurement of tumor thickness, depth, and microvasculature-values confirmed by histologic examination. The presented images demonstrate the potential of PAM to aid in the study and evaluation of cutaneous microcirculation and analysis of pigmented lesions. Through its ability to three-dimensionally image the structure and function of the microvasculature and pigmented lesions, PAM can have a clinical impact in diagnosis and assessment of systemic diseases that affect the microvasculature such as diabetes and cardiovascular disease, cutaneous malignancies such as melanoma, and potentially other skin disorders.

  9. Pyrimidine dimer formation and repair in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Harber, L.C.; Kochevar, I.E.

    1980-01-01

    Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythermal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidum bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process

  10. In vivo assessment of the structure of skin microcirculation by reflectance confocal-laser-scanning microscopy

    Science.gov (United States)

    Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu

    2012-02-01

    One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.

  11. Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz.

    Science.gov (United States)

    Fournier, Céline; Bridal, S Lori; Coron, Alain; Laugier, Pascal

    2003-04-01

    In vivo skin attenuation estimators must be applicable to backscattered radio frequency signals obtained in a pulse-echo configuration. This work compares three such estimators: short-time Fourier multinarrowband (MNB), short-time Fourier centroid shift (FC), and autoregressive centroid shift (ARC). All provide estimations of the attenuation slope (beta, dB x cm(-1) x MHz(-1)); MNB also provides an independent estimation of the mean attenuation level (IA, dB x cm(-1)). Practical approaches are proposed for data windowing, spectral variance characterization, and bandwidth selection. Then, based on simulated data, FC and ARC were selected as the best (compromise between bias and variance) attenuation slope estimators. The FC, ARC, and MNB were applied to in vivo human skin data acquired at 20 MHz to estimate betaFC, betaARC, and IA(MNB), respectively (without diffraction correction, between 11 and 27 MHz). Lateral heterogeneity had less effect and day-to-day reproducibility was smaller for IA than for beta. The IA and betaARC were dependent on pressure applied to skin during acquisition and IA on room and skin-surface temperatures. Negative values of IA imply that IA and beta may be influenced not only by skin's attenuation but also by structural heterogeneity across dermal depth. Even so, IA was correlated to subject age and IA, betaFC, and betaARC were dependent on subject gender. Thus, in vivo attenuation measurements reveal interesting variations with subject age and gender and thus appeared promising to detect skin structure modifications.

  12. Anti-inflammatory activity of Punica granatum L. (Pomegranate) rind extracts applied topically to ex vivo skin.

    Science.gov (United States)

    Houston, David M J; Bugert, Joachim; Denyer, Stephen P; Heard, Charles M

    2017-03-01

    Coadministered pomegranate rind extract (PRE) and zinc (II) produces a potent virucidal activity against Herpes simplex virus (HSV); however, HSV infections are also associated with localised inflammation and pain. Here, the objective was to determine the anti-inflammatory activity and relative depth penetration of PRE, total pomegranate tannins (TPT) and zinc (II) in skin, ex vivo. PRE, TPT and ZnSO 4 were dosed onto freshly excised ex vivo porcine skin mounted in Franz diffusion cells and analysed for COX-2, as a marker for modulation of the arachidonic acid inflammation pathway, by Western blotting and immunohistochemistry. Tape stripping was carried out to construct relative depth profiles. Topical application of PRE to ex vivo skin downregulated expression of COX-2, which was significant after just 6h, and maintained for up to 24h. This was achieved with intact stratum corneum, proving that punicalagin penetrated skin, further supported by the depth profiling data. When PRE and ZnSO 4 were applied together, statistically equal downregulation of COX-2 was observed when compared to the application of PRE alone; no effect followed the application of ZnSO 4 alone. TPT downregulated COX-2 less than PRE, indicating that tannins alone may not be entirely responsible for the anti-inflammatory activity of PRE. Punicalagin was found throughout the skin, in particular the lower regions, indicating appendageal delivery as a significant route to the viable epidermis. Topical application of TPT and PRE had significant anti-inflammatory effects in ex vivo skin, confirming that PRE penetrates the skin and modulates COX-2 regulation in the viable epidermis. Pomegranates have potential as a novel approach in ameliorating the inflammation and pain associated with a range of skin conditions, including cold sores and herpetic stromal keratitis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determination of the optical properties of melanin-pigmented human skin equivalents using terahertz time-domain spectroscopy

    Science.gov (United States)

    Lipscomb, Dawn; Echchgadda, Ibtissam; Peralta, Xomalin G.; Wilmink, Gerald J.

    2013-02-01

    Terahertz time-domain spectroscopy (THz-TDS) methods have been utilized in previous studies in order to characterize the optical properties of skin and its primary constituents (i.e., water, collagen, and keratin). However, similar experiments have not yet been performed to investigate whether melanocytes and the melanin pigment that they synthesize contribute to skin's optical properties. In this study, we used THz-TDS methods operating in transmission geometry to measure the optical properties of in vitro human skin equivalents with or without normal human melanocytes. Skin equivalents were cultured for three weeks to promote gradual melanogenesis, and THz time domain data were collected at various time intervals. Frequency-domain analysis techniques were performed to determine the index of refraction (n) and absorption coefficient (μa) for each skin sample over the frequency range of 0.1-2.0 THz. We found that for all samples as frequency increased, n decreased exponentially and the μa increased linearly. Additionally, we observed that skin samples with higher levels of melanin exhibited greater n and μa values than the non-pigmented samples. Our results indicate that melanocytes and the degree of melanin pigmentation contribute in an appreciable manner to the skin's optical properties. Future studies will be performed to examine whether these contributions are observed in human skin in vivo.

  14. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy.

    Science.gov (United States)

    Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan

    2015-05-01

    Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Simulation study of the thermal and the thermoelastic effects induced by pulsed laser absorption in human skin

    Science.gov (United States)

    Kim, Jae-Young; Jang, Kyungmin; Yang, Seung-Jin; Baek, Jun-Hyeok; Park, Jong-Rak; Yeom, Dong-Il; Kim, Ji-Sun; Kim, Hyung-Sik; Jun, Jae-Hoon; Chung, Soon-Cheol

    2016-04-01

    We studied the thermal and the mechanical effects induced by pulsed laser absorption in human skin by numerically solving the heat-transfer and the thermoelastic wave equations. The simulation of the heat-transfer equation yielded the spatiotemporal distribution of the temperature increase in the skin, which was then used in the driving term of the thermoelastic wave equation. We compared our simulation results for the temperature increase and the skin displacements with the measured and numerical results, respectively. For the comparison, we used a recent report by Jun et al. [Sci. Rep. 5, 11016 (2015)], who measured in vivo skin temperature and performed numerical simulation of the thermoelastic wave equation using a simple assumption about the temporal evolution of the temperature distribution, and found their results to be in good agreement with our results. In addition, we obtained solutions for the stresses in the human skin and analyzed their dynamic behaviors in detail.

  16. Transient Genome-Wide Transcriptional Response to Low-Dose Ionizing Radiation In Vivo in Humans

    International Nuclear Information System (INIS)

    Berglund, Susanne R.; Rocke, David M.; Dai Jian; Schwietert, Chad W.; Santana, Alison; Stern, Robin L.; Lehmann, Joerg; Hartmann Siantar, Christine L.; Goldberg, Zelanna

    2008-01-01

    Purpose: The in vivo effects of low-dose low linear energy transfer ionizing radiation on healthy human skin are largely unknown. Using a patient-based tissue acquisition protocol, we have performed a series of genomic analyses on the temporal dynamics over a 24-hour period to determine the radiation response after a single exposure of 10 cGy. Methods and Materials: RNA from each patient tissue sample was hybridized to an Affymetrix Human Genome U133 Plus 2.0 array. Data analysis was performed on selected gene groups and pathways. Results: Nineteen gene groups and seven gene pathways that had been shown to be radiation responsive were analyzed. Of these, nine gene groups showed significant transient transcriptional changes in the human tissue samples, which returned to baseline by 24 hours postexposure. Conclusions: Low doses of ionizing radiation on full-thickness human skin produce a definable temporal response out to 24 hours postexposure. Genes involved in DNA and tissue remodeling, cell cycle transition, and inflammation show statistically significant changes in expression, despite variability between patients. These data serve as a reference for the temporal dynamics of ionizing radiation response following low-dose exposure in healthy full-thickness human skin

  17. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Xenobiotic metabolism capacities of human skin in comparison with a 3D-epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: phase II enzymes.

    Science.gov (United States)

    Götz, Christine; Pfeiffer, Roland; Tigges, Julia; Ruwiedel, Karsten; Hübenthal, Ulrike; Merk, Hans F; Krutmann, Jean; Edwards, Robert J; Abel, Josef; Pease, Camilla; Goebel, Carsten; Hewitt, Nicola; Fritsche, Ellen

    2012-05-01

    The 7th Amendment to the EU Cosmetics Directive prohibits the use of animals in cosmetic testing for certain endpoints, such as genotoxicity. Therefore, skin in vitro models have to replace chemical testing in vivo. However, the metabolic competence neither of human skin nor of alternative in vitro models has so far been fully characterized, although skin is the first-pass organ for accidentally or purposely (cosmetics and pharmaceuticals) applied chemicals. Thus, there is an urgent need to understand the xenobiotic-metabolizing capacities of human skin and to compare these activities to models developed to replace animal testing. We have measured the activity of the phase II enzymes glutathione S-transferase, UDP-glucuronosyltransferase and N-acetyltransferase in ex vivo human skin, the 3D epidermal model EpiDerm 200 (EPI-200), immortalized keratinocyte-based cell lines (HaCaT and NCTC 2544) and primary normal human epidermal keratinocytes. We show that all three phase II enzymes are present and highly active in skin as compared to phase I. Human skin, therefore, represents a more detoxifying than activating organ. This work systematically compares the activities of three important phase II enzymes in four different in vitro models directly to human skin. We conclude from our studies that 3D epidermal models, like the EPI-200 employed here, are superior over monolayer cultures in mimicking human skin xenobiotic metabolism and thus better suited for dermatotoxicity testing. © 2012 John Wiley & Sons A/S.

  19. The induction and repair of cyclobutane thymidine dimers in human skin

    International Nuclear Information System (INIS)

    Roza, L.; Erasmus Univ., Rotterdam; Vermeulen, W.; Schans, G.P. van der; Lohman, P.H.M.

    1987-01-01

    The most important detrimental effect of ultraviolet radiation (UV) on the living cell, so far known, is the induction of damage in the DNA. The major photoproducts induced in DNA by UV-C (200-280 nm) and UV-B (280-315 nm) are the cyclobutane-type pyrimidine dimers, which have been implicated in UV-induced mutagenesis and carcinogenesis. Dimer lesions in DNA of cells may be repaired in the dark by a multi-enzyme process (excision repair), or via a light dependent enzymatic reaction known as photoreactivation (phr) which is specific for pyrimidine dimers. Although phr has been found to occur in a wide range of organisms, studies on the presence of phr in mammalian cells have yielded conflicting results. To investigate repair of pyrimidine dimers in human skin cells irradiated in vivo, a specific and sensitive detection method was developed based on a monoclonal antibody directed against thymidine dimers. Application together with a fluorescent immunostaining permits the direct detection of thymidine dimers in human skin cells. The method is used in studies aimed at a better understanding of the role of these lesions in the process of carcinogenesis. A report is given on the isolation and characterization of the antibodies, and their application in a study on the induction of pyrimidine dimers in human skin and on photorepair in cultured cells. 10 refs.; 2 figs

  20. Response of Human Skin Equivalents to Sarcoptes scabiei

    Science.gov (United States)

    MORGAN, MARJORIE S.; ARLIAN, LARRY G.

    2010-01-01

    Studies have shown that molecules in an extract made from bodies of the ectoparasitic mite, Sarcoptes scabiei De Geer, modulate cytokine secretion from cultured human keratinocytes and fibroblasts. In vivo, in the parasitized skin, these cells interact with each other by contact and cytokine mediators and with the matrix in which they reside. Therefore, these cell types may function differently together than they do separately. In this study, we used a human skin equivalent (HSE) model to investigate the influence of cellular interactions between keratinocytes and fibroblasts when the cells were exposed to active/burrowing scabies mites, mite products, and mite extracts. The HSE consisted of an epidermis of stratified stratum corneum, living keratinocytes, and basal cells above a dermis of fibroblasts in a collagen matrix. HSEs were inoculated on the surface or in the culture medium, and their cytokine secretions on the skin surface and into the culture medium were determined by enzyme-linked immunosorbent assay. Active mites on the surface of the HSE induced secretion of cutaneous T cell-attracting chemokine, thymic stromal lymphopoietin, interleukin (IL)-1α, IL-1β, IL-1 receptor antagonist (IL-1ra), IL-6, IL-8, monocyte chemoattractant protein-1, granulocyte/macrophage colony-stimulating factor, and macrophage colony-stimulating factor. The main difference between HSEs and monocultured cells was that the HSEs produced the proinflammatory cytokines IL-1α and IL-1β and their competitive inhibitor IL-1ra, whereas very little of these mediators was previously found for cultured keratinocytes and fibroblasts. It is not clear how the balance between these cytokines influences the overall host response. However, IL-1ra may contribute to the depression of an early cutaneous inflammatory response to scabies in humans. These contrasting results illustrate that cell interactions are important in the host’s response to burrowing scabies mites. PMID:20939384

  1. Dermal uptake and percutaneous penetration of organophosphate esters in a human skin ex vivo model

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Stapleton, Heather M; Vorkamp, Katrin

    2018-01-01

    Organophosphate esters (OPEs) are used as flame retardants, plasticizers, and as hydraulic fluids. They are present in indoor environments in high concentrations compared with other flame retardants, and human exposure is ubiquitous. In this study we provide data for estimating dermal uptake...... through the skin. For tris(isobutyl) phosphate (TIBP), tris(n-butyl) phosphate (TNBP), and tris(methylphenyl) phosphate (TMPP) the mass balance was not stable over time indicating possible degradation during the experimental period of 72 h. The rates at which OPEs permeated through the skin decreased...

  2. Influence of hydration and experimental length scale on themechanical response of human skin in vivo, using optical coherence tomography

    NARCIS (Netherlands)

    Hendriks, F.M.; Brokken, D.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    Human skin is a complex tissue consisting of different layers. To gain better insight into the mechanical behaviour of different skin layers, the mechanical response was studied with experiments of various length scales. Also, the influence of (superficial) hydration on the mechanical response is

  3. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  4. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  5. Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo.

    Science.gov (United States)

    Ruszová, Ema; Cheel, José; Pávek, Stanislav; Moravcová, Martina; Hermannová, Martina; Matějková, Ilona; Spilková, Jiřina; Velebný, Vladimír; Kubala, Lukáš

    2013-09-01

    Stress-induced fibroblast senescence is thought to contribute to skin aging. Ultraviolet light (UV) radiation is the most potent environmental risk factor in these processes. An Epilobium angustifolium (EA) extract was evaluated for its capacity to reverse the senescent response of normal human dermal fibroblasts (NHDF) in vitro and to exhibit skin photo-protection in vivo. The HPLC-UV-MS analysis of the EA preparation identified three major polyphenol groups: tannins (oenothein B), phenolic acids (gallic and chlorogenic acids) and flavonoids. EA extract increased the cell viability of senescent NHDF induced by serum deprivation. It diminished connective tissue growth factor and fibronectin gene expressions in senescent NHDF. Down-regulation of the UV-induced release of both matrix metalloproteinase-1 and -3 and the tissue inhibitor of matrix metalloproteinases-1 and -2, and also down-regulation of the gene expression of hyaluronidase 2 were observed in repeatedly UV-irradiated NHDF after EA extract treatment. Interestingly, EA extract diminished the down-regulation of sirtuin 1 dampened by UV-irradiation. The application of EA extract using a sub-irritating dose protected skin against UV-induced erythema formation in vivo. In summary, EA extract diminished stress-induced effects on NHDF, particularly on connective tissue growth factor, fibronectin and matrix metalloproteinases. These results collectively suggest that EA extract may possess anti-aging properties and that the EA polyphenols might account for these benefits.

  6. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  7. Early burn wound excision and skin grafting postburn trauma restores in vivo neutrophil delivery to inflammatory lesions

    International Nuclear Information System (INIS)

    Tchervenkov, J.I.; Epstein, M.D.; Silberstein, E.B.; Alexander, J.W.

    1988-01-01

    This study assessed the effect of early vs delayed postburn wound excision and skin grafting on the in vivo neutrophil delivery to a delayed-type hypersensitivity (DTH) reaction and a bacterial skin lesion (BSL). Male Lewis rats were presensitized to keyhole-limpet hemocyanin. Group 1 comprised sham controls. Groups 2 through 4 were given a 30% 3 degrees scald burn, but the burn wounds were excised, and skin was grafted on days 1, 3, and 7, respectively, after the burn. Group 5 comprised burn controls. Twelve days after burn trauma, all rats were injected at different intervals (during a 24-hour period) with a trio of intradermal injections of keyhole-limpet hemocyanin, Staphylococcus aureus 502A, and saline at different sites. In vivo neutrophil delivery to these dermal lesions was determined by injecting indium in 111 oxyquinoline-labeled neutrophils isolated from similarly treated groups of rats. Neutrophil delivery to DTH and BSL lesions was restored to normal by excision and skin grafting of the burn wound one day after burn trauma. Waiting three days after burn trauma to excise and skin graft the wound partially, but not completely, restored the in vivo neutrophil delivery to DTH and BSL lesions. Waiting one week to excise and skin graft a burn wound resulted in no improvement in neutrophil delivery to DTH and BSL dermal lesions. It was concluded that burn wound excision and skin grafting immediately after burn trauma restored in vivo neutrophil delivery to a BSL and DTH dermal lesion. This may, in part, explain the beneficial effect of early aggressive burn wound debridement in patients with burn injuries

  8. Black and white human skin differences

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Maibach, H I

    1979-01-01

    This review of black and white human skin differences emphasizes the alleged importance of factors other than the obvious, i.e., skin color. Physicochemical differences and differences in susceptibility to irritants and allergens suggest a more resistant black than white skin. Differences appear...

  9. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    Science.gov (United States)

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  10. Development of human skin equivalents to unravel the impaired skin barrier in atopic dermatitis skin

    NARCIS (Netherlands)

    Eweje, M.O.

    2016-01-01

    The studies in this thesis describes the barrier defects in Atopic Dermatitis (AD) skin and various techniques to develop AD Human Skin Equivalents (HSEs) which can be used to better understand the role of several factors in the pathogenesis of AD skin. The results described show that Inflammation

  11. Volumetric Visualization of Human Skin

    Science.gov (United States)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  12. CON4EI: SkinEthic™ Human Corneal Epithelium Eye Irritation Test (SkinEthic™ HCE EIT) for hazard identification and labelling of eye irritating chemicals.

    Science.gov (United States)

    Van Rompay, A R; Alépée, N; Nardelli, L; Hollanders, K; Leblanc, V; Drzewiecka, A; Gruszka, K; Guest, R; Kandarova, H; Willoughby, J A; Verstraelen, S; Adriaens, E

    2018-06-01

    Assessment of ocular irritancy is an international regulatory requirement and a necessary step in the safety evaluation of industrial and consumer products. Although a number of in vitro ocular irritation assays exist, none are capable of fully categorizing chemicals as a stand-alone assay. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was developed with the goal of assessing the reliability of eight in vitro/alternative test methods as well as establishing an optimal tiered-testing strategy. One of the in vitro assays selected was the validated SkinEthic™ Human Corneal Epithelium Eye Irritation Test method (SkinEthic™ HCE EIT). The SkinEthic™ HCE EIT has already demonstrated its capacity to correctly identify chemicals (both substances and mixtures) not requiring classification and labelling for eye irritation or serious eye damage (No Category). The goal of this study was to evaluate the performance of the SkinEthic™ HCE EIT test method in terms of the important in vivo drivers of classification. For the performance with respect to the drivers all in vivo Cat 1 and No Cat chemicals were 100% correctly identified. For Cat 2 chemicals the liquids and the solids had a sensitivity of 100% and 85.7%, respectively. For the SkinEthic™ HCE EIT test method, 100% concordance in predictions (No Cat versus No prediction can be made) between the two participating laboratories was obtained. The accuracy of the SkinEthic™ HCE EIT was 97.5% with 100% sensitivity and 96.9% specificity. The SkinEthic™ HCE EIT confirms its excellent results of the validation studies. Copyright © 2017. Published by Elsevier Ltd.

  13. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis

    Science.gov (United States)

    Nakatsuji, Teruaki; Chen, Tiffany H.; Narala, Saisindhu; Chun, Kimberly A.; Two, Aimee M.; Yun, Tong; Shafiq, Faiza; Kotol, Paul F.; Bouslimani, Amina; Melnik, Alexey V.; Latif, Haythem; Kim, Ji-Nu; Lockhart, Alexandre; Artis, Keli; David, Gloria; Taylor, Patricia; Streib, Joanne; Dorrestein, Pieter C.; Grier, Alex; Gill, Steven R.; Zengler, Karsten; Hata, Tissa R.; Leung, Donald Y. M.; Gallo, Richard L.

    2017-01-01

    The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S.aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S.aureus. The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis. These AMPs were strain-specific, highly potent, selectively killed S.aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S.aureus. These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease. PMID:28228596

  14. Studies in human skin epithelial cell carcinogenesis

    International Nuclear Information System (INIS)

    Lehman, T.A.

    1987-01-01

    Metabolism and DNA adduct formation of benzo[a]pyrene (BP) by human epidermal keratinocytes pretreated with inhibitors or inducer of cytochrame P450 was studied. To study DNA adduct analysis, cultures were pretreated as described above, and then treated with non-radiolabeled BP. DNA was prepared from these cultures, digested to the nucleotide level, and 32 P-postlabeled for adduct analysis. Cultures pretreated with BHA, 7,8-BF or disulfiralm formed significantly fewer BPDE I-dB adducts than non-pretreated cultures, while cultures pretreated with MeBHA formed more BPDE-I-dG adducts. MeBHA increased BP activation and adduct formation inhuman keratinocyte in cultures by inducing a specific isoenzyme of cytochrome P450 which preferentially increases the oxidative metabolism of BP to 7,8 diol BP and 7,8 diol BP to BPDE I. To approximate an in vivo human system, metabolism of BPDE I by human skin xenografts treated with cell cycles modulators was studied. When treated with BPDE I, specific carcinogen-DNA adducts were formed. Separation and identification of these adducts by the 32 P-postlabeling technique indicated that the 7R- and 7S-BPDE I-dG adducts were the major adducts

  15. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    Science.gov (United States)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  16. Signatures of human skin in the millimetre wave band (80-100) GHz

    Science.gov (United States)

    Owda, Amani Y.; Rezgui, Nacer-Ddine; Salmon, Neil A.

    2017-10-01

    With the performance of millimeter wave security screening imagers improving (reduced speckle, greater sensitivity, and better spatial resolution) attention is turning to identification of anomalies which appear on the human body. Key to this identification is the understanding of how the emissive and reflective properties vary over the human body and between different categories of people, defined by age and gender for example. As the interaction of millimetre waves with the human body is only a fraction of a millimetre into the skin, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. On an automated basis at security screening portals, this will increase detection probabilities and reduce false alarm rates, ensuring high throughputs at entrances to future airport departure lounges and transport networks. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is described. The emissivities of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17+/-0.002 to 0.68+/-0.002. The radiometric measurements were made at four locations on the arm, namely: palm of hand, back of hand, dorsal surface of the forearm, and volar side of the forearm, where the water content and the skin thickness are known to be different. These measurements show significant variation in emissivity from person to person and, more importantly, significant variation at different locations on the arms of individuals. Males were found to have an emissivity 0.03 higher than those of females. The emissivity of the back of the hand, where the skin is thinner and the blood vessels are closer to the skin surface, was found to be lower by 0.0681 than the emissivity of the palm of the hand, where the skin is thicker. The measurements also show that the emissivity of the

  17. Neurogenic inflammation in human and rodent skin

    DEFF Research Database (Denmark)

    Schmelz, M; Petersen, Lars Jelstrup

    2001-01-01

    The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...... about neurogenic inflammation in human skin, including the involvement of mast cells.......The combination of vasodilation and protein extravasation following activation of nociceptors has been termed "neurogenic inflammation." In contrast to rodents, no neurogenic protein extravasation can be elicited in healthy human skin. Dermal microdialysis has considerably increased our knowledge...

  18. Analysis of Reparative Activity of Platelet Lysate: Effect on Cell Monolayer Recovery In Vitro and Skin Wound Healing In Vivo.

    Science.gov (United States)

    Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D

    2016-11-01

    Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.

  19. Uncovering of melanin fluorescence in human skin tissue

    Science.gov (United States)

    Scholz, Matthias; Stankovic, Goran; Seewald, Gunter; Leupold, Dieter

    2007-07-01

    Due to its extremely low fluorescence quantum yield, in the conventionally (one-photon) excited autofluorescence of skin tissue, melanin fluorescence is masked by several other endogenous and possibly also exogenous fluorophores (e.g. NADH, FAD, Porphyrins). A first step to enhance the melanin contribution had been realized by two-photon fs-pulse excitation in the red/near IR, based on the fact that melanin can be excited by stepwise two-photon absorption, whereas all other fluorophores in this spectral region allow only simultaneous two-photon excitation. Now, the next and decisive step has been realized: Using an extremely sensitive detection system, for the first time twophoton fluorescence of skin tissue excited with pulses in the ns-range could be measured. The motivation for this step was based on the fact that the population density of the fluorescent level resulting from a stepwise excitation has a different dependence of the pulse duration than that from a simultaneous excitation (Δt2 vs. Δt). Due to this strong discrimination between the fluorophores, practically pure melanin fluorescence can be obtained. Examples for in-vivo, ex-vivo as well as paraffin embedded skin tissue will be shown. The content of information with respect to early diagnosis of skin deseases will be discussed.

  20. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    Science.gov (United States)

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Characterization of SLC transporters in human skin

    Directory of Open Access Journals (Sweden)

    Marion Alriquet

    2015-03-01

    Full Text Available Most identified drug transporters belong to the ATP-binding Cassette (ABC and Solute Carrier (SLC families. Recent research indicates that some of these transporters play an important role in the absorption, distribution and excretion of drugs, and are involved in clinically relevant drug-drug interactions for systemic drugs. However, very little is known about the role of drug transporters in human skin in the disposition of topically applied drugs and their involvement in drug-drug interactions. The aim of this work was to compare the expression in human skin (vs human hepatocytes and kidney of SLC transporters included in the EMA guidance as the most likely clinical sources of drug interactions. The expression of SLC transporters in human tissues was analyzed by quantitative RT-PCR. Modulation of SLC47A1 and SLC47A2 (MATE1 and MATE2 expression was analyzed after treatment of human skin in organ-culture with rifampicin and UV irradiation. The expression of SLCO2B1 (OATPB, SLCO3A1 (OATPD, SLCO4A1 (OATPE, SLC47A1 and SLC47A2 (MATE1 and MATE2 was detected in human skin, OATPE and MATE1 being the most expressed. OATPE is about 70 times more expressed in human skin than in human hepatocytes. Moreover, the expression of SLC47A1 and SLC47A2 was down-regulated after treatment with rifampicin or after exposure to UV light. The present findings demonstrate that SLCO4A1 (OATPE and SLC47A1 (MATE1 are highly expressed in human skin and suggest the involvement of SLC transporters in the disposition of topically applied drugs.

  2. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Science.gov (United States)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  3. In vivo evaluation of Fe in the human skin and swins mice skin through the X-rays fluorescence technique; Avaliacao in vivo de Fe na pele humana e de camundongos swins atraves da tecnica de fluorescencia de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Estevam, Marcelo

    2005-07-01

    Recent technological improvements allow the method of in vivo XRF to supply useful sensibility for diagnostics or monitoring in biomedical applications. In cases of hereditary sanguine disorders as the {beta}-Thalassaemia or a genetic disorder like Haemochromatosis, there is a high concentration of elements as Fe, Zn and Cu in the skin and internal organs, due to the treatment of those abnormalities or due to the own dysfunction caused by the disease. The levels of Fe related to the patient bearers of the {beta}-Thalassaemia are determined, at the moment, measuring a protein in the sanguine current, called ferritin. The monitoring of the protein is ineffective in several situations, such as when the patient suffers any disturbance of health. Nowadays, the main forms of measuring the levels of those metals through hepatic storage are the biopsy of the liver, that is invasive and potentially dangerous, presenting a rate of mortality of 0,1%, and through magnetic susceptibilities that employs a quantum superconductor, which is highly expensive and there are only three main world medical centers with this equipment. This work investigates the use of a Si PIN-diode detector and a 238Pu source (13 and 17 keV; 13%; 95.2 mCi; 86y) for the measurement of Fe skin levels compatible with those associated to the disease {beta}-Thalassaemia. XRF spectra were analyzed using a set of AXIL-WinQXAS programs elaborated and disseminated by the IAEA. The determination coefficient of the calibration model (sensitivity curve) was 0.97. Measurements on skin phantoms containing concentrations of Fe in the range from 15 to 150 parts per million (ppm), indicate that we are able to detect Fe at levels of the order of 13 ppm, using monitoring periods of 50 seconds and skin entrance dose less than 10 mSv. The literature reports skin Fe levels from 15.0 to 60.0 ppm in normal persons and from 70 to 150 ppm in thalassaemic patients. So, the employed methodology allows the in vivo measurement of

  4. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Zonneveld, I.; Das, P. K.; Krieg, S. R.; van der Loos, C. M.; Kapsenberg, M. L.

    1987-01-01

    The complexity of immune response-associated cells present in normal human skin was recently redefined as the skin immune system (SIS). In the present study, the exact immunophenotypes of lymphocyte subpopulations with their localizations in normal human skin were determined quantitatively. B cells

  5. Direct noninvasive observation of near infrared photobleaching of autofluorescence in human volar side fingertips in vivo

    Science.gov (United States)

    Deng, Bin; Wright, Colin; Lewis-Clark, Eric; Shaheen, G.; Geier, Roman; Chaiken, J.

    2010-02-01

    Human transdermal in vivo spectroscopic applications for tissue analysis involving near infrared (NIR) light often must contend with broadband NIR fluorescence that, depending on what kind of spectroscopy is being employed, can degrade signal to noise ratios and dynamic range. Such NIR fluorescence, i.e. "autofluorescence" is well known to originate in blood tissues and various other endogenous materials associated with the static tissues. Results of recent experiments on human volar side fingertips in vivo are beginning to provide a relative ordering of the contributions from various sources. Preliminary results involving the variation in the bleaching effect across different individuals suggest that for 830 nm excitation well over half of the total fluorescence comes from the static tissues and remainder originates with the blood tissues, i.e. the plasma and the hematocrit. Of the NIR fluorescence associated with the static tissue, over half originates with products of well-known post-enzymatic glycation reactions, i.e. Maillard chemistry, in the skin involving glucose and other carbohydrates and skin proteins like collagen and cytosol proteins.

  6. Estimating physiological skin parameters from hyperspectral signatures

    Science.gov (United States)

    Vyas, Saurabh; Banerjee, Amit; Burlina, Philippe

    2013-05-01

    We describe an approach for estimating human skin parameters, such as melanosome concentration, collagen concentration, oxygen saturation, and blood volume, using hyperspectral radiometric measurements (signatures) obtained from in vivo skin. We use a computational model based on Kubelka-Munk theory and the Fresnel equations. This model forward maps the skin parameters to a corresponding multiband reflectance spectra. Machine-learning-based regression is used to generate the inverse map, and hence estimate skin parameters from hyperspectral signatures. We test our methods using synthetic and in vivo skin signatures obtained in the visible through the short wave infrared domains from 24 patients of both genders and Caucasian, Asian, and African American ethnicities. Performance validation shows promising results: good agreement with the ground truth and well-established physiological precepts. These methods have potential use in the characterization of skin abnormalities and in minimally-invasive prescreening of malignant skin cancers.

  7. In vitro and in vivo characterization of hazelnut skin prick test extracts

    NARCIS (Netherlands)

    Akkerdaas, Jaap H.; Wensing, Marjolein; Knulst, André C.; Aalberse, Rob C.; Hefle, Susan L.; van Ree, Ronald

    2003-01-01

    RATIONALE: Hazelnut allergy ranks among the most frequently observed food allergies. Clinical symptoms range from the oral allergy syndrome to life threatening anaphylaxis. Diagnosis of hazelnut allergy partially relies on in vivo testing by means of skin prick testing (SPT). The aim of this study

  8. Comparative analysis of the effects of CO2 fractional laser and sonophoresis on human skin penetration with 5-aminolevulinic acid.

    Science.gov (United States)

    Choi, J H; Shin, E J; Jeong, K H; Shin, M K

    2017-11-01

    Successful delivery of a photosensitizer into the skin is an important factor for effective photodynamic therapy (PDT). The effective method to increase drug penetration within short incubation time overcoming skin barrier have been investigated. This study was performed to analyze and compare the effectiveness of ablative fractional laser (FXL) pretreatment and/or sonophoresis for enhancing the penetration of 5-aminolevulinic acid (ALA) into human skin in vivo. Twenty-four identical 1 × 1 cm 2 treatment areas were mapped on the backs of ten healthy male subjects. Each area received FXL pretreatment and/or sonophoresis with different energy settings and ALA incubation times. After treatments, porphyrin fluorescence reflecting the ALA penetration were measured. Application of ablative CO 2 FXL pretreatment resulted to higher fluorescence intensities than the non-treatment group. Incubation times were positively correlated with the increments of ALA penetration. However, increasing pulse energy or combining with sonophoresis did not show additional positive effects on ALA penetration. Ablative CO 2 FXL pretreatment effectively facilitated ALA penetration in human skin in vivo. Ablative CO 2 FXL alone without sonophoresis setting pulse energy of 10 and 20 mJ with more than 60 min of ALA incubation time could be an ideal setting for ALA penetration.

  9. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    Full Text Available The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  10. Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin.

    Science.gov (United States)

    Schrader, A; Siefken, W; Kueper, T; Breitenbach, U; Gatermann, C; Sperling, G; Biernoth, T; Scherner, C; Stäb, F; Wenck, H; Wittern, K-P; Blatt, T

    2012-01-01

    Aquaporins (AQPs) present in the epidermis are essential hydration-regulating elements controlling cellular water and glycerol transport. In this study, the potential of glyceryl glucoside [GG; alpha-D-glucopyranosyl-alpha-(1->2)-glycerol], an enhanced glycerol derivative, to increase the expression of AQP3 in vitro and ex vivo was evaluated. In vitro studies with real-time RT-PCR and FACS measurements were performed to test the induction by GG (3% w/v) of AQP3 mRNA and protein in cultured human keratinocytes. GG-containing formulations were applied topically to volunteer subjects and suction blister biopsies were analyzed to assess whether GG (5%) could penetrate the epidermis of intact skin, and subsequently upregulate AQP3 mRNA expression and improve barrier function. AQP3 mRNA and protein levels were significantly increased in cultured human keratinocytes. In the studies on volunteer subjects, GG significantly increased AQP3 mRNA levels in the skin and reduced transepidermal water loss compared with vehicle-controlled areas. GG promotes AQP3 mRNA and protein upregulation and improves skin barrier function, and may thus offer an effective treatment option for dehydrated skin. Copyright © 2012 S. Karger AG, Basel.

  11. Advanced haptic sensor for measuring human skin conditions

    Science.gov (United States)

    Tsuchimi, Daisuke; Okuyama, Takeshi; Tanaka, Mami

    2010-01-01

    This paper is concerned with the development of a tactile sensor using PVDF (Polyvinylidene Fluoride) film as a sensory receptor of the sensor to evaluate softness, smoothness, and stickiness of human skin. Tactile sense is the most important sense in the sensation receptor of the human body along with eyesight, and we can examine skin condition quickly using these sense. But, its subjectivity and ambiguity make it difficult to quantify skin conditions. Therefore, development of measurement device which can evaluate skin conditions easily and objectively is demanded by dermatologists, cosmetic industries, and so on. In this paper, an advanced haptic sensor system that can measure multiple information of skin condition in various parts of human body is developed. The applications of the sensor system to evaluate softness, smoothness, and stickiness of skin are investigated through two experiments.

  12. Detecting electroporation by assessing the time constants in the exponential response of human skin to voltage controlled impulse electrical stimulation.

    Science.gov (United States)

    Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid

    2009-01-01

    We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.

  13. Materials used to simulate physical properties of human skin.

    Science.gov (United States)

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Genetic reversion of inherited skin disorders

    Energy Technology Data Exchange (ETDEWEB)

    Magnaldo, Thierry; Sarasin, Alain

    2002-11-30

    Human epidermis is a squamous stratified epithelium whose integrity relies on balanced processes of cell attachment, proliferation, and differentiation. In monogenic skin dermatoses, such as mecano-bullous diseases, or DNA repair deficiencies such as the xeroderma pigmentosum (XP), alterations of skin integrity may have devastating consequences as illustrated by the extremely high epidermal cancer proneness of XP patients. The lack of efficient pharmacological treatments, the easy accessibility of skin, and the possibility of long term culture and genetic manipulations ex vivo of epidermal keratinocytes, have encouraged approaches toward gene transfer and skin therapy prospects. We review here some of the human genetic disorders that exhibit major traits in skin, as well as requirements and difficulties inherent to approaches aimed at stable phenotypic correction.

  15. Visualizing radiofrequency-skin interaction using multiphoton microscopy in vivo.

    Science.gov (United States)

    Tsai, Tsung-Hua; Lin, Sung-Jan; Lee, Woan-Ruoh; Wang, Chun-Chin; Hsu, Chih-Ting; Chu, Thomas; Dong, Chen-Yuan

    2012-02-01

    Redundant skin laxity is a major feature of aging. Recently, radiofrequency has been introduced for nonablative tissue tightening by volumetric heating of the deep dermis. Despite the wide range of application based on this therapy, the effect of this technique on tissue and the subsequent tissue remodeling have not been investigated in detail. Our objective is to evaluate the potential of non-linear optics, including multiphoton autofluorescence and second harmonic generation (SHG) microscopy, as a non-invasive imaging modality for the real-time study of radiofrequency-tissue interaction. Electro-optical synergy device (ELOS) was used as the radiofrequency source in this study. The back skin of nude mouse was irradiated with radiofrequency at different passes. We evaluated the effect on skin immediately and 1 month after treatment with multiphoton microscopy. Corresponding histology was performed for comparison. We found that SHG is negatively correlated to radiofrequency passes, which means that collagen structural disruption happens immediately after thermal damage. After 1 month of collagen remodeling, SHG signals increased above baseline, indicating that collagen regeneration has occurred. Our findings may explain mechanism of nonablative skin tightening and were supported by histological examinations. Our work showed that monitoring the dermal heating status of RF and following up the detailed process of tissue reaction can be imaged and quantified with multiphoton microscopy non-invasively in vivo. Copyright © 2011. Published by Elsevier Ireland Ltd.

  16. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  17. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  18. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  19. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo

    Science.gov (United States)

    BUSSAU, L. J.; VO, L. T.; DELANEY, P. M.; PAPWORTH, G. D.; BARKLA, D. H.; KING, R. G.

    1998-01-01

    Fibre optic confocal imaging (FOCI) enabled subsurface fluorescence microscopy of the skin of hairless mice in vivo. Application of acridine orange enabled imaging of the layers of the epidermis. The corneocytes of the stratum corneum, the keratinocytes in the basal layers and redundant hair follicles were visualised at depths greater than 100 μm. Cellular and nuclear membranes of keratinocytes of the skin were visualised by the use of acridine orange and DIOC5(3). Imaging of the skin after injection of FITC-dextran revealed an extensive network of blood vessels with a size range up to 20 μm. Blood cells could be seen moving through dermal vessels and the blood circulation through the dermal vascular bed was video-taped. The fluorescent dye 4-di-2-ASP showed the presence of nerves fibres around the hair follicles and subsurface blood vessels. Comparison was made between images obtained in vivo using FOCI and in vitro scanning electron microscopy and conventional histology. FOCI offers the potential to study dynamic events in vivo, such as blood flow, skin growth, nerve regeneration and many pathological processes, in ways which have not previously been possible. PMID:9643419

  20. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  1. Human skin penetration of silver nanoparticles through intact and damaged skin

    International Nuclear Information System (INIS)

    Larese, Francesca Filon; D'Agostin, Flavia; Crosera, Matteo; Adami, Gianpiero; Renzi, Nadia; Bovenzi, Massimo; Maina, Giovanni

    2009-01-01

    There is a growing interest on nanoparticle safety for topical use. The benefits of nanoparticles have been shown in several scientific fields, but little is known about their potential to penetrate the skin. This study aims at evaluating in vitro skin penetration of silver nanoparticles. Experiments were performed using the Franz diffusion cell method with intact and damaged human skin. Physiological solution was used as receiving phase and 70 μg/cm 2 of silver nanoparticles coated with polyvinylpirrolidone dispersed in synthetic sweat were applied as donor phase to the outer surface of the skin for 24 h. The receptor fluid measurements were performed by electro thermal atomic absorption spectroscopy (ETAAS). Human skin penetration was also determined by using transmission electron microscope (TEM) to verify the location of silver nanoparticles in exposed membranes. Median silver concentrations of 0.46 ng cm -2 (range -2 (range 0.43-11.6) were found in the receiving solutions of cells where the nanoparticles solution was applied on intact skin (eight cells) and on damaged skin (eight cells), respectively. Twenty-four hours silver flux permeation in damaged skin was 0.62 ± 0.2 ng cm -2 with a lag time <1 h. Our experimental data showed that silver nanoparticles absorption through intact and damaged skin was very low but detectable, and that in case of damaged skin it was possible an increasing permeation of silver applied as nanoparticles. Moreover, silver nanoparticles could be detected in the stratum corneum and the outermost surface of the epidermis by electron microscopy. We demonstrated for the first time that silver applied as nanoparticles coated with polyvinylpirrolidone is able to permeate the damaged skin in an in vitro diffusion cell system

  2. Influence of the relative humidity and the temperature on the in-vivo friction behaviour of human skin

    NARCIS (Netherlands)

    Klaassen, M.; Schipper, D. J.; Masen, M.A.

    2016-01-01

    Both temperature and relative humidity are known to influence the frictional behaviour of human skin. However, literature does not completely cover to what extent both parameters play a role. Measurements were conducted using an in-house built reciprocating tribometer inside an enclosure in which

  3. Human skin wetness perception: psychophysical and neurophysiological bases

    Science.gov (United States)

    Filingeri, Davide; Havenith, George

    2015-01-01

    The ability to perceive thermal changes in the surrounding environment is critical for survival. However, sensing temperature is not the only factor among the cutaneous sensations to contribute to thermoregulatory responses in humans. Sensing skin wetness (i.e. hygrosensation) is also critical both for behavioral and autonomic adaptations. Although much has been done to define the biophysical role of skin wetness in contributing to thermal homeostasis, little is known on the neurophysiological mechanisms underpinning the ability to sense skin wetness. Humans are not provided with skin humidity receptors (i.e., hygroreceptors) and psychophysical studies have identified potential sensory cues (i.e. thermal and mechanosensory) which could contribute to sensing wetness. Recently, a neurophysiological model of human wetness sensitivity has been developed. In helping clarifying the peripheral and central neural mechanisms involved in sensing skin wetness, this model has provided evidence for the existence of a specific human hygrosensation strategy, which is underpinned by perceptual learning via sensory experience. Remarkably, this strategy seems to be shared by other hygroreceptor-lacking animals. However, questions remain on whether these sensory mechanisms are underpinned by specific neuromolecular pathways in humans. Although the first study on human wetness perception dates back to more than 100 years, it is surprising that the neurophysiological bases of such an important sensory feature have only recently started to be unveiled. Hence, to provide an overview of the current knowledge on human hygrosensation, along with potential directions for future research, this review will examine the psychophysical and neurophysiological bases of human skin wetness perception. PMID:27227008

  4. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    Science.gov (United States)

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive

  5. Formation of thymine containing dimers in skin exposed to ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B E [Dundee Univ. (UK)

    1978-01-01

    Nuclear DNA appears to be the major molecular target for the inhibitory, mutagenic and lethal effects of ultraviolet radiation on cells in culture. Cyclobutyl dimers between adjacent pyrimidine bases, the major photochemical lesions for these effects in prokaryotes, also play a part in UVR effects on eukaryotes cells. Pyrimidine dimers have been isolated from in vivo UV-irradiated guinea pig and mouse skin. The wavelength dependence for dimer induction is similar to that for acute skin reactions but no direct causal relationship has been established. Sunlight UVR may induce dimers in skin DNA. Excision of dimers from mouse skin in vivo is deficient as it is for most rodent cells in culture; human cell excision is efficient and the difficulties in interpretation of UV-carcinogenesis results with mice in terms of human skin cancer are therefore increased.

  6. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    Science.gov (United States)

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  7. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  8. Chemical applicability domain of the local lymph node assay (LLNA) for skin sensitisation potency. Part 4. Quantitative correlation of LLNA potency with human potency.

    Science.gov (United States)

    Roberts, David W; Api, Anne Marie

    2018-07-01

    Prediction of skin sensitisation potential and potency by non-animal methods is the target of many active research programmes. Although the aim is to predict sensitisation potential and potency in humans, data from the murine local lymph node assay (LLNA) constitute much the largest source of quantitative data on in vivo skin sensitisation. The LLNA has been the preferred in vivo method for identification of skin sensitising chemicals and as such is potentially valuable as a benchmark for assessment of non-animal approaches. However, in common with all predictive test methods, the LLNA is subject to false positives and false negatives with an overall level of accuracy said variously to be approximately 80% or 90%. It is also necessary to consider the extent to which, for true positives, LLNA potency correlates with human potency. In this paper LLNA potency and human potency are compared so as to express quantitatively the correlation between them, and reasons for non-agreement between LLNA and human potency are analysed. This leads to a better definition of the applicability domain of the LLNA, within which LLNA data can be used confidently to predict human potency and as a benchmark to assess the performance of non-animal approaches. Copyright © 2018. Published by Elsevier Inc.

  9. Effects of vehicle on the uptake and elimination kinetics of capsaicinoids in human skin in vivo

    International Nuclear Information System (INIS)

    Pershing, Lynn K.; Reilly, Christopher A.; Corlett, Judy L.; Crouch, Dennis J.

    2004-01-01

    While the physiologic and molecular effects of capsaicinoids have been extensively studied in various model systems by a variety of administration routes, little is known about the uptake and elimination kinetic profiles in human skin following topical exposure. The present study evaluated the uptake and elimination kinetics of capsaicinoids in human stratum corneum following a single topical exposure to 3% solutions containing 55% capsaicin, 35% dihydrocapsaicin, and 10% other analogues prepared in three vehicles: mineral oil (MO), propylene glycol (PG), and isopropyl alcohol (IPA). Capsaicinoid solutions were evaluated simultaneously in a random application pattern on the volar forearms of 12 subjects using a small, single 150-μg dose. Capsaicin and dihydrocapsaicin were recovered from human skin using commercial adhesive discs to harvest stratum corneum from treated sites. Capsaicinoids were extracted from the stratum corneum-adhesive discs and quantified by liquid chromatography/mass spectroscopy (LC/MS). Both capsaicinoids were detected in stratum corneum 1 min after application with all vehicles and achieved a pseudo-steady state shortly thereafter. IPA delivered three times greater capsaicin and dihydrocapsaicin into the human stratum corneum than PG or MO at all time points investigated. The C max of capsaicin in IPA, PG, and MO was 16.1, 6.2, and 6.5 μg, respectively. The dihydrocapsaicin content was 60% of capsaicin with all vehicles. The estimated T half of capsaicin and dihydrocapsaicin in the three vehicles was similar (24 h). Thus, maximal cutaneous capsaicinoid concentrations were achieved quickly in the human stratum corneum and were concentration and vehicle dependent. In contrast, capsaicinoid half-life was long and vehicle independent

  10. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis.

    Science.gov (United States)

    Laggner, Ute; Di Meglio, Paola; Perera, Gayathri K; Hundhausen, Christian; Lacy, Katie E; Ali, Niwa; Smith, Catherine H; Hayday, Adrian C; Nickoloff, Brian J; Nestle, Frank O

    2011-09-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is characterized poorly. In this study, we show in vivo evidence that human blood contains a distinct subset of proinflammatory cutaneous lymphocyte Ag and CCR6-positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of proinflammatory mediators including IL-17A and activated keratinocytes in a TNF-α- and IFN-γ-dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared with healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Taken together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, these data indicate redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human proinflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease.

  11. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  12. Progesterone lipid nanoparticles: Scaling up and in vivo human study.

    Science.gov (United States)

    Esposito, Elisabetta; Sguizzato, Maddalena; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Nastruzzi, Claudio; Cortesi, Rita

    2017-10-01

    This investigation describes a scaling up study aimed at producing progesterone containing nanoparticles in a pilot scale. Particularly hot homogenization techniques based on ultrasound homogenization or high pressure homogenization have been employed to produce lipid nanoparticles constituted of tristearin or tristearin in association with caprylic-capric triglyceride. It was found that the high pressure homogenization method enabled to obtain nanoparticles without agglomerates and smaller mean diameters with respect to ultrasound homogenization method. X-ray characterization suggested a lamellar structural organization of both type of nanoparticles. Progesterone encapsulation efficiency was almost 100% in the case of high pressure homogenization method. Shelf life study indicated a double fold stability of progesterone when encapsulated in nanoparticles produced by the high pressure homogenization method. Dialysis and Franz cell methods were performed to mimic subcutaneous and skin administration. Nanoparticles constituted of tristearin in mixture with caprylic/capric triglyceride display a slower release of progesterone with respect to nanoparticles constituted of pure tristearin. Franz cell evidenced a higher progesterone skin uptake in the case of pure tristearin nanoparticles. A human in vivo study, based on tape stripping, was conducted to investigate the performance of nanoparticles as progesterone skin delivery systems. Tape stripping results indicated a decrease of progesterone concentration in stratum corneum within six hours, suggesting an interaction between nanoparticle material and skin lipids. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Modelling glucose and water dynamics in human skin

    NARCIS (Netherlands)

    Groenendaal, W.; Schmidt, K.H.; Basum, von G.; Riel, van N.A.W.; Hilbers, P.A.J.

    2008-01-01

    Background: Glucose is heterogeneously distributed in the different physiological compartments in the human skin. Therefore, for the development of a noninvasive measurement method, both a good quantification of the different compartments of human skin and an understanding of glucose transport

  14. Study of the vitamins A, E and C esters penetration into the skin by confocal Raman spectroscopy in vivo

    Science.gov (United States)

    Mogilevych, Borys; Isensee, Debora; Rangel, Joao L.; Dal Pizzol, Carine; Martinello, Valeska C. A.; Dieamant, Gustavo C.; Martin, Airton A.

    2015-06-01

    Vitamins A, E and C play important role in skin homeostasis and protection. Hence, they are extensively used in many cosmetic and cosmeceutic products. However, their molecules are unstable, and do not easily penetrate into the skin, which drastically decreases its efficiency in topical formulations. Liposoluble derivative of the vitamin A - retinyl palmitate, vitamin E - tocopheryl acetate, and vitamin C - tetraisopalmitoyl ascorbic acid, are more stable, and are frequently used as an active ingredient in cosmetic products. Moreover, increased hydrophobicity of these molecules could lead to a higher skin penetration. The aim of this work is to track and compare the absorption of the liposoluble derivatives of the vitamins and their encapsulated form, into the healthy human skin in vivo. We used Confocal Raman Spectroscopy (CRS) that is proven to be helpful in label-free non-destructive investigation of the biochemical composition and molecular conformational analysis of the biological samples. The measurements were performed in the volar forearm of the 10 healthy volunteers. Skin was treated with both products, and Raman spectra were obtained after 15 min, 3 hours, and 6 hours after applying the formulation. 3510 Skin Composition Analyzer (River Diagnostics, The Netherlands) with 785 nm laser excitation was used to acquire information in the fingerprint region. Significant difference in permeation of the products was observed. Whereas only free form of retinyl palmitate penetrate the skin within first 15 minutes, all three vitamin derivatives were present under the skin surface in case of nanoparticulated form.

  15. In vivo measurement of skin microrelief using photometric stereo in the presence of interreflections.

    Science.gov (United States)

    Sohaib, Ali; Farooq, Abdul R; Atkinson, Gary A; Smith, Lyndon N; Smith, Melvyn L; Warr, Robert

    2013-03-01

    This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.

  16. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    Science.gov (United States)

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  17. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    Science.gov (United States)

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  18. Microvascular changes during acne lesion initiation and scarring is revealed in vivo using optical microangiography

    Science.gov (United States)

    Baran, Utku; Li, Yuandong; Choi, Woo J.; Wang, Ruikang K.

    2015-02-01

    Acne is a common skin disease in society and often leads to scarring. In this paper, we demonstrate the capabilities of swept-source optical coherence tomography (SS-OCT) in detecting specific features of acne lesion initiation and scarring on human facial skin in vivo over 30 days. Optical microangiography (OMAG) technique made it possible to image 3D tissue microvasculature changes up to 1 mm depth in vivo without the need of exogenous contrast agents in ~10 seconds. The presented results show promise to facilitate clinical trials of treatment and prognosis of acne vulgaris by detecting cutaneous microvasculature and structural changes within human skin in vivo.

  19. Quality system and audit of human skin allografts

    International Nuclear Information System (INIS)

    Van Baare, J.

    1999-01-01

    Allograft skin has long been recognised as an important resource in the management of bum wounds. The important issue in skin banking is fust to guarantee safety of human cadaveric donor skin. Second, the quality of the allografts should be assured. The Euro Skin Bank, established in 1976, is located in The Netherlands. Not only in The Netherlands, but in many other (European) countries no specific regulation exists for tissue banking. With respect to skin banking in The Netherlands the Euro Skin Bank requested the government what regulations should be applied on their activities. It was stated in 1994 that human allografl skin should be regarded as a phan-naceutical drug, a magistral preparation. The Euro Skin Bank should therefore be subjected to the guidelines given for the Good Laboraton, Practices and Good Manufacturing Practices to process allogmft skin. Nevertheless, it was in the opinion of the Euro Skin Bank that regulating human tissue as a pharmaceutical drug was not sufficient e.g. no specific regulations for serologic testing of the tissue donor is given, which should be one of the most important issues in tissue banking. Recently the government has published new legislation for tissue banks in The Netherlands: on July I st, 1998, a new legislation was enforced concerning organ and tissue donation and on November I st, 1998, quality requirements for organ and tissue banks are published. The European Community discussed the possibility to bring all animal and human tissues under the Medical Device Directive (MDD). Soon it was proposed not to incorporate viable hw-nan tissue into the MDD. Last year all human tissue was excluded from the MDD. Lack of European regulations has been resulted in national laws, e.g. in The Netherlands, Germany and France. Possibly there might be a more significant role for the European Association of Tissue Banks in the near future for European legislation on tissue banking. In order to have a standard quality system wmch is

  20. Utilization of reconstructed cultured human skin models as an alternative skin for permeation studies of chemical compounds

    OpenAIRE

    Kano, Satoshi; 藤堂, 浩明; 杉江, 謙一; 藤本, 英哲; 中田, 圭一; 徳留, 嘉寛; 橋本, フミ惠; 杉林, 堅次

    2010-01-01

    Two reconstructed human skin models, EpiskinSM and EpiDermTM, have been approved as alternative membranes for skin corrosive/irritation experiments due to their close correlation with animal skin. Such reconstructed human skin models were evaluated as alternative membranes for skin permeation experiments. Seven drugs with different lipophilicities and almost the same molecular weight were used as test penetrants. Relationships were investigated between permeability coefficients (P values) of ...

  1. [The clinical use of cryopreserved human skin allografts for transplantation].

    Science.gov (United States)

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  2. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    Science.gov (United States)

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  3. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  4. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  5. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    Science.gov (United States)

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  6. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method - art. no. 66270P

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Martini; Thrane, Lars; Mogensen, M.

    2007-01-01

    the scheme with a mobile fiber-based time-domain real-time OCT system. Essential enhancement was obtained in image contrast when performing in vivo imaging of normal skin and lesions. Resulting images show improved delineation of structure in correspondence with the observed improvements in contrast...... system. Here, we consider a method that in principle can be fitted to most OCT systems without major modifications. Specifically, we address a spatial diversity technique for suppressing speckle noise in OCT images of human skin. The method is a variant of changing the position of the sample relative...

  7. Development of a combined OCT-Raman probe for the prospective in vivo clinical melanoma skin cancer screening

    Science.gov (United States)

    Mazurenka, M.; Behrendt, L.; Meinhardt-Wollweber, M.; Morgner, U.; Roth, B.

    2017-10-01

    A combined optical coherence tomography (OCT)-Raman probe was designed and built into a spectral domain OCT head, and its performance was evaluated and compared to the most common Raman probe setups, based on a fiber bundle and confocal free space optics. Due to the use of the full field of view of an OCT scanning lens, the combined probe has a superior performance within maximum permissible exposure limits, compared to the other two probes. Skin Raman spectra, recorded in vivo, further prove the feasibility of the OCT-Raman probe for the future in vivo clinical applications in skin cancer screening.

  8. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Identification of a novel pro-inflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis

    Science.gov (United States)

    LAGGNER, Ute; DI MEGLIO, Paola; PERERA, Gayathri K.; HUNDHAUSEN, Christian; LACY, Katie E.; ALI, Niwa; SMITH, Catherine H.; HAYDAY, Adrian C.; NICKOLOFF, Brian J.; NESTLE, Frank O.

    2011-01-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is poorly characterized. In this study we show in vivo evidence that human blood contains a distinct subset of pro-inflammatory cutaneous lymphocyte antigen (CLA) and C-C chemokine receptor (CCR) 6 positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of pro-inflammatory mediators including IL-17A and activated keratinocytes in a TNF-α and IFN-γ dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared to healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, this data indicates redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human pro-inflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease. PMID:21813772

  10. Tattooing of skin results in transportation and light-induced decomposition of tattoo pigments--a first quantification in vivo using a mouse model.

    Science.gov (United States)

    Engel, Eva; Vasold, Rudolf; Santarelli, Francesco; Maisch, Tim; Gopee, Neera V; Howard, Paul C; Landthaler, Michael; Bäumler, Wolfgang

    2010-01-01

    Millions of people are tattooed with inks that contain azo pigments. The pigments contained in tattoo inks are manufactured for other uses with no established history of safe use in humans and are injected into the skin at high densities (2.5 mg/cm(2)). Tattoo pigments disseminate after tattooing throughout the human body and although some may photodecompose at the injection site by solar or laser light exposure, the extent of transport or photodecomposition under in vivo conditions remains currently unknown. We investigated the transport and photodecomposition of the widely used tattoo Pigment Red 22 (PR 22) following tattooing into SKH-1 mice. The pigment was extracted quantitatively at different times after tattooing. One day after tattooing, the pigment concentration was 186 microg/cm(2) skin. After 42 days, the amount of PR 22 in the skin has decreased by about 32% of the initial value. Exposure of the tattooed skin, 42 days after tattooing, to laser light reduced the amount of PR 22 by about 51% as compared to skin not exposed to laser light. A part of this reduction is as a result of photodecomposition of PR 22 as shown by the detection of corresponding hazardous aromatic amines. Irradiation with solar radiation simulator for 32 days caused a pigment reduction of about 60% and we again assume pigment decomposition in the skin. This study is the first quantitative estimate of the amount of tattoo pigments transported from the skin into the body or decomposed by solar or laser radiation.

  11. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin

    International Nuclear Information System (INIS)

    Chu Maoquan; Wu Qiang; Wang Jiaxu; Hou Shengke; Miao Yi; Peng Jinliang; Sun Ye

    2007-01-01

    CdTe quantum dots (QDs) with red fluorescence have been used to study their transdermal delivery capacity through mouse skin. The results showed that the QDs could permeate through skin, either separated from or still attached to live mice. Although the fluorescence emitted by the QDs could only be found in the skin and muscle cells located under the mouse skins coated with QDs, an inductive coupled plasma atomic emission spectrometry (ICP-AES) study indicated that the main organs, such as the heart, liver, spleen, lung, kidney and brain, all contained a significant quantity of Cd atoms. Moreover, these Cd atoms could remain in vivo for at least one week. As a control, the concentration of Cd atoms in normal mice not coated with QDs was very low

  12. Skin and the non-human human

    DEFF Research Database (Denmark)

    Rösing, Lilian Munk

    2013-01-01

    The article puts forward an aesthetic and psychoanalytic analysis of Titian's painting, The Flaying of Marsyas, arguing that the painting is a reflection on the human subject as a being constituted by skin and by a core of non-humanity. The analysis is partly an answer to Melanie Hart's (2007) ar...... of the 'Muselmann', and Anton Ehrenzweig's psychoanalytic theory of artistic creation. Whereas Hart is focusing on form and colour, I also turn my attention towards the texture of the painting....

  13. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  14. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    International Nuclear Information System (INIS)

    Hughes, Michael F.; Edwards, Brenda C.

    2010-01-01

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using

  15. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  16. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  17. Histological and Ultrastructural Effects of Ultrasound-induced Cavitation on Human Skin Adipose Tissue.

    Science.gov (United States)

    Bani, Daniele; Quattrini Li, Alessandro; Freschi, Giancarlo; Russo, Giulia Lo

    2013-09-01

    In aesthetic medicine, the most promising techniques for noninvasive body sculpturing purposes are based on ultrasound-induced fat cavitation. Liporeductive ultrasound devices afford clinically relevant subcutaneous fat pad reduction without significant adverse reactions. This study aims at evaluating the histological and ultrastructural changes induced by ultrasound cavitation on the different cell components of human skin. Control and ultrasound-treated ex vivo abdominal full-thickness skin samples and skin biopsies from patients pretreated with or without ultrasound cavitation were studied histologically, morphometrically, and ultrastructurally to evaluate possible changes in adipocyte size and morphology. Adipocyte apoptosis and triglyceride release were also assayed. Clinical evaluation of the effects of 4 weekly ultrasound vs sham treatments was performed by plicometry. Compared with the sham-treated control samples, ultrasound cavitation induced a statistically significant reduction in the size of the adipocytes (P ultrasound treatment caused a significant reduction of abdominal fat. This study further strengthens the current notion that noninvasive transcutaneous ultrasound cavitation is a promising and safe technology for localized reduction of fat and provides experimental evidence for its specific mechanism of action on the adipocytes.

  18. First genomic survey of human skin fungal diversity

    Science.gov (United States)

    Fungal infections of the skin affect 29 million people in the United States. In the first study of human fungal skin diversity, National Institutes of Health researchers sequenced the DNA of fungi that thrive at different skin sites of healthy adults to d

  19. Investigation of age-related decline of microfibril-associated glycoprotein-1 in human skin through immunohistochemistry study

    Directory of Open Access Journals (Sweden)

    Zheng Q

    2013-12-01

    Full Text Available Qian Zheng, Siming Chen, Ying Chen, John Lyga, Russell Wyborski, Uma SanthanamGlobal Research and Development, Avon Products Inc., Suffern, New York, USAAbstract: During aging, the reduction of elastic and collagen fibers in dermis can lead to skin atrophy, fragility, and aged appearance, such as increased facial wrinkling and sagging. Microfibril-associated glycoprotein-1 (MAGP-1 is an extracellular matrix protein critical for elastic fiber assembly. It integrates and stabilizes the microfibril and elastin matrix network that helps the skin to endure mechanical stretch and recoil. However, the observation of MAGP-1 during skin aging and its function in the dermis has not been established. To better understand age-related changes in the dermis, we investigated MAGP-1 during skin aging and photoaging, using a combination of in vitro and in vivo studies. Gene expression by microarray was performed using human skin biopsies from young and aged female donors. In addition, immunofluorescence analysis on the MAGP-1 protein was performed in dermal fibroblast cultures and in human skin biopsies. Specific antibodies against MAGP-1 and fibrillin-1 were used to examine protein expression and extracellular matrix structure in the dermis via biopsies from donors of multiple age groups. A reduction of the MAGP-1 gene and protein levels were observed in human skin with increasing age and photoexposure, indicating a loss of the functional MAGP-1 fiber network and a lack of structural support in the dermis. Loss of MAGP-1 around the hair follicle/pore areas was also observed, suggesting a possible correlation between MAGP-1 loss and enlarged pores in aged skin. Our findings demonstrate that a critical “pre-elasticity” component, MAGP-1, declines with aging and photoaging. Such changes may contribute to age-related loss of dermal integrity and perifollicular structural support, which may lead to skin fragility, sagging, and enlarged pores

  20. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  1. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin

    DEFF Research Database (Denmark)

    Themstrup, L.; Welzel, Julia; Ciardo, Silvana

    2016-01-01

    Objectives: Dynamic optical coherence tomography (D-OCT) is an angiographic variation of OCT that non-invasively provides images of the in vivo microvasculature of the skin by combining conventional OCT images with flow data. The objective of this study was to investigate and report on the D.......001), and also the redness a measurements were positively correlated with the D-OCT measurements (r = 0.48; 95% CI [0.406, 0.55]). D-OCT was able to reliably image and identify morphologic changes in the vascular network consistent with the induced physiological changes of blood flow. Conclusion: This study has...... initiated validation of the use of D-OCT for imaging of skin blood flow. Our results showed that D-OCT was able to reliably image and identify changes in the skin vasculature consistent with the induced physiological blood flow changes. These basic findings support the use of D-OCT imaging for in vivo...

  2. Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.

    Science.gov (United States)

    Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee

    2017-08-01

    Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Recent developments in skin mimic systems to predict transdermal permeation.

    Science.gov (United States)

    Waters, Laura J

    2015-01-01

    In recent years there has been a drive to create experimental techniques that can facilitate the accurate and precise prediction of transdermal permeation without the use of in vivo studies. This review considers why permeation data is essential, provides a brief summary as to how skin acts as a natural barrier to permeation and discusses why in vivo studies are undesirable. This is followed by an in-depth discussion on the extensive range of alternative methods that have been developed in recent years. All of the major 'skin mimic systems' are considered including: in vitro models using synthetic membranes, mathematical models including quantitative structure-permeability relationships (QSPRs), human skin equivalents and chromatographic based methods. All of these model based systems are ideally trying to achieve the same end-point, namely a reliable in vitro-in vivo correlation, i.e. matching non-in vivo obtained data with that from human clinical trials. It is only by achieving this aim, that any new method of obtaining permeation data can be acknowledged as a potential replacement for animal studies, for the determination of transdermal permeation. In this review, the relevance and potential applicability of the various models systems will also be discussed.

  4. Clinical studies of pigmented lesions in human skin by using a multiphoton tomograph

    Science.gov (United States)

    Balu, Mihaela; Kelly, Kristen M.; Zachary, Christopher B.; Harris, Ronald M.; Krasieva, Tatiana B.; König, Karsten; Tromberg, Bruce J.

    2013-02-01

    In vivo imaging of pigmented lesions in human skin was performed with a clinical multiphoton microscopy (MPM)-based tomograph (MPTflex, JenLab, Germany). Two-photon excited fluorescence was used for visualizing endogenous fluorophores such as NADH/FAD, keratin, melanin in the epidermal cells and elastin fibers in the dermis. Collagen fibers were imaged by second harmonic generation. Our study involved in vivo imaging of benign melanocytic nevi, atypical nevi and melanoma. The goal of this preliminary study was to identify in vivo the characteristic features and their frequency in pigmented lesions at different stages (benign, atypical and malignant) and to evaluate the ability of in vivo MPM to distinguish atypical nevi from melanoma. Comparison with histopathology was performed for the biopsied lesions. Benign melanocytic nevi were characterized by the presence of nevus cell nests at the epidermal-dermal junction. In atypical nevi, features such as lentiginous hyperplasia, acanthosis and architectural disorder were imaged. Cytological atypia was present in all the melanoma lesions imaged, showing the strongest correlation with malignancy. The MPM images demonstrated very good correlation with corresponding histological images, suggesting that MPM could be a promising tool for in vivo non-invasive pigmented lesion diagnosis, particularly distinguishing atypical nevi from melanoma.

  5. Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

    Science.gov (United States)

    Amann, Philipp M; Marquardt, Yvonne; Steiner, Timm; Hölzle, Frank; Skazik-Voogt, Claudia; Heise, Ruth; Baron, Jens M

    2016-04-01

    Clinical experiences with non-ablative fractional erbium glass laser therapy have demonstrated promising results for dermal remodelling and for the indications of striae, surgical scars and acne scars. So far, molecular effects on human skin following treatment with these laser systems have not been elucidated. Our aim was to investigate laser-induced effects on skin morphology and to analyse molecular effects on gene regulation. Therefore, human three-dimensional (3D) organotypic skin models were irradiated with non-ablative fractional erbium glass laser systems enabling qRT-PCR, microarray and histological studies at same and different time points. A decreased mRNA expression of matrix metalloproteinases (MMPs) 3 and 9 was observed 3 days after treatment. MMP3 also remained downregulated on protein level, whereas the expression of other MMPs like MMP9 was recovered or even upregulated 5 days after irradiation. Inflammatory gene regulatory responses measured by the expression of chemokine (C-X-C motif) ligands (CXCL1, 2, 5, 6) and interleukin expression (IL8) were predominantly reduced. Epidermal differentiation markers such as loricrin, filaggrin-1 and filaggrin-2 were upregulated by both tested laser optics, indicating a potential epidermal involvement. These effects were also shown on protein level in the immunofluorescence analysis. This novel standardised laser-treated human 3D skin model proves useful for monitoring time-dependent ex vivo effects of various laser systems on gene expression and human skin morphology. Our study reveals erbium glass laser-induced regulations of MMP and interleukin expression. We speculate that these alterations on gene expression level could play a role for dermal remodelling, anti-inflammatory effects and increased epidermal differentiation. Our finding may have implications for further understanding of the molecular mechanism of erbium glass laser-induced effects on human skin.

  6. Antimicrobial activity of a new intact skin antisepsis formulation.

    Science.gov (United States)

    Russo, Antonello; Viotti, Pier Luigi; Vitali, Matteo; Clementi, Massimo

    2003-04-01

    Different antiseptic formulations have shown limitations when applied to disinfecting intact skin, notably short-term tolerability and/or efficacy. The purpose of this study was optimizing a new antiseptic formulation specifically targeted at intact skin disinfection and evaluating its in vitro microbicidal activity and in vivo efficacy. The biocidal properties of the antiseptic solution containing 0.5% chloramine-T diluted in 50% isopropyl alcohol (Cloral; Eurospital SpA Trieste, Italy) were measured in vitro versus gram-positive-, gram-negative-, and acid-alcohol-resistant germs and fungi with standard suspension tests in the presence of fetal bovine serum. Virus-inhibiting activity was evaluated in vitro against human cytomegalovirus, herpes simplex virus, poliovirus, hepatitis B virus, and hepatitis C virus. Tests used different methods for the different biologic and in vitro replication capacity of these human viruses. Lastly, Cloral tolerability and skin colonization retardation efficacy after disinfection were studied in vivo. The antiseptic under review showed fast and sustained antimicrobial activity. The efficacy of Cloral against clinically important bacterial and viral pathogens and fungi was highlighted under the experimental conditions described in this article. Finally, microbial regrowth lag and no side effects were documented in vivo after disinfection of 11 volunteers. A stable chloramine-T solution in isopropyl alcohol may be suggested for intact skin antisepsis.

  7. Photoreactivity of tiaprofenic acid and suprofen using pig skin as an ex vivo model.

    Science.gov (United States)

    Sarabia, Z; Hernández, D; Castell, J V; van Henegouwen, G M

    2000-10-01

    The skin is repeatedly exposed to solar ultraviolet radiation. Photoreaction of drugs in the body may result in phototoxic or photoallergic side effects. Non-steroidal anti-inflammatory drugs, such as tiaprofenic acid (TPA) and the closely related isomer suprofen (SUP) are frequently associated with photosensitive disorders; they may mediate photosensitised damage to lipids, proteins and nucleic acids. Using ex vivo pig skin as a model, we investigated the photodegradation of TPA and SUP, and photobinding of these drugs to protein by means of HPLC analysis and drug-directed antibodies. Both with keratinocytes, which were first isolated from the pig skin and thereafter exposed to UVA and with keratinocytes which were isolated from pig skin after the skin was UVA exposed, time-dependent photodegradation of TPA and SUP was found, beside photoadduct formation to protein. The results of this work show that: (a) TPA and SUP were photodecomposed with similar efficiency; major photoproducts detected were decarboxytiaprofenic acid (DTPA) and decarboxysuprofen (DSUP), respectively. (b) Both drugs form photoadducts, as concluded from recognition by drug-specific antibodies. Pig skin appears to be a good model for studying the skin photosensitising potential of drugs.

  8. Elevation of telomerase activity in chronic radiation ulcer of human skin

    International Nuclear Information System (INIS)

    Li Xiaoying; Zhao Po; Wang Dewen; Yang Zhixiang

    1997-01-01

    Objective: To investigate the levels of telomerase activity in chronic radiation ulcers of human skin and the possible relationship between the enzyme and cancer transformation. Method: Using nonisotopic telomere repeat amplification protocol (TRAP), detections were performed in 20 cases of chronic radiation ulcers of human skin, 5 cases of normal skin tissues and 5 cases of carcinoma. Results: The positive rates for telomerase activity were 30.0%(6/20), 0(0/5) and 100%(5/5) in chronic radiation ulcers of human skin, normal skin and carcinoma, respectively. The telomerase activity in radiation ulcer was weaker than in carcinoma. Conclusion: The telomerase activity assay might be used as a marker for predicting the prognosis and the effect of treatment in chronic radiation ulcer of human skin

  9. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    International Nuclear Information System (INIS)

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of 14 C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for (≤1 hr)

  10. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model.

    Science.gov (United States)

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.

  11. An in vitro human skin test for assessing sensitization potential.

    Science.gov (United States)

    Ahmed, S S; Wang, X N; Fielding, M; Kerry, A; Dickinson, I; Munuswamy, R; Kimber, I; Dickinson, A M

    2016-05-01

    Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  13. Penetration and delivery characteristics of repetitive microjet injection into the skin.

    Science.gov (United States)

    Römgens, Anne M; Rem-Bronneberg, Debbie; Kassies, Roel; Hijlkema, Markus; Bader, Dan L; Oomens, Cees W J; van Bruggen, Michel P B

    2016-07-28

    Drugs can be delivered transdermally using jet injectors, which can be an advantageous route compared to oral administration. However, these devices inject large volumes deep into the skin or tissues underneath the skin often causing bruising and pain. This may be prevented by injecting smaller volumes at lower depth in a repetitive way using a microjet injection device. Such a device could be used to apply drugs in a controllable and sustainable manner. However, the efficacy of microjet injection has been rarely examined. In this study, the penetration and delivery capacity was examined of a repetitive microjet injection device. Various experiments were performed on epidermal and full-thickness ex vivo human as well as ex vivo porcine skin samples. Results revealed that microjets with a velocity exceeding 90m/s penetrated an epidermal skin sample with a delivery efficiency of approximately 96%. In full-thickness human skin, the delivery efficiency drastically decreased to a value of approximately 12%. Experiments on full-thickness skin revealed that the microjets penetrated to a depth corresponding to the transition between the papillary and reticular dermis. This depth did not further increase with increasing number of microjets. In vivo studies on rats indicated that intact insulin was absorbed into the systemic circulation. Hence, the microjet injection device was able to deliver medication into the skin, although the drug delivery efficiency should be increased. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin.

    Science.gov (United States)

    Kim, Yoon-Jin; Yoo, Sae Mi; Park, Hwan Hee; Lim, Hye Jin; Kim, Yu-Lee; Lee, Seunghee; Seo, Kwang-Won; Kang, Kyung-Sun

    2017-11-18

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) play an important role in cutaneous wound healing, and recent studies suggested that MSC-derived exosomes activate several signaling pathways, which are conducive in wound healing and cell growth. In this study, we investigated the roles of exosomes that are derived from USC-CM (USC-CM Exos) in cutaneous collagen synthesis and permeation. We found that USC-CM has various growth factors associated with skin rejuvenation. Our in vitro results showed that USC-CM Exos integrate in Human Dermal Fibroblasts (HDFs) and consequently promote cell migration and collagen synthesis of HDFs. Moreover, we evaluated skin permeation of USC-CM Exos by using human skin tissues. Results showed that Exo-Green labeled USC-CM Exos approached the outermost layer of the epidermis after 3 h and gradually approached the epidermis after 18 h. Moreover, increased expressions of Collagen I and Elastin were found after 3 days of treatment on human skin. The results showed that USC-CM Exos is absorbed into human skin, it promotes Collagen I and Elastin synthesis in the skin, which are essential to skin rejuvenation and shows the potential of USC-CM integration with the cosmetics or therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  16. The role of dimethyl sulfoxide (DMSO) in ex-vivo examination of human skin burn injury treatment

    Science.gov (United States)

    Pielesz, Anna; Gawłowski, Andrzej; Biniaś, Dorota; Bobiński, Rafał; Kawecki, Marek; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Glik, Justyna; Paluch, Jadwiga

    2018-05-01

    Dimethyl sulfoxide (DMSO) is one of the most versatile solvents in biological science, therefore it is frequently used as a solvent in biological studies and as a vehicle for drug therapy. DMSO readily penetrates, diffuses through biological membranes and ipso facto increases fluidity of liposomal membranes modelling stratum corneum. Thermal injury is associated with the appearance of lipid peroxidation products in the burned skin. The influence of DMSO on protein structure and stability is concentration and temperature dependant. The aim of this study was to assess the impact of DMSO on human burn wounds and examine the interactions between DMSO and skin surface. The real problem in burn treatment is hypoalbuminemia. At the level of the laboratory studies there was an attempt at answering the question of whether the DMSO will modify the standard serum solution. In the case of the incubation of skin fragments in 1%-100% DMSO, the following findings were reported: modification of the serum, appearance of low molecular weight oligomer bands, disappearance of albumin bands or reconstruction of native serum bands during incubation in antioxidant solutions. The result of the modification is also the exposure of FTIR 1603 and 1046 cm-1 bands observed in frozen serum solutions. In the case of modification of the burned skin by DMSO solutions or antioxidants - frequency shifts, an increase in the intensity of amide I band as well as the appearance of the 1601 cm-1 band can be specific biomarkers of the tissue regeneration process. In this study the areas 1780-1580 cm-1 and 1418-1250 cm-1 on the Raman spectra are particularly rich in spectral information.

  17. In vivo determination of steric and electrostatic exclusion of albumin in rat skin and skeletal muscle.

    Science.gov (United States)

    Gyenge, Christina C; Tenstad, Olav; Wiig, Helge

    2003-11-01

    In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5-7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues.

  18. Influence of two different IR radiators on the antioxidative potential of the human skin

    International Nuclear Information System (INIS)

    Darvin, M E; Patzelt, A; Meinke, M; Sterry, W; Lademann, J

    2009-01-01

    Resonance Raman spectroscopy was used for the fast in vivo detection of the concentration of carotenoid antioxidant substances such as beta-carotene and lycopene in human skin and for the measurement of their degradation dynamics, subsequent to infrared (IR) irradiation emitted by two different IR radiators applied at the same power density. One of the radiators was equipped with a water filter in front of the radiation source (WIRA) and the other was a usual broadband system without a water filter (standard IR radiator – SIR). It was found that the SIR exerted a higher influence on the degradation of carotenoids in the skin than the WIRA. Furthermore, all twelve volunteers who participated in the study felt that the irradiation with the SIR was disagreeably warmer on the skin surface compared to the WIRA, in spite of the same power density values for both radiators on the skin surface. The average degradation magnitude of the carotenoids in the skin of all volunteers after an IR irradiation was determined at 23% for WIRA and 33% for the SIR. A correlation (R 2 ∼ 0.6) was found between the individual level of carotenoids in the skin of the volunteers and the magnitude of degradation of the carotenoids for both IR radiators. Taking the previous investigations into consideration, which clearly showed production of free radicals in the skin subsequent to IR irradiation, it can be concluded that during the application of WIRA irradiation on the skin, fewer radicals are produced in comparison to the SIR

  19. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  20. Universal in vivo Textural Model for Human Skin based on Optical Coherence Tomograms.

    Science.gov (United States)

    Adabi, Saba; Hosseinzadeh, Matin; Noei, Shahryar; Conforto, Silvia; Daveluy, Steven; Clayton, Anne; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-12-20

    Currently, diagnosis of skin diseases is based primarily on the visual pattern recognition skills and expertise of the physician observing the lesion. Even though dermatologists are trained to recognize patterns of morphology, it is still a subjective visual assessment. Tools for automated pattern recognition can provide objective information to support clinical decision-making. Noninvasive skin imaging techniques provide complementary information to the clinician. In recent years, optical coherence tomography (OCT) has become a powerful skin imaging technique. According to specific functional needs, skin architecture varies across different parts of the body, as do the textural characteristics in OCT images. There is, therefore, a critical need to systematically analyze OCT images from different body sites, to identify their significant qualitative and quantitative differences. Sixty-three optical and textural features extracted from OCT images of healthy and diseased skin are analyzed and, in conjunction with decision-theoretic approaches, used to create computational models of the diseases. We demonstrate that these models provide objective information to the clinician to assist in the diagnosis of abnormalities of cutaneous microstructure, and hence, aid in the determination of treatment. Specifically, we demonstrate the performance of this methodology on differentiating basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) from healthy tissue.

  1. In-vivo data on the influence of tobacco smoke and UV light on murine skin.

    Science.gov (United States)

    Pavlou, P; Rallis, M; Deliconstantinos, G; Papaioannou, G; Grando, S A

    2009-01-01

    Inhaled tobacco smoke comes in direct contact with few organs such as mouth, lungs, and stomach. Cigarette smoke (CS) in lungs has been extensively studied. However, limited data exist on its effect on skin, and there are no long-term experimental studies suggesting toxic effects on skin. Even though it is generally accepted that CS is among the main factors of skin aging, the number of experimental studies showing this aging effect is limited. We hereby studied the effect of long-term exposure to CS on the skin of hairless mice in combination with or without ultraviolet (UV) light. In addition, we investigated potential skin protection by a potent antioxidant namely procyanidine-rich French maritime pine bark extract (PBE) pycnogenol. Male and female hairless SKH-2 mice were exposed for 10 months to tobacco smoke and/or UV light in vivo, and their effects on skin were investigated. Some biophysical parameters such as development of erythema, transepidermal water loss (TEWL), and skin elasticity were measured. The results show that UV and CS may be acting synergistically, as shown by the enhanced TEWL, erythema values, epitheliomas, and squamous cell carcinomas (SCCs) observed, whereas PBE seems to protect skin against SCC.

  2. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  3. Next generation human skin constructs as advanced tools for drug development.

    Science.gov (United States)

    Abaci, H E; Guo, Zongyou; Doucet, Yanne; Jacków, Joanna; Christiano, Angela

    2017-11-01

    Many diseases, as well as side effects of drugs, manifest themselves through skin symptoms. Skin is a complex tissue that hosts various specialized cell types and performs many roles including physical barrier, immune and sensory functions. Therefore, modeling skin in vitro presents technical challenges for tissue engineering. Since the first attempts at engineering human epidermis in 1970s, there has been a growing interest in generating full-thickness skin constructs mimicking physiological functions by incorporating various skin components, such as vasculature and melanocytes for pigmentation. Development of biomimetic in vitro human skin models with these physiological functions provides a new tool for drug discovery, disease modeling, regenerative medicine and basic research for skin biology. This goal, however, has long been delayed by the limited availability of different cell types, the challenges in establishing co-culture conditions, and the ability to recapitulate the 3D anatomy of the skin. Recent breakthroughs in induced pluripotent stem cell (iPSC) technology and microfabrication techniques such as 3D-printing have allowed for building more reliable and complex in vitro skin models for pharmaceutical screening. In this review, we focus on the current developments and prevailing challenges in generating skin constructs with vasculature, skin appendages such as hair follicles, pigmentation, immune response, innervation, and hypodermis. Furthermore, we discuss the promising advances that iPSC technology offers in order to generate in vitro models of genetic skin diseases, such as epidermolysis bullosa and psoriasis. We also discuss how future integration of the next generation human skin constructs onto microfluidic platforms along with other tissues could revolutionize the early stages of drug development by creating reliable evaluation of patient-specific effects of pharmaceutical agents. Impact statement Skin is a complex tissue that hosts various

  4. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    OpenAIRE

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin ...

  5. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    Science.gov (United States)

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Polarization-Sensitive Hyperspectral Imaging in vivo: A Multimode Dermoscope for Skin Analysis

    Science.gov (United States)

    Vasefi, Fartash; MacKinnon, Nicholas; Saager, Rolf B.; Durkin, Anthony J.; Chave, Robert; Lindsley, Erik H.; Farkas, Daniel L.

    2014-05-01

    Attempts to understand the changes in the structure and physiology of human skin abnormalities by non-invasive optical imaging are aided by spectroscopic methods that quantify, at the molecular level, variations in tissue oxygenation and melanin distribution. However, current commercial and research systems to map hemoglobin and melanin do not correlate well with pathology for pigmented lesions or darker skin. We developed a multimode dermoscope that combines polarization and hyperspectral imaging with an efficient analytical model to map the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models. For this system's proof of concept, human skin measurements on melanocytic nevus, vitiligo, and venous occlusion conditions were performed in volunteers. The resulting molecular distribution maps matched physiological and anatomical expectations, confirming a technologic approach that can be applied to next generation dermoscopes and having biological plausibility that is likely to appeal to dermatologists.

  7. In vivo and in vitro conversion of 7-dehydrocholesterol into vitamin D3 in rat skin by ultraviolet ray's irradiation

    International Nuclear Information System (INIS)

    Okano, Toshio; Yasumura, Mitsue; Mizuno, Kumiko; Kobayashi, Tadashi

    1978-01-01

    The photochemical conversion of 7-dehydrocholesterol (7-DHC) into vitamin D 3 in rat skin was experimentally studied. The skin stripped off from a sacrificed normal rat was irradiated with an ultraviolet light for a constant period in the first in vitro experiment. The normal rat irradiated under the same conditions mentioned above was sacrificed and then the skin was stripped off in the second in vivo experiment. Lipids were individually extracted with chloroformmethanol (1:1) from the skin obtained in the two experiments and the solvent was evaporated. The resulting residue was saponified and the unsaponified matter extracted with benzene was purified by application to hydroxyalkoxypropyl (HAP) Sephadex column chromatography. The resulting purified vitamin D 3 fraction was applied to high performance liquid chromatography (HPLC) in order to estimate vitamin D 3 . No peak, aside from that of alphanaphthol as an initial standard, was observed in the HPLC chromatogram on the skin obtained from the non-irradiated rat, whereas the peak corresponding to vitamin D 3 was observed in each HPLC chromatogram on both the irradiated skin (in vitro experiment) and the skin obtained from the irradiated rat (in vivo experiment). The result shows that 7-DHC in rat skin was photochemically converted into vitamin D 3 . (Iwakiri, K.)

  8. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  9. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    Science.gov (United States)

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and pSkin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  10. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac

    2011-06-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin\\'s mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  11. EPR detection of free radicals in UV-irradiated skin: mouse versus human

    International Nuclear Information System (INIS)

    Jurkiewicz, B.A.; Buettner, G.R.

    1996-01-01

    Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (λ > 300 nm, 14 μW/cm 2 UVB; 3.5 mW/cm 2 UVA) increases the ascorbate free radical (Asc) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (λ > 400 nm; 0.23 mW/cm 2 UVA) also increased the Ascsignal in human skin samples (45%) but did not increase baseline mouse Asc, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; a N = 15.56 G and a H 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline -1-oxide/alkoxyl radical adduct; a N = 14.54 G and a H = 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (∼50%), indicating a role for iron in lipid peroxidation. (Author)

  12. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D.; Wondrak, Georg T.

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  13. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV.

    Science.gov (United States)

    Tao, Shasha; Justiniano, Rebecca; Zhang, Donna D; Wondrak, Georg T

    2013-01-01

    Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm(2) UVB; 1.53 J/cm(2) UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT

  14. The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV

    Directory of Open Access Journals (Sweden)

    Shasha Tao

    2013-01-01

    Full Text Available Exposure to solar ultraviolet (UV radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2, a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I, dihydrotanshinone (DHT, tanshinone IIA (T-II-A and cryptotanshinone (CT] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1 with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA. The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities was significantly attenuated in DHT

  15. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  16. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization

    Science.gov (United States)

    Alves, Vinicius M.; Capuzzi, Stephen J.; Muratov, Eugene; Braga, Rodolpho C.; Thornton, Thomas; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2016-01-01

    Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for virtual screening of CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternative to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential. PMID:28630595

  17. Spectral Detection of Human Skin in VIS-SWIR Hyperspectral Imagery without Radiometric Calibration

    Science.gov (United States)

    2012-03-01

    6 Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less melanin appears brighter because it has higher reflectance...6 illustrates the spectral reflectance of human skin with different melanin levels. One paper proposes a Normalized Difference Skin Index (NDSI), a...1.4% Melanin 12.6% Melanin 23.2% Melanin 34.3% Melanin 45% Melanin Figure 6. Spectral reflectance of human skin at VIS-SWIR wavelengths. Skin with less

  18. [Physiological features of skin ageing in human].

    Science.gov (United States)

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  19. Chronic effects of UV on human skin

    International Nuclear Information System (INIS)

    Cesarini, J.P.

    1996-01-01

    Chronic exposures and acute accidents of the skin to UV has been recognized as an important risk for skin cancers in human. Attempts have been made with mathematical models to correlate the ambient UV dose and occupational irradiations with the risk of skin cancers. Development of accurate global measurements of solar irradiance and personal dosimetry is expected in the future in order to reduce the exposure of the general population, to precise the measures to be taken for indoor and outdoor workers. (author)

  20. Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation.

    Science.gov (United States)

    Simon, Alice; Amaro, Maria Inês; Healy, Anne Marie; Cabral, Lucio Mendes; de Sousa, Valeria Pereira

    2016-10-15

    In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon(®) Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner-Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R(2)=0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R(2)=0.991) when compared with other synthetic membranes that showed R(2) values less than 0.90. The R(2) for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    International Nuclear Information System (INIS)

    Darvin, M E; Gersonde, I; Meinke, M; Sterry, W; Lademann, J

    2005-01-01

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar + laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm -1 , which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm 2 . It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group

  2. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany); Gersonde, I [Institute of Medical Physics and Laser Medicine, Charite University Hospital, Berlin (Germany); Meinke, M [Institute of Medical Physics and Laser Medicine, Charite University Hospital, Berlin (Germany); Sterry, W [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany); Lademann, J [Center of Experimental and Applied Cutaneous Physiology (CCP), Department of Dermatology, Charite University Hospital, Berlin (Germany)

    2005-08-07

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar{sup +} laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm{sup -1}, which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm{sup 2}. It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group.

  3. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    Science.gov (United States)

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. A mechanics approach to the study of pressure sensitive adhesives and human skin for transdermal drug delivery applications

    Science.gov (United States)

    Taub, Marc Barry

    debonding of cantilever-beam specimens containing thin layers of human dermal tissue at their midline. Finally, the interfacial adhesion of PSAs bonded to human skin was studied and the mechanics model that was developed for PSA failure was extended to provide the capability for in vivo reliability predictions for transdermal systems bonded to human skin.

  5. Skin Sensitive Difference of Human Body Sections under Clothing--Multiple Analysis of Skin Surface Temperature Changes

    Institute of Scientific and Technical Information of China (English)

    李俊; 吴海燕; 张渭源

    2003-01-01

    A new researching method on clothing comfort perception is developed.By it the skin surface temperature changes and subjective psychological perception of human body sections stimulated by the same cold stimulation are studied.With the multiple comparison analysis method the changing laws of skin temperature of main human body sections is obtained.

  6. Generation of human-induced pluripotent stem cells from burn patient-derived skin fibroblasts using a non-integrative method.

    Science.gov (United States)

    Fu, Shangfeng; Ding, Jianwu; Liu, Dewu; Huang, Heping; Li, Min; Liu, Yang; Tu, Longxiang; Liu, Deming

    2018-01-01

    Patient specific induced pluripotent stem cells (iPSCs) have been recognized as a possible source of cells for skin tissue engineering. They have the potential to greatly benefit patients with large areas of burned skin or skin defects. However, the integration virus-based reprogramming method is associated with a high risk of genetic mutation and mouse embryonic fibroblast feeder-cells may be a pollutant. In the present study, human skin fibroblasts (HSFs) were successfully harvested from patients with burns and patient-specific iPSCs were generated using a non-integration method with a feeder-free approach. The octamer-binding transcription factor 4 (OCT4), sex-determining region Y box 2 (SOX2) and NANOG transcription factors were delivered using Sendai virus vectors. iPSCs exhibited representative human embryonic stem cell-like morphology and proliferation characteristics. They also expressed pluripotent markers, including OCT4, NANOG, SOX2, TRA181, stage-specific embryonic antigen 4 and TRA-160, and exhibited a normal karyotype. Teratoma and embryoid body formation revealed that iPSCs were able to differentiate into cells of all three germ layers in vitro and in vivo. The results of the present study demonstrate that HSFs derived from patients with burns, may be reprogrammed into stem cells with pluripotency, which provides a basis for cell‑based skin tissue engineering in the future.

  7. Radio-sterilization and processing of frozen human skin

    International Nuclear Information System (INIS)

    Zarate S, Herman; Aguirre H, Paulina; Silva R, Samy; Hitschfeld G, Mario

    2006-01-01

    The Laboratory of Radio-sterilized Biological Tissues Processing (LPTR) belonging to the Chilean Commission of Nuclear Energy and the International Atomic Energy Agency have played a paramount role in our country, concerning the biological tissue processing, which can be radio-sterilized as human skin, pig skin, amniotic membrane, human bone and bovine bone. The frozen radio.-sterilized human skin processing began in 2001, by means of putting into practice the knowledge acquired in training courses through the IAEA and the experience transferred by experts who visited our laboratory. The human skin processing of dead donor can be divided into 6 stages: a) Profuse washing with physiological sterilized serum in to remove the microorganisms, chemical and pharmacological compounds; b) immersion in glycerol solution at 10% to better keep the stored tissues; c) packing, to avoid post manipulation of the sterilized tissue; d) microbiological controls which allow and guarantee a sterility assurance level of 10 6 ; e) radio-sterilization, technique that consists of exposing the grafts to electromagnetic gamma waves which eliminate the microorganisms of the tissue, f) and finally, dispatching and liberation of the frozen sterilized human skin for its clinical use in different centers that take care of burned people. The LPTR receives feedback from surgeons who have used these tissues in order to improve the processing stages based in an integral quality system ISO 9001.2000. The State Health System in our country counts on limited and scarce resources to implement synthetic substitutes that is why It is considered necessary to spread the use of these noble tissues which have sterility assurance and they are processed at low price

  8. Proof-of-concept: 3D bioprinting of pigmented human skin constructs.

    Science.gov (United States)

    Ng, Wei Long; Qi, Jovina Tan Zhi; Yeong, Wai Yee; Naing, May Win

    2018-01-23

    Three-dimensional (3D) pigmented human skin constructs have been fabricated using a 3D bioprinting approach. The 3D pigmented human skin constructs are obtained from using three different types of skin cells (keratinocytes, melanocytes and fibroblasts from three different skin donors) and they exhibit similar constitutive pigmentation (pale pigmentation) as the skin donors. A two-step drop-on-demand bioprinting strategy facilitates the deposition of cell droplets to emulate the epidermal melanin units (pre-defined patterning of keratinocytes and melanocytes at the desired positions) and manipulation of the microenvironment to fabricate 3D biomimetic hierarchical porous structures found in native skin tissue. The 3D bioprinted pigmented skin constructs are compared to the pigmented skin constructs fabricated by conventional a manual-casting approach; in-depth characterization of both the 3D pigmented skin constructs has indicated that the 3D bioprinted skin constructs have a higher degree of resemblance to native skin tissue in term of the presence of well-developed stratified epidermal layers and the presence of a continuous layer of basement membrane proteins as compared to the manually-cast samples. The 3D bioprinting approach facilitates the development of 3D in vitro pigmented human skin constructs for potential toxicology testing and fundamental cell biology research.

  9. Evaluation of transdermal delivery of nanoemulsions in ex vivo porcine skin using two-photon microscopy and confocal laser-scanning microscopy

    Science.gov (United States)

    Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho

    2014-10-01

    This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.

  10. Method of protecting human skin from actinic radiation

    International Nuclear Information System (INIS)

    Fusaro, R.M.

    1975-01-01

    Enhanced protection from sunlight is achieved by applying to human skin beforehand separate, time-spaced applications of (1) a carbonyl compound which is reactive with amino groups in human skin, for example dihydroxyacetone, and (2) a benzo- or naptho-quinone such as lawsone. Preferably several sequential applications of each active component in a separate carrier are made the evening before the first exposure, and protection is thereafter maintained by applying each component separately each evening

  11. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.

  12. Tribology of skin : review and analysis of experimental results for the friction coefficient of human skin

    NARCIS (Netherlands)

    Derler, S.; Gerhardt, L.C.

    2012-01-01

    In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin-friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing

  13. Molecular imaging of melanin distribution in vivo and quantitative differential diagnosis of human pigmented lesions using label-free harmonic generation biopsy (Conference Presentation)

    Science.gov (United States)

    Sun, Chi-Kuang; Wei, Ming-Liang; Su, Yu-Hsiang; Weng, Wei-Hung; Liao, Yi-Hua

    2017-02-01

    Harmonic generation microscopy is a noninvasive repetitive imaging technique that provides real-time 3D microscopic images of human skin with a sub-femtoliter resolution and high penetration down to the reticular dermis. In this talk, we show that with a strong resonance effect, the third-harmonic-generation (THG) modality provides enhanced contrast on melanin and allows not only differential diagnosis of various pigmented skin lesions but also quantitative imaging for longterm tracking. This unique capability makes THG microscopy the only label-free technique capable of identifying the active melanocytes in human skin and to image their different dendriticity patterns. In this talk, we will review our recent efforts to in vivo image melanin distribution and quantitatively diagnose pigmented skin lesions using label-free harmonic generation biopsy. This talk will first cover the spectroscopic study on the melanin enhanced THG effect in human cells and the calibration strategy inside human skin for quantitative imaging. We will then review our recent clinical trials including: differential diagnosis capability study on pigmented skin tumors; as well as quantitative virtual biopsy study on pre- and post- treatment evaluation on melasma and solar lentigo. Our study indicates the unmatched capability of harmonic generation microscopy to perform virtual biopsy for noninvasive histopathological diagnosis of various pigmented skin tumors, as well as its unsurpassed capability to noninvasively reveal the pathological origin of different hyperpigmentary diseases on human face as well as to monitor the efficacy of laser depigmentation treatments. This work is sponsored by National Health Research Institutes.

  14. Penetration through the Skin Barrier

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates......-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous...

  15. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  16. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  17. TERAHERTZ REFLECTANCE SPECTRA OF SKIN DERMATITIS AND MORPHOLOGICAL CHANGES

    Directory of Open Access Journals (Sweden)

    E. A. Strepitov

    2013-05-01

    Full Text Available The article deals withthe diagnostics possibility of dermatitis and morphological changes of human skin using terahertz frequency range equal to 2,0¸0,05 THz. Features of different types of human skin diseases occur in vivo over the entire frequency range, especially in the field of vibration: 2,0¸1,5 THz. They were caused by the backscattering on skin new formations in its upper layers. In terahertz reflection spectra spectral lines of different dermatitis, age spots, haematoma are well distinguishable. Terahertz radiation penetrates well through the medical bandages. At the same time in a single scan, lasting about one minute, the spectrum is processed not only of the bandages, but of different skin layers.

  18. Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru

    2016-01-01

    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.

  19. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    Science.gov (United States)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  20. First donation of human skin obtained from corpse

    International Nuclear Information System (INIS)

    Reyes F, M.L.; Luna Z, D.

    2007-01-01

    The first donation of human skin coming from a cadaverous donor was obtained in the State of Mexico. The skin was obtained of a 34 year-old multi organic donor, the extraction of the same was carried out in an operating theatre by medical personnel, supported by personal of the Radio sterilized Tissue Bank (BTR) of the ININ. The skin was transported to the BTR for it processing. (Author)

  1. A novel model of human skin pressure ulcers in mice.

    Directory of Open Access Journals (Sweden)

    Andrés A Maldonado

    Full Text Available INTRODUCTION: Pressure ulcers are a prevalent health problem in today's society. The shortage of suitable animal models limits our understanding and our ability to develop new therapies. This study aims to report on the development of a novel and reproducible human skin pressure ulcer model in mice. MATERIAL AND METHODS: Male non-obese, diabetic, severe combined immunodeficiency mice (n = 22 were engrafted with human skin. A full-thickness skin graft was placed onto 4×3 cm wounds created on the dorsal skin of the mice. Two groups with permanent grafts were studied after 60 days. The control group (n = 6 was focused on the process of engraftment. Evaluations were conducted with photographic assessment, histological analysis and fluorescence in situ hybridization (FISH techniques. The pressure ulcer group (n = 12 was created using a compression device. A pressure of 150 mmHg for 8 h, with a total of three cycles of compression-release was exerted. Evaluations were conducted with photographic assessment and histological analysis. RESULTS: Skin grafts in the control group took successfully, as shown by visual assessment, FISH techniques and histological analysis. Pressure ulcers in the second group showed full-thickness skin loss with damage and necrosis of all the epidermal and dermal layers (ulcer stage III in all cases. Complete repair occurred after 40 days. CONCLUSIONS: An inexpensive, reproducible human skin pressure ulcer model has been developed. This novel model will facilitate the development of new clinically relevant therapeutic strategies that can be tested directly on human skin.

  2. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    Science.gov (United States)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  3. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    International Nuclear Information System (INIS)

    Rocke, David

    2016-01-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  4. Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rocke, David [Univ. of California, Davis, CA (United States)

    2016-08-01

    In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.

  5. Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence.

    Science.gov (United States)

    Mohyeldin, Salma M; Mehanna, Mohammed M; Elgindy, Nazik A

    2016-08-01

    The aim of this investigation was to explore the feasibility of various nanocarriers to enhance progesterone penetration via the human abdominal skin. Four progesterone-loaded nanocarriers; cubosomes, nanoliposomes, nanoemulsions and nanomicelles were formulated and characterized regarding particle size, zeta potential, % drug encapsulation and in vitro release. Structural elucidation of each nanoplatform was performed using transmission electron microscopy. Ex vivo skin permeation, deposition ability and histopathological examination were evaluated using Franz diffusion cells. Each nanocarrier was fabricated with a negative surface, nanometric size (≤ 270 nm), narrow size distribution and reasonable encapsulation efficiency. In vitro progesterone release showed a sustained release pattern for 24 h following a non-Fickian transport diffusion mechanism. All nanocarriers exhibited higher transdermal flux relative to free progesterone. Cubosomes revealed a higher skin penetration with transdermal steady flux of 48.57.10(-2) ± 0.7 µg/cm(2) h. Nanoliposomes offered a higher percentage of skin progesterone deposition compared to other nanocarriers. Based on the histopathological examination, cubosomes and nanoliposomes were found to be biocompatible for transdermal application. Confocal laser scanning microscopy confirmed the ability of fluoro-labeled cubosomes to penetrate through the whole skin layers. The elaborated cubosomes proved to be a promising non-invasive nanocarrier for transdermal hormonal delivery.

  6. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  7. Towards label-free evaluation of oxidative stress in human skin exposed to sun filters (Conference Presentation)

    Science.gov (United States)

    Osseiran, Sam; Wang, Hequn; Suita, Yusuke; Roider, Elisabeth; Fisher, David E.; Evans, Conor L.

    2016-02-01

    Skin cancer, including basal cell carcinoma, squamous cell carcinoma, and melanoma, is the most common form of cancer in North America. Paradoxically, skin cancer incidence is steadily on the rise even despite the growing use of sunscreens over the past decades. One potential explanation for this discrepancy involves the sun filters in sunscreen, which are responsible for blocking harmful ultraviolet radiation. It is proposed that these agents may produce reactive oxygen species (ROS) at the site of application, thereby generating oxidative stress in skin that gives rise to genetic mutations, which may explain the rising incidence of skin cancer. To test this hypothesis, ex vivo human skin was treated with five common chemical sun filters (avobenzone, octocrylene, homosalate, octisalate, and oxybenzone) as well as two physical sun filters (zinc oxide compounds), both with and without UV irradiation. To non-invasively evaluate oxidative stress, two-photon excitation fluorescence (2PEF) and fluorescence lifetime imaging microscopy (FLIM) of the skin samples were used to monitor levels of NADH and FAD, two key cofactors in cellular redox metabolism. The relative redox state of the skin was assessed based on the fluorescence intensities and lifetimes of these endogenous cofactors. While the sun filters were indeed shown to have a protective effect from UV radiation, it was observed that they also generate oxidative stress in skin, even in the absence of UV light. These results suggest that sun filter induced ROS production requires more careful study, especially in how these reactive species impact the rise of skin cancer.

  8. Langerhans cell precursors acquire RANK/CD265 in prenatal human skin.

    Science.gov (United States)

    Schöppl, Alice; Botta, Albert; Prior, Marion; Akgün, Johnnie; Schuster, Christopher; Elbe-Bürger, Adelheid

    2015-01-01

    The skin is the first barrier against foreign pathogens and the prenatal formation of a strong network of various innate and adaptive cells is required to protect the newborn from perinatal infections. While many studies about the immune system in healthy and diseased adult human skin exist, our knowledge about the cutaneous prenatal/developing immune system and especially about the phenotype and function of antigen-presenting cells such as epidermal Langerhans cells (LCs) in human skin is still scarce. It has been shown previously that LCs in healthy adult human skin express receptor activator of NF-κB (RANK), an important molecule prolonging their survival. In this study, we investigated at which developmental stage LCs acquire this important molecule. Immunofluorescence double-labeling of cryostat sections revealed that LC precursors in prenatal human skin either do not yet [10-11 weeks of estimated gestational age (EGA)] or only faintly (13-15 weeks EGA) express RANK. LCs express RANK at levels comparable to adult LCs by the end of the second trimester. Comparable with adult skin, dermal antigen-presenting cells at no gestational age express this marker. These findings indicate that epidermal leukocytes gradually acquire RANK during gestation - a phenomenon previously observed also for other markers on LCs in prenatal human skin. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new way to visualize in-depth skin structure.

    Science.gov (United States)

    Abadie, S; Jardet, C; Colombelli, J; Chaput, B; David, A; Grolleau, J-L; Bedos, P; Lobjois, V; Descargues, P; Rouquette, J

    2018-05-01

    Human skin is composed of the superimposition of tissue layers of various thicknesses and components. Histological staining of skin sections is the benchmark approach to analyse the organization and integrity of human skin biopsies; however, this approach does not allow 3D tissue visualization. Alternatively, confocal or two-photon microscopy is an effective approach to perform fluorescent-based 3D imaging. However, owing to light scattering, these methods display limited light penetration in depth. The objectives of this study were therefore to combine optical clearing and light-sheet fluorescence microscopy (LSFM) to perform in-depth optical sectioning of 5 mm-thick human skin biopsies and generate 3D images of entire human skin biopsies. A benzyl alcohol and benzyl benzoate solution was used to successfully optically clear entire formalin fixed human skin biopsies, making them transparent. In-depth optical sectioning was performed with LSFM on the basis of tissue-autofluorescence observations. 3D image analysis of optical sections generated with LSFM was performed by using the Amira ® software. This new approach allowed us to observe in situ the different layers and compartments of human skin, such as the stratum corneum, the dermis and epidermal appendages. With this approach, we easily performed 3D reconstruction to visualise an entire human skin biopsy. Finally, we demonstrated that this method is useful to visualise and quantify histological anomalies, such as epidermal hyperplasia. The combination of optical clearing and LSFM has new applications in dermatology and dermatological research by allowing 3D visualization and analysis of whole human skin biopsies. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The physiological and phenotypic determinants of human tanning measured as change in skin colour following a single dose of ultraviolet B radiation.

    Science.gov (United States)

    Wong, Terence H; Jackson, Ian J; Rees, Jonathan L

    2010-07-01

    Experimental study of the in vivo kinetics of tanning in human skin has been limited by the difficulties in measuring changes in melanin pigmentation independent of the ultravioletinduced changes in erythema. The present study attempted to experimentally circumvent this issue. We have studied erythemal and tanning responses following a single exposure to a range of doses of ultraviolet B irradiation on the buttock and the lower back in 98 subjects. Erythema was assessed using reflectance techniques at 24 h and tanning measured as the L* spectrophotometric score at 7 days following noradrenaline iontophoresis. We show that dose (P skin colour (P skin colour (P = 0.0365) or, as an alternative to skin colour, skin type (P = 0.0193) predict tanning, with those with lighter skin tanning slightly more to a defined UVB dose. If erythema is factored into the regression, then only dose and body site remain significant predictors of tanning: therefore neither phototype nor pigmentary factors, such as baseline skin colour, or eye or hair colour, predict change in skin colour to a unit erythemal response.

  11. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  12. Discrimination of skin sensitizers from non-sensitizers by interleukin-1α and interleukin-6 production on cultured human keratinocytes.

    Science.gov (United States)

    Jung, Daun; Che, Jeong-Hwan; Lim, Kyung-Min; Chun, Young-Jin; Heo, Yong; Seok, Seung Hyeok

    2016-09-01

    In vitro testing methods for classifying sensitizers could be valuable alternatives to in vivo sensitization testing using animal models, such as the murine local lymph node assay (LLNA) and the guinea pig maximization test (GMT), but there remains a need for in vitro methods that are more accurate and simpler to distinguish skin sensitizers from non-sensitizers. Thus, the aim of our study was to establish an in vitro assay as a screening tool for detecting skin sensitizers using the human keratinocyte cell line, HaCaT. HaCaT cells were exposed to 16 relevant skin sensitizers and 6 skin non-sensitizers. The highest dose used was the dose causing 75% cell viability (CV75) that we determined by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The levels of extracellular production of interleukin-1α (IL-1α) and IL-6 were measured. The sensitivity of IL-1α was 63%, specificity was 83% and accuracy was 68%. In the case of IL-6, sensitivity: 69%, specificity: 83% and accuracy: 73%. Thus, this study suggests that measuring extracellular production of pro-inflammatory cytokines IL-1α and IL-6 by human HaCaT cells may potentially classify skin sensitizers from non-sensitizers. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Ex vivo MR volumetry of human brain hemispheres.

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A; Schneider, Julie A; Dawe, Robert J; Golak, Tom; Leurgans, Sue E; Yu, Lei; Arfanakis, Konstantinos

    2014-01-01

    The aims of this work were to (a) develop an approach for ex vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, (b) longitudinally assess regional brain volumes postmortem, and (c) investigate the relationship between MR volumetric measurements performed in vivo and ex vivo. An approach for ex vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex vivo was assessed. The relationship between in vivo and ex vivo volumetric measurements was investigated in seven elderly subjects imaged both antemortem and postmortem. This approach for ex vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than intersubject volume variation. A close linear correspondence was detected between in vivo and ex vivo volumetric measurements. Regional brain volumes measured with this approach for ex vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in vivo and ex vivo MR volumetric measurements suggests that this approach captures information linked to antemortem macrostructural brain characteristics. Copyright © 2013 Wiley Periodicals, Inc.

  14. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  15. Molecular cartography of the human skin surface in 3D

    Science.gov (United States)

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  16. Photoacoustic evaluation of the penetration of piroxicam gel applied with phonophoresis into human skin

    International Nuclear Information System (INIS)

    Silveira, F L F D; Barja, P R; Acosta-Avalos, D

    2010-01-01

    The photoacoustic (PA) technique has been increasingly employed in biomedical studies, allowing in vivo skin measurements not easily performed with other techniques. It is possible to use PA measurements to evaluate transdermal delivery of products topically applied through manual massage or phonophoresis, that is the utilization of ultrasound waves to enhance drug absorption. The aim of this study was to analyze the influence of the period of phonophoresis application in the transdermal penetration of piroxicam gel. In vivo PA measurements employed a tungsten lamp as light source and a thin aluminum foil closing the PA chamber. The PA signals of the arm (i) clean; and (ii) after phonophoresis were utilized to estimate the concentration of piroxicam into skin. For all (4) volunteers, drug concentration in skin after phonophoresis application was the same for the different application times employed; in this way, phonophoresis for one minute seemed to be sufficient to enhance piroxicam penetration into skin. The actual amount of drug delivered into tissue depends on the person, suggesting a dependency with the skin type, which affects the PA signal level [2]. We conclude that drug delivery depends not only on the application method, but also on the specific skin type.

  17. Photoacoustic evaluation of the penetration of piroxicam gel applied with phonophoresis into human skin

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, F L F D; Barja, P R [Research and Development Institute, UNIVAP, Av. Shishima Hifumi 2911, Sao Jose dos Campos, SP, 12209-010 (Brazil); Acosta-Avalos, D, E-mail: barja@univap.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), R.Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180 (Brazil)

    2010-03-01

    The photoacoustic (PA) technique has been increasingly employed in biomedical studies, allowing in vivo skin measurements not easily performed with other techniques. It is possible to use PA measurements to evaluate transdermal delivery of products topically applied through manual massage or phonophoresis, that is the utilization of ultrasound waves to enhance drug absorption. The aim of this study was to analyze the influence of the period of phonophoresis application in the transdermal penetration of piroxicam gel. In vivo PA measurements employed a tungsten lamp as light source and a thin aluminum foil closing the PA chamber. The PA signals of the arm (i) clean; and (ii) after phonophoresis were utilized to estimate the concentration of piroxicam into skin. For all (4) volunteers, drug concentration in skin after phonophoresis application was the same for the different application times employed; in this way, phonophoresis for one minute seemed to be sufficient to enhance piroxicam penetration into skin. The actual amount of drug delivered into tissue depends on the person, suggesting a dependency with the skin type, which affects the PA signal level [2]. We conclude that drug delivery depends not only on the application method, but also on the specific skin type.

  18. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  19. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies.

    Science.gov (United States)

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Micol, Vicente

    2018-03-24

    The skin is the body's largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.

  20. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    2018-03-01

    Full Text Available The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin.

  1. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies

    Science.gov (United States)

    Pérez-Sánchez, Almudena; Micol, Vicente

    2018-01-01

    The skin is the body’s largest organ, it participates in sensitivity and offers protection against microorganisms, chemicals and ultraviolet (UV) radiation. Consequently, the skin may suffer alterations such as photo-ageing, immune dysfunction and inflammation which may significantly affect human health. Nutraceuticals represent a promising strategy for preventing, delaying, or minimising premature ageing of the skin and also to alleviate certain skin disorders. Among them, bioactive peptides and oligosaccharides, plant polyphenols, carotenoids, vitamins and polyunsaturated fatty acids are the most widely used ingredients. Supplementation with these products has shown evidence of having an effect on the signs of ageing and protection against UV radiation ageing in several human trials. In this review, the most relevant human studies on skin nutraceuticals are evaluated and the statistical resolution, biological relevance of their results, and, the trial protocols are discussed. In conclusion, quality and rigorousness of the trials must be improved to build credible scientific evidence for skin nutraceuticals and to establish a cause-effect relationship between the ingredients the beneficial effects for the skin. PMID:29587342

  2. Tumor necrosis factor-α-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo

    DEFF Research Database (Denmark)

    Ågren, Magnus S; Schnabel, Reinhild; Christensen, Lise H

    2015-01-01

    Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng/ml) in the a......Tumor necrosis factor (TNF)-α induces matrix metalloproteinases (MMPs) that may disrupt skin integrity. We have investigated the effects and mechanisms of exogenous TNF-α on collagen degradation by incubating human skin explants in defined serum-free media with or without TNF-α (10ng...... tissue-derived collagenolytic activity with TNF-α exposure was blocked by neutralizing MMP-1 monoclonal antibody and was not due to down-regulation of tissue inhibitor of metalloproteinase-1. TNF-α increased production (pendogenous MMP-1...

  3. Controlled iontophoretic transport of huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models.

    Science.gov (United States)

    Kalaria, Dhaval R; Patel, Pratikkumar; Merino, Virginia; Patravale, Vandana B; Kalia, Yogeshvar N

    2013-11-04

    The aim of this study was to investigate constant current anodal iontophoresis of Huperzine A (HupA) in vitro and in vivo and hence to evaluate the feasibility of using electrically assisted delivery to administer therapeutic amounts of the drug across the skin for the treatment of Alzheimer's disease. Preliminary experiments were performed using porcine and human skin in vitro. Stability studies demonstrated that HupA was not degraded upon exposure to epidermis or dermis for 12 h and that it was also stable in the presence of an electric current (0.5 mA · cm(-2)). Passive permeation of HupA (2 mM) was minimal (1.1 ± 0.1 μg · cm(-2)); iontophoresis at 0.15, 0.3, and 0.5 mA · cm(-2) produced 106-, 134-, and 184-fold increases in its transport across the skin. Surprisingly, despite the use of a salt bridge to isolate the formulation compartment from the anodal chamber, which contained 133 mM NaCl, iontophoresis of HupA was shown to increase linearly with its concentration (1, 2, and 4 mM in 25 mM MES, pH 5.0) (r(2) = 0.99). This was attributed to the low ratio of drug to Cl¯ (in the skin and in the receiver compartment) which competed strongly to carry current, its depletion, and to possible competition from the zwitterionic MES. Co-iontophoresis of acetaminophen confirmed that electromigration was the dominant electrotransport mechanism. Total delivery across human and porcine skin was found to be statistically equivalent (243.2 ± 33.1 and 235.6 ± 13.7 μg · cm(-2), respectively). Although the transport efficiency was ∼ 1%, the iontophoretic delivery efficiency (i.e., the fraction of the drug load delivered) was extremely high, in the range of 46-81% depending on the current density. Cumulative permeation of HupA from a Carbopol gel formulation after iontophoresis for 6 h at 0.5 mA · cm(-2) was less than that from solution (135.3 ± 25.2 and 202.9 ± 5.2 μg · cm(-2), respectively) but sufficient for therapeutic delivery. Pharmacokinetic parameters were

  4. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin

    Directory of Open Access Journals (Sweden)

    Nisma Mujahid

    2017-06-01

    Full Text Available The presence of dark melanin (eumelanin within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in “redhaired” Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.

  5. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin.

    Science.gov (United States)

    Mujahid, Nisma; Liang, Yanke; Murakami, Ryo; Choi, Hwan Geun; Dobry, Allison S; Wang, Jinhua; Suita, Yusuke; Weng, Qing Yu; Allouche, Jennifer; Kemeny, Lajos V; Hermann, Andrea L; Roider, Elisabeth M; Gray, Nathanael S; Fisher, David E

    2017-06-13

    The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. An in vitro model for detecting skin irritants: methyl green-pyronine staining of human skin explant cultures

    NARCIS (Netherlands)

    Jacobs, J. J. L.; Lehé, C.; Cammans, K. D. A.; Das, P. K.; Elliott, G. R.

    2002-01-01

    We evaluated the potential of human organotypic skin explant cultures (hOSECs) for screening skin irritants. Test chemicals were applied to the epidermis of the skin explants which were incubated for 4, 24 or 48 h in tissue culture medium. A decrease in epidermal RNA staining, visualised in frozen

  7. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations

    KAUST Repository

    Flynn, Cormac; Taberner, Andrew; Nielsen, Poul

    2011-01-01

    The non-linear, anisotropic, and viscoelastic properties of human skin vary according to location on the body, age, and individual. The measurement of skin's mechanical properties is important in several fields including medicine, cosmetics, and forensics. In this study, a novel force-sensitive micro-robot applied a rich set of three-dimensional deformations to the skin surface of different areas of the arms of 20 volunteers. The force-displacement response of each area in different directions was measured. All tested areas exhibited a non-linear, viscoelastic, and anisotropic force-displacement response. There was a wide quantitative variation in the stiffness of the response. For the right anterior forearm, the ratio of the maximum probe reaction force to maximum probe displacement ranged from 0.44Nmm-1 to 1.45Nmm-1. All volunteers exhibited similar qualitative anisotropic characteristics. For the anterior right forearm, the stiffest force-displacement response was when the probe displaced along the longitudinal axis of the forearm. The response of the anterior left forearm was stiffest in a direction 20° to the longitudinal axis of the forearm. The posterior upper arm was stiffest in a direction 90° to the longitudinal axis of the arm. The averaged posterior upper arm response was less stiff than the averaged anterior forearm response. The maximum probe force at 1.3mm probe displacement was 0.69N for the posterior upper arm and 1.1N for the right anterior forearm. The average energy loss during the loading-unloading cycle ranged from 11.9% to 34.2%. This data will be very useful for studying the non-linear, anisotropic, and viscoelastic behaviour of skin and also for generating material parameters for appropriate constitutive models. © 2011 IPEM.

  8. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review.

    Science.gov (United States)

    Barbero, Ana M; Frasch, H Frederick

    2009-02-01

    Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (Ppig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n=41). The lag times of pig skin and human skin did not correlate (r=0.35, P=0.26). When the in vitro permeability of guinea pig and human skin were compared, r=0.96 (Pguinea pig and 24% for human, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n=15). Lag times of guinea pig and human skin correlated (r=0.90, Ppig skin (n=50) and guinea pig skin (n=25). For pig skin, 80% of measurements fell within the range 0.3guinea pig skin, 65% fell within that range. Both pig and guinea pig are good models for human skin permeability and have less variability than the human skin model. The skin model of choice will depend on the final purpose of the study and the compound under investigation.

  9. Ex-vivo MR Volumetry of Human Brain Hemispheres

    Science.gov (United States)

    Kotrotsou, Aikaterini; Bennett, David A.; Schneider, Julie A.; Dawe, Robert J.; Golak, Tom; Leurgans, Sue E.; Yu, Lei; Arfanakis, Konstantinos

    2013-01-01

    Purpose The aims of this work were to: a) develop an approach for ex-vivo MR volumetry of human brain hemispheres that does not contaminate the results of histopathological examination, b) longitudinally assess regional brain volumes postmortem, and c) investigate the relationship between MR volumetric measurements performed in-vivo and ex-vivo. Methods An approach for ex-vivo MR volumetry of human brain hemispheres was developed. Five hemispheres from elderly subjects were imaged ex-vivo longitudinally. All datasets were segmented. The longitudinal behavior of volumes measured ex-vivo was assessed. The relationship between in-vivo and ex-vivo volumetric measurements was investigated in seven elderly subjects imaged both ante-mortem and postmortem. Results The presented approach for ex-vivo MR volumetry did not contaminate the results of histopathological examination. For a period of 6 months postmortem, within-subject volume variation across time points was substantially smaller than inter-subject volume variation. A close linear correspondence was detected between in-vivo and ex-vivo volumetric measurements. Conclusion Regional brain volumes measured with the presented approach for ex-vivo MR volumetry remain relatively unchanged for a period of 6 months postmortem. Furthermore, the linear relationship between in-vivo and ex-vivo MR volumetric measurements suggests that the presented approach captures information linked to ante-mortem macrostructural brain characteristics. PMID:23440751

  10. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    Science.gov (United States)

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (phuman skin cells thus highlighting the efficacy and indeed, the potential bystander effect of if administered in vivo. This study contributes toward our knowledge of the cellular response of the epidermis to photodynamic therapies and

  11. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Elwafa Abdallah, Mohamed, E-mail: mae_abdallah@yahoo.co.uk [Division of Environmental Health and Risk Management, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut (Egypt); Pawar, Gopal; Harrad, Stuart [Division of Environmental Health and Risk Management, School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2016-01-15

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm{sup 2}, finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K{sub p}, cm/h) showed a significant negative correlation with log K{sub ow} for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K{sub ow} of PFRs. • Skin washing reduced the overall dermal

  12. Human dermal absorption of chlorinated organophosphate flame retardants; implications for human exposure

    International Nuclear Information System (INIS)

    Abou-Elwafa Abdallah, Mohamed; Pawar, Gopal; Harrad, Stuart

    2016-01-01

    Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP) are organophosphate flame retardants (PFRs) widely applied in a plethora of consumer products despite their carcinogenic potential. Human dermal absorption of these PFRs is investigated for the first time using human ex vivo skin and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 13% absorption of the applied dose (500 ng/cm 2 , finite dose) of TCEP, TCIPP and TDCIPP, respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and TDCIPP compared to human ex vivo skin. However, this difference was not significant (P > 0.05). Estimated permeability constants (K p , cm/h) showed a significant negative correlation with log K ow for the studied contaminants. The effect of hand-washing on dermal absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to varying degrees depending on the physicochemical properties of the target PFRs. Moreover, slight variations of the absorbed dose were observed upon changing the dosing solution from acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/kg bw day) than adults (median ΣPFRs = 4 ng/kg bw day). More research is required to fully elucidate the toxicological implications of such exposure. - Highlights: • Human dermal absorption of PFRs was studied using human ex vivo skin and EPISKIN™. • Absorbed fractions of TCEP, TCIPP and TDCIPP were 28%, 25% and 13% of applied dose. • Permeability constants showed significant negative correlation to log K ow of PFRs. • Skin washing reduced the overall dermal absorption of target PFRs

  13. The Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo.

    Science.gov (United States)

    Wölfle, Ute; Haarhaus, Birgit; Seiwerth, Jasmin; Cawelius, Anja; Schwabe, Kay; Quirin, Karl-Werner; Schempp, Christoph M

    2017-08-22

    Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid synthesis in human keratinocytes. To address this issue, human primary keratinocytes were incubated for 6 days with GE. Nile Red labeling revealed that GE significantly increased lipid synthesis in keratinocytes. Similarly, gas chromatography with flame ionization detector indicated that GE increases the amount of triglycerides in keratinocytes. GE induced the expression of epidermal ceramide synthase 3, but not sphingomyelinase. Lipid synthesis, as well as ceramide synthase 3 expression, could be specifically blocked by inhibitors of the p38 MAPK and PPARγ signaling pathway. To assess if GE also modulates lipid synthesis in vivo, we performed a proof of concept half side comparison on the volar forearms of 33 volunteers. In comparison to placebo, GE significantly increased the lipid content of the treated skin areas, as measured with a sebumeter. Thus, GE enhances lipid synthesis in human keratinocytes that is essential for building an intact epidermal barrier. Therefore, GE might be used to improve skin disorders with an impaired epidermal barrier, e.g., very dry skin and atopic eczema.

  14. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    Science.gov (United States)

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  15. In vivo topical application of acetyl aspartic acid increases fibrillin-1 and collagen IV deposition leading to a significant improvement of skin firmness.

    Science.gov (United States)

    Gillbro, J M; Merinville, E; Cattley, K; Al-Bader, T; Hagforsen, E; Nilsson, M; Mavon, A

    2015-10-01

    Acetyl aspartic acid (A-A-A) was discovered through gene array analysis with corresponding Cmap analysis. We found that A-A-A increased keratinocyte regeneration, inhibited dermal matrix metalloprotease (MMP) expression and relieved fibroblast stiffness through reduction of the fibroblast stiffness marker F-actin. Dermal absorption studies showed successful delivery to both the epidermal and dermal regions, and in-use trial demonstrated that 1% A-A-A was well tolerated. In this study, the aim was to investigate whether A-A-A could stimulate the synthesis of extracellular matrix supporting proteins in vivo and thereby improving the viscoelastic properties of human skin by conducting a dual histological and biophysical clinical study. Two separate double-blind vehicle-controlled in vivo studies were conducted using a 1% A-A-A containing oil-in-water (o/w) emulsion. In the histological study, 16 female volunteers (>55 years of age) exhibiting photodamaged skin on their forearm were included, investigating the effect of a 12-day treatment of A-A-A on collagen IV (COLIV) and fibrillin-1. In a subsequent pilot study, 0.1% retinol was used for comparison to A-A-A (1%). The biomechanical properties of the skin were assessed in a panel of 16 women (>45 years of age) using the standard Cutometer MPA580 after topical application of the test products for 28 days. The use of multiple suction enabled the assessment of F4, an area parameter specifically representing skin firmness. Twelve-day topical application of 1% A-A-A significantly increased COLIV and fibrillin with 13% and 6%, respectively, compared to vehicle. 1% A-A-A and 0.1% retinol were found to significantly reduce F4 after 28 days of treatment by 15.8% and 14.7%, respectively, in the pilot Cutometer study. No significant difference was found between retinol and A-A-A. However, only A-A-A exhibited a significant effect vs. vehicle on skin firmness which indicated the incremental benefit of A-A-A as a skin

  16. UVB induces IL-12 transcription in human keratinocytes in vivo and in vitro

    International Nuclear Information System (INIS)

    Enk, C.D.; Blauvet, A.; Katz, S.I.; Mahanty, S.

    1996-01-01

    Human epidermal cells produce a wide range of cytokines, including those characteristic of Th2-like responses such as interleukin (IL)-4 and IL-10. As well, keratinocytes have recently been shown to produce Th1-like cytokines such as IL-12. Exposure to UVB has profound effects on the skin and systemic immune system, which is in part mediated by secretion of tumor necrosis factor (TNF)-α by epidermal cells. Because IL-12 induces production of TNF-α by certain cells of the immune system, we sought to determine whether UVB is an inducer of IL-12 gene expression in epidermal cells. Human epidermal cells were exposed to UVB radiation in vivo, isolated by suction blister technique and trypsinization and transcription of the IL-12 p35 and p40 chains was examined by RT-PCR. (Author)

  17. Sub?40?fs, 1060?nm Yb?fiber laser enhances penetration depth in nonlinear optical microscopy of human skin

    OpenAIRE

    Balu, Mihaela; Saytashev, Ilyas; Hou, Jue; Dantus, Marcos; Tromberg, Bruce J.

    2015-01-01

    © 2015 The Authors. Advancing the practical utility of nonlinear optical microscopy requires continued improvement in imaging depth and contrast. We evaluated second-harmonic generation (SHG) and third-harmonic generation images from ex vivo human skin and showed that a sub-40 fs, 1060-nm Yb-fiber laser can enhance SHG penetration depth by up to 80% compared to a > 100 fs, 800 nm Ti:sapphire source. These results demonstrate the potential of fiber-based laser systems to address a key perform...

  18. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo.

    Science.gov (United States)

    Saint-Mezard, Pierre; Chavagnac, Cyril; Bosset, Sophie; Ionescu, Marius; Peyron, Eric; Kaiserlian, Dominique; Nicolas, Jean-Francois; Bérard, Frédéric

    2003-10-15

    Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis.

  19. Appreciating the image of God in all humanity: Towards a pastoral response to skin lightening as image enhancement to exit dark skin

    Directory of Open Access Journals (Sweden)

    Noah K. Tenai

    2016-05-01

    Full Text Available The practice of skin lightening is prevalent amongst dark-skinned people globally. Various current studies that map this practice and that seek motivations behind the practice are examined. It is observed that through shrewd marketing, dark-skinned people are offered a promise of a better quality of life, obtained by a lighter skin, through the use of skin lighteners. In spite of the severe health risks involved, the promise is ostensibly irresistible to some dark-skinned persons. A pastoral response is offered that affirms the full personhood and complete humanity of dark-skinned people as fully human and whole in their dark skins. Keywords: Skin lightening, Dark skin, Image of God

  20. Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo

    Science.gov (United States)

    Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.

    2015-07-01

    The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.

  1. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    Science.gov (United States)

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb

  2. New Enlightenment of Skin Cancer Chemoprevention through Phytochemicals: In Vitro and In Vivo Studies and the Underlying Mechanisms.

    Science.gov (United States)

    Singh, Madhulika; Suman, Shankar; Shukla, Yogeshwer

    2014-01-01

    Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.

  3. New Enlightenment of Skin Cancer Chemoprevention through Phytochemicals: In Vitro and In Vivo Studies and the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Madhulika Singh

    2014-01-01

    Full Text Available Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenic in vitro and in vivo models and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.

  4. Construction, in vitro and in vivo evaluation of an in-house conductance meter for measurement of skin hydration.

    Science.gov (United States)

    Hamed, Saja H; Altrabsheh, Bilal; Assa'd, Tareq; Jaradat, Said; Alshra'ah, Mohammad; Aljamal, Abdulfattah; Alkhatib, Hatim S; Almalty, Abdul-Majeed

    2012-12-01

    Different probes are used in dermato-cosmetic research to measure the electrical properties of the skin. The principle governing the choice of the geometry and material of the measuring probe is not well defined in the literature and some device's measuring principles are not accessible for the scientific community. The purpose of this work was to develop a simple inexpensive conductance meter for the objective in vivo evaluation of skin hydration. The conductance meter probe was designed using the basic equation governing wave propagation along Transverse Electromagnetic transmission lines. It consisted of two concentric copper circular electrodes printed on FR4 dielectric material. The performance of the probe was validated by evaluating its measurement depth, its ability to monitor in vitro water sorption-desorption and in vivo skin hydration effect in comparison to that of the Corneometer CM 825. The measurement depth of the probe, 15 μm, was comparable to that of CM 825. The in vitro readings of the probe correlated strongly with the amount of water adsorbed on filter paper. Skin hydration after application of a moisturizer was monitored effectively by the new probe with good correlation to the results of CM 825. In conclusion, a simple probe for evaluating skin hydration was made from off-the-shelf materials and its performance was validated in comparison to a commercially available probe. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gotholf, Anita; Mahmood, Faisad; Dagnæs-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p..., our data support that needle electrodes should be used in human clinical studies of gene electrotransfer to skin for improved expression....

  6. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Science.gov (United States)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  7. RNA isolation for transcriptomics of human and mouse small skin biopsies

    Directory of Open Access Journals (Sweden)

    Breit Timo M

    2011-10-01

    Full Text Available Abstract Background Isolation of RNA from skin biopsies presents a challenge, due to the tough nature of skin tissue and a high presence of RNases. As we lacked the dedicated equipment, i.e. homogenizer or bead-beater, needed for the available RNA from skin isolation methods, we adapted and tested our zebrafish single-embryo RNA-isolation protocol for RNA isolation from skin punch biopsies. Findings We tested our new RNA-isolation protocol in two experiments: a large-scale study with 97 human skin samples, and a small study with 16 mouse skin samples. Human skin was sampled with 4.0 mm biopsy punches and for the mouse skin different punch diameter sizes were tested; 1.0, 1.5, 2.0, and 2.5 mm. The average RNA yield in human samples was 1.5 μg with an average RNA quality RIN value of 8.1. For the mouse biopsies, the average RNA yield was 2.4 μg with an average RIN value of 7.5. For 96% of the human biopsies and 100% of the mouse biopsies we obtained enough high-quality RNA. The RNA samples were successfully tested in a transcriptomics analysis using the Affymetrix and Roche NimbleGen platforms. Conclusions Using our new RNA-isolation protocol, we were able to consistently isolate high-quality RNA, which is apt for further transcriptomics analysis. Furthermore, this method is already useable on biopsy material obtained with a punch diameter as small as 1.5 mm.

  8. Standardization of skin cleansing in vivo: part I. Development of an Automated Cleansing Device (ACiD).

    Science.gov (United States)

    Sonsmann, F K; Strunk, M; Gediga, K; John, C; Schliemann, S; Seyfarth, F; Elsner, P; Diepgen, T L; Kutz, G; John, S M

    2014-05-01

    To date, there are no legally binding requirements concerning product testing in cosmetics. This leads to various manufacturer-specific test methods and absent transparent information on skin cleansing products. A standardized in vivo test procedure for assessment of cleansing efficacy and corresponding barrier impairment by the cleaning process is needed, especially in the occupational context where repeated hand washing procedures may be performed at short intervals. For the standardization of the cleansing procedure, an Automated Cleansing Device (ACiD) was designed and evaluated. Different smooth washing surfaces of the equipment for ACiD (incl. goat hair, felt, felt covered with nitrile caps) were evaluated regarding their skin compatibility. ACiD allows an automated, fully standardized skin washing procedure. Felt covered with nitrile as washing surface of the rotating washing units leads to a homogenous cleansing result and does not cause detectable skin irritation, neither clinically nor as assessed by skin bioengineering methods (transepidermal water loss, chromametry). Automated Cleansing Device may be useful for standardized evaluation of the cleansing effectiveness and parallel assessment of the corresponding irritancy potential of industrial skin cleansers. This will allow objectifying efficacy and safety of industrial skin cleansers, thus enabling market transparency and facilitating rational choice of products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The value of in vivo reflectance confocal microscopy in the diagnosis and monitoring of inflammatory and infectious skin diseases: a systematic review

    NARCIS (Netherlands)

    Hoogedoorn, L.; Peppelman, M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    In vivo examination of the skin by reflectance confocal microscopy (RCM) has been performed for about 20 years, leading to a broad spectrum of imaged infectious and inflammatory skin diseases (ISD) with many described RCM features. We systematically reviewed all available literature concerning ISD

  10. Comparison of rat epidermal keratinocyte organotypic culture (ROC) with intact human skin

    DEFF Research Database (Denmark)

    Pappinen, Sari; Hermansson, Martin; Kuntsche, Judith

    2008-01-01

    study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning...... calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non...... compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may...

  11. Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluation of the effects of tissue processing and dewaxing

    Science.gov (United States)

    Ali, Syed M.; Bonnier, Franck; Tfayli, Ali; Lambkin, Helen; Flynn, Kathleen; McDonagh, Vincent; Healy, Claragh; Clive Lee, T.; Lyng, Fiona M.; Byrne, Hugh J.

    2013-06-01

    Raman spectroscopy coupled with K-means clustering analysis (KMCA) is employed to elucidate the biochemical structure of human skin tissue sections and the effects of tissue processing. Both hand and thigh sections of human cadavers were analyzed in their unprocessed and formalin-fixed, paraffin-processed (FFPP), and subsequently dewaxed forms. In unprocessed sections, KMCA reveals clear differentiation of the stratum corneum (SC), intermediate underlying epithelium, and dermal layers for sections from both anatomical sites. The SC is seen to be relatively rich in lipidic content; the spectrum of the subjacent layers is strongly influenced by the presence of melanin, while that of the dermis is dominated by the characteristics of collagen. For a given anatomical site, little difference in layer structure and biochemistry is observed between samples from different cadavers. However, the hand and thigh sections are consistently differentiated for all cadavers, largely based on lipidic profiles. In dewaxed FFPP samples, while the SC, intermediate, and dermal layers are clearly differentiated by KMCA of Raman maps of tissue sections, the lipidic contributions to the spectra are significantly reduced, with the result that respective skin layers from different anatomical sites become indistinguishable. While efficient at removing the fixing wax, the tissue processing also efficiently removes the structurally similar lipidic components of the skin layers. In studies of dermatological processes in which lipids play an important role, such as wound healing, dewaxed samples are therefore not appropriate. Removal of the lipids does however accentuate the spectral features of the cellular and protein components, which may be more appropriate for retrospective analysis of disease progression and biochemical analysis using tissue banks.

  12. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    Science.gov (United States)

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations.

  13. Low power cw-laser signatures on human skin

    International Nuclear Information System (INIS)

    Lihachev, A; Lesinsh, J; Jakovels, D; Spigulis, J

    2011-01-01

    Impact of cw laser radiation on autofluorescence features of human skin is studied. Two methods of autofluorescence detection are applied: the spectral method with the use of a fibreoptic probe and spectrometer for determining the autofluorescence recovery kinetics at a fixed skin area of ∼12 mm 2 , and the multispectral visualisation method with the use of a multispectral imaging camera for visualising long-term autofluorescence changes in a skin area of ∼4 cm 2 . The autofluorescence recovery kinetics after preliminary laser irradiation is determined. Skin autofluorescence images with visible long-term changes - 'signatures' of low power laser treatment are acquired. (application of lasers and laser-optical methods in life sciences)

  14. Persistent DNA damage after high dose in vivo gamma exposure of minipig skin.

    Directory of Open Access Journals (Sweden)

    Emad A Ahmed

    Full Text Available Exposure to high doses of ionizing radiation (IR can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin.IR-induced DNA damage, repair and cellular survival were studied in 15 cm(2 of minipig skin exposed in vivo to ~50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of 3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+ were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days.Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios.

  15. Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Néstor Mendoza

    2011-12-01

    Full Text Available The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT, which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of −12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4 at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii a flux of 0.278 mg/cm2h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect before reaching the receptor medium; (iii a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping and transepidermal water loss (TEWL measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT.

  16. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    Science.gov (United States)

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  17. A first vascularized skin equivalent as an alternative to animal experimentation.

    Science.gov (United States)

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  18. International guidelines for the in vivo assessment of skin properties in non-clinical settings: Part 2. transepidermal water loss and skin hydration

    Science.gov (United States)

    du Plessis, Johan; Stefaniak, Aleksandr; Eloff, Fritz; John, Swen; Agner, Tove; Chou, Tzu-Chieh; Nixon, Rosemary; Steiner, Markus; Franken, Anja; Kudla, Irena; Holness, Linn

    2015-01-01

    Background There is an emerging perspective that it is not sufficient to just assess skin exposure to physical and chemical stressors in workplaces, but that it is also important to assess the condition, i.e. skin barrier function of the exposed skin at the time of exposure. The workplace environment, representing a non-clinical environment, can be highly variable and difficult to control, thereby presenting unique measurement challenges not typically encountered in clinical settings. Methods An expert working group convened a workshop as part of the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals (OEESC) to develop basic guidelines and best practices (based on existing clinical guidelines, published data, and own experiences) for the in vivo measurement of transepidermal water loss (TEWL) and skin hydration in non-clinical settings with specific reference to the workplace as a worst-case scenario. Results Key elements of these guidelines are: (i) to minimize or recognize, to the extent feasible, the influences of relevant endogenous-, exogenous-, environmental- and measurement/instrumentation-related factors; (ii) to measure TEWL with a closed-chamber type instrument; (iii) report results as a difference or percent change (rather than absolute values); and (iv) accurately report any notable deviations from this guidelines. Conclusion It is anticipated that these guidelines will promote consistent data reporting, which will facilitate inter-comparison of study results. PMID:23331328

  19. Skin permeation and antioxidant efficacy of topically applied resveratrol.

    Science.gov (United States)

    Alonso, Cristina; Martí, M; Barba, C; Carrer, V; Rubio, L; Coderch, L

    2017-08-01

    The permeation of resveratrol was assessed by in vitro and in vivo experiments 24 h after topical administration. The in vitro profile of resveratrol was assessed by Raman spectroscopy. Human skin permeation was analysed in vivo by the tape stripping method with the progressive removal of the stratum corneum layers using adhesive tape strips. Moreover, the free radical scavenging activity of resveratrol after its topical application was determined using the DPPH assay. The Raman spectra indicated that the topically applied resveratrol penetrates deep into the skin. The results showed high amounts of resveratrol in the different stratum corneum layers close to the surface and a constant lower amount in the upper layers of the viable epidermis. The concentration of resveratrol present in the outermost stratum corneum layers was obtained by tape stripping after in vivo application. The results demonstrated that resveratrol mainly remained in the human stratum corneum layers. After topical application, resveratrol maintained its antiradical activity. The antioxidant efficacy of the compound was higher in the inner layers of the stratum corneum. As these results have demonstrated, topically applied resveratrol reinforces the antioxidant system of the stratum corneum and provides an efficient means of increasing the tissue levels of antioxidants in the human epidermis.

  20. Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations

    KAUST Repository

    Flynn, Cormac; Taberner, Andrew; Nielsen, Poul

    2011-01-01

    Determining the mechanical properties of an individual's skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior

  1. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity

    Directory of Open Access Journals (Sweden)

    Saima Jadoon

    2015-01-01

    Full Text Available The exposure to ultraviolet radiations (UVR is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS, leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed.

  2. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Terentyuk, G S; Genina, Elina A; Bashkatov, A N; Ryzhova, M V; Tsyganova, N A; Chumakov, D S; Khlebtsov, B N; Sazonov, A A; Dolotov, L E; Tuchin, Valerii V; Khlebtsov, Nikolai G; Inozemtseva, O A

    2012-06-30

    The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis.

  3. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    International Nuclear Information System (INIS)

    Terentyuk, G S; Genina, Elina A; Bashkatov, A N; Ryzhova, M V; Tsyganova, N A; Chumakov, D S; Khlebtsov, B N; Sazonov, A A; Dolotov, L E; Tuchin, Valerii V; Khlebtsov, Nikolai G; Inozemtseva, O A

    2012-01-01

    The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis.

  4. Use of fractional laser microablation and ultrasound to facilitate the delivery of gold nanoparticles into skin in vivo

    Science.gov (United States)

    Terentyuk, G. S.; Genina, Elina A.; Bashkatov, A. N.; Ryzhova, M. V.; Tsyganova, N. A.; Chumakov, D. S.; Khlebtsov, B. N.; Sazonov, A. A.; Dolotov, L. E.; Tuchin, Valerii V.; Khlebtsov, Nikolai G.; Inozemtseva, O. A.

    2012-06-01

    The delivery of gold nanoparticles (nanocages coated with a layer of silicon dioxide (40/20 nm)) dispersed in the solution (glycerol + polyethylene glycol-400, 1 : 1) into the skin tissue is studied experimentally in vivo. From the data of optical coherence tomography and histochemical analysis it follows that simple application of suspension of nanoparticles is not efficient enough for delivery of the particles into the skin as a result of passive diffusion. It is shown that fractional laser microablation of skin before the application of the suspension, followed by the topical treatment by ultrasound allows penetration through the epidermis layer and delivery of nanoparticles into dermis and hypodermis

  5. Deposition of contaminant aerosol on human skin

    DEFF Research Database (Denmark)

    Andersson, Kasper Grann; Roed, Jørn; Byrne, M.A.

    2006-01-01

    Over recent years, it has been established that deposition of various types of pollutant aerosols (e.g., radioactive) on human skin can have serious deleterious effects on health. However. only few investigations in the past have been devoted to measurement of deposition velocities on skin...... of particles of the potentially problematic sizes. An experimental programme has shown the deposition velocities on skin of particles in the ca. 0.5-5 mu m AMAD range to be high and generally associated with great variations. A series of investigations have been made to identify some of the factors that lead...... to this variation. Part of the variation was found to be caused by differences between individuals, whereas another part was found to be related to environmental factors, The identification of major influences on skin contaminant deposition is important in estimating health effects as well as in identifying means...

  6. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography

    International Nuclear Information System (INIS)

    König, K; Breunig, H G; Bückle, R; Kellner-Höfer, M; Weinigel, M; Büttner, E; Sterry, W; Lademann, J

    2011-01-01

    The ultimate challenge for early diagnostics is label-free high-resolution intratissue imaging without taking physical biopsies. A novel hybrid femtosecond laser tomograph provides in vivo optical biopsies of human skin based on non-linear excitation of autofluorescence and the detection of lipids and water by CARS. Applications include skin cancer detection, biosafety tests of intradermal nanoparticles, and the testing of anti-aging products

  7. Characterization of ionizing radiation effects on human skin allografts

    International Nuclear Information System (INIS)

    Bourroul, Selma Cecilia

    2004-01-01

    The skin has a fundamental role in the viability of the human body. In the cases of extensive wounds, allograft skin provides an alternative to cover temporarily the damaged areas. After donor screening and preservation in glycerol (above 85%), the skin can be stored in the Skin Banks. The glycerol at this concentration has a bacteriostatic effect after certain time of preservation. On the other hand, skin sterilization by ionizing radiation may reduces the quarantine period for transplantation in patients and its safety is considered excellent. The objectives of this work were to establish procedures using two sources of ionizing radiation for sterilization of human skin allograft, and to evaluate the skin after gamma and electron beam irradiation. The analysis of stress-strain intended to verify possible effects of the radiation on the structure of preserved grafts. Skin samples were submitted to doses of 25 kGy and 50 kGy in an irradiator of 60 Co and in an electron beam accelerator. Morphology and ultra-structure studies were also accomplished. The samples irradiated with a dose of 25 kGy seemed to maintain the bio mechanic characteristics. The gamma irradiated samples with a dose of 50 kGy and submitted to an electron beam at doses of 25 kGy and 50 kGy presented significant differences in the values of the elasticity modulus, in relation to the control. The analysis of the ultramicrographies revealed modifications in the structure and alterations in the pattern of collagen fibrils periodicity of the irradiated samples. (author)

  8. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  9. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  10. Physiochemical properties and resorption progress of porcine skin-derived collagen membranes: In vitro and in vivo analysis.

    Science.gov (United States)

    An, Yin-Zhe; Kim, You-Kyoung; Lim, Su-Min; Heo, Yeong-Ku; Kwon, Mi-Kyung; Cha, Jae-Kook; Lee, Jung-Seok; Jung, Ui-Won; Choi, Seong-Ho

    2018-03-30

    The aim of the present study was to evaluate the physiochemical properties and resorption progress of two cross-linked, porcine skin-derived collagen membranes and compare their features with those of a membrane without cross-linking (Bio-Gide ® [BG], Geistlich Biomaterials, Wolhusen, Switzerland). Three porcine skin-derived collagen membranes, dehydrothermally (DHT) cross-linked (experimental), DHT and 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (DHT/EDC) cross-linked (experimental) and BG were investigated for their morphology, enzyme resistance, and tensile strength in vitro and biodegradation in vivo. DHT and DHT/EDC membranes exhibited irregular, interconnected macro- and micropores that formed a 3D mesh, whereas BG exhibited individual collagen fibrils interlaced to form coarse collagen strands. In enzyme resistance and tensile strength tests, DHT and DHT/EDC membranes demonstrated good resistance and mechanical properties compared with BG. In vivo, all three membranes were well integrated into the surrounding connective tissue. Thus, the DHT membrane exhibited its potential as a barrier membrane for guided bone and tissue regeneration.

  11. Direct 3D cell-printing of human skin with functional transwell system.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo

    2017-06-06

    Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was

  12. Characterization of the mechanical behavior of human skin by means of impedance spectroscopy

    Science.gov (United States)

    Pavšelj, N.; Mitar, M.; Hart, F. X.; Miklavčič, D.

    2010-04-01

    There is increased interest for the use of impedance spectroscopy to measure skin dielectric properties in vivo. The aim of such measurements can be either to evaluate the hydration state of the skin, to detect diseased states such as skin cancer, to follow the progress of transdermal drug delivery, or simply to gather data on skin tissue impedance to be used in theoretical studies. However, obtaining reliable data can be difficult. Namely, skin is a highly nonhomogeneous multi-layered structure whose composition and dimensions differ depending on the location on the body and interindividual variations. Also, impedance measurements on skin are accompanied by a number of artefacts. We performed a series of impedance measurements using an Agilent/HP 4284A precision LCR meter with parallel plate electrodes pressed on the skin, at different locations on the body. We observed substantial impedance changes over the course of the measurement. These changes can be mainly attributed to skin deformation caused by the electrodes pressing against skin. The analysis showed that skin mechanical properties and layer thicknesses can be inferred from these temporal changes. Such data on mechanical properties of skin tissue give valuable extra information, crucial for successful estimation of the impedance of different skin layers.

  13. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  14. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    Science.gov (United States)

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  15. Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.

    Science.gov (United States)

    Kochhar, Jaspreet Singh; Quek, Ten Cheer; Soon, Wei Jun; Choi, Jaewoong; Zou, Shui; Kang, Lifeng

    2013-11-01

    Microneedles are being fast recognized as a useful alternative to injections in delivering drugs, vaccines, and cosmetics transdermally. Owing to skin's inherent elastic properties, microneedles require an optimal geometry for skin penetration. In vitro studies, using rat skin to characterize microneedle penetration in vivo, require substrates with suitable mechanical properties to mimic human skin's subcutaneous tissues. We tested the effect of these two parameters on microneedle penetration. Geometry in terms of center-to-center spacing of needles was investigated for its effect on skin penetration, when placed on substrates of different hardness. Both hard (clay) and soft (polydimethylsiloxane, PDMS) substrates underneath rat skin and full-thickness pig skin were used as animal models and human skins were used as references. It was observed that there was an increase in percentage penetration with an increase in needle spacing. Microneedle penetration with PDMS as a support under stretched rat skin correlated better with that on full-thickness human skin, while penetration observed was higher when clay was used as a substrate. We showed optimal geometries for efficient penetration together with recommendation for a substrate that could better mimic the mechanical properties of human subcutaneous tissues, when using microneedles fabricated from poly(ethylene glycol)-based materials. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin.

    Science.gov (United States)

    Gerstel, D; Jacques-Jamin, C; Schepky, A; Cubberley, R; Eilstein, J; Grégoire, S; Hewitt, N; Klaric, M; Rothe, H; Duplan, H

    2016-08-01

    The Cosmetics Europe Skin Bioavailability and Metabolism Task Force aims to improve the measurement and prediction of the bioavailability of topically-exposed compounds for risk assessment. Key parameters of the experimental design of the skin penetration studies were compared. Penetration studies with frozen human and pig skin were conducted in two laboratories, according to the SCCS and OECD 428 guidelines. The disposition in skin was measured 24h after finite topical doses of caffeine, resorcinol and 7-ethoxycoumarin. The bioavailability distribution in skin layers of cold and radiolabelled chemicals were comparable. Furthermore, the distribution of each chemical was comparable in human and pig skin. The protocol was reproducible across the two laboratories. There were small differences in the amount of chemical detected in the skin layers, which were attributed to differences in washing procedures and anatomical sites of the skin used. In conclusion, these studies support the use of pig skin as an alternative source of skin should the availability of human skin become a limiting factor. If radiolabelled chemicals are not available, cold chemicals can be used, provided that the influence of chemical stability, reactivity or metabolism on the experimental design and the relevance of the data obtained is considered. Copyright © 2016. Published by Elsevier Ltd.

  17. Skin graft influence in human tissue radiated in nude mice regeneration

    International Nuclear Information System (INIS)

    Miranda, Jurandir Tomaz de

    2016-01-01

    Over the last few years it has increased the interest in the human skin grafts radio sterilized for application mainly in extensive and deep burns. Because these grafts quickly grip and present antigenic lower potential, compared with other treatments used. The purpose of this study was to evaluate the histoarchitecture of human skin grafts irradiated with doses 25 kGy, 50 kGy and non-irradiated during the repair tissue process in nude mice submitted by skin grafting in the dorsal region. Three groups of animals received irradiated human skin grafts (25 kGy and 50 kGy) and non-irradiated and were euthanized on the 3 rd , 7 th and 21 th day after the surgery. Indeed, routine histologic procedures, tissue samples were stained with hematoxylin and eosin (HE) for quantification of keratinocytes, fibroblasts, immune cells and blood vessels and immunofluorescence (IF) was performed to determine the expression human collagen type I and collagen type I and III mouse. Therefore, quantification of both the cells and the collagen types was performed by image analysis using Image-Pro Plus 6.0 software. Histologic results demonstrated at a dose of 25 kGy that human skin irradiation when grafted influences the increase in the number of cells in wound site over time and it provides better dispersion of these cells. In addition, on the 21 st day, three groups of animals with human skin graft were embedded part of the graft in the healing process. On the other hand, the group not irradiated showed greater incorporation of the graft (43 %), but less production of collagen type III mouse (22 %). Since the groups irradiated skin graft showed lower graft incorporation (6 and 15%), but with greater production of collagen type III mice (35 % and 28 % to 25 kGy and 50 kGy, respectively). In conclusion, this study presented that the group irradiated to 25 kGy and it has a higher cell proliferation and vessel formation, and better remodeling of the healing area. (author)

  18. Experimental metagenomics and ribosomal profiling of the human skin microbiome.

    Science.gov (United States)

    Ferretti, Pamela; Farina, Stefania; Cristofolini, Mario; Girolomoni, Giampiero; Tett, Adrian; Segata, Nicola

    2017-03-01

    The skin is the largest organ in the human body, and it is populated by a large diversity of microbes, most of which are co-evolved with the host and live in symbiotic harmony. There is increasing evidence that the skin microbiome plays a crucial role in the defense against pathogens, immune system training and homoeostasis, and microbiome perturbations have been associated with pathological skin conditions. Studying the skin resident microbial community is thus essential to better understand the microbiome-host crosstalk and to associate its specific configurations with cutaneous diseases. Several community profiling approaches have proved successful in unravelling the composition of the skin microbiome and overcome the limitations of cultivation-based assays, but these tools remain largely inaccessible to the clinical and medical dermatology communities. The study of the skin microbiome is also characterized by specific technical challenges, such as the low amount of microbial biomass and the extensive human DNA contamination. Here, we review the available community profiling approaches to study the skin microbiome, specifically focusing on the practical experimental and analytical tools necessary to generate and analyse skin microbiome data. We describe all the steps from the initial samples collection to the final data interpretation, with the goal of enabling clinicians and researchers who are not familiar with the microbiome field to perform skin profiling experiments. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  19. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of human skin is essential to improve and optimize surfaces and materials in contact with the skin. Besides that, friction between the human skin and textiles is a critical factor in the formation of skin injuries, which are caused if the loads and shear forces are high enough and/or over long periods of time. This factor is of particular importance in bedridden patients, since they are not moving about or are confined to wheelchairs. Decubitus ulcers are one of the most frequently-reported iatrogenic injuries in developed countries. The risk of developing decubitus ulcers can be predicted by using the “Braden Scale for Predicting Pressure Ulcer Risk” that was developed in 1987 and contains six areas of risk (cognitive-perceptual, immobility, inactivity, moisture, nutrition, friction/shear, although there are limitations to the use of such tools. The coefficient of friction of textiles against skin is mainly influenced by: the nature of the textile, skin moisture content and ambient humidity. This study will investigate how skin friction (different anatomical regions varies, rubbing against different types of contacting materials (i.e., fabrics for medical use under different contact conditions and their relationship in the formation and prevention of decubitus ulcers.

  20. Real-time detection of p-phenylenediamine penetration into human skin by in vivo Raman spectroscopy

    NARCIS (Netherlands)

    Pot, Laura Marjolijn; Coenraads, Pieter-Jan; Blomeke, Brunhilde; Puppels, Gerwin J.; Caspers, Peter J.

    Background. Penetration, autoxidation and N-acetylation of p-phenylenediamine (PPD) have been studied in vitro and ex vivo. However, a clear understanding of in vivo PPD penetration and the formation of PPD derivatives is lacking. Objectives. To obtain insights into the in vivo penetration,

  1. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Urso, P [Department of Occupational and Environmental Health, Hospital L. Sacco Unit, University of Milan, Via G B Grassi, 74-20157 Milan (Italy); Lualdi, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Colombo, A [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Carrara, M [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Tomatis, S [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy); Marchesini, R [Medical Physics Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1-20133 Milan (Italy)

    2007-05-21

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al{sub 2}O{sub 3} particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  2. Skin and cutaneous melanocytic lesion simulation in biomedical optics with multilayered phantoms

    International Nuclear Information System (INIS)

    Urso, P; Lualdi, M; Colombo, A; Carrara, M; Tomatis, S; Marchesini, R

    2007-01-01

    The complex inner layered structure of skin influences the photon diffusion inside the cutaneous tissues and determines the reflectance spectra formation. Phantoms are very useful tools to understand the biophysical meaning of parameters involved in light propagation through the skin. To simulate the skin reflectance spectrum, we realized a multilayered skin-like phantom and a multilayered skin phantom with a melanoma-like phantom embedded inside. Materials used were Al 2 O 3 particles, melanin of sepia officinalis and a calibrator for haematology systems dispersed in transparent silicon. Components were optically characterized with indirect techniques. Reflectance phantom spectra were compared with average values of in vivo spectra acquired on a sample of 573 voluntary subjects and 132 pigmented lesions. The phantoms' reflectance spectra agreed with those measured in vivo, mimicking the optical behaviour of the human skin. Further, the phantoms were optically stable and easily manageable, and represented a valid resource in spectra formation comprehension, in diagnostic laser applications and simulation model implementation, such as the Monte Carlo code for non-homogeneous media. (note)

  3. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    Science.gov (United States)

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration. © 2010 The Authors. Journal compilation © 2010 Japanese Society of Developmental Biologists.

  4. Permeation of chromium salts through human skin in vitro

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Fullerton, A; Avnstorp, C

    1992-01-01

    Chromium permeation studies were performed on full thickness human skin in diffusion cells. All samples were analysed for the total chromium content by graphite furnace Zeeman-corrected atomic absorption spectrometry. Some samples were analysed by an ion chromatographic method permitting...... the simultaneous determination of Cr(VI) and Cr(III) as well. The amounts of chromium found in all skin layers were significantly higher when potassium dichromate was applied to the skin compared with chromium chloride or chromium nitrate. Chromium could only be detected in the recipient phase after application...... of the dichromate solution. Chromium skin levels increased with increasing concentrations of applied chromium salts up to 0.034 M Cr. The amount of chromium in recipient phase and skin layers increased with increasing pH when the applied solution contained potassium dichromate. This was ascribed to a decreased skin...

  5. Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin.

    Science.gov (United States)

    Pilkington, Suzanne M; Ogden, Stephanie; Eaton, Laura H; Dearman, Rebecca J; Kimber, Ian; Griffiths, Christopher E M

    2018-01-01

    Langerhans' cells (LC) play pivotal roles in skin immune responses, linking innate and adaptive immunity. In aged skin there are fewer LC and migration is impaired compared with young skin. These changes may contribute to declining skin immunity in the elderly, including increased skin infections and skin cancer. Interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) are mandatory signals for LC migration and previous studies suggest that IL-1β signalling may be dysregulated in aged skin. Therefore, we sought to explore the mechanisms underlying these phenomena. In skin biopsies of photoprotected young ( 70 years) human skin ex vivo, we assessed the impact of trauma, and mandatory LC mobilizing signals on LC migration and gene expression. Biopsy-related trauma induced LC migration from young epidermis, whereas in aged skin, migration was greatly reduced. Interleukin-1β treatment restored LC migration in aged epidermis whereas TNF-α was without effect. In uncultured, aged skin IL-1β gene expression was lower compared with young skin; following culture, IL-1βmRNA remained lower in aged skin under control and TNF-α conditions but was elevated after culture with IL-1β. Interleukin-1 receptor type 2 (IL1R2) gene expression was significantly increased in aged, but not young skin, after cytokine treatment. Keratinocyte-derived factors secreted from young and aged primary cells did not restore or inhibit LC migration from aged and young epidermis, respectively. These data suggest that in aged skin, IL-1β signalling is diminished due to altered expression of IL1B and decoy receptor gene IL1R2. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology.

  6. Microstructural imaging of human neocortex in vivo.

    Science.gov (United States)

    Edwards, Luke J; Kirilina, Evgeniya; Mohammadi, Siawoosh; Weiskopf, Nikolaus

    2018-03-24

    The neocortex of the human brain is the seat of higher brain function. Modern imaging techniques, chief among them magnetic resonance imaging (MRI), allow non-invasive imaging of this important structure. Knowledge of the microstructure of the neocortex has classically come from post-mortem histological studies of human tissue, and extrapolations from invasive animal studies. From these studies, we know that the scale of important neocortical structure spans six orders of magnitude, ranging from the size of axonal diameters (microns), to the size of cortical areas responsible for integrating sensory information (centimetres). MRI presents an opportunity to move beyond classical methods, because MRI is non-invasive and MRI contrast is sensitive to neocortical microstructure over all these length scales. MRI thus allows inferences to be made about neocortical microstructure in vivo, i.e. MRI-based in vivo histology. We review recent literature that has applied and developed MRI-based in vivo histology to probe the microstructure of the human neocortex, focusing specifically on myelin, iron, and neuronal fibre mapping. We find that applications such as cortical parcellation (using R 1 maps as proxies for myelin content) and investigation of cortical iron deposition with age (using R 2 * maps) are already contributing to the frontiers of knowledge in neuroscience. Neuronal fibre mapping in the cortex remains challenging in vivo, but recent improvements in diffusion MRI hold promise for exciting applications in the near future. The literature also suggests that utilising multiple complementary quantitative MRI maps could increase the specificity of inferences about neocortical microstructure relative to contemporary techniques, but that further investment in modelling is required to appropriately combine the maps. In vivo histology of human neocortical microstructure is undergoing rapid development. Future developments will improve its specificity, sensitivity, and

  7. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  8. A new algorithm for the discrimination of actinic keratosis from normal skin and squamous cell carcinoma based on in vivo analysis of optical properties by high-definition optical coherence tomography

    DEFF Research Database (Denmark)

    Boone, M A L M; Suppa, M; Marneffe, A

    2016-01-01

    properties for discrimination of AK from SCC and from normal sun exposed skin and to subdifferentiate AKs. METHODS: The technique of semi-log plot has been implemented on HD-OCT signals. This permitted the in vivo measurement of OCT signals coming from the skin entrance up to the superficial reticular dermis...... involvement, non-Bowenoid AK with follicular involvement, Bowenoid AK, hypertrophic and lichenoid form of AK and squamous cell carcinoma. CONCLUSION: HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3D microarchitectural structures with in vivo analysis of optical...... properties of tissue scatterers in AK/SCC lesions and normal sun-exposed skin. In vivoHD-OCT analysis of optical properties permits AK discrimination from SCC and AK subdifferentiation with higher accuracy than in vivoHD-OCT analysis of morphology alone....

  9. In vivo and in vitro dermal penetration of lipophilic and hydrophilic pesticides in mice

    International Nuclear Information System (INIS)

    Grissom, R.E. Jr.; Brownie, C.; Guthrie, F.E.

    1987-01-01

    Dermal absorption is a major portal of entry for a wide variety of potentially toxic substances. In vivo and in vitro investigations assessing penetration of topically applied xenobiotics using both human and other animals have been conducted. Current ethical considerations have drastically curtailed the testing of xenobiotics in human volunteers; consequently, dermal penetration in humans is usually estimated from in vivo tests in animals and in vitro tests using either human or animal skin. In order for in vitro penetration results to be meaningful, there needs to be close relationship with in vivo data. The objective of the present study was to investigate the relationship between in vivo and in vitro penetration of both hydrophilic and lipophilic 14 C-labelled compounds in mice

  10. The biological effects of quadripolar radiofrequency sequential application: a human experimental study.

    Science.gov (United States)

    Nicoletti, Giovanni; Cornaglia, Antonia Icaro; Faga, Angela; Scevola, Silvia

    2014-10-01

    An experimental study was conducted to assess the effectiveness and safety of an innovative quadripolar variable electrode configuration radiofrequency device with objective measurements in an ex vivo and in vivo human experimental model. Nonablative radiofrequency applications are well-established anti-ageing procedures for cosmetic skin tightening. The study was performed in two steps: ex vivo and in vivo assessments. In the ex vivo assessments the radiofrequency applications were performed on human full-thickness skin and subcutaneous tissue specimens harvested during surgery for body contouring. In the in vivo assessments the applications were performed on two volunteer patients scheduled for body contouring surgery at the end of the study. The assessment methods were: clinical examination and medical photography, temperature measurement with thermal imaging scan, and light microscopy histological examination. The ex vivo assessments allowed for identification of the effective safety range for human application. The in vivo assessments allowed for demonstration of the biological effects of sequential radiofrequency applications. After a course of radiofrequency applications, the collagen fibers underwent an immediate heat-induced rearrangement and were partially denaturated and progressively metabolized by the macrophages. An overall thickening and spatial rearrangement was appreciated both in the collagen and elastic fibers, the latter displaying a juvenile reticular pattern. A late onset in the macrophage activation after sequential radiofrequency applications was appreciated. Our data confirm the effectiveness of sequential radiofrequency applications in obtaining attenuation of the skin wrinkles by an overall skin tightening.

  11. Plastic occlusion stress test as a model to investigate the effects of skin delipidization on the stratum corneum water holding capacity in vivo.

    Science.gov (United States)

    Berardesca, E; Herbst, R; Maibach, H

    1993-01-01

    The purpose of the study was to develop an in vivo model to study the effects of lipid removal on skin barrier. 16 subjects (age 41 +/- 8) were delipidized in vivo on the volar forearm using respectively ether/acetone (EA; 1:1) and chloroform/methanol (CM; 2:1). A third site served as control. Water holding capacity (WHC) was measured according to the plastic occlusion stress test (POST) procedure: the water desorption curve after removal of the occlusion was recorded in terms of skin surface water loss (SSWL) using an evaporimeter for 30 min. In the central part of the evaporation curve (bound water) the CM-treated site is significantly different from control and EA-treated sites (p rate of water from SC are higher in the CM-treated site (p evaporation of free water. We conclude that polar lipids have a key role in modulating barrier function and WHC of the stratum corneum. The POST can represent a useful in vivo model to study the effects of lipid extraction on skin function.

  12. Experimental Human Cell and Tissue Models of Pemphigus

    Science.gov (United States)

    van der Wier, Gerda; Pas, Hendri H.; Jonkman, Marcel F.

    2010-01-01

    Pemphigus is a chronic mucocutaneous autoimmune bullous disease that is characterized by loss of cell-cell contact in skin and/or mucous membranes. Past research has successfully identified desmosomes as immunological targets and has demonstrated that acantholysis is initiated through direct binding of IgG. The exact mechanisms of acantholysis, however, are still missing. Experimental model systems have contributed considerably to today's knowledge and are still a favourite tool of research. In this paper we will describe to what extent human cell and tissue models represent the in vivo situation, for example, organ cultures of human skin, keratinocyte cultures, and human skin grafted on mice and, furthermore, how suitable they are to study the pathogenesis of pemphigus. Organ cultures closely mimic the architecture of the epidermis but are less suitable to answer posed biochemical questions. Cultured keratinocyte monolayers are convenient in this respect, but their desmosomal make-up in terms of adhesion molecules does not exactly reflect the in vivo situation. Reconstituted skin is a relatively new model that approaches organ culture. In models of human skin grafted on mice, acantholysis can be studied in actual human skin but now with all the advantages of an animal model. PMID:20585596

  13. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P

    1999-01-01

    BACKGROUND: The purpose of the present study was to measure the concentrations of cetirizine in the extracellular water compartment in intact human skin and assess simultaneously inhibition of histamine-induced wheal and flare reactions. METHODS: Skin cetirizine levels were collected...... by the microdialysis technique and analyzed by high-pressure liquid chromatography with mass spectrometry detection. Skin levels in 20 subjects were compared to plasma levels for 4 h after a single oral dose of 10 or 20 mg of cetirizine. Skin prick tests were performed with histamine 100 mg/ml. RESULTS: Plasma...... cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng...

  14. In vivo determination of optical properties and fluorophore characteristics of non-melanoma skin cancer

    Science.gov (United States)

    Rajaram, Narasimhan; Kovacic, Dianne; Migden, Michael F.; Reichenberg, Jason S.; Nguyen, Tri H.; Tunnell, James W.

    2009-02-01

    Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as noninvasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy. We report for the first time to our knowledge both the optical properties and native fluorophore characteristics of non-melanoma skin cancer in the UV-visible range. We collected in vivo diffuse reflectance and intrinsic fluorescence measurements from 44 skin lesions on 37 patients. The skin sites were further categorized into three groups of non-melanoma skin cancer according to histopathology: 1) pre-cancerous actinic keratosis 2) malignant squamous cell carcinoma (SCC) and 3) basal cell carcinoma (BCC). We used a custom-built probe-based clinical system that collects both white light reflectance and laser-induced fluorescence in the wavelength range of 350-700 nm. We extracted the blood volume fraction, oxygen saturation, blood vessel size, tissue microarchitecture and melanin content from diffuse reflectance measurements. In addition, we determined the native fluorophore contributions of NADH, collagen and FAD from laser-induced fluorescence for all groups. The scattering from tissue decreased with progression from clinically normal to precancerous actinic keratosis to malignant SCC. A similar trend was observed for clinically normal skin and malignant BCC. Statistically significant differences were observed in the collagen contributions, which were lower in malignant SCC and BCC as compared to normal skin. Our data demonstrates that the mean optical properties and fluorophore contributions of normal, benign and malignant nonmelanoma cancers are significantly different from each other and can potentially be used as biomarkers for the early detection of skin cancer.

  15. Effect of fluocinolone acetonide cream on human skin blood flow

    International Nuclear Information System (INIS)

    Chimoskey, J.E.; Holloway, A. Jr.; Flanagan, W.J.

    1975-01-01

    Blood flow rate was measured in the forearm skin of human subjects exposed to ultraviolet irradiation. Blood flow was determined by the 133 Xe disappearance technique 18 hr after ultraviolet (UV) irradiation with a Westinghouse RS sunlamp held 10 inches from the skin for 10 min. Ultraviolet irradiation caused skin blood flow to increase. Application of fluocinolone acetonide cream, 0.025 percent, 4 times in the 16 hr following UV irradiation had no effect on either control skin blood flow or the UV-induced hyperemia

  16. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  17. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Science.gov (United States)

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  18. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    Directory of Open Access Journals (Sweden)

    Manpreet Randhawa

    Full Text Available Visible light (400-700 nm lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  19. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  20. In vivo skin characterization by confocal Raman microspectroscopy

    NARCIS (Netherlands)

    P.J. Caspers (Peter)

    2003-01-01

    markdownabstract__Abstract__ Various areas of skin research depend on detailed knowledge of the molecular composition of skin and molecular structure of skin constituents. On a microscopic scale the skin is a highly heterogeneous tissue. Molecular composition and structure vary

  1. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances.

    Science.gov (United States)

    Savić, Vedrana; Todosijević, Marija; Ilić, Tanja; Lukić, Milica; Mitsou, Evgenia; Papadimitriou, Vassiliki; Avramiotis, Spyridon; Marković, Bojan; Cekić, Nebojša; Savić, Snežana

    2017-08-30

    In order to improve skin penetration of tacrolimus we aimed to develop potentially non-irritant, lecithin-based microemulsions containing ethanol, isopropanol and/or propylene glycol as cosurfactants, varying caprylic/capric triglycerides and propylene glycol monocaprylate as oil phase. The influence of excipients on the size of microemulsion region in pseudo-ternary phase diagrams and their ability to form different types of microemulsions was evaluated. The comprehensive physicochemical characterization of microemulsions and the evaluation of their structure was performed, while the localization of tacrolimus in microemulsions was further investigated using electron paramagnetic resonance spectroscopy. Moreover, stability studies proved no change in tacrolimus content during one year of storage at room temperature. In addition, in vivo skin performance indicated no skin irritation potential of blank microemulsions, whereas in vitro release testing using Franz diffusion cells showed superior release rate of tacrolimus from microemulsions (0.98±0.10 and 0.92±0.11μg/cm 2 /h for two bicontinuous and 1.00±0.24μg/cm 2 /h for oil-in-water microemulsion) compared to referent Protopic ointment (0.15±0.08μg/cm 2 /h). Furthermore, ex vivo penetration assessed through porcine ear skin using tape stripping, confirmed superiority of two microemulsions related to the reference, implying developed microemulsions as promising carriers for dermal delivery of tacrolimus. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ultrastructural age-related changes in the sensory corpuscles of the human genital skin.

    Science.gov (United States)

    Tammaro, A; Parisella, F R; Cavallotti, C; Persechino, S; Cavallotti, C

    2013-01-01

    In human genital skin the majority of superficial sensory corpuscles is represented by glomerular corpuscles. These corpuscles show an own morphology. Our aim is to compare the ultra-structure of superficial sensory corpuscles in the penis skin of younger and older subjects. In this report the ultra-structure of the sensitive corpuscle in the penis skin of the younger and older subjects was compared, showing that the genital skin of the older humans contains more simple complexes than the younger ones. Our findings support the view that the age-related changes that can be observed in human glomerular genital corpuscles are consistent with an increase of the simple complexes and a strong decrease of the poly-lamellar one in the older people. These findings demonstrate that human genital corpuscles underwent age-related changes. Moreover our morphological findings can be correlated in relation to the clinical evolution of the sensitivity in the genital skin.

  3. 'Fish matters': the relevance of fish skin biology to investigative dermatology.

    Science.gov (United States)

    Rakers, Sebastian; Gebert, Marina; Uppalapati, Sai; Meyer, Wilfried; Maderson, Paul; Sell, Anne F; Kruse, Charli; Paus, Ralf

    2010-04-01

    Fish skin is a multi-purpose tissue that serves numerous vital functions including chemical and physical protection, sensory activity, behavioural purposes or hormone metabolism. Further, it is an important first-line defense system against pathogens, as fish are continuously exposed to multiple microbial challenges in their aquatic habitat. Fish skin excels in highly developed antimicrobial features, many of which have been preserved throughout evolution, and infection defense principles employed by piscine skin are still operative in human skin. This review argues that it is both rewarding and important for investigative dermatologists to revive their interest in fish skin biology, as it provides insights into numerous fundamental issues that are of major relevance to mammalian skin. The basic molecular insights provided by zebrafish in vivo-genomics for genetic, regeneration and melanoma research, the complex antimicrobial defense systems of fish skin and the molecular controls of melanocyte stem cells are just some of the fascinating examples that illustrate the multiple potential uses of fish skin models in investigative dermatology. We synthesize the essentials of fish skin biology and highlight selected aspects that are of particular comparative interest to basic and clinically applied human skin research.

  4. Human Skin 3D Bioprinting Using Scaffold-Free Approach.

    Science.gov (United States)

    Pourchet, Léa J; Thepot, Amélie; Albouy, Marion; Courtial, Edwin J; Boher, Aurélie; Blum, Loïc J; Marquette, Christophe A

    2017-02-01

    Organ in vitro synthesis is one of the last bottlenecks between tissue engineering and transplantation of synthetic organs. Bioprinting has proven its capacity to produce 3D objects composed of living cells but highly organized tissues such as full thickness skin (dermis + epidermis) are rarely attained. The focus of the present study is to demonstrate the capability of a newly developed ink formulation and the use of an open source printer, for the production of a really complete skin model. Proofs are given through immunostaining and electronic microscopy that the bioprinted skin presents all characteristics of human skin, both at the molecular and macromolecular level. Finally, the printability of large skin objects is demonstrated with the printing of an adult-size ear. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantitative relationship between the local lymph node assay and human skin sensitization assays.

    Science.gov (United States)

    Schneider, K; Akkan, Z

    2004-06-01

    The local lymph node assay (LLNA) is a new test method which allows for the quantitative assessment of sensitizing potency in the mouse. Here, we investigate the quantitative correlation between results from the LLNA and two human sensitization tests--specifically, human repeat insult patch tests (HRIPTs) and human maximization tests (HMTs). Data for 57 substances were evaluated, of which 46 showed skin sensitizing properties in human tests, whereas 11 yielded negative results in humans. For better comparability data from mouse and human tests were transformed to applied doses per skin area, which ranged over four orders of magnitude for the substances considered. Regression analysis for the 46 human sensitizing substances revealed a significant positive correlation between the LLNA and human tests. The correlation was better between LLNA and HRIPT data (n=23; r=0.77) than between LLNA and HMT data (n=38; r=0.65). The observed scattering of data points is related to various uncertainties, in part associated with insufficiencies of data from older HMT studies. Predominantly negative results in the LLNA for another 11 substances which showed no skin sensitizing activity in human maximization tests further corroborate the correspondence between LLNA and human tests. Based on this analysis, the LLNA can be considered a reliable basis for relative potency assessments for skin sensitizers. Proposals are made for the regulatory exploitation of the LLNA: four potency groups can be established, and assignment of substances to these groups according to the outcome of the LLNA can be used to characterize skin sensitizing potency in substance-specific assessments. Moreover, based on these potency groups, a more adequate consideration of sensitizing substances in preparations becomes possible. It is proposed to replace the current single concentration limit for skin sensitizers in preparations, which leads to an all or nothing classification of a preparation as sensitizing to

  6. Effects of Ginsenoside Rb1 on Skin Changes

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kimura

    2012-01-01

    Full Text Available Ginseng roots (Panax ginseng CA Meyer have been used traditionally for the treatment, especially prevention, of various diseases in China, Korea, and Japan. Both experimental and clinical studies suggest ginseng roots to have pharmacological effects in patients with life-style-related diseases such as non-insulin-dependent diabetic mellitus, atherosclerosis, hyperlipidemia, and hypertension. The topical use of ginseng roots to treat skin complaints including atopic suppurative dermatitis, wounds, and inflammation is also described in ancient Chinese texts; however, there have been relatively few studies in this area. In the present paper, we describe introduce the biological and pharmacological effects of ginsenoside Rb1 isolated from Red ginseng roots on skin damage caused by burn-wounds using male Balb/c mice (in vivo and by ultraviolet B irradiation using male C57BL/6J and albino hairless (HR-1 mice (in vivo. Furthermore, to clarify the mechanisms behind these pharmacological actions, human primary keratinocytes and the human keratinocyte cell line HaCaT were used in experiments in vitro.

  7. The Protective Role of Melanin Against UV Damage in Human Skin

    OpenAIRE

    Brenner, Michaela; Hearing, Vincent J.

    2008-01-01

    Human skin is repeatedly exposed to ultraviolet radiation (UVR) that influences the function and survival of many cell types and is regarded as the main causative factor in the induction of skin cancer. It has been traditionally believed that skin pigmentation is the most important photoprotective factor, since melanin, besides functioning as a broadband UV absorbent, has antioxidant and radical scavenging properties. Besides, many epidemiological studies have shown a lower incidence for skin...

  8. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin.

    Science.gov (United States)

    Wang, Frank; Smith, Noah R; Tran, Bao Anh Patrick; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Solar UV irradiation causes photoaging, characterized by fragmentation and reduced production of type I collagen fibrils that provide strength to skin. Exposure to UV-B irradiation (280-320 nm) causes these changes by inducing matrix metalloproteinase 1 and suppressing type I collagen synthesis. The role of UV-A irradiation (320-400 nm) in promoting similar molecular alterations is less clear yet important to consider because it is 10 to 100 times more abundant in natural sunlight than UV-B irradiation and penetrates deeper into the dermis than UV-B irradiation. Most (approximately 75%) of solar UV-A irradiation is composed of UV-A1 irradiation (340-400 nm), which is also the primary component of tanning beds. To evaluate the effects of low levels of UV-A1 irradiation, as might be encountered in daily life, on expression of matrix metalloproteinase 1 and type I procollagen (the precursor of type I collagen). In vivo biochemical analyses were conducted after UV-A1 irradiation of normal human skin at an academic referral center. Participants included 22 healthy individuals without skin disease. Skin pigmentation was measured by a color meter (chromometer) under the L* variable (luminescence), which ranges from 0 (black) to 100 (white). Gene expression in skin samples was assessed by real-time polymerase chain reaction. Lightly pigmented human skin (L* >65) was exposed up to 4 times (1 exposure/d) to UV-A1 irradiation at a low dose (20 J/cm2), mimicking UV-A levels from strong sun exposure lasting approximately 2 hours. A single exposure to low-dose UV-A1 irradiation darkened skin slightly and did not alter matrix metalloproteinase 1 or type I procollagen gene expression. With repeated low-dose UV-A1 irradiation, skin darkened incrementally with each exposure. Despite this darkening, 2 or more exposures to low-dose UV-A1 irradiation significantly induced matrix metalloproteinase 1 gene expression, which increased progressively with successive exposures. Repeated UV-A1

  9. Tribology of human skin and mechanical skin equivalents in contact with textiles

    NARCIS (Netherlands)

    Derler, S.; Schrade, G.U.; Gerhardt, L.C.

    2007-01-01

    The friction of untreated human skin (finger) against a reference textile was investigated with 12 subjects using a force plate. In touch experiments, in which the subjects assessed the surface roughness of the textile at normal loads of 1.5 ± 0.7 N, the average friction coefficients ranged from

  10. Efficacy of transgene expression in porcine skin as a function of electrode choice

    DEFF Research Database (Denmark)

    Gothelf, A; Mahmood, Faisal; Dagnaes-Hansen, Frederik

    2011-01-01

    , have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited. We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally...... and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed. Interestingly, we found needle electrodes to be more efficient than plate electrodes (p...

  11. Impact of overweight on the normal physiology of human in vivo skin

    Directory of Open Access Journals (Sweden)

    Liliana Tavares

    2013-06-01

    Full Text Available Obesity is an increasing public health issue, particularly in Portugal, where more than 50% of the population is obese. The pathophysiological consequences of being overweight have a severe cutaneous impact. However, there is still a lack of studies to link these alterations to BMI categories. This present work intends to identify the hydration and biomechanical behaviour changes related to weight augmentation. This transversal study was performed on a convenience sample of 57 volunteers, all females, aged between 20 and 46 (30±8 years old. Volunteers were divided in two groups – group I, with a BMI between 19,9 and 24,9 Kg/m2 and group II, between 25 and 29,9 Kg/m2. One single determination of the superficial hydration, transepidermal water loss and biomechanical behaviour of the skin, was obtained with non-invasive methods. The data showed that weight increase positively influences hydration levels and transepidermal water loss, and negatively influences the skin's biomechanical behaviour. Despite the relevance of these results, there is still a need for complementary studies, with a wider number of individuals, in order to better understand its nature and meaning.

  12. Influence of epidermal hydration on the friction of human skin against textiles

    OpenAIRE

    Gerhardt, L.-C; Strässle, V; Lenz, A; Spencer, N.D; Derler, S

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles.

  13. An assessment of the use of skin flashes in helical tomotherapy using phantom and in-vivo dosimetry

    International Nuclear Information System (INIS)

    Tournel, Koen; Verellen, Dirk; Duchateau, Michael; Fierens, Yves; Linthout, Nadine; Reynders, Truus; Voordeckers, Mia; Storme, Guy

    2007-01-01

    Background and purpose: In helical tomotherapy the nature of the optimizing and planning systems allows the delivery of dose on the skin using a build-up compensating technique (skin flash). However, positioning errors or changes in the patient's contour can influence the correct dosage in these regions. This work studies the behavior of skin-flash regions using phantom and in-vivo dosimetry. Materials and methods: The dosimetric accuracy of the tomotherapy planning system in skin-flash regions is checked using film and TLD on phantom. Positioning errors are induced and the effect on the skin dose is investigated. Further a volume decrease is simulated using bolus material and the results are compared. Results: Results show that the tomotherapy planning system calculates dose on skin regions within 2 SD using TLD measurements. Film measurements show drops of dose of 2.8% and 26% for, respectively, a 5 mm and 10 mm mispositioning of the phantom towards air and a dose increase of 9% for a 5 mm shift towards tissue. These measurements are confirmed by TLD measurements. A simulated volume reduction shows a similar behavior with a 2.6% and 19.4% drop in dose, measured with TLDs. Conclusion: The tomotherapy system allows adequate planning and delivery of dose using skin flashes. However, exact positioning is crucial to deliver the dose at the exact location

  14. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect.

    Science.gov (United States)

    Pardeike, Jana; Schwabe, Kay; Müller, Rainer H

    2010-08-30

    Cutanvoa Nanorepair Q10 cream, the first NLC containing cosmetical product introduced to the market in October 2005, was compared to an identical o/w cream without NLC with regards to particle size, melting behaviour, rheological properties and the in vivo effect on skin hydration. The consistency, the spreadability on the skin and the subjective feeling of increase in skin hydration were evaluated using a standardized questionnaire, and compared to hydration data measured. Furthermore, it was shown by epicutaneous patch test that Cutanova Nanorepair Q10 cream has no irritating effects on the skin. By laser diffraction (LD) and differential scanning calorimetry (DSC) measurements it could be shown that NLC are physically stable in Cutanova Nanorepair Q10 cream. After 7 days application of Cutanova Nanorepair Q10 cream and NLC negative control cream an increase in skin hydration could be objectively confirmed by measurements in vivo. From day 28 on the skin hydration measured in the test areas of Cutanova Nanorepair Q10 cream was significantly higher than the skin hydration in the test areas of the NLC negative control cream (p=0.05). The subjective feeling of increase in skin hydration was also rated from the volunteers as superior for Cutanova Nanorepair Q10 cream. The rheological properties of Cutanova Nanorepair Q10 cream contributed to a better subjective impression of consistency and spreadability on the skin than found for NLC negative control cream. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Ex Vivo Expanded Human Non-Cytotoxic CD8+CD45RClow/− Tregs Efficiently Delay Skin Graft Rejection and GVHD in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Séverine Bézie

    2018-01-01

    Full Text Available Both CD4+ and CD8+ Tregs play a critical role in the control of immune responses and immune tolerance; however, our understanding of CD8+ Tregs is limited while they are particularly promising for therapeutic application. We report here existence of highly suppressive human CD8+CD45RClow/− Tregs expressing Foxp3 and producing IFNγ, IL-10, IL-34, and TGFβ to mediate their suppressive activity. We demonstrate that total CD8+CD45RClow/− Tregs can be efficiently expanded in the presence of anti-CD3/28 mAbs, high-dose IL-2 and IL-15 and that such expanded Tregs efficiently delay GVHD and human skin transplantation rejection in immune humanized mice. Robustly expanded CD8+ Tregs displayed a specific gene signature, upregulated cytokines and expansion in the presence of rapamycin greatly improved proliferation and suppression. We show that CD8+CD45RClow/− Tregs are equivalent to canonical CD4+CD25highCD127low/− Tregs for suppression of allogeneic immune responses in vitro. Altogether, our results open new perspectives to tolerogenic strategies in human solid organ transplantation and GVHD.

  16. A methodology for extracting the electrical properties of human skin

    International Nuclear Information System (INIS)

    Birgersson, Ulrik; Nicander, Ingrid; Ollmar, Stig; Birgersson, Erik

    2013-01-01

    A methodology to determine dielectrical properties of human skin is presented and analyzed. In short, it is based on a mathematical model that considers the local transport of charge in the various layers of the skin, which is coupled with impedance measurements of both stripped and intact skin, an automated code generator, and an optimization algorithm. New resistivity and permittivity values for the stratum corneum soaked with physiological saline solution for 1 min and the viable skin beneath are obtained and expressed as easily accessible functions. The methodology can be extended to account for different electrode designs as well as more physical phenomena that are relevant to electrical impedance measurements of skin and their interpretation. (paper)

  17. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture

    International Nuclear Information System (INIS)

    Jewell, Christopher; Prusakiewicz, Jeffery J.; Ackermann, Chrisita; Payne, N. Ann; Fate, Gwendolyn; Voorman, Richard; Williams, Faith M.

    2007-01-01

    Parabens are esters of 4-hydroxybenzoic acid and used as anti-microbial agents in a wide variety of toiletries, cosmetics and pharmaceuticals. It is of interest to understand the dermal absorption and hydrolysis of parabens, and to evaluate their disposition after dermal exposure and their potential to illicit localised toxicity. The use of minipig as a surrogate model for human dermal metabolism and toxicity studies, justifies the comparison of paraben metabolism in human and minipig skin. Parabens are hydrolysed by carboxylesterases to 4-hydroxybenzoic acid. The effects of the carboxylesterase inhibitors paraoxon and bis-nitrophenylphosphate provided evidence of the involvement of dermal carboxylesterases in paraben hydrolysis. Loperamide, a specific inhibitor of human carboxylesterase-2 inhibited butyl- and benzylparaben hydrolysis in human skin but not methylparaben or ethylparaben. These results show that butyl- and benzylparaben are more selective substrates for human carboxylesterase-2 in skin than the other parabens examined. Parabens applied to the surface of human or minipig skin were absorbed to a similar amount and metabolised to 4-hydroxybenzoic acid during dermal absorption. These results demonstrate that the minipig is a suitable model for man for assessing dermal absorption and hydrolysis of parabens, although the carboxylesterase profile in skin differs between human and minipig

  18. Influence of epidermal hydration on the friction of human skin against textile

    NARCIS (Netherlands)

    Gerhardt, L.C.; Strässle, V.; Lenz, A.; Spencer, N.D.; Derler, S.

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles. The friction between

  19. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  20. Degradation and protection of DNAzymes on human skin.

    Science.gov (United States)

    Marquardt, Kay; Eicher, Anna-Carola; Dobler, Dorota; Höfer, Frank; Schmidts, Thomas; Schäfer, Jens; Renz, Harald; Runkel, Frank

    2016-10-01

    DNAzymes are catalytic nucleic acid based molecules that have become a new class of active pharmaceutical ingredients (API). Until now, five DNAzymes have entered clinical trials. Two of them were tested for topical application, whereby dermally applied DNAzymes had been prone to enzymatic degradation. To protect the DNAzymes the enzymatic activity of human skin has to be examined. Therefore, the enzymatic activity of human skin was qualitatively and quantitatively analyzed. Activity similar to that of DNase II could be identified and the specific activity was determined to be 0.59Units/mg. These results were used to develop an in vitro degradation assay to screen different kinds of protective systems on human skin. The chosen protective systems consisted of biodegradable chitosans or polyethylenimine, which forms polyplexes when combined with DNAzymes. The polyplexes were characterized in terms of particle size, zeta potential, stability and degree of complexation. The screening revealed that the protective efficiency of the polyplexes depended on the polycation and the charge ratio (ξ). At a critical ξ ratio between 1.0 and 4.1 and at a maximal zeta potential, sufficient protection of the DNAzyme was achieved. The results of this study will be helpful for the development of a protective dermal drug delivery systems using polyplexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hyperspectral signature analysis of skin parameters

    Science.gov (United States)

    Vyas, Saurabh; Banerjee, Amit; Garza, Luis; Kang, Sewon; Burlina, Philippe

    2013-02-01

    The temporal analysis of changes in biological skin parameters, including melanosome concentration, collagen concentration and blood oxygenation, may serve as a valuable tool in diagnosing the progression of malignant skin cancers and in understanding the pathophysiology of cancerous tumors. Quantitative knowledge of these parameters can also be useful in applications such as wound assessment, and point-of-care diagnostics, amongst others. We propose an approach to estimate in vivo skin parameters using a forward computational model based on Kubelka-Munk theory and the Fresnel Equations. We use this model to map the skin parameters to their corresponding hyperspectral signature. We then use machine learning based regression to develop an inverse map from hyperspectral signatures to skin parameters. In particular, we employ support vector machine based regression to estimate the in vivo skin parameters given their corresponding hyperspectral signature. We build on our work from SPIE 2012, and validate our methodology on an in vivo dataset. This dataset consists of 241 signatures collected from in vivo hyperspectral imaging of patients of both genders and Caucasian, Asian and African American ethnicities. In addition, we also extend our methodology past the visible region and through the short-wave infrared region of the electromagnetic spectrum. We find promising results when comparing the estimated skin parameters to the ground truth, demonstrating good agreement with well-established physiological precepts. This methodology can have potential use in non-invasive skin anomaly detection and for developing minimally invasive pre-screening tools.

  2. Vehicle and enhancer effects on human skin penetration of aminophylline from cream formulations: evaluation in vivo.

    Science.gov (United States)

    Wang, Lai-Hao; Wang, Chia-Chen; Kuo, Su-Ching

    2007-01-01

    The effects of four essential oils (rosemary, ylang, lilacin, and peppermint oils), and three plant oils (jojoba oil, corn germ oil, and olive oil) on the permeation of aminophylline were studied using human skin. The permeation effects of these oils were compared with those of three chemical penetration enhancers. Although all oils enhanced the permeation of aminophylline, their effects were less than that of ethanol. Jojoba oil was found to be the most active, causing about a 32% peak height decrease of N-H bending absorbances in comparison with the control, while peppermint, lilacin, rosemary, and ylang oils caused 28%, 24%, 18%, and 12% peak height decreases, respectively. Microemulsions containing 10% jojoba oil and 30% corn germ oil were found to be superior vehicles for the percutaneous absorption of aminophylline. Comparision with results obtained from high-performance liquid chromatography shows good agreement.

  3. Protection against UVB-induced oxidative stress in human skin cells and skin models by methionine sulfoxide reductase A.

    Science.gov (United States)

    Pelle, Edward; Maes, Daniel; Huang, Xi; Frenkel, Krystyna; Pernodet, Nadine; Yarosh, Daniel B; Zhang, Qi

    2012-01-01

    Environmental trauma to human skin can lead to oxidative damage of proteins and affect their activity and structure. When methionine becomes oxidized to its sulfoxide form, methionine sulfoxide reductase A (MSRA) reduces it back to methionine. We report here the increase in MSRA in normal human epidermal keratinocytes (NHEK) after ultraviolet B (UVB) radiation, as well as the reduction in hydrogen peroxide levels in NHEK pre-treated with MSRA after exposure. Further, when NHEK were pre-treated with a non-cytotoxic pentapeptide containing methionine sulfoxide (metSO), MSRA expression increased by 18.2%. Additionally, when the media of skin models were supplemented with the metSO pentapeptide and then exposed to UVB, a 31.1% reduction in sunburn cells was evident. We conclude that the presence of MSRA or an externally applied peptide reduces oxidative damage in NHEK and skin models and that MSRA contributes to the protection of proteins against UVB-induced damage in skin.

  4. Demonstration of tyrosinase in the vitiligo skin of human beings by a sensitive fluorometric method as well as by 14C(U)-L-tyrosine incorporation into melanin

    International Nuclear Information System (INIS)

    Husain, I.; Vijayan, E.; Ramaiah, A.; Pasricha, J.S.; Madan, N.C.

    1982-01-01

    Tyrosinase activity (Monophenol, dihydroxyphenylalanine: oxygen oxidoreductase EC 1.14.18.1) in vitiligo and normal epidermal homogenates of skin from human beings was measured by estimating beta 3,4-dihydroxyphenylalanine (dopa) by a highly sensitive fluorometric method described in this paper. The tyrosine activity in the vitiligo skin was about 4 to 37% of corresponding normal skin. The activity of tyrosinase in normal human skin from different individuals and from different regions of the body was in the range of 4 to 140 picomoles of beta 3,4-dihydroxyphenylalanine formed per min/mg protein of epidermal homogenate. The enzyme from vitiligo and normal skin was severely inhibited by substance(s) of low molecular weight. The enzyme exhibits a lag of about 4 hr in the absence of added beta 3,4-dihydroxyphenylalanine and 1 hr in presence of 5 microM dopa. Tyrosinase from the normal and vitiligo skin was inhibited by excess concentration of tyrosine. The homogenates from vitiligo skin could synthesize melanin from C14(U)-L-Tyrosine. The rate of tyrosine incorporation into melanin by the epidermal homogenates is increased by 3,4-dihydroxyphenylalanine (dopa) disproportionate to its effect on tyrosinase activity. Based on the data presented in this paper it is concluded that melanocytes are present in the vitiligo skin. A tentative hypothesis is put forward to explain the lack of melanin synthesis by the vitiligo skin under in vivo conditions, although melanocytes are present

  5. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  6. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  7. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    Science.gov (United States)

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  8. Antioxidant activities and skin hydration effects of rice bran bioactive compounds entrapped in niosomes.

    Science.gov (United States)

    Manosroi, Aranya; Chutoprapat, Romchat; Sato, Yuji; Miyamoto, Kukizo; Hsueh, Kesyin; Abe, Masahiko; Manosroi, Worapaka; Manosroi, Jiradej

    2011-03-01

    Bioactive compounds [ferulic acid (F), gamma-oryzanol (O) and phytic acid (P)] in rice bran have been widely used as antioxidants in skin care products. However, one of the major problems of antioxidants is the deterioration of their activities during long exposure to air and light. Niosomes have been used to entrap many degradable active agents not only for stability improvement, but also for increasing skin hydration. The objective of this study was to determine antioxidant activities [by in vitro ORAC (oxygen radical absorbance capacity) and ex vivo lipid peroxidation inhibition assay] and in vivo human skin hydration effects of gel and cream containing the rice bran extracts entrapped in niosomes. Gel and cream containing the rice bran extracts entrapped in niosomes showed higher antioxidant activity (ORAC value) at 20-28 micromol of Trolox equivalents (TE) per gram of the sample than the placebo gel and cream which gave 16-18 micromolTE/g. Human sebum treated with these formulations showed more lipid peroxidation inhibition activity than with no treatment of about 1.5 times. The three different independent techniques including corneometer, vapometer and confocal Raman microspectroscopy (CRM) indicated the same trend in human skin hydration enhancement of the gel or cream formulations containing the rice bran extracts entrapped in niosomes of about 20, 3 and 30%, respectively. This study has demonstrated the antioxidant activities and skin hydration enhancement of the rice bran bioactive compounds when entrapped in niosomes and incorporated in cream formulations.

  9. Permeability of commercial solvents through living human skin

    DEFF Research Database (Denmark)

    Ursin, C; Hansen, C M; Van Dyk, J W

    1995-01-01

    A procedure has been developed for measuring the steady state rate of permeation of commercial solvents through living human skin. To get the most consistent results, it was necessary with some solvents to normalize the solvent permeation rate of a given skin sample with its [3H]water permeation...... rate. For other solvents this was not necessary, so the un-normalized data were used. High [3H]water permeation rate also was used as a criterion for "defective" skin samples that gave erroneous permeability rates, especially for solvents having slow permeability. The linearity of the steady state data...... of DMSO and octyl acetate were measured. No octyl acetate was detected and the permeability of DMSO was proportional to its mole fraction in the mixture. The effect of two hours of solvent exposure on the viability of skin (based on DNA synthesis) was measured and found to be very dependent on the solvent....

  10. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Pathak, Madhu A.; Parrado, Concepcion; Goukassian, David; Rius-Díaz, Francisca; Mihm, Martín C.; Fitzpatrick, Thomas B.; González, Salvador

    2004-01-01

    BACKGROUND: UV radiation induces damage to human skin. Protection of skin by an oral photoprotective agent would have substantial benefits. Objective We investigated the photoprotective effect of oral administration of an extract of the natural antioxidant Polypodium leucotomos (PL). METHODS: A

  11. Validation of radiosterilization dose of human skin dressings for burnt treatment: preliminary study

    International Nuclear Information System (INIS)

    Castro, E.

    2008-01-01

    Full text: Due to the need for better materials to treat burnt patients, the Peruvian Institute of Nuclear Energy (IPEN) and the Rosa Guerzoni Chambergo Tissue Bank are collaborating for developing human skin dressings. Skin was procured from living donors, who surgically were performed a dermolipectomy. Exclusion criteria, stated by the Peruvian Organization for Transplant and Donation were observed. Glycerolized human skin dressings were processed at the tissue bank and sent to IPEN, where the gamma irradiation sterilizing dose was determined. The purpose of this work is to validate the radiation sterilization dose delivered to human skin dressings using the IAEA Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control. A batch of human skin dressings was tested. Average values of bioburden present in ten samples was 30 UFC/item, obtaining a sub-sterilization dose of 4 kGy. Irradiations were performed in the GammacellExcel 220. Sterility tests performed fulfilled the requirements established by the Code, achieving a validated dose value of 19.7 kGy. This preliminary study, that should be repeated in two other batches of processed human skin, allows to diminish 25 kGy the sterilizing dose to the stated above dose value, in a frame of a quality assurance system that also comprises the processes held at tissue banks previous irradiation. It also permit the availability of these materials in Peruvian hospitals. (Author)

  12. Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method

    Science.gov (United States)

    Khairina, Dyna Marisa; Hatta, Heliza Rahmania; Rustam; Maharani, Septya

    2018-02-01

    Skin disease is an infectious disease that is common in people of all ages. Disorders of the skin often occur because there are factors, among others, are climate, environment, shelter, unhealthy living habits, allergies and others. Skin diseases in Indonesia are mostly caused by bacterial, fungal, parasitic, and allergies. The objective of the research is to diagnose skin diseases in humans by using the method of making decision tree then performing the search by forward chaining and calculating the probability value of Dempster-Shafer method. The results of research in the form of an automated system that can resemble an expert in diagnosing skin disease accurately and can help in overcoming the problem of skin diseases.

  13. Delivery and reveal of localization of upconversion luminescent microparticles and quantum dots in the skin in vivo by fractional laser microablation, multimodal imaging, and optical clearing

    Science.gov (United States)

    Volkova, Elena K.; Yanina, Irina Yu; Genina, Elina A.; Bashkatov, Alexey N.; Konyukhova, Julia G.; Popov, Alexey P.; Speranskaya, Elena S.; Bucharskaya, Alla B.; Navolokin, Nikita A.; Goryacheva, Irina Yu.; Kochubey, Vyacheslav I.; Sukhorukov, Gleb B.; Meglinski, Igor V.; Tuchin, Valery V.

    2018-02-01

    Delivery and spatial localization of upconversion luminescent microparticles [Y2O3:Yb, Er] (mean size ˜1.6 μm) and quantum dots (QDs) (CuInS2/ZnS nanoparticles coated with polyethylene glycol-based amphiphilic polymer, mean size ˜20 nm) inside rat skin was studied in vivo using a multimodal optical imaging approach. The particles were embedded into the skin dermis to the depth from 300 to 500 μm through microchannels performed by fractional laser microablation. Low-frequency ultrasound was applied to enhance penetration of the particles into the skin. Visualization of the particles was revealed using a combination of luminescent spectroscopy, optical coherence tomography, confocal microscopy, and histochemical analysis. Optical clearing was used to enhance the image contrast of the luminescent signal from the particles. It was demonstrated that the penetration depth of particles depends on their size, resulting in a different detection time interval (days) of the luminescent signal from microparticles and QDs inside the rat skin in vivo. We show that luminescent signal from the upconversion microparticles and QDs was detected after the particle delivery into the rat skin in vivo during eighth and fourth days, respectively. We hypothesize that the upconversion microparticles have created a long-time depot localized in the laser-created channels, as the QDs spread over the surrounding tissues.

  14. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  15. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  16. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  17. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  18. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M. J.; Wong, J. H. D.; Ng, K. H., E-mail: ngkh@um.edu.my [Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia and University of Malaya Research Imaging Centre, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Jong, W. L. [Clinical Oncology Unit, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Cutajar, D. L.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  19. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling.

    Science.gov (United States)

    Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette

    2014-06-01

    The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. In vitro-in vivo correlation study for the dermatopharmacokinetics of terbinafine hydrochloride topical cream.

    Science.gov (United States)

    Saeheng, Suwadee; Nosoongnoen, Wichit; Varothai, Supenya; Sathirakul, Korbtham

    2013-09-01

    To investigate the relationship between dermatopharmacokinetic (DPK) tape stripping from in vitro and in vivo using 1% terbinafine hydrochloride topical cream as the model formulation. In vitro and in vivo tape strippings were conducted on separated pig ear skin used as a biological membrane for franz diffusion cell testing and the non-hairy skin area at the ventral forearms of healthy volunteers, respectively. Terbinafine (1%) topical cream was applied to the skin for 0.5, 2, and 4 h. The drug profiles of terbinafine across the stratum corneum were determined immediately (time 0 h), and at 0.5, 1, 2, and 4 h after removing the formulation. The amounts of terbinafine were analyzed by a validated high-performance liquid chromatography-ultraviolet method. The area under the curve (AUC) and the maximum amounts of terbinafine absorption (Q(max)) were obtained from pharmacokinetic software. Partition coefficient (K(SC/veh)) and diffusion parameter (D/L²) were derived from the Fick's second law equation. During the schedule time of 8 h, the deviations of in vitro and in vivo data were 6.61 and 30.46% for AUC and Q(max), respectively. There was insignificant difference of the K(SC/veh) and the D/L² between excised pig ear and human skin. In addition, K(SC/veh) and D/L² at T(max) of 2 h were used to predict the AUC presented the value of 4.7481 %h whereas the true value calculated from pharmacokinetic software provided the value of 5.9311 %h differing from each other in approximate of 20%. In vitro tape stripping using the separated pig ear skin as a viable membrane of the franz diffusion cell testing demonstrates the potential to represent in vivo tape stripping in human for topical bioavailability/bioequivalence study of terbinafine hydrochloride 1% topical cream.