WorldWideScience

Sample records for vivo electroporation improves

  1. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation

    Directory of Open Access Journals (Sweden)

    Xiaojun Liu

    2017-05-01

    Full Text Available ABSTRACT The generation of T cells with maximal anti-tumor activities will significantly impact the field of T-cell-based adoptive immunotherapy. In this report, we found that OKT3/IL-2-stimulated T cells were phenotypically more heterogeneous, with enhanced anti-tumor activity in vitro and when locally administered in a solid tumor mouse model. To further improve the OKT3/IL-2-based T cell manufacturing procedure, we developed a novel T cell stimulation and expansion method in which peripheral blood mononuclear cells were electroporated with mRNA encoding a chimeric membrane protein consisting of a single-chain variable fragment against CD3 and the intracellular domains of CD28 and 4-1BB (OKT3-28BB. The expanded T cells were phenotypically and functionally similar to T cells expanded by OKT3/IL-2. Moreover, co-electroporation of CD86 and 4-1BBL could further change the phenotype and enhance the in vivo anti-tumor activity. Although T cells expanded by the co-electroporation of OKT3-28BB with CD86 and 4-1BBL showed an increased central memory phenotype, the T cells still maintained tumor lytic activities as potent as those of OKT3/IL-2 or OKT3-28BB-stimulated T cells. In different tumor mouse models, T cells expanded by OKT3-28BB RNA electroporation showed anti-tumor activities superior to those of OKT3/IL-2 T cells. Hence, T cells with both a less differentiated phenotype and potent tumor killing ability can be generated by RNA electroporation, and this T cell manufacturing procedure can be further optimized by simply co-delivering other splices of RNA, thus providing a simple and cost-effective method for generating high-quality T cells for adoptive immunotherapy.

  2. Online bioimpedance feedback for in vivo electroporated tissues

    Science.gov (United States)

    Medrano, J.; Rey, J. I.; Connolly, R. J.; Anderson, A.; Jaroszeski, M.; Gitlin, R.

    2010-04-01

    Electroporation in vivo is a biotechnology method that uses short-duration high intensity electric fields to enhance plasma membrane permeability in living cells in order to facilitate the uptake of drugs, DNA, genes and proteins into the cytoplasm. The degree of permeability is related to the tissue's bioimpedance; hence, accurate impedance evaluation throughout electroporation treatment is essential to 1) avoid over-treating tissues resulting in excessive cell death and 2) under-treating tissues resulting in poor permeability. Cell viability and membrane permeability is based on a number of factors, including: time elapsed after electroporation, electroporation pulse amplitude, tissue type, and so on; thus, efficient feedback protocols must minimize delays between treatment and impedance readings. Current methods of bioimpedance feedback are often cumbersome and impedance analysis devices can be expensive, bulky, and immobile. Emerging technologies facilitate economical methods, fast protocols, and portability to realize bioimpedance measurement and feedback online (i.e. realtime). Consequently, this research uses automation software, logic-biased protocols, an inexpensive commercially available impedance analyzer microchip, and a custom-built hexagonal electrode probe to measure dynamic bioimpedance changes. This work demonstrates how this novel system measures tissue bioimpedance instantly and efficiently before and after electroporation. Additionally this system allows for the comparison of electrode geometries as well as electric field' magnitudes and distributions. Follow up work will pursue the optimization of plasma membrane permeability for several tissue/cell types.

  3. In vivo electroporation mediated gene delivery to the beating heart.

    Directory of Open Access Journals (Sweden)

    Erick L Ayuni

    Full Text Available Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase and TNT (Troponin T were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.

  4. Optimizing in vivo gene transfer into mouse corpus cavernosum by use of surface electroporation

    Science.gov (United States)

    Song, Kang-Moon; Choi, Min Ji; Kwon, Mi-Hye; Ghatak, Kalyan; Park, Soo-Hwan; Ryu, Dong-Soo; Ryu, Ji-Kan

    2015-01-01

    Purpose Electroporation is known to enhance the efficiency of gene transfer through a transient increase in cell membrane permeability. The aim of this study was to determine the optimal conditions for in vivo electroporation-mediated gene delivery into mouse corpus cavernosum. Materials and Methods Diabetes was induced in C57BL/6 mice by intraperitoneal injections of streptozotocin. After intracavernous injection of pCMV-Luc (100 µg/40 µL), different electroporation settings (5-50 V, 8-16 pulses with a duration of 40-100 ms) were applied to the penis to establish the optimal conditions for electroporation. Gene expression was evaluated by luciferase assay. We also assessed the undesired consequences of electroporation by visual inspection and hematoxylin-eosin staining of penile tissue. Results Electroporation profoundly induced gene expression in the corpus cavernosum tissue of normal mice in a voltage-dependent manner. We observed electrical burn scars in the penis of normal mice who received electroporation with eight 40-ms pulses at a voltage of 50 V and sixteen 40-ms pulses, eight 100-ms pulses, and sixteen 100-ms pulses at a voltage of 30 V. No detectable burn scars were noted in normal mice stimulated with eight 40-ms pulses at a voltage of 30 V. Electroporation also significantly induced gene expression in diabetic mice stimulated with 40-ms pulse at a voltage of 30 V without injury to the penis. Conclusions We have established the optimal electroporation conditions for maximizing gene transfer into the corpus cavernosum of mice while avoiding damage to the erectile tissue. The electroporation-mediated gene delivery technique will be a valuable tool for gene therapy in the field of erectile dysfunction. PMID:25763123

  5. Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.

    Science.gov (United States)

    Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay

    2013-06-28

    Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In vivo imaging of cancer cells with electroporation of quantum dots and multispectral imaging

    Science.gov (United States)

    Yoo, Jung Sun; Won, Nayoun; Kim, Hong Bae; Bang, Jiwon; Kim, Sungjee; Ahn, Saeyoung; Soh, Kwang-Sup

    2010-06-01

    Our understanding of dissemination and growth of cancer cells is limited by our inability for long-term followup of this process in vivo. Fluorescence molecular imaging has the potential to track cancer cells with high contrast and sensitivity in living animals. For this purpose, intracellular delivery of near-infrared fluorescence quantum dots (QDs) by electroporation offers considerable advantages over organic fluorophores and other cell tagging methods. In this research we developed a multispectral imaging system that could eliminate two major parameters compromising in vivo fluorescence imaging performance, i.e., variations in the tissue optical properties and tissue autofluorescence. We demonstrated that electroporation of QDs and multispectral imaging allowed in vivo assessment of cancer development and progression in the xenograft mouse tumor model for more than 1 month, providing a powerful means to learn more about the biology of cancer and metastasis.

  7. ZAP-70 restoration in mice by in vivo thymic electroporation.

    Directory of Open Access Journals (Sweden)

    Magali Irla

    Full Text Available Viral and non-viral vectors have been developed for gene therapy, but their use is associated with unresolved problems of efficacy and safety. Efficient and safe methods of DNA delivery need to be found for medical application. Here we report a new monopolar system of non-viral electro-gene transfer into the thymus in vivo that consists of the local application of electrical pulses after the introduction of the DNA. We assessed the proof of concept of this approach by correcting ZAP-70 deficient severe combined immunodeficiency (SCID in mice. The thymic electro-gene transfer of the pCMV-ZAP-70-IRES-EGFP vector in these mice resulted in rapid T cell differentiation in the thymus with mature lymphocytes detected by three weeks in secondary lymphoid organs. Moreover, this system resulted in the generation of long-term functional T lymphocytes. Peripheral reconstituted T cells displayed a diversified T cell receptor (TCR repertoire, and were responsive to alloantigens in vivo. This process applied to the thymus could represent a simplified and effective alternative for gene therapy of T cell immunodeficiencies.

  8. Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments.

    Directory of Open Access Journals (Sweden)

    Matej Kranjc

    Full Text Available Magnetic resonance electrical impedance tomography (MREIT was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.

  9. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, A; Laufer, S [Center for Bioengineering in the Service of Humanity and Society, School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rabinowitch, H D [Robert H Smith Faculty of Agriculture, Food and Environment, Robert H Smith Institute of Plant Science and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76 100 (Israel); Rubinsky, B, E-mail: Rabin@agri.huji.ac.il [Department of Mechanical Engineering, Graduate Program in Biophysics, University of California at Berkeley, Berkeley, CA 84720 (United States)

    2011-02-21

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 deg. C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  10. In vivo non-thermal irreversible electroporation impact on rat liver galvanic apparent internal resistance

    Science.gov (United States)

    Golberg, A.; Laufer, S.; Rabinowitch, H. D.; Rubinsky, B.

    2011-02-01

    Non-thermal irreversible electroporation (NTIRE) is a biophysical phenomenon which involves application of electric field pulses to cells or tissues, causing certain rearrangements in the membrane structure leading to cell death. The treated tissue ac impedance changes induced by electroporation were shown to be the indicators for NTIRE efficiency. In a previous study we characterized in vitro tissue galvanic apparent internal resistance (GAIR) changes due to NTIRE. Here we describe an in vivo study in which we monitored the GAIR changes of a rat liver treated by NTIRE. Electrical pulses were delivered through the same Zn/Cu electrodes by which GAIR was measured. GAIR was measured before and for 3 h after the treatment at 15 min intervals. The results were compared to the established ac bioimpedance measurement method. A decrease of 33% was measured immediately after the NTIRE treatment and a 40% decrease was measured after 3 h in GAIR values; in the same time 40% and 47% decrease respectively were measured by ac bioimpedance analyses. The temperature increase due to the NTIRE was only 0.5 °C. The results open the way for an inexpensive, self-powered in vivo real-time NTIRE effectiveness measurement.

  11. Single cell electroporation for longitudinal imaging of synaptic structure and function in the adult mouse neocortex in vivo

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2015-04-01

    Full Text Available Longitudinal imaging studies of neuronal structures in vivo have revealed rich dynamics in dendritic spines and axonal boutons. Spines and boutons are considered to be proxies for synapses. This implies that synapses display similar dynamics. However, spines and boutons do not always bear synapses, some may contain more than one, and dendritic shaft synapses have no clear structural proxies. In addition, synaptic strength is not always accurately revealed by just the size of these structures. Structural and functional dynamics of synapses could be studied more reliably using fluorescent synaptic proteins as markers for size and function. These proteins are often large and possibly interfere with circuit development, which renders them less suitable for conventional transfection or transgenesis methods such as viral vectors, in utero electroporation and germline transgenesis. Single cell electroporation has been shown to be a potential alternative for transfection of recombinant fluorescent proteins in adult cortical neurons. Here we provide proof of principle for the use of single cell electroporation to express and subsequently image fluorescently tagged synaptic proteins over days to weeks in vivo.

  12. Improved electroporation procedure for genetic transformation of Dekkera/Brettanomyces bruxellensis.

    Science.gov (United States)

    Miklenić, Marina; Žunar, Bojan; Štafa, Anamarija; Svetec, Ivan-Krešimir

    2015-12-01

    Yeast Dekkera/Brettanomyces bruxellensis is one of the most common contaminants in wine industry, but also one of the most promising candidates for large-scale bioethanol production. Brettanomyces bruxellensis not only produces and tolerates high ethanol concentrations, but can also ferment cellobiose and adapt to lignocellulose hydrolasate. Furthermore, genome sequences of several B. bruxellensis strains are available, and efforts have been made to develop tools for genetic transformation of this yeast. Previously, we reported a successful transformation using lithium acetate/PEG method and electroporation, however, with very low transformation efficiency (10-20 transformants μg(-1)). Here we describe an optimization of electroporation procedure which resulted in a significant increase of transformation efficiency (2.8 × 10(3) transformants μg(-1)). Several key transformation parameters were optimized including cell growth phase, density of cells in the transformation sample and electroporation settings. We determined that treating the cells with both lithium acetate (100 mM) and dithiothreitol (35 mM) synergistically improves transformation efficiency. Using the described procedure around 500 transformants can be obtained per transformation sample with 180 ng of non-homologous linear transforming fragment. Additionally, several transformants were obtained with less than 1 ng of DNA demonstrating that this procedure is adequate even when very limited amount of DNA is available. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens.

    Directory of Open Access Journals (Sweden)

    Dominick J Laddy

    Full Text Available BACKGROUND: The persistent evolution of highly pathogenic avian influenza (HPAI highlights the need for novel vaccination techniques that can quickly and effectively respond to emerging viral threats. We evaluated the use of optimized consensus influenza antigens to provide broad protection against divergent strains of H5N1 influenza in three animal models of mice, ferrets, and non-human primates. We also evaluated the use of in vivo electroporation to deliver these vaccines to overcome the immunogenicity barrier encountered in larger animal models of vaccination. METHODS AND FINDINGS: Mice, ferrets and non-human primates were immunized with consensus plasmids expressing H5 hemagglutinin (pH5HA, N1 neuraminidase (pN1NA, and nucleoprotein antigen (pNP. Dramatic IFN-gamma-based cellular immune responses to both H5 and NP, largely dependent upon CD8+ T cells were seen in mice. Hemaggutination inhibition titers classically associated with protection (>1:40 were seen in all species. Responses in both ferrets and macaques demonstrate the ability of synthetic consensus antigens to induce antibodies capable of inhibiting divergent strains of the H5N1 subtype, and studies in the mouse and ferret demonstrate the ability of synthetic consensus vaccines to induce protection even in the absence of such neutralizing antibodies. After challenge, protection from morbidity and mortality was seen in mice and ferrets, with significant reductions in viral shedding and disease progression seen in vaccinated animals. CONCLUSIONS: By combining several consensus influenza antigens with in vivo electroporation, we demonstrate that these antigens induce both protective cellular and humoral immune responses in mice, ferrets and non-human primates. We also demonstrate the ability of these antigens to protect from both morbidity and mortality in a ferret model of HPAI, in both the presence and absence of neutralizing antibody, which will be critical in responding to the

  14. Efficient expression of transgenes in adult zebrafish by electroporation

    Directory of Open Access Journals (Sweden)

    Rao S Hari

    2005-10-01

    Full Text Available Abstract Background Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish. Results Electroporation parameters such as number of pulses, voltage and amount of plasmid DNA were optimized and it was found that 6 pulses of 40 V·cm-1 at 15 μg of plasmid DNA per fish increased the luciferase expression 10-fold compared to controls. Similar enhancement in transgene expression was also observed in Indian carp (Labeo rohita. To establish the utility of adult zebrafish as a system for transient transfections, the strength of the promoters was compared in A2 cells and adult zebrafish after electroporation. The relative strengths of the promoters were found to be similar in cell lines and in adult zebrafish. GFP fluorescence in tissues after electroporation was also studied by fluorescence microscopy. Conclusion Electroporation after DNA injection enhances gene expression 10-fold in adult zebrafish. Electroporation parameters for optimum transfection of adult zebrafish with tweezer type electrode were presented. Enhanced reporter gene expression upon electroporation allowed comparison of strengths of the promoters in vivo in zebrafish.

  15. Perspectives on Transdermal Electroporation

    Directory of Open Access Journals (Sweden)

    Kevin Ita

    2016-03-01

    Full Text Available Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases.

  16. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    Directory of Open Access Journals (Sweden)

    Dachs Gabi U

    2004-11-01

    Full Text Available Abstract Background Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Methods Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Results Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Conclusions Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous

  17. Electroporation-mediated in vivo gene delivery of the Na+/K+-ATPase pump reduced lung injury in a mouse model of lung contusion.

    Science.gov (United States)

    Machado-Aranda, David A; Suresh, M V; Yu, Bi; Raghavendran, Krishnan

    2012-01-01

    Lung contusion (LC) is an independent risk factor for acute respiratory distress syndrome. The final common pathway in ARDS involves accumulation of fluid in the alveoli. In this study, we demonstrate the application of a potential gene therapy approach by delivering the Na+/K+-ATPase pump subunits in a murine model of LC. We hypothesized that restoring the activity of the pump will result in removal of excess alveolar fluid and additionally reduce inflammation. Under anesthesia, C57/BL6 mice were struck along the right posterior axillary line 1 cm above the costal margin with a cortical contusion impactor. Immediately afterward, 100 μg of plasmid DNA coding for the α,β of the Na+/K+-ATPase pump were instilled into the lungs (LC-electroporation-pump group). Contusion only (LC-only) and a sham saline instillation group after contusion were used as controls (LC-electroporation-sham). By using a BTX 830 electroporator, eight electrical pulses of 200 V/cm field strength were applied transthoracically. Mice were killed at 24 hours, 48 hours, and 72 hours after delivery. Bronchial alveolar lavage was recollected to measure albumin and cytokines by enzyme-linked immunosorbent assay. Pulmonary compliance was measured, and lungs were subject to histopathologic analysis. After the electroporation and delivery of genes coding for the α,β subunits of the Na+/K+-ATPase pump, there was a significant mitigation of acute lung injury as evidenced by reduction in bronchial alveolar lavage levels of albumin, improved pressure volume curves, and reduced inflammation seen on histology. Electroporation-mediated gene transfer of the subunits of the Na+/K+-ATPase pump enhanced recovery from acute inflammatory lung injury after LC.

  18. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  19. Simultaneous gene transfer of bone morphogenetic protein (BMP -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Directory of Open Access Journals (Sweden)

    Miyazaki Jun-ichi

    2006-08-01

    Full Text Available Abstract Background Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. Conclusion The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.

  20. Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments.

    Science.gov (United States)

    Trujillo, Macarena; Castellví, Quim; Burdío, Fernando; Sánchez Velazquez, Patricia; Ivorra, Antoni; Andaluz, Anna; Berjano, Enrique

    2013-05-01

    The aim of this study was to assess the feasibility of a hybrid ablative technique based on applying electroporation (EP) pulses just before conducting radiofrequency ablation (RFA). The rationale was that the EP-induced reduction in blood perfusion could be sufficient to reduce the thermal sink effect and hence to increase the coagulation volume in comparison to that created exclusively by RFA. A modelling study and in vivo experimental study were used. A Cool-tip RF applicator was used both for EP and RFA. Overall, the results did not show any synergy effect from using the hybrid technique. Applying EP pulses prior to RFA did not increase the coagulation zone obtained and the lesions were almost identical. Additional computer simulations provided an explanation for this; the effect of reducing blood perfusion by thermal damage during RFA completely masks the effect of reducing blood perfusion by EP. This is because both thermal damage and EP affect the same zone, i.e. the tissue around the electrode. Our computer modelling and in vivo experimental findings suggest that the combination of EP and RFA with monopolar applicators does not provide an additional benefit over the use of RFA alone.

  1. An electrically active microneedle array for electroporation

    Science.gov (United States)

    Choi, Seong-O; Kim, Yeu Chun; Park, Jung-Hwan; Hutcheson, Joshua; Gill, Harvinder S.; Yoon, Yong-Kyu; Prausnitz, Mark R.; Allen, Mark G.

    2010-01-01

    We have designed and fabricated a microneedle array with electrical functionality with the final goal of electroporating skin’s epidermal cells to increase their transfection by DNA vaccines. The microneedle array was made of polymethylmethacrylate (PMMA) by micromolding technology from a master PDMS mold, followed by metal deposition, patterning using laser ablation, and electrodeposition. This microneedle array possessed sufficient mechanical strength to penetrate human skin in vivo and was also able to electroporate both red blood cells and human prostate cancer cells as an in vitro model to demonstrate cell membrane permeabilization. A model to predict the effective volume for electroporation with respect to applied voltages was constructed from finite element simulation. This study demonstrates the mechanical and electrical functionalities of the first MEMS-fabricated microneedle array for electroporation, designed for DNA vaccine delivery. PMID:20012696

  2. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina

    Directory of Open Access Journals (Sweden)

    Maria Carmela Latella

    2016-01-01

    Full Text Available The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.

  3. In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina.

    Science.gov (United States)

    Latella, Maria Carmela; Di Salvo, Maria Teresa; Cocchiarella, Fabienne; Benati, Daniela; Grisendi, Giulia; Comitato, Antonella; Marigo, Valeria; Recchia, Alessandra

    2016-11-22

    The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.

  4. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  5. Normal and malignant cells exhibit differential responses to calcium electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Krüger, Mie Barthold; Mangalanathan, Uma M.

    2017-01-01

    Calcium electroporation may offer a simple general tool for anticancer therapy. Transient permeabilization of cancer cell membranes created by applying short, high-voltage pulses in tumors enables high calcium influxes that trigger cell death. In this study, we compared the relative sensitivity...... of different human tumor models and normal tissues to calcium electroporation. Plasma membrane Ca(2+)-ATPase (PMCA) protein expression was confirmed in vitro in all cancer cell lines and normal primary dermal fibroblasts studied. In all tumor types tested in vivo, calcium electroporation effectively induced...... tissue after calcium electroporation but decreased in skin tissue 4 hours after treatment to levels comparable with untreated controls, whereas calcium content endured at high levels in tumor tissue. Mechanistic experiments in vitro indicated that calcium influx was similar in fibroblasts and cancer...

  6. Direct therapeutic applications of calcium electroporation to effectively induce tumor necrosis

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2012-01-01

    in vivo. Calcium electroporation elicited dramatic antitumor responses in which 89% of treated tumors were eliminated. Histologic analyses indicated complete tumor necrosis. Mechanistically, calcium electroporation caused acute ATP depletion likely due to a combination of increased cellular use of ATP...... access to this technology for many cancer patients in developed and developing countries....

  7. Site-directed mutagenesis, in vivo electroporation and mass spectrometry in search for determinants of the subcellular targeting of Rab7b paralogue in the model eukaryote Paramecium octaurelia.

    Science.gov (United States)

    Wyroba, E; Kwaśniak, P; Miller, K; Kobyłecki, K; Osińska, M

    2016-04-11

    Protein products of the paralogous genes resulting from the whole genome duplication may acquire new function. The role of post-translational modifications (PTM) in proper targeting of Paramecium Rab7b paralogue - distinct from that of Rab7a directly involved in phagocytosis - was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala200 resulted in diminished incorporation of [P32] by 37.4% and of 32 [C14-]UDP-glucose by 24%, respectively, into recombinant Rab7b_200 in comparison to the non-mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells contrary to non- mutagenized recombinant Rab7b correctly incorporated in the cytostome area. We identified the peptide ion at m/z=677.63+ characteristic for the glycan group attached to Thr200 in Rab7b using nano LC-MS/MS and comparing the peptide map of this protein with that after deglycosylation with the mixture of five enzymes of different specificity. Based on the mass of this peptide ion and quantitative radioactive assays with [P32]and  [C14-]UDP- glucose, the suggested composition of the adduct attached to Thr200 might be (Hex)1(HexNAc)1(Phos)3 or (HexNAc)1 (Deoxyhexose)1 (Phos)1 (HexA)1. These data indicate that PTM of Thr200 located in the hypervariable C-region of Rab7b in Paramecium is crucial for the proper localization/function of this protein. Moreover, these proteins differ also in other PTM: the number of phosphorylated amino acids in Rab7b is much higher than in Rab7a.

  8. Site‐directed mutagenesis, in vivo electroporation and mass spectrometry in search for determinants of the subcellular targeting of Rab7b paralogue in the model eukaryote Paramecium octaurelia

    Directory of Open Access Journals (Sweden)

    E. Wyroba

    2016-04-01

    Full Text Available Protein products of the paralogous genes resulting from the whole genome duplication may acquire new function. The role of post‐translational modifications (PTM in proper targeting of Paramecium Rab7b paralogue – distinct from that of Rab7a directly involved in phagocytosis ‐ was studied using point mutagenesis, proteomic analysis and double immunofluorescence after in vivo electroporation of the mutagenized protein. Here we show that substitution of Thr200 by Ala200 resulted in diminished incorporation of [P32] by 37.4% and of 32 [C14–]UDP‐glucose by 24%, respectively, into recombinant Rab7b_200 in comparison to the non‐mutagenized control. Double confocal imaging revealed that Rab7b_200 was mistargeted upon electroporation into living cells contrary to non‐ mutagenized recombinant Rab7b correctly incorporated in the cytostome area. We identified the peptide ion at m/z=677.63+ characteristic for the glycan group attached to Thr200 in Rab7b using nano LC‐MS/MS and comparing the peptide map of this protein with that after deglycosylation with the mixture of five enzymes of different specificity. Based on the mass of this peptide ion and quantitative radioactive assays with [P32]and  [C14‐]UDP‐ glucose, the suggested composition of the adduct attached to Thr200 might be (Hex1(HexNAc1(Phos3 or (HexNAc1 (Deoxyhexose1 (Phos1 (HexA1. These data indicate that PTM of Thr200 located in the hypervariable C‐region of Rab7b in Paramecium is crucial for the proper localization/function of this protein. Moreover, these proteins differ also in other PTM: the number of phosphorylated amino acids in Rab7b is much higher than in Rab7a.   

  9. Handbook of electroporation

    CERN Document Server

    2017-01-01

    This major reference work is a one-shot knowledge base on electroporation and the use of pulsed electric fields of high intensity and their use in biology, medicine, biotechnology, and food and environmental technologies. The Handbook offers a widespread and well-structured compilation of 156 chapters ranging from the foundations to applications in industry and hospital. It is edited and written by most prominent researchers in the field. With regular updates and growing in its volume it is suitable for academic readers and researchers regardless of their disciplinary expertise, and will also be accessible to students and serious general readers. The Handbook's 276 authors have established scholarly credentials and come from a wide range of disciplines. This is crucially important in a highly interdisciplinary field of electroporation and the use of pulsed electric fields of high intensity and its applications in different fields from medicine, biology, food proce ssing, agriculture, process engineering, en...

  10. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution.

    Science.gov (United States)

    Yamashiro, Sawako; Watanabe, Naoki

    2017-07-06

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.

  11. Overview of Single-Molecule Speckle (SiMS Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

    Directory of Open Access Journals (Sweden)

    Sawako Yamashiro

    2017-07-01

    Full Text Available Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy.

  12. Overview of Single-Molecule Speckle (SiMS) Microscopy and Its Electroporation-Based Version with Efficient Labeling and Improved Spatiotemporal Resolution

    Science.gov (United States)

    Yamashiro, Sawako; Watanabe, Naoki

    2017-01-01

    Live-cell single-molecule imaging was introduced more than a decade ago, and has provided critical information on remodeling of the actin cytoskeleton, the motion of plasma membrane proteins, and dynamics of molecular motor proteins. Actin remodeling has been the best target for this approach because actin and its associated proteins stop diffusing when assembled, allowing visualization of single-molecules of fluorescently-labeled proteins in a state specific manner. The approach based on this simple principle is called Single-Molecule Speckle (SiMS) microscopy. For instance, spatiotemporal regulation of actin polymerization and lifetime distribution of actin filaments can be monitored directly by tracking actin SiMS. In combination with fluorescently labeled probes of various actin regulators, SiMS microscopy has contributed to clarifying the processes underlying recycling, motion and remodeling of the live-cell actin network. Recently, we introduced an electroporation-based method called eSiMS microscopy, with high efficiency, easiness and improved spatiotemporal precision. In this review, we describe the application of live-cell single-molecule imaging to cellular actin dynamics and discuss the advantages of eSiMS microscopy over previous SiMS microscopy. PMID:28684722

  13. Electroporation-induced electrosensitization.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs. Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs. METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-µs duration, 1.8 to 13.3 kV/cm. The efficiency of all EP treatments was minimal at high rates and started to increase gradually when the rate decreased below a certain value. Although this value ranged widely (0.1-500 Hz, it always corresponded to the overall treatment duration near 10 s. We further found that longer exposures were more efficient irrespective of the EP rate, and that splitting a high-rate EP train in two fractions with 1-5 min delay enhanced the effects severalfold. CONCLUSIONS/SIGNIFICANCE: For varied experimental conditions, EPs triggered a delayed and gradual sensitization to EPs. When a portion of a multi-pulse exposure was delivered to already sensitized cells, the overall effect markedly increased. Because of the sensitization, the lethality in EP-treated cells could be increased from 0 to 90% simply by increasing the exposure duration, or the exposure dose could be reduced twofold without reducing the effect. Many applications of electroporation can benefit from accounting for sensitization, by organizing the exposure either to maximize sensitization (e.g., for sterilization or, for other applications, to completely or partially avoid it. In particular, harmful side effects of electroporation-based therapies (electrochemotherapy, gene therapies, tumor ablation include convulsions

  14. [Establishment of animal model for electroporation-mediated gene therapy in distraction osteogenesis of rabbit mandible].

    Science.gov (United States)

    Wu, Guo-Ping; Li, Sheng-Hua; Li, De-Ping; Yang, Zhi-Hui; He, Xiao-Chuan; Liao, Yi; Guo, Li

    2009-07-01

    To evaluate the feasibility of electroporation-mediated transfection of recombinant plasmid to mandibular distraction area of rabbit in vivo. New-Zeland rabbit were employed. The mandible was distracted 3 days after operation at a rate of 0.8 mm per day for 7 days. The rabbits were randomly divided into 3 groups as group A (recombinant plasmid pIRES-VEGF165-EGFP), group B (recombinant plasmid plRES-VEGF165-EGFP) and group C (normal saline). The rabbits were sacrified at 3 hours, 1, 3, 7 and 14 d after injection respectively. The tissue at the distraction area was taken out for frozen section. The gene expression was assessed by the detection of expression of green fluorescence protein (GFP) using fluorescence microscope. The liver and kidney function test (ALT, AST, BUN, Scr) and the histological examination of heart, liver and kidney were also performed. GFP was seen in the distraction area in group A and group B 3 hours after injection, which increased at the 1st day, reached peak value at the 3rd day, decreased at the 7th day and was very lower at 14th day. The GFP expression was much stronger in group A than in group B. GFP was not expressed in group C. There was no statistical difference in the concentration of ALT, AST, BUN and Scr in serum of rabbits among the three groups. Electroporation-mediated transfection of recombinant plasmid can be expressed in the distraction area of rabbits, and there was no toxicity to the liver and kidney of rabbits. Electroporation could obviously improve transfection efficiency in vivo. It indicates that electroporation-mediated transfection of recombinant plasmid to distraction area tissue of rabbits is feasible.

  15. Combining Electrolysis and Electroporation for Tissue Ablation.

    Science.gov (United States)

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. © The Author(s) 2014.

  16. In utero electroporation as a tool for genetic manipulation in vivo to study psychiatric disorders: from genes to circuits and behaviors.

    Science.gov (United States)

    Taniguchi, Yu; Young-Pearse, Tracy; Sawa, Akira; Kamiya, Atsushi

    2012-04-01

    Many genetic risk factors for major mental disorders have key roles in brain development. Thus, exploring the roles for these genetic factors for brain development at the molecular, cellular, and neuronal circuit level is crucial for discovering how genetic disturbances affect high brain functions, which ultimately lead to disease pathologies. However, it is a tremendously difficult task, given that most mental disorders have genetic complexities in which many genetic risk factors have multiple roles in different cell types and brain regions over a time-course dependent manner. Furthermore, some genetic risk factors are likely to act epistatically in common molecular pathways. For this reason, a technique for spatial and temporal manipulation of multiple genes is necessary for understanding how genetic disturbances contribute to disease etiology. Here, the authors will review the said technique, in utero electroporation, which investigates the molecular disease pathways in rodent models for major mental disorders. This technique is also useful to examine the effect of genetic risks at the behavioral level. Furthermore, the authors will discuss the recent progress of this technology, such as inducible and cell type-specific targeting, as well as nonepisomal genetic manipulation, which provide further availability of this technique for research on major mental disorders.

  17. The efficacy and safety of irreversible electroporation for the ablation of renal masses: a prospective, human, in-vivo study protocol.

    Science.gov (United States)

    Wagstaff, Peter G K; de Bruin, Daniel M; Zondervan, Patricia J; Savci Heijink, C Dilara; Engelbrecht, Marc R W; van Delden, Otto M; van Leeuwen, Ton G; Wijkstra, Hessel; de la Rosette, Jean J M C H; Laguna Pes, M Pilar

    2015-03-22

    Electroporation is a novel treatment technique utilizing electric pulses, traveling between two or more electrodes, to ablate targeted tissue. The first in human studies have proven the safety of IRE for the ablation of renal masses. However the efficacy of IRE through histopathological examination of an ablated renal tumour has not yet been studied. Before progressing to a long-term IRE follow-up study it is vital to have pathological confirmation of the efficacy of the technique. Furthermore, follow-up after IRE ablation requires a validated imaging modality. The primary objectives of this study are the safety and the efficacy of IRE ablation of renal masses. The secondary objectives are the efficacy of MRI and CEUS in the imaging of ablation result. 10 patients, age ≥ 18 years, presenting with a solid enhancing mass, who are candidates for radical nephrectomy will undergo IRE ablation 4 weeks prior to radical nephrectomy. MRI and CEUS imaging will be performed at baseline, one week and four weeks post IRE. After radical nephrectomy, pathological examination will be performed to evaluate IRE ablation success. The only way to truly assess short-term (4 weeks) ablation success is by histopathology of a resection specimen. In our opinion this trial will provide essential knowledge on the safety and efficacy of IRE of renal masses, guiding future research of this promising ablative technique. Clinicaltrials.gov registration number NCT02298608 . Dutch Central Committee on Research Involving Human Subjects registration number NL44785.018.13.

  18. Modeling of electric field distribution in tissues during electroporation.

    Science.gov (United States)

    Corovic, Selma; Lackovic, Igor; Sustaric, Primoz; Sustar, Tomaz; Rodic, Tomaz; Miklavcic, Damijan

    2013-02-21

    Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of

  19. The safety and efficacy of irreversible electroporation for the ablation of prostate cancer: a multicentre prospective human in vivo pilot study protocol.

    Science.gov (United States)

    van den Bos, W; de Bruin, D M; Muller, B G; Varkarakis, I M; Karagiannis, A A; Zondervan, P J; Laguna Pes, M P; Veelo, D P; Savci Heijink, C D; Engelbrecht, M R W; Wijkstra, H; de Reijke, T M; de la Rosette, J J M C H

    2014-10-29

    Current surgical and ablative treatment options for prostate cancer have a relatively high incidence of side effects, which may diminish the quality of life. The side effects are a consequence of procedure-related damage of the blood vessels, bowel, urethra or neurovascular bundle. Ablation with irreversible electroporation (IRE) has shown to be effective in destroying tumour cells and harbours the advantage of sparing surrounding tissue and vital structures. The aim of the study is to evaluate the safety and efficacy and to acquire data on patient experience of minimally invasive, transperineally image-guided IRE for the focal ablation of prostate cancer. In this multicentre pilot study, 16 patients with prostate cancer who are scheduled for a radical prostatectomy will undergo an IRE procedure, approximately 30 days prior to the radical prostatectomy. Data as adverse events, side effects, functional outcomes, pain and quality of life will be collected and patients will be controlled at 1 and 2 weeks post-IRE, 1 day preprostatectomy and postprostatectomy. Prior to the IRE procedure and the radical prostatectomy, all patients will undergo a multiparametric MRI and contrast-enhanced ultrasound of the prostate. The efficacy of ablation will be determined by whole mount histopathological examination, which will be correlated with the imaging of the ablation zone. The protocol is approved by the ethics committee at the coordinating centre (Academic Medical Center (AMC) Amsterdam) and by the local Institutional Review Board at the participating centres. Data will be presented at international conferences and published in peer-reviewed journals. This pilot study will determine the safety and efficacy of IRE in the prostate. It will show the radiological and histopathological effects of IRE ablations and it will provide data to construct an accurate treatment planning tool for IRE in prostate tissue. Clinicaltrials.gov database: NCT01790451. Published by the BMJ

  20. Normal and Malignant Cells Exhibit Differential Responses to Calcium Electroporation.

    Science.gov (United States)

    Frandsen, Stine K; Krüger, Mie B; Mangalanathan, Uma M; Tramm, Trine; Mahmood, Faisal; Novak, Ivana; Gehl, Julie

    2017-08-15

    Calcium electroporation may offer a simple general tool for anticancer therapy. Transient permeabilization of cancer cell membranes created by applying short, high-voltage pulses in tumors enables high calcium influxes that trigger cell death. In this study, we compared the relative sensitivity of different human tumor models and normal tissues to calcium electroporation. Plasma membrane Ca(2+)-ATPase (PMCA) protein expression was confirmed in vitro in all cancer cell lines and normal primary dermal fibroblasts studied. In all tumor types tested in vivo, calcium electroporation effectively induced necrosis, with a range of sensitivities observed (36%-88%) 2 days after treatment. Necrosis was induced using calcium concentrations of 100-500 mmol/L and injection volumes 20%-80% of tumor volume. Notably, only limited effects were seen in normal tissue. Calcium content increased >7-fold in tumor and skin tissue after calcium electroporation but decreased in skin tissue 4 hours after treatment to levels comparable with untreated controls, whereas calcium content endured at high levels in tumor tissue. Mechanistic experiments in vitro indicated that calcium influx was similar in fibroblasts and cancer cells. However, we observed decreased PMCA expression in cancer cells compared with fibroblasts, offering a potential explanation for the different calcium content in tumor cells versus normal tissues. Overall, our results suggest that calcium electroporation can elicit a rapid and selective necrosis of solid tumors, with limited deleterious effects on surrounding normal tissues. Cancer Res; 77(16); 4389-401. ©2017 AACR. ©2017 American Association for Cancer Research.

  1. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.

    Science.gov (United States)

    Chen, Sean; Lee, Benjamin; Lee, Angus Yiu-Fai; Modzelewski, Andrew J; He, Lin

    2016-07-08

    The CRISPR/Cas9 system has been employed to efficiently edit the genomes of diverse model organisms. CRISPR-mediated mouse genome editing is typically accomplished by microinjection of Cas9 DNA/RNA and single guide RNA (sgRNA) into zygotes to generate modified animals in one step. However, microinjection is a technically demanding, labor-intensive, and costly procedure with poor embryo viability. Here, we describe a simple and economic electroporation-based strategy to deliver Cas9/sgRNA ribonucleoproteins into mouse zygotes with 100% efficiency for in vivo genome editing. Our methodology, designated as CRISPR RNP Electroporation of Zygotes (CRISPR-EZ), enables highly efficient and high-throughput genome editing in vivo, with a significant improvement in embryo viability compared with microinjection. Using CRISPR-EZ, we generated a variety of editing schemes in mouse embryos, including indel (insertion/deletion) mutations, point mutations, large deletions, and small insertions. In a proof-of-principle experiment, we used CRISPR-EZ to target the tyrosinase (Tyr) gene, achieving 88% bi-allelic editing and 42% homology-directed repair-mediated precise sequence modification in live mice. Taken together, CRISPR-EZ is simple, economic, high throughput, and highly efficient with the potential to replace microinjection for in vivo genome editing in mice and possibly in other mammals. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Gene transfer into mouse prepancreatic endoderm by whole embryo electroporation.

    Science.gov (United States)

    Pierreux, Christophe E; Poll, Aurélie V; Jacquemin, Patrick; Lemaigre, Frédéric P; Rousseau, Guy G

    2005-03-10

    Understanding gene function in the developing pancreas is a major issue for pancreatic cell therapy. The in vivo analysis of gene function has essentially been performed by modulating gene expression in transgenesis. A faster and easier method is electroporation of mouse embryos. This technique, coupled with whole embryo culture, enables one to deliver genes and analyze their effects in a spatially and temporally regulated manner. We wanted to adapt the electroporation technique for gene transfer of whole e8.5 mouse embryos into the endoderm to allow expression of transgenes in the pancreas or liver. Using two platinum plate electrodes, low voltage and a precise positioning of the embryo in the electroporation cuvette we could target and express DNA constructs in the prepancreatic or prehepatic territories, identified with cell markers. We also demonstrated that this technique is a valuable tool in the study of transcriptional regulation in the developing endoderm. Targeted electroporation of whole embryos is a useful method of characterizing the gene network which controls pancreatic development.

  3. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Robinson, M P [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Evans, J A [Academic Unit of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom); Smye, S W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); O' Toole, P [Department of Biology, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-02-21

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m{sup -1}. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  4. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  5. Enhanced Delivery of DNA or RNA Vaccines by Electroporation.

    Science.gov (United States)

    Broderick, Kate E; Humeau, Laurent M

    2017-01-01

    Nucleic acid vaccines are a next-generation branch of vaccines which offer major benefits over their conventional protein, bacteria, or viral-based counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA and mRNA, electroporation enhances both the uptake and expression of the delivered nucleic acids. The muscle is an attractive tissue for nucleic acid vaccination in a clinical setting due to the accessibility and abundance of the target tissue. Historical clinical studies of electroporation in the muscle have demonstrated the procedure to be generally well tolerated in patients. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width and drug product formulation) majorly impact the efficiency of nucleic acid delivery. We provide an overview of DNA/RNA vaccination in the muscle of mice. Our results suggest that the technique is safe and effective and is highly applicable to a research setting as well as scalable to larger animals and humans.

  6. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    Intravesical mitomycin instillation combined with electric pulses is being used experimentally for the treatment of T1 bladder tumors, in patients unfit for surgery. Electroporation may enhance the uptake of chemotherapeutics by permeabilization of cell membranes. We investigated if electroporation...... improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...... was assessed by colorimetric assay (MTT). For both cell lines, mitomycin's IC_50 was approximately 1000μM in both pulsed and unpulsed cells. On T24 cells, electroporation and mitomycin caused (relative reduction) RR of survival of: 25%, 31% and 29%, by concentrations 0μM, 500μM and 1000μM respectively. For DC3...

  7. Calcium Electroporation: Evidence for Differential Effects in Normal and Malignant Cell Lines, Evaluated in a 3D Spheroid Model.

    Science.gov (United States)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha; Gehl, Julie; Rols, Marie-Pierre

    2015-01-01

    Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill efficacy-and normal cell sensitivity. Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (pspheroids was neither affected after calcium electroporation nor electrochemotherapy using bleomycin, indicating that calcium electroporation, like electrochemotherapy, will have limited adverse effects on the surrounding normal tissue when treating with calcium electroporation. The intracellular ATP level, which has previously been shown to be depleted after calcium electroporation, was measured in the spheroids after treatment. The results showed a dramatic decrease in the intracellular ATP level (pspheroid types-malignant as well as normal. In conclusion, calcium electroporation seems to be more effective in inducing cell death in cancer cell spheroids than in a normal fibroblast spheroid, even though intracellular ATP level is depleted in all spheroid types after treatment. These results may indicate an important therapeutic window for this therapy; although further studies are needed in vivo and in patients to investigate the effect of calcium electroporation on surrounding normal tissue when treating tumors.

  8. Studies on mRNA electroporation of immature and mature dendritic cells

    DEFF Research Database (Denmark)

    Met, Ozcan; Eriksen, Jens; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the m...... in addition to higher T-cell stimulatory ability compared to transfection of DCs prior to maturation. Mature mRNA-electroporated DCs showed long-lived expression of EGFP and were able to stimulate influenza matrix protein M1 (M1)-specific T cells up to 24 h after electroporation. However, when DCs were...... subjected to increasing electrical pulses the level of transgene expression was four-fold upregulated, equipping these DCs to be more potent in inducing M1-specific T cells. Also, the application of long electrical pulses induced further upregulation of HLA-DR, CD80, and CD86 expression in mature DCs...

  9. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  10. Retinal Fiber Tracing by In Ovo Electroporation

    Science.gov (United States)

    Harada, Hidekiyo; Nakamura, Harukazu

    Axonal tracing techniques are the fundamentals for the investigation of neural circuit formation. In ovo electroporation system allows us to transfect a gene of interest to the desired place in chick embryos (Odani et al., 2008). Recently, Tol2 transposase element, which was originally found in medaka fish (Koga et al., 1996), has been adapted to an in ovo electroporation system (Niwa et al., 1991; Kawakami et al., 1998, 2000, 2004a, 2004b; Kawakami & Noda, 2004; Kawakami, 2005, 2007; Sato et al., 2007). This system assures the integration of the transgene into the genome by electroporation (Niwa et al., 1991; Sato et al., 2007). We applied this system for tracing retinal fibers (Harada et al., 2008). In this chapter, we demonstrate the method of tracing retinal fibers from both small and large groups of the retinal ganglion cell (RGC) with transposon-mediated gene transfer by in ovo electroporation to chick embryos.

  11. Design of an Optimized Wilms’ Tumor 1 (WT1 mRNA Construct for Enhanced WT1 Expression and Improved Immunogenicity In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Tumor antigen–encoding mRNA for dendritic cell (DC-based vaccination has gained increasing popularity in recent years. Within this context, two main strategies have entered the clinical trial stage: the use of mRNA for ex vivo antigen loading of DCs and the direct application of mRNA as a source of antigen for DCs in vivo. DCs transfected with mRNA-encoding Wilms’ tumor 1 (WT1 protein have shown promising clinical results. Using a stepwise approach, we re-engineered a WT1 cDNA-carrying transcription vector to improve the translational characteristics and immunogenicity of the transcribed mRNA. Different modifications were performed: (i the WT1 sequence was flanked by the lysosomal targeting sequence of dendritic cell lysosomal-associated membrane protein to enhance cytoplasmic expression; (ii the nuclear localization sequence (NLS of WT1 was deleted to promote shuttling from the nucleus to the cytoplasm; (iii the WT1 DNA sequence was optimized in silico to improve translational efficiency; and (iv this WT1 sequence was cloned into an optimized RNA transcription vector. DCs electroporated with this optimized mRNA showed an improved ability to stimulate WT1-specific T-cell immunity. Furthermore, in a murine model, we were able to show the safety, immunogenicity, and therapeutic activity of this optimized mRNA. This work is relevant for the future development of improved mRNA-based vaccine strategies K.

  12. Microfluidic Screening of Electric Fields for Electroporation

    Science.gov (United States)

    Garcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.

    2016-01-01

    Electroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX®, which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX® after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes. PMID:26893024

  13. Oral Mucosa Model for Electrochemotherapy Treatment of Dog Mouth Cancer: Ex Vivo, In Silico, and In Vivo Experiments.

    Science.gov (United States)

    Suzuki, Daniela O H; Berkenbrock, José A; Frederico, Marisa J S; Silva, Fátima R M B; Rangel, Marcelo M M

    2017-10-13

    Electrochemotherapy (EQT) is a local cancer treatment well established to cutaneous and subcutaneous tumors. Electric fields are applied to biological tissue in order to improve membrane permeability for cytotoxic drugs. This phenomenon is called electroporation or electropermeabilization. Studies have reported that tissue conductivity is electric field dependent. Electroporation numerical models of biological tissues are essential in treatment planning. Tumors of the mouth are very common in dogs. Inadequate EQT treatment of oral tumor may be caused by significant anatomic variations between dogs and tumor position. Numerical models of oral mucosa and tumor allow the treatment planning and optimization of electrodes for each patient. In this work, oral mucosa conductivity during electroporation was characterized by measuring applied voltage and current of ex vivo rats. This electroporation model was used with a spontaneous canine oral melanoma. The model outcomes of oral tumor EQT is applied in different parts of the oral cavity including near bones and the hard palate. The numerical modeling for treatment planning will help the development of new electrodes and increase the EQT effectiveness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  15. Electroporation-based technologies for medicine: principles, applications, and challenges.

    Science.gov (United States)

    Yarmush, Martin L; Golberg, Alexander; Serša, Gregor; Kotnik, Tadej; Miklavčič, Damijan

    2014-07-11

    When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.

  16. Electroporation Enhanced Effect of Dystrophin Splice Switching PNA Oligomers in Normal and Dystrophic Muscle

    DEFF Research Database (Denmark)

    Hjortkjær, Camilla Brolin; Shiraishi, Takehiko; Hojman, Pernille

    2015-01-01

    Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality for impro......Peptide nucleic acid (PNA) is a synthetic DNA mimic that has shown potential for discovery of novel splice switching antisense drugs. However, in vivo cellular delivery has been a limiting factor for development, and only few successful studies have been reported. As a possible modality...... and dystrophic mdx mice with or without electroporation. At low, single PNA doses (1.5, 3, or 10 µg/TA), electroporation augmented the antisense exon skipping induced by an unmodified PNA by twofold to fourfold in healthy mouse muscle with optimized electric parameters, measured after 7 days. The PNA splice...

  17. Studies on mRNA electroporation of immature and mature dendritic cells: Effects on their immunogenic potential

    DEFF Research Database (Denmark)

    Met, O.; Eriksen, J.; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl...

  18. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  19. Transformation of group A streptococci by electroporation

    NARCIS (Netherlands)

    Suvorov, Alexander; Kok, Jan; Venema, Gerhardus

    1988-01-01

    The introduction, via electroporation, of free plasmid DNA into three strains of Streptococcus pyogenes is described. The method is very simple and rapid and efficiencies vary from 1 × 10^3 to 4 × 10^4 per µg of DNA. The method was also used to introduce an integrative plasmid and transformants were

  20. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    vaccination, delivery methods, electroporation, molecular adjuvants, intramuscular, intradermal 1. Introduction The Filoviridae family of viruses is...a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine, 2001. 20(1-2): p. 275-80. 20. Choi, A.H., et al., Protection of mice

  1. Electroporation-based DNA delivery technology

    DEFF Research Database (Denmark)

    Gothelf, A; Gehl, Julie

    2014-01-01

    DNA delivery to for example skin and muscle can easily be performed with electroporation. The method is efficient, feasible, and inexpensive and the future possibilities are numerous. Here we present our protocol for gene transfection to mouse skin using naked plasmid DNA and electric pulses....

  2. Optimized DNA electroporation for primary human T cell engineering.

    Science.gov (United States)

    Zhang, Zhang; Qiu, Shunfang; Zhang, Xiaopeng; Chen, Wei

    2018-01-30

    Effective gene-delivery systems for primary human T cell engineering are useful tools for both basic research and clinical immunotherapy applications. Pseudovirus-based systems and electro-transfection are the most popular strategies for genetic material transduction. Compared with viral-particle-mediated approaches, electro-transfection is theoretically safer, because it does not promote transgene integration into the host genome. Additionally, the simplicity and speed of the procedure increases the attractiveness of electroporation. Here, we developed and optimized an electro-transfection method for the production of engineered chimeric antigen receptor (CAR)-T cells. Stimulation of T cells had the greatest effect on their transfection, with stimulation of cells for up to 3 days substantially improving transfection efficiency. Additionally, the strength of the external electric field, input cell number, and the initial amount of DNA significantly affected transfection performance. The voltage applied during electroporation affected plasmid permeation and was negatively correlated with the number of viable cells after electroporation. Moreover, higher plasmid concentration increased the proportion of positively transfected cells, but decreased cell viability, and for single-activated cells, higher cell density enhanced their viability. We evaluated the effects of two clinically relevant factors, serum supplementation in the culture medium and cryopreservation immediately after the isolation of peripheral blood lymphocytes. Our findings showed that our protocol performed well using xeno-free cultured, fresh T cells, with application resulting in a lower but acceptable transfection efficiency of cells cultured with fetal bovine serum or thawed cells. Furthermore, we described an optimized procedure to generate CAR-T cells within 6 days and that exhibited cytotoxicity toward targeted cells. Our investigation of DNA electro-transfection for the use in human primary

  3. Electroporation in the Regenerating Tail of the Xenopus Tadpole

    Science.gov (United States)

    Mochii, Makoto; Taniguchi, Yuka

    Xenopus laevis is a model system widely used to investigate embryogenesis, metamorphosis, and regeneration. The tail of the Xenopus tadpole is very useful in analyzing the molecular mechanisms underlying appendage regeneration (Slack et al., 2004; Mochii et al., 2007; Slack et al., 2008). It is transparent and suitable for whole-mount observation at the cellular level. The tail regenerates within 2 weeks of amputation. The conventional injection of blastomeres with mRNA, DNA, or antisense oligonucleotides is a powerful tool with which to study genetic mechanisms in early embryos, but it is not effective in late embryos or larvae. A transgenic approach has been used to analyze tail regeneration (Beck et al., 2003, 2006), but its success is largely dependent on the activity of the promoter used. There are limited numbers of promoters available that precisely regulate gene expression spatially and/or temporally. In vivo electroporation is an alternative method that can be used to manipulate gene expression in late embryos and larvae. The introduction of DNA or RNA into the cells of neurula and tailbud embryos has been reported (Eide et al., 2000; Sasagawa et al., 2002; Falk et al., 2007). Targeting larval tissues with in vivo electroporation also has been used to investigate neural networks, metamorphosis, and regeneration (Haas et al., 2001, 2002; Nakajima and Yaoita, 2003; Javaherian and Cline, 2005; Bestman et al., 2006; Boorse et al., 2006; Lin et al., 2007; Mochii et al., 2007). In this chapter, we report a procedure to introduce DNA into the tissues of the tadpole tail.

  4. Calcium electroporation in three cell lines; a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gissel, Hanne; Hojman, Pernille

    2013-01-01

    BACKGROUND: Electroporation with calcium (calcium electroporation) can induce ATP depletion-associated cellular death. In the clinical setting, the cytotoxic drug bleomycin is currently used with electroporation (electrochemotherapy) for palliative treatment of tumors. Calcium electroporation off...

  5. In Vivo Vector Flow Imaging Using Improved Directional Beamforming

    DEFF Research Database (Denmark)

    Henze, Lasse; Holfort, Iben Kraglund; Kortbek, Jacob

    2007-01-01

    Directional beamforming has shown promising results for creating vector flow images. The method measures both the flow angle and the magnitude of the velocity. The flow angle is estimated by focusing lines in a range of angles from 0 to 180 degrees. The true angle is identified as the angle...... determination fails, the correct velocity can no longer be found. The purpose of this work is to improve the robustness of the directional beamforming method, making precise in vivo measurement possible. A more robust angle estimator is proposed. Spatial averaging in the axial direction is applied over a depth...... on all human volunteers as a gold standard. For the phantom measurement 76.30 % of the angle estimates are within +- 5 degrees of the actual angle, when using the traditional setup. Using our new approach 98.32 % of the angle estimates are within +-5 degrees from the true angle. The comparison between...

  6. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation

    Science.gov (United States)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-09-01

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.

  7. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation.

    Science.gov (United States)

    Zupanic, Anze; Kos, Bor; Miklavcic, Damijan

    2012-09-07

    In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.

  8. Optimization of ectopic gene expression in skeletal muscle through DNA transfer by electroporation

    Directory of Open Access Journals (Sweden)

    Latour Mickey

    2004-05-01

    Full Text Available Abstract Background Electroporation (EP is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums. Results We found that as the amount of damage increased in skeletal muscle in response to EP, the level of β-galactosidase (β-gal expression drastically decreased and that there was no evidence of β-gal expression in damaged fibers. Two specific types of electrodes yielded the greatest amount of expression. We also discovered that DNA uptake in skeletal muscle following intra-arterial injection of DNA was significantly enhanced by EP. Finally, we found that DMSO and LipoFECTAMINE™, common enhancers of DNA electroporation in vitro, had no positive effect on DNA electroporation in vivo. Conclusions When injecting DNA intramuscularly, a flat plate electrode without any plasmid enhancers is the best method to achieve high levels of gene expression.

  9. Transformation of methylotrophic bacteria by electroporation.

    Science.gov (United States)

    Gliesche, C G

    1997-02-01

    An efficient system for electroporation of the methylotrophic bacteria Hyphomicrobium facilis, Hyphomicrobium denitrificans, Methylobacillus glycogenes, Methylobacterium extorquens, and Methylophilus methylotrophus is described. It could be demonstrated that vectors based on the broad-host-range plasmid pBBR1 could be transferred into these strains. Plasmid pBBR1KAN (3.9 kb), a kanamycin-resistant derivative of pBBR1, was suitable for transformation experiments in these methylotrophic bacteria. Transformation efficiencies up to 10(4) transformants/microgram plasmid pBBR1KAN were obtained. The broad-host-range plasmid pLA2917 was transferred into Hyphomicrobium species by a triparental mating. However, this plasmid was integrated into the genome of Hyphomicrobium spp. Plasmids pLA2917, pKT231, pSUP2021, pRZ705, and phage DNA could not be transferred in Hyphomicrobium spp. by electroporation under the conditions applied.

  10. Micro-/nanofluidics based cell electroporation.

    Science.gov (United States)

    Wang, Shengnian; Lee, L James

    2013-01-01

    Non-viral gene delivery has been extensively explored as the replacement for viral systems. Among various non-viral approaches, electroporation has gained increasing attention because of its easy operation and no restrictions on probe or cell type. Several effective systems are now available on the market with reasonably good gene delivery performance. To facilitate broader biological and medical applications, micro-/nanofluidics based technologies were introduced in cell electroporation during the past two decades and their advances are summarized in this perspective. Compared to the commercially available bulk electroporation systems, they offer several advantages, namely, (1) sufficiently high pulse strength generated by a very low potential difference, (2) conveniently concentrating, trapping, and regulating the position and concentration of cells and probes, (3) real-time monitoring the intracellular trafficking at single cell level, and (4) flexibility on cells to be transfected (from single cell to large scale cell population). Some of the micro-devices focus on cell lysis or fusion as well as the analysis of cellular properties or intracellular contents, while others are designed for gene transfection. The uptake of small molecules (e.g., dyes), DNA plasmids, interfering RNAs, and nanoparticles has been broadly examined on different types of mammalian cells, yeast, and bacteria. A great deal of progress has been made with a variety of new micro-/nanofluidic designs to address challenges such as electrochemical reactions including water electrolysis, gas bubble formation, waste of expensive reagents, poor cell viability, low transfection efficacy, higher throughput, and control of transfection dosage and uniformity. Future research needs required to advance micro-/nanofluidics based cell electroporation for broad life science and medical applications are discussed.

  11. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.

    Science.gov (United States)

    Fernández, M Laura; Risk, Marcelo Raúl; Vernier, P Thomas

    2017-11-23

    Molecular dynamics simulations of lipid bilayers in aqueous systems reveal how an applied electric field stabilizes the reorganization of the water-membrane interface into water-filled, membrane-spanning, conductive pores with a symmetric, toroidal geometry. The pore formation process and the resulting symmetric structures are consistent with other mathematical approaches such as continuum models formulated to describe the electroporation process. Some experimental data suggest, however, that the shape of lipid electropores in living cell membranes may be asymmetric. We describe here the axially asymmetric pores that form when mechanical constraints are applied to selected phospholipid atoms. Electropore formation proceeds even with severe constraints in place, but pore shape and pore formation time are affected. Since lateral and transverse movement of phospholipids may be restricted in cell membranes by covalent attachments to or non-covalent associations with other components of the membrane or to membrane-proximate intracellular or extracellular biomolecular assemblies, these lipid-constrained molecular models point the way to more realistic representations of cell membranes in electric fields.

  12. Improved clinical facility for in vivo nitrogen measurement.

    Science.gov (United States)

    Krishnan, S S; McNeill, K G; Mernagh, J R; Bayley, A J; Harrison, J E

    1990-04-01

    The design and construction of a hospital clinical facility for in vivo prompt gamma neutron activation analysis for total body nitrogen (TBN) measurement is described. The use of 252Cf neutron sources gives a better signal-to-background ratio compared with 238Pu-Be sources of equal strength, thus yielding better reproducibility of measurements. By measuring the hydrogen and nitrogen signals separately using appropriate gating circuits, signal-to-background ratio is further improved. Measurements using a urea phantom (5.63 kg nitrogen as urea in 34.53 kg of water) show that 2 x 6 micrograms 252Cf sources gives a nitrogen signal-to-background ratio of 5.6 (compared with 3.4 in the case of a 2 x 10 Ci 238Pu-Be source) and a reproducibility for nitrogen signal of +/- 1.1% (CV) and for hydrogen signal (internal standard) of +/- 2.33% (CV). Approximately 30 minutes of patient's time is required for each TBN measurement with an estimated reproducibility of +/- 3.8% (CV). The radiation dose to the patient is about 0.2 mSv (effective dose equivalent; QF = 10) per 20 min measurement. A report for the clinician is produced within a few minutes after the measurement by a dedicated IBM-PC computer. The entire facility is clean, comfortable and the electronics and computer processing are simple and economical.

  13. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation

    Science.gov (United States)

    Ruiz, Newton; de Abreu, Leonardo Araujo; Parizi, Luís Fernando; Kim, Tae Kwon; Mulenga, Albert; Braz, Gloria Regina Cardoso; Vaz, Itabajara da Silva; Logullo, Carlos

    2015-01-01

    RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT) / Glycogen Synthase Kinase (GSK) axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI). To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes) was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis. PMID:26091260

  14. Non-Invasive Delivery of dsRNA into De-Waxed Tick Eggs by Electroporation.

    Directory of Open Access Journals (Sweden)

    Newton Ruiz

    Full Text Available RNA interference-mediated gene silencing was shown to be an efficient tool for validation of targets that may become anti-tick vaccine components. Here, we demonstrate the application of this approach in the validation of components of molecular signaling cascades, such as the Protein Kinase B (AKT/Glycogen Synthase Kinase (GSK axis during tick embryogenesis. It was shown that heptane and hypochlorite treatment of tick eggs can remove wax, affecting corium integrity and but not embryo development. Evidence of AKT and GSK dsRNA delivery into de-waxed eggs of via electroporation is provided. Primers designed to amplify part of the dsRNA delivered into the electroporated eggs dsRNA confirmed its entry in eggs. In addition, it was shown that electroporation is able to deliver the fluorescent stain, 4',6-diamidino-2-phenylindole (DAPI. To confirm gene silencing, a second set of primers was designed outside the dsRNA sequence of target gene. In this assay, the suppression of AKT and GSK transcripts (approximately 50% reduction in both genes was demonstrated in 7-day-old eggs. Interestingly, silencing of GSK in 7-day-old eggs caused 25% reduction in hatching. Additionally, the effect of silencing AKT and GSK on embryo energy metabolism was evaluated. As expected, knockdown of AKT, which down regulates GSK, the suppressor of glycogen synthesis, decreased glycogen content in electroporated eggs. These data demonstrate that electroporation of de-waxed R. microplus eggs could be used for gene silencing in tick embryos, and improve the knowledge about arthropod embryogenesis.

  15. Transfer of foreign DNA into aquatic animals by electroporation

    Science.gov (United States)

    This chapter describes the principle, procedure and application of the electroporation method to produce various types of transgenic marine organisms including finfish, shellfish and marine algae. Electroporation utilizes a series of short electrical pulses to induce formation of short-lived pores ...

  16. Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery.

    Science.gov (United States)

    Wong, Tak-Wah; Chen, Ching-Hung; Huang, Chien-Chun; Lin, Cheng-De; Hui, Sek-Wen

    2006-02-21

    A microelectrode array was designed to minimize the pain sensation of electroporation for enhancing transdermal drug delivery. The influence of the size of the electrode-skin contact area and of the distance between electrodes on the pain sensation was tested on human volunteers. The pain level decreased with the dimension of electrode-skin contact area and with inter-electrode distance. When both reached about 0.5 mm, the pain level was not perceptible even at the threshold of transdermal electroporation level of sixty electric pulses at 150 V, 1 ms at 1-10 Hz. An array of 11 x 11 alternately connected electrodes with 0.6 x 0.6 mm dimension was fabricated. The electric thresholds for effective drug delivery, using toluidine blue O as a marker on mouse skin, was found to be the same for microelectrode arrays as for larger electrodes and wider inter-electrode distances. In vivo transdermal electroporation using microelectrode array with 180 pulses of 150 V, 0.2 ms at 1 Hz, followed by 30 min methotrexate (MTX) occlusion increased more than 4 fold the systemic MTX level in mice. The results demonstrated the potential of painless delivery of significant amounts of chemotherapeutic agents through skin with the new electrode arrays in a clinical setting.

  17. Corona discharge in electroporation of cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cramariuc, R; Nisiparu, L [Competence Centre in Electrostatics and Electrotehchnologies (Romania); Tudorache, A; Branduse, E; Fotescu, L [Research Institute of Wine Processing, Valea Mantei Street, No.l, Valea Calugareasca (Romania); Popa, M E; Mitelut, A [Biotechnology Faculty, University of Agronomical Sciences and Veterinary Medicine (Romania); Turtoi, M O

    2008-12-01

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  18. A high throughput droplet based electroporation system

    Science.gov (United States)

    Yoo, Byeongsun; Ahn, Myungmo; Im, Dojin; Kang, Inseok

    2014-11-01

    Delivery of exogenous genetic materials across the cell membrane is a powerful and popular research tool for bioengineering. Among conventional non-viral DNA delivery methods, electroporation (EP) is one of the most widely used technologies and is a standard lab procedure in molecular biology. We developed a novel digital microfluidic electroporation system which has higher efficiency of transgene expression and better cell viability than that of conventional EP techniques. We present the successful performance of digital EP system for transformation of various cell lines by investigating effects of the EP conditions such as electric pulse voltage, number, and duration on the cell viability and transfection efficiency in comparison with a conventional bulk EP system. Through the numerical analysis, we have also calculated the electric field distribution around the cells precisely to verify the effect of the electric field on the high efficiency of the digital EP system. Furthermore, the parallelization of the EP processes has been developed to increase the transformation productivity. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  19. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.

    Science.gov (United States)

    Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation.

  20. Irreversible electroporation of human primary uveal melanoma in enucleated eyes.

    Directory of Open Access Journals (Sweden)

    Yossi Mandel

    Full Text Available Uveal melanoma (UM is the most common primary intraocular tumor in adults and is characterized by high rates of metastatic disease. Although brachytherapy is the most common globe-sparing treatment option for small- and medium-sized tumors, the treatment is associated with severe adverse reactions and does not lead to increased survival rates as compared to enucleation. The use of irreversible electroporation (IRE for tumor ablation has potential advantages in the treatment of tumors in complex organs such as the eye. Following previous theoretical work, herein we evaluate the use of IRE for uveal tumor ablation in human ex vivo eye model. Enucleated eyes of patients with uveal melanoma were treated with short electric pulses (50-100 µs, 1000-2000 V/cm using a customized electrode design. Tumor bioimpedance was measured before and after treatment and was followed by histopathological evaluation. We found that IRE caused tumor ablation characterized by cell membrane disruption while sparing the non-cellular sclera. Membrane disruption and loss of cellular capacitance were also associated with significant reduction in total tumor impedance and loss of impedance frequency dependence. The effect was more pronounced near the pulsing electrodes and was dependent on time from treatment to fixation. Future studies should further evaluate the potential of IRE as an alternative method of uveal melanoma treatment.

  1. Electroporation enhances antimicrobial photodynamic therapy mediated by the hydrophobic photosensitizer, hypericin, Electroporation enhances antimicrobial photodynamic inactivation

    OpenAIRE

    de Melo, Wanessa de Cássia Martins Antunes; Lee, Alexander N; Perussi, Janice Rodrigues; Hamblin, Michael R.

    2013-01-01

    The effective transport of photosensitizers (PS) across the membrane and the intracellular accumulation of PS are the most crucial elements in antimicrobial photodynamic therapy (aPDT). However, due to the morphological complexity of Gram-negative bacteria the penetration of PS is limited, especially hydrophobic PS. Electroporation (EP) could increase the effectiveness of aPDT, by promoting the formation of transient pores that enhance the permeability of the bacterial membrane to PS. In this...

  2. A nonlinear electromechanical coupling model for electropore expansion in cell electroporation

    KAUST Repository

    Deng, Peigang

    2014-10-15

    Under an electric field, the electric tractions acting on a cell membrane containing a pore-nucleus are investigated by using a nonlinear electromechanical coupling model, in which the cell membrane is treated as a hyperelastic material. Iterations between the electric field and the structure field are performed to reveal the electrical forces exerting on the pore region and the subsequent pore expansion process. An explicit exponential decay of the membrane\\'s edge energy as a function of pore radius is defined for a hydrophilic pore and the transition energy as a hydrophobic pore converts to a hydrophilic pore during the initial stage of pore formation is investigated. It is found that the edge energy for the creation of an electropore edge plays an important role at the atomistic scale and it determines the hydrophobic-hydrophilic transition energy barrier. Various free energy evolution paths are exhibited, depending on the applied electric field, which provides further insight towards the electroporation (EP) phenomenon. In comparison with previous EP models, the proposed model has the ability to predict the metastable point on the free energy curve that is relevant to the lipid ion channel. In addition, the proposed model can also predict the critical transmembrane potential for the activation of an effective electroporation that is in a good agreement with previously published experimental data.

  3. Anistropically varying conductivity in irreversible electroporation simulations.

    Science.gov (United States)

    Labarbera, Nicholas; Drapaca, Corina

    2017-11-01

    One recent area of cancer research is irreversible electroporation (IRE). Irreversible electroporation is a minimally invasive procedure where needle electrodes are inserted into the body to ablate tumor cells with electricity. The aim of this paper is to propose a mathematical model that incorporates a tissue's conductivity increasing more in the direction of the electrical field as this has been shown to occur in experiments. It was necessary to mathematically derive a valid form of the conductivity tensor such that it is dependent on the electrical field direction and can be easily implemented into numerical software. The derivation of a conductivity tensor that can take arbitrary functions for the conductivity in the directions tangent and normal to the electrical field is the main contribution of this paper. Numerical simulations were performed for isotropic-varying and anisotropic-varying conductivities to evaluate the importance of including the electrical field's direction in the formulation for conductivity. By starting from previously published experimental results, this paper derived a general formulation for an anistropic-varying tensor for implementation into irreversible electroporation modeling software. The anistropic-varying tensor formulation allows the conductivity to take into consideration both electrical field direction and magnitude, as opposed to previous published works that only took into account electrical field magnitude. The anisotropic formulation predicts roughly a five percent decrease in ablation size for the monopolar simulation and approximately a ten percent decrease in ablation size for the bipolar simulations. This is a positive result as previously reported results found the isotropic formulation to overpredict ablation size for both monopolar and bipolar simulations. Furthermore, it was also reported that the isotropic formulation overpredicts the ablation size more for the bipolar case than the monopolar case. Thus, our

  4. Molecular electroporation and the transduction of oligoarginines

    Science.gov (United States)

    Cahill, Kevin

    2010-03-01

    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of about 200 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40-60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.

  5. Painless skin electroporation as a novel way for insulin delivery.

    Science.gov (United States)

    Wong, Tak-Wah; Chen, Tai-Yu; Huang, Chien-Chun; Tsai, Jui-Chen; Hui, Sek Wen

    2011-09-01

    Rigorous research efforts have been undertaken worldwide to develop a needle-free insulin delivery for many decades with limited success. This translational study aims to deliver insulin through skin with painless electroporation. A recently designed microelectrode array was used to deliver insulin in mice with diabetes under electroporation conditions that are painless and harmless on human skin. Under such condition, a therapeutic amount of insulin was delivered successfully through mouse skin. Electroporation alone increased insulin transport around 100-fold compared with passive diffusion. Increased skin temperature to 40°C for 20 min augmented insulin transport to 237-fold more than the control value. Repeated electroporation showed no harm on human skin. The results indicate the potential of painless delivery of insulin through human skin in future clinical practice.

  6. Case report: Irreversible electroporation for locally advanced pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Sonia Orcutt

    2017-01-01

    Conclusion: While there is a positive outlook for the use of irreversible electroporation for locally advanced pancreas cancer, there remain some uncertainties surrounding this therapy, which underscores the importance of future research in this area.

  7. Rapid Single-Cell Electroporation for Labeling Organotypic Cultures

    Science.gov (United States)

    2010-06-01

    EMCDD (Andor), a 600x800 color camera ( MVC ), and 640x480 analog video camera (Hamamatsu), and a 1024x1024 cooled camera (Photometrics CoolSNAP). A custom...Preparation and Loading of Protein Samples for Microinjection. Cold Spring Harbor Protocols (2007). 21. Schneckenburger, H., Hendinger, A., Sailer...Electroporation Method for Mammalisan CNS Neurons in Organotypic Slice Cultures. in Electroporation and Sonoporation in Developmental Biology 169-177 ( Springe

  8. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  9. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study

    Science.gov (United States)

    Mercadal, Borja; Arena, Christopher B.; Davalos, Rafael V.; Ivorra, Antoni

    2017-10-01

    Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.

  10. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry

    DEFF Research Database (Denmark)

    Joergensen, Mette; Agerholm-Larsen, Birgit; Nielsen, Peter E

    2011-01-01

    with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently...... transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (-23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations......, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism....

  11. 3D Nanochannel Array Platform for High-throughput Cell Manipulation and Nano-electroporation

    Science.gov (United States)

    Chang, Lingqian

    Electroporation is one of the most common non-viral methods for gene delivery. Recent progress in gene therapy has offered special opportunities to electroporation for in vitro and in vivo applications. However, conventional bulk electroporation (BEP) inevitably causes serious cell damage and stochastic transfection between cells. Microfluidic electroporation (MEP) has been claimed to provide benign single cell transfection for the last decade. Nevertheless, the intracellular transport in both MEP and BEP systems is highly diffusion-dominant, which prevents precise dose control and high uniformity. In this Ph.D. research, we developed a 3D nanochannel-electroporation (3D NEP) platform for mass cell transfection. A silicon-based nanochannel array (3D NEP) chip was designed and fabricated for cell manipulation and electroporation. The chip, designed as Z-directional microchannel - nanochannel array, was fabricated by clean room techniques including projection photolithography and deep reactive-ion etching (DRIE). The fabricated 3D NEP chip is capable of handling 40,000 cells per 1 cm2, up to 1 million per wafer (100 mm diameter). High-throughput cell manipulation technologies were investigated for precise alignment of individual cells to the nanochannel array, a key step for NEP to achieve dose control. We developed three techniques for cell trapping in this work. (1) Magnetic tweezers (MTs) were integrated on the chip to remotely control cells under a programmed magnetic field. (2) A positive dielectrophoresis (pDEP) power system was built as an alternative to trap cells onto the nanochannel array using DEP force. (3) A novel yet simple 'dipping-trap' method was used to rapidly trap cells onto a nanochannel array, aligned by a micro-cap array pattern on the 3D NEP chip, which eventually offered 70 - 90 % trapping efficiency and 90 % specificity. 3D NEP platforms were assembled for cell transfection based on the Si-based nanochannel array chip and cell manipulation

  12. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation.

    Science.gov (United States)

    Vandermeulen, Gaëlle; Vanvarenberg, Kevin; De Beuckelaer, Ans; De Koker, Stefaan; Lambricht, Laure; Uyttenhove, Catherine; Reschner, Anca; Vanderplasschen, Alain; Grooten, Johan; Préat, Véronique

    2015-06-22

    We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A theoretical analysis of the feasibility of a singularity-induced micro-electroporation system.

    Directory of Open Access Journals (Sweden)

    Gregory D Troszak

    Full Text Available Electroporation, the permeabilization of the cell membrane lipid bilayer due to a pulsed electric field, has important implications in the biotechnology, medicine, and food industries. Traditional macro and micro-electroporation devices have facing electrodes, and require significant potential differences to induce electroporation. The goal of this theoretical study is to investigate the feasibility of singularity-induced micro-electroporation; an electroporation configuration aimed at minimizing the potential differences required to induce electroporation by separating adjacent electrodes with a nanometer-scale insulator. In particular, this study aims to understand the effect of (1 insulator thickness and (2 electrode kinetics on electric field distributions in the singularity-induced micro-electroporation configuration. A non-dimensional primary current distribution model of the micro-electroporation channel shows that while increasing insulator thickness results in smaller electric field magnitudes, electroporation can still be performed with insulators thick enough to be made with microfabrication techniques. Furthermore, a secondary current distribution model of the singularity-induced micro-electroporation configuration with inert platinum electrodes and water electrolyte indicates that electrode kinetics do not inhibit charge transfer to the extent that prohibitively large potential differences are required to perform electroporation. These results indicate that singularity-induced micro-electroporation could be used to develop an electroporation system that consumes minimal power, making it suitable for remote applications such as the sterilization of water and other liquids.

  14. CT-guided Irreversible Electroporation in an Acute Porcine Liver Model: Effect of Previous Transarterial Iodized Oil Tissue Marking on Technical Parameters, 3D Computed Tomographic Rendering of the Electroporation Zone, and Histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Fritz, S., E-mail: stefan.fritz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Vollherbst, D., E-mail: dominikvollherbst@web.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de [German Cancer Research Center (dkfz), Medical and Biological Informatics (Germany); Wachter, M. F., E-mail: fredericwachter@googlemail.com; Bellemann, N., E-mail: nadine.bellemann@med.uni-heidelberg.de; Gockner, T., E-mail: theresa.gockner@med.uni-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de; Schmitz, A., E-mail: anne.schmitz@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Aulmann, S., E-mail: sebastian.aulmann@mail.com [University Hospital Heidelberg, Department of General Pathology (Germany); Stampfl, U., E-mail: ulrike.stampfl@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Pereira, P., E-mail: philippe.pereira@slk-kliniken.de [SLK Kliniken Heilbronn GmbH, Clinic for Radiology, Minimally-invasive Therapies and Nuclear Medicine (Germany); Kauczor, H. U., E-mail: hu.kauczor@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany); Werner, J., E-mail: jens.werner@med.uni-heidelberg.de [University Hospital Heidelberg, Department of General Visceral and Transplantation Surgery (Germany); Radeleff, B. A., E-mail: boris.radeleff@med.uni-heidelberg.de [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology (Germany)

    2015-02-15

    PurposeTo evaluate the effect of previous transarterial iodized oil tissue marking (ITM) on technical parameters, three-dimensional (3D) computed tomographic (CT) rendering of the electroporation zone, and histopathology after CT-guided irreversible electroporation (IRE) in an acute porcine liver model as a potential strategy to improve IRE performance.MethodsAfter Ethics Committee approval was obtained, in five landrace pigs, two IREs of the right and left liver (RL and LL) were performed under CT guidance with identical electroporation parameters. Before IRE, transarterial marking of the LL was performed with iodized oil. Nonenhanced and contrast-enhanced CT examinations followed. One hour after IRE, animals were killed and livers collected. Mean resulting voltage and amperage during IRE were assessed. For 3D CT rendering of the electroporation zone, parameters for size and shape were analyzed. Quantitative data were compared by the Mann–Whitney test. Histopathological differences were assessed.ResultsMean resulting voltage and amperage were 2,545.3 ± 66.0 V and 26.1 ± 1.8 A for RL, and 2,537.3 ± 69.0 V and 27.7 ± 1.8 A for LL without significant differences. Short axis, volume, and sphericity index were 16.5 ± 4.4 mm, 8.6 ± 3.2 cm{sup 3}, and 1.7 ± 0.3 for RL, and 18.2 ± 3.4 mm, 9.8 ± 3.8 cm{sup 3}, and 1.7 ± 0.3 for LL without significant differences. For RL and LL, the electroporation zone consisted of severely widened hepatic sinusoids containing erythrocytes and showed homogeneous apoptosis. For LL, iodized oil could be detected in the center and at the rim of the electroporation zone.ConclusionThere is no adverse effect of previous ITM on technical parameters, 3D CT rendering of the electroporation zone, and histopathology after CT-guided IRE of the liver.

  15. Recent Trends on Micro/Nanofluidic Single Cell Electroporation

    Directory of Open Access Journals (Sweden)

    Tuhin Subhra Santra

    2013-09-01

    Full Text Available The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out biomolecules precisely through a small membrane area (micro to nanoscale area of the single cell, known as localized single cell membrane electroporation (LSCMEP. These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction.

  16. Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments.

    Science.gov (United States)

    Mir, Lluis M

    2014-01-01

    Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.

  17. Electroporation-mediated gene transfer of SOX trio to enhance chondrogenesis in adipose stem cells.

    Science.gov (United States)

    Im, G-I; Kim, H-J

    2011-04-01

    The aim of the present study was to determine if the electroporation-mediated gene transfer of SOX trio enhances the chondrogenic potential of adipose stem cells (ASCs). ASCs were transfected with SOX trio genes using an electroporation technique and cultured for 3 weeks. The pellets were analyzed for DNA and glycosaminoglycan (GAG) analysis, and the gene and protein expression of SOX-5, SOX-6, SOX-9, type 1 collagen (COL1Al), type 2 collagen (COL2Al) and type 10 collagen (COL10A1) using real-time PCR and Western blot analysis. Further in vivo studies were carried out by subcutaneous transplantation of pellets in severe combined immunodeficiency (SCID) mice for 3 weeks. The gene transfer efficiency was high (approximately 70%). Transfected ASCs showed high expression of corresponding genes after 21 days, and each SOX protein was detected in ASCs transfected with the corresponding gene. The chondrogenic differentiation of ASCs, as demonstrated by GAG levels and Safranin-O staining, showed significant enhancement when SOX trio were co-transfected, while subsets with single gene transfer of SOX-5, -6, or -9 did not show significant elevation. SOX trio co-transfection enhanced COL2A1 mRNA, but did not increase COL1A1 and COL10A1 mRNA. Type II collagen protein dramatically increased, and type X collagen decreased with co-transfection of the SOX trio. When pellets were implanted in the subcutaneous pouch of SCID mice for 3 weeks, ASCs co-transfected with SOX trio demonstrated abundant proteoglycan, significantly reduced mineralization. The electroporation-mediated transfection of SOX trio greatly enhances chondrogenesis from ASCs, while decreasing hypertrophy. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    Science.gov (United States)

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-10-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow.

  19. Education on electrical phenomena involved in electroporation-based therapies and treatments: a blended learning approach.

    Science.gov (United States)

    Čorović, Selma; Mahnič-Kalamiza, Samo; Miklavčič, Damijan

    2016-04-07

    Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments. The learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011-2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test. The results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected. The main objective of this study was to investigate whether the educational content the e

  20. Application of Electroporation Technique in Biofuel Processing

    Directory of Open Access Journals (Sweden)

    Yousuf Abu

    2017-01-01

    Full Text Available Biofuels production is mostly oriented with fermentation process, which requires fermentable sugar as nutrient for microbial growth. Lignocellulosic biomass (LCB represents the most attractive, low-cost feedstock for biofuel production, it is now arousing great interest. The cellulose that is embedded in the lignin matrix has an insoluble, highly-crystalline structure, so it is difficult to hydrolyze into fermentable sugar or cell protein. On the other hand, microbial lipid has been studying as substitute of plant oils or animal fat to produce biodiesel. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae investing minimum energy.Electroporation (EP of LCB results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. EP is required to alter the size and structure of the biomass, to reduce the cellulose crystallinity, and increase their porosity as well as chemical composition, so that the hydrolysis of the carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. Furthermore, EP has a great potential to disrupt the microbial cell walls within few seconds to bring out the intracellular materials (lipid to the solution. Therefore, this study aims to describe the challenges and prospect of application of EP technique in biofuels processing.

  1. The influence of soft layer electrokinetics on bacterial electroporation

    Science.gov (United States)

    Moran, Jeffrey; Dingari, Naga Neehar; Buie, Cullen

    2015-11-01

    Electroporation of mammalian cells has received a significant amount of theoretical attention over the last decade because of its ability to deliver biologically active molecules into cells using short and strong electric field pulses. However, application of the same theory to bacterial electroporation presents significant challenges because of the presence of charged soft layers around bacteria. The soft layer charge distribution has been found to significantly influence bacterial electrophoretic mobility and polarizability because it alters the electric potential spatial distribution around the cell envelope. In addition, the RC charging time scale of both the soft layer and electric double layer is of the order of microseconds, which is also of similar order of magnitude as the pore creation time scale. Therefore in this study, we investigate the influence of soft layer electrokinetics on the spatial pore distribution and the temporal pore radius evolution during bacteria electroporation, which are quantitative measures of a bacterium's amenability to electroporation. The study will have significant impact on designing and optimizing bacteria electroporation platforms for gene and drug delivery applications.

  2. Controlled delivery of zoledronate improved bone formation locally in vivo.

    Directory of Open Access Journals (Sweden)

    Wenlong Gou

    Full Text Available Bisphosphonates (BPs have been widely used in clinical treatment of bone diseases with increased bone resorption because of their strong affinity for bone and their inhibition of bone resorption. Recently, there has been growing interest in their improvement of bone formation. However, the effect of local controlled delivery of BPs is unclear. We used polylactide acid-glycolic acid copolymer (PLGA as a drug carrier to deliver various doses of the bisphosphonate zoledronate (Zol into the distal femur of 8-week-old Sprague-Dawley rats. After 6 weeks, samples were harvested and analyzed by micro-CT and histology. The average bone mineral density and mineralized bone volume fraction were higher with medium- and high-dose PLGA-Zol (30 and 300 µg Zol, respectively than control and low-dose Zol (3 µg PLGA-Zol; p<0.05. Local controlled delivery of Zol decreased the numbers of osteoclast and increased the numbers of osteoblast. Moreover, local controlled delivery of medium- and high-dose Zol accelerated the expression of bone-formation markers. PLGA used as a drug carrier for controlled delivery of Zol may promote local bone formation.

  3. siRNA delivery into cultured primary human myoblasts--optimization of electroporation parameters and theoretical analysis.

    Science.gov (United States)

    Lojk, Jasna; Mis, Katarina; Pirkmajer, Sergej; Pavlin, Mojca

    2015-12-01

    Introduction of genetic material into muscle tissue has been extensively researched, including isolation and in vitro expansion of primary myoblasts as a potential source of cells for skeletal and heart muscle tissue engineering applications. In this study, we optimized the electroporation protocol for introduction of short interfering ribonucleic acid (siRNA) against messenger RNA for Hypoxia Inducible Factor 1α (HIF-1α) into cultured primary human myoblasts. We established optimal pulsing protocol for siRNA electro transfection, and theoretically analyzed the effect of electric field and pulse duration on silencing efficiency and electrophoretic displacement of siRNA. Silencing of HIF-1α was determined with quantitative polymerase chain reaction and Western Blot. The most efficient silencing (71% knockdown) was achieved with 8 × 2 ms pulses, E = 0.6 kV/cm. Viability was determined immediately, 1 h and 48 h after electroporation. In general, there was a trade-off between efficient silencing and preserved viability. Electric field and pulse duration are crucial parameters for silencing, since both increase membrane permeabilization and electrophoretic transfer of siRNA. Short-term viability showed immediate toxicity of pulses due to membrane damage, while indirect effects on cell proliferation were observed after 48 h. Presented results are important for faster optimization of electroporation parameters for ex vivo electrotransfer of short RNA molecules into primary human myoblasts. © 2015 Wiley Periodicals, Inc.

  4. Simple Genome Editing of Rodent Intact Embryos by Electroporation.

    Directory of Open Access Journals (Sweden)

    Takehito Kaneko

    Full Text Available The clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas system is a powerful tool for genome editing in animals. Recently, new technology has been developed to genetically modify animals without using highly skilled techniques, such as pronuclear microinjection of endonucleases. Technique for animal knockout system by electroporation (TAKE method is a simple and effective technology that produces knockout rats by introducing endonuclease mRNAs into intact embryos using electroporation. Using TAKE method and CRISPR/Cas system, the present study successfully produced knockout and knock-in mice and rats. The mice and rats derived from embryos electroporated with Cas9 mRNA, gRNA and single-stranded oligodeoxynucleotide (ssODN comprised the edited targeted gene as a knockout (67% of mice and 88% of rats or knock-in (both 33%. The TAKE method could be widely used as a powerful tool to produce genetically modified animals by genome editing.

  5. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    Science.gov (United States)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm‑1 whereas that of dc pulses is about 0.5 kV cm‑1.

  6. Gene therapy by electroporation for the treatment of chronic renal failure in companion animals

    Directory of Open Access Journals (Sweden)

    Pope Melissa A

    2009-01-01

    Full Text Available Abstract Background Growth hormone-releasing hormone (GHRH plasmid-based therapy for the treatment of chronic renal failure and its complications was examined. Companion dogs (13.1 ± 0.8 years, 29.4 ± 5.01 kg and cats (13.2 ± 0.9 years, 8.5 ± 0.37 kg received a single 0.4 mg or 0.1 mg species-specific plasmid injection, respectively, intramuscularly followed by electroporation, and analyzed up to 75 days post-treatment; controls underwent electroporation without plasmid administration. Results Plasmid-treated animals showed an increase in body weight (dogs 22.5% and cats 3.2% compared to control animals, and displayed improved quality of life parameters including significant increases in appetite, activity, mentation and exercise tolerance levels. Insulin-like growth factor I (IGF-I, the downstream effector of GHRH levels were increased in the plasmid treated animals. Hematological parameters were also significantly improved. Protein metabolism changes were observed suggesting a shift from a catabolic to an anabolic state in the treated animals. Blood urea nitrogen and creatinine did not show any significant changes suggesting maintenance of kidney function whereas the control animal's renal function deteriorated. Treated animals survived longer than control animals with 70% of dogs and 80% of cats surviving until study day 75. Only 17% and 40% of the control dogs and cats, respectively, survived to day 75. Conclusion Improved quality of life, survival and general well-being indicate that further investigation is warranted, and show the potential of a plasmid-based therapy by electroporation in preventing and managing complications of renal insufficiency.

  7. Type I restriction-modification system and its resistance in electroporation efficiency in Flavobacterium columnare.

    Science.gov (United States)

    Li, N; Zhang, L Q; Zhang, J; Liu, Z X; Huang, B; Zhang, S H; Nie, P

    2012-11-09

    Flavobacterium columnare, the causative agent of columnaris disease, infects freshwater fish worldwide. However, the pathogenicity of this bacterium is poorly understood due possibly to the lack of an efficient in-frame knockout technique. In order to improve electroporation efficiency, the type I restriction-modification system (R-M system) was cloned and its role in electroporation was examined in F. columnare G(4) strain. The complete sequence of type I R-M system in the bacterium, designated as Fcl, contains all three subunits of type I R-M system, named as fclM, fclS, fclR, respectively, with the identification of a hypothetical gene, fclX. Constitutive transcription of the three genes was observed in F. columnare G(4) by RT-PCR. The ORF of fclM and fclS was cloned into the plasmid pACYC184 and transformed into Escherichia coli TOP10. The resultant E. coli strain, designated as E. coli TOPmt, was transformed with the integrative plasmid pGL006 constructed for F. columnare G(4). The integrative plasmid was re-isolated from TOPmt and incubated with the lysate of F. columnare G(4). The re-isolated integrative plasmid, designated as pGL006', showed higher resistance than pGL006. With pGL006', the electroporation efficiency of the strain G(4) increased 2.6 times, while that of F. columnare G(18) was not obviously improved. Furthermore, a method to improve the electroporation efficiency of F. columnare G(4) was developed using the integrative plasmid methylated by E. coli TOPmt which contains the fclM and fclS gene of F. columnare G(4). Further analyses showed that the fcl gene cluster may be a unique type I R-M system in F. columnare G(4). It will be of significant interest to examine the composition and diversity of R-M systems in strains of F. columnare in order to set up a suitable genetic manipulation system for the bacterium. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Low vulnerability of the right phrenic nerve to electroporation ablation

    NARCIS (Netherlands)

    van Driel, Vincent J. H. M.; Neven, KGEJ; van Wessel, Harri; Vink, Aryan; Doevendans, Pieter A. F. M.; Wittkampf, Fred H. M.

    BACKGROUND Circular electroporation ablation is a novel ablation modality for electrical pulmonary vein isolation. With a single 200-3 application, deep circular myocardial lesions can be created. However, the acute and chronic effects of this energy source on phrenic nerve (PN) function are

  9. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation

    NARCIS (Netherlands)

    Romero, Diego; Perez-Garcia, Alejandro; Veening, Jan-Willem; de Vicente, Antonio; Kuipers, Oscar P.; de, Vicente A.

    A rapid method combining the use of protoplasts and electroporation was developed to transform recalcitrant wild strains of Bacillus subtilis. The method described here allows transformation with both replicative and integrative plasmids, as well as with chromosomal DNA, and provides a valuable tool

  10. D-Glucosamine Promotes Transfection Efficiency during Electroporation

    Directory of Open Access Journals (Sweden)

    Kazunari Igawa

    2014-01-01

    Full Text Available D-Glucosamine is a useful medicament in various fields of medicine and dentistry. With respect to stability of the cell membrane, it has been reported that bradykinin-induced nociceptive responses are significantly suppressed by the direct application of D-glucosamine. Electroporation is usually used to effectively introduce foreign genes into tissue culture cells. Buffers for electroporation with or without D-glucosamine are used in experiments of transfection vectors. This is the first study to indirectly observe the stability and protection of the osteoblast membrane against both electric stress and gene uptake (the proton sponge hypothesis: osmotic rupture during endosomes prior to fusion with lysosomes in electroporation with D-glucosamine application. The transfection efficiency was evaluated as the fluorescence intensity of the transfected green fluorescent protein (GFP in the cultured cells (osteoblasts; NOS-1 cells. The transfection efficiency increased over 30% in the electroporation samples treated with D-glucosamine-supplemented buffer after one day. The membrane absorption of D-glucosamine is the primary mechanism of membrane stress induced by electric stress. This new function of D-glucosamine is useful and meaningful for developing more effective transformation procedures.

  11. The optimization of voltage parameter for tissue electroporation in ...

    African Journals Online (AJOL)

    USER

    2010-07-19

    Jul 19, 2010 ... Full Length Research Paper. The optimization of voltage parameter for tissue .... After incubation, 20 embryos were washed twice with sterile water and transferred to each ice-cold 0.4 cm ... were electroporated different somatic embryos of coffee, found the highest transient GUS gene expression at the.

  12. Electroporation of cells in microfluidic devices: a review

    NARCIS (Netherlands)

    Fox, M.B.; Esveld, D.C.; Valero, A.; Luttge, R.; Mastwijk, H.C.; Bartels, P.V.; Berg, van den A.B.A.; Boom, R.M.

    2006-01-01

    In recent years, several publications on microfluidic devices have focused on the process of electroporation, which results in the poration of the biological cell membrane. The devices involved are designed for cell analysis, transfection or pasteurization. The high electric field strengths needed

  13. Electroporation of cells in microfluidic devices: a review

    NARCIS (Netherlands)

    Fox, M.B.; Fox, M.B.; Esveld, D.C.; Valero, Ana; Lüttge, Regina; Mastwijk, H.C.; Bartels, P.V.; van den Berg, Albert; Boom, R.M.; Boom, R.M.

    In recent years, several publications on microfluidic devices have focused on the process of electroporation, which results in the poration of the biological cell membrane. The devices involved are designed for cell analysis, transfection or pasteurization. The high electric field strengths needed

  14. Improved Diffuse Fluorescence Flow Cytometer Prototype for High Sensitivity Detection of Rare Circulating Cells In Vivo

    Science.gov (United States)

    Pestana, Noah Benjamin

    Accurate quantification of circulating cell populations is important in many areas of pre-clinical and clinical biomedical research, for example, in the study of cancer metastasis or the immune response following tissue and organ transplants. Normally this is done "ex-vivo" by drawing and purifying a small volume of blood and then analyzing it with flow cytometry, hemocytometry or microfludic devices, but the sensitivity of these techniques are poor and the process of handling samples has been shown to affect cell viability and behavior. More recently "in vivo flow cytometry" (IVFC) techniques have been developed where fluorescently-labeled cells flowing in a small blood vessel in the ear or retina are analyzed, but the sensitivity is generally poor due to the small sampling volume. To address this, our group recently developed a method known as "Diffuse Fluorescence Flow Cytometry" (DFFC) that allows detection and counting of rare circulating cells with diffuse photons, offering extremely high single cell counting sensitivity. In this thesis, an improved DFFC prototype was designed and validated. The chief improvements were three-fold, i) improved optical collection efficiency, ii) improved detection electronics, and iii) development of a method to mitigate motion artifacts during in vivo measurements. In combination, these improvements yielded an overall instrument detection sensitivity better than 1 cell/mL in vivo, which is the most sensitive IVFC system reported to date. Second, development and validation of a low-cost microfluidic device reader for analysis of ocular fluids is described. We demonstrate that this device has equivalent or better sensitivity and accuracy compared a fluorescence microscope, but at an order-of-magnitude reduced cost with simplified operation. Future improvements to both instruments are also discussed.

  15. Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line

    Directory of Open Access Journals (Sweden)

    Rita Arabsolghar

    2012-09-01

    Full Text Available Background: Electroporation is a valuable tool for small interfering RNA (siRNA delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. Methods: To identify the best condition, the cells were firstly electroporated without siRNA and cell viability was determined by trypan blue and MTT assays. Then siRNA transfection in the best condition was performed. Western blot analysis was used for monitoring successful siRNA transfection. Results: The best condition for electroporation of this cell line was 220 volt and 975 µF in exponential decay using the Gene Pulser X cell electroporation system. Our data demonstrated that by using proper electroporation condition, DNA methyl transferase mRNA was silenced by 10 nmol DNMT1 siRNA in MDA-MB 468 cells when compared with negative control siRNA electroporation. Analysis of cell viability demonstrated that optimal electroporation condition resulted in 74% and 78% cell viability by trypan blue staining and MTT assay, respectively. Conclusion: Transfection of the MDA-MB-468 breast cancer cell line with siRNA in the obtained electroporation condition was successful and resulted in effective gene silencing and high cellular viability.

  16. Improvement in Tracing Quantum Dot-Conjugated Nanospheres for In Vivo Imaging by Eliminating Food Autofluorescence

    OpenAIRE

    Chul-Kyu Park; Hoonsung Cho

    2015-01-01

    Fluorescence imaging using fluorescent probes has demonstrated long-term stability and brightness suitable for in vivo deep-tissue imaging, but it also allows intense background fluorescence associated with food in the near-infrared (IR) range. We investigated effects of changing rodent diet on food autofluorescence, in the presence of quantum dots-conjugated magnetic nanospheres (QD-MNSs). Replacement of a regular rodent diet with a purified diet has great improvement in removing autofluores...

  17. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan; So, Jimmy Bok Yan; Huang, Zhiwei

    2011-06-15

    This study aims to evaluate the diagnostic utility of the combined near-infrared (NIR) autofluorescence (AF) and Raman spectroscopy for improving in vivo detection of gastric cancer at clinical gastroscopy. A rapid Raman endoscopic technique was employed for in vivo spectroscopic measurements of normal (n=1098) and cancer (n=140) gastric tissues from 81 gastric patients. The composite NIR AF and Raman spectra in the range of 800-1800 cm(-1) were analyzed using principal component analysis (PCA) and linear discriminant (LDA) to extract diagnostic information associated with distinctive spectroscopic processes of gastric malignancies. High quality in vivo composite NIR AF and Raman spectra can routinely be acquired from the gastric within 0.5s. The integrated intensity over the range of 800-1800 cm(-1) established the diagnostic implications (p=1.6E-14) of the change of NIR AF intensity associated with neoplastic transformation. PCA-LDA diagnostic modeling on the in vivo tissue NIR AF and Raman spectra acquired yielded a diagnostic accuracy of 92.2% (sensitivity of 97.9% and specificity of 91.5%) for identifying gastric cancer from normal tissue. The integration area under the receiver operating characteristic (ROC) curve using the combined NIR AF and Raman spectroscopy was 0.985, which is superior to either the Raman spectroscopy or NIR AF spectroscopy alone. This work demonstrates that the complementary Raman and NIR AF spectroscopy techniques can be integrated together for improving the in vivo diagnosis and detection of gastric cancer at endoscopy. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    Science.gov (United States)

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis. © 2013 John Wiley & Sons Ltd.

  19. Coinjection of IL2 DNA enhances E7-specific antitumor immunity elicited by intravaginal therapeutic HPV DNA vaccination with electroporation.

    Science.gov (United States)

    Sun, Y; Peng, S; Yang, A; Farmer, E; Wu, T-C; Hung, C-F

    2017-07-01

    The generation and use of therapeutic human papillomavirus (HPV) DNA vaccines represent an appealing treatment method against HPV-associated cervical cancer owing to their safety and durability. Previously, we created a therapeutic HPV DNA vaccine candidate by linking the HPV16-E7 DNA sequence to calreticulin (CRT/E7), which we showed could generate significant E7-specific cytotoxic T lymphocyte (CTL)-mediated antitumor immune responses against HPV16 oncogenes expressing murine tumor model TC-1. Here we assess the therapeutic efficacy of intravaginal immunization with pcDNA3-CRT/E7 followed by electroporation. In addition, we examined whether coadministration of DNA-encoding interleukin 2 (IL2) with the pcDNA3-CRT/E7 could improve the T-cell responses elicited by pcDNA3-CRT/E7. TC-1 tumor-bearing mice vaccinated intravaginally with both pcDNA3-CRT/E7 and IL2 DNA followed by electroporation induced stronger local antitumor CTL response in comparison to mice that received other treatment regimens. Additionally, we found that coadministration of IL2 DNA with pcDNA3-CRT/E7 modified the tumor microenvironment by decreasing the population of regulatory T cells and myeloid-derived suppressor cells relative to that of CTLs. Our data demonstrate the translational potential of local administration of IL2 and pcDNA3-CRT/E7 followed by electroporation in treating cervicovaginal tumors.

  20. Selective gene expression by postnatal electroporation during olfactory interneuron neurogenesis.

    Directory of Open Access Journals (Sweden)

    Alexander T Chesler

    Full Text Available Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis.

  1. Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System

    Science.gov (United States)

    Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire

    2017-03-01

    Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.

  2. Modern medicine has a new technology: therapeutic electroporation

    Directory of Open Access Journals (Sweden)

    Lucia E. Ionescu

    2016-12-01

    Full Text Available Electroporation is considered a new start-up in the treatment of various tumors; currently, researches are being conducted in order to develop this technology with medical applications. The technique consists in the significant increase in the electrical conductivity and permeability of the plasma membrane of cells resulting from the application of an external electric field. It is routinely used in molecular biology to transform bacteria, yeast, protoplasts and is performed using the electroporators. Currently, the process seems to be a real solution that enables a targeted drug to act with maximum efficiency on cells and tissues requiring treatment, resulting in obtaining a good therapeutic effect without major side effects. Therefore, pharmaceutical companies are trying to demonstrate through preclinical studies the potential efficacy of this technology, succeeding in recent years to achieve important steps in this direction.

  3. A new equivalent circuit model for micro electroporation systems

    KAUST Repository

    Shagoshtasbi, Hooman

    2011-02-01

    Electroporation (EP) is a unique biotechnique in which intense electric pulses are applied on the cell membrane to temporarily generate nanoscale electropores and to increase the membrane permeability for the delivery of exogenous biomolecules or drugs. We propose a new equivalent circuit model with 8 electric components to predict the electrodynamic response of a micro EP system. As the permeability of the cell membrane increases, the membrane resistance decreases. The numerical simulations of the transmembrane current responses to different applied voltages (1∼6V) are consistent with the experimental results using HeLa cells. Besides, the transmembrane voltage as a function of applied voltages is determined as well. These transmembrane current and voltage responses can be extremely useful for the design of new generation of micro EP systems for transfection of large DNA molecules in the future. © 2011 IEEE.

  4. Improvement in Tracing Quantum Dot-Conjugated Nanospheres for In Vivo Imaging by Eliminating Food Autofluorescence

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Park

    2015-01-01

    Full Text Available Fluorescence imaging using fluorescent probes has demonstrated long-term stability and brightness suitable for in vivo deep-tissue imaging, but it also allows intense background fluorescence associated with food in the near-infrared (IR range. We investigated effects of changing rodent diet on food autofluorescence, in the presence of quantum dots-conjugated magnetic nanospheres (QD-MNSs. Replacement of a regular rodent diet with a purified diet has great improvement in removing autofluorescence in the near-infrared range ideal for in vivo fluorescence imaging. By feeding a purified diet for eliminating ingredients impairing desirable fluorescence signals in the near-IR range, food autofluorescence was clearly eliminated and fluorescence probes, QD-MNSs, introduced by i.v. injection were effectively traced in a mouse by a distinctive signal-to-noise ratio.

  5. Electroporation Enhances the Metabolic Activity of Lactobacillus plantarum 564

    Directory of Open Access Journals (Sweden)

    Branko Bugarski

    2013-01-01

    Full Text Available The exposure of bacterial cells to pulsed electric fields (PEF leads to the reversible formation of pores in the cell membrane if an applied energy is below the critical level. Therefore, the effect of electric field pulses with amplitudes below 14 kV/cm and the applied energy up to 12.2 J/cm3 on the growth of Lactobacillus plantarum 564 cells was investigated. After PEF treatments, the growth of lactobacilli in De Man-Rogosa-Sharpe broth at 37 °C was monitored by isothermal calorimetry, absorbance and plate counts. All the applied treatments resulted in a higher growth rate of PEF-treated cells during early and mid-log phase, especially bacterial samples treated with lower field intensities (1.3–5.5 J/cm3. The transport of ions and molecules through the cell membrane (which facilitates the growth of electroporated lactobacilli was particularly evident in the mid-exponential growth phase, where the doubling time was reduced more than 3 times after the exposure to electric pulses of 5.5 J/cm3. The heat production rate during the growth of electroporated cells was also higher, indicating the enhanced metabolic activity of PEF-treated cells. Moreover, the electroporated cells had a better acidification ability than the untreated ones. It can be summarized that the applied PEF treatments with an energy input of below 12 J/cm3 potentially induce reversible electroporation of the cell membrane, which has a positive impact on the growth and metabolic activity of the cells of lactobacilli.

  6. Irreversible electroporation in primary and metastatic hepatic malignancies

    OpenAIRE

    Lyu, Tianchu; Wang, Xifu; Su, Zhanliang; Shangguan, Junjie; Sun, Chong; Figini, Matteo; Wang, Jian; Yaghmai, Vahid; LARSON, ANDREW C.; Zhang, Zhuoli

    2017-01-01

    Abstract Background: Liver cancer makes up a huge percentage of cancer mortality worldwide. Irreversible electroporation (IRE) is a relatively new minimally invasive nonthermal ablation technique for tumors that applies short pulses of high frequency electrical energy to irreversibly destabilize cell membrane to induce tumor cell apoptosis. Methods: This review aims to investigate the studies regarding the use of IRE treatment in liver tumors and metastases to liver. We searched PubMed for al...

  7. Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2 for tissue ablation

    Directory of Open Access Journals (Sweden)

    Nina Klein

    2017-04-01

    Full Text Available Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2. Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

  8. Irreversible Electroporation for Focal Ablation at the Porta Hepatis

    Energy Technology Data Exchange (ETDEWEB)

    Kasivisvanathan, Veeru, E-mail: vk103@ic.ac.uk [Imperial College London, Department of Radiology (United Kingdom); Thapar, Ankur, E-mail: a.thapar09@imperial.ac.uk; Oskrochi, Youssof, E-mail: Youssof.Oskrochi09@imperial.ac.uk [Imperial College London, Department of Surgery and Cancer (United Kingdom); Picard, John, E-mail: John.picard@imperial.nhs.uk [Imperial College Healthcare NHS Trust, Department of Anaesthesia (United Kingdom); Leen, Edward L. S., E-mail: Edward.leen@imperial.ac.uk [Imperial College London, Department of Radiology (United Kingdom)

    2012-12-15

    Patients with chemotherapy-refractory liver metastases who are not candidates for surgery may be treated with focal ablation techniques with established survival benefits. Irreversible electroporation is the newest of these and has the putative advantages of a nonthermal action, preventing damage to adjacent biliary structures and bowel. This report describes the use of irreversible electroporation in a 61-year-old man with a solitary chemoresistant liver metastasis unsuitable for radiofrequency ablation as a result of its proximity to the porta hepatis. At 3 months, tumor size was decreased on computed tomography from 28 Multiplication-Sign 19 to 20 Multiplication-Sign 17 mm, representing stable disease according to the response evaluation criteria in solid tumors. This corresponded to a decrease in tumor volume size from 5.25 to 3.16 cm{sup 3}. There were no early or late complications. Chemoresistant liver metastases in the proximity of the porta hepatis that are considered to be too high a risk for conventional surgery or thermal ablation may be considered for treatment by the novel ablation technique of irreversible electroporation.

  9. Electroporation of DC-3F cells is a dual process.

    Science.gov (United States)

    Wegner, Lars H; Frey, Wolfgang; Silve, Aude

    2015-04-07

    Treatment of biological material by pulsed electric fields is a versatile technique in biotechnology and biomedicine used, for example, in delivering DNA into cells (transfection), ablation of tumors, and food processing. Field exposure is associated with a membrane permeability increase usually ascribed to electroporation, i.e., formation of aqueous membrane pores. Knowledge of the underlying processes at the membrane level is predominantly built on theoretical considerations and molecular dynamics (MD) simulations. However, experimental data needed to monitor these processes with sufficient temporal resolution are scarce. The whole-cell patch-clamp technique was employed to investigate the effect of millisecond pulsed electric fields on DC-3F cells. Cellular membrane permeabilization was monitored by a conductance increase. For the first time, to our knowledge, it could be established experimentally that electroporation consists of two clearly separate processes: a rapid membrane poration (transient electroporation) that occurs while the membrane is depolarized or hyperpolarized to voltages beyond so-called threshold potentials (here, +201 mV and -231 mV, respectively) and is reversible within ∼100 ms after the pulse, and a long-term, or persistent, permeabilization covering the whole voltage range. The latter prevailed after the pulse for at least 40 min, the postpulse time span tested experimentally. With mildly depolarizing or hyperpolarizing pulses just above threshold potentials, the two processes could be separated, since persistent (but not transient) permeabilization required repetitive pulse exposure. Conductance increased stepwise and gradually with depolarizing and hyperpolarizing pulses, respectively. Persistent permeabilization could also be elicited by single depolarizing/hyperpolarizing pulses of very high field strength. Experimental measurements of propidium iodide uptake provided evidence of a real membrane phenomenon, rather than a mere

  10. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  11. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.

    Science.gov (United States)

    Bakondi, Benjamin; Lv, Wenjian; Lu, Bin; Jones, Melissa K; Tsai, Yuchun; Kim, Kevin J; Levy, Rachelle; Akhtar, Aslam Abbasi; Breunig, Joshua J; Svendsen, Clive N; Wang, Shaomei

    2016-03-01

    Reliable genome editing via Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 may provide a means to correct inherited diseases in patients. As proof of principle, we show that CRISPR/Cas9 can be used in vivo to selectively ablate the rhodopsin gene carrying the dominant S334ter mutation (Rho(S334)) in rats that model severe autosomal dominant retinitis pigmentosa. A single subretinal injection of guide RNA/Cas9 plasmid in combination with electroporation generated allele-specific disruption of Rho(S334), which prevented retinal degeneration and improved visual function.

  12. An improved in vivo method for atrioventricular node ablation via thoracotomy

    Directory of Open Access Journals (Sweden)

    R.H. MacIver

    2010-02-01

    Full Text Available The atrioventricular (AV node is permanently damaged in approximately 3% of congenital heart surgery operations, requiring implantation of a permanent pacemaker. Improvements in pacemaker design and in alternative treatment modalities require an effective in vivo model of complete heart block (CHB before testing can be performed in humans. Such a model should enable accurate, reliable, and detectable induction of the surgical pathology. Through our laboratory’s efforts in developing a tissue engineering therapy for CHB, we describe here an improved in vivo model for inducing chronic AV block. The method employs a right thoracotomy in the adult rabbit, from which the right atrial appendage may be retracted to expose an access channel for the AV node. A novel injection device was designed, which both physically restricts needle depth and provides electrical information via electrocardiogram interface. This combination of features provides real-time guidance to the researcher for confirming contact with the AV node, and documents its ablation upon formalin injection. While all animals tested could be induced to acute AV block, those with ECG guidance were more likely to maintain chronic heart block >12 h. Our model enables the researcher to reproduce both CHB and the associated peripheral fibrosis that would be present in an open congenital heart surgery, and which would inevitably impact the design and utility of a tissue engineered AV node replacement.

  13. Calcium electroporation induces tumor eradication, long-lasting immunity and cytokine responses in the CT26 colon cancer mouse model

    DEFF Research Database (Denmark)

    Falk, Hanne; Forde, Patrick F; Bay, Marie Lund

    2017-01-01

    Electroporation is used in cancer treatment because of its ability to increase local cytotoxicity of e.g. bleomycin (electrochemotherapy) and calcium (calcium electroporation). Calcium electroporation is a novel anticancer treatment that selectively kills cancer cells by necrosis, a cell death pa...

  14. The Influence of Soft Layer Electrokinetics on Electroporation of Gram-positive Bacteria

    Science.gov (United States)

    Dingari, Naga Neehar; Moran, Jeffrey L.; Garcia, Paulo A.; Buie, Cullen R.

    2016-11-01

    Bacterial electroporation involves subjecting cells to intense ( 10 kV/cm) electric pulses, to open pores on the cell membrane for intracellular delivery of exogenous molecules. Its high efficiency in genetic transformation makes it an attractive tool for synthetic biology. While mammalian cell electroporation has received extensive theoretical and experimental investigation, bacterial electroporation has received markedly less attention. In this work, we develop a theoretical model of electroporation for gram-positive bacteria, taking into account the effect of the bacterial cell envelope on the cell's response to an electroporation pulse. We model the influence of the cell wall charge on the electrokinetic transport (and hence the pore properties) around the bacterial cell envelope using the Poisson-Nernst-Planck equations. Further, we account for the influence of the cell wall's mechanical elasticity on the pore radius evolution during electroporation, which is typically neglected in mammalian cell electroporation. This yields valuable information about favorable conditions for pore formation and will enable designing optimal platforms for bacteria electroporation.

  15. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  16. A primary current distribution model of a novel micro-electroporation channel configuration.

    Science.gov (United States)

    Troszak, Gregory D; Rubinsky, Boris

    2010-10-01

    Traditional macro and micro-electroporation devices utilize facing electrodes, which generate electric fields inversely proportional to their separation distance. Although the separation distances in micro-electroporation devices are significantly smaller than those in macro-electroporation devices, they are limited by cell size. Because of this, significant potential differences are required to induce electroporation. These potential differences are often large enough to cause water electrolysis, resulting in electrode depletion and bubble formation, both of which adversely affect the electroporation process. Here, we present a theoretical study of a novel micro-electroporation channel composed of an electrolyte flowing over a series of adjacent electrodes separated by infinitesimally small insulators. Application of a small, non-electrolysis inducing potential difference between the adjacent electrodes results in radially-varying electric fields that emanate from these insulators, causing cells flowing through the channel to experience a pulsed electric field. This eliminates the need for a pulse generator, making a minimal power source (such as a battery) the only electrical equipment that is needed. A non-dimensional primary current distribution model of the novel micro-electroporation channel shows that decreasing the channel height results in an exponential increase in the electric field magnitude, and that cells experience exponentially greater electric field magnitudes the closer they are to the channel walls. Finally, dimensional primary current distribution models of two potential applications, water sterilization and cell transfection, demonstrate the practical feasibility of the novel micro-electroporation channel.

  17. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by “electric field sinks”

    Science.gov (United States)

    Golberg, Alexander; Bruinsma, Bote G.; Uygun, Basak E.; Yarmush, Martin L.

    2015-01-01

    Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for “electric field sinks” in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures. PMID:25684630

  18. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by "electric field sinks".

    Science.gov (United States)

    Golberg, Alexander; Bruinsma, Bote G; Uygun, Basak E; Yarmush, Martin L

    2015-02-16

    Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for "electric field sinks" in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures.

  19. Tissue heterogeneity in structure and conductivity contribute to cell survival during irreversible electroporation ablation by ``electric field sinks''

    Science.gov (United States)

    Golberg, Alexander; Bruinsma, Bote G.; Uygun, Basak E.; Yarmush, Martin L.

    2015-02-01

    Irreversible electroporation (IRE) is an emerging, minimally invasive technique for solid tumors ablation, under clinical investigation for cancer therapy. IRE affects only the cell membrane, killing cells while preserving the extracellular matrix structure. Current reports indicate tumors recurrence rate after IRE averaging 31% of the cases, of which 10% are local recurrences. The mechanisms for these recurrences are not known and new explanations for incomplete cell death are needed. Using finite elements method for electric field distribution, we show that presence of vascular structures with blood leads to the redistribution of electric fields leading to the areas with more than 60% reduced electric field strength in proximity to large blood vessels and clustered vessel structures. In an in vivo rat model of liver IRE ablation, we show that cells located in the proximity of larger vessel structures and in proximity of clustered vessel structures appear less affected by IRE ablation than cells in the tissue parenchyma or in the proximity of small, more isolated vessels. These findings suggest a role for ``electric field sinks'' in local tumors recurrences after IRE and emphasize the importance of the precise mapping of the targeted organ structure and conductivity for planning of electroporation procedures.

  20. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    OpenAIRE

    Qiang Tu; Jia Yin; Jun Fu; Jennifer Herrmann; Yuezhong Li; Yulong Yin; Francis Stewart, A.; Rolf Müller; Youming Zhang

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and re...

  1. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  2. Improvement of thymol properties by complexation with cyclodextrins: in vitro and in vivo studies.

    Science.gov (United States)

    Nieddu, Maria; Rassu, Giovanna; Boatto, Gianpiero; Bosi, Paolo; Trevisi, Paolo; Giunchedi, Paolo; Carta, Antonio; Gavini, Elisabetta

    2014-02-15

    Thymol, an effective agent for microbial diseases, has a low aqueous solubility and a strong bitter/irritating taste. These physicochemical characteristics need to be improved to develop pharmaceutical preparations. This study evaluates whether β-cyclodextrin and a copolymer based on dimethylaminoethyl methacrylate (DMAEMA) interact with thymol in order to control powderization, solubilization, and taste-masking properties. The thymol-β-cyclodextrin complex was prepared by co-precipitation and sealed-heating methods. The DMAEMA copolymer was mixed with the complex using a new approach, instead of spray coating, to decrease thymol volatility. In vivo studies were performed. Sealed-heating is a suitable method for including thymol in β-cyclodextrin with a good loading efficiency; thymol volatility control is achieved by mixing the complex with the DMAEMA copolymer. β-Cyclodextrin accelerates the in vivo thymol absorption rate compared with the free drug; the thymol half-life is still long. Therefore, a low number of administrations per day are required. Although bioavailability is unchanged with respect to free thymol, high doses could be administered of a selected formulation without compromising the compliance. Furthermore, thymol that is not absorbed is held along the intestine, where it can useful in the treatment and/or prevention of intestinal bacterial diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cellulose filtration of blood from malaria patients for improving ex vivo growth of Plasmodium falciparum parasites.

    Science.gov (United States)

    Mkumbaye, Sixbert I; Minja, Daniel T R; Jespersen, Jakob S; Alifrangis, Michael; Kavishe, Reginald A; Mwakalinga, Steven B; Lusingu, John P; Theander, Thor G; Lavstsen, Thomas; Wang, Christian W

    2017-02-10

    Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates from Tanzanian children admitted to hospital was tested. The parasites were allowed to expand in culture without subcultivation until 5 days after admission or the appearance of dead parasites and parasitaemia was determined daily. To investigate whether the filtration had an effect on clonality, P. falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. The cellulose-filtered parasites grew to higher parasitaemia faster than non-filtered parasites seemingly due to a higher development ratio of ring stage parasites progressing into the late stages. Cellulose filtration had no apparent effect on clonality or var gene expression; however, evident differences were observed after only 4 days of culture in both the number of clones and transcript levels of var genes compared to the time of admission. Cellulose column filtration of parasitized blood is a cheap, applicable method for improving cultivation of P. falciparum field isolates for ex vivo based assays; however, when assessing phenotype and genotype of cultured parasites, in general, assumed to represent the in vivo infection, caution is advised.

  4. 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo.

    Science.gov (United States)

    Haraszti, Reka A; Roux, Loic; Coles, Andrew H; Turanov, Anton A; Alterman, Julia F; Echeverria, Dimas; Godinho, Bruno M D C; Aronin, Neil; Khvorova, Anastasia

    2017-07-27

    5΄-Vinylphosphonate modification of siRNAs protects them from phosphatases, and improves silencing activity. Here, we show that 5΄-vinylphosphonate confers novel properties to siRNAs. Specifically, 5΄-vinylphosphonate (i) increases siRNA accumulation in tissues, (ii) extends duration of silencing in multiple organs and (iii) protects siRNAs from 5΄-to-3΄ exonucleases. Delivery of conjugated siRNAs requires extensive chemical modifications to achieve stability in vivo. Because chemically modified siRNAs are poor substrates for phosphorylation by kinases, and 5΄-phosphate is required for loading into RNA-induced silencing complex, the synthetic addition of a 5΄-phosphate on a fully modified siRNA guide strand is expected to be beneficial. Here, we show that synthetic phosphorylation of fully modified cholesterol-conjugated siRNAs increases their potency and efficacy in vitro, but when delivered systemically to mice, the 5΄-phosphate is removed within 2 hours. The 5΄-phosphate mimic 5΄-(E)-vinylphosphonate stabilizes the 5΄ end of the guide strand by protecting it from phosphatases and 5΄-to-3΄ exonucleases. The improved stability increases guide strand accumulation and retention in tissues, which significantly enhances the efficacy of cholesterol-conjugated siRNAs and the duration of silencing in vivo. Moreover, we show that 5΄-(E)-vinylphosphonate stabilizes 5΄ phosphate, thereby enabling systemic delivery to and silencing in kidney and heart. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The role of pH fronts in reversible electroporation.

    Directory of Open Access Journals (Sweden)

    Pablo Turjanski

    Full Text Available We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE and in electrogenetherapy (EGT, it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as t(½, characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT, another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested.

  6. Conditions for transformation of Pasteurella multocida by electroporation.

    Science.gov (United States)

    Jablonski, L; Sriranganathan, N; Boyle, S M; Carter, G R

    1992-01-01

    Conditions for electroporation of plasmid DNA into Pasteurella multocida were determined for use in developing a cloning system to study virulence factors of P. multocida. The highest efficiency of transformation (1.25 x 10(7) cfu/micrograms DNA) was obtained when 7.6 x 10(10) cells of P. multocida strain R473 were electroporated at 12.5 kV/cm (10 ms, 5 ng of pVM109). Transformation efficiencies of cells prepared at mid-log-phase were approximately 0.5 log10 lower than early, late, or stationary phases. Neither pBR322 nor pUC-19 were able to transform strain R473 under these conditions, even when DNA concentrations were increased to 1 microgram. When pBR322 was ligated with a Pasteurella plasmid, pLAR-1, the hybrid was able to transform strain R473 at an efficiency between 4.5 x 10(2) and 8 x 10(4) cfu/micrograms DNA. Six strains of P. multocida including serotypes A, B, D, and E were transformed successfully.

  7. Optimization of a plasmid electroporation protocol for Aeromonas salmonicida subsp. salmonicida.

    Science.gov (United States)

    Dallaire-Dufresne, Stéphanie; Emond-Rheault, Jean-Guillaume; Attéré, Sabrina A; Tanaka, Katherine H; Trudel, Mélanie V; Frenette, Michel; Charette, Steve J

    2014-03-01

    Aeromonas salmonicida subsp. salmonicida is a major fish pathogen. Molecular tools are required to study the virulence and genomic stability of this bacterium. An efficient electroporation-mediated transformation protocol for A. salmonicida subsp. salmonicida would make genetic studies faster and easier. In the present study, we designed the 4.1-kb pSDD1 plasmid as a tool for optimizing an electroporation protocol for A. salmonicida subsp. salmonicida. We systematically tested the electroporation conditions to develop a protocol that generates the maximum number of transformants. Under these optimal conditions (25 kV/cm, 200 Ω, 25 μF), we achieved an electroporation efficiency of up to 1×10(5) CFU/μg DNA. The electroporation protocol was also tested using another plasmid of 10.6-kb and three different strains of A. salmonicida subsp. salmonicida. The strains displayed significant differences in their electro-transformation competencies. Strain 01-B526 was the easiest to electroporate, especially with the pSDD1 plasmid. This plasmid was stably maintained in the 01-B526 transformants, as were the native plasmids, but could be easily cured by removing the selection conditions. This is the first efficient electroporation protocol reported for A. salmonicida subsp. salmonicida, and offers new possibilities for studying this bacterium. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Examination of esthetic improvement and surface alteration following microabrasion in fluorotic human incisors in vivo.

    Science.gov (United States)

    Train, T E; McWhorter, A G; Seale, N S; Wilson, C F; Guo, I Y

    1996-01-01

    Improvement of appearance and alteration in surface enamel was evaluated following microabrasion of teeth with differing degrees of fluorosis stain in vivo. Eighty-two fluorotic permanent maxillary central incisors from 41 patients were divided into categories of mild (32), moderate (30), and severe (20). Teeth received 30-sec applications of PREMA until no stain remained or for a maximum of 10 min of treatment. Ten teeth needed only 5 min of treatment. All others received the maximum. Standardized intraoral photographs and duplicate polysiloxane impressions were taken prior to treatment, after 5 and 10 min of treatment, and at least 4 days after treatment. Slides were randomized and viewed independently by two standardized observers and rated for area of white spot lesions (WS), stain amount (SA), and stain intensity (SI). The Wilcoxon's signed rank test indicated a significant difference in the area of WS (P 25% of the surface was stained. SEMs at 10X magnification were made of the models and randomly rated for type, depth, description, and area of surface defects by the two observers. Mild teeth showed no significant changes from pretreatment to 10 min of treatment. Moderate and severe teeth showed no significant change in type and depth of defects from pretreatment to 10 min of treatment but were significantly worse in description and area of defects. Despite esthetic improvement in all groups, moderate and severe teeth showed more defective surfaces following microabrasion. This technique can only be recommended as definitive treatment for teeth with mild fluorosis.

  9. ELECTROPORATION OF CONFLUENT HM-1 ES CELLS LEADS TO HIGHER AMOUNT COLONIES

    Directory of Open Access Journals (Sweden)

    A.ALENA BENCSIK

    2008-05-01

    Full Text Available Electroporation is used to induce homologous recombination in the genome of the murine ES (embryonic stem cells. Routinelly subconfluent ES cells are recommended to be used in such experiments. Electroporation of immunoglobulin specific targeting vectors with different length of homology leads to reduced number of selected colonies. The enrichment of double selected colonies is high and thus the amount of HM-1 ES cell colonies for the analysis is very low. Here we show that the electroporation of confluent HM-1 ES cells leads to an increased amount of simple and double selected colonies.

  10. Breast tissue ablation with irreversible electroporation in rabbits: A safety and feasibility study.

    Science.gov (United States)

    Zhang, Wenlong; Wang, Wanning; Chai, Wei; Luo, Xiaomei; Li, Jiannan; Shi, Jian; Bi, Liqi; Niu, Lizhi

    2017-01-01

    Irreversible electroporation (IRE) was confirmed to control several solid tumors effectively in vivo. Our preclinical study aimed to assess the feasibility and safety of IRE in the breast of rabbit. Thirty New Zealand white rabbits were randomly divided into 3 groups of 10 rabbits (control group, IRE group A, and B). Two mono-electrode needles were inserted into the breast tissue by percutaneous puncture. Electrocardiogram and vital signs were monitored before, during, and after ablation. Histopathology, immunohistochemistry, and transmission electron microscopy were examined at 0 hours, 12 hours, 24 hours, 4 days, 7 days, 14 days, and 28 days after ablation. All the rabbits survived the procedure with no significant adverse effects. Intra-operative ventricular arrhythmias occurred in 1 rabbit from IRE group B and was immediately relieved after ablation. Reversible subcutaneous hemorrhage was observed in 8 rabbits from IRE group A and 7 rabbits from IRE group B. No skin was burnt, however, pectoralis major muscle injuries were found in all rabbits. Histopathological and ultrastructural examination revealed the coexistence of cell necrosis and apoptosis. HE, TUNEL, and Masson staining revealed breast tissue injury and the recovery of damage by fibrous tissue and granulation tissue. Notably, the structures of mammary gland lobules and interstitial components of the breasts were well preserved. Our study suggests that IRE destroys breast cancer while effectively preserving the skin, the structure of mammary gland lobules, and interstitial components. IRE may be a promising technique to locally control breast cancer and to maintain the esthetic of the breast.

  11. A method to improve the B0 homogeneity of the heart in vivo.

    Science.gov (United States)

    Jaffer, F A; Wen, H; Balaban, R S; Wolff, S D

    1996-09-01

    A homogeneous static (B0) magnetic field is required for many NMR experiments such as echo planar imaging, localized spectroscopy, and spiral scan imaging. Although semi-automated techniques have been described to improve the B0 field homogeneity, none has been applied to the in vivo heart. The acquisition of cardiac field maps is complicated by motion, blood flow, and chemical shift artifact from epicardial fat. To overcome these problems, an ungated three-dimensional (3D) chemical shift image (CSI) was collected to generate a time and motion-averaged B0 field map. B0 heterogeneity in the heart was minimized by using a previous algorithm that solves for the optimal shim coil currents for an input field map, using up to third-order current-bounded shims (1). The method improved the B0 homogenelty of the heart in all 11 normal volunteers studied. After application of the algorithm to the unshimmed cardiac field maps, the standard deviation of proton frequency decreased by 43%, the magnitude 1H spectral linewidth decreased by 24%, and the peak-peak gradient decreased by 35%. Simulations of the high-order (second- and third-order) shims in B0 field correction of the heart show that high order shims are important, resulting for nearly half of the improvement in homogeneity for several subjects. The T2* of the left ventricular anterior wall before and after field correction was determined at 4.0 Tesis. Finally, results show that cardiac shimming is of benefit in cardiac 31P NMR spectroscopy and cardiac echo planar imaging.

  12. Suppression of PC-1/ENPP-1 expression improves insulin sensitivity in vitro and in vivo.

    Science.gov (United States)

    Zhou, Heather H; Chin, Chen-Ni; Wu, Margaret; Ni, Weihua; Quan, Shuo; Liu, Franklin; Dallas-Yang, Qing; Ellsworth, Kenneth; Ho, Thu; Zhang, Aiwu; Natasha, Tajneen; Li, Jing; Chapman, Kevin; Strohl, William; Li, Cai; Wang, I-Ming; Berger, Joel; An, Zhiqiang; Zhang, Bei B; Jiang, Guoqiang

    2009-08-15

    Plasma cell membrane glycoprotein-1, or ectonucleotide pyrophosphatase/phosphodieterase (PC-1/ENPP1) has been shown to inhibit insulin signaling in cultured cells in vitro and in transgenic mice in vivo when overexpressed. Furthermore, both genetic polymorphism and increased expression of PC-1 have been reported to be associated with type 2 diabetes in humans. Thus it was proposed that PC-1 inhibition represents a potential strategy for the treatment of type 2 diabetes. However, it has not been proven that suppression of PC-1 expression or inhibition of its function will actually improve insulin sensitivity. We show in the current study that transient overexpression of PC-1 inhibits insulin-stimulated insulin receptor tyrosine phosphorylation in HEK293 cells, while knockdown of PC-1 with siRNA significantly increases insulin-stimulated Akt phosphorylation in HuH7 human hepatoma cells. Adenoviral vector expressing a short hairpin RNA against mouse PC-1 (PC-1shRNA) was utilized to efficiently knockdown PC-1 expression in the livers of db/db mice. In comparison with db/db mice treated with a control virus, db/db mice treated with the PC-1shRNA adenovirus had approximately 80% lower hepatic PC-1 mRNA levels, approximately 30% lower ambient fed plasma glucose, approximately 25% lower fasting plasma glucose, and significantly improved oral glucose tolerance. Taken together, these results demonstrate that suppression of PC-1 expression improves insulin sensitivity in vitro and in an animal model of diabetes, supporting the proposition that PC-1 inhibition is a potential therapeutic approach for the treatment of type 2 diabetes.

  13. Reduction of fibrosis in a rat model of non-alcoholic steatohepatitis cirrhosis by human HGF gene transfection using electroporation.

    Science.gov (United States)

    Kiyama, Shigeru; Yamada, Takuya; Iwata, Hisashi; Sekino, Takafumi; Matsuo, Hiroshi; Yoshida, Naomasa; Miyahara, Toshiyuki; Umeda, Yukio; Matsuno, Yukihiro; Kimura, Masaki; Matsumoto, Kunio; Nakamura, Toshikazu; Takemura, Hirofumi

    2008-08-01

    To study the histological changes caused by transfection of the hepatocyte growth factor (HGF) gene using electroporation (EP) in a non-alcoholic steatohepatitis (NASH) cirrhotic liver model. NASH cirrhotic livers were prepared by administering a choline-deficient diet to 5-week-old male Wister rats for 12 weeks. Three groups of rats were used: rats in the G(+) group were transfected with the GFP gene using EP, rats in the H(+) group were transfected with the HGF gene using EP, and rats in the H(-) group were only injected with the HGF gene. Rats were sacrificed 2 days after gene transfection, and the Azan positive rate (APR) and Sudan positive rate (SPR) were calculated to evaluate fibrosis and fatty changes. The APR of the NASH cirrhotic livers was significantly higher than that in the normal livers. The APR did not decrease in the G(+) group and the H(-) group, but decreased significantly in the nonelectroporated as well as electroporated areas of the H(+) group. For SPR, there were no significant differences between the G(+), H(-), and H(+) groups. The improvement of fibrosis was not significant when a direct injection of the HGF gene was used alone, but it was enhanced by the concomitant use of EP. However, no efficacy was observed in fat components. These findings suggest that transfection of the HGF gene by EP may lead to an improvement of irreversible cirrhotic livers to reversible fatty livers.

  14. Efficient genetic engineering of human intestinal organoids using electroporation.

    Science.gov (United States)

    Fujii, Masayuki; Matano, Mami; Nanki, Kosaku; Sato, Toshiro

    2015-10-01

    Gene modification in untransformed human intestinal cells is an attractive approach for studying gene function in intestinal diseases. However, because of the lack of practical tools, such studies have largely depended upon surrogates, such as gene-engineered mice or immortalized human cell lines. By taking advantage of the recently developed intestinal organoid culture method, we developed a methodology for modulating genes of interest in untransformed human colonic organoids via electroporation of gene vectors. Here we describe a detailed protocol for the generation of intestinal organoids by culture with essential growth factors in a basement membrane matrix. We also describe how to stably integrate genes via the piggyBac transposon, as well as precise genome editing using the CRISPR-Cas9 system. Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 weeks.

  15. Lightning-triggered electroporation and electrofusion as possible contributors to natural HGT among prokaryotes

    CERN Document Server

    Kotnik, Tadej

    2012-01-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism - cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and...

  16. Theoretical analysis of AC electric field transmission into biological tissue through frozen saline for electroporation.

    Science.gov (United States)

    Xiao, Chunyan; Rubinsky, Boris

    2014-12-01

    An analytical model was used to explore the feasibility of sinusoidal electric field transmission across a frozen saline layer into biological tissue. The study is relevant to electroporation and permeabilization of the cell membrane by electric fields. The concept was analyzed for frequencies in the range of conventional electroporation frequencies and electric field intensity. Theoretical analysis for a variety of tissues show that the transmission of electroporation type electric fields through a layer of frozen saline into tissue is feasible and the behavior of this composite system depends on tissue type, frozen domain temperature, and frequency. Freezing could become a valuable method for adherence of electroporation electrodes to moving tissue surfaces, such as the heart in the treatment of atrial fibrillation or blood vessels for the treatment of restenosis. © 2014 Wiley Periodicals, Inc.

  17. What you always needed to know about electroporation based DNA vaccines

    DEFF Research Database (Denmark)

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    , and it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment efforts......Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle...... on vaccine development. The purpose of this review is to give a succinct but comprehensive overview of electroporation as a delivery modality including electrotransfer to skin and muscle. As well, this review will speculate and discuss future uses for this powerful electrotransfer technology....

  18. Effective delivery of DNA into tumor cells and tissues by electroporation of polymer-DNA complex.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Niidome, Takuro; Katayama, Yoshiki

    2008-07-08

    Electroporation is a useful means for non-viral gene delivery. Here, we investigated the use of electroporation to deliver polymer-DNA complexes into living cells using a protein kinase C (PKC)alpha-responsive polymer. The polymer was complexed with a luciferase-encoding DNA and electroporated into B16 melanoma cells. Gene expression from polymer-DNA complexes was 3- to 5-fold higher than from naked DNA. Moreover, after introduction of the polymer-DNA complex into tissues, luciferase levels were >2-fold higher in B16 melanoma tumors than in normal skin tissue. These results suggest that the combination of our polymer and electroporation is useful for the effective delivery of DNA into tumors.

  19. Confirming improved detection of gadolinium in bone using in vivo XRF.

    Science.gov (United States)

    Lord, M L; McNeill, F E; Gräfe, J L; Galusha, A L; Parsons, P J; Noseworthy, M D; Howard, L; Chettle, D R

    2017-02-01

    The safety of using Gd in MRI contrast agents has recently been questioned, due to recent evidence of the retention of Gd in individuals with healthy renal function. Bone has proven to be a storage site for Gd, as unusually high concentrations have been measured in femoral heads of patients undergoing hip replacement surgery, as well as in autopsy samples. All previous measurements of Gd in bone have been invasive and required the bone to be removed from the body. X-ray fluorescence (XRF) offers a non-invasive and non-destructive method for carrying out in vivo measurements of Gd in humans. An updated XRF system provides improved detection limits in a short measurement time of 30-min. A new four-detector system and higher activity Cd-109 excitation source of 5GBq results in minimum detection limits (MDLs) of 1.64-1.72μgGd/g plaster for an average overlaying tissue thickness of the tibia. These levels are well within the range of previous in vitro Gd measurements. Additional validation through comparison with ICP-MS measurements has confirmed the ability of the XRF system for detecting Gd further, proving it is a feasible system to carry out human measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hyaluronan with dextran added to therapeutic lung surfactants improves effectiveness in vitro and in vivo.

    Science.gov (United States)

    Lu, Karen W; Taeusch, H William; Clements, John A

    2013-01-01

    Surfactants in current clinical use are largely ineffective in treating acute lung injury (ALI)/ acute respiratory distress syndrome. In part, this ineffectiveness is due to inactivation of surfactant by serum leakage into the alveoli. Previously, we reported that adding hyaluronan and some nonionic polymers to synthetic lipids combined with native SP-B and SP-C enhanced surface activity. In this study, we first tested two therapeutic lung surfactants and then retested after adding hyaluronan, polyethylene glycol or dextran alone or in two-polymer combinations including hyaluronan in the absence or presence of serum. Surface activities were measured in a modified bubble surfactometer. Results indicate that the inhibition threshold (defined as the amount of serum required to produce a minimum surface tension above 10 mN/m after 5 minutes of cycling) was 35 times higher with hyaluronan plus dextran added to Infasurf than with Infasurf alone, and better than all other mixtures tested. The threshold for Survanta with hyaluronan plus polyethylene glycol was 7 times higher than Survanta alone. We next tested selected surfactant mixtures in an animal model that mimicked ALI. All measurements of lung function showed significant improvement (P ≤ .05) with hyaluronan, or with hyaluronan and dextran added to Infasurf compared to Infasurf alone. Also, for these two groups, lung function was still improving at the end of the experiment. We conclude that certain polymers added to clinical surfactants can greatly increase resistance to inactivation in vitro, while in vivo, both Infasurf mixtures containing hyaluronan tended to normalize measures of lung function unlike other mixtures tested.

  1. Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance.

    Science.gov (United States)

    Latif, Sumera; Abbas, Nasir; Hussain, Amjad; Arshad, Muhammad Sohail; Bukhari, Nadeem Irfan; Afzal, Hafsa; Riffat, Sualeha; Ahmad, Zeeshan

    2018-02-15

    Paracetamol, a frequently used antipyretic and analgesic drug, has poor compression moldability owing to its low plasticity. In this study, new co-crystals of paracetamol (PCM) with caffeine (as a co-former) were prepared and delineated. Co-crystals exhibited improved compaction and mechanical behavior. A screening study was performed by utilizing a number of methods namely dry grinding, liquid assisted grinding (LAG), solvent evaporation (SE), and anti-solvent addition using various weight ratios of starting materials. LAG and SE were found successful in the screening study. Powders at 1:1 and 2:1 weight ratio of PCM/CAF by LAG and SE, respectively, resulted in the formation of co-crystals. Samples were characterized by PXRD, DSC, and ATR-FTIR techniques. Compressional properties of PCM and developed co-crystals were analyzed by in-die heckle model. Mean yield pressure (Py), an inverse measure of plasticity, obtained from the heckle plots decreased significantly (p dissolution profile of co-crystals showed up to 2.84-fold faster dissolution than PCM and physical mixtures in phosphate buffer pH 6.8 at 37 °C. In addition, co-crystals formulated into tablets by direct compression method showed better mechanical properties like hardness and tensile strength. In vitro dissolution studies on tablets also showed enhanced dissolution profiles (∼90-97%) in comparison to the tablets of PCM prepared by direct compression (∼55%) and wet granulation (∼85%) methods. In a single dose sheep model study, co-crystals showed up to twofold increase in AUC and C max . A significant (p < .05) decrease in clearance as compared to pure drug was also recorded. In conclusion, new co-crystals of PCM were successfully prepared with improved tabletability in vitro and in vivo profile. Enhancement in AUC and C max of PCM by co-crystallization might suggest the dose reduction and avoidance of side effects.

  2. Electroporation for drug and gene delivery in the clinic: doctors go electric

    DEFF Research Database (Denmark)

    Gehl, J.

    2008-01-01

    Electroporation is a unique system for drug and gene delivery, as it is possible to very specifically target certain tissues within the body with whatever drug, gene, isotope, or other product is desired in a specific situation. An increasing number of clinical trials are being launched, and soph......, and sophistication of equipment and protocols continues. This chapter reviews present knowledge from clinical trials, describes important issues in the patient management when using electroporation, and outlines future perspectives of the technology Udgivelsesdato: 2008...

  3. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

    OpenAIRE

    Calin, Violeta L.; Mihailescu, Mona; Mihale, Nicolae; Baluta, Alexandra V.; Kovacs, Eugenia; Savopol, Tudor; Moisescu, Mihaela G.

    2017-01-01

    Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an ?off-axis? DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cel...

  4. High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA.

    OpenAIRE

    Miller, J F; Dower, W J; Tompkins, L S

    1988-01-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of...

  5. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.

    Science.gov (United States)

    Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D

    2014-04-23

    The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.

  6. Exposure-in-vivo containing interventions to improve work functioning of workers with anxiety disorder: a systematic review

    Science.gov (United States)

    2010-01-01

    Background Anxiety disorders are associated with functional disability, sickness absence, and decreased productivity. Effective treatments of anxiety disorders can result in remission of symptoms. However the effects on work related outcomes are largely unknown. Exposure in vivo is potentially well fit to improve work-related outcomes. This study systematically reviews the effectiveness of exposure-in-vivo containing interventions in reducing work-related adverse outcomes in workers with anxiety disorders. Methods A systematic study search was conducted in Medline, Cinahl, Embase and Psycinfo. Two reviewers independently extracted data and from each study assessed the quality of evidence by using the GRADE approach. We performed a meta-analysis if data showed sufficient clinical homogeneity. Results Seven studies containing 11 exposure-in-vivo interventions were included. Four studies were focused on Obsessive Compulsive Disorder (OCD), two on Post Traumatic Stress Disorder (PTSD), and one on a mixed group of OCD and severe phobias. The studies were grouped according to type of anxiety disorder and subsequently according to type of comparisons. For OCD, exposure-in-vivo containing interventions can yield better work-related outcomes compared to medication (SSRIs) and relaxation but not better compared to response prevention. The results on anxiety outcomes were similar. The net contribution of exposure in vivo in two OCD intervention programs is also presented as a meta-analysis and shows significant positive results on work role limitations. The calculated pooled effect size with 95% confidence interval was 0.72 (0.28, 1.15). For PTSD, exposure-in-vivo containing interventions can yield better work-related and anxiety-related outcomes compared to a waiting-list but not better compared to imaginal exposure. Conclusions Exposure in vivo as part of an anxiety treatment can reduce work-related adverse outcomes in workers with OCD and PTSD better than various other

  7. Exposure-in-vivo containing interventions to improve work functioning of workers with anxiety disorder: a systematic review

    Directory of Open Access Journals (Sweden)

    Nieuwenhuijsen Karen

    2010-10-01

    Full Text Available Abstract Background Anxiety disorders are associated with functional disability, sickness absence, and decreased productivity. Effective treatments of anxiety disorders can result in remission of symptoms. However the effects on work related outcomes are largely unknown. Exposure in vivo is potentially well fit to improve work-related outcomes. This study systematically reviews the effectiveness of exposure-in-vivo containing interventions in reducing work-related adverse outcomes in workers with anxiety disorders. Methods A systematic study search was conducted in Medline, Cinahl, Embase and Psycinfo. Two reviewers independently extracted data and from each study assessed the quality of evidence by using the GRADE approach. We performed a meta-analysis if data showed sufficient clinical homogeneity. Results Seven studies containing 11 exposure-in-vivo interventions were included. Four studies were focused on Obsessive Compulsive Disorder (OCD, two on Post Traumatic Stress Disorder (PTSD, and one on a mixed group of OCD and severe phobias. The studies were grouped according to type of anxiety disorder and subsequently according to type of comparisons. For OCD, exposure-in-vivo containing interventions can yield better work-related outcomes compared to medication (SSRIs and relaxation but not better compared to response prevention. The results on anxiety outcomes were similar. The net contribution of exposure in vivo in two OCD intervention programs is also presented as a meta-analysis and shows significant positive results on work role limitations. The calculated pooled effect size with 95% confidence interval was 0.72 (0.28, 1.15. For PTSD, exposure-in-vivo containing interventions can yield better work-related and anxiety-related outcomes compared to a waiting-list but not better compared to imaginal exposure. Conclusions Exposure in vivo as part of an anxiety treatment can reduce work-related adverse outcomes in workers with OCD and PTSD

  8. Dual-porosity model of solute diffusion in biological tissue modified by electroporation.

    Science.gov (United States)

    Mahnič-Kalamiza, Samo; Miklavčič, Damijan; Vorobiev, Eugène

    2014-07-01

    In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion. We use a dual-porosity approach to describe solute diffusion in electroporated biological tissue. The cellular membrane presents a hindrance to solute transport into the extracellular space and is modeled as electroporation-dependent porosity, assigned to the intracellular space (the finite rate of mass transfer within an individual cell is not accounted for, for reasons that we elaborate on). The second porosity is that of the extracellular space, through which solute vacates a block of tissue. The model can be used to study extraction out of or introduction of solutes into tissue, and we give three examples of application, a full account of model construction, validation with experiments, and a parametrical analysis. To facilitate easy implementation and experimentation by the reader, the complete derivation of the analytical solution for a simplified example is presented. Validation is done by comparing model results to experimentally-obtained data; we modeled kinetics of sucrose extraction by diffusion from sugar beet tissue in laboratory-scale experiments. The parametrical analysis demonstrates the importance of selected physicochemical and geometrical properties of the system, illustrating possible outcomes of applying the model to different electroporation applications. The proposed model is a new platform that supports rapid extension by state-of-the-art models of electroporation phenomena, developed as latest achievements in the field of electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of in ovo electroporation on endogenous gene expression: genome-wide analysis

    Directory of Open Access Journals (Sweden)

    Chambers David

    2011-04-01

    Full Text Available Abstract Background In ovo electroporation is a widely used technique to study gene function in developmental biology. Despite the widespread acceptance of this technique, no genome-wide analysis of the effects of in ovo electroporation, principally the current applied across the tissue and exogenous vector DNA introduced, on endogenous gene expression has been undertaken. Here, the effects of electric current and expression of a GFP-containing construct, via electroporation into the midbrain of Hamburger-Hamilton stage 10 chicken embryos, are analysed by microarray. Results Both current alone and in combination with exogenous DNA expression have a small but reproducible effect on endogenous gene expression, changing the expression of the genes represented on the array by less than 0.1% (current and less than 0.5% (current + DNA, respectively. The subset of genes regulated by electric current and exogenous DNA span a disparate set of cellular functions. However, no genes involved in the regional identity were affected. In sharp contrast to this, electroporation of a known transcription factor, Dmrt5, caused a much greater change in gene expression. Conclusions These findings represent the first systematic genome-wide analysis of the effects of in ovo electroporation on gene expression during embryonic development. The analysis reveals that this process has minimal impact on the genetic basis of cell fate specification. Thus, the study demonstrates the validity of the in ovo electroporation technique to study gene function and expression during development. Furthermore, the data presented here can be used as a resource to refine the set of transcriptional responders in future in ovo electroporation studies of specific gene function.

  10. [Construction and improvement of animal models with different positional osseous metastasis of prostate cancer in vivo].

    Science.gov (United States)

    Bi, Y X; Xiao, M H; Zhang, N N; Li, X Y; Mao, X P; Zhang, K; Zhang, Z R; Zhao, L Y

    2017-08-18

    To provide an important tool for the study of diagnose and treatment of prostate cancer (PCa) osseous metastasis and change of bone stress force on prostate cancer (PCa) osseous metastasis and a platform, which is more congruous to clinical process, for prevention and cure of neoplastic bone metastases, and to carry out the construction and improvement of animal models of PCa with different positional osseous metastasis in vivo. Different gradient concentrations of RM-1 cells were inoculated into the cavity of left femoral bone or lumbar vertebra of mice (C57BL/6) respectively. The change of mouse activity, tumor formation, tumor size and survival time were observed respectively. And the femur tissue and spinal tissue were obtained from the mice after death. The gray value of iconography were measured by imageological examination of femur tissue, and the final histopathological examination were taken to determine the tumor type in both femur and spinal tissue. The tumor growth could be touched at the puncture site in all the mice after inoculated for 7 days. There were no obvious differences in the time of tumorigenesis, the rate of tumor growth and tumor size among the mice in the same group (P>0.05). As the result, the construction femoral bone and lumbar vertebra metastatic models of PCa had been confirmed by iconography and pathology detection. At the same time, the survival time of the mice inoculated with low concentrations of PCa cells was obviously longer than that of high concentrations of PCa cells ( at least 2 weeks longer). The animal models with different positional osseous metastasis (limbs and axial skeleton) of PCa using the same PCa cells (RM-1) had been first constructed successfully in our study. At the same time, a high success rate of construction of PCa animal model with bone metastasis was obtained by femoral bone marrow cavity injection of PCa cells. The rate of tumor growth was rapid, animal survival time was appropriate, and the PCa animal

  11. Kaempferol-Phospholipid Complex: Formulation, and Evaluation of Improved Solubility, In Vivo Bioavailability, and Antioxidant Potential of Kaempferol

    Directory of Open Access Journals (Sweden)

    Darshan R. Telange

    2016-12-01

    Full Text Available The current work describes the formulation and evaluation of a phospholipid complex of kaempferol to enhance the latter’s aqueous solubility, in vitro dissolution rate, in vivo antioxidant and hepatoprotective activities, and oral bioavailability. The kaempferol-phospholipid complex was synthesized using a freeze-drying method with the formulation being optimized using a full factorial design (32 approach. Our results include the validation of the mathematical model in order to ascertain the role of specific formulation and process variables that contribute favorably to the formulation’s development. The final product was characterized and confirmed by Differential Scanning Calorimetry (DSC, Fourier Transform Infrared Spectroscopy (FTIR, Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR, and Powder X-ray Diffraction (PXRD analysis. The aqueous solubility and the in vitro dissolution rate were enhanced compared to that of pure kaempferol. The in vivo antioxidant properties of the kaempferol-phospholipid complex were evaluated by measuring its impact on carbon tetrachloride (CCl4-intoxicated rats. The optimized phospholipid complex improved the liver function test parameters to a significant level by restoration of all elevated liver marker enzymes in CCl4-intoxicated rats. The complex also enhanced the in vivo antioxidant potential by increasing levels of GSH (reduced glutathione, SOD (superoxide dismutase, catalase and decreasing lipid peroxidation, compared to that of pure kaempferol. The final optimized phospholipid complex also demonstrated a significant improvement in oral bioavailability demonstrated by improvements to key pharmacokinetic parameters, compared to that of pure kaempferol.

  12. Breast tissue ablation with irreversible electroporation in rabbits: A safety and feasibility study.

    Directory of Open Access Journals (Sweden)

    Wenlong Zhang

    Full Text Available Irreversible electroporation (IRE was confirmed to control several solid tumors effectively in vivo. Our preclinical study aimed to assess the feasibility and safety of IRE in the breast of rabbit.Thirty New Zealand white rabbits were randomly divided into 3 groups of 10 rabbits (control group, IRE group A, and B. Two mono-electrode needles were inserted into the breast tissue by percutaneous puncture. Electrocardiogram and vital signs were monitored before, during, and after ablation. Histopathology, immunohistochemistry, and transmission electron microscopy were examined at 0 hours, 12 hours, 24 hours, 4 days, 7 days, 14 days, and 28 days after ablation.All the rabbits survived the procedure with no significant adverse effects. Intra-operative ventricular arrhythmias occurred in 1 rabbit from IRE group B and was immediately relieved after ablation. Reversible subcutaneous hemorrhage was observed in 8 rabbits from IRE group A and 7 rabbits from IRE group B. No skin was burnt, however, pectoralis major muscle injuries were found in all rabbits. Histopathological and ultrastructural examination revealed the coexistence of cell necrosis and apoptosis. HE, TUNEL, and Masson staining revealed breast tissue injury and the recovery of damage by fibrous tissue and granulation tissue. Notably, the structures of mammary gland lobules and interstitial components of the breasts were well preserved.Our study suggests that IRE destroys breast cancer while effectively preserving the skin, the structure of mammary gland lobules, and interstitial components. IRE may be a promising technique to locally control breast cancer and to maintain the esthetic of the breast.

  13. Irreversible electroporation in primary and metastatic hepatic malignancies: A review.

    Science.gov (United States)

    Lyu, Tianchu; Wang, Xifu; Su, Zhanliang; Shangguan, Junjie; Sun, Chong; Figini, Matteo; Wang, Jian; Yaghmai, Vahid; Larson, Andrew C; Zhang, Zhuoli

    2017-04-01

    Liver cancer makes up a huge percentage of cancer mortality worldwide. Irreversible electroporation (IRE) is a relatively new minimally invasive nonthermal ablation technique for tumors that applies short pulses of high frequency electrical energy to irreversibly destabilize cell membrane to induce tumor cell apoptosis. This review aims to investigate the studies regarding the use of IRE treatment in liver tumors and metastases to liver. We searched PubMed for all of IRE relevant English language articles published up to September 2016. They included clinical trials, experimental studies, observational studies, and reviews. This review manuscript is nothing with ethics issues and ethical approval is not provided. In recent years, increasingly more studies in both preclinical and clinical settings have been conducted to examine the safety and efficacy of this new technique, shedding light on the crucial advantages and disadvantages that IRE possesses. Unlike the current leading thermal ablation techniques, such as radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation, IRE requires shorter ablation time without damaging adjacent important vital structures. Although IRE has successfully claimed its valuable status in the field of hepatic cancer treatment both preclinical and clinical settings. In order to systemically test and establish its safety and efficacy for clinical applications, more studies still need to be conducted.

  14. Transfer of Foreign DNA into Aquatic Animals by Electroporation

    Science.gov (United States)

    Chen, Thomas T.; Chen, Maria J.; Chiou, Tzu-Ting; Lu, J. K.

    Aquatic animals into which a foreign gene or a non-coding DNA fragment is artificially introduced and integrated in their genomes are called transgenic aquatic animals. Since 1985, a wide range of transgenic aquatic animal species have been produced mainly by microinjecting or electroporating homologous or heterologous transgenes into newly fertilized or unfertilized eggs and sometimes, sperm (for review, Chen and Powers, 1990; Hackett, 1993; Chiou et al., 2005). To produce a desired transgenic aquatic animal species, several factors should be considered. First, could the reproduction cycle of the aquatic animal species under consideration be completed in captivity? Second, a specific gene construct must be designed based on the special requirements of each study. For example, the gene construct may contain an open reading frame encoding a gene product of interest and regulatory elements that regulate the expression of the gene in a temporal, spatial and/or devel opmental manner. Third, an efficient method for delivering the transgene construct needs to be identified. Fourth, since not all instances of gene transfer are efficient, a screening method must be adopted for identifying transgenic individuals.

  15. The effects of irreversible electroporation (IRE on nerves.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available BACKGROUND: If a critical nerve is circumferentially involved with tumor, radical surgery intended to cure the cancer must sacrifice the nerve. Loss of critical nerves may lead to serious consequences. In spite of the impressive technical advancements in nerve reconstruction, complete recovery and normalization of nerve function is difficult to achieve. Though irreversible electroporation (IRE might be a promising choice to treat tumors near or involved critical nerve, the pathophysiology of the nerve after IRE treatment has not be clearly defined. METHODS: We applied IRE directly to a rat sciatic nerve to study the long term effects of IRE on the nerve. A sequence of 10 square pulses of 3800 V/cm, each 100 µs long was applied directly to rat sciatic nerves. In each animal of group I (IRE the procedure was applied to produce a treated length of about 10 mm. In each animal of group II (Control the electrodes were only applied directly on the sciatic nerve for the same time. Electrophysiological, histological, and functional studies were performed on immediately after and 3 days, 1 week, 3, 5, 7 and 10 weeks following surgery. FINDINGS: Electrophysiological, histological, and functional results show the nerve treated with IRE can attain full recovery after 7 weeks. CONCLUSION: This finding is indicative of the preservation of nerve involving malignant tumors with respect to the application of IRE pulses to ablate tumors completely. In summary, IRE may be a promising treatment tool for any tumor involving nerves.

  16. Multimodal endoscopic imaging and Raman spectroscopy for improving in vivo diagnosis of gastric malignancies during clinical gastroscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Lin, Kan; Ho, Khek Yu; Yeoh, Khay Guan; Teh, Ming; So, Jimmy Bok Yan; Huang, Zhiwei

    2010-12-01

    A near-infrared Raman spectroscopy system integrated with multimodal endoscopic imaging has been developed for in vivo diagnosis and detection of gastric malignancies during clinical gastroscopic examinations. In this study, 1238 high-quality in vivo Raman spectra in the range 800-1800 cm-1 were acquired from gastric normal and malignant tissue within 0.5 second from 81 patients under the guidance of white-light (WL), narrow-band (NB) and autofluorescence (AF) imaging during clinical endoscopy. Significant differences in Raman spectral shapes and intensities between normal and malignant gastric mucosal tissue were observed, particularly in the spectral ranges 800-900, 1000-1100, 1250-1450 and 1600-1800 cm-1, which primarily contain signals related to proteins, nucleic acids and lipids. Partial least squares discriminant analysis (PLS-DA) could identify in vivo Raman spectra of neoplasia with a sensitivity of 82.9% and specificity of 88.9% using leave-one-tissue site out cross validation. This study demonstrates that in vivo Raman spectroscopy in conjunction with multimodal endoscopic imaging modalities holds a great promise for improving the early diagnosis of gastric malignancies.

  17. Irreversible Electroporation in the Liver: Contrast-enhanced Inversion-Recovery MR Imaging Approaches to Differentiate Reversibly Electroporated Penumbra from Irreversibly Electroporated Ablation Zones

    Science.gov (United States)

    Guo, Yang; Zhang, Yue; Nijm, Grace M.; Sahakian, Alan V.; Yang, Guang-Yu; Omary, Reed A.

    2011-01-01

    Purpose: To evaluate the use of contrast material–enhanced magnetic resonance (MR) imaging with conventional T1-weighted gradient-recalled echo (GRE) and inversion-recovery (IR)-prepared GRE methods to quantitatively measure the size of irreversible electroporation (IRE) ablation zones in the liver in a rat model. Materials and Methods: All studies were approved by the institutional animal care and use committee and were performed in accordance with institutional guidelines. Seventeen adult male Sprague-Dawley rats were divided into four groups. Rats in groups 1–3 (n = 15 total) underwent IRE performed by using different IRE parameters after gadopentetate dimeglumine administration. Rats in group 4 (n = 2) underwent IRE ablation without prior gadopentetate dimeglumine injection to serve as control animals. MR imaging measurements (with conventional T1-weighted GRE and IR-prepared GRE methods) were performed 2 hours after IRE to predict the IRE ablation zones, which were correlated with pathology-confirmed necrosis areas 24 hours after IRE by using the Spearman correlation coefficient. Bland-Altman plots were also generated to investigate the agreement between MR imaging–measured ablation zones and reference standard histologic measurements of corresponding ablation zones. Results: The necrotic areas measured on the pathology images were well correlated with the hyperintense regions measured on T1-weighted GRE images (r = 0.891, P < .001) and normal tissue–nulled IR images (r = 0.874, P < .001); pathology measurements were also well correlated with the smaller hyperintense regions measured on those IR images with inversion times specifically selected to null signal from the peripheral penumbra surrounding the ablation zone (r = 0.939, P < .001). Bland-Altman plots indicated that these penumbra-nulled IR images provided more accurate predictions of IRE ablation zones, with T1-weighted GRE measurements tending to overestimate ablation zone sizes. Conclusion

  18. Use of conductive gels for electric field homogenization increases the antitumor efficacy of electroporation therapies

    Science.gov (United States)

    Ivorra, Antoni; Al-Sakere, Bassim; Rubinsky, Boris; Mir, Lluis M.

    2008-11-01

    Electroporation is used in tissue for gene therapy, drug therapy and minimally invasive tissue ablation. The electrical field that develops during the application of the high voltage pulses needs to be precisely controlled. In the region to be treated, it is desirable to generate a homogeneous electric field magnitude between two specific thresholds whereas in other regions the field magnitude should be as low as possible. In the case of irregularly shaped tissue structures, such as bulky tumors, electric field homogeneity is almost impossible to be achieved with current electrode arrangements. We propose the use of conductive gels, matched to the conductivity of the tissues, to fill dead spaces between plate electrodes gripping the tissue so that the electric field distribution becomes less heterogeneous. Here it is shown that this technique indeed improves the antitumor efficacy of electrochemotherapy in sarcomas implanted in mice. Furthermore, we analyze, through finite element method simulations, how relevant the conductivity mismatches are. We found that conductivity mismatching errors are surprisingly well tolerated by the technique. Gels with conductivities ranging from 5 mS cm-1 to 10 mS cm-1 will be a proper solution for most cases.

  19. Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures.

    Science.gov (United States)

    Nishikawa, Shin; Hirashima, Naohide; Tanaka, Masahiko

    2014-09-01

    The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.

  20. Noninvasive optical diagnostics of enhanced green fluorescent protein expression in skeletal muscle for comparison of electroporation and sonoporation efficiencies

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Kadikis, Roberts; Saknīte, Inga; Baltušnikas, Juozas; Kilikevičius, Audrius; Lihachev, Alexey; Petrovska, Ramona; Jakovels, Dainis; Šatkauskas, Saulius

    2016-04-01

    We highlight the options available for noninvasive optical diagnostics of reporter gene expression in mouse tibialis cranialis muscle. An in vivo multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) expression, providing information on location and duration of EGFP expression and allowing quantification of EGFP expression levels. For EGFP coding plasmid (pEGFP-Nuc Vector, 10 μg/50 ml) transfection, we used electroporation or ultrasound enhanced microbubble cavitation [sonoporation (SP)]. The transcutaneous EGFP fluorescence in live mice was monitored over a period of one year using the described parameters: area of EGFP positive fibers, integral intensity, and mean intensity of EGFP fluorescence. The most efficient transfection of EGFP coding plasmid was achieved, when one high voltage and four low voltage electric pulses were applied. This protocol resulted in the highest short-term and long-term EGFP expression. Other electric pulse protocols as well as SP resulted in lower fluorescence intensities of EGFP in the transfected area. We conclude that noninvasive multispectral imaging technique combined with fluorescence spectroscopy point measurements is a suitable method to estimate the dynamics and efficiency of reporter gene transfection in vivo.

  1. GM-CSF Enhances Macrophage Glycolytic Activity In Vitro and Improves Detection of Inflammation In Vivo.

    Science.gov (United States)

    Singh, Parmanand; González-Ramos, Silvia; Mojena, Marina; Rosales-Mendoza, César Eduardo; Emami, Hamed; Swanson, Jeffrey; Morss, Alex; Fayad, Zahi A; Rudd, James H F; Gelfand, Jeffrey; Paz-García, Marta; Martín-Sanz, Paloma; Boscá, Lisardo; Tawakol, Ahmed

    2016-09-01

    (18)F-FDG accumulates in glycolytically active tissues and is known to concentrate in tissues that are rich in activated macrophages. In this study, we tested the hypotheses that human granulocyte-macrophage colony-stimulating factor (GM-CSF), a clinically used cytokine, increases macrophage glycolysis and deoxyglucose uptake in vitro and acutely enhances (18)F-FDG uptake within inflamed tissues such as atherosclerotic plaques in vivo. In vitro experiments were conducted on human macrophages whereby inflammatory activation and uptake of radiolabeled 2-deoxyglucose was assessed before and after GM-CSF exposure. In vivo studies were performed on mice and New Zealand White rabbits to assess the effect of GM-CSF on (18)F-FDG uptake in normal versus inflamed arteries, using PET. Incubation of human macrophages with GM-CSF resulted in increased glycolysis and increased 2-deoxyglucose uptake (P GM-CSF administration resulted in a 70% and 73% increase (P GM-CSF substantially augments glycolytic flux in vitro (via a mechanism dependent on ubiquitous type 6-phosphofructo-2-kinase and tumor necrosis factor-α) and increases (18)F-FDG uptake within inflamed atheroma in vivo. These findings demonstrate that GM-CSF can be used to enhance detection of inflammation. Further studies should explore the role of GM-CSF stimulation to enhance the detection of inflammatory foci in other disease states. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Local electroporation of a single cell using a scanning ion conductance microscope

    Science.gov (United States)

    Iwata, Futoshi; Yamazaki, Koji; Ishizaki, Kimihiro; Ushiki, Tatuo

    2014-03-01

    We developed a novel electroporation technique for molecular delivery into a single cell. A nanopipette, a thermally pulled glass capillary, is prepared as to act as a pair of tiny electrodes for single-cell electroporation. An Ag/AgCl wire is inserted into the nanopipette, and the outside edge of the nanopipette is coated by Ag sputtering. Electric pulses are applied between the outside and inside electrodes to form a local electric field at the edge of the nanopipette. To position the pipette edge in the vicinity of the cell membrane, we control the probe-surface distance using a scanning ion conductance microscope (SICM). The SICM technique achieves non-contact approach of the nanopipette edge on the cell membrane, which allows low-invasive electroporation of a single cell. As a demonstration of this technique, a fluorescent molecule of propidium iodide was successfully delivered into a single HeLa cell.

  3. Production of Spherical Ablations Using Nonthermal Irreversible Electroporation: A Laboratory Investigation Using a Single Electrode and Grounding Pad.

    Science.gov (United States)

    Sano, Michael B; Fan, Richard E; Hwang, Gloria L; Sonn, Geoffrey A; Xing, Lei

    2016-09-01

    To mathematically model and test ex vivo a modified technique of irreversible electroporation (IRE) to produce large spherical ablations by using a single probe. Computed simulations were performed by using varying voltages, electrode exposure lengths, and tissue types. A vegetable (potato) tissue model was then used to compare ablations created by conventional and high-frequency IRE protocols by using 2 probe configurations: a single probe with two collinear electrodes (2EP) or a single electrode configured with a grounding pad (P+GP). The new P+GP electrode configuration was evaluated in ex vivo liver tissue. The P+GP configuration produced more spherical ablation volumes than the 2EP configuration in computed simulations and tissue models. In prostate tissue, computed simulations predicted ablation volumes at 3,000 V of 1.6 cm(3) for the P+GP configurations, compared with 0.94 cm(3) for the 2EP configuration; in liver tissue, the predicted ablation volumes were 4.7 times larger than those in the prostate. Vegetable model studies verify that the P+GP configuration produces larger and more spherical ablations than those produced by the 2EP. High-frequency IRE treatment of ex vivo liver with the P+GP configuration created a 2.84 × 2.21-cm ablation zone. Computer modeling showed that P+GP configuration for IRE procedures yields ablations that are larger than the 2EP configuration, creating substantial ablation zones with a single electrode placement. When tested in tissue models and an ex vivo liver model, the P+GP configuration created ablation zones that appear to be of clinically relevant size and shape. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  4. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer

    Science.gov (United States)

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism - cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.

  5. Electroporation induced by internal defibrillation shock with and without recovery in intact rabbit hearts

    Science.gov (United States)

    Wang, Yves T.; Efimov, Igor R.

    2012-01-01

    Defibrillation shocks from implantable cardioverter defibrillators can be lifesaving but can also damage cardiac tissues via electroporation. This study characterizes the spatial distribution and extent of defibrillation shock-induced electroporation with and without a 45-min postshock period for cell membranes to recover. Langendorff-perfused rabbit hearts (n = 31) with and without a chronic left ventricular (LV) myocardial infarction (MI) were studied. Mean defibrillation threshold (DFT) was determined to be 161.4 ± 17.1 V and 1.65 ± 0.44 J in MI hearts for internally delivered 8-ms monophasic truncated exponential (MTE) shocks during sustained ventricular fibrillation (>20 s, SVF). A single 300-V MTE shock (twice determined DFT voltage) was used to terminate SVF. Shock-induced electroporation was assessed by propidium iodide (PI) uptake. Ventricular PI staining was quantified by fluorescent imaging. Histological analysis was performed using Masson's Trichrome staining. Results showed PI staining concentrated near the shock electrode in all hearts. Without recovery, PI staining was similar between normal and MI groups around the shock electrode and over the whole ventricles. However, MI hearts had greater total PI uptake in anterior (P < 0.01) and posterior (P < 0.01) LV epicardial regions. Postrecovery, PI staining was reduced substantially, but residual staining remained significant with similar spacial distributions. PI staining under SVF was similar to previously studied paced hearts. In conclusion, electroporation was spatially correlated with the active region of the shock electrode. Additional electroporation occurred in the LV epicardium of MI hearts, in the infarct border zone. Recovery of membrane integrity postelectroporation is likely a prolonged process. Short periods of SVF did not affect electroporation injury. PMID:22730387

  6. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy.

    Science.gov (United States)

    Calin, Violeta L; Mihailescu, Mona; Mihale, Nicolae; Baluta, Alexandra V; Kovacs, Eugenia; Savopol, Tudor; Moisescu, Mihaela G

    2017-04-01

    Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an "off-axis" DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cell height) and global cell parameters (projected area, optical phase shift profile and dry mass). The biphasic behavior of cellular parameters was explained by water and mannitol dynamics through the electropermeabilized cell membrane.

  7. Changes in optical properties of electroporated cells as revealed by digital holographic microscopy

    Science.gov (United States)

    Calin, Violeta L.; Mihailescu, Mona; Mihale, Nicolae; Baluta, Alexandra V.; Kovacs, Eugenia; Savopol, Tudor; Moisescu, Mihaela G.

    2017-01-01

    Changes in optical and shape-related characteristics of B16F10 cells after electroporation were investigated using digital holographic microscopy (DHM). Bipolar rectangular pulses specific for electrochemotherapy were used. Electroporation was performed in an “off-axis” DHM set-up without using exogenous markers. Two types of cell parameters were monitored seconds and minutes after pulse train application: parameters addressing a specifically defined area of the cell (refractive index and cell height) and global cell parameters (projected area, optical phase shift profile and dry mass). The biphasic behavior of cellular parameters was explained by water and mannitol dynamics through the electropermeabilized cell membrane. PMID:28736667

  8. Theoretical and experimental study of electroporation of red blood cells using MEMS technology

    KAUST Repository

    Deng, Peigang

    2010-01-01

    A theoretical and experimental study of electroporation (EP) of red blood cells (RBCs) was presented in this paper. With additional strain energy, an energy-based model of an electropore induced on a RBC\\'s membrane at different electric fields was proposed to predict the critical EP electric field strength. In addition, EP experiments with red blood cells at single-cell level was carried out on a micro EP chip. The measured critical EP electric field strengths are in agreement with the numerical predictions. ©2010 IEEE.

  9. Generating Mouse Models Using Zygote Electroporation of Nucleases (ZEN) Technology with High Efficiency and Throughput.

    Science.gov (United States)

    Wang, Wenbo; Zhang, Yingfan; Wang, Haoyi

    2017-01-01

    Mouse models with genetic modifications are widely used in biology and biomedical research. Although the application of CRISPR-Cas9 system greatly accelerated the process of generating genetically modified mice, the delivery method depending on manual injection of the components into the embryos remains a bottleneck, as it is laborious, low throughput, and technically demanding. To overcome this limitation, we invented and optimized the ZEN (Zygote electroporation of nucleases) technology to deliver CRISPR-Cas9 reagents via electroporation. Using ZEN, we were able to generate genetically modified mouse models with high efficiency and throughput. Here, we describe the protocol in great detail.

  10. The systematic study of the electroporation and electrofusion of B16-F1 and CHO cells in isotonic and hypotonic buffer.

    Science.gov (United States)

    Usaj, Marko; Kanduser, Masa

    2012-09-01

    The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells' response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41 ± 9 % yield, while in isotonic buffer 32 ± 11 % yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1 % in isotonic buffer to 10 ± 4 % in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.

  11. In vivo metabolite compartmentalization probed using intracellular GdDTPA

    DEFF Research Database (Denmark)

    Peters, David Alberg; Rowland, Ian

    Fast trans-membrane water exchange enables in- tracellular relaxation enhancement of water by contrast agents in the extracellular space. For me- tabolites not in fast exchange across membranes, intracellular metabolite relaxation enhancement will only occur if the contrast agent and metabolite...... are in the same compartment. Extracellular contrast has utilized electroporation methods to deliver GdDTPA into the cytosol of rat muscle in vivo in order to probe the intracellular compart- mentalization of MR-visible metabolites....

  12. Equol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence

    Science.gov (United States)

    2011-01-01

    Background To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT), in vitro effects of equol treatment in human prostate cancer (LNCap) cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. Methods First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples). These steroids were incubated with increasing concentrations of equol (0-2,000 nM) and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol) as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours) in the presence of increasing concentrations of dimethyl sulfoxide (DMSO) (vehicle-control), 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA) levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1cc s.c. injections of either DMSO-control vehicle (n = 8) or 1.0 mg/kg (body weight) of equol (in DMSO) (n = 8). At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH), 5alpha-DHT, testosterone and 17beta-estradiol levels. Results Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate weights and serum

  13. iEquol an isoflavonoid: potential for improved prostate health, in vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Hamaker Amy N

    2011-01-01

    Full Text Available Abstract Background To determine: in vitro binding affinity of equol for 5alpha-dihydrotestosterone (5alpha-DHT, in vitro effects of equol treatment in human prostate cancer (LNCap cells, and in vivo effects of equol on rat prostate weight and circulating levels of sex steroid hormones. Methods First, in vitro equol binding affinity for 5alpha-DHT was determined using 14C5alpha-DHT combined with cold 5alpha-DHT (3.0 nM in all samples. These steroids were incubated with increasing concentrations of equol (0-2,000 nM and analyzed by Sephadex LH-20 column chromatography. 14C5alpha-DHT peak/profiles were determined by scintillation counting of column fractions. Using the 14C5alpha-DHT peak (0 nM equol as a reference standard, a binding curve was generated by quantifying shifts in the 14C5alpha-DHT peaks as equol concentrations increased. Second, equol's in vitro effects on LNCap cells were determined by culturing cells (48 hours in the presence of increasing concentrations of dimethyl sulfoxide (DMSO (vehicle-control, 5alpha-DHT, equol or 5alpha-DHT+equol. Following culture, prostate specific antigen (PSA levels were quantified via ELISA. Finally, the in vivo effects of equol were tested in sixteen male Long-Evans rats fed a low isoflavone diet. From 190-215 days, animals received 0.1cc s.c. injections of either DMSO-control vehicle (n = 8 or 1.0 mg/kg (body weight of equol (in DMSO (n = 8. At 215 days, body and prostate weights were recorded, trunk blood was collected and serum assayed for luteinizing hormone (LH, 5alpha-DHT, testosterone and 17beta-estradiol levels. Results Maximum and half maximal equol binding to 5alpha-DHT occurred at approximately 100 nM and 4.8 nM respectively. LNCap cells cultured in the presence of 5alpha-DHT significantly increased PSA levels. However, in the presence of 5alpha-DHT+equol, equol blocked the significant increases in PSA levels from LNCap cells. In vivo equol treatment significantly decreased rat prostate

  14. Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers.

    Science.gov (United States)

    Vostal, Jaroslav G; Gelderman, Monique P; Skripchenko, Andrey; Xu, Fei; Li, Ying; Ryan, Johannah; Cheng, Chunrong; Whitley, Pam; Wellington, Michael; Sawyer, Sherrie; Hanley, Shalene; Wagner, Stephen J

    2018-01-01

    Room temperature (RT) storage of platelets (PLTs) can support bacterial proliferation in contaminated units, which can lead to transfusion-transmitted septic reactions. Cold temperature storage of PLTs could reduce bacterial proliferation but cold exposure produces activation-like changes in PLTs and leads to their rapid clearance from circulation. Cold-induced changes are reversible by warming and periodic rewarming during cold storage (temperature cycling [TC]) has been proposed to alleviate cold-induced reduction in PLT circulation. A clinical trial in healthy human volunteers was designed to compare in vivo recovery, survival, and area under the curve (AUC) of radiolabeled autologous apheresis PLTs stored for 7 days at RT or under TC or cold conditions. Paired comparisons of RT versus TC and TC versus cold PLTs were conducted. Room temperature PLTs had in vivo recovery of 55.7 ± 13.9%, survival of 161.3 ± 28.8 hours, and AUC of 5031.2 ± 1643.3. TC PLTs had recovery of 42.6 ± 16.4%, survival of 48.1 ± 14.4% hours, and AUC of 1331.3 ± 910.2 (n = 12, p cold PLTs had recovery of 23.1 ± 8.8%, survival of 33.7 ± 14.7 hours, and AUC of 540.2 ± 229.6 while TC PLTs had recovery of 36.5 ± 12.9%, survival of 49.0 ± 17.3 hours, and AUC of 1164.3 ± 622.2 (n = 4, AUC had p cold storage but is not equivalent to RT storage. © 2017 AABB.

  15. In Vivo Cannabidiol Treatment Improves Endothelium-Dependent Vasorelaxation in Mesenteric Arteries of Zucker Diabetic Fatty Rats

    Directory of Open Access Journals (Sweden)

    Amanda J. Wheal

    2017-05-01

    Full Text Available Background and purpose: We have shown that in vitro treatment with cannabidiol (CBD, 2 h enhances endothelial function in arteries from Zucker diabetic fatty (ZDF rats, partly due to a cyclooxygenase (COX-mediated mechanism. The aim of the present study was to determine whether treatment with CBD in vivo would also enhance endothelial function.Experimental approach: Male ZDF rats, or ZDF Lean rats, were treated for 7 days (daily i.p. injection with either 10mg/kg CBD or vehicle (n = 6 per group. Sections of mesenteric resistance arteries, femoral arteries and thoracic aortae were mounted on a wire myograph, and cumulative concentration-response curves to endothelium-dependent (acetylcholine, ACh, 1 nM–100 μM or endothelium-independent (sodium nitroprusside, SNP, 1 nM–100 μM agents were constructed. Multiplex analysis was used to measure serum metabolic and cardiovascular biomarkers.Key results: Vasorelaxation to ACh was significantly enhanced in mesenteric arteries from CBD-treated ZDF rats, but not ZDF Lean rats. The enhanced vasorelaxation in ZDF mesenteric arteries was no longer observed after COX inhibition using indomethacin or nitric oxide (NO inhibition using L-NAME. Increased levels of serum c-peptide, insulin and intracellular adhesion molecule-1 observed in the ZDF compared to ZDF Lean rats were no longer significant after 7 days CBD treatment.Conclusion and implications: Short-term in vivo treatment with CBD improves ex vivo endothelium-dependent vasorelaxation in mesenteric arteries from ZDF rats due to COX- or NO-mediated mechanisms, and leads to improvements in serum biomarkers.

  16. Bystander Effect Induced by Electroporation is Possibly Mediated by Microvesicles and Dependent on Pulse Amplitude, Repetition Frequency and Cell Type.

    Science.gov (United States)

    Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor

    2016-10-01

    Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.

  17. Injection molded chips with integrated conducting polymer electrodes for electroporation of cells

    DEFF Research Database (Denmark)

    Andresen, Kristian; Hansen, Morten; Matschuk, Maria

    2010-01-01

    We present the design-concept for an all polymer injection molded single use microfluidic device. The fabricated devices comprise integrated conducting polymer electrodes and Luer fitting ports to allow for liquid and electrical access. A case study of low voltage electroporation of biological...

  18. High-Voltage Electroporation of Bacteria: Genetic Transformation of Campylobacter jejuni with Plasmid DNA

    Science.gov (United States)

    Miller, Jeff F.; Dower, William J.; Tompkins, Lucy S.

    1988-02-01

    Electroporation permits the uptake of DNA by mammalian cells and plant protoplasts because it induces transient permeability of the cell membrane. We investigated the utility of high-voltage electroporation as a method for genetic transformation of intact bacterial cells by using the enteric pathogen Campylobacter jejuni as a model system. This report demonstrates that the application of high-voltage discharges to bacterial cells permits genetic transformation. Our method involves exposure of a Campylobacter cell suspension to a high-voltage exponential decay discharge (5-13 kV/cm) for a brief period of time (resistance-capacitance time constant = 2.4-26 msec) in the presence of plasmid DNA. Electrical transformation of C. jejuni results in frequencies as high as 1.2 × 106 transformants per μ g of DNA. We have investigated the effects of pulse amplitude and duration, cell growth conditions, divalent cations, and DNA concentration on the efficiency of transformation. Transformants of C. jejuni obtained by electroporation contained structurally intact plasmid molecules. In addition, evidence is presented that indicates that C. jejuni possesses DNA restriction and modification systems. The use of electroporation as a method for transforming other bacterial species and guidelines for its implementation are also discussed.

  19. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  20. A modified single-cell electroporation method for molecule delivery into a motile protist, Euglena gracilis.

    Science.gov (United States)

    Ohmachi, Masashi; Fujiwara, Yoshie; Muramatsu, Shuki; Yamada, Koji; Iwata, Osamu; Suzuki, Kengo; Wang, Dan Ohtan

    2016-11-01

    Single-cell transfection is a powerful technique for delivering chemicals, drugs, or probes into arbitrary, specific single cells. This technique is especially important when the analysis of molecular function and cellular behavior in individual microscopic organisms such as protists requires the precise identification of the target cell, as fluorescence labeling of bulk populations makes tracking of individual motile protists virtually impossible. Herein, we have modified current single-cell electroporation techniques for delivering fluorescent markers into single Euglena gracilis, a motile photosynthetic microalga. Single-cell electroporation introduced molecules into individual living E. gracilis cells after a negative pressure was applied through a syringe connected to the micropipette to the target cell. The new method achieves high transfection efficiency and viability after electroporation. With the new technique, we successfully introduced a variety of molecules such as GFP, Alexa Fluor 488, and exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) RNA probes into individual motile E. gracilis cells. We demonstrate imaging of endogenous mRNA in living E. gracilis without interfering with their physiological functions, such as swimming or division, over an extended period of time. Thus the modified single-cell electroporation technique is suitable for delivering versatile functional molecules into individual motile protists. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Scalable Device for Automated Microbial Electroporation in a Digital Microfluidic Platform.

    Science.gov (United States)

    Madison, Andrew C; Royal, Matthew W; Vigneault, Frederic; Chen, Liji; Griffin, Peter B; Horowitz, Mark; Church, George M; Fair, Richard B

    2017-09-15

    Electrowetting-on-dielectric (EWD) digital microfluidic laboratory-on-a-chip platforms demonstrate excellent performance in automating labor-intensive protocols. When coupled with an on-chip electroporation capability, these systems hold promise for streamlining cumbersome processes such as multiplex automated genome engineering (MAGE). We integrated a single Ti:Au electroporation electrode into an otherwise standard parallel-plate EWD geometry to enable high-efficiency transformation of Escherichia coli with reporter plasmid DNA in a 200 nL droplet. Test devices exhibited robust operation with more than 10 transformation experiments performed per device without cross-contamination or failure. Despite intrinsic electric-field nonuniformity present in the EP/EWD device, the peak on-chip transformation efficiency was measured to be 8.6 ± 1.0 × 108 cfu·μg-1 for an average applied electric field strength of 2.25 ± 0.50 kV·mm-1. Cell survival and transformation fractions at this electroporation pulse strength were found to be 1.5 ± 0.3 and 2.3 ± 0.1%, respectively. Our work expands the EWD toolkit to include on-chip microbial electroporation and opens the possibility of scaling advanced genome engineering methods, like MAGE, into the submicroliter regime.

  2. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  3. Thermal Energy during Irreversible Electroporation and the Influence of Different Ablation Parameters

    NARCIS (Netherlands)

    van den Bos, Willemien; Scheffer, Hester J.; Vogel, Jantien A.; Wagstaff, Peter G. K.; de Bruin, Daniel M.; de Jong, Marcus C.; van Gemert, Martin J. C.; de La Rosette, Jean J. M. C. H.; Meijerink, Martijn R.; Klaessens, John H.; Verdaasdonk, Rudolf M.

    2016-01-01

    Irreversible electroporation (IRE) uses high-voltage electric fields to achieve cell death. Although the mechanism of IRE is mainly designated as nonthermal, development of secondary Joule heating is inevitable. The study purpose was to gain understanding of temperature development and distribution

  4. Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments.

    Science.gov (United States)

    Taghavi, S; van der Lelie, D; Mergeay, M

    1994-10-01

    Electroporation was used as a tool to explore the genetics of the heavy-metal-resistant strain Alcaligenes eutrophus CH34. A 12.9-kb A. eutrophus-Escherichia coli shuttle vector, pMOL850, was constructed to optimize electroporation conditions. This vector is derived from the E. coli plasmid pSUP202 and contains the replication region of the A. eutrophus megaplasmid pMOL28. Electroporation was used to transform A. eutrophus CH34 derivatives with megaplasmids (sizes up to 240 kb), and transformants were selected for resistance to heavy metals. Electroporation was also performed with endonuclease-digested genomic DNA. Transformation of markers affecting lysine biosynthesis (lysA194) and biosynthesis of the siderophore alcaligin E were observed. Transfer of the nonselected markers pheB332 and aro-333, linked to lysA194, confirmed the intervention of homologous recombination. However, during transformation of ale::Tn5-Tc, illegitimate recombination and transposition were also observed as an alternative for the inheritance of the Tn5-Tc markers.

  5. Loading of acute myeloid leukemia cells with poly(I:C) by electroporation

    NARCIS (Netherlands)

    Lion, E.; Winde, C.M. de; Tendeloo, V.F. Van; Smits, E.L.

    2014-01-01

    In this chapter, we describe the technique of electroporation as an efficient method to load primary leukemic cells with the double-stranded RNA (dsRNA) analogue, polyriboinosinic polyribocytidylic acid (poly(I:C)), and detail on the delicate freezing and thawing procedure of primary leukemic

  6. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip

    DEFF Research Database (Denmark)

    Selmeczi, David; Hansen, Thomas; Met, Özcan

    2011-01-01

    We present a hybrid chip of polymer and stainless steel designed for high-throughput continuous electroporation of cells in suspension. The chip is constructed with two parallel stainless steel mesh electrodes oriented perpendicular to the liquid flow. The relatively high hydrodynamic resistance...... of the chip is similar to that of the traditional electroporation cuvette, but without an upper limit on the number of cells to be electroporated. The device is constructed with two female Luer parts and can easily be integrated with other microfluidic components. Furthermore it is fabricated from injection...

  7. Transient gene expression in electroporated banana (Musa spp., cv. 'Bluggoe', ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions.

    Science.gov (United States)

    Sagi, L; Remy, S; Panis, B; Swennen, R; Volckaert, G

    1994-02-01

    Electroporation conditions were established for transient expression of introduced DNA in banana (Musa spp., cv. 'Bluggoe') protoplasts isolated from regenerable embryogenic cell suspensions. The following parameters were found to be highly influential: electroporation buffer, polyethylene glycol treatment and its duration before electroporation, use of a heat shock, and chimaeric gene constructs. The maximum frequency of DNA introduction as detected by an in situ assay for transient expression of the uidA gene, amounted to 1.8% of total protoplasts. Since plants have recently been regenerated from banana protoplasts at a high frequency, the present results may contribute to the production of transgenic banana.

  8. Development of a single cell electroporation method using a scanning ion conductance microscope with a theta nanopipette

    Science.gov (United States)

    Sakurai, Satoshi; Yamazaki, Koji; Ushiki, Tatsuo; Iwata, Futoshi

    2015-08-01

    We developed a novel electroporation method using a scanning ion conductance microscope (SICM) with a theta capillary nanopipette probe that has two apertures at the edge of the pipette. One aperture of the pipette probe was used to control the pipette-surface distance and to apply pulse voltage for electroporation. The other was used to eject material over the cell by local electrophoresis. Using the nanopipette, propidium iodide was successfully introduced into a targeted single Hela cell without influencing the surrounding cells. Furthermore, by scanning the theta nanopipette probe using the SICM, the morphological behaviors of the electroporated cells could be observed.

  9. Irreversible Electroporation to Treat Malignant Tumor Recurrences Within the Pelvic Cavity: A Case Series.

    Science.gov (United States)

    Vroomen, L G P H; Scheffer, H J; Melenhorst, M C A M; van Grieken, N; van den Tol, M P; Meijerink, M R

    2017-10-01

    To describe the initial experience with irreversible electroporation (IRE) to treat pelvic tumor recurrences. A retrospective single-center analysis was performed. Adverse events were recorded using Common Terminology Criteria of Adverse Events (CTCAE) 4.0. Clinical outcome was determined using pain- and general- symptom assessment, including Seddon's peripheral nerve injury (PNI) types. Radiological outcome was evaluated by comparing baseline with three-month 18F-FDG PET-CT follow-up. Eight patients (nine tumors [recurrences of primary rectal (n = 4), anal (n = 1), sigmoid (n = 1), cervical (n = 1), and renal cell carcinoma (n = 1)]) underwent percutaneous IRE as salvage therapy. Median longest tumor diameter was 3.7 cm (range 1.2-7.0). One CTCAE grade III adverse event (hemorrhage) and eight CTCAE grade II complications occurred in 6/8 patients: vagino-tumoral fistula (n = 1), lower limb motor loss (n = 3; PNI type II) with partial recovery in one patient, hypotonic bladder (n = 2; PNI types I and II) with complete recovery in one patient, and upper limb motor loss (n = 2; PNI type II) with partial recovery in both patients. No residual tumor tissue was observed at 3-month follow-up. After a median follow-up of 12 months, local progression was observed in 5/9 lesions (4/5 were >3 cm pre-IRE); one lesion was successfully retreated. Debilitating preprocedural pain (n = 3) remained unchanged (n = 1) or improved (n = 2). IRE may represent a suitable technique to treat pelvic tumor recurrences, although permanent neural function loss can occur. Complete ablation seems realistic for smaller lesions; for larger lesions symptom control should be the focus.

  10. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function.

    Science.gov (United States)

    Souza, Carla; de Freitas, Luis Alexandre Pedro; Maia Campos, Patrícia Maria Berardo Gonçalves

    2017-10-01

    Lipid nanoparticles have shown many advantages for treatment/prevention of skin disorders with damaged skin barrier function. Beeswax is a favorable candidate for the development of nanosystems in the cosmetic and dermatological fields because of its advantages for the development of products for topical application. In the present study, beeswax-based nanoparticles (BNs) were prepared using the hot melt microemulsion technique and incorporated to a gel-cream formulation. The formulation was subsequently evaluated for its rheological stability and effect on stratum corneum water content (SCWC) and transepidermal water loss (TEWL) using in vivo biophysical techniques. BNs resulted in mean particle size of 95.72 ± 9.63 nm and zeta potential of -9.85 ± 0.57 mV. BN-loaded formulation showed shear thinning behavior, well adjusted by the Herschel-Bulkley model, and a small thixotropy index that were stable for 28 days at different temperatures. BN-loaded formulation was also able to simultaneously decrease the TEWL and increase the SCWC values 28 days after treatment. In conclusion, the novel beeswax-based nanoparticles showed potential for barrier recovery and open the perspective for its commercial use as a novel natural active as yet unexplored in the field of dermatology and cosmetics for treatment of skin diseases with damaged skin barrier function.

  11. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    Science.gov (United States)

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  12. Cryopreservation of Human Adipose-Derived Stem Cells in Combination with Trehalose and Reversible Electroporation.

    Science.gov (United States)

    Dovgan, Barbara; Barlič, Ariana; Knežević, Miomir; Miklavčič, Damijan

    2017-02-01

    New cryopreservation approaches for medically applicable cells are of great importance in clinical medicine. Current protocols employ the use of dimethyl sulfoxide (DMSO), which is toxic to cells and causes undesirable side effects in patients, such as cardiac arrhythmias, neurological events, and others. Trehalose, a nontoxic disaccharide, has been already studied as a cryoprotectant. However, an efficient approach for loading this impermeable sugar into mammalian cells is missing. In our study, we assessed the efficiency of combining reversible electroporation and trehalose for cryopreservation of human adipose-derived stem cells. First, we determined reversible electroporation threshold by loading of propidium iodide into cells. The highest permeabilization while maintaining high cell viability was reached at 1.5 kV/cm, at 8 pulses, 100 µs, and 1 Hz. Second, cells were incubated in 250 or 400 mM trehalose and electroporated before cryopreservation. After thawing, 83.8 ± 1.8 % (mean ± SE) cell recovery was obtained at 250 mM trehalose. By using a standard freezing protocol (10 % DMSO in 90 % fetal bovine serum), cell survival after thawing was about 91.5 ± 1.6 %. We also evaluated possible effects of electroporation on cells' functionality before and after thawing. Successful cell growth and efficient adipogenic and osteogenic differentiation were achieved. In conclusion, electroporation seems to be an efficient method for loading nonpermeable trehalose into human adipose-derived stem cells, allowing long-term cryopreservation in DMSO-free and xeno-free conditions.

  13. Improved in Vivo Whole-Animal Detection Limits of Green Fluorescent Protein–Expressing Tumor Lines by Spectral Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Jenny M. Tam

    2007-07-01

    Full Text Available Green fluorescent protein (GFP has been used for cell tracking and imaging gene expression in superficial or surgically exposed structures. However, in vivo murine imaging is often limited by several factors, including scatter and attenuation with depth and overlapping autofluorescence. The autofluorescence signals have spectral profiles that are markedly different from the GFP emission spectral profile. The use of spectral imaging allows separation and quantitation of these contributions to the total fluorescence signal seen in vivo by weighting known pure component profiles. Separation of relative GFP and autofluorescence signals is not readily possible using epifluorescent continuous-wave single excitation and emission bandpass imaging (EFI. To evaluate detection thresholds using these two methods, nude mice were subcutaneously injected with a series of GFP-expressing cells. For EFI, optimized excitation and emission bandpass filters were used. Owing to the ability to separate autofluorescence contributions from the emission signal using spectral imaging compared with the mixed contributions of GFP and autofluorescence in the emission signal recorded by the EFI system, we achieved a 300-fold improvement in the cellular detection limit. The detection limit was 3 × 103 cells for spectral imaging versus 1 × 106 cells for EFI. Despite contributions to image stacks from autofluorescence, a 100-fold dynamic range of cell number in the same image was readily visualized. Finally, spectral imaging was able to separate signal interference of red fluorescent protein from GFP images and vice versa. These findings demonstrate the utility of the approach in detecting low levels of multiple fluorescent markers for whole-animal in vivo applications.

  14. Temperature cycling improves in vivo recovery of cold-stored human platelets in a mouse model of transfusion.

    Science.gov (United States)

    Xu, Fei; Gelderman, Monique P; Farrell, John; Vostal, Jaroslav G

    2013-06-01

    Platelet (PLT) storage at room temperature (RT) is limited to 5 days to prevent growth of bacteria, if present, to high levels. Storage in cold temperatures would reduce bacterial proliferation, but cold-exposed PLTs are rapidly cleared from circulation by the hepatic Ashwell-Morell (AM) receptor, which recognizes PLT surface carbohydrates terminated by β-galactose. We cycled storage temperature between 4 and 37°C to preserve PLT function and reduce bacterial growth. Temperature-cycled (TC) human PLTs were stored at 4°C for 12 hours and then incubated at 37°C for 30 minutes before returning back to cold storage. PLTs stored at RT or at 4°C (COLD) or TC for 2, 5, and 7 days were infused into SCID mice and the in vivo recovery was determined at 5, 20, and 60 minutes after transfusion. PLTs stored for 2 days in COLD had significantly lower in vivo recoveries than RT PLTs. TC PLTs had improved recoveries over COLD and comparable to RT PLTs. After 5- and 7-day storage, TC PLTs had better recoveries than RT and COLD PLTs. PLT surface β-galactose was increased significantly for both COLD and TC PLTs compared to RT. Blocking of the AM receptor by asialofetuin increased COLD but not TC PLT recovery. TC cold storage may be an effective method to store PLTs without loss of in vivo recovery. The increased β-galactose exposure in TC PLTs suggests that mechanisms in addition to AM receptors may mediate clearance of cold-stored PLTs. © 2012 American Association of Blood Banks.

  15. β-alanine supplementation improves in-vivo fresh and fatigued skeletal muscle relaxation speed.

    Science.gov (United States)

    Jones, Rebecca Louise; Barnett, Cleveland Thomas; Davidson, Joel; Maritza, Billy; Fraser, William D; Harris, Roger; Sale, Craig

    2017-05-01

    In fresh muscle, supplementation with the rate-limiting precursor of carnosine, β-alanine (BA), results in a decline in muscle half-relaxation time (HRT) potentially via alterations to calcium (Ca2+) handling. Accumulation of hydrogen cation (H+) has been shown to impact Ca2+ signalling during muscular contraction, carnosine has the potential to serve as a cytoplasmic regulator of Ca2+ and H+ coupling, since it binds to both ions. The present study examined the effect of BA supplementation on intrinsic in-vivo isometric knee extensor force production and muscle contractility in both fresh and fatigued human skeletal muscle assessed during voluntary and electrically evoked (nerve and superficial muscle stimulation) contractions. Twenty-three males completed two experimental sessions, pre- and post- 28 day supplementation with 6.4 g.day-1 of BA (n = 12) or placebo (PLA; n = 11). Isometric force was recorded during a series of voluntary and electrically evoked knee extensor contractions. BA supplementation had no effect on voluntary or electrically evoked isometric force production, or twitch electromechanical delay and time-to-peak tension. There was a significant decline in muscle HRT in fresh and fatigued muscle conditions during both resting (3 ± 13%; 19 ± 26%) and potentiated (1 ± 15%; 2 ± 20%) twitch contractions. The mechanism for reduced HRT in fresh and fatigued skeletal muscle following BA supplementation is unclear. Due to the importance of muscle relaxation on total energy consumption, especially during short, repeated contractions, BA supplementation may prove to be beneficial in minimising contractile slowing induced by fatigue. The trial is registered with Clinicaltrials.gov, ID number NCT02819505.

  16. Towards early in vivo photoacoustic malaria diagnosis with 10,000-fold sensitivity improvement (Conference Presentation)

    Science.gov (United States)

    Carey, Kai A.; Menyaev, Yulian A.; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Galanzha, Ekaterina I.; Stumhofer, Jason S.; Zharov, Vladimir P.

    2017-03-01

    Roughly 0.6 million people die each year from malaria due to lack of early diagnosis and well-timed treatment. Our previous study demonstrated great potential of in vivo photoacoustic (PA) flow cytometry (PAFC) for early diagnosis of deadly diseases with focus on cancer and thromboembolic complications. Here we demonstrate potential of advanced PAFC platforms using new laser, ultrasound transducer array and recording system to detect infected red blood cells (iRBCs) with malaria-associated pigment hemozoin which has a higher PA contrast than blood background. Mature parasites of human infecting species such as P. falciparum characteristically sequester mature iRBCs in the capillary bed and display synchrony in their reproductive cycle. To address this issue prior to clinical application, new PAFC platform was verified in a pre-clinical study using new animal models. Specifically, we used P. chabaudi (a rodent malaria species that mimics the characteristics of the most virulent human counterpart) to estimate the detection sensitivity with immature ring-stage parasites in peripheral blood, compared PA signals from the differing species, and examined the relationship between PA signal amplitudes and level of blood oxygenation. Based on previous successful trials on melanoma patients with melanin as an intrinsic PA marker, which has similar absorption as hemozoin, we believe that after additional malaria-related clinical trials, PAFC with a small 1064 nm laser and wearable a cost-effective, easy-to-use, watch-like, safe PA probe will provide malaria diagnosis in humans at parasitemia levels 10e4 -times lower than the current gold standard of diagnosis, the Giemsa-stained blood smear. It can reduce malaria-related mortality by well-timed treatment, especially in children in malaria-endemic countries.

  17. Novel self-emulsifying formulation of quercetin for improved in vivo antioxidant potential

    DEFF Research Database (Denmark)

    Jain, Sanyog; Jain, Amit K; Pohekar, Milind

    2013-01-01

    Quercetin (QT) was formulated into a novel self-emulsifying drug delivery system (SEDDS) to improve its oral bioavailability and antioxidant potential compared to free drug. Capmul MCM was selected as the oily phase on the basis of optimum solubility of QT in oil. Tween 20 and ethanol were selected...

  18. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain.

    Science.gov (United States)

    Chaung, Hso-Chi; Chang, Chin-Dong; Chen, Pi-Hang; Chang, Chia-Jung; Liu, Shyh-Hwa; Chen, Chih-Cheng

    2013-05-01

    Fish oil during early postnatal period may modulate the impact of oxidative stress in the developing brain and thus improve memory and cognitive behaviour. This study investigated the impacts of docosahexaenoic acid (DHA, C22:6, n-3) and/or phosphatidylserine (PS) on antioxidant activities in vitro, and the beneficial effects of feeding with DHA and/or PS on antioxidant activities in brain and liver tissues and on the cognitive functions of the developing brain. Results indicated that DHA and/or PS significantly enhanced antioxidant activities and increased cell viabilities in vitro. Feeding with DHA and/or PS supplementation not only significantly improved escape latency of animals, but it also improved the oxidative parameters in the brain, enhanced glutathione peroxidase activity as well as reduced nitric mono-oxide levels in the liver. DHA and PS may serve to protect cells from oxidative stress and further improve learning and memory ability in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. PCM and TAT co-modified liposome with improved myocardium delivery: in vitro and in vivo evaluations.

    Science.gov (United States)

    Wang, Xin; Huang, Hua; Zhang, Liangke; Bai, Yan; Chen, Huali

    2017-11-01

    In this study, PCM and TAT co-modified liposome was developed as a novel drug carrier for myocardium delivery with evaluation of its in vitro and in vivo properties. Liposomes containing fluorescent probe coumarin-6 were prepared by thin-film hydration. The PCM ligands specifically bind to the PCM receptors in the extracellular connective tissue of primary myocardium cells (MCs), while the TAT ligands functioned as a classical cell penetrating peptide to make liposomes internalized by MCs. The unmodified liposome (L), PCM-modified liposome (PL), TAT-modified liposome (TL) and PCM and TAT co-modified liposome (PTL) were prepared and characterized. The cellular uptake and intracellular distribution of various liposomes by MCs demonstrated that PTL had the best delivery capability. Peptide inhibition assay indicated that the uptake of PL could be inhibited by PCM. However, TAT could almost not suppress the uptake of TL. In addition, the CCK-8 experiments showed that liposomes had low cytotoxicity. In vivo fluorescent images of frozen sections and HPLC-fluorescence analysis further demonstrated that PTL had highest myocardium distribution. The results of this study demonstrated that PCM and TAT co-modifying could improve the myocardial targeting ability of liposome.

  20. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model.

    Science.gov (United States)

    Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun

    2013-03-01

    Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Individually addressable multi-chamber electroporation platform with dielectrophoresis and alternating-current-electro-osmosis assisted cell positioning

    National Research Council Canada - National Science Library

    Park, Sinwook; Bassat, Dana Ben; Yossifon, Gilad

    2014-01-01

    ...) and alternating-current-electro-osmosis (ACEO) assisted cell/particle manipulation. A spatial gradient of electroporation parameters was generated within a microchamber array and validated using normal human dermal fibroblast (NHDF...

  2. Acute and Long-Term Effects of Full-Power Electroporation Ablation Directly on the Porcine Esophagus

    NARCIS (Netherlands)

    Neven, Kars; van Es, René; van Driel, Vincent; van Wessel, Harry; Fidder, Herma|info:eu-repo/dai/nl/274788187; Vink, Aryan; Doevendans, Pieter|info:eu-repo/dai/nl/164248366; Wittkampf, Fred|info:eu-repo/dai/nl/080434436

    BACKGROUND: Esophageal ulceration and fistula are complications of pulmonary vein isolation using thermal energy sources. Irreversible electroporation is a novel, nonthermal ablation modality for pulmonary vein isolation. A single 200 J application can create deep myocardial lesions. Acute and

  3. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  4. Risk of Bias in Reports of In Vivo Research: A Focus for Improvement.

    Directory of Open Access Journals (Sweden)

    Malcolm R Macleod

    2015-10-01

    Full Text Available The reliability of experimental findings depends on the rigour of experimental design. Here we show limited reporting of measures to reduce the risk of bias in a random sample of life sciences publications, significantly lower reporting of randomisation in work published in journals of high impact, and very limited reporting of measures to reduce the risk of bias in publications from leading United Kingdom institutions. Ascertainment of differences between institutions might serve both as a measure of research quality and as a tool for institutional efforts to improve research quality.

  5. Use of clinical bleaching with 35% hydrogen peroxide in esthetic improvement of fluorotic human incisors in vivo.

    Science.gov (United States)

    Shanbhag, Raghavendra; Veena, R; Nanjannawar, Girish; Patil, Jaykumar; Hugar, Santosh; Vagrali, Hemanth

    2013-03-01

    The aim of the study was to evaluate esthetic improvement with the use of 35% hydrogen peroxide clinical bleaching as related to the different grades of enamel fluorosis in vivo and to study adverse effect of clinical bleaching with 35% hydrogen peroxide on teeth and gingiva. A total of 60 children of different grades of fluorosis were included in the study. With 35% hydrogen peroxide-based dual activated bleaching system, in-office vital teeth bleaching was carried out for each subject. Clinical evaluation for improvement in esthetics, effect on teeth and gingiva were performed for each child during preoperative, immediate postoperative and later 6 months postoperative period. For evaluation and comparison, all the collected data were subjected to statistical analysis. Although in all the subjects, partial shade relapse was seen over a period of time, good homogeneous and esthetic results were seen in very mild and mild cases. A total of 35% hydrogen peroxide in-office bleaching has no adverse effect on teeth and gingiva. Comparing all the three groups who participated in the study, 35% hydrogen peroxide in-office bleaching seems to be very effective in very mild and mild forms of fluorosis. In very mild and mild forms of fluorosis, in-office vital tooth bleaching with 35% hydrogen peroxide is the most conservative and effective approach in esthetic improvement.

  6. Next generation XPO1 inhibitor shows improved efficacy and in vivo tolerability in hematologic malignancies

    Science.gov (United States)

    Hing, Zachary A.; Fung, Ho Yee Joyce; Ranganathan, Parvathi; Mitchell, Shaneice; El-Gamal, Dalia; Woyach, Jennifer A.; Williams, Katie; Goettl, Virginia M.; Smith, Jordan; Yu, Xueyan; Meng, Xiaomei; Sun, Qingxiang; Cagatay, Tolga; Lehman, Amy M.; Lucas, David M.; Baloglu, Erkan; Shacham, Sharon; Kauffman, Michael G.; Byrd, John C.; Chook, Yuh Min; Garzon, Ramiro; Lapalombella, Rosa

    2016-01-01

    The nuclear export receptor, Exportin 1 (XPO1), mediates transport of growth-regulatory proteins including tumor suppressors and is overactive in many cancers, including chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and aggressive lymphomas. Oral Selective Inhibitor of Nuclear Export (SINE) compounds that block XPO1 function were recently identified and hold promise as a new therapeutic paradigm in many neoplasms. One of these compounds, KPT-330 (selinexor), has made progress in Phase I/II clinical trials, but systemic toxicities limit its administration to twice-per-week and requiring supportive care. We designed a new generation SINE compound, KPT-8602, with a similar mechanism of XPO1 inhibition and potency but considerably improved tolerability. Efficacy of KPT-8602 was evaluated in preclinical animal models of hematologic malignancies including CLL and AML. KPT-8602 shows similar in vitro potency compared to KPT-330 but lower central nervous system penetration which resulted in enhanced tolerability, even when dosed daily, and improved survival in CLL and AML murine models compared to KPT-330. KPT-8602 is a promising compound for further development in hematologic malignancies and other cancers in which upregulation of XPO1 is seen. The wider therapeutic window of KPT-8602 may also allow increased on-target efficacy leading to even more efficacious combinations with other targeted anticancer therapies. PMID:27323910

  7. An improved in vivo deuterium labeling method for measuring the biosynthetic rate of cytokinins.

    Science.gov (United States)

    Tarkowski, Petr; Floková, Kristýna; Václavíková, Kateřina; Jaworek, Pavel; Raus, Martin; Nordström, Anders; Novák, Ondřej; Doležal, Karel; Sebela, Marek; Frébortová, Jitka

    2010-12-15

    An improved method for determining the relative biosynthetic rate of isoprenoid cytokinins has been developed. A set of 11 relevant isoprenoid cytokinins, including zeatin isomers, was separated by ultra performance liquid chromatography in less than 6 min. The iP-type cytokinins were observed to give rise to a previously-unknown fragment at m/z 69; we suggest that the diagnostic (204-69) transition can be used to monitor the biosynthetic rate of isopentenyladenine. Furthermore, we found that by treating the cytokinin nucleotides with alkaline phosphatase prior to analysis, the sensitivity of the detection process could be increased. In addition, derivatization (propionylation) improved the ESI-MS response by increasing the analytes' hydrophobicity. Indeed, the ESI-MS response of propionylated isopentenyladenosine was about 34% higher than that of its underivatized counterpart. Moreover, the response of the derivatized zeatin ribosides was about 75% higher than that of underivatized zeatin ribosides. Finally, we created a web-based calculator (IZOTOP) that facilitates MS/MS data processing and offer it freely to the research community.

  8. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies

    CERN Document Server

    Kramar, Peter

    2016-01-01

    This volume presents the proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies (WC2015). The congress took place in Portorož, Slovenia, during the week of September 6th to 10th, 2015. The scientific part of the Congress covered different aspects of electroporation and related technologies and included the following main topics:   ·         Application of pulsed electric fields technology in food: challenges and opportunities ·         Electrical impedance measurement for assessment of electroporation yield ·         Electrochemistry and electroporation ·         Electroporation meets electrostimulation ·         Electrotechnologies for food and biomass treatment ·         Food and biotechnology applications ·         In vitro electroporation - basic mechanisms ·         Interfacial behaviour of lipid-assemblies, membranes and cells in electric f...

  9. Cellulose filtration of blood from malaria patients for improving ex vivo growth of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Minja, Daniel T R; Jespersen, Jakob S

    2017-01-01

    BACKGROUND: Establishing in vitro Plasmodium falciparum culture lines from patient parasite isolates can offer deeper understanding of geographic variations of drug sensitivity and mechanisms of malaria pathogenesis and immunity. Cellulose column filtration of blood is an inexpensive, rapid...... and effective method for the removal of host factors, such as leucocytes and platelets, significantly improving the purification of parasite DNA in a blood sample. METHODS: In this study, the effect of cellulose column filtration of venous blood on the initial in vitro growth of P. falciparum parasite isolates....... falciparum merozoite surface protein 2 genotyping was performed using nested PCR on extracted genomic DNA, and the var gene transcript levels were investigated, using quantitative PCR on extracted RNA, at admission and 4 days of culture. RESULTS: The cellulose-filtered parasites grew to higher parasitaemia...

  10. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Science.gov (United States)

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing.

  11. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. Copyright © 2016, American Association for the Advancement of Science.

  12. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Zhou, Mei [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Luo, Dan; Wang, Lijun; Hong, Yuankai [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Yang, Yepeng, E-mail: yangyepeng@bjmu.edu.cn [Dept. of Radiation Medicine, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Sha, Yinlin, E-mail: shyl@hsc.pku.edu.cn [Single-molecule and Nanobiology Lab., Dept. of Biophysics, School of Basic Medical Sciences, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China); Biomed-X Center, Peking University, Peking University, No. 38 Xue Yuan Road, Beijing 100091 (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. Black-Right-Pointing-Pointer Bifidobacterium bifidum delivery system has intrinsic biocompatibility. Black-Right-Pointing-Pointer The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  13. Irinotecan Synergistically Enhances the Antiproliferative and Proapoptotic Effects of Axitinib In Vitro and Improves Its Anticancer Activity In Vivo

    Directory of Open Access Journals (Sweden)

    Bastianina Canu

    2011-03-01

    Full Text Available Aims: To demonstrate the synergistic antiproliferative and proapoptotic activity of irinotecan and axitinib in vitro and the improvement of the in vivo effects on angiogenesis and pancreatic cancer. Methods: Proliferation and apoptotic assays were performed on human dermal microvascular endothelial cells and pancreas cancer (MIAPaCa-2, Capan-1 cell lines exposed to SN-38, the active metabolite of irinotecan, axitinib, or their simultaneous combination for 72 hours. ERK1/2 and Akt phosphorylation, the vascular endothelial growth factor (VEGF, VEGF receptor-2, and thrombospondin-1 (TSP-1 concentration were measured by ELISAs. ATP7A and ABCG2 gene expression was performed with real-time polymerase chain reaction and SN-38 intracellular concentrations were measured by high-performance liquid chromatography. Capan-1 xenografts in nude mice were treated with irinotecan and axitinib alone or in simultaneous combination. Results: A strong synergistic effect on antiproliferative and proapoptotic activity was found with the axitinib/SN-38 combination on endothelial and cancer cells. ERK1/2 and Akt phosphorylation were significantly inhibited by lower concentrations of the combined drugs in all the cell lines. Axitinib and SN-38 combined treatment greatly inhibited the expression of the ATP7A and ABCG2 genes in endothelial and cancer cells, increasing the SN-38 intracellular concentration. Moreover, TSP-1 secretion was increased in cells treated with both drugs, whereas VEGFR-2 levels significantly decreased. In vivo administration of the simultaneous combination determined an almost complete regression of tumors and tumor neovascularization. Conclusions:In vitro results show the highly synergistic properties of simultaneous combination of irinotecan and axitinib on endothelial and pancreas cancer cells, suggesting a possible translation of this schedule into the clinics.

  14. The Angiotensin-(1-7)/Mas Axis Improves Pancreatic β-Cell Function in Vitro and in Vivo.

    Science.gov (United States)

    Sahr, Anika; Wolke, Carmen; Maczewsky, Jonas; Krippeit-Drews, Peter; Tetzner, Anja; Drews, Gisela; Venz, Simone; Gürtler, Sarah; van den Brandt, Jens; Berg, Sabine; Döring, Paula; Dombrowski, Frank; Walther, Thomas; Lendeckel, Uwe

    2016-12-01

    The angiotensin-converting enzyme 2/angiotensin (Ang)-(1-7)/Mas axis of the renin-angiotensin system often opposes the detrimental effects of the angiotensin-converting enzyme/Ang II/Ang II type 1 receptor axis and has been associated with beneficial effects on glucose homeostasis, whereas underlying mechanisms are mostly unknown. Here we investigate the effects of Ang-(1-7) and its receptor Mas on β-cell function. Isolated islets from Mas-deficient and wild-type mice were stimulated with Ang-(1-7) or its antagonists and effects on insulin secretion determined. Islets' cytoplasmic calcium and cAMP concentrations, mRNA amounts of Ins1, Ins2, Pdx1, and Mafa and effects of inhibitors of cAMP downstream signaling were determined. Ang-(1-7) was also applied to mice by osmotic pumps for 14 days and effects on glucose tolerance and insulin secretion were assessed. Ang-(1-7) increased insulin secretion from wild-type islets, whereas antagonists and genetic Mas deficiency led to reduced insulin secretion. The Mas-dependent effects of Ang-(1-7) on insulin secretion did not result from changes in insulin gene expression or changes in the excitation-secretion coupling but from increased intracellular cAMP involving exchange protein activated directly by cAMP. Administration of Ang-(1-7) in vivo had only marginal effects on glucose tolerance in wild-type mice but still resulted in improved insulin secretion from islets isolated of these mice. Interestingly, although less pronounced than in wild types, Ang-(1-7) still affected insulin secretion in Mas-deficient islets. The data indicate a significant function of Ang-(1-7) in the regulation of insulin secretion from mouse islets in vitro and in vivo, mainly, but not exclusively, by Mas-dependent signaling, modulating the accessory pathway of insulin secretion via increase in cAMP.

  15. Adipose-derived stem cells incorporated into platelet-rich plasma improved bone regeneration and maturation in vivo.

    Science.gov (United States)

    Cruz, Ariadne Cristiane Cabral; Caon, Thiago; Menin, Álvaro; Granato, Rodrigo; Boabaid, Fernanda; Simões, Cláudia Maria Oliveira

    2015-02-01

    Some cases of tooth loss related to dental trauma require bone-grafting procedures to improve the aesthetics before prosthetic rehabilitation or to enable the installation of dental implants. Bone regeneration is often a challenge and could be largely improved by mesenchymal stem cells therapy. However, the appropriate scaffold for these cells still a problem. This study evaluated the in vivo effect of human adipose-derived stem cells incorporated into autogenous platelet-rich plasma in bone regeneration and maturation. Adipose-derived stem cells were isolated from lipoaspirate tissues and used at passage 4. Immunophenotyping and multilineage differentiation of cells were performed and mesenchymal stem cells characteristics confirmed. Bicortical bone defects (10 mm diameter) were created in the tibia of six beagle dogs to evaluate the effect of adipose-derived stem cells incorporated into platelet-rich plasma scaffolds, platelet-rich plasma alone, autogenous bone grafts, and clot. Samples were removed 6 weeks postsurgeries and analyzed by quantification of primary and secondary bone formation and granulation tissue. Adipose-derived stem cells incorporated into platelet-rich plasma scaffolds promoted the highest bone formation (primary + secondary bone) (P platelet-rich plasma scaffolds promote more bone formation and maturation, and less granulation tissue in bone defects created in canine tibia. Therefore, platelet-rich plasma can be considered as a candidate scaffold for adipose-derived stem cells to promote bone regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies.

    Science.gov (United States)

    Kadappan, Alagu Selvi; Guo, Chi; Gumus, Cansu E; Bessey, Amy; Wood, Richard J; McClements, David J; Liu, Zhenhua

    2017-12-21

    Vitamin D (VD) is a fat-soluble vitamin that has a wide range of skeletal and non-skeletal functions. Although it can be synthesized through sun exposure and obtained from fortified foods, VD inadequacy is epidemic worldwide. Therefore innovative strategies are necessary for improving VD status. The present study examined VD absorption via nanoscale delivery systems. We examine the physical characteristics and in vitro bioaccessibility of cholecalciferol (VD3 ) in nanoemulsion using a simulated gastrointestinal tract system. To evaluate the in vivo bioavailability, we orally administer three groups of mice with VD3 nanoemulsion, VD3 coarse emulsion, or vehicle nanoemulsion without VD3 , and the serum 25(OH)D3 is measured using radioactive immunoassay. The nanoemulsion-based delivery system increases the in vitro bioaccessibility by 3.94-folds (p nanoemulsion statistically significantly increases the serum 25(OH)D3 by 73% (p nanoemulsion-based delivery system is a promising approach to improve VD bioavailability, and further studies are warranted to determine its efficacy in humans. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of β-Carotene-Loaded Organogel-Based Nanoemulsion with Improved In Vitro and In Vivo Bioaccessibility.

    Science.gov (United States)

    Fan, Yuting; Gao, Luyu; Yi, Jiang; Zhang, Yuzhu; Yokoyama, Wallace

    2017-08-02

    β-Carotene (BC), a naturally occurring lipophilic carotenoid, is beneficial for human health. However, its water solubility and bioavailability are low. In this study, organogel-based nanoemulsion was successfully prepared to improve the loading amount, solubility, and bioavailability of BC. Corn oil was selected as the oil phase for the organogel as a result of the greatest release amount of BC. Tween 20 was optimized as the emulsifier based on the highest extent of lipolysis and BC bioaccessibility. The nanoemulsion was a better alternative than the organogel according to both the extent of lipolysis and BC bioaccessibility. Cellular uptake of BC was significantly improved through organogel-based nanoemulsion compared to BC suspension. Caveolae-/lipid-raft-mediated route was the main endocytosis pathway. Pharmacokinetic results confirmed that the in vivo bioavailability of BC in nanoemulsion was 11.5-fold higher than that of BC oil. The information obtained suggested that organogel-based nanoemulsion may be an effective encapsulation system for delivery of insoluble and indigestible bioactive compounds.

  18. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    Science.gov (United States)

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  19. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    biosynthetic genes were varied and adjusted to improve the ratios of carotenoids produced by this E. coli strain. The strategy presented, which combines chromosomal integration of biosynthetic genes with the possibility of adjusting expression by using different promoters, might be useful as a general approach for the construction of stable heterologous production strains synthesizing natural products. This is the case especially for heterologous pathways where excessive protein overexpression is a hindrance.

  20. Irreversible Electroporation of a Hepatocellular Carcinoma Lesion Adjacent to a Transjugular Intrahepatic Portosystemic Shunt Stent Graft

    Energy Technology Data Exchange (ETDEWEB)

    Niessen, Christoph; Jung, Ernst Michael; Wohlgemuth, Walter A. [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany); Trabold, Benedikt [Department of Anaesthesia, University Medical Center Regensburg, Regensburg D-93053 (Germany); Haimerl, Michael; Schreyer, Andreas; Stroszczynski, Christian; Wiggermann, Philipp [Department of Radiology, University Medical Center Regensburg, Regensburg D-93053 (Germany)

    2013-07-01

    We report in a 65-year-old man hepatocellular carcinoma adjacent to a transjugular intrahepatic portosystemic shunt stent-graft which was successfully treated with irreversible electroporation (IRE). IRE is a new non-thermal tissue ablation technique which uses electrical pulses to induce cell necrosis by irreversible membrane poration. IRE proved to be more advantageous in the ablation of perivascular tumor with little injury to the surrounding structures.

  1. Functional genomics tool: Gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA

    Directory of Open Access Journals (Sweden)

    Troiano Emily

    2010-01-01

    Full Text Available Abstract Background Ticks are blood-sucking arthropods responsible for transmitting a wide variety of disease-causing agents, and constitute important public health threats globally. Ixodes scapularis is the primary vector of the Lyme disease agent in the eastern and central U.S. RNAi is a mechanism by which gene-specific double-stranded RNA (dsRNA triggers degradation of homologous mRNA transcripts. Here, we describe an optimized protocol for effectively suppressing gene expression in the egg and nymphal stages of I. scapularis by electroporation. Results The genes encoding the putative Phospholipase A2 (PLA2, cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin were targeted by delivering the dsRNA encoding the specific gene coding regions in the unfed nymphs. Silencing was measured using real time qRT-PCR. Electroporation as a mode of dsRNA delivery appears to be substantially efficient and less traumatic to the tick than dsRNA microinjection in the unfed nymphs. Using Cy3-labeled dsRNA to monitor the movement, electroporated dsRNA entered the nymphs and spread to salivary glands and other tissues. The significant disruption of β-actin and cytoplasmic Cystatin transcripts in tick eggs demonstrate the applicability of this technique. The PLA2, cytoplasmic Cystatin, Syntaxin-5, β-Actin and Calreticulin genes were also significantly silenced, suggesting that this method has the potential to introduce dsRNA in eggs and unfed nymphs. Conclusions Our study demonstrates that electroporation can be used as a simple dsRNA delivery tool in assessing the functional role of tick genes in the vector-host interactions. This technique represents a novel approach for specific gene suppression in immature stages of ticks.

  2. Controlled release of optimized electroporation enhances the transdermal efficiency of sinomenine hydrochloride for treating arthritis in vitro and in clinic

    Directory of Open Access Journals (Sweden)

    Feng S

    2017-06-01

    Full Text Available Shun Feng,1,* Lijun Zhu,1,* Zhisheng Huang,2 Haojia Wang,1 Hong Li,1 Hua Zhou,3 Linlin Lu,1 Ying Wang,1 Zhongqiu Liu,1,3 Liang Liu1,3 1International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 2Department of Acupuncture and Rehabilitation, Guangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong, 3State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China *These authors contributed equally to this work Abstract: Sinomenine hydrochloride (SH is an ideal drug for the treatment of rheumatoid arthritis and osteoarthritis. However, high plasma concentration of systemically administered SH can release histamine, which can cause rash and gastrointestinal side effects. Topical delivery can increase SH concentration in the synovial fluid without high plasma level, thus minimizing systemic side effects. However, passive diffusion of SH was found to be inefficient because of the presence of the stratum corneum layer. Therefore, an effective method is required to compensate for the low efficiency of SH passive diffusion. In this study, transdermal experiments in vitro and clinical tests were utilized to explore the optimized parameters for electroporation of topical delivery for SH. Fluorescence experiment and hematoxylin and eosin staining analysis were performed to reveal the mechanism by which electroporation promoted permeation. In vitro, optimized electroporation parameters were 3 KHz, exponential waveform, and intensity 10. Using these parameters, transdermal permeation of SH was increased by 1.9–10.1 fold in mice skin and by 1.6–47.1 fold in miniature pig skin compared with passive diffusion. After the electroporation stimulation, the intercellular intervals and epidermal cracks in the skin increased. In clinical tests, SH concentration in synovial fluid was 20

  3. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  4. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma.

    Science.gov (United States)

    Wilgenhof, Sofie; Van Nuffel, An M T; Corthals, Jurgen; Heirman, Carlo; Tuyaerts, Sandra; Benteyn, Daphné; De Coninck, Arlette; Van Riet, Ivan; Verfaillie, Guy; Vandeloo, Judith; Bonehill, Aude; Thielemans, Kris; Neyns, Bart

    2011-06-01

    The immunostimulatory capacity of dendritic cells is improved by co-electroporation with mRNA encoding CD40 ligand, constitutively active toll-like receptor 4, and CD70 (TriMix-DC). This pilot clinical trial evaluated the feasibility, safety, and immunogenicity of a therapeutic vaccination containing autologous TriMix-DC co-electroporated with mRNA encoding a human leukocyte antigen class II-targeting signal linked to 1 of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2, tyrosinase, and gp100) in patients with advanced melanoma. Thirty-five American Joint Committee on Cancer stage III/IV melanoma patients received autologous TriMix-DC (4 administrations 2 weeks apart). Immune monitoring was performed by evaluating skin biopsies of delayed type IV hypersensitivity (DTH) reactions for presence of vaccinal antigen-specific DTH-infiltrating lymphocytes (DIL). Thereafter, patients could receive interferon-alpha-2b (IFN-α-2b) 5 MU subcutaneously 3 times weekly and additional TriMix-DC every 8 weeks. TriMix-DC-related adverse events comprised grade 2 local injection site reactions (all patients), and grade 2 fever and lethargy (2 patients). Vaccinal antigen-specific DIL were found in 0/6 patients tested at vaccine initiation and in 12/21 (57.1%) assessed after the fourth vaccine. A positive postvaccination DTH test correlated with IL-12p70 secretion capacity of TriMix-DC. No objective responses to TriMix-DC alone were seen according to RECIST. Twenty-nine patients received IFN-α-2b after the fourth vaccine without unexpected adverse events. During TriMix-DC/IFN-α-2b combination therapy, 1 partial response and 5 stable disease (disease control of >6 months with regression of metastases) were observed in 17 patients with evaluable disease at baseline. In conclusion, this study demonstrated that therapeutic vaccination with autologous TriMix-DC is feasible, safe, and immunogenic and can be combined with sequential IFN-α-2b.

  5. Improved in Vivo Performance of Amperometric Oxygen (PO2) Sensing Catheters via Electrochemical Nitric Oxide Generation/Release

    Science.gov (United States)

    2016-01-01

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of −2 ± 11% and good correlation (R2 = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of −31 ± 28% and poor correlation (R2 = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors. PMID:26201351

  6. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan); Horiuchi, Masatsugu, E-mail: horiuchi@m.ehime-u.ac.jp [Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295 (Japan)

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  7. Growth Factor-Reinforced ECM Fabricated from Chemically Hypoxic MSC Sheet with Improved In Vivo Wound Repair Activity.

    Science.gov (United States)

    Du, Hui-Cong; Jiang, Lin; Geng, Wen-Xin; Li, Jing; Zhang, Rui; Dang, Jin-Ge; Shu, Mao-Guo; Li, Li-Wen

    2017-01-01

    MSC treatment can promote cutaneous wound repair through multiple mechanisms, and paracrine mediators secreted by MSC are responsible for most of its therapeutic benefits. Recently, MSC sheet composed of live MSCs and their secreted ECMs was reported to promote wound healing; however, whether its ECM alone could accelerate wound closure remained unknown. In this study, Nc-ECM and Cc-ECM were prepared from nonconditioned and CoCl2-conditioned MSC sheets, respectively, and their wound healing properties were evaluated in a mouse model of full-thickness skin defect. Our results showed that Nc-ECM can significantly promote wound repair through early adipocyte recruitment, rapid reepithelialization, enhanced granulation tissue growth, and augmented angiogenesis. Moreover, conditioning of MSC sheet with CoCl2 dramatically enriched its ECM with collagen I, collagen III, TGF-β1, VEGF, and bFGF via activation of HIF-1α and hence remarkably improved its ECM's in vivo wound healing potency. All the Cc-ECM-treated wounds completely healed on day 7, while Nc-ECM-treated wounds healed about 85.0% ± 8.6%, and no-treatment wounds only healed 69.8% ± 9.6% (p MSC sheet has the potential for clinical translation and will lead to a MSC-derived, cost-effective, bankable biomaterial for wound management.

  8. Santosomes as natural and efficient carriers for the improvement of phycocyanin reepithelising ability in vitro and in vivo.

    Science.gov (United States)

    Castangia, Ines; Manca, Maria Letizia; Caddeo, Carla; Bacchetta, Gianluigi; Pons, Ramon; Demurtas, Davide; Diez-Sales, Octavio; Fadda, Anna Maria; Manconi, Maria

    2016-06-01

    New biocarriers, named santosomes, were formulated using Santolina insularis essential oil and hydrogenated phosphatidylcholine. They were modified by adding propylene glycol, a hydrophylic penetration enhancer, and loaded with phycocyanin, a protein found in cyanobacteria, which possesses antioxidant and antiinflammatory properties. The essential oil was expected to modify the bilayer structure and improve the delivery and efficacy of the protein due to a synergistic effect of the phospholipid and S. insularis terpenes. Santosomes were small in size (∼118nm), unilamellar and with polyhedral shape. SAXS patterns showed that phycocyanin strongly interacted with the polar heads of the vesicle bilayer. Phycocyanin-loaded vesicles did not show any toxic effect in vitro: cell viability was ∼100% in endothelial cells and ∼120% in keratinocytes, at all the concentrations tested. In addition, phycocyanin-loaded vesicles protected the cells against free radical damage. In vivo studies were performed to evaluate the ability of santosomes to inhibit chemically-induced oedema and inflammation in mice. Results demonstrated that the application of phycocyanin-loaded santosomes produced an evident amelioration of the skin lesion, confirming their great potential for wound healing. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    Science.gov (United States)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  10. Improving In Vitro to In Vivo Extrapolation by Incorporating Toxicokinetic Measurements: A Case Study of Lindane-Induced Neurotoxicity

    Science.gov (United States)

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicit...

  11. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    Directory of Open Access Journals (Sweden)

    Park HJ

    2016-04-01

    Full Text Available Hee Jun Park,1 Ga Hyeon Lee,1 Joonho Jun,1 Miwon Son,1 Myung Joo Kang2 1Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, 2College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea Abstract: The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg, microcrystalline cellulose (Avicel PH102, 37.5 mg, and porous calcium silicate (25 mg and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp and disintegration time (14 minutes. The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. Keywords: probiotics, multiple-unit tablet, bacterial viability, acid resistance, intestinal barrier function

  12. Pilot Study to Assess Safety and Clinical Outcomes of Irreversible Electroporation for Partial Gland Ablation in Men with Prostate Cancer

    Science.gov (United States)

    Murray, Katie S.; Ehdaie, Behfar; Musser, John; Mashni, Joseph; Srimathveeravalli, Govindarajan; Durack, Jeremy C.; Solomon, Stephen B.; Coleman, Jonathan A.

    2016-01-01

    Purpose Partial prostate gland ablation is a strategy to manage localized prostate cancer. Irreversible electroporation can ablate localized soft tissues. We sought to describe 30- and 90-day complications and intermediate-term functional outcomes in men undergoing prostate gland ablation using irreversible electroporation. Materials and Methods We reviewed the charts of 25 patients with prostate cancer who underwent prostate gland ablation using irreversible electroporation as a primary procedure and who were followed for at least 6 months. Results Median follow-up was 10.9 months. Grade 3 complications occurred in 2 patients including epididymitis (1) and urinary tract infection (1). Fourteen patients experienced grade ≤ 2 complications, mainly transient urinary symptoms, hematuria, and urinary tract infections. Of 25 patients, 4 (16%) had cancer in the zone of ablation on routine follow-up biopsy at 6 months. Of those with normal urinary function at baseline, 88% and 94% reported normal urinary function at 6 and 12 months after prostate gland ablation, respectively. By 12 months, only 1 patient with normal erectile function at baseline reported new difficulty with potency and only 2 patients (8%) required a pad for urinary incontinence. Conclusions Prostate gland ablation with irreversible electroporation is feasible and safe in selected men with localized prostate cancer. Intermediate-term urinary and erectile function outcomes appear reasonable. Irreversible electroporation is effective in ablation of tumor-bearing prostate tissue, as a majority of men had no evidence of residual cancer on biopsy 6 months after prostate gland ablation. PMID:27113966

  13. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  14. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.

    Science.gov (United States)

    Wang, Hsiang-Yu; Lu, Chang

    2008-06-15

    Electroporation is an efficient method of introducing foreign impermeant molecules such as drugs and genes into cells. Conventional electroporation has been based on the application of short electrical pulses (electropulsation). Electropulsation requires specialized equipment and cannot be integrated easily with techniques such as electrophoresis which is based on constant voltage. Here we demonstrate the delivery of small molecules and genes into cells, using a microfluidic electroporation technique based on constant direct current (DC) voltage that we developed earlier. We demonstrate the delivery of two molecules into Chinese hamster ovary (CHO-K1) cells: a membrane impermeable nucleic acid dye (SYTOX Green) and a plasmid vector carrying the gene for green fluorescent protein (pEGFP-C1). Our devices can exert field variations to flowing cells that are analogous to the application of single or multiple pulses by having different geometries. We investigate the effects of the electrical parameters and different geometries of the device on the transfection efficiency and cell viability. Our technique provides a simple solution to electroporation-based drug and gene delivery by eliminating the need for a pulse generator. We envision that these simple microscale electroporation devices will have the potential to work in parallel on a microchip platform and such technology will allow high-throughput functional screening of drugs and genes. (c) 2008 Wiley Periodicals, Inc.

  15. Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Hoyer

    2015-01-01

    Full Text Available For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs. However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs’ immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1, and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.

  16. Exposure-in-vivo containing interventions to improve work functioning of workers with anxiety disorder: a systematic review

    NARCIS (Netherlands)

    Noordik, Erik; van der Klink, Jac J. L.; Klingen, Elmer F.; Nieuwenhuijsen, Karen; van Dijk, Frank J. H.

    2010-01-01

    ABSTRACT: BACKGROUND: Anxiety disorders are associated with functional disability, sickness absence, and decreased productivity. Effective treatments of anxiety disorders can result in remission of symptoms. However the effects on work related outcomes are largely unknown. Exposure in vivo is

  17. Exposure-in-vivo containing interventions to improve work functioning of workers with anxiety disorder : a systematic review

    NARCIS (Netherlands)

    Noordik, Erik; van der Klink, Jac J. L.; Klingen, Elmer F.; Nieuwenhuijsen, Karen; van Dijk, Frank J. H.

    2010-01-01

    Background: Anxiety disorders are associated with functional disability, sickness absence, and decreased productivity. Effective treatments of anxiety disorders can result in remission of symptoms. However the effects on work related outcomes are largely unknown. Exposure in vivo is potentially well

  18. Learning from past treatments and their outcome improves prediction of in vivo response to anti-HIV therapy.

    Science.gov (United States)

    Saigo, Hiroto; Altmann, Andre; Bogojeska, Jasmina; Müller, Fabian; Nowozin, Sebastian; Lengauer, Thomas

    2011-01-01

    Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combinations of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations. Consequently, the genome of the viral target proteins is sequenced and inspected for resistance mutations as part of routine diagnostic procedures for ensuring an effective treatment. For predicting response to a combination therapy, currently available computer-based methods rely on the genotype of the virus and the composition of the regimen as input. However, no available tool takes full advantage of the knowledge about the order of and the response to previously prescribed regimens. The resulting high-dimensional feature space makes existing methods difficult to apply in a straightforward fashion. The machine learning system proposed in this work, sequence boosting, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal features, by utilizing the recent advancements in data mining and boosting. When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients from the EuResist integrated database, sequence boosting achieved superior performance compared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the discriminative treatment information. Analysis of feature importance values provided by our model confirmed known facts regarding HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past had poor treatment perspectives today. Furthermore, our model revealed novel biological insights. More precisely, the combination of previously used drugs with their in vivo response is more informative than the information of previously used drugs alone. Using this information improves the performance of systems for predicting therapy outcome.

  19. Individually addressable multi-chamber electroporation platform with dielectrophoresis and alternating-current-electro-osmosis assisted cell positioning.

    Science.gov (United States)

    Park, Sinwook; Bassat, Dana Ben; Yossifon, Gilad

    2014-03-01

    A multi-functional microfluidic platform was fabricated to demonstrate the feasibility of on-chip electroporation integrated with dielectrophoresis (DEP) and alternating-current-electro-osmosis (ACEO) assisted cell/particle manipulation. A spatial gradient of electroporation parameters was generated within a microchamber array and validated using normal human dermal fibroblast (NHDF) cells and red fluorescent protein-expressing human umbilical vein endothelial cells (RFP-HUVECs) with various fluorescent indicators. The edge of the bottom electrode, coinciding with the microchamber entrance, may act as an on-demand gate, functioning under either positive or negative DEP. In addition, at sufficiently low activation frequencies, ACEO vortices can complement the DEP to contribute to a rapid trapping/alignment of particles. As such, results clearly indicate that the microfluidic platform has the potential to achieve high-throughput screening for electroporation with spatial control and uniformity, assisted by DEP and ACEO manipulation/trapping of particles/cells into individual microchambers.

  20. A top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies.

    Science.gov (United States)

    Narayan, Reema; Pednekar, Abhyuday; Bhuyan, Dipshikha; Gowda, Chaitra; Koteshwara, K B; Nayak, Usha Yogendra

    2017-01-01

    The aim of the present work was to tackle the solubility issue of a biopharmaceutics classification system (BCS)-II drug, aceclofenac. Although a number of attempts to increase the aqueous solubility have been made, none of the methods were taken up for scale-up. Hence size reduction technique by a top-down approach using wet milling process was utilized to improve the solubility and, consequently, the dissolution velocity of aceclofenac. The quality of the final product was ensured by Quality by Design approach wherein the effects of critical material attributes and critical process parameters were assessed on the critical quality attributes (CQAs) of nanocrystals. Box-Behnken design was applied to evaluate these effects on critical quality attributes. The optimized nanocrystals had a particle size of 484.7±54.12 nm with a polydispersity index (PDI) of 0.108±0.009. The solid state characterization of the formulation revealed that the crystalline nature of the drug was slightly reduced after the milling process. With the reduced particle size, the solubility of the nanocrystals was found to increase in both water and 0.1 N HCl when compared with that of unmilled pure aceclofenac. These results were further supported by in vitro release studies of nanocrystals where an appreciable dissolution velocity with 100.07%±2.38% release was observed for aceclofenac nanocrystals compared with 47.66%±4.53% release for pure unmilled aceclofenac at the end of 2 h. The in vivo pharmacokinetic data generated showed a statistically significant increase in the Cmax for aceclofenac nanocrystals of 3.75±0.28 µg/mL (for pure unmilled aceclofenac Cmax was 1.96±0.17 µg/mL). The results obtained indicated that the developed nanocrystals of aceclofenac were successful in improving the solubility, thus the absorption and bioavailability of the drug. Hence, it may be a viable and cost-effective alternative to the current therapy.

  1. Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment

    DEFF Research Database (Denmark)

    Roos, Anna-Karin; Eriksson, Fredrik; Timmons, James A

    2009-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA......-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal...

  2. Percutaneous Irreversible Electroporation of Unresectable Hilar Cholangiocarcinoma (Klatskin Tumor): A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Vroomen, Laurien G. P. H., E-mail: la.vroomen@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Kazemier, Geert, E-mail: g.kazemier@vumc.nl; Tol, M. Petrousjka van den, E-mail: mp.vandentol@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2016-01-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant tumors located near large vessels or bile ducts. The presence of metal objects in the ablation zone, such as Wallstents, is generally considered a contraindication for IRE, because tissue heating due to power conduction may lead to thermal complications. This report describes a 66-year-old female with a Bismuth–Corlette stage IV unresectable cholangiocarcinoma with a metallic Wallstent in the common bile duct, who was safely treated with percutaneous IRE with no signs for relapse 1 year after the procedure.

  3. Synthesis of ABA Tri-Block Co-Polymer Magnetopolymersomes via Electroporation for Potential Medical Application

    Directory of Open Access Journals (Sweden)

    Jennifer Bain

    2015-12-01

    Full Text Available The ABA tri-block copolymer poly(2-methyloxazoline–poly(dimethylsiloxane–poly(2-methyloxazoline (PMOXA–PDMS–PMOXA is known for its capacity to mimic a bilayer membrane in that it is able to form vesicular polymersome structures. For this reason, it is the subject of extensive research and enables the development of more robust, adaptable and biocompatible alternatives to natural liposomes for biomedical applications. However, the poor solubility of this polymer renders published methods for forming vesicles unreproducible, hindering research and development of these polymersomes. Here we present an adapted, simpler method for the production of PMOXA–PDMS–PMOXA polymersomes of a narrow polydispersity (45 ± 5.8 nm, via slow addition of aqueous solution to a new solvent/polymer mixture. We then magnetically functionalise these polymersomes to form magnetopolymersomes via in situ precipitation of iron-oxide magnetic nanoparticles (MNPs within the PMOXA–PDMS–PMOXA polymersome core and membrane. This is achieved using electroporation to open pores within the membrane and to activate the formation of MNPs. The thick PMOXA–PDMS–PMOXA membrane is well known to be relatively non-permeable when compared to more commonly used di-block polymer membranes due a distinct difference in both size and chemistry and therefore very difficult to penetrate using standard biological methods. This paper presents for the first time the application of electroporation to an ABA tri-block polymersome membrane (PMOXA–PDMS–PMOXA for intravesicular in situ precipitation of uniform MNPs (2.6 ± 0.5 nm. The electroporation process facilitates the transport of MNP reactants across the membrane yielding in situ precipitation of MNPs. Further to differences in length and chemistry, a tri-block polymersome membrane structure differs from a natural lipid or di-block polymer membrane and as such the application and effects of electroporation on this type of

  4. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo.

    Science.gov (United States)

    Gratton, Jean-Philippe; Yu, Jun; Griffith, Jason W; Babbitt, Roger W; Scotland, Ramona S; Hickey, Reed; Giordano, Frank J; Sessa, William C

    2003-03-01

    Small polybasic peptides derived from the transduction domains of certain proteins, such as the third alpha-helix of the Antennapedia (Antp) homeodomain, can cross the cell membrane through a receptor-independent mechanism. These cell-permeable molecules have been used as 'Trojan horses' to introduce biologically active cargo molecules such as DNA, peptides or proteins into cells. Using these cell-permeable peptides, we have developed an efficient and simple method to increase virally mediated gene delivery and protein expression in vitro and in vivo. Here, we show that cell-permeable peptides increase viral cell entry, improve gene expression at reduced titers of virus and improve efficacy of therapeutically relevant genes in vivo.

  5. Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo.

    Science.gov (United States)

    Tseng, Shih-Ya; Chao, Ting-Hsing; Li, Yi-Heng; Cho, Chung-Lung

    2016-01-01

    This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease.

  6. Electroporation-mediated somatic transgenesis for rapid functional analysis in insects.

    Science.gov (United States)

    Ando, Toshiya; Fujiwara, Haruhiko

    2013-01-15

    Transgenesis is a powerful technique for determining gene function; however, it is time-consuming. It is virtually impossible to carry out in non-model insects in which egg manipulation and screening are difficult. We have established a rapid genetic functional analysis system for non-model insects using a low-cost electroporator (costing under US$200) designed for somatic transformation with the piggyBac transposon. Using this system, we successfully generated somatic transgenic cell clones in various target tissues (e.g. olfactory neurons, wing epidermis, larval epidermis, muscle, fat body and trachea) of the silkworm Bombyx mori during development. We also induced stable and transient RNA interference (RNAi) using short hairpin RNA (shRNA)-mediating DNA vectors and direct transfer of small interfering RNAs (siRNAs), respectively. We found that these electroporation-mediated approaches could also be applied to the swallowtail butterfly Papilio xuthus and the red flour beetle Tribolium castaneum. Thus, this method could be a powerful genetic tool for elucidating various developmental phenomena in non-model insects.

  7. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform.

    Science.gov (United States)

    Geng, Tao; Bao, Ning; Sriranganathanw, Nammalwar; Li, Liwu; Lu, Chang

    2012-11-06

    The vast majority of genetic analysis of cells involves chemical lysis for release of DNA molecules. However, chemical reagents required in the lysis interfere with downstream molecular biology and often require removal after the step. Electrical lysis based on irreversible electroporation is a promising technique to prepare samples for genetic analysis due to its purely physical nature, fast speed, and simple operation. However, there has been no experimental confirmation on whether electrical lysis extracts genomic DNA from cells in a reproducible and efficient fashion in comparison to chemical lysis, especially for eukaryotic cells that have most of the DNA enclosed in the nucleus. In this work, we construct an integrated microfluidic chip that physically traps a low number of cells, lyses the cells using electrical pulses rapidly, then purifies and concentrates genomic DNA. We demonstrate that electrical lysis offers high efficiency for DNA extraction from both eukaryotic cells (up to ∼36% for Chinese hamster ovary cells) and bacterial cells (up to ∼45% for Salmonella typhimurium) that is comparable to the widely used chemical lysis. The DNA extraction efficiency has dependence on both the electric parameters and relative amount of beads used for DNA adsorption. We envision that electroporation-based DNA extraction will find use in ultrasensitive assays that benefit from minimal dilution and simple procedures.

  8. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  9. A rapid and efficient electroporation method for transformation of Halomonas sp. O-1.

    Science.gov (United States)

    Harris, Joshua R; Lundgren, Benjamin R; Grzeskowiak, Brian R; Mizuno, Kouhei; Nomura, Christopher T

    2016-10-01

    Halomonas sp. O-1 is a halophilic bacterium with a high potential for industrial application due to its natural ability to produce polyhydroxyalkanoates (PHAs) using seawater-based media. However, a major barrier preventing industrial scale implementation of this organism is a lack of molecular methodologies capable of readily transforming members of the Halomonas genus. Currently, the only reliable method used for introducing DNA into Halomonas spp. is bacterial conjugation, a somewhat tedious and time-consuming technique compared to electroporation-based methodologies. Here we describe a rapid and reproducible method for the electroporation of Halomonas sp. O-1 with plasmid DNA. Electrocompetent cells were generated by growing Halomonas sp. O-1 in a yeast extract-tryptone medium with a final salinity of 3.5%, pH of 7.5, followed by several washes using 300mM sucrose. Results show that plasmids containing chloramphenicol (Cm(R)) and gentamicin (Gm(R)) resistance cassettes are suitable antibiotic selection markers for transformation and yields of 10(4) transformants per μg of DNA were obtained. This method is simple to perform and the materials used are readily available in most research labs. Additionally, this plasmid-based transformation procedure has the potential to be adapted for a number of applications including the creation of recombinant stains and the generation of deletion mutants of Halomonas spp. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever.

    Science.gov (United States)

    Cashman, Kathleen A; Wilkinson, Eric R; Shaia, Carl I; Facemire, Paul R; Bell, Todd M; Bearss, Jeremy J; Shamblin, Joshua D; Wollen, Suzanne E; Broderick, Kate E; Sardesai, Niranjan Y; Schmaljohn, Connie S

    2017-12-02

    Lassa virus (LASV) is an ambisense RNA virus in the Arenaviridae family and is the etiological agent of Lassa fever, a severe hemorrhagic disease endemic to West and Central Africa. 1,2 There are no US Food and Drug Administration (FDA)-licensed vaccines available to prevent Lassa fever. 1,2 in our previous studies, we developed a gene-optimized DNA vaccine that encodes the glycoprotein precursor gene of LASV (Josiah strain) and demonstrated that 3 vaccinations accompanied by dermal electroporation protected guinea pigs from LASV-associated illness and death. Here, we describe an initial efficacy experiment in cynomolgus macaque nonhuman primates (NHPs) in which we followed an identical 3-dose vaccine schedule that was successful in guinea pigs, and a follow-on experiment in which we used an accelerated vaccination strategy consisting of 2 administrations, spaced 4 weeks apart. In both studies, all of the LASV DNA-vaccinated NHPs survived challenge and none of them had measureable, sustained viremia or displayed weight loss or other disease signs post-exposure. Three of 10 mock-vaccinates survived exposure to LASV, but all of them became acutely ill post-exposure and remained chronically ill to the study end point (45 d post-exposure). Two of the 3 survivors experienced sensorineural hearing loss (described elsewhere). These results clearly demonstrate that the LASV DNA vaccine combined with dermal electroporation is a highly effective candidate for eventual use in humans.

  11. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: A case study of lindane-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.; Mundy, William R.; Eklund, Chris R.; Johnstone, Andrew F.M.; Mack, Cina M.; Pegram, Rex A., E-mail: pegram.rex@epa.gov

    2015-02-15

    Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neurons in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC

  12. Targeted concurrent chemoradiotherapy, by using improved microcapsules that release carboplatin in response to radiation, improves detectability by computed tomography as well as antitumor activity while reducing adverse effect in vivo.

    Science.gov (United States)

    Harada, Satoshi; Ehara, Shigeru; Ishii, Keizo; Sato, Takahiro; Koka, Masashi; Kamiya, Tomihiro; Sera, Koichiro; Goto, Shyoko

    2015-03-01

    The effect of alginate-hyaluronate microcapsules that release carboplatin in response to radiation was improved by adding ascorbic acid (AA). Four measures of the effectiveness of the microcapsules were evaluated: 1) release of carboplatin in response to radiation in vitro and in vivo; 2) detectability of their accumulation by computed tomography (CT) in vivo; 3) enhancement of antitumor effects in vivo; and 4) reduction of adverse effects in vivo. There were significant increases in the rupture of microcapsules by adding AA in vitro. Subcutaneously injected microcapsules around the tumor could be detected by using CT and the alteration of CT-values correlated with the accumulation of the microcapsules. Those microcapsules released carboplatin and resulted in synergistic antitumor effect with concomitant radiation. With the encapsulation of carboplatin, chemotherapeutic effects were still observed two weeks after treatment. However, addition of AA did not result in increased antitumor effect in vivo. A reduction in adverse effects was observed with the encapsulation of carboplatin, through localization of carboplatin around the tumor. Addition of AA to the materials of microcapsules did not result in increasing antitumor effect. However encapsulation of carboplatin will be useful as a clinical cancer-therapy option. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination.

    Science.gov (United States)

    Dermol, Janja; Miklavčič, Damijan

    2014-12-01

    High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Effect of Electroporation of a Lyotroic Liquid Crystal Genistein-Based Formulation in the Recovery of Murine Melanoma Lesions

    Directory of Open Access Journals (Sweden)

    Corina Danciu

    2015-07-01

    Full Text Available A lamellar lyotropic liquid crystal genistein-based formulation (LLC-Gen was prepared in order to increase the aqueous solubility of the lipophilic phytocompound genistein. The formulation was applied locally, in a murine model of melanoma, with or without electroporation. The results demonstrated that, when the formulation was applied by electroporation, the tumors appeared later. During the 21 days of the experiment, the LLC-Gen formulation decreased the tumor volume, the amount of melanin and the degree of erythema, but when electroporation was applied, all these parameters indicated a better prognosis even (lower tumor volume, amount of melanin and degree of erythema. Although hematoxylin–eosin (HE staining confirmed the above events, application of the LLC-Gen formulation by electroporation did not lead to a significant effect in terms of the serum concentrations of the protein S100B and serum neuron specific enolase (NSE, or the tissue expression of the platelet-derived growth factor receptor β (PDGFRβ antibody.

  15. Transfection of HeLa-cells with pEGFP plasmid by impedance power-assisted electroporation

    DEFF Research Database (Denmark)

    Glahder, Jacob; Norrild, Bodil; Persson, Mikael B

    2005-01-01

    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and puls...

  16. Efficient large volume electroporation of dendritic cells through micrometer scale manipulation of flow in a disposable polymer chip

    DEFF Research Database (Denmark)

    Selmeczi, Dávid; Hansen, Thomas Steen; Met, Özcan

    2011-01-01

    We present a hybrid chip of polymer and stainless steel designed for high-throughput continuous electroporation of cells in suspension. The chip is constructed with two parallel stainless steel mesh electrodes oriented perpendicular to the liquid flow. The relatively high hydrodynamic resistance...... molded polymer parts and commercially available stainless steel mesh, making it suitable for inexpensive mass production....

  17. Preliminary Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging to Detect Residual Prostate Cancer Following Focal Therapy with Irreversible Electroporation

    NARCIS (Netherlands)

    Scheltema, Matthijs J.; Chang, John I.; van den Bos, Willemien; Böhm, Maret; Delprado, Warick; Gielchinsky, Ilan; de Reijke, Theo M.; de la Rosette, Jean J.; Siriwardana, Amila R.; Shnier, Ron; Stricker, Phillip D.

    2017-01-01

    It is recommended to perform multiparametric magnetic resonance imaging (mpMRI) in the follow-up following focal therapy of prostate cancer (PCa). To determine the diagnostic accuracy of mpMRI to detect residual PCa following focal therapy with irreversible electroporation. Seventy-six patients with

  18. Cold atmospheric plasma (CAP changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Stephanie Arndt

    Full Text Available Cold atmospheric plasma (CAP has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated.

  19. Miniaturized two-stack Blumlein pulser with a variable repetition-rate for non-thermal irreversible-electroporation experiments

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Jeong, Jin-Young; Hong, Dongpyo; Park, Seunghyuk; Park, Gun-Sik

    2017-01-01

    Non-thermal irreversible electroporation (NTIRE) to avoid thermal damage to cells during intense DC ns pulsed electric fields (nsPEFs) is a recent modality for medical applications. This mechanism, related to bioelectrical dynamics of the cell, is linked to the effect of a DC electric field and a threshold effect with an electrically stimulated membrane for the charge distribution in the cell. To create the NTIRE condition, the pulse width of the nsPEF should be shorter than the charging time constant of the membrane related to the cell radius, membrane capacitance, cytoplasm resistivity, and medium resistivity. It is necessary to design and fabricate a very intense nanosecond DC electric field pulser that is capable of producing voltages up to the level of 100 kV/cm with an artificial pulse width (˜ns) with controllable repetition rates. Many devices to generate intense DC nsPEF using various pulse-forming line technologies have been introduced thus far. However, the previous Blumlein pulse-generating devices are clearly inefficient due to the energy loss between the input voltage and the output voltage. An improved two-stage stacked Blumlein pulse-forming line can overcome this limitation and decrease the energy loss from a DC power supply. A metal oxide silicon field-effect transistor switch with a fast rise and fall time would enable a high repetition rate (max. 100 kHz) and good endurance against very high voltages (DC ˜ 30 kV). The load is designed to match the sample for exposure to cell suspensions consisting of a 200 Ω resistor matched with a Blumlein circuit and two electrodes without the characteristic RC time effect of the circuit (capacitance =0.174 pF).

  20. A Novel Strategy Combining Array-CGH, Whole-exome Sequencing and In Utero Electroporation in Rodents to Identify Causative Genes for Brain Malformations.

    Science.gov (United States)

    Conti, Valerio; Carabalona, Aurelie; Pallesi-Pocachard, Emilie; Leventer, Richard J; Schaller, Fabienne; Parrini, Elena; Deparis, Agathe A; Watrin, Françoise; Buhler, Emmanuelle; Novara, Francesca; Lise, Stefano; Pagnamenta, Alistair T; Kini, Usha; Taylor, Jenny C; Zuffardi, Orsetta; Represa, Alfonso; Keays, David Antony; Guerrini, Renzo; Falace, Antonio; Cardoso, Carlos

    2017-12-01

    Birth defects that involve the cerebral cortex - also known as malformations of cortical development (MCD) - are important causes of intellectual disability and account for 20-40% of drug-resistant epilepsy in childhood. High-resolution brain imaging has facilitated in vivo identification of a large group of MCD phenotypes. Despite the advances in brain imaging, genomic analysis and generation of animal models, a straightforward workflow to systematically prioritize candidate genes and to test functional effects of putative mutations is missing. To overcome this problem, an experimental strategy enabling the identification of novel causative genes for MCD was developed and validated. This strategy is based on identifying candidate genomic regions or genes via array-CGH or whole-exome sequencing and characterizing the effects of their inactivation or of overexpression of specific mutations in developing rodent brains via in utero electroporation. This approach led to the identification of the C6orf70 gene, encoding for a putative vesicular protein, to the pathogenesis of periventricular nodular heterotopia, a MCD caused by defective neuronal migration.

  1. Numerical modeling of bi-polar (AC) pulse electroporation of single cell in microchannel to create nanopores on its membrane.

    Science.gov (United States)

    Movahed, Saeid; Bazargan-Lari, Yousef; Daneshmad, Farhang; Mashhoodi, Mashhood

    2014-12-01

    AC electroporation of a single cell in a microchannel was numerically studied. A 15 μm diameter cell was considered in a microchannel 25 μm in height and the influences of AC electric pulse on its membrane were numerically investigated. The cell was assumed to be suspended between two electroporative electrodes embedded on the walls of a microchannel. An amplitude and a time span of applied electric pulse were chosen to be 80 kV/m and 10 μs, respectively. For different frequency values (50, 100, 200, and 500 kHz), simulations were performed to show how the cell membrane was electroporated and the creation of nanopores. Obtained numerical results show that the most and the largest nanopores are created around poles of cell (nearest points of cell membrane to the electrodes). The numerical simulations also demonstrate that increased frequency will slightly decrease electroporated area of the cell membrane; additionally, growth of the created nanopores will be stabilized. It has also been proven that size and number of the created nanopores will be decreased by moving from the poles to the equator of the cell. There is almost no nanopore created in the vicinity of the equator. Frequency affects the rate of generation of nanopores. In case of AC electroporation, creation of nanopores has two phases that periodically repeat over time. In each period, the pore density sharply increases and then becomes constant. Enhancement of the frequency will result in decrease in time span of the periods. In each period, size of the created nanopores sharply increases and then slightly decreases. However, until the AC electric pulse is present, overall trends of creation and development of nanopores will be ascending. Variation of the size and number of created nanopores can be explained by considering time variation of transmembrane potential (difference of electric potential on two sides of cell membrane) which is clear in the results presented in this study.

  2. Improvement of penile erection, sperm count and seminal fructose levels in vivo and nitric oxide release in vitro by ayurvedic herbs.

    Science.gov (United States)

    Thakur, M; Thompson, D; Connellan, P; Deseo, M A; Morris, C; Dixit, V K

    2011-08-01

    In the present study, the effect of four Vajikaran Rasayana herbs on penile erection, sperm count, seminal fructose content in vivo and nitric oxide (NO) release in vitro was assessed. Lyophilised aqueous extracts of Asparagus racemosus Willd. (AR), Chlorophytum borivilianum Sant. F. (CB), Curculigo orchioides Gaertn. (CO), and Dactylorhiza hatagirea (D. Don) Soo (DH) were orally administered at 100 mg/kg body weight to Wistar strain male albino rats. Penile erection index and sperm count were determined by visual observation; the seminal fructose concentration was measured spectrophotometrically using resorcinol reagent; and NO release was assessed in a mouse macrophage cell line (RAW264) spectrophotometrically using a commercial Griess reagent kit. Penile erection index, sperm count, seminal fructose concentration and in vitro NO release were the parameters measured. A significant effect on the sperm count, seminal fructose content and penile erection index was observed upon treatment with the extracts. The effect of extracts on inducible NO release in vitro directly correlated with the enhanced erectile function in vivo. The aphrodisiac claims attributed to the four Vajikaran Rasayana herbs were tested and a distinctive effect of all extracts tested was observed, with C. borivilianum showing a highly significant response for all parameters measured in vivo and in vitro. The present study also provides a good correlation between the in vivo improvement of penile erection and in vitro NO releasing activity of the extracts. Increase in seminal fructose levels and sperm count further validates the role of these herbs in improving reproductive function. © 2011 Blackwell Verlag GmbH.

  3. DNA transfection of bone marrow mesenchymal stem cells using micro electroporation chips

    KAUST Repository

    Deng, Peigang

    2011-02-01

    Experimental study of electroporation of bone marrow mesenchymal stem cells (MSCs) at the single-cell level was carried out on a micro EP chip by using single electric rectangular pulse. The threshold values of the electrode potential and pulse width for gas bubble generation on the micro electrodes due to electrolysis of water were revealed as 4.5 volt and 100 μs, respectively. Quantitative EP study was performed with various electric field strengths for various pulse widths, ranging from 20μs to 15ms. Over 1,000 single-cell EP results were used to construct an EP "phase diagram", which delineates the boundaries for (1) effective EP of MSCs and (2) electric cell lysis of MSCs. Finally, the micro EP chip showed successful transfection of the pEGFP-C1 plasmid into the MSCs by properly choosing the electric parameters from the EP "phase diagram". © 2011 IEEE.

  4. Imaging of Single Dye-Labeled Chemotaxis Proteins in Live Bacteria Using Electroporation.

    Science.gov (United States)

    Di Paolo, Diana; Berry, Richard M

    2018-01-01

    For the last 2 decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signaling in E. coli, including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical. For example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart. FPs may interfere with the native interactions of the protein, and their chromophores have low brightness and photostability, and fast photobleaching rates. Electroporation allows for internalization of purified CheY proteins labeled with organic dyes into E. coli cells in controllable concentrations. Using fluorescence video microscopy, it is possible to observe single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time.

  5. Electric field computation and measurements in the electroporation of inhomogeneous samples

    Science.gov (United States)

    Bernardis, Alessia; Bullo, Marco; Campana, Luca Giovanni; Di Barba, Paolo; Dughiero, Fabrizio; Forzan, Michele; Mognaschi, Maria Evelina; Sgarbossa, Paolo; Sieni, Elisabetta

    2017-12-01

    In clinical treatments of a class of tumors, e.g. skin tumors, the drug uptake of tumor tissue is helped by means of a pulsed electric field, which permeabilizes the cell membranes. This technique, which is called electroporation, exploits the conductivity of the tissues: however, the tumor tissue could be characterized by inhomogeneous areas, eventually causing a non-uniform distribution of current. In this paper, the authors propose a field model to predict the effect of tissue inhomogeneity, which can affect the current density distribution. In particular, finite-element simulations, considering non-linear conductivity against field relationship, are developed. Measurements on a set of samples subject to controlled inhomogeneity make it possible to assess the numerical model in view of identifying the equivalent resistance between pairs of electrodes.

  6. Percutaneous Irreversible Electroporation of Locally Advanced Pancreatic Carcinoma Using the Dorsal Approach: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Vogel, Jantien A., E-mail: j.a.vogel@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin, E-mail: k.nielsen@vumc.nl; Kazemier, Geert, E-mail: g.kazemier@vumc.nl [VU University Medical Center, Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-06-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is increasingly used to treat locally advanced pancreatic carcinoma (LAPC). We describe a 67-year-old male patient with a 5 cm stage III pancreatic tumor who was referred for IRE. Because the ventral approach for electrode placement was considered dangerous due to vicinity of the tumor to collateral vessels and duodenum, the dorsal approach was chosen. Under CT-guidance, six electrodes were advanced in the tumor, approaching paravertebrally alongside the aorta and inferior vena cava. Ablation was performed without complications. This case describes that when ventral electrode placement for pancreatic IRE is impaired, the dorsal approach could be considered alternatively.

  7. Genetic transformation of marine cyanobacterium Synechococcus sp. CC9311 (Cyanophyceae) by electroporation

    Science.gov (United States)

    Chen, Huaxin; Lin, Hanzhi; Jiang, Peng; Li, Fuchao; Qin, Song

    2013-03-01

    Synechococcus sp. CC9311 is a marine cyanobacterium characterized by type IV chromatic acclimation (CA). A genetic transformation system was developed as a first step to elucidate the molecular mechanism of CA. The results show that Synechococcus sp. CC9311 cells were sensitive to four commonly used antibiotics: ampicillin, kanamycin, spectinomycin, and chloramphenicol. An integrative plasmid to disrupt the putative phycoerythrin lyase gene mpeV, using a kanamycin resistance gene as selectable marker, was constructed by recombinant polymerase chain reaction. The plasmid was then transformed into Synechococcus sp. CC9311 via electroporation. High transformation efficiency was achieved at a field strength of 2 kV/cm. DNA analysis showed that mpeV was fully disrupted following challenge of the transformants with a high concentration of kanamycin. In addition, the transformants that displayed poor growth on agar SN medium could be successfully plated on agarose SN medium.

  8. New method for electroporation of Lactobacillus species grown in high salt.

    Science.gov (United States)

    Palomino, Maria Mercedes; Allievi, Mariana C; Prado-Acosta, Mariano; Sanchez-Rivas, Carmen; Ruzal, Sandra M

    2010-11-01

    We here describe a new method for electroporation of Lactobacillus species, obligately homofermentative and facultatively heterofermentative, based on the cell-wall weakening resulting from growth in high-salt media. For L. casei, optimum transformation efficiency of up to 10(5) transformants per microgram of plasmid DNA was achieved following growth in the presence of 0.9 M NaCl. Plasmids of different sizes and replication origins were also similarly transformed. These competent cells could be used either directly or stored frozen, up to 1 month, for future use, with similar efficiency. This protocol was assayed with different Lactobacillus species: L. delbrueckii subsp. lactis, L. paracasei, L. plantarum and L. acidophilus, and it was found that they were transformed with similar efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Detection of electroporation-induced membrane permeabilization states in the brain using diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2015-01-01

    (DW-MRI) as a quantitative method for detecting EP-induced membrane permeabilization of brain tissue using a rat brain model. MATERIAL AND METHODS: Fifty-four anesthetized Sprague-Dawley male rats were electroporated in the right hemisphere, using different voltage levels to induce no permeabilization...... (NP), transient membrane permeabilization (TMP), and permanent membrane permeabilization (PMP), respectively. DW-MRI was acquired 5 minutes, 2 hours, 24 hours and 48 hours after EP. Histology was performed for validation of the permeabilization states. Tissue content of water, Na+, K+, Ca2......+, and extracellular volume were determined. The Kruskal-Wallis test was used to compare the DW-MRI parameters, apparent diffusion coefficient (ADC) and kurtosis, at different voltage levels. The two-sample Mann- Whitney test with Holm's Bonferroni correction was used to identify pairs of significantly different...

  10. Local Ablative Strategies for Ductal Pancreatic Cancer (Radiofrequency Ablation, Irreversible Electroporation): A Review

    Science.gov (United States)

    Paiella, Salvatore; Salvia, Roberto; Ramera, Marco; Girelli, Roberto; Frigerio, Isabella; Giardino, Alessandro; Allegrini, Valentina; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Locally advanced pancreatic cancer (LAPC) accounts for the 40% of the new diagnoses. Current treatment options are based on chemo- and radiotherapy regimens. Local ablative techniques seem to be the future therapeutic option for stage-III patients with PDAC. Radiofrequency Ablation (RFA) and Irreversible Electroporation (IRE) are actually the most emerging local ablative techniques used on LAPC. Initial clinical studies on the use of these techniques have already demonstrated encouraging results in terms of safety and feasibility. Unfortunately, few studies on their efficacy are currently available. Even though some reports on the overall survival are encouraging, randomized studies are still required to corroborate these findings. This study provides an up-to-date overview and a thematic summary of the current available evidence on the application of RFA and IRE on PDAC, together with a comparison of the two procedures. PMID:26981115

  11. Allicin functionalized locust bean gum nanoparticles for improved therapeutic efficacy: An in silico, in vitro and in vivo approach.

    Science.gov (United States)

    Soumya, R S; Sherin, S; Raghu, K G; Abraham, Annie

    2018-04-01

    The field of nanotechnology has overgrown over the past few years and has even ventured into the field of medicine. The aim of the present study is to develop a novel allicin functionalized locust bean gum nanoparticle using the nanoprecipitation technique. The synthesized nanoparticles were characterized by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. The characterization study revealed the nanoscale structure (∼100nm) of the prepared particles. In silico toxicology analysis were carried out to assess the drug-like properties and virtual toxicity of allicin. Toxicity of the prepared nanoparticles were carried out in RAW 264.7 cell lines in vitro and in vivo studies were carried out in Sprague-Dawley rats. In in vitro study, LBGAN showed a maximum toxicity of 10.51% in MTT assay, no reactive oxygen species generation on DCFDA staining and LBGAN was effective to protect the cells from apoptosis. In in vivo toxicity studies LBGAN showed no significant change in the activities of the marker enzymes like LDH, CK-MB, ALP, ACP, AST and ALT. Thus, the functionalization of nanoparticles with allicin has the benefit of providing protection and stability to the allicin, in addition to increasing its pharmacological activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing.

    Science.gov (United States)

    Nafee, Noha; Youssef, Alaa; El-Gowelli, Hanan; Asem, Heba; Kandil, Sherif

    2013-09-15

    Hypericin (HY) is a naturally-occurring, potent photosensitizer. However, its lipophilicity limits its therapeutic applications. Our attempt is, thus, to develop a biodegradable nanocarrier for hypericin capable of preserving its antibacterial photoactivity. Amphiphilic block copolymers were synthesized to prepare hypericin-laden nanoparticles (HY-NPs). The antimicrobial photoactivity of HY-NPs was assessed; in vitro against biofilm and planktonic cells of methicillin resistant Staphylococcus aureus (MRSA) clinical isolates and in vivo on infected wounds in rats. Nanoparticles of 45 nm in diameter ensured higher amounts of reactive oxygen species upon irradiation. HY-NPs demonstrated superior inhibition of biofilm over planktonic cells. In vivo wound healing studies in rats revealed faster healing, better epithelialization, keratinization and development of collagen fibers when HY-NPs were applied. Determination of growth factors and inflammatory mediators in the wound area confirmed superior healing potential of nanoencapsulated hypericin suggesting that hypericin can join the era of antibiotic-free antimicrobial therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Survival of Cochlear Spiral Ganglion Neurons Improved In vivo by Anti-miR204 via TMPRSS3.

    Science.gov (United States)

    Peng, A; Li, Y; Pan, X; Ge, S; Wang, Q; Li, S; Zhu, G; Liu, J

    2015-05-08

    Sensorineural hearing loss (SNHL) is caused by damage to hair cells followed by degeneration of the spiral ganglion neurons (SGNs), and cochlear implanting is an effective treatment. Unfortunately, the progressive hearing loss is still found due to ongoing degeneration of cochlear SGNs. The aim of this study was to investigate the neuroprotective effect of anti-miR204 on SGNs in vivo. Our recent in vitro work suggested that anti-miR204 could be a potential therapeutic strategy in SNHL via rescue cochlear SGNs. In order to further our knowledge of miR204 on SGNs in vivo, we made a kanamycin ototoxicity model and then virus containing the anti-miR204 gene (AAV1-anti-miR204) was microinjected into the cochlear of the model to monitor the effect. The SGNs were rescued by anti-miR204 in the kanamycin ototoxicity mouse group compared to the sham group. Moreover, expression of TMPRSS3 in SGNs was saved by anti-miR204 treatment. Anti-miR204 might be an alternate way to alleviate the degeneration of cochlear SGNs of kanamycin ototoxicity mice.

  14. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    Science.gov (United States)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  15. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms.

    Directory of Open Access Journals (Sweden)

    Guilherme Rodrigues Teodoro

    Full Text Available The aim of this study was to increase the solubility of gallic acid (GA for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents.

  16. Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment.

    Directory of Open Access Journals (Sweden)

    Soraya Carrancio

    Full Text Available The aim of the present study was to determine how mesenchymal stem cells (MSC could improve bone marrow (BM stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34(+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin, involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (i.v. or intrabone (i.b. route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur.

  17. Bone Marrow Mesenchymal Stem Cells for Improving Hematopoietic Function: An In Vitro and In Vivo Model. Part 2: Effect on Bone Marrow Microenvironment

    Science.gov (United States)

    Carrancio, Soraya; Blanco, Belen; Romo, Carlos; Muntion, Sandra; Lopez-Holgado, Natalia; Blanco, Juan F.; Briñon, Jesus G.; San Miguel, Jesus F.; Sanchez-Guijo, Fermin M.; del Cañizo, M. Consuelo

    2011-01-01

    The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur. PMID:22028841

  18. Irreversible electroporation for unresectable hepatocellular carcinoma: initial experience and review of safety and outcomes.

    Science.gov (United States)

    Cheung, W; Kavnoudias, H; Roberts, S; Szkandera, B; Kemp, W; Thomson, K R

    2013-06-01

    The aims of this study were to evaluate the safety, feasibility and tumour response of _irreversible electroporation, a non-thermal ablation technique, for the treatment of unresectable hepatocellular carcinoma. The endpoints were safety and local treatment efficacy. Patients with unresectable tumours and tumours not amenable for radiofrequency _ablation because of their vicinity to organs vulnerable to thermal damage such as the bowel or because they were close to large blood vessels that would limit efficacy of ablation due to the heat sink effect were treated with irreversible electroporation using percutaneous _ultrasound and/or computed tomography guided electrode placement between November 2008 and _December 2009. Early, late, minor and major complications were recorded. Tumour response was determined on triphasic helical computed tomography follow-up at one month, then every three months post-procedure. Eleven patients received IRE therapy to 18 HCC lesions (Mean diameter 2.44 ± 0.99 cm; range 1.0-6.1 cm) with five patients having more than one treated HCC. Mean follow-up was 18 months (range 14-24 months). Six patients required repeat treatments for local residual or recurrent disease; two of these also had IRE for distant intrahepatic recurrence. No serious complications were observed despite seven lesions lying adjacent to important structures or organs. Four patients developed transient urinary retention and seven developed transient local post-procedure pain. After IRE therapy, 13 (72%) lesions were completely ablated with 93% success for lesions ≤ 3 cm (13/14). The local recurrence-free period was 18 ± 4 months and the distance recurrence free period was 14 ± 6 months. These preliminary results suggest that IRE is a safe and feasible technique for local ablation of HCC, particularly for lesions less than 3 cm. No major complications were encountered during this study even for tumours close to essential structures or organs.

  19. Achieving magneto-elasto-electroporation and cell transport using core-shell magnetoelectric nanoparticles (Conference Presentation)

    Science.gov (United States)

    Betal, Soutik; Dutta, Moumita; Shrestha, Binita; Saha, Amit; Tang, Liang; Ramasubramanian, Ananad K.; Bhalla, Amar S.; Guo, Ruyan

    2016-09-01

    Magneto-Elasto-Electroporation (MEEP) is a magnetically controlled acoustic-electroporation observed while core-shell Magneto-electric nanoparticles interact with Biological Cells. The surface polarity change of the piezoelectric coating (BaTiO3) due to absorption of pressure created due magneto-striction of core (CoFe2O4) in AC magnetic field results in electric field (Uext) change at the external vicinity of the cell membrane when nanoparticles are nearby. This results in transmembrane Voltage (Um) change which is basically the difference in Cell's internal potential (Uint) and external potential. The nonlinear permeability change of cell membrane due to change in Um opens the nano-pores on the membrane. The magnetic moment of the nanoparticles further helps in penetration of the Magneto-electric nanoparticles inside the cell through these magneto-electrically controlled newly opened nano-pores on cell's membrane. MEEP is analyzed through in-vitro analysis and Mathematical equations are formulated for numerically expressing its fundamental effect. TEM imaging, XRD analysis, Zeta-potentiometer measurement and AFM imaging are confirming the coating of the piezoelectric layer on Magneto-stricitve nanoparticles, Acoustic measurements confirms the photo-acoustic and magneto-acoustic property of CoFe2O4 nanoparticles and Fluorescence microscopy as well as Confocal microscopy are confirming the penetration of particle inside the Human Epithelial cells (HEP2). Further on application of repulsive magnetic field, nanoparticles are observed to transport a group of cells in controlled boundary conditions in microfluidic chamber. Hence these nanoparticles can be used for accurate and efficient drug delivery as well as cell transport applications

  20. Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation

    Directory of Open Access Journals (Sweden)

    J. Michael eGee

    2015-04-01

    Full Text Available Complex interactions between networks of astrocytes and neurons are beginning to be appreciated, but remain poorly understood. Transgenic mice expressing fluorescent protein reporters of cellular activity, such as the GCaMP family of genetically encoded calcium indicators, have been used to explore network behavior. However, in some cases, it may be desirable to use long-established rat models that closely mimic particular aspects of human conditions such as Parkinson’s disease and the development of epilepsy following status epilepticus. Methods for expressing reporter proteins in the rat brain are relatively limited. Transgenic rat technologies exist but are fairly immature. Viral-mediated expression is robust but unstable, requires invasive injections, and only works well for fairly small genes (< 5 kb. In utero electroporation offers a valuable alternative. IUE is a proven method for transfecting populations of astrocytes and neurons in the rat brain without the strict limitations on transgene size. We built a toolset of IUE plasmids carrying GCaMP variants 3, 6s or 6f driven by CAG and targeted to the cytosol or the plasma membrane. Because low baseline fluorescence of GCaMP can hinder identification of transfected cells, we included the option of co-expressing a cytosolic tdTomato protein. A binary system consisting of a plasmid carrying a piggyBac inverted terminal repeat-flanked CAG-GCaMP-IRES-tdTomato cassette and a separate plasmid encoding for expression of piggyBac transposase was employed to stably express GCaMP and tdTomato. The plasmids were co-electroporated on embryonic days 13.5-14.5 and astrocytic and neuronal activity was subsequently imaged in acute or cultured brain slices prepared from the cortex or hippocampus. Large spontaneous transients were detected in slices obtained from rats of varying ages up to 127 days. In this report, we demonstrate the utility of this toolset for interrogating astrocytic and neuronal

  1. IGF-I gene transfer by electroporation promotes regeneration in a muscle injury model.

    Science.gov (United States)

    Takahashi, T; Ishida, K; Itoh, K; Konishi, Y; Yagyu, K-I; Tominaga, A; Miyazaki, J-I; Yamamoto, H

    2003-04-01

    The goal of this study was to determine whether insulin-like growth factor-I (IGF-I) gene delivery by electroporation promotes repair after muscle injury. An injury-repair model was created using mice in which a hamstring muscle was cut and sutured. A total of 50 microg of IGF-I DNA or green fluorescent protein (GFP) DNA (both in pCAGGS) was injected into the lesion and introduced into muscle cells by electrostimulation using an electric pulse generator. The number of regenerating muscle fibers in the IGF-I DNA group was significantly more than that in the GFP DNA group at 2 weeks after injection. The diameter of regenerating muscle fibers from the IGF-I DNA group was larger than that of the GFP DNA group at 4 weeks after injection. There was no significant difference in the serum IGF-I concentration between the IGF-I DNA group and the GFP DNA group at 1, 2, and 4 weeks after injection. However, muscle IGF-I concentration in the IGF-I DNA injection group was significantly greater than that in the GFP DNA injection group at 2 weeks after injection. These results demonstrated that the effects of enhanced IGF-I production were local and limited to the injected area. The ratio (injected/uninjected; intact) of the amplitude of compound muscle action potentials (CMAP) in the IGF-I DNA injection group was greater than that in the GFP DNA injection group at 4 weeks after injection and of the control group. In conclusion, IGF-I gene transfer by electroporation proved to be a simple, safe, inexpensive, and effective method to promote the regeneration of injured muscles in our injury model.

  2. Automated cold temperature cycling improves in vitro platelet properties and in vivo recovery in a mouse model compared to continuous cold storage.

    Science.gov (United States)

    Skripchenko, Andrey; Gelderman, Monique P; Awatefe, Helen; Turgeon, Annette; Thompson-Montgomery, Dedeene; Cheng, Chunrong; Vostal, Jaroslav G; Wagner, Stephen J

    2016-01-01

    Platelets (PLTs) stored at cold temperatures (CTs) for prolonged time have dramatically reduced bacterial growth but poor survival when infused. A previous study demonstrated that human PLTs stored with manual cycling between 4 °C (12 hr) and 37 °C (30 min) and infused into severe combined immunodeficient (SCID) mice had survivals similar to or greater than those stored at room temperature (RT). In this study, the in vitro and in vivo properties of PLTs stored in an automated incubator programmed to cycle between 5 °C (11 hr) and 37 °C (1 hr) were evaluated. A Trima apheresis unit (n = 12) was aliquoted (60 mL) in CLX bags. One sample was stored with continuous agitation (RT), a second sample was stored at 4-6 °C without agitation (CT), and a third sample was placed in an automated temperature cycler with 5 minutes of agitation during the warm-up period (thermocycling [TC]). PLTs were assayed for several relevant quality variables. On Day 7, PLTs were infused into SCID mice and in vivo recovery was assessed at predetermined time points after transfusion. The glucose consumption rate, morphology score, hypotonic shock recovery level, and aggregation levels were increased and mitochondrial reactive oxygen species accumulations were decreased in TC-PLTs compared to those of CT-PLTs. The pH and Annexin V binding were comparable to those of RT-PLTs. All TC-PLTs had greater recovery than CT-PLTs and were comparable to RT-PLTs. PLTs stored under automated TC conditions have improved in vivo recovery and improved results for a number of in vitro measures compared to CT-PLTs. © 2015 AABB.

  3. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  4. Phase-aligned multiple spin-echo averaging: a simple way to improve signal-to-noise ratio of in vivo mouse spinal cord diffusion tensor image.

    Science.gov (United States)

    Tu, Tsang-Wei; Budde, Matthew D; Xie, Mingqiang; Chen, Ying-Jr; Wang, Qing; Quirk, James D; Song, Sheng-Kwei

    2014-12-01

    To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly

  5. Simple downstream process based on detergent treatment improves yield and in vivo transduction efficacy of adeno-associated virus vectors

    Directory of Open Access Journals (Sweden)

    Gabriella Dias Florencio

    2015-01-01

    Full Text Available Recombinant adeno-associated viruses (rAAV are promising candidates for gene therapy approaches. The last two decades were particularly fruitful in terms of processes applied in the production and purification of this type of gene transfer vectors. This rapid technological evolution led to better yields and higher levels of vector purity. Recently, some reports showed that rAAV produced by transient tri-transfection method in adherent human embryonic kidney 293 cells can be harvested directly from supernatant, leading to easier and faster purification compared to classical virus extraction from cell pellets. Here, we compare these approaches with new vector recovery method using small quantity of detergent at the initial clarification step to treat the whole transfected cell culture. Coupled with tangential flow filtration and iodixanol-based isopycnic density gradient, this new method significantly increases rAAV yields and conserves high vector purity. Moreover, this approach leads to the reduction of the total process duration. Finally, the vectors maintain their functionality, showing unexpected higher in vitro and in vivo transduction efficacies. This new development in rAAV downstream process once more demonstrates the great capacity of these vectors to easily accommodate to large panel of methods, able to furthermore ameliorate their safety, functionality, and scalability.

  6. In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise.

    Science.gov (United States)

    Haas, Caroline; Best, Thomas M; Wang, Qian; Butterfield, Timothy A; Zhao, Yi

    2012-10-11

    A quasi-linear viscoelasticity (QLV) model was used to study passive time-dependent responses of skeletal muscle to repeated massage-like compressive loading (MLL) following damaging eccentric exercise. Six skeletally mature rabbits were surgically instrumented with bilateral peroneal nerve cuffs for stimulation of the hindlimb tibialis anterior (TA) muscles. Following the eccentric exercise, rabbits were randomly assigned to a four-day MLL protocol mimicking deep effleurage (0.5 Hz, 10 N for 15 min or for 30 min). The contralateral hindlimb served as the exercised, no-MLL control for both MLL conditions. Viscoelastic properties of the muscle pre-exercise, post-exercise on Day 1, and pre- and post-MLL Day 1 through Day 4 were determined with ramp-and-hold tests. The instantaneous elastic response (AG(0)) increased following exercise (p0.05). This is the first experimental evidence of the effect of both acute (daily) and cumulative changes in viscoelastic properties of intensely exercised muscle due to ex vivo MLL. It provides a starting point for correlating passive muscle properties with mechanical effects of manual therapies, and may shed light on design and optimization of massage protocols. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Emotion regulation and its effects on mood improvement in response to an in vivo peer rejection challenge.

    Science.gov (United States)

    Reijntjes, Albert; Stegge, Hedy; Terwogt, Mark Meerum; Kamphuis, Jan H; Telch, Michael J

    2006-11-01

    This study examined children's spontaneous use of behavioral emotion regulation (ER) strategies and their effects on subsequent mood change in response to an in vivo peer rejection manipulation. Participants (N = 186), ranging between 10 and 13 years of age, played a computer game based on the television show Survivor and were randomized to either peer rejection (being voted out of the game) or nonrejection control. In response to rejection, more than one third of the participants (38%) displayed a marked worsening (i.e., reliable change) in state mood. After receiving feedback, time spent on several behavioral ER strategies during a 5-minute postfeedback period was assessed. At the end of the postfeedback period, children's cognitive activity was also assessed. More time spent on behavioral distraction was positively linked to subsequent increases in positive affect, whereas the reverse pattern was found for disengagement/passive behavior. Moreover, higher endorsement ratings for the strategy of "cognitive analysis" were associated with stronger increases in negative affect. Copyright 2006 APA, all rights reserved.

  8. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation.

    Science.gov (United States)

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-06-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca' Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2 /FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P transplantation was higher (79 [40-84] vs. 39 [36-46], P transplantation, primary graft dysfunction (PGD72 grade 3, 32% vs. 28%, EVLP versus Standard, P = 1), mortality at 30 days (0% vs. 0%, P = 1), and overall survival (71% vs. 86%, EVLP versus Standard P = 0.27) were not different between groups. EVLP enabled a 20% increase in available donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953). © 2014 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  9. Targeted Collection of Plasmid DNA in Large and Growing Animal Muscles 6 Weeks after DNA Vaccination with and without Electroporation

    OpenAIRE

    Daniel Dory; Vincent Le Moigne; Roland Cariolet; Véronique Béven; André Keranflec’h; André Jestin

    2015-01-01

    DNA vaccination has been developed in the last two decades in human and animal species as a promising alternative to conventional vaccination. It consists in the injection, in the muscle, for example, of plasmid DNA encoding the vaccinating polypeptide. Electroporation which forces the entrance of the plasmid DNA in cells at the injection point has been described as a powerful and promising strategy to enhance DNA vaccine efficacy. Due to the fact that the vaccine is composed of DNA, close at...

  10. Applications of calcium electroporation to effective apoptosis induction in fibrosarcoma cells and stimulation of normal muscle cells.

    Science.gov (United States)

    Zielichowska, Anna; Daczewska, Małgorzata; Saczko, Jolanta; Michel, Olga; Kulbacka, Julita

    2016-06-01

    The electroporation (EP) supports various types of anticancer therapies by the selective transport of cytostatics. Increase in intracellular calcium level by EP may be a new approach to fibrosarcoma treatment. Calcium is one of the most important factors of cell proliferation, differentiation and cell death (apoptosis or necrosis). Calcium level balanced by electroporation can cause different effects on normal and pathological cells. The efficiency and safety of electroporation combined with Ca(2+) ions were examined in our study. The two muscle cell lines were used: normal rat skeletal muscle cells - L6 and cancer muscle cells - Wehi-164 (fibrosarcoma). Two CaCl2 concentrations were tested: 0.5 mM and 5 mM combined with EP parameters: 1000 V/cm, 1200 V/cm, and 1500 V/cm. The results show that EP supported by Ca(2+) is cytotoxic for Wehi-164 cells and simultaneously safe for normal muscle cells. The main type of cell death - apoptosis - was confirmed by Tunnel and Annexin V/PI assay. Additionally, sPLA2 pro-tumorigenic influence was proved by immunocytochemistry. Moreover, EP with 0.5 mM of Ca(2+) slightly stimulates the normal muscle cells - L6 to increase proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation.

    Science.gov (United States)

    Jensen, Kirsty; Anderson, Jennifer A; Glass, Elizabeth J

    2014-04-15

    The manipulation of the RNA interference pathway using small interfering RNA (siRNA) has become the most frequently used gene silencing method. However, siRNA delivery into primary cells, especially primary macrophages, is often considered challenging. Here we report the investigation of the suitability of two methodologies: transient transfection and electroporation, to deliver siRNA targeted against the putative immunomodulatory gene Mediterranean fever (MEFV) into primary bovine monocyte-derived macrophages (bMDM). Eleven commercial transfection reagents were investigated with variable results with respect to siRNA uptake, target gene knock-down, cell toxicity and type I interferon (IFN) response induction. Three transfection reagents: Lipofectamine 2000, Lipofectamine RNAiMAX and DharmaFECT 3, were found to consistently give the best results. However, all the transfection reagents tested induced an IFN response in the absence of siRNA, which could be minimized by reducing the transfection reagent incubation period. In addition, optimized siRNA delivery into bMDM by electroporation achieved comparable levels of target gene knock-down as transient transfection, without a detectable IFN response, but with higher levels of cell toxicity. The optimized transient transfection and electroporation methodologies may provide a starting point for optimizing siRNA delivery into macrophages derived from other species or other cells considered difficult to investigate with siRNA. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12°C.

    Science.gov (United States)

    Marivin, E; Mourot, B; Loyer, P; Rime, H; Bobe, J; Fostier, A

    2015-09-15

    Over-expression or inhibition of gene expression can be efficiently used to analyse the functions and/or regulation of target genes. Modulation of gene expression can be achieved through transfection of exogenous nucleic acids into target cells. Such techniques require the development of specific protocols to transfect cell cultures with nucleic acids. The aim of this study was to develop a method of transfection suitable for rainbow trout granulosa cells in primary culture. After the isolation of rainbow trout granulosa cells, chemical transfection of cells with a fluorescent morpholino oligonucleotide (MO) was tested using FuGENE HD at 12 °C. Electroporation was also employed to transfect these cells with either a plasmid or MO. Transfection was more efficient using electroporation (with the following settings: 1200 V/40 ms/1p) than chemical transfection, but electroporation by itself was deleterious, resulting in a decrease of the steroidogenic capacity of the cells, measured via estradiol production from its androgenic substrate. The disturbance of cell biology induced by the transfection method per se should be taken into account in data interpretation when investigating the effects of under- or over-expression of candidate genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Targeted Collection of Plasmid DNA in Large and Growing Animal Muscles 6 Weeks after DNA Vaccination with and without Electroporation

    Directory of Open Access Journals (Sweden)

    Daniel Dory

    2015-01-01

    Full Text Available DNA vaccination has been developed in the last two decades in human and animal species as a promising alternative to conventional vaccination. It consists in the injection, in the muscle, for example, of plasmid DNA encoding the vaccinating polypeptide. Electroporation which forces the entrance of the plasmid DNA in cells at the injection point has been described as a powerful and promising strategy to enhance DNA vaccine efficacy. Due to the fact that the vaccine is composed of DNA, close attention on the fate of the plasmid DNA upon vaccination has to be taken into account, especially at the injection point. To perform such studies, the muscle injection point has to be precisely recovered and collected several weeks after injection. This is even more difficult for large and growing animals. A technique has been developed to localize precisely and collect efficiently the muscle injection points in growing piglets 6 weeks after DNA vaccination accompanied or not by electroporation. Electroporation did not significantly increase the level of remaining plasmids compared to nonelectroporated piglets, and, in all the cases, the levels were below the limit recommended by the FDA to research integration events of plasmid DNA into the host DNA.

  14. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer.

    Science.gov (United States)

    Eriksson, Fredrik; Tötterman, Thomas; Maltais, Anna-Karin; Pisa, Pavel; Yachnin, Jeffrey

    2013-08-20

    We tested safety, clinical efficacy and immunogenicity of a DNA vaccine coding for rhesus prostate specific antigen (PSA) delivered by intradermal injection and skin electroporation. Fifteen patients with biochemical relapse of prostate cancer without macroscopic disease participated in this phase I study. Patients were started on a 1 month course of androgen deprivation therapy (ADT) prior to treatment. Vaccine doses ranged from 50 to 1,600 μg. Study subjects received five vaccinations at four week intervals. All patients have had at least one year of follow-up. No systemic toxicity was observed. Discomfort from electroporation did not require analgesia or topical anesthetic. No clinically significant changes in PSA kinetics were observed as all patients required antiandrogen therapy shortly after completion of the 5 months of vaccination due to rising PSA. Immunogenicity, as measured by T-cell reactivity to the modified PSA peptide and to a mix of overlapping PSA peptides representing the full length protein, was observed in some patients. All but one patient had pre-study PSA specific T-cell reactivity. ADT alone resulted in increases in T-cell reactivity in most patients. Intradermal vaccination with skin electroporation is easily performed with only minor discomfort for the patient. Patients with biochemical relapse of prostate cancer are a good model for testing immune therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Daidzein-phospholipid complex loaded lipid nanocarriers improved oral absorption: in vitro characteristics and in vivo behavior in rats

    Science.gov (United States)

    Zhang, Zhiwen; Huang, Yan; Gao, Fang; Bu, Huihui; Gu, Wangwen; Li, Yaping

    2011-04-01

    A nano-based delivery system was developed to improve the oral absorption of daidzein, which has poor hydrophilicity and lipophilicity. A daidzein-phospholipid complex (DPC) was firstly prepared to improve its lipophilicity, and then encapsulated into lipid nanocarriers (DLNs) to verify the effectiveness of the strategy in enhancing the oral delivery of daidzein. DLNs were spherical nanosized particles with evidently increased dissolution. DLNs were mainly distributed in stomach and proximal intestine of mice after oral administration, and the intestinal permeability of DLNs in rats was significantly improved when compared with that of daidzein solution. The peak concentration of daidzein in rats after oral administration of DPC and DLNs was 6833 +/- 1112 ng mL-1 and 14 512 +/- 2390 ng mL-1, respectively, which was improved over 10-fold and 21-fold than that of free daidzein. Moreover, the areas under the concentration-time curve (AUC0-t) of DPC and DLNs were enhanced by 3.62-fold and 6.87-fold compared with that of free daidzein. These results suggested that DLNs could be an effective strategy to improve the oral absorption of poor hydrophilic and lipophilic drugs like daidzein.

  16. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo.

    Science.gov (United States)

    Obata, Yosuke; Tajima, Shoji; Takeoka, Shinji

    2010-03-03

    We developed pH-responsive liposomes containing synthetic glutamic acid-based zwitterionic lipids and evaluated their properties both in vitro and in vivo with the aim of constructing an efficient liposome-based systemic drug delivery system. The glutamic acid-based lipids; 1,5-dihexadecyl N-glutamyl-L-glutamate (L1) and 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (L2) were synthesized as a pH-responsive component of liposomes that respond to endosomal pH. The zeta potential of liposomes containing L1 or L2 was positive when the solution pH was below 4.6 or 5.6, respectively, but negative at higher pH values. The pH-responsive liposomes showed improved fusogenic potential to an endosome-mimicking anionic membrane at acidic pH, where the zeta potential of the liposomes was positive. We then prepared doxorubicin (DOX)-encapsulating liposomes containing L1 or L2, and clarified by confocal microscopic studies that the contents were rapidly transferred into both the cytoplasm and nucleus. Release of DOX from the endosomes mediated by the pH-responsive liposomes dramatically inhibited cancer cell growth. The L2-liposomes were slightly more effective than L1-liposomes as a drug delivery system. Intravenously injected L2-liposomes displayed blood persistence comparable to that of conventional phospholipid (PC)-based liposomes. Indeed, the antitumor efficacy of L2-liposomes was higher than that of PC-based liposomes against a xenograft breast cancer tumor in vivo. Thus, the high performance of L2-liposomes results from both efficient intracellular drug delivery and comparable blood persistence in comparison with the conventional PC-based liposomes in vitro and in vivo. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Inhibition of the β-Lactamase BlaMab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus.

    Science.gov (United States)

    Lefebvre, Anne-Laure; Le Moigne, Vincent; Bernut, Audrey; Veckerlé, Carole; Compain, Fabrice; Herrmann, Jean-Louis; Kremer, Laurent; Arthur, Michel; Mainardi, Jean-Luc

    2017-04-01

    Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a β-lactam (cefoxitin or imipenem). The triple combination is used without any β-lactamase inhibitor, even though Mabscessus produces the broad-spectrum β-lactamase BlaMab We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 μg/ml), amikacin (32 μg/ml), and avibactam (4 μg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 μg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 μg/ml) and high (32 μg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessusin vitro, in macrophages, and in zebrafish embryos, indicating that this β-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the β-lactamase is inducible in macrophages. Copyright © 2017 American Society for Microbiology.

  18. In vivo near-infrared autofluorescence imaging of pigmented skin lesions: methods, technical improvements and preliminary clinical results.

    Science.gov (United States)

    Wang, Shuang; Zhao, Jianhua; Lui, Harvey; He, Qingli; Zeng, Haishan

    2013-02-01

    Fluorescence emission from in vivo cutaneous melanin was recently detected under near-infrared (NIR) excitation by our group. We then built a prototype NIR autofluorescence imaging system to observe and characterize the melanin distribution in human skin. In this article, we reported a new setup of NIR fluorescence imaging system and calibration methods to optimize the system for better clinical feasibility and clearer image. The imaging system was designed to perform both fluorescence and reflectance imaging with a 785-nm fiber-coupled laser source. The illumination light was purified by a 785-nm bandpass filter for fluorescence excitation; while the spontaneous components were selected by a longpass filter for NIR reflectance imaging. A hand-controlled filter wheel was used to switch these two filters for different imaging modes. A dichroic filter was used to guide the illuminating light onto the skin surface for excitation. Reflectance and fluorescence signals were collected sequentially by a NIR optimized CCD camera. The captured images were calibrated by the reflectance images of a standard reflectance disk for non-uniform illuminations and light collection efficiencies. The clinical results demonstrated that NIR fluorescence intensities and distribution patterns vary among lesion types. It was also confirmed that pigmented skin lesions emitted higher NIR fluorescence than the surrounding normal skin due to the presentation of higher concentrations of cutaneous melanin within the lesions. NIR autofluorescence imaging system could be utilized as a powerful tool for visualizing melanin distribution in pigmented skin lesions and as a potential method for aiding melanoma detection. © 2012 John Wiley & Sons A/S.

  19. Improvements of venous tone with pycnogenol in chronic venous insufficiency: an ex vivo study on venous segments.

    Science.gov (United States)

    Belcaro, Gianni; Dugall, Mark; Luzzi, Roberta; Hosoi, M; Corsi, Marcello

    2014-03-01

    This study evaluated the stretching and dilatation of venous segments ex vivo in subjects with primary varicose veins in comparison with comparable segments from subjects that used the supplement Pycnogenol (150 mg/d) for 3 months before surgery. Subjects with varicose veins and chronic venous insufficiency voluntarily used Pycnogenol for a period of at least 3 months. The segments of veins removed with surgery (in 30 subjects that had used Pycnogenol and in 10 comparable control subjects that had not used the supplement) were compared with normal, unused vein segments harvested for bypass grafting. The segments were suspended and a weight was attached to the distal part of the veins for 3 minutes and dilated with pressurized water. Digital images were recorded; the veins were measured before and after stretching to evaluate elongation. The manipulation of the vein segment was minimal. Tests were completed within 20 minutes after harvesting the veins. All segments were 4 cm long. The stretching test indicated a significantly higher level of passive elongation in control, varicose segments (2.29; 0.65 mm) in comparison with 1.39; 0.2 mm in vein segments from Pycnogenol-using patients. The dilation test showed an average higher dilation (2.19; 0.3 mm) in control varicose veins in comparison with varicose veins from Pycnogenol-using patients (1.32; 0.7 mm) (p Pycnogenol-using subjects (p Pycnogenol. Varicose segments had a more significant persistent dilatation and elongation in comparison with normal vein segments. Pycnogenol seems to decrease passive dilatation and stretching and gives vein walls a greater tonic recovery and elasticity that allows the vein to recover its original shape after dynamic stresses.

  20. Improved Skin Penetration Using In Situ Nanoparticulate Diclofenac Diethylamine in Hydrogel Systems: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit

    2016-04-01

    Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.

  1. Dose metric considerations in in vitro assays to improve quantitative in vitro–in vivo dose extrapolations

    NARCIS (Netherlands)

    Groothuis, Floris|info:eu-repo/dai/nl/37343586X; Heringa, M.B.; Nicol, B; Hermens, Joop|info:eu-repo/dai/nl/069681384; Blaauboer, B|info:eu-repo/dai/nl/068359802; Kramer, Nynke|info:eu-repo/dai/nl/304836125

    2015-01-01

    Challenges to improve toxicological risk assessment to meet the demands of the EU chemical’s legisla- tion, REACH, and the EU 7th Amendment of the Cosmetics Directive have accelerated the development of non-animal based methods. Unfortunately, uncertainties remain surrounding the power of alterna-

  2. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability.

    Science.gov (United States)

    Tan, Suk Fei; Kirby, Brian P; Stanslas, Johnson; Basri, Hamidon Bin

    2017-11-01

    This study was aimed to investigate the potential of formulated valproic acid-encapsulated nanoemulsion (VANE) to improve the brain bioavailability of valproic acid (VPA). Valproic acid-encapsulated nanoemulsions were formulated and physically characterised (osmolarity, viscosity, drug content, drug encapsulation efficiency). Further investigations were also conducted to estimate the drug release, cytotoxic profile, in-vitro blood-brain barrier (BBB) permeability, pharmacokinetic parameter and the concentration of VPA and VANE in blood and brain. Physical characterisation confirmed that VANE was suitable for parenteral administration. Formulating VPA into nanoemulsion significantly reduced the cytotoxicity of VPA. In-vitro drug permeation suggested that VANEs crossed the BBB as freely as VPA. Pharmacokinetic parameters of VANE-treated rats in plasma and brain showed F3 VANE had a remarkable improvement in AUC, prolongation of half-life and reduction in clearance compared to VPA. Given the same extent of in-vitro BBB permeation of VPA and VANE, the higher bioavailability of VANE in brain was believed to have due to higher concentration of VANE in blood. The brain bioavailability of VPA was improved by prolonging the half-life of VPA by encapsulating it within the nanoemulsion-T80. Nanoemulsion containing VPA has alleviated the cytotoxic effect of VPA and improved the plasma and brain bioavailability for parenteral delivery of VPA. © 2017 Royal Pharmaceutical Society.

  3. Palmitoylethanolamide Dampens Reactive Astrogliosis and Improves Neuronal Trophic Support in a Triple Transgenic Model of Alzheimer’s Disease: In Vitro and In Vivo Evidence

    Directory of Open Access Journals (Sweden)

    Maria Rosanna Bronzuoli

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder responsible for the majority of dementia cases in elderly people. It is widely accepted that the main hallmarks of AD are not only senile plaques and neurofibrillary tangles but also reactive astrogliosis, which often precedes detrimental deposits and neuronal atrophy. Such phenomenon facilitates the regeneration of neural networks; however, under some circumstances, like in AD, reactive astrogliosis is detrimental, depriving neurons of the homeostatic support, thus contributing to neuronal loss. We investigated the presence of reactive astrogliosis in 3×Tg-AD mice and the effects of palmitoylethanolamide (PEA, a well-documented anti-inflammatory molecule, by in vitro and in vivo studies. In vitro results revealed a basal reactive state in primary cortical 3×Tg-AD-derived astrocytes and the ability of PEA to counteract such phenomenon and improve viability of 3×Tg-AD-derived neurons. In vivo observations, performed using ultramicronized- (um- PEA, a formulation endowed with best bioavailability, confirmed the efficacy of this compound. Moreover, the schedule of treatment, mimicking the clinic use (chronic daily administration, revealed its beneficial pharmacological properties in dampening reactive astrogliosis and promoting the glial neurosupportive function. Collectively, our results encourage further investigation on PEA effects, suggesting it as an alternative or adjunct treatment approach for innovative AD therapy.

  4. CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo.

    Science.gov (United States)

    Kalebic, Nereo; Taverna, Elena; Tavano, Stefania; Wong, Fong Kuan; Suchold, Dana; Winkler, Sylke; Huttner, Wieland B; Sarov, Mihail

    2016-03-01

    We have applied the CRISPR/Cas9 system in vivo to disrupt gene expression in neural stem cells in the developing mammalian brain. Two days after in utero electroporation of a single plasmid encoding Cas9 and an appropriate guide RNA (gRNA) into the embryonic neocortex of Tis21::GFP knock-in mice, expression of GFP, which occurs specifically in neural stem cells committed to neurogenesis, was found to be nearly completely (≈ 90%) abolished in the progeny of the targeted cells. Importantly, upon in utero electroporation directly of recombinant Cas9/gRNA complex, near-maximal efficiency of disruption of GFP expression was achieved already after 24 h. Furthermore, by using microinjection of the Cas9 protein/gRNA complex into neural stem cells in organotypic slice culture, we obtained disruption of GFP expression within a single cell cycle. Finally, we used either Cas9 plasmid in utero electroporation or Cas9 protein complex microinjection to disrupt the expression of Eomes/Tbr2, a gene fundamental for neocortical neurogenesis. This resulted in a reduction in basal progenitors and an increase in neuronal differentiation. Thus, the present in vivo application of the CRISPR/Cas9 system in neural stem cells provides a rapid, efficient and enduring disruption of expression of specific genes to dissect their role in mammalian brain development. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  5. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug.

    Science.gov (United States)

    Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud

    2017-12-04

    KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.

  6. From phenotyping towards breeding strategies: using in vivo indicator traits and genetic markers to improve meat quality in an endangered pig breed.

    Science.gov (United States)

    Biermann, A D M; Yin, T; König von Borstel, U U; Rübesam, K; Kuhn, B; König, S

    2015-06-01

    In endangered and local pig breeds of small population sizes, production has to focus on alternative niche markets with an emphasis on specific product and meat quality traits to achieve economic competiveness. For designing breeding strategies on meat quality, an adequate performance testing scheme focussing on phenotyped selection candidates is required. For the endangered German pig breed 'Bunte Bentheimer' (BB), no breeding program has been designed until now, and no performance testing scheme has been implemented. For local breeds, mainly reared in small-scale production systems, a performance test based on in vivo indicator traits might be a promising alternative in order to increase genetic gain for meat quality traits. Hence, the main objective of this study was to design and evaluate breeding strategies for the improvement of meat quality within the BB breed using in vivo indicator traits and genetic markers. The in vivo indicator trait was backfat thickness measured by ultrasound (BFiv), and genetic markers were allele variants at the ryanodine receptor 1 (RYR1) locus. In total, 1116 records of production and meat quality traits were collected, including 613 in vivo ultrasound measurements and 713 carcass and meat quality records. Additionally, 700 pigs were genotyped at the RYR1 locus. Data were used (1) to estimate genetic (co)variance components for production and meat quality traits, (2) to estimate allele substitution effects at the RYR1 locus using a selective genotyping approach and (3) to evaluate breeding strategies on meat quality by combining results from quantitative-genetic and molecular-genetic approaches. Heritability for the production trait BFiv was 0.27, and 0.48 for backfat thickness measured on carcass. Estimated heritabilities for meat quality traits ranged from 0.14 for meat brightness to 0.78 for the intramuscular fat content (IMF). Genetic correlations between BFiv and IMF were higher than estimates based on carcass backfat

  7. 4R-Cembranoid Improves Outcomes after 6-Hydroxydopamine Challenge in Both In vitro and In vivo Models of Parkinson's Disease.

    Science.gov (United States)

    Hu, Jing; Ferchmin, P A; Hemmerle, Ann M; Seroogy, Kim B; Eterovic, Vesna A; Hao, Jiukuan

    2017-01-01

    (1S, 2E, 4R, 6R,-7E, 11E)-2, 7, 11-cembratriene-4, 6-diol (4R) is one of the cembranoids found in tobacco leaves. Previous studies have found that 4R protected acute rat hippocampal slices against neurotoxicity induced by N-methyl-D-aspartate (NMDA) and against the toxic organophosphorus compounds paraoxon and diisopropylfluorophosphate (DFP). Furthermore, in vivo, 4R reduced the infarct size in a rodent ischemic stroke model and neurodegeneration caused by DFP. The present study expanded our previous study by focusing on the effect of 4R in Parkinson's disease (PD) and elucidating its underlying mechanisms using 6-hydroxydopamine (6-OHDA)-induced injury models. We found that 4R exhibited significant neuroprotective activity in the rat unilateral 6-OHDA-induced PD model in vivo. The therapeutic effect was evident both at morphological and behavioral levels. 4R (6 and 12 mg/kg) treatments significantly improved outcomes of 6-OHDA-induced PD in vivo as indicated by reducing forelimb asymmetry scores and corner test scores 4 weeks after injection of 6-OHDA (p 4R was also reflected by decreased depletion of tyrosine hydroxylase (TH) in the striatum and substantia nigra (SN) on the side injected with 6-OHDA. TH expression was 70.3 and 62.8% of the contralateral side in striatum and SN, respectively, after 6 mg/kg 4R treatment; furthermore, it was 80.1 and 79.3% after treatment with 12 mg/kg of 4R. In the control group, it was 51.9 and 23.6% of the contralateral striatum and SN (p 4R also protected differentiated neuro-2a cells from 6-OHDA-induced cytotoxicity in vitro. The activation of p-AKT and HAX-1, and inhibition of caspase-3 and endothelial inflammation, were involved in 4R-mediated protection against 6-OHDA-induced injury. In conclusion, the present study indicates that 4R shows a therapeutic effect in the rat 6-OHDA-induced PD model in vivo and in 6-OHDA-challenged neuro-2a cells in vitro.

  8. Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo.

    Science.gov (United States)

    Kluza, Ewelina; Jacobs, Igor; Hectors, Stefanie J C G; Mayo, Kevin H; Griffioen, Arjan W; Strijkers, Gustav J; Nicolay, Klaas

    2012-03-10

    Molecular imaging of angiogenesis requires a highly specific and efficient contrast agent for targeting activated endothelium. We have previously demonstrated that paramagnetic and fluorescent liposomes functionalized with two angiogenesis-specific ligands, the galectin-1-specific anginex (Anx) and the α(v)β(3) integrin-specific RGD, produce synergistic targeting effect in vitro. In the current study, we applied Anx and RGD dual-conjugated liposomes (Anx/RGD-L) for angiogenesis-specific MRI in vivo, focusing on the specificity and efficacy of liposome association with tumor endothelium. The targeting properties, clearance kinetics and biodistribution of Anx/RGD-L were investigated in B16F10 melanoma-bearing mice, and compared to liposomes functionalized with either Anx (Anx-L) or RGD (RGD-L). The contrast enhancement produced by dual- and single-targeted nanoparticles in the tumor was measured using in vivo T(1)-weighted MRI, complemented by ex vivo immunohistochemical evaluation of tumor tissues. Blood clearance kinetics of Anx/RGD-L was three-fold more rapid than for RGD-L, but comparable to Anx-L. Both dual- and single-targeted liposomes produced similar changes in MRI contrast parameters in tumors with high inter-tumor variability (ΔR(1)=0.04±0.03s(-1), 24h post-contrast). Importantly, however, the specificity of Anx/RGD-L association with tumor endothelium of 53±6%, assessed by fluorescence microscopy, was significantly higher compared to 43±9% (P=0.043) and 28±8% (P=0.0001) of Anx-L and RGD-L, respectively. In contrast, long-circulating RGD-L were on average 16% more efficient in targeting tumor endothelium compared to Anx/RGD-L. Significant differences were also found in the biodistribution of investigated contrast agents. In conclusion, synergistic targeting of α(v)β(3) and galectin-1 improved the specificity of the association of the liposomal contrast agent to tumor endothelium in vivo, providing therefore a more reliable MRI readout of the

  9. In Vivo-Simulated Sonotransfection and the Effect of Gamma Interferon Gene on Neurofibroma Proliferation

    Science.gov (United States)

    Yamaguchi, Kazuki; Feril, Loreto B.; Yoshida, Yuichi; Nakayama, Juichiro; Tachibana, Katsuro

    2007-05-01

    We have previously shown that ultrasound-mediated gene transfection (or sonotransfection) can be optimized on the basis of concepts drawn from previous in vitro experiments demonstrating ultrasound-induced apoptosis. At optimized conditions, we have shown using five cancer cell lines (HeLa, U937, Meth A, T24 and PC3) that sonotransfection is superior to other conventional non-viral methods such as electroporation and liposome-mediated transfection. In the present study, we further investigate the gene transfection of pEGFP-N1 into neurofibroma cell line isolated from human dermal neurofibroma, using an improved experimental set up that simulates in vivo conditions. The ultrasound device used was SonoPore KTAC-4000, which is capable of various settings. Using transducers of centre frequency 1.011 MHz, the optimal conditions include ISATA of 0.15, 0.44 and 0.64 W/cm2, burst frequency of 0.5 Hz, 25% duty factor, and 10-40 sec exposure duration. Cells were assayed at 24, 48 and 72 hr after the sonication. The transfection efficiency was found to be around 10%. Then we further investigated whether sonotransfection of gamma interferon on neurofibroma cell lines in vivo can suppress cell proliferation. Gamma interferon is well known as a pluripotential cytokine. It exerts an anti-tumor activity in some malignant diseases such as malignant lymphoma. Gamma interferon gene transfection by use of lipofectamin has been found to markedly inhibit the proliferation of neurofibroma cell lines in vitro. Our new experimental system was applied in evaluating the effect of sonotransfected gamma interferon gene on neurofibroma proliferation in vitro. It is suggested that ultrasound-mediated gamma interferon gene transfection could potentially become a non-surgical method in treating skin diseases, such as neurofibromas, particularly in patients with von Recklinghausen's disease.

  10. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo.

    Science.gov (United States)

    Fujii, Hitoshi; Matsuyama, Akifumi; Komoda, Hiroshi; Sasai, Masao; Suzuki, Minoru; Asano, Tomoyuki; Doki, Yuichiro; Kirihata, Mitsunori; Ono, Koji; Tabata, Yasuhiko; Kaneda, Yasufumi; Sawa, Yoshiki; Lee, Chun Man

    2011-01-20

    Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues.Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration.In this study, we developed a novel vector for 10B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p HVJ-E-BSH as with BSH containing a 35-fold higher 10B dose. Furthermore, CG-HVJ-E-BSH significantly increased the survival time of

  11. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    Directory of Open Access Journals (Sweden)

    Ono Koji

    2011-01-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH, and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5 were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p . In suppressing the spread of tumor cells in mice, BNCT treatment was as

  12. Cationized gelatin-HVJ envelope with sodium borocaptate improved the BNCT efficacy for liver tumors in vivo

    Science.gov (United States)

    2011-01-01

    Background Boron neutron capture therapy (BNCT) is a cell-selective radiation therapy that uses the alpha particles and lithium nuclei produced by the boron neutron capture reaction. BNCT is a relatively safe tool for treating multiple or diffuse malignant tumors with little injury to normal tissue. The success or failure of BNCT depends upon the 10B compound accumulation within tumor cells and the proximity of the tumor cells to the body surface. To extend the therapeutic use of BNCT from surface tumors to visceral tumors will require 10B compounds that accumulate strongly in tumor cells without significant accumulation in normal cells, and an appropriate delivery method for deeper tissues. Hemagglutinating Virus of Japan Envelope (HVJ-E) is used as a vehicle for gene delivery because of its high ability to fuse with cells. However, its strong hemagglutination activity makes HVJ-E unsuitable for systemic administration. In this study, we developed a novel vector for 10B (sodium borocaptate: BSH) delivery using HVJ-E and cationized gelatin for treating multiple liver tumors with BNCT without severe adverse events. Methods We developed cationized gelatin conjugate HVJ-E combined with BSH (CG-HVJ-E-BSH), and evaluated its characteristics (toxicity, affinity for tumor cells, accumulation and retention in tumor cells, boron-carrying capacity to multiple liver tumors in vivo, and bio-distribution) and effectiveness in BNCT therapy in a murine model of multiple liver tumors. Results CG-HVJ-E reduced hemagglutination activity by half and was significantly less toxic in mice than HVJ-E. Higher 10B concentrations in murine osteosarcoma cells (LM8G5) were achieved with CG-HVJ-E-BSH than with BSH. When administered into mice bearing multiple LM8G5 liver tumors, the tumor/normal liver ratios of CG-HVJ-E-BSH were significantly higher than those of BSH for the first 48 hours (p BNCT treatment was as effective with CG-HVJ-E-BSH as with BSH containing a 35-fold higher 10B dose

  13. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury.

    Science.gov (United States)

    Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.

  14. Evaluation of an overlapping pubic and ischiatic osteotomy for the improvement of acetabular ventroversion in dogs: an ex vivo study.

    Science.gov (United States)

    Gervais, Julie A; Roush, James K; Biller, David S

    2016-11-23

    To assess the potential of a new single-session surgical procedure, the overlapping pubic and ischiatic osteotomy (OPIO) for modification of bilateral hip conformation. We hypothesized that OPIO would be simple to perform with currently available surgical equipment, through a single surgical approach, with minimal potential morbidity, and that it would allow adequate simultaneous bilateral improvement of coxofemoral joint conformation in patients at risk of canine hip dysplasia. The OPIO procedure was performed in the pelves of five large breed canine cadavers. Computed tomography images of each cadaver were compared by measurement of the dorsal acetabular rim angle (DARA), acetabular angle (AA), dorso-ventral sacroiliac ratio (SR), and pubic inlet area before and after OPIO. Coxofemoral joint conformation was improved after OPIO. Postoperative DARA was significantly decreased (mean: -5.09°) and AA was significantly increased (mean: 3.54°) after OPIO. The SR was not significantly different after OPIO, indicating minimal impact on the sacro-illiac joints by the procedure. Pubic inlet dimensions and area were significantly decreased after OPIO, but the overall effect on pelvic inlet area was clinically insignificant. An OPIO allows some improvement of coxofemoral joint conformation in canine cadavers.

  15. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    Science.gov (United States)

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (pxenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (pxenon-treated groups. Xenon treatment significantly (pxenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (pxenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (pxenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  16. Functionalized Scaffold-mediated Interleukin 10 Gene Delivery Significantly Improves Survival Rates of Stem Cells In Vivo

    Science.gov (United States)

    Holladay, Carolyn; Power, Karen; Sefton, Michael; O'Brien, Timothy; Gallagher, William M.; Pandit, Abhay

    2011-01-01

    While stem cell transplantation could potentially treat a variety of disorders, clinical studies have not yet demonstrated conclusive benefits. This may be partly because transplanted stem cells have low survival rates, potentially due to host inflammation. The system described herein used two different gene therapy techniques to improve retention of rat mesenchymal stem cells. In the first, stem cells were transfected with interleukin-10 (IL-10) before being loaded into a collagen scaffold. In the second, unmodified stem cells were loaded into a collagen scaffold along with polymer-complexed IL-10 plasmids. The scaffolds were surgically implanted into the dorsum of syngeneic rats. At each endpoint, the scaffolds were explanted and cell retention, IL-10 level and inflammatory response were quantified. All treatment groups had statistically significant increases in cell retention after 7 days, but the group treated with 2 µg of IL-10 polyplexes had a significant improvement even at 21 days. This cell retention was associated with increased IL-10 and decreased levels of proinflammatory cytokines and apoptosis. The primary effect on the inflammatory response appeared to be on macrophage differentiation, encouraging the regulatory phenotype over the cytotoxic lineage. Improving cell survival may be an important step toward realization of the therapeutic potential of stem cells. PMID:21266957

  17. Novel chlorambucil-conjugated anionic linear-globular PEG-based second-generation dendrimer: in vitro/in vivo improved anticancer activity

    Directory of Open Access Journals (Sweden)

    Assadi A

    2016-09-01

    Full Text Available Artin Assadi,1 Vahideh Sharifi Najafabadi,1 Seyed Ataollah Sadat Shandiz,2 Azadah Shayeq Boroujeni,1 Sepehr Ashrafi,1 Ali Zaman Vaziri,1 Seyedeh Masoumeh Ghoreishi,1 Mohammad Reza Aghasadeghi,3 Seyed Esmaeil Sadat Ebrahimi,4 Morteza Pirali-Hamedani,4 Mehdi Shafiee Ardestani1 1Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, 2Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, 3Department of Hepatitis and AIDS, Pasteur Institute of Iran, 4Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran Abstract: Evaluating the efficacy of anticancer drugs is an evolving and research-oriented issue. The objective of this study was to reduce the insolubility of chlorambucil (CBL in water and improve the anticancer activity of CBL in vitro and in vivo through the conjugation of CBL with anionic linear-globular dendrimer (second generation, G2. In the current study, the anticancer activity among three groups that include CBL, CBL–G2 dendrimer, and control was measured in vitro and in vivo. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which conjugated to the CBL exterior through an ester linkage, was able to significantly improve the treatment efficacy over clinical CBL alone with respect to proliferation assay, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide; half maximal inhibitory concentration (IC50 was calculated to be 141 µg/mL for CBL alone and 27.7 µg/mL for CBL–G2 dendrimer; P<0.05. In addition, CBL–G2 dendrimer conjugate forestalled the growth of MCF-7 cancerous cells in addition to enhancing the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. CBL–G2 dendrimer conjugate was able to checkmate antiapoptotic Bcl-2 expression and Bcl-2/Bax ratio in a large scale compared with the control group and

  18. Improving the MR Imaging Sensitivity of Upconversion Nanoparticles by an Internal and External Incorporation of the Gd(3+) Strategy for in Vivo Tumor-Targeted Imaging.

    Science.gov (United States)

    Du, Hongli; Yu, Jiani; Guo, Dongcai; Yang, Weitao; Wang, Jun; Zhang, Bingbo

    2016-02-02

    Gd(3+)-ion-doped upconversion nanoparticles (UCNPs), integrating the advantages of upconversion luminescence and magnetic resonance imaging (MRI) modalities, are capturing increasing attention because they are promising to improve the accuracy of diagnosis. The embedded Gd(3+) ions in UCNPs, however, have an indistinct MRI enhancement owing to the inefficient exchange of magnetic fields with the surrounding water protons. In this study, a novel approach is developed to improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. Bovine serum albumin (BSA) bundled with DTPA-Gd(3+) (DTPA(Gd)) is synthesized both as the MR imaging sensitivity synergist and phase-transfer ligand for the surface engineering of UCNPs. The external Gd(3+) ion attachment strategy is found to significant improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. The relaxivity analysis shows that UCNPs@BSA·DTPA(Gd) exhibit higher relaxivity values than do UCNPs@BSA without DTPA(Gd) moieties. Another relaxivity study discloses a striking message that the relaxivity value does not always reflect the realistic MRI enhancement capability. The high concentration of Gd(3+)-ion-containing UCNPs with further surface-engineered BSA·DTPA(Gd) (denoted as UCNPs-H@BSA·DTPA(Gd)) exhibits a more pronounced MRI enhancement capability compared to the other two counterparts [UCNPs-N@BSA·DTPA(Gd) and UCNPs-L@BSA·DTPA(Gd) (-N and -L are denoted as zero and low concentrations of Gd(3+) ion doping, respectively)], even though it holds the lowest r1 of 1.56 s(-1) per mmol L(-1) of Gd(3+). The physicochemical properties of UCNPs are essentially maintained after BSA·DTPA(Gd) surface decoration with good colloidal stability, in addition to improving the MR imaging sensitivity. In vivo T1-weighted MRI shows potent tumor-enhanced MRI with UCNPs-H@BSA·DTPA(Gd). An in vivo biodistribution study indicates that it is gradually excreted from the body via hepatobiliary and renal processing with no obvious

  19. Facilitating the use of non-standard in vivo studies in health risk assessment of chemicals: a proposal to improve evaluation criteria and reporting.

    Science.gov (United States)

    Beronius, Anna; Molander, Linda; Rudén, Christina; Hanberg, Annika

    2014-06-01

    To improve data availability in health risk assessment of chemicals and fill information gaps there is a need to facilitate the use of non-standard toxicity studies, i.e. studies not conducted according to any standardized toxicity test guidelines. The purpose of this work was to propose criteria and guidance for the evaluation of reliability and relevance of non-standard in vivo studies, which could be used to facilitate systematic and transparent evaluation of such studies for health risk assessment. Another aim was to propose user friendly guidance for reporting of non-standard studies intended to promote an improvement in reporting of studies that could be of use in risk assessment. Requirements and recommendations for the design and execution of in vivo toxicity studies were identified from The Organisation for Economic Co-operation and Development (OECD) test guidelines, and served as basis for the data evaluation criteria and reporting guidelines. Feedback was also collected from experts within the field of toxicity testing and risk assessment and used to construct a two-tiered framework for study evaluation, as well as refine the reporting guidelines. The proposed framework emphasizes the importance of study relevance and an important aspect is to not completely dismiss studies from health risk assessment based on very strict criteria for reliability. The suggested reporting guidelines provide researchers with a tool to fulfill reporting requirements as stated by regulatory agencies. Together, these resources provide an approach to include all relevant data that may fill information gaps and reduce scientific uncertainty in health risk assessment conclusions, and subsequently also in chemical policy decisions. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Protein C concentrate controls leukocyte recruitment during inflammation and improves survival during endotoxemia after efficient in vivo activation.

    Science.gov (United States)

    Frommhold, David; Tschada, Julia; Braach, Natascha; Buschmann, Kirsten; Doerner, Axel; Pflaum, Johanna; Stahl, Marie-Sophie; Wang, Hongjie; Koch, Lutz; Sperandio, Markus; Bierhaus, Angelika; Isermann, Berend; Poeschl, Johannes

    2011-11-01

    Anti-inflammatory properties of protein C (PC) concentrate are poorly studied compared to activated protein C, although PC is suggested to be safer in clinical use. We investigated how PC interferes with the leukocyte recruitment cascade during acute inflammation and its efficacy during murine endotoxemia. We found that similar to activated protein infusion, intravenous PC application reduced leukocyte recruitment in inflamed tissues in a dose- and time-dependent manner. During both tumor necrosis factor-α induced and trauma-induced inflammation of the cremaster muscle, intravital microscopy revealed that leukocyte adhesion and transmigration, but not rolling, were profoundly inhibited by 100 U/kg PC. Moreover, PC blocked leukocyte emigration into the bronchoalveolar space during lipopolysaccharide (LPS) induced acute lung injury. PC was efficiently activated in a murine endotoxemia model, which reduced leukocyte infiltration of organs and strongly improved survival (75% versus 25% of control mice). Dependent on the inflammatory model, PC provoked a significant inhibition of leukocyte recruitment as early as 1 hour after administration. PC-induced inhibition of leukocyte recruitment during acute inflammation critically involves thrombomodulin-mediated PC activation, subsequent endothelial PC receptor and protease-activated receptor-1-dependent signaling, and down-regulation of intercellular adhesion molecule 1 leading to reduced endothelial inflammatory response. We conclude that during acute inflammation and sepsis, PC is a fast acting and effective therapeutic approach to block leukocyte recruitment and improve survival. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Electrokinetic transport of nanoparticles to opening of nanopores on cell membrane during electroporation

    Science.gov (United States)

    Movahed, Saeid; Li, Dongqing

    2013-04-01

    Nanoparticle transport to the opening of the single nanopore created on the cell membrane during the electroporation is studied. First, the permeabilization of a single cell located in a microchannel is investigated. When the nanopores are created, the transport of the nanoparticles from the surrounding liquid to the opening of one of the created nanopores is examined. It was found that the negatively charged nanoparticles preferably move into the nanopores from the side of the cell membrane that faces the negative electrode. Opposite to the electro-osmotic flow effect, the electrophoretic force tends to draw the negatively charged nanoparticles into the opening of the nanopores. The effect of the Brownian force is negligible in comparison with the electro-osmosis and the electrophoresis. Smaller nanoparticles with stronger surface charge transport more easily to the opening of the nanopores. Positively charged nanoparticles preferably enter the nanopores from the side of the cell membrane that faces the positive electrode. On this side, both the electrophoretic and the electro-osmotic forces are in the same directions and contribute to bring the positively charged particles into the nanopores.

  2. Electroporation of micro-droplet encapsulated HeLa cells in oil phase

    KAUST Repository

    Xiao, Kang

    2010-08-27

    Electroporation (EP) is a method widely used to introduce foreign genes, drugs or dyes into cells by permeabilizing the plasma membrane with an external electric field. A variety of microfluidic EP devices have been reported so far. However, further integration of prior and posterior EP processes turns out to be very complicated, mainly due to the difficulty of developing an efficient method for precise manipulation of cells in microfluidics. In this study, by means of a T-junction structure within a delicate microfluidic device, we encapsulated HeLa cells in micro-droplet of poration medium in oil phase before EP, which has two advantages: (i) precise control of cell-encapsulating droplets in oil phase is much easier than the control of cell populations or individuals in aqueous buffers; (ii) this can minimize the electrochemical reactions on the electrodes. Finally, we successfully introduced fluorescent dyes into the micro-droplet encapsulated HeLa cells in oil phase. Our results reflected a novel way to realize the integrated biomicrofluidic system for EP. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment

    Science.gov (United States)

    Hagio, Takashi

    A number of direct gene transfer methods have been used successfully in plant genetic engineering, providing powerful tools to investigate fundamental and applied problems in plant biology (Chowrira et al., 1996; D'halluin et al., 1992; Morandini and Salamini, 2003; Rakoczy-Trojanowska, 2002; Songstad et al., 1995). In cereals, several methods have been found to be suitable for obtaining transgenic plant; these include bombardment of scutellum (Hagio et al., 1995) and inflorescence cultures (He et al., 2001), and silicon carbide fiber-mediated DNA delivery (Asano et al., 1991) and Agrobacterium tumefaciens transformation (Potrykus, 1990). Electroporation of cereal protoplasts also has proved successful but it involves prolonged cell treatments and generally is limited by the difficulties of regeneration from cereal protoplast cultures (Fromm et al., 1987). Many laboratories worldwide are now using Agrobacterium as a vehicle for routine production of transgenic crop plants. The primary application of the particle system (Klein et al., 1987) has been for transformation of species recalcitrant to conventional Agrobacterium (Binns, 1990) or protoplast methods. But these conventional methods can be applied to the species and varieties that are amenable to tissue culture (Machii et al., 1998). Mature seeds are readily available and free from the seasonal limits that immature embryo, inflorescence, and anther have. This method enables us to produce transgenic plants without time-consuming tissue culture process.

  4. Irreversible electroporation of the pancreas is feasible and safe in a porcine survival model.

    Science.gov (United States)

    Fritz, Stefan; Sommer, Christof M; Vollherbst, Dominik; Wachter, Miguel F; Longerich, Thomas; Sachsenmeier, Milena; Knapp, Jürgen; Radeleff, Boris A; Werner, Jens

    2015-07-01

    Use of thermal tumor ablation in the pancreatic parenchyma is limited because of the risk of pancreatitis, pancreatic fistula, or hemorrhage. This study aimed to evaluate the feasibility and safety of irreversible electroporation (IRE) in a porcine model. Ten pigs were divided into 2 study groups. In the first group, animals received IRE of the pancreatic tail and were killed after 60 minutes. In the second group, animals received IRE at the head of the pancreas and were followed up for 7 days. Clinical parameters, computed tomography imaging, laboratory results, and histology were obtained. All animals survived IRE ablation, and no cardiac adverse effects were noted. Sixty minutes after IRE, a hypodense lesion on computed tomography imaging indicated the ablation zone. None of the animals developed clinical signs of acute pancreatitis. Only small amounts of ascites fluid, with a transient increase in amylase and lipase levels, were observed, indicating that no pancreatic fistula occurred. This porcine model shows that IRE is feasible and safe in the pancreatic parenchyma. Computed tomography imaging reveals significant changes at 60 minutes after IRE and therefore might serve as an early indicator of therapeutic success. Clinical studies are needed to evaluate the efficacy of IRE in pancreatic cancer.

  5. The dependence of efficiency of transmembrane molecular transfer using electroporation on medium viscosity.

    Science.gov (United States)

    Sungailaitė, Sandra; Ruzgys, Paulius; Šatkauskienė, Ingrida; Čepurnienė, Karolina; Šatkauskas, Saulius

    2015-01-01

    In the present study, we aimed to evaluate the efficiency of drug and gene electrotransfer into cells in vitro depending on medium viscosity. Experiments were performed using Chinese hamster ovary cells. Efficiency of molecular electrotransfer depending of medium viscosity was evaluated using two different electroporation conditions: a high-voltage (HV) pulse and a combination of a high-voltage pulse and a low-voltage pulse (HV + LV). To evaluate the efficiency of molecular electrotransfer, anticancer drug bleomycin and two different plasmids coding for green fluorescent protein and luciferase were used. We found that a slight increase in medium viscosity from 1.3-1.4 mPa·s significantly decreased the transfection efficiency, both in terms of transfected cells and total protein production, which was abolished completely with an increase in medium viscosity to 6.1 mPa·s. Notably, at this medium viscosity, electrotransfer of the small anticancer drug was still efficient. Using HV and HV + LV pulse combinations, we showed that a decrease of DNA electrotransfer, especially at lower medium viscosities, can be compensated for by the LV pulse to some extent. On the other hand, the addition of the LV pulse after the HV pulse did not have any positive effect on the efficiency of bleomycin electrotransfer. These findings demonstrate that transfection is very susceptible to medium viscosity and highlights the importance of the electrophoretic component in experiments when a considerable transfection level is needed. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Rizk, Sherine M; El-Maraghy, Shohda A

    2017-08-15

    Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats

  7. Ultrasonic modulation of tissue optical properties in ex vivo porcine skin to improve transmitted transdermal laser intensity.

    Science.gov (United States)

    Whiteside, Paul J D; Qian, Chenxi; Golda, Nicholas; Hunt, Heather K

    2017-09-01

    Applications of light-based energy devices involving optical targets within the dermis frequently experience negative side-effects resultant from surface scattering and excess optical absorption by epidermal melanin. As a broadband optical absorber, melanin decreases the efficacy of light-based treatments throughout the ultraviolet, visible, and near-infrared spectra while also generating additional heat within the surface tissue that can lead to inflammation or tissue damage. Consequently, procedures may be performed using greater energy densities to ensure that the target receives a clinically relevant dose of light; however, such practices are limited, as doing so tends to exacerbate the detrimental complications resulting from melanin absorption of treatment light. The technique presented herein represents an alternative method of operation aimed at increasing epidermal energy fluence while mitigating excess absorption by unintended chromophores. The approach involves the application of continuously pulsed ultrasound to modulate the tissue's optical properties and thereby improve light transmission through the epidermis. To demonstrate the change in optical properties, pulsed light at a wavelength of 532 nm from a Q-switched Nd:YAG laser was transmitted into 4 mm thick samples of porcine skin, comprised of both epidermal and dermal tissue. The light was transmitted using an optical waveguide, which allowed for an ultrasonic transducer to be incorporated for simultaneous paraxial pulsation in parallel with laser operation. Light transmitted through the tissue was measured by a photodiode attached to an integrating sphere. Increasing the driving voltage of ultrasonic pulsation resulted in an increase in mean transmitted optical power of up to a factor of 1.742 ± 0.0526 times the control, wherein no ultrasound was applied, after which the optical power increase plateaued to an average amplification factor of 1.733 ± 0.549 times the control. The

  8. Improved Glucose Metabolism In Vitro and In Vivo by an Allosteric Monoclonal Antibody That Increases Insulin Receptor Binding Affinity

    Science.gov (United States)

    Corbin, John A.; Bhaskar, Vinay; Goldfine, Ira D.; Bedinger, Daniel H.; Lau, Angela; Michelson, Kristen; Gross, Lisa M.; Maddux, Betty A.; Kuan, Hua F.; Tran, Catarina; Lao, Llewelyn; Handa, Masahisa; Watson, Susan R.; Narasimha, Ajay J.; Zhu, Shirley; Levy, Raphael; Webster, Lynn; Wijesuriya, Sujeewa D.; Liu, Naichi; Wu, Xiaorong; Chemla-Vogel, David; Lee, Steve R.; Wong, Steve; Wilcock, Diane; White, Mark L.

    2014-01-01

    Previously we reported studies of XMetA, an agonist antibody to the insulin receptor (INSR). We have now utilized phage display to identify XMetS, a novel monoclonal antibody to the INSR. Biophysical studies demonstrated that XMetS bound to the human and mouse INSR with picomolar affinity. Unlike monoclonal antibody XMetA, XMetS alone had little or no agonist effect on the INSR. However, XMetS was a strong positive allosteric modulator of the INSR that increased the binding affinity for insulin nearly 20-fold. XMetS potentiated insulin-stimulated INSR signaling ∼15-fold or greater including; autophosphorylation of the INSR, phosphorylation of Akt, a major enzyme in the metabolic pathway, and phosphorylation of Erk, a major enzyme in the growth pathway. The enhanced signaling effects of XMetS were more pronounced with Akt than with Erk. In cultured cells, XMetS also enhanced insulin-stimulated glucose transport. In contrast to its effects on the INSR, XMetS did not potentiate IGF-1 activation of the IGF-1 receptor. We studied the effect of XMetS treatment in two mouse models of insulin resistance and diabetes. The first was the diet induced obesity mouse, a hyperinsulinemic, insulin resistant animal, and the second was the multi-low dose streptozotocin/high-fat diet mouse, an insulinopenic, insulin resistant animal. In both models, XMetS normalized fasting blood glucose levels and glucose tolerance. In concert with its ability to potentiate insulin action at the INSR, XMetS reduced insulin and C-peptide levels in both mouse models. XMetS improved the response to exogenous insulin without causing hypoglycemia. These data indicate that an allosteric monoclonal antibody can be generated that markedly enhances the binding affinity of insulin to the INSR. These data also suggest that an INSR monoclonal antibody with these characteristics may have the potential to both improve glucose metabolism in insulinopenic type 2 diabetes mellitus and correct compensatory

  9. A novel chitosan hydrogel membrane by an improved electrophoretic deposition and its characteristics in vitro and in vivo.

    Science.gov (United States)

    Li, Wen-Wen; Wang, Hai-Yan; Zhang, Yu-Qing

    2017-05-01

    Here, we report a novel chitosan hydrogel membrane (CHM) created by an improved electrophoretic deposition. Unlike a traditional CHM by electrophoretic deposition, the CHM was formed on a nanoporous film as a barrier using a homemade device at a high DC voltage (60 VDC). The CHM maximum recovery of 81.7% could be achieved after 1h of electrophoretic deposition. The transparent CHM with an elongation of 42.46% and swelling index of 538.86% was a mixture of type I and type II crystal structures. SEM revealed that the CHM had an irregular net structure. The CHM was sufficient for L-929 mouse fibroblast cell adhesion and growth. To demonstrate immunocompatibility with host tissues, H&E and TGF-β1 were observed and the expressions of TNF-α and NF-κB were measured up to 3weeks post-implantation. Although these scaffolds demonstrated an initial pro-inflammatory response, the amount of inflammatory cells and the expressions of TGF-β1 returned to baseline control values at 3weeks. The expressions of TNF-α and NF-κB had no significant difference between the experimental and control groups. Animal experiments showed that the CHM did not incite serious inflammatory reactions. Thus, the CHM is a promising medical biomaterial candidate for loading appropriate cells for use as artificial skin or in transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Improved in vivo detection of cortical lesions in multiple sclerosis using double inversion recovery MR imaging at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Birgit; Traeber, Frank; Willinek, Winfried A.; Schild, Hans H. [University Hospital of Bonn, Department of Radiology, Bonn (Germany); Schmidt, Stephan [Neurologische Gemeinschaftspraxis Bonn, Bonn (Germany); Lukas, Carsten [University of Bochum, Department of Diagnostic and Interventional Radiology, St. Josef Hospital, Bochum (Germany); VU University Medical Center, Department of Radiology, MS Center Amsterdam, Amsterdam (Netherlands); Gieseke, Juergen [University Hospital of Bonn, Department of Radiology, Bonn (Germany); Philips Medical Systems, Hamburg (Germany); Knol, Dirk L. [VU University Medical Center, Department of Epidemiology and Biostatistics, Amsterdam (Netherlands); Geurts, Jeroen J.G. [VU University Medical Center, Department of Radiology, MS Center Amsterdam, Amsterdam (Netherlands); VU University Medical Center, Department of Pathology, Amsterdam (Netherlands); Barkhof, Frederik; Wattjes, Mike P. [VU University Medical Center, Department of Radiology, MS Center Amsterdam, Amsterdam (Netherlands)

    2010-07-15

    To investigate the impact of a higher magnetic field strength of 3 Tesla (T) on the detection rate of cortical lesions in multiple sclerosis (MS) patients, in particular using a dedicated double inversion recovery (DIR) pulse sequence. Thirty-four patients with clinically isolated syndromes or definite MS were included. All patients underwent magnetic resonance imaging (MRI) at 1.5 T and 3 T, including T2-weighted turbo spin echo (TSE), fluid-attenuated inversion recovery (FLAIR) and DIR sequences. All images were analysed for focal lesions categorised according to their anatomical location. The total number of detected lesions was higher at 3 T across all pulse sequences. We observed significantly higher numbers of lesions involving the cortex at 3 T using a DIR sequence. DIR at 3 T showed 192% more pure intracortical (p < 0.001) and 30% more mixed grey matter-white matter lesions (p = 0.008). No significant increase in cortical lesions could be detected on the FLAIR and T2-weighted images. Using the T2-weighted and FLAIR sequences, significantly more lesions could be detected at 3 T in the infratentorial, periventricular and juxtacortical white matter. DIR brain MR imaging at 3 T substantially improves the sensitivity of the detection of cortical lesions compared with the standard magnetic field strength of 1.5 T. (orig.)

  11. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo

    Science.gov (United States)

    Yanamandra, Kiran; Kfoury, Najla; Jiang, Hong; Mahan, Thomas E.; Ma, Shengmei; Maloney, Susan E.; Wozniak, David F.

    2014-01-01

    Summary Tau aggregation occurs in neurodegenerative diseases including Alzheimer's disease and many other disorders collectively termed tauopathies. Trans-cellular propagation of tau pathology, mediated by extracellular tau aggregates, may underlie pathogenesis of these conditions. P301S tau transgenic mice express mutant human tau protein, and develop progressive tau pathology. Using a cell-based biosensor assay, we screened anti-tau monoclonal antibodies for their ability to block seeding activity present in P301S brain lysates. We infused 3 effective antibodies or controls into the lateral ventricle of P301S mice for 3 months. The antibodies markedly reduced hyperphosphorylated, aggregated, and insoluble tau. They also blocked development of tau seeding activity detected in brain lysates using the biosensor assay, reduced microglial activation, and improved cognitive deficits. These data imply a central role for extracellular tau aggregates in the development of pathology. They also suggest immunotherapy specifically designed to block trans-cellular aggregate propagation will be a productive treatment strategy. PMID:24075978

  12. A Comparison of Red Fluorescent Proteins to Model DNA Vaccine Expression by Whole Animal In Vivo Imaging.

    Science.gov (United States)

    Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S

    2015-01-01

    DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.

  13. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study.

    Science.gov (United States)

    Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin

    2015-12-01

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.

  14. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Michal Mielcarek

    Full Text Available Huntington's disease (HD is a progressive neurological disorder for which there are no disease-modifying treatments. Transcriptional dysregulation is a major molecular feature of HD, which significantly contributes to disease progression. Therefore, the development of histone deacetylase (HDAC inhibitors as therapeutics for HD has been energetically pursued. Suberoylanilide hydroxamic acid (SAHA - a class I HDAC as well an HDAC6 inhibitor, improved motor impairment in the R6/2 mouse model of HD. Recently it has been found that SAHA can also promote the degradation of HDAC4 and possibly other class IIa HDACs at the protein level in various cancer cell lines. To elucidate whether SAHA is a potent modifier of HDAC protein levels in vivo, we performed two independent mouse trials. Both WT and R6/2 mice were chronically treated with SAHA and vehicle. We found that prolonged SAHA treatment causes the degradation of HDAC4 in cortex and brain stem, but not hippocampus, without affecting its transcript levels in vivo. Similarly, SAHA also decreased HDAC2 levels without modifying the expression of its mRNA. Consistent with our previous data, SAHA treatment diminishes Hdac7 transcript levels in both wild type and R6/2 brains and unexpectedly was found to decrease Hdac11 in R6/2 but not wild type. We investigated the effects of SAHA administration on well-characterised molecular readouts of disease progression. We found that SAHA reduces SDS-insoluble aggregate load in the cortex and brain stem but not in the hippocampus of the R6/2 brains, and that this was accompanied by restoration of Bdnf cortical transcript levels.

  15. Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo.

    Science.gov (United States)

    Bao, Yang-Yang; Zhou, Shui-Hong; Lu, Zhong-Jie; Fan, Jun; Huang, Ya-Ping

    2015-10-01

    Hypoxia is an important factor in radioresistance of laryngeal carcinoma. Glucose transporter-1 (GLUT-1) is an important hypoxic marker in malignant tumors, including laryngeal carcinoma. Apigenin is a natural phytoestrogen flavonoid that has potential anticancer effects. Various studies have reported that the effects of apigenin on lowering GLUT-1 expression were involved in downregulation of the PI3K/Akt pathway. Thus, apigenin may improve the radiosensitivity of laryngeal carcinoma by suppressing the expression of GLUT-1 via the PI3K/Akt pathway. The effect of GLUT-1 and PI3K/Akt pathway-related factor expressions by apigenin or antisense oligonucleotides (AS-ODNs) on the radiosensitivity of laryngeal carcinoma in vivo was assessed. The xenograft volume, xenograft weight and apoptosis detection were performed to determine radiosensitivity. The results showed that apigenin or apigenin plus GLUT-1 AS-ODNs improved the radiosensitivity of xenografts. Apigenin or apigenin plus GLUT-1 reduced the expression of GLUT-1, Akt, and PI3K mRNA after X-ray radiation. We found similar results at the protein level. The results suggest that the effects of apigenin on inhibiting xenograft growth and enhancing xenograft radiosensitivity may be associated with suppressing the expression of GLUT-1 via the PI3K/Akt pathway. In addition, apigenin may enhance the effects of GLUT-1 AS-ODNs via the same mechanism.

  16. Improved dissolution and micromeritic properties of naproxen from spherical agglomerates: preparation, in vitro and in vivo characterization

    Directory of Open Access Journals (Sweden)

    Damineni Saritha

    2012-12-01

    Full Text Available Naproxen, an anti-inflammatory drug, exhibits poor aqueous solubility, which limits the pharmacological effects. The present work was carried out to study the effect of agglomeration on micromeritic properties and dissolution. Naproxen agglomerates were prepared by using a three solvents system composed of acetone (good solvent, water (non-solvent and dichloromethane (bridging liquid. Differential Scanning Calorimetry (DSC results showed no change in the drug after crystallization process. X-Ray Powder Diffraction (XRPD studies showed the sharp peaks are present in the diffractograms of spherical agglomerates with minor reduction in height of the peaks. The residual solvents are largely below the tolerated limits in the agglomerates. Scanning Electronic Microscopy (SEM studies showed that agglomerates were spherical in structure and formed by cluster of small crystals. The agglomerates exhibited improved solubility, dissolution rate and micromeritic properties compared to pure drug. Anti-inflammatory studies were conducted in Wistar strain male albino rats and naproxen agglomerates showed more significant activity than the pure drug.Naproxeno, fármaco anti-inflamatório, apresenta baixa solubilidade em água, o que limita os efeitos farmacológicos. O presente trabalho foi realizado para estudar o efeito da aglomeração nas propriedades micromeríticas e na dissolução. Aglomerados de naproxeno foram preparados por meio da utilização de sistema de três solventes composto de acetona (bom solvente, água (não-solvente e diclorometano (líquido de ligação. A DSC não resulta mostrou nenhuma mudança na droga depois de processo de cristalização. Estudos de difração de Raios X do Pó (XRPD mostraram picos agudos nos difratogramas de aglomerados esféricos, com redução mínima dea altura dos picos. Os solventes residuais estão amplamente abaixo dos limites tolerados nos aglomerados. Os estudos de Microscopia Eletrônica de Varredura

  17. Planning Irreversible Electroporation in the Porcine Kidney: Are Numerical Simulations Reliable for Predicting Empiric Ablation Outcomes?

    Energy Technology Data Exchange (ETDEWEB)

    Wimmer, Thomas, E-mail: thomas.wimmer@medunigraz.at; Srimathveeravalli, Govindarajan; Gutta, Narendra [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Ezell, Paula C. [The Rockefeller University, Research Animal Resource Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Monette, Sebastien [The Rockefeller University, Laboratory of Comparative Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College (United States); Maybody, Majid; Erinjery, Joseph P.; Durack, Jeremy C. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States); Coleman, Jonathan A. [Memorial Sloan-Kettering Cancer Center, Urology Service, Department of Surgery (United States); Solomon, Stephen B. [Memorial Sloan-Kettering Cancer Center, Interventional Radiology Service, Department of Radiology (United States)

    2015-02-15

    PurposeNumerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model.MethodsThe ablation size and shape for six different IRE parameter sets (70–90 pulses, 2,000–2,700 V, 70–100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1.ResultsAblation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery.ConclusionBoth numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.

  18. Percutaneous Image-Guided Irreversible Electroporation for the Treatment of Unresectable, Locally Advanced Pancreatic Adenocarcinoma.

    Science.gov (United States)

    Narayanan, Govindarajan; Hosein, Peter J; Beulaygue, Isabelle C; Froud, Tatiana; Scheffer, Hester J; Venkat, Shree R; Echenique, Ana M; Hevert, Elizabeth C; Livingstone, Alan S; Rocha-Lima, Caio M; Merchan, Jaime R; Levi, Joseph U; Yrizarry, Jose M; Lencioni, Riccardo

    2017-03-01

    To describe safety and effectiveness of percutaneous irreversible electroporation (IRE) for treatment of unresectable, locally advanced pancreatic adenocarcinoma (LAPC). This retrospective study included 50 patients (23 women, 27 men; age range, 46-91 y; median age, 62.5 y) with biopsy-proven, unresectable LAPC who received percutaneous computed tomography (CT)-guided IRE. The primary objective was to assess the safety profile of the procedure; the secondary objective was to determine overall survival (OS). All patients had prior chemotherapy (1-5 lines, median 2), and 30 (60%) of 50 patients had prior radiation therapy. Follow-up included CT at 1 month and at 3-month intervals thereafter. There were no treatment-related deaths and no 30-day mortality. Serious adverse events occurred in 10 (20%) of 50 patients (abdominal pain [n = 7], pancreatitis [n = 1], sepsis [n = 1], gastric leak [n = 1]). Median OS was 27.0 months (95% confidence interval [CI], 22.7-32.5 months) from time of diagnosis and 14.2 months (95% CI, 9.7-16.2 months) from time of IRE. Patients with tumors ≤ 3 cm (n = 24) had significantly longer median OS than patients with tumors > 3 cm (n = 26): 33.8 vs 22.7 months from time of diagnosis (P = .002) and 16.2 vs 9.9 months from time of IRE (P = .031). Tumor size was confirmed as the only independent predictor of OS at multivariate analysis. Percutaneous image-guided IRE of unresectable LAPC is associated with an acceptable safety profile. Published by Elsevier Inc.

  19. Short- and Mid-term Effects of Irreversible Electroporation on Normal Renal Tissue: An Animal Model

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, J. J., E-mail: johann.wendler@med.ovgu.de; Porsch, M.; Huehne, S.; Baumunk, D. [University of Magdeburg, Department of Urology (Germany); Buhtz, P. [Institute of Pathology, University of Magdeburg (Germany); Fischbach, F.; Pech, M. [University of Magdeburg, Department of Radiology (Germany); Mahnkopf, D. [Institute of Medical Technology and Research (Germany); Kropf, S. [Institute of Biometry, University of Magdeburg (Germany); Roessner, A. [Institute of Pathology, University of Magdeburg (Germany); Ricke, J. [University of Magdeburg, Department of Radiology (Germany); Schostak, M.; Liehr, U.-B. [University of Magdeburg, Department of Urology (Germany)

    2013-04-15

    Irreversible electroporation (IRE) is a novel nonthermal tissue ablation technique by high current application leading to apoptosis without affecting extracellular matrix. Previous results of renal IRE shall be supplemented by functional MRI and differentiated histological analysis of renal parenchyma in a chronic treatment setting. Three swine were treated with two to three multifocal percutaneous IRE of the right kidney. MRI was performed before, 30 min (immediate-term), 7 days (short-term), and 28 days (mid-term) after IRE. A statistical analysis of the lesion surrounded renal parenchyma intensities was made to analyze functional differences depending on renal part, side and posttreatment time. Histological follow-up of cortex and medulla was performed after 28 days. A total of eight ablations were created. MRI showed no collateral damage of surrounded tissue. The highest visual contrast between lesions and normal parenchyma was obtained by T2-HR-SPIR-TSE-w sequence of DCE-MRI. Ablation zones showed inhomogeneous necroses with small perifocal edema in the short-term and sharp delimitable scars in the mid-term. MRI showed no significant differences between adjoined renal parenchyma around ablations and parenchyma of untreated kidney. Histological analysis demonstrated complete destruction of cortical glomeruli and tubules, while collecting ducts, renal calyxes, and pelvis of medulla were preserved. Adjoined kidney parenchyma around IRE lesions showed no qualitative differences to normal parenchyma of untreated kidney. This porcine IRE study reveals a multifocal renal ablation, while protecting surrounded renal parenchyma and collecting system over a mid-term period. That offers prevention of renal function ablating centrally located or multifocal renal masses.

  20. Pain Analysis in Patients with Hepatocellular Carcinoma: Irreversible Electroporation versus Radiofrequency Ablation-Initial Observations

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Govindarajan, E-mail: gnarayanan@med.miami.edu; Froud, Tatiana, E-mail: tfroud@med.miami.edu [Miller School of Medicine, University of Miami, Department of Vascular and Interventional Radiology (United States); Lo, Kaming, E-mail: KLo@biostat.med.miami.edu [Miller School of Medicine, University of Miami, Department of Epidemiology and Public Health (United States); Barbery, Katuska J., E-mail: kbarbery@med.miami.edu; Perez-Rojas, Evelyn, E-mail: eprojas@med.miami.edu; Yrizarry, Jose, E-mail: jyrizarr@med.miami.edu [Miller School of Medicine, University of Miami, Department of Vascular and Interventional Radiology (United States)

    2013-02-15

    To retrospectively compare the postprocedure pain of hepatocellular carcinoma treated with irreversible electroporation (IRE) with radiofrequency ablation (RFA). This Health Insurance Portability and Accountability Act-compliant, institutional review board-approved study compared postprocedure pain in 21 patients (15 men, six women; mean age 61.5 years) who underwent IRE of 29 intrahepatic lesions (mean size 2.20 cm) in 28 IRE sessions with 22 patients (16 men, six women; mean age 60.2 years) who underwent RFA of 27 lesions (mean size 3.38 cm) in 25 RFA sessions. Pain was determined by patient-disclosed scores with an 11-point numerical rating scale and 24 h cumulative hydromorphone use from patient-controlled analgesia pump. Complications were noted. Statistical significance was evaluated by Fisher's exact test, the Chi-square test, and Student's t test. There was no significant difference in the cumulative hydromorphone dose (1.54 mg (IRE) vs. 1.24 mg (RFA); P = 0.52) and in the mean pain score (1.96 (IRE) vs. 2.25 (RFA); P = 0.70). In nine (32.14 %) of 28 IRE sessions and 11 (44.0 %) of 25 RFA sessions, patients reported no pain. Complications occurred in three (10.7 %) of 28 IRE treatments and included pneumothorax (n = 1), pleural effusion (n = 1), and bleeding in the form of hemothorax (n = 1); one (4 %) of 25 RFA treatments included burn. IRE is comparable to RFA in the amount of pain that patients experience and the amount of pain medication self-administered. Both modalities were well tolerated by patients. Prospective, randomized trials are necessary to further evaluate these findings.

  1. Effect of Thermal Gradients Created by Electromagnetic Fields on Cell-Membrane Electroporation Probed by Molecular-Dynamics Simulations

    Science.gov (United States)

    Song, J.; Garner, A. L.; Joshi, R. P.

    2017-02-01

    The use of nanosecond-duration-pulsed voltages with high-intensity electric fields (˜100 kV /cm ) is a promising development with many biomedical applications. Electroporation occurs in this regime, and has been attributed to the high fields. However, here we focus on temperature gradients. Our numerical simulations based on molecular dynamics predict the formation of nanopores and water nanowires, but only in the presence of a temperature gradient. Our results suggest a far greater role of temperature gradients in enhancing biophysical responses, including possible neural stimulation by infrared lasers.

  2. Electroporation and microinjection successfully deliver single-stranded and duplex DNA into live cells as detected by FRET measurements.

    Directory of Open Access Journals (Sweden)

    Rosemary A Bamford

    Full Text Available Förster resonance energy transfer (FRET technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5 complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.

  3. Evaluating Electroporation and Lipofectamine Approaches for Transient and Stable Transgene Expressions in Human Fibroblasts and Embryonic Stem Cells.

    Science.gov (United States)

    Sharifi Tabar, Mehdi; Hesaraki, Mahdi; Esfandiari, Fereshteh; Sahraneshin Samani, Fazel; Vakilian, Haghighat; Baharvand, Hossein

    2015-01-01

    Genetic modification of human embryonic stem cells (hESCs) is critical for their extensive use as a fundamental tool for cell therapy and basic research. Despite the fact that various methods such as lipofection and electroporation have been applied to transfer the gene of interest (GOI) into the target cell line, however, there are few re- ports that compare all parameters, which influence transfection efficiency. In this study, we examine all parameters that affect the efficiency of electroporation and lipofection for transient and long-term gene expression in three different cell lines to introduce the best method and determinant factor. In this experimental study, both electroporation and lipofection approaches were employed for genetic modification. pCAG-EGFP was applied for tran- sient expression of green fluorescent protein in two genetically different hESC lines, Roy- an H5 (XX) and Royan H6 (XY), as well as human foreskin fibroblasts (hFF). For long-term EGFP expression VASA and OLIG2 promoters (germ cell and motoneuron specific genes, respectively), were isolated and subsequently cloned into a pBluMAR5 plasmid backbone to drive EGFP expression. Flow cytometry analysis was performed two days after trans- fection to determine transient expression efficiency. Differentiation of drug resistant hESC colonies toward primordial germ cells (PGCs) was conducted to confirm stable integration of the transgene. Transient and stable expression suggested a variable potential for different cell lines against transfection. Analysis of parameters that influenced gene transformation ef- ficiency revealed that the vector concentrations from 20-60 μg and the density of the sub- jected cells (5×10(5)and 1×10(6)cells) were not as effective as the genetic background and voltage rate. The present data indicated that in contrast to the circular form, the linearized vector generated more distinctive drug resistant colonies. Electroporation was an efficient tool for genetic

  4. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.

    Science.gov (United States)

    Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz

    2017-01-01

    The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of

  5. Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Auwal, Shehu Muhammad; Zarei, Mohammad; Tan, Chin Ping; Basri, Mahiran; Saari, Nazamid

    2017-12-02

    Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP)-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora) protein using bromelain and stabilized by their encapsulation in chitosan (chit) nanoparticles (NPs). The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs). The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi) value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p hypertensive individuals.

  6. Shuttling Tolerogenic Dendritic Cells across the Blood–Brain Barrier In Vitro via the Introduction of De Novo C–C Chemokine Receptor 5 Expression Using Messenger RNA Electroporation

    Directory of Open Access Journals (Sweden)

    Maxime De Laere

    2018-01-01

    Full Text Available The use of tolerance-inducing dendritic cells (tolDCs has been proven to be safe and well tolerated in the treatment of autoimmune diseases. Nevertheless, several challenges remain, including finding ways to facilitate the migration of cell therapeutic products to lymph nodes, and the site of inflammation. In the treatment of neuroinflammatory diseases, such as multiple sclerosis (MS, the blood–brain barrier (BBB represents a major obstacle to the delivery of therapeutic agents to the inflamed central nervous system (CNS. As it was previously demonstrated that C–C chemokine receptor 5 (CCR5 may be involved in inflammatory migration of DCs, the aim of this study was to investigate CCR5-driven migration of tolDCs. Only a minority of in vitro generated vitamin D3 (vitD3-treated tolDCs expressed the inflammatory chemokine receptor CCR5. Thus, messenger RNA (mRNA encoding CCR5 was introduced by means of electroporation (EP. After mRNA EP, tolDCs transiently displayed increased levels of CCR5 protein expression. Accordingly, the capacity of mRNA electroporated tolDCs to transmigrate toward a chemokine gradient in an in vitro model of the BBB improved significantly. Neither the tolerogenic phenotype nor the T cell-stimulatory function of tolDCs was affected by mRNA EP. EP of tolDCs with mRNA encoding CCR5 enabled these cells to migrate to inflammatory sites. The approach used herein has important implications for the treatment of MS. Using this approach, tolDCs actively shuttle across the BBB, allowing in situ down-modulation of autoimmune responses in the CNS.

  7. Improved selectivity of mIBG uptake into neuroblastoma cells in vitro and in vivo by inhibition of organic cation transporter 3 uptake using clinically approved corticosteroids.

    Science.gov (United States)

    Bayer, Melanie; Schmitt, Julia; Dittmann, Helmut; Handgretinger, Rupert; Bruchelt, Gernot; Sauter, Alexander W

    2016-09-01

    Radiolabeled meta-iodobenzylguanidine (mIBG) is used for imaging and therapy of neuroblastoma as well as pheochromocytoma. However, non-tumorous tissues also incorporate mIBG mainly by organic cation transporters (OCTs). In this study, we tested different clinically approved corticosteroids as potential inhibitors of the OCT3-mediated uptake in vitro and in vivo, to achieve a more selective mIBG tumor uptake. The in vitro incorporation of [(3)H]norepinephrine ([(3)H]NE), [(3)H]dopamine ([(3)H]DA) and [(123)I]mIBG in neuroblastoma cells (SK-N-SH, Kelly, IMR-32) and in HEK-293 cells transfected with human OCT3 was measured with and without supplemental corticosteroids (hydrocortisone, prednisolone, dexamethasone, corticosterone). The in vivo biodistribution of [(123)I]mIBG in absence and presence of corticosteroids was studied in non-tumor bearing NOD scid gamma mice. Retrospectively, we selected patients with and without corticosteroid treatment prior to [(123)I]mIBG scintigraphy. A concentration-dependent inhibitory effect of different corticosteroids on the [(3)H]NE and [(3)H]DA uptake via OCT3 was illustrated in vitro. The highest OCT3 inhibition was observed for corticosterone, but clinically used corticosteroids, showed also promising inhibitory effects. In contrast, the uptake in neuroblastoma cells was reduced only moderately. Hydrocortisone or prednisolone had only minor effects on [(123)I]mIBG uptake of both neuroblastoma cells, but reduced uptake in OCT3 expressing cells significantly. In mice tissues, [(123)I]mIBG uptake was inhibited by corticosteroids especially in the small intestine and kidney. Finally, in one patient with hydrocortisone treatment performed prior to [(123)I]mIBG scan, heart and liver uptake was reduced compared to untreated patients. The OCT3 is widely spread in many organs and responsible for non-targeted uptake of radiolabeled mIBG. In our study, clinically approved corticosteroids inhibited mIBG uptake in OCT3 expressing cells

  8. Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Nehmé, Reine; Atieh, Carla; Fayad, Syntia; Claude, Bérengère; Chartier, Agnès; Tannoury, Mona; Elleuch, Fatma; Abdelkafi, Slim; Pichon, Chantal; Morin, Philippe

    2017-01-01

    Amino acids play a key role in food analysis, clinical diagnostics, and biochemical research. Capillary electrophoresis with laser-induced fluorescence detection was used for the analysis of several amino acids. Amino acid labeling with fluorescein isothiocyanate was conducted using microwave-assisted derivatization at 80°C (680 W) during only 150 s. Good electrophoretic resolution was obtained using a background electrolyte composed of sodium tetraborate buffer (100 mM; pH 9.4) and β-cyclodextrin (10 mM), and the limits of quantification were 3-30 nM. The developed capillary electrophoresis with laser-induced fluorescence method was used to analyze amino acids in Dunaliella salina green algae grown under different conditions. A simple extraction technique based on electroporation of the cell membrane was introduced. A home-made apparatus allowed the application of direct and alternating voltages across the electrochemical compartment containing a suspension of microalgae in distilled water at 2.5 g/L. A direct voltage of 12 V applied for 4 min gave the optimum extraction yield. Results were comparable to those obtained with accelerated-solvent extraction. The efficiency of electroporation in destroying microalgae membranes was shown by examining the algae surface morphology using scanning electron microscopy. Stress conditions were found to induce the production of amino acids in Dunaliella salina cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. MR and CT imaging characteristics and ablation zone volumetry of locally advanced pancreatic cancer treated with irreversible electroporation.

    Science.gov (United States)

    Vroomen, Laurien G P H; Scheffer, Hester J; Melenhorst, Marleen C A M; de Jong, Marcus C; van den Bergh, Janneke E; van Kuijk, Cornelis; van Delft, Foke; Kazemier, Geert; Meijerink, Martijn R

    2017-06-01

    To assess specific imaging characteristics after irreversible electroporation (IRE) for locally advanced pancreatic carcinoma (LAPC) with contrast-enhanced (ce)MRI and ceCT, and to explore the correlation of these characteristics with the development of recurrence. Qualitative and quantitative analyses of imaging data were performed on 25 patients treated with percutaneous IRE for LAPC. Imaging characteristics of the ablation zone on ceCT and ceMRI were assessed over a 6-month follow-up period. Contrast ratio scores between pre- and post-treatment were compared. To detect early imaging markers for treatment failure, attenuation characteristics at 6 weeks were linked to the area of recurrence within 6 months. Post-IRE, diffusion-weighted imaging (DWI)-b800 signal intensities decreased in all cases (p characteristics may be useful to establish technical success and predict treatment outcome. • This study describes imaging characteristics after irreversible electroporation (IRE) for pancreatic adenocarcinoma. • Familiarity with typical post-IRE imaging characteristics helps to interpret ablation zones. • Post-IRE, no central and variable rim enhancement are visible on contrast-enhanced imaging. • DWI-b800 may prove useful to predict early tumour recurrence. • Post-IRE examinations reveal an initial volume increase followed by a decrease.

  10. Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis

    Science.gov (United States)

    2011-01-01

    Background Postnatal olfactory bulb (OB) neurogenesis involves the generation of granule and periglomerular cells by neural stem cells (NSCs) located in the walls of the lateral ventricle (LV). Recent studies show that NSCs located in different regions of the LV give rise to different types of OB neurons. However, the molecular mechanisms governing neuronal specification remain largely unknown and new methods to approach these questions are needed. Results In this study, we refine electroporation of the postnatal forebrain as a technique to perform precise and accurate delivery of transgenes to NSCs located in distinct walls of the LV in the mouse. Using this method, we confirm and expand previous studies showing that NSCs in distinct walls of the LV produce neurons that invade different layers of the OB. Fate mapping of the progeny of radial glial cells located in these distinct LV walls reveals their specification into defined subtypes of granule and periglomerular neurons. Conclusions Our results provide a baseline with which future studies aiming at investigating the role of factors in postnatal forebrain neuronal specification can be compared. Targeted electroporation of defined LV NSC populations will prove valuable to study the genetic factors involved in forebrain neuronal specification. PMID:21466691

  11. Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation.

    Science.gov (United States)

    Laconi, Erika B; Jayanegara, Anuraga

    2015-03-01

    Cocoa pod is among the by-products of cocoa (Theobroma cacao) plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control), CAm (cocoa pod+1.5% urea), CMo (cocoa pod+3% molasses), CRu (cocoa pod+3% rumen content) and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum). Analysis of proximate and Van Soest's fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates). Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration) was conducted by feeding to young Holstein steers (average body weight of 145±3.6 kg) with a 5×5 latin square design arrangement (n = 5 replicates). Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (pCAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (p<0.05) of cocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (p<0.01) with an increase of 105% and 92%, respectively. Such higher daily gain was concomitant with higher N retention and proportion of N retention to N intake in CAm and CPh treatments than those of control (p<0.05). It can be concluded from this study that treatment with either urea or P. chrysosporium is effective in improving the nutritive value of cocoa pod.

  12. Ex vivo

    Science.gov (United States)

    Matsuda, Kant M; Lopes-Calcas, Ana; Honke, Michael L; O'Brien-Moran, Zoe; Buist, Richard; West, Michael; Martin, Melanie

    2017-07-01

    To advance magnetic resonance imaging (MRI) technologies further for in vivo tissue characterization with histopathologic validation, we investigated the feasibility of ex vivo tissue imaging of a surgically removed human brain tumor as a comprehensive approach for radiology-pathology correlation in histoanatomically identical fashion in a rare case of pigmented ganglioglioma with complex paramagnetic properties. Pieces of surgically removed ganglioglioma, containing melanin and hemosiderin pigments, were imaged with a small bore 7-T MRI scanner to obtain T1-, T2-, and T2*-weighted image and diffusion tensor imaging (DTI). Corresponding histopathological slides were prepared for routine hematoxylin and eosin stain and special stains for melanin and iron/hemosiderin to correlate with MRI signal characteristics. Furthermore, mean diffusivity (MD) maps were generated from DTI data and correlated with cellularity using image analysis. While the presence of melanin was difficult to interpret in in vivo MRI with certainty due to concomitant hemosiderin pigments and calcium depositions, ex vivo tissue imaging clearly demonstrated pieces of tissue exhibiting the characteristic MR signal pattern for melanin with pathologic confirmation in a histoanatomically identical location. There was also concordant correlation between MD and cellularity. Although it is still in an initial phase of development, ex vivo tissue imaging is a promising approach, which offers radiology-pathology correlation in a straightforward and comprehensive manner.

  13. WE-C-217BCD-03: Restricted Data Set Reconstruction Based on Respiration Quality to Improve Prospectively Gated in Vivo Micro-CT of Mice.

    Science.gov (United States)

    Burk, L; Lee, Y; Lu, J; Zhou, O

    2012-06-01

    Micro-CT is commonly employed for lung imaging of mice; prospective gating allows for in-vivo imaging of free-breathing subjects. While this technique is successfully executed for healthy animals, results are less consistent for some disease models whose symptoms include irregular or unstable respiration. The purpose of this work is to repair the quality of high-blur images that arise from respiration instability using a retrospective method of motion reduction which identifies the individual x-ray projection images contributing most to the motion blur. Reconstructions were performed after the exclusion of these projections (the so-called restricted set). Sixteen mice were imaged using field emission cone beam micro-CT and prospective gating with a bellows-type respiration sensor. The scanner was operated in step-and-shoot mode; 400 projection images were acquired per scan. An algorithm was developed to analyze the respiration trace file and segment the individual breath corresponding to each projection image. We tested three different criteria to define a bad breath shape (correlation, mean breath height, or mode breath height), and restricted data set reconstructions were performed using each of these criteria to exclude projections corresponding to bad breaths. Each restricted set was compared against the full unrestricted data set image; the slope perpendicular to the diaphragm was used as a quantitative assessment of motion blur. All image sets saw a reduction in motion blur with at least one restriction technique. In 22 of 27 images, improvement was measured regardless of the removal criterion. Five percent total projection removal is optimal; a more aggressive correction increases the likelihood of under-sampling artifacts. Removing a subset of bad projections from otherwise complete image sets measurably decreases motion blur in respiratory-gated imaging. An approach based on breath height generally provides the best results. The technique is applicable to

  14. Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Shehu Muhammad Auwal

    2017-12-01

    Full Text Available Recent biotechnological advances in the food industry have led to the enzymatic production of angiotensin I-converting enzyme (ACE-inhibitory biopeptides with a strong blood pressure lowering effect from different food proteins. However, the safe oral administration of biopeptides is impeded by their enzymatic degradation due to gastrointestinal digestion. Consequently, nanoparticle (NP-based delivery systems are used to overcome these gastrointestinal barriers to maintain the improved bioavailability and efficacy of the encapsulated biopeptides. In the present study, the ACE-inhibitory biopeptides were generated from stone fish (Actinopyga lecanora protein using bromelain and stabilized by their encapsulation in chitosan (chit nanoparticles (NPs. The nanoparticles were characterized for in vitro physicochemical properties and their antihypertensive effect was then evaluated on spontaneously hypertensive rats (SHRs. The results of a physicochemical characterization showed a small particle size of 162.70 nm, a polydispersity index (pdi value of 0.28, a zeta potential of 48.78 mV, a high encapsulation efficiency of 75.36%, a high melting temperature of 146.78 °C and an in vitro sustained release of the biopeptides. The results of the in vivo efficacy indicated a dose-dependent blood pressure lowering effect of the biopeptide-loaded nanoparticles that was significantly higher (p < 0.05 compared with the un-encapsulated biopeptides. Moreover, the results of a morphological examination using transmission electron microscopy (TEM demonstrated the nanoparticles as homogenous and spherical. Thus, the ACE-inhibitory biopeptides stabilized by chitosan nanoparticles can effectively reduce blood pressure for an extended period of time in hypertensive individuals.

  15. Formulation design of a highly hygroscopic drug (pyridostigmine bromide) for its hygroscopic character improvement and investigation of in vitro/in vivo dissolution properties.

    Science.gov (United States)

    Huang, Yuh-Tyng; Tsai, Tong-Rong; Cheng, Chun-Jen; Cham, Thau-Ming; Lai, Tsun-Fwu; Chuo, Wen-Ho

    2007-04-01

    Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 2(3) full factorial design. In vitro studies, the 2(3) full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n=0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25 degrees C/60% RH, 30 degrees C/65% RH, and 40 degrees C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65+/-0.082 hr-4.82+/-2.12 hr) and AUC0-30 hr (from 734.88+/-230.68 ng/mL.hr-1454.86+/-319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87+/-27.51 ng/mL-115.08+/-14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r=0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.

  16. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength.

    Science.gov (United States)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania; Frandsen, Stine Krog; Vernier, P Thomas; Gehl, Julie

    2015-01-01

    Electroporation, a method for increasing the permeability of membranes to ions and small molecules, is used in the clinic with chemotherapeutic drugs for cancer treatment (electrochemotherapy). Electroporation with calcium causes ATP (adenosine triphosphate) depletion and cancer cell death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability was determined after treatment with 1, 3, or 5 mM calcium and eight 99 μs pulses with 0.8, 1.0, 1.2, 1.4 or 1.6 kV/cm. Fitting analysis was applied to quantify the cell-killing efficacy in presence of calcium. Post-treatment intracellular ATP was measured in H69 and SW780 cells. Post-treatment intracellular ATP was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (pcalcium (lower EC50 for higher calcium concentrations). Quinacrine fluorescence intensity of calcium-electroporated U937 cells was one third lower than in controls (pCalcium electroporation dose-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials.

  17. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Olga Krotova

    Full Text Available Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids were highly expressed in human and murine cell lines (>0.7 ng/cell. Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus

  18. Labeling of Luciferase/eGFP-expressing bone marrow-derived stromal cells with fluorescent micron-sized iron oxide particles improves quantitative and qualitative multimodal imaging of cellular grafts in vivo.

    Science.gov (United States)

    De Vocht, Nathalie; Bergwerf, Irene; Vanhoutte, Greetje; Daans, Jasmijn; De Visscher, Geofrey; Chatterjee, Shyama; Pauwels, Patrick; Berneman, Zwi; Ponsaerts, Peter; Van der Linden, Annemie

    2011-12-01

    Development of multimodal imaging strategies is currently of utmost importance for the validation of preclinical stem cell therapy studies. We performed a combined labeling strategy for bone marrow-derived stromal cells (BMSC) based on genetic modification with the reporter genes Luciferase and eGFP (BMSC-Luc/eGFP) and physical labeling with blue fluorescent micron-sized iron oxide particles (MPIO) in order to unambiguously identify BMSC localization, survival, and differentiation following engraftment in the central nervous system of mice by in vivo bioluminescence (BLI) and magnetic resonance imaging and postmortem histological analysis. Using this combination, a significant increase of in vivo BLI signal was observed for MPIO-labeled BMSC-Luc/eGFP. Moreover, MPIO labeling of BMSC-Luc/eGFP allows for the improved identification of implanted cells within host tissue during histological observation. This study describes an optimized labeling strategy for multimodal stem cell imaging resulting in improved quantitative and qualitative detection of cellular grafts.

  19. Percutaneous Irreversible Electroporation of a Large Centrally Located Hepatocellular Adenoma in a Woman with a Pregnancy Wish

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, Hester J., E-mail: hj.scheffer@vumc.nl; Melenhorst, Marleen C. A. M., E-mail: m.melenhorst@vumc.nl; Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin, E-mail: k.nielsen@vumc.nl [Department of Surgery (Netherlands); Nieuwkerk, Karin M. van, E-mail: cmj.vannieuwkerk@vumc.nl; Vries, Richard A. de, E-mail: ra.devries@vumc.nl [VU University Medical Center, Department of Gastroenterology and Hepatology (Netherlands); Tol, Petrousjka van den [Department of Surgery (Netherlands); Meijerink, Martijn R., E-mail: mr.meijerink@vumc.nl [VU University Medical Center, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-08-15

    Irreversible electroporation (IRE) is a novel image-guided ablation technique that is rapidly gaining popularity in the treatment of malignant liver tumors located near large vessels or bile ducts. We describe a 28-year-old female patient with a 5 cm large, centrally located hepatocellular adenoma who wished to get pregnant. Regarding the risk of growth and rupture of the adenoma caused by hormonal changes during pregnancy, treatment of the tumor was advised prior to pregnancy. However, due to its central location, the tumor was considered unsuitable for resection and thermal ablation. Percutaneous CT-guided IRE was performed without complications and led to rapid and impressive tumor shrinkage. Subsequent pregnancy and delivery went uncomplicated. This case report suggests that the indication for IRE may extend to the treatment of benign liver tumors that cannot be treated safely otherwise.

  20. Ca2+ uptake and cellular integrity in rat EDL muscle exposed to electrostimulation, electroporation, or A23187

    DEFF Research Database (Denmark)

    Gissel, Hanne; Clausen, Torben

    2003-01-01

    We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2...... damage that arises during and after exercise or electrical shocks. Because membrane damage allows further influx of Ca2+, this results in positive feedback that may further increase membrane degeneration. Udgivelsesdato: 2003-Jul......+ ionophore A23187. Stimulation at 1 Hz for 120-240 min caused an increase in 45Ca uptake that was closely correlated to LDH release. This LDH release increased markedly with temperature. After 120 min of stimulation at 1 Hz, resting 45Ca uptake was increased 5.6-fold compared with unstimulated muscles...

  1. Dual modulation of bone formation and resorption with zoledronic acid-loaded biodegradable magnesium alloy implants improves osteoporotic fracture healing: An in vitro and in vivo study.

    Science.gov (United States)

    Li, Guoyuan; Zhang, Lei; Wang, Lei; Yuan, Guangyin; Dai, Kerong; Pei, Jia; Hao, Yongqiang

    2018-01-01

    Osteoporotic fracture (OPF) remains a major clinical challenge for skeletal regeneration. Impaired osteogenesis and excessive remodeling result in prolonged and poor quality of fracture healing. To augment bone formation and inhibit excessive resorption simultaneously, we constructed a biodegradable magnesium-based implant integrated with the anti-catabolic drug zoledronic acid (ZA); this implant exhibits controllable, sustained release of magnesium degradation products and ZA in vitro. The extracts greatly stimulate the osteogenic differentiation of rat-bone marrow-derived mesenchymal stem cells (rBMSCs), while osteoclastogenesis is inhibited by ZA. Implantation of intramedullary nails to fix femur fracture in ovariectomy-induced osteoporotic rats for up to 12 weeks demonstrates magnesium implants alone can enhance OPF repair through promoting callus formation compared to conventional stainless steel, while the combinatory treatment with local ZA release from implant coating further increases bone regeneration rate and callus size, remarkably improves bone quality and mechanical strength and suppresses osteoclasts and bone remodeling, due to the synergistic effect of both agents. The slow and uniform degradation of the implant ensures a steady decrease in bending force, which meets clinical requirements. In summary, biodegradable magnesium-based implants can locally co-deliver magnesium degradation products and zoledronic acid in a controlled manner, and can be superior alternatives for the reconstruction of osteoporosis-related fracture. Management of osteoporotic fracture has posed a major challenge in orthopedics, as the imbalance between diminished osteogenesis and excessive bone remodeling often leads to delayed and compromised fracture repair. Among various efforts expended on augmenting osteoporotic fracture healing, herein we reported a new strategy by engineering and utilizing a biodegradable magnesium-based implant integrated with local drug delivery

  2. Segmentation of hepatic vessels from MRI images for planning of electroporation-based treatments in the liver.

    Science.gov (United States)

    Marcan, Marija; Pavliha, Denis; Music, Maja Marolt; Fuckan, Igor; Magjarevic, Ratko; Miklavcic, Damijan

    2014-09-01

    Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses delivered to tissue via electrodes. To ensure that the whole tumor is covered by the sufficiently high electric field, accurate numerical models are built based on individual patient geometry. For the purpose of reconstruction of hepatic vessels from MRI images we searched for an optimal segmentation method that would meet the following initial criteria: identify major hepatic vessels, be robust and work with minimal user input. We tested the approaches based on vessel enhancement filtering, thresholding, and their combination in local thresholding. The methods were evaluated on a phantom and clinical data. Results show that thresholding based on variance minimization provides less error than the one based on entropy maximization. Best results were achieved by performing local thresholding of the original de-biased image in the regions of interest which were determined through previous vessel-enhancement filtering. In evaluation on clinical cases the proposed method scored in average sensitivity of 93.68%, average symmetric surface distance of 0.89 mm and Hausdorff distance of 4.04 mm. The proposed method to segment hepatic vessels from MRI images based on local thresholding meets all the initial criteria set at the beginning of the study and necessary to be used in treatment planning of electroporation-based treatments: it identifies the major vessels, provides results with consistent accuracy and works completely automatically. Whether the achieved accuracy is acceptable or not for treatment planning models remains to be verified through numerical modeling of effects of the segmentation error on the distribution of the electric field.

  3. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    Directory of Open Access Journals (Sweden)

    Ghazikhanlou-sani K.

    2016-06-01

    Full Text Available Introduction: There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method: A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA maps were performed using the FSL (FMRI software library software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result: The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690. With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05. Conclusion: DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues. It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  4. In vivo

    Science.gov (United States)

    Berkowitz, Bruce A; Lenning, Jacob; Khetarpal, Nikita; Tran, Catherine; Wu, Johnny Y; Berri, Ali M; Dernay, Kristin; Haacke, E Mark; Shafie-Khorassani, Fatema; Podolsky, Robert H; Gant, John C; Maimaiti, Shaniya; Thibault, Olivier; Murphy, Geoffrey G; Bennett, Brian M; Roberts, Robin

    2017-09-01

    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greater-than-normal 1/ T 1 that is quenchable with antioxidant as measured by quench-assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proof-of-concept data in models of AD-like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. AD-like models showed an abnormal gradient along the CA1 dorsal-ventral axis of excessive free radical production as measured by Quest MRI, and redox-sensitive calcium dysregulation as measured by manganese-enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subfield oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.-Berkowitz, B. A., Lenning, J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafie-Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. © FASEB.

  5. Improved preparation of acellular nerve scaffold and application of PKH26 fluorescent labeling combined with in vivo fluorescent imaging system in nerve tissue engineering.

    Science.gov (United States)

    Zhao, Bin; Sun, Xiaolei; Li, Xiulan; Yang, Qiang; Li, Yanjun; Zhang, Yang; Li, Bing; Ma, Xinlong

    2013-11-27

    Acellular nerve scaffold has been widely used for peripheral nerve defect treatment. However, the structure of traditional acellular nerve scaffold is dense; the interval porosity and void diameter are too small to meet the requirement of cell seeding, which limits the application. This study was designed to prepare a novel acellular nerve scaffold by the technique of hypotonic buffer combined with freeze-drying, and use PKH26 fluorescent labeling combined with in vivo fluorescent imaging system to evaluate the biological behavior of tissue-engineered nerve in vitro and in vivo. According to light and electron microscopy, the scaffold, which microarchitecture was similar to the fibrous framework of rabbit sciatic nerves, was cell-free and rich in laminin, collagen I and collagen III. In vitro experiment showed that the novel acellular nerve scaffold could provide a 3-D environment to support the attachment, proliferation and migration of adipose-derived stem cells (ADSCs). ADSCs labeled with fluorescent dye PKH26 were then seeded on scaffolds and implanted subcutaneously into nude mice. After 4 weeks, nerve-like tissue rounded by vessels formed. Cells in the tissue seemed to confirm that they originated from the labeled ADSCs, as confirmed by in vivo fluorescent imaging. In conclusion, the prepared novel acellular nerve scaffold can be used as a new kind of nerve scaffold material, which is more conducible for seeding cells; And PKH26 fluorescent labeling and in vivo fluorescent imaging can be useful for cell tracking and analyzing cell-scaffold constructs in vivo. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Enrichment of in vivo transcription data from dietary intervention studies with in vitro data provides improved insight into gene regulation mechanisms in the intestinal mucosa.

    Science.gov (United States)

    Hulst, Marcel; Jansman, Alfons; Wijers, Ilonka; Hoekman, Arjan; Vastenhouw, Stéphanie; van Krimpen, Marinus; Smits, Mari; Schokker, Dirkjan

    2017-01-01

    Gene expression profiles of intestinal mucosa of chickens and pigs fed over long-term periods (days/weeks) with a diet rich in rye and a diet supplemented with zinc, respectively, or of chickens after a one-day amoxicillin treatment of chickens, were recorded recently. Such dietary interventions are frequently used to modulate animal performance or therapeutically for monogastric livestock. In this study, changes in gene expression induced by these three interventions in cultured "Intestinal Porcine Epithelial Cells" (IPEC-J2) recorded after a short-term period of 2 and 6 hours, were compared to the in vivo gene expression profiles in order to evaluate the capability of this in vitro bioassay in predicting in vivo responses. Lists of response genes were analysed with bioinformatics programs to identify common biological pathways induced in vivo as well as in vitro. Furthermore, overlapping genes and pathways were evaluated for possible involvement in the biological processes induced in vivo by datamining and consulting literature. For all three interventions, only a limited number of identical genes and a few common biological processes/pathways were found to be affected by the respective interventions. However, several enterocyte-specific regulatory and secreted effector proteins that responded in vitro could be related to processes regulated in vivo, i.e. processes related to mineral absorption, (epithelial) cell adherence and tight junction formation for zinc, microtubule and cytoskeleton integrity for amoxicillin, and cell-cycle progression and mucus production for rye. Short-term gene expression responses to dietary interventions as measured in the in vitro bioassay have a low predictability for long-term responses as measured in the intestinal mucosa in vivo. The short-term responses of a set regulatory and effector genes, as measured in this bioassay, however, provided additional insight into how specific processes in piglets and broilers may be modulated by

  7. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Szymańska, Emilia; Orłowski, Piotr; Winnicka, Katarzyna; Tomaszewska, Emilia; Bąska, Piotr; Celichowski, Grzegorz; Grobelny, Jarosław; Basa, Anna; Krzyżowska, Małgorzata

    2018-01-28

    Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.

  8. Infiltration of plasma rich in growth factors enhances in vivo angiogenesis and improves reperfusion and tissue remodeling after severe hind limb ischemia.

    Science.gov (United States)

    Anitua, Eduardo; Pelacho, Beatriz; Prado, Roberto; Aguirre, José Javier; Sánchez, Mikel; Padilla, Sabino; Aranguren, Xabier L; Abizanda, Gloria; Collantes, María; Hernandez, Milagros; Perez-Ruiz, Ana; Peñuelas, Ivan; Orive, Gorka; Prosper, Felipe

    2015-03-28

    PRGF is a platelet concentrate within a plasma suspension that forms an in situ-generated fibrin-matrix delivery system, releasing multiple growth factors and other bioactive molecules that play key roles in tissue regeneration. This study was aimed at exploring the angiogenic and myogenic effects of PRGF on in vitro endothelial cells (HUVEC) and skeletal myoblasts (hSkMb) as well as on in vivo mouse subcutaneously implanted matrigel and on limb muscles after a severe ischemia. Human PRGF was prepared and characterized. Both proliferative and anti-apoptotic responses to PRGF were assessed in vitro in HUVEC and hSkMb. In vivo murine matrigel plug assay was conducted to determine the angiogenic capacity of PRGF, whereas in vivo ischemic hind limb model was carried out to demonstrate PRGF-driven vascular and myogenic regeneration. Primary HUVEC and hSkMb incubated with PRGF showed a dose dependent proliferative and anti-apoptotic effect and the PRGF matrigel plugs triggered an early and significant sustained angiogenesis compared with the control group. Moreover, mice treated with PRGF intramuscular infiltrations displayed a substantial reperfusion enhancement at day 28 associated with a fibrotic tissue reduction. These findings suggest that PRGF-induced angiogenesis is functionally effective at expanding the perfusion capacity of the new vasculature and attenuating the endogenous tissue fibrosis after a severe-induced skeletal muscle ischemia. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. ChIP-nexus: a novel ChIP-exo protocol for improved detection of in vivo transcription factor binding footprints

    Science.gov (United States)

    He, Qiye; Johnston, Jeff; Zeitlinger, Julia

    2014-01-01

    Understanding how eukaryotic enhancers are bound and regulated by specific combinations of transcription factors is still a major challenge. To better map transcription factor binding genome-wide at nucleotide resolution in vivo, we have developed a robust ChIP-exo protocol called ChIP experiments with nucleotide resolution through exonuclease, unique barcode and single ligation (ChIP-nexus), which utilizes an efficient DNA self-circularization step during library preparation. Application of ChIP-nexus to four proteins—human TBP and Drosophila NFkB, Twist and Max— demonstrates that it outperforms existing ChIP protocols in resolution and specificity, pinpoints relevant binding sites within enhancers containing multiple binding motifs and allows the analysis of in vivo binding specificities. Notably, we show that Max frequently interacts with DNA sequences next to its motif, and that this binding pattern correlates with local DNA sequence features such as DNA shape. ChIP-nexus will be broadly applicable to studying in vivo transcription factor binding specificity and its relationship to cis-regulatory changes in humans and model organisms. PMID:25751057

  10. [Establishment of a living biobank : Improved guidance of precision cancer care with in vitro and in vivo cancer models].

    Science.gov (United States)

    Pauli, C; Moch, H; Rubin, M A

    2017-09-27

    Precision oncology is a clinical approach aimed towards tailoring treatment strategies for patients based on the genetic profile of each patient's cancer. The integration of a living biobank, consisting of patient-derived tumor organoids and PDXs, with next generation sequencing approaches and high-throughput drug screening help to guide clinical decision-making and clinical trial development. Tumor organoids derived from fresh tumor samples were used for in vitro and in vivo high-throughput drug testing. Over a period of two years we established 56 in vitro tumor organoids and 19 in vivo xenografts from 18 different solid tumor types. Tumor morphology and molecular profiles show good concordance between the in vitro and in vivo models compared to their native tumor. High-throughput drug screening (up to 160 drugs) has been tested on eight tumor organoid lines. Seven of them underwent an additional combination drug screen. We nominated several targeted small molecules and novel combinations that have been validated in corresponding xenograft models. This precision medicine approach outlines the integration of genomic data with drug screening from personalized preclinical cancer models to guide precision cancer care. It also fuels next generation research and has been implemented for clinical trial development.

  11. Preserving and evaluating hearts with ex vivo machine perfusion: an avenue to improve early graft performance and expand the donor pool.

    Science.gov (United States)

    Collins, Michael J; Moainie, Sina L; Griffith, Bartley P; Poston, Robert S

    2008-08-01

    Cardiac transplantation remains the first choice for the surgical treatment of end stage heart failure. An inadequate supply of donor grafts that meet existing criteria has limited the application of this therapy to suitable candidates and increased interest in extended criteria donors. Although cold storage (CS) is a time-tested method for the preservation of hearts during the ex vivo transport interval, its disadvantages are highlighted in hearts from the extended criteria donor. In contrast, transport of high-risk hearts using hypothermic machine perfusion (MP) provides continuous support of aerobic metabolism and ongoing washout of metabolic byproducts. Perhaps more importantly, monitoring the organ's response to this intervention provides insight into the viability of a heart initially deemed as extended criteria. Obviously, ex vivo MP introduces challenges, such as ensuring homogeneous tissue perfusion and avoiding myocardial edema. Though numerous groups have experimented with this technology, the best perfusate and perfusion parameters needed to achieve optimal results remain unclear. In the present review, we outline the benefits of ex vivo MP with particular attention to how the challenges can be addressed in order to achieve the most consistent results in a large animal model of the ideal heart donor. We provide evidence that MP can be used to resuscitate and evaluate hearts from animal and human extended criteria donors, including the non-heart beating donor, which we feel is the most compelling argument for why this technology is likely to impact the donor pool.

  12. DNA Vaccines delivered by dermal electroporation elicit durable protective immunity against individual or simultaneous infections with lassa and ebola viruses in guinea pigs.

    Science.gov (United States)

    2017-08-22

    DNA vaccines elicit durable protective immunity against individual or simultaneous 1  infections with Lassa and Ebola viruses in guinea pigs 2  3...previously developed optimized DNA vaccines against both Lassa fever and Ebola 15  hemorrhagic fever viruses and demonstrated that they were protective...with 50 µg of each DNA vaccine or a mock 18  vaccine at discrete sites by intradermal electroporation. Five weeks following the 19  second

  13. Expansion of cord blood CD34 cells in presence of zVADfmk and zLLYfmk improved their in vitro functionality and in vivo engraftment in NOD/SCID mouse.

    Directory of Open Access Journals (Sweden)

    Sangeetha V M

    Full Text Available BACKGROUND: Cord blood (CB is a promising source for hematopoietic stem cell transplantations. The limitation of cell dose associated with this source has prompted the ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs. However, the expansion procedure is known to exhaust the stem cell pool causing cellular defects that promote apoptosis and disrupt homing to the bone marrow. The role of apoptotic machinery in the regulation of stem cell compartment has been speculated in mouse hematopoietic and embryonic systems. We have consistently observed an increase in apoptosis in the cord blood derived CD34(+ cells cultured with cytokines compared to their freshly isolated counterpart. The present study was undertaken to assess whether pharmacological inhibition of apoptosis could improve the outcome of expansion. METHODOLOGY/PRINCIPAL FINDINGS: CB CD34(+ cells were expanded with cytokines in the presence or absence of cell permeable inhibitors of caspases and calpains; zVADfmk and zLLYfmk respectively. A novel role of apoptotic protease inhibitors was observed in increasing the CD34(+ cell content of the graft during ex vivo expansion. This was further reflected in improved in vitro functional aspects of the HSPCs; a higher clonogenicity and long term culture initiating potential. These cells sustained superior long term engraftment and an efficient regeneration of major lympho-myeloid lineages in the bone marrow of NOD/SCID mouse compared to the cells expanded with growth factors alone. CONCLUSION/SIGNIFICANCE: Our data show that, use of either zVADfmk or zLLYfmk in the culture medium improves expansion of CD34(+ cells. The strategy protects stem cell pool and committed progenitors, and improves their in vitro functionality and in vivo engraftment. This observation may complement the existing protocols used in the manipulation of hematopoietic cells for therapeutic purposes. These findings may have an impact in the CB transplant

  14. CHO-S antibody titers >1 gram/liter using flow electroporation-mediated transient gene expression followed by rapid migration to high-yield stable cell lines.

    Science.gov (United States)

    Steger, Krista; Brady, James; Wang, Weili; Duskin, Meg; Donato, Karen; Peshwa, Madhusudan

    2015-04-01

    In recent years, researchers have turned to transient gene expression (TGE) as an alternative to CHO stable cell line generation for early-stage antibody development. Despite advances in transfection methods and culture optimization, the majority of CHO-based TGE systems produce insufficient antibody titers for extensive use within biotherapeutic development pipelines. Flow electroporation using the MaxCyte STX Scalable Transfection System is a highly efficient, scalable means of CHO-based TGE for gram-level production of antibodies without the need for specialized expression vectors or genetically engineered CHO cell lines. CHO cell flow electroporation is easily scaled from milligram to multigram quantities without protocol reoptimization while maintaining transfection performance and antibody productivity. In this article, data are presented that demonstrate the reproducibility, scalability, and antibody production capabilities of CHO-based TGE using the MaxCyte STX. Data show optimization of posttransfection parameters such as cell density, media composition, and feed strategy that result in secreted antibody titers >1 g/L and production of multiple grams of antibody within 2 weeks of a single CHO-S cell transfection. In addition, data are presented to demonstrate the application of scalable electroporation for the rapid generation of high-yield stable CHO cell lines to bridge the gap between early- and late-stage antibody development activities. © 2014 Society for Laboratory Automation and Screening.

  15. Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation

    Directory of Open Access Journals (Sweden)

    Niranjan Y. Sardesai

    2013-07-01

    Full Text Available Lassa virus (LASV causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC that expressed the LASV glycoprotein precursor gene (GPC. This plasmid was used to vaccinate guinea pigs (GPs using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected from lethal infection (5/6 with LASV compared to the controls. However, vaccinated GPs experienced transient viremia after challenge, although lower than the mock-vaccinated controls. In a follow-on study, we developed a new device that allowed for both the vaccine and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not detected until after virus challenge, modest neutralizing titers were detected in guinea pigs before challenge, with escalating titers detected after challenge. The vaccinated GPs were never ill and were not viremic at any timepoint. The combination of the codon-optimized vaccine and dermal electroporation delivery is a worthy candidate for further development.

  16. Targeting gallbladder cancer: oncolytic virotherapy with myxoma virus is enhanced by rapamycin in vitro and further improved by hyaluronan in vivo.

    Science.gov (United States)

    Weng, Mingzhe; Gong, Wei; Ma, Mingzhe; Chu, Bingfeng; Qin, Yiyu; Zhang, Mingdi; Lun, Xueqing; McFadden, Grant; Forsyth, Peter; Yang, Yong; Quan, Zhiwei

    2014-04-13

    Gallbladder carcinoma (GBC) is highly lethal, and effective treatment will require synergistic anti-tumor management. The study is aimed at investigating the oncolytic value of myxoma virus (MYXV) infection against GBC and optimizing MYXV oncolytic efficiency. We examined the permissiveness of GBC cell lines to MYXV infection and compared the effects of MYXV on cell viability among GBC and control permissive glioma cells in vitro and in vivo after MYXV + rapamycin (Rap) treatment, which is known to enhance cell permissiveness to MYXV by upregulating p-Akt levels. We also assessed MYXV + hyaluronan (HA) therapy efficiency by examinating Akt activation status, MMP-9 expression, cell viability, and collagen distribution. We further compared hydraulic conductivity, tumor area, and survival of tumor-bearing mice between the MYXV + Rap and MYXV + HA therapeutic regimens. MYXV + Rap treatment could considerably increase the oncolytic ability of MYXV against GBC cell lines in vitro but not against GBC xenografts in vivo. We found higher levels of collagen IV in GBC tumors than in glioma tumors. Diffusion analysis demonstrated that collagen IV could physically hinder MYXV intratumoral distribution. HA-CD44 interplay was found to activate the Akt signaling pathway, which increases oncolytic rates. HA was also found to enhance the MMP-9 secretion, which contributes to collagen IV degradation. Unlike MYXV + Rap, MYXV + HA therapy significantly enhanced the anti-tumor effects of MYXV in vivo and prolonged survival of GBC tumor-bearing mice. HA may optimize the oncolytic effects of MYXV on GBC via the HA-CD44 interaction which can promote viral infection and diffusion.

  17. An impedance-based approach using human iPSC-derived cardiomyocytes significantly improves in vitro prediction of in vivo cardiotox liabilities.

    Science.gov (United States)

    Koci, Bryan; Luerman, Gregory; Duenbostell, Anika; Kettenhofen, Ralf; Bohlen, Heribert; Coyle, Luke; Knight, Brian; Ku, Warren; Volberg, Walter; Woska, Joseph R; Brown, Martha P

    2017-08-15

    Current in vitro approaches to cardiac safety testing typically focus on mechanistic ion channel testing to predict in vivo proarrhythmic potential. Outside of the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, structural and functional cardiotoxicity related to chronic dosing effects are of great concern as these effects can impact compound attrition. Development and implementation of an in vitro cardiotoxicity screening platform that effectively identifies these liabilities early in the discovery process should reduce costly attrition and decrease preclinical development time. Impedence platforms have the potential to accurately identify structural and functional cardiotoxicity and have sufficient throughput to be included in a multi-parametric optimization approach. Human induced pluripotent stem cell cardiomyocytes (hIPSC-CMs) have demonstrated utility in cardiac safety and toxicity screening. The work described here leverages these advantages to assess the predictive value of data generated by two impedance platforms. The response of hIPSC-CMs to compounds with known or predicted cardiac functional or structural toxicity was determined. The compounds elicited cardiac activities and/or effects on "macro" impedance often associated with overt structural or cellular toxicity, detachment, or hypertrophy. These assays correctly predicted in vivo cardiotox findings for 81% of the compounds tested and did not identify false positives. In addition, internal or literature Cmax values from in vivo studies correlated within 4 fold of the in vitro observations. The work presented here demonstrates the predictive power of impedance platforms with hIPSC-CMs and provides a means toward accelerating lead candidate selection by assessing preclinical cardiac safety earlier in the drug discovery process. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. [Effect of electroporation-mediated gene transfect on the expression of cyclins during mandible distraction in rabbit].

    Science.gov (United States)

    Wu, Guo-Ping; Li, Shao-Lan; Hu, Chun-Bing; Liu, Zhen; Gao, Zhi-Dan; He, Xiao-Chuan; Yin, Kang; Guo, Li

    2011-09-01

    To investigate the effect of electroporation-mediated gene transfect on the expression of cyclins during mandible distraction in rabbit. Bilateral mandibular osteotomy was performed in 45 New-Zeland rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/day for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups. 2 microg (0.1 microg/microl) of pIRES-hVEGF165-hBMP2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES and the same volume of normal saline (NS) was injected into the distraction area in each group, respectively. After injection, electroporation was performed in every group. Three animals in each group were sacrificed at 7, 14, and 28 days after completion of distraction, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations. The expression of cyclins A, D1 ,E in positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with the single factor analysis of variance and q test. Cyclins A, D1, E staining was mainly located in inflammatory cells, granulation tissue monocyte, fibroblast, osteoblasts, osteocyte and the connective tissues around the new bone. The expression reached to the peak at 7th day of consolidation, and decreased at 14th day, and weak at 28th day. Image analysis results showed that, at 7th day, the expression absorbance A in group C (0.59 +/- 0.14) was the strongest, compared to group A (0.41 +/- 0.13), B (0.38 +/- 0.14), D (0.34 +/- 0.12) and E (0.31 +/- 0.10), showing a significant difference (P 0.05), but the difference between group A/B and group D/E (P 0.05), but there was significant difference between group A/B/C and group D (0.19 +/- 0.12) or E (0.14 +/- 0.04) (P new bone formation in distraction gap.

  19. Preliminary Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging to Detect Residual Prostate Cancer Following Focal Therapy with Irreversible Electroporation.

    Science.gov (United States)

    Scheltema, Matthijs J; Chang, John I; van den Bos, Willemien; Böhm, Maret; Delprado, Warick; Gielchinsky, Ilan; de Reijke, Theo M; de la Rosette, Jean J; Siriwardana, Amila R; Shnier, Ron; Stricker, Phillip D

    2017-11-01

    It is recommended to perform multiparametric magnetic resonance imaging (mpMRI) in the follow-up following focal therapy of prostate cancer (PCa). To determine the diagnostic accuracy of mpMRI to detect residual PCa following focal therapy with irreversible electroporation. Seventy-six patients with biopsy-proven localized PCa consented for primary irreversible electroporation between February 2013 and March 2016. Final analysis was performed on 50 patients that received follow-up mpMRI at 6 mo, serial prostate-specific antigen (PSA) testing, and transperineal template-mapping biopsies at 12 mo. Outfield regions of interest (ROI) were reported using PI-RADS version 2. A binary outcome (suspicious vs nonsuspicious) was given for the infield ablation zone. Sensitivity, specificity, positive predictive values, and negative predictive values were calculated for different definitions of significant PCa: (1) Gleason ≥4+3 or Gleason ≥3+3 with a maximum cancer core length ≥6mm, (2) Gleason ≥3+4 or Gleason ≥3+3 with a maximum cancer core length ≥4mm, for outfield and infield ROI. Multivariate linear regression analyses evaluated the additional value of nadir PSA. Sensitivity, specificity, positive predictive values, and negative predictive values of infield ROI was 43%, 86%, 33%, and 90% for definition 1 and 38%, 86%, 33%, and 88% for definition 2, respectively. For outfield ROI this was 33%, 82%, 20%, and 90% for definition 1 and 38%, 86%, 50%, and 80% for definition 2. PSA had no additional value in predicting residual significant PCa. Limitations include retrospective design, single reader, and low incidence of residual PCa. Our preliminary data suggest that mpMRI can rule out high-volume residual PCa. However, follow-up biopsies should still be performed to determine oncological control. Multiparametric magnetic resonance imaging is able to detect high-volume significant prostate cancer following focal therapy. Prostate biopsies are still required in the

  20. Lamellar Liquid Crystal Improves the Skin Retention of 3-O-Ethyl-Ascorbic Acid and Potassium 4-Methoxysalicylate In Vitro and In Vivo for Topical Preparation.

    Science.gov (United States)

    Li, Yuanru; Dong, Cuilian; Cun, Dongmei; Liu, Jie; Xiang, Rongwu; Fang, Liang

    2016-06-01

    The study aimed at increasing the skin retention of 3-O-ethyl-ascorbic acid (EA) and potassium 4-methoxysalicylate (4-MSK) via topical administration for effective skin-whitening. To achieve this goal, EA and 4-MSK were formulated into lamellar liquid crystalline (LLC) cream, and response surface methodology (RSM) was employed to optimize the formulation. Polarized light microscopy (PLM), differential scanning calorimetry (DSC), and rheological experiments were performed to confirm the presence of the LLC structure in the base of cream. In addition, a comparison analysis of the skin retention of the two drugs between the LLC cream and the common o/w (COW) cream was made through in vitro permeation and in vivo drug distribution experiments. As a result, the optimal formulation was defined as 1.2% of EA, 1.48% of 4-MSK, 14.05% of Schercemol™ DISM Ester (DISM) as the oil, 4.0% of Emulium® Delta as the emulsifier, and 3.0% of stearyl alcohol as the co-emulsifier. In comparison with the COW cream, the LLC cream significantly increased the skin retention of EA and 4-MSK both in vitro and in vivo. In conclusion, the LLC carrier serves as a promising choice for topical preparation by enhancing skin retention and providing desirable rheological characteristics.

  1. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Grandl, Susanne; Sztrokay-Gaul, Aniko; Auweter, Sigrid D.; Hellerhoff, Karin [Ludwig-Maximilians-University Hospital Munich, Institute of Clinical Radiology, Munich (Germany); Scherer, Kai; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Pfeiffer, Franz [Technische Universitaet Muenchen, Department of Physics and Institute of Medical Engineering, Garching (Germany); Mayr, Doris [Ludwig-Maximilians-Universitaet Muenchen, Institute of Pathology, Munich (Germany); Bamberg, Fabian [University Hospital Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2015-12-15

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. (orig.)

  2. Contrast Enhancement Patterns after Irreversible Electroporation: Experimental Study of CT Perfusion Correlated to Histopathology in Normal Porcine Liver.

    Science.gov (United States)

    Chung, Dong Jin; Sung, Kyunghyun; Osuagwu, Ferdnand C; Wu, Holden H; Lassman, Charles; Lu, David S K

    2016-01-01

    To analyze ablated tissue zones after irreversible electroporation (IRE) of porcine liver using computed tomography (CT) perfusion imaging with histopathologic correlation. Under ultrasound and CT guidance, 10 IRE ablations were performed percutaneously in three Yorkshire pigs using a single bipolar electrode. CT perfusion imaging was performed in all pigs immediately after ablation and on day 2. Pathologic sections were prepared for correlation with histopathology (hematoxylin-eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling stains, 5-mm-thick slices). The short diameter of different enhancing zones on CT was correlated with the gross specimen. CT perfusion images showed three differently enhancing zones: zone 1, inner nonenhancing zone; zone 2, middle well-defined progressive internal enhancement zone; and zone 3, outer ill-defined arterial enhancement zone with rapid washout. On histopathology, zone 1 showed a strong correlation with a pale zone, and zone 2 correlated with a red zone, together accounting for the extent of cell death. Zone 3 was outside of the ablation zone and contained inflammatory cells. Each enhancing zone had different perfusion parameters. CT perfusion imaging in the acute setting effectively demonstrates histopathologic tissue zones after IRE ablation. Zone 2 is unique to IRE not seen in thermal ablation, characterized by progressive intra-zonal enhancement, and its outer boundary defines the extent of cell death. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  3. A ‘suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans

    Science.gov (United States)

    Wang, Yu; Wei, Dongsheng; Zhu, Xiangyang; Pan, Jiao; Zhang, Ping; Huo, Liang; Zhu, Xudong

    2016-01-01

    Loss-of-function mutagenesis is an important tool used to characterize gene functions, and the CRISPR-Cas9 system is a powerful method for performing targeted mutagenesis in organisms that present low recombination frequencies, such as the serotype D strains of Cryptococcus neoformans. However, when the CRISPR-Cas9 system persists in the host cells, off-target effects and Cas9 cytotoxicity may occur, which might block subsequent genetic manipulation. Here, we report a method of spontaneously eliminating the CRISPR-Cas9 system without impairing its robust editing function. We successfully expressed single guide RNA under the driver of an endogenous U6 promoter and the human codon-optimized Cas9 endonuclease with an ACT1 promoter. This system can effectively generate an indel mutation and efficiently perform targeted gene disruption via homology-directed repair by electroporation in yeast. We then demonstrated the spontaneous elimination of the system via a cis arrangement of the CRISPR-Cas9 expression cassettes to the recombination construct. After a system-mediated double crossover, the CRISPR-Cas9 cassettes were cleaved and degraded, which was validated by Southern blotting. This ‘suicide’ CRISPR-Cas9 system enables the validation of gene functions by subsequent complementation and has the potential to minimize off-target effects. Thus, this technique has the potential for use in functional genomics studies of C. neoformans. PMID:27503169

  4. Percutaneous irreversible electroporation for the treatment of colorectal cancer liver metastases with a proposal for a new response evaluation system.

    Science.gov (United States)

    Hosein, Peter J; Echenique, Ana; Loaiza-Bonilla, Arturo; Froud, Tatiana; Barbery, Katuzka; Rocha Lima, Caio M; Yrizarry, Jose M; Narayanan, Govindarajan

    2014-08-01

    To describe an initial experience with irreversible electroporation (IRE) in patients with colorectal liver metastasis (CLM). A retrospective analysis of patients undergoing IRE for the management of CLM was performed. Procedures were done percutaneously under general anesthesia. Patients were then followed for adverse events, tumor response, and survival. Between March 2010 and February 2013, 29 patients underwent percutaneous ablation of 58 tumors in 36 IRE sessions. Most patients (89%) had an absolute or relative contraindication to thermal ablation. The median age was 62 years, and the median time from diagnosis to IRE was 28 months. The median number of lesions treated per patient was two, and the median tumor size was 2.7 cm. Patients had received previous chemotherapy regimens (range, 1-5 per patient). A new Metabolic Imaging And Marker Integration response evaluation criteria was used for response assessment, and was a predictor of progression-free and overall survival. The 2-year progression-free survival rate was 18% (95% confidence interval, 0%-35%), and the 2-year overall survival rate was 62% (95% confidence interval, 37%-87%). Complications included arrhythmias (n = 1) and postprocedure pain (n = 1). Both patients recovered without sequelae. Percutaneous IRE of CLM is feasible and safe. A new response evaluation system for colorectal cancer appears to be prognostic. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  5. Feasibility of catheter-directed intraluminal irreversible electroporation of porcine ureter and acute outcomes in response to increasing energy delivery.

    Science.gov (United States)

    Srimathveeravalli, Govindarajan; Silk, Mikhail; Wimmer, Thomas; Monette, Sebastien; Kimm, Simon; Maybody, Majid; Solomon, Stephen B; Coleman, Jonathan; Durack, Jeremy C

    2015-07-01

    To evaluate the feasibility of focal intraluminal irreversible electroporation (IRE) in the ureter with a novel electrode catheter and to study the treatment effects in response to increasing pulse strength. Five IRE treatment settings were each evaluated twice for the ablation of normal ureter in 5 Yorkshire pigs (n = 1-4 ablations per animal; total of 10 ablations) with the use of a prototype device under ultrasound and fluoroscopic guidance. Animals received unilateral or bilateral treatment, limited to a maximum of 2 ablations in any 1 ureter. Treatment was delivered with increasing pulse strength (from 1,000 V to 3,000 V in increments of 500 V) while keeping the pulse duration (100 μs) and number of pulses (n = 90) constant. Ureter patency was assessed with antegrade ureteropyelography immediately following treatment. Animals were euthanized within 4 hours after treatment, and treated urinary tract was harvested for histopathologic analysis with hematoxylin and eosin and Masson trichrome stains. IRE was successfully performed in all animals, without evidence of ureteral perforation. Hematoxylin and eosin analysis of IRE treatments demonstrated full-thickness ablation at higher field strengths (mucosa to the adventitia). Masson trichrome stains showed preservation of connective tissue at all field strengths. Intraluminal catheter-directed IRE ablation is feasible and produces full-thickness ablation of normal ureters. There was no evidence of lumen perforation even at the maximum voltages evaluated. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  6. MR and CT imaging characteristics and ablation zone volumetry of locally advanced pancreatic cancer treated with irreversible electroporation

    Energy Technology Data Exchange (ETDEWEB)

    Vroomen, Laurien G.P.H.; Scheffer, Hester J.; Melenhorst, Marleen C.A.M.; Jong, Marcus C. de; Bergh, Janneke E. van den; Kuijk, Cornelis van; Meijerink, Martijn R. [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Delft, Foke van [VU University Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); Kazemier, Geert [VU University Medical Center, Department of Surgery, Amsterdam (Netherlands)

    2017-06-15

    To assess specific imaging characteristics after irreversible electroporation (IRE) for locally advanced pancreatic carcinoma (LAPC) with contrast-enhanced (ce)MRI and ceCT, and to explore the correlation of these characteristics with the development of recurrence. Qualitative and quantitative analyses of imaging data were performed on 25 patients treated with percutaneous IRE for LAPC. Imaging characteristics of the ablation zone on ceCT and ceMRI were assessed over a 6-month follow-up period. Contrast ratio scores between pre- and post-treatment were compared. To detect early imaging markers for treatment failure, attenuation characteristics at 6 weeks were linked to the area of recurrence within 6 months. Post-IRE, diffusion-weighted imaging (DWI)-b800 signal intensities decreased in all cases (p < 0.05). Both ceMRI and ceCT revealed absent or decreased contrast enhancement, with a hyperintense rim on ceMRI. Ablation zone volume increase was noted on both modalities in the first 6 weeks, followed by a decrease (p < 0.05). In the patients developing tumour recurrence (5/25), a focal DWI-b800 hyperintense spot at 6 weeks predated unequivocal recurrence on CT. The most remarkable signal alterations after pancreatic IRE were shown by DWI-b800 and ceMRI. These early imaging characteristics may be useful to establish technical success and predict treatment outcome. (orig.)

  7. An Infrared Actin Probe for Deep-Cell Electroporation-Based Single-Molecule Speckle (eSiMS Microscopy

    Directory of Open Access Journals (Sweden)

    Sawako Yamashiro

    2017-07-01

    Full Text Available Single-molecule speckle (SiMS microscopy is a powerful method to directly elucidate biochemical reactions in live cells. However, since the signal from an individual fluorophore is extremely faint, the observation area by epi-fluorescence microscopy is restricted to the thin cell periphery to reduce autofluorescence, or only molecules near the plasma membrane are visualized by total internal reflection fluorescence (TIRF microscopy. Here, we introduce a new actin probe labeled with near infrared (NIR emissive CF680R dye for easy-to-use, electroporation-based SiMS microscopy (eSiMS for deep-cell observation. CF680R-labeled actin (CF680R-actin incorporated into actin structures and showed excellent brightness and photostability suitable for single-molecule imaging. Importantly, the intensity of autofluorescence with respect to SiMS brightness was reduced to approximately 13% compared to DyLight 550-labeled actin (DL550-actin. CF680R-actin enabled the monitoring of actin SiMS in actomyosin bundles associated with adherens junctions (AJs located at 3.5–4 µm above the basal surfaces of epithelial monolayers. These favorable properties of CF680R-actin extend the application of eSiMS to actin turnover and flow analyses in deep cellular structures.

  8. Diffusion-weighted MRI for verification of electroporation-based treatments

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Hansen, Rasmus H; Agerholm-Larsen, Birgit

    2011-01-01

    such a tissue reaction represents a great clinical benefit since, in case of target miss, retreatment can be performed immediately. We propose diffusion-weighted magnetic resonance imaging (DW-MRI) as a method to monitor EP tissue, using the concept of the apparent diffusion coefficient (ADC). We hypothesize...... that the plasma membrane permeabilization induced by EP changes the ADC, suggesting that DW-MRI constitutes a noninvasive and quick means of EP verification. In this study we performed in vivo EP in rat brains, followed by DW-MRI using a clinical MRI scanner. We found a pulse amplitude-dependent increase...... in the ADC following EP, indicating that (1) DW-MRI is sensitive to the EP-induced changes and (2) the observed changes in ADC are indeed due to the applied electric field....

  9. In vivo

    Science.gov (United States)

    Freudenblum, Julia; Iglesias, José A; Hermann, Martin; Walsen, Tanja; Wilfinger, Armin; Meyer, Dirk; Kimmel, Robin A

    2018-02-08

    The three-dimensional architecture of the pancreatic islet is integral to beta cell function, but the process of islet formation remains poorly understood due to the difficulties of imaging internal organs with cellular resolution. Within transparent zebrafish larvae, the developing pancreas is relatively superficial and thus amenable to live imaging approaches. We performed in vivo time-lapse and longitudinal imaging studies to follow islet development, visualizing both naturally occurring islet cells and cells arising with an accelerated timecourse following an induction approach. These studies revealed previously unappreciated fine dynamic protrusions projecting between neighboring and distant endocrine cells. Using pharmacological compound and toxin interference approaches, and single-cell analysis of morphology and cell dynamics, we determined that endocrine cell motility is regulated by phosphoinositide 3-kinase (PI3K) and G-protein-coupled receptor (GPCR) signaling. Linking cell dynamics to islet formation, perturbation of protrusion formation disrupted endocrine cell coalescence, and correlated with decreased islet cell differentiation. These studies identified novel cell behaviors contributing to islet morphogenesis, and suggest a model in which dynamic exploratory filopodia establish cell-cell contacts that subsequently promote cell clustering. © 2018. Published by The Company of Biologists Ltd.

  10. In Vivo

    Science.gov (United States)

    Lau, Melissa; Li, Jianli; Cline, Hollis T

    2017-01-01

    The neurovascular niche is a specialized microenvironment formed by the interactions between neural progenitor cells (NPCs) and the vasculature. While it is thought to regulate adult neurogenesis by signaling through vascular-derived soluble cues or contacted-mediated cues, less is known about the neurovascular niche during development. In Xenopus laevis tadpole brain, NPCs line the ventricle and extend radial processes tipped with endfeet to the vascularized pial surface. Using in vivo labeling and time-lapse imaging in tadpoles, we find that intracardial injection of fluorescent tracers rapidly labels Sox2/3-expressing NPCs and that vascular-circulating molecules are endocytosed by NPC endfeet. Confocal imaging indicates that about half of the endfeet appear to appose the vasculature, and time-lapse analysis of NPC proliferation and endfeet-vascular interactions suggest that proliferative activity does not correlate with stable vascular apposition. Together, these findings characterize the neurovascular niche in the developing brain and suggest that, while signaling to NPCs may occur through vascular-derived soluble cues, stable contact between NPC endfeet and the vasculature is not required for developmental neurogenesis.

  11. IN VIVO

    Science.gov (United States)

    Jamila, Nargis; Khan, Naeem; Khan, Amir Atlas; Khan, Imran; Khan, Sadiq Noor; Zakaria, Zainal Amiruddin; Khairuddean, Melati; Osman, Hasnah; Kim, Kyong Su

    2017-01-01

    Garcinia hombroniana , known as "manggis hutan" (jungle mangosteen) in Malaysia, is distributed in tropical Asia, Borneo, Thailand, Andaman, Nicobar Islands, Vietnam and India. In Malaysia, its ripened crimson sour fruit rind is used as a seasoning agent in curries and culinary dishes. Its roots and leaves decoction is used against skin infections and after child birth. This study aimed to evaluate in vivo hepatoprotective and in vitro cytotoxic activities of 20% methanolic ethyl acetate (MEA) G. hombroniana bark extract. In hepatoprotective activity, liver damage was induced by treating rats with 1.0 mL carbon tetrachloride (CCl 4 )/kg and MEA extract was administered at a dose of 50, 250 and 500 mg/kg 24 h before intoxication with CCl 4 . Cytotoxicity study was performed on MCF-7 (human breast cancer), DBTRG (human glioblastoma), PC-3 (human prostate cancer) and U2OS (human osteosarcoma) cell lines. 1 H, 13 C-NMR (nuclear magnetic resonance), and IR (infrared) spectral analyses were also conducted for MEA extract. In hepatoprotective activity evaluation, MEA extract at a higher dose level of 500 mg/kg showed significant (pIR spectra exhibited bands, signals and J (coupling constant) values representing aromatic/phenolic constituents. From the results, it could be concluded that MEA extract has potency to inhibit hepatotoxicity and MCF-7 and DBTRG cancer cell lines which might be due to the phenolic compounds depicted from NMR and IR spectra.

  12. The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo.

    Science.gov (United States)

    Cabana, Laura; Bourgognon, Maxime; Wang, Julie T-W; Protti, Andrea; Klippstein, Rebecca; de Rosales, Rafael T M; Shah, Ajay M; Fontcuberta, Josep; Tobías-Rossell, Ester; Sosabowski, Jane K; Al-Jamal, Khuloud T; Tobias, Gerard

    2016-06-01

    Carbon nanotubes (CNTs) have been advocated as promising nanocarriers in the biomedical field. Their high surface area and needle-like shape make these systems especially attractive for diagnostic and therapeutic applications. Biocompatibility, cell internalization, biodistribution, and pharmacokinetic profile have all been reported to be length dependent. In this study, further insights are gotten on the role that the length of CNTs plays when developing novel contrast agents for magnetic resonance imaging (MRI). Two samples of CNTs with different length distribution have been decorated with radio-labeled iron oxide nanoparticles. Despite characterization of the prepared hybrids reveals a similar degree of loading and size of the nanoparticles for both samples, the use of short CNTs is found to enhance the MRI properties of the developed contrast agents both in vitro and in vivo compared to their long counterparts. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Duel-acting subcutaneous microemulsion formulation for improved migraine treatment with zolmitriptan and diclofenac: formulation and in vitro-in vivo characterization.

    Science.gov (United States)

    Dubey, R; Martini, Luigi G; Christie, Mark

    2014-03-01

    Subcutaneous triptan provides immediate analgesia in migraine and cluster headache but is limited by high pain recurrence due to rapid drug elimination. A dual-acting subcutaneous formulation providing immediate release of a triptan and slow but sustained release of a nonsteroidal anti-inflammatory drug may provide a longer duration of relief. A microemulsion-based technology has various advantages over other technically complex dosage forms. Oil-in-water microemulsions of zolmitriptan and diclofenac acid using Labrafac Lipophile, Tween 80, Capryol 90 and water were prepared. One formulation was characterised in vitro and found to have uniformly dispersed nanosized globules. The formulation provided differential release of zolmitriptan and diclofenac acid both in vitro as well as in vivo that may be potentially beneficial to migraine patients.

  14. Improved antitumor activity and reduced toxicity of doxorubicin encapsulated in poly(ε-caprolactone) nanoparticles in lung and breast cancer treatment: An in vitro and in vivo study.

    Science.gov (United States)

    Cabeza, Laura; Ortiz, Raul; Prados, Jose; Delgado, Ángel V; Martín-Villena, Maria J; Clares, Beatriz; Perazzoli, Gloria; Entrena, Jose M; Melguizo, Consolación; Arias, Jose L

    2017-05-01

    Poly(ε-caprolactone) (PCL) nanoparticles (NPs) offer many possibilities for drug transport because of their good physicochemical properties and biocompatibility. Doxorubicin-loaded PCL NPs have been synthesized to try to reduce the toxicity of doxorubicin (DOX) for healthy tissues and enhance its antitumor effect in two tumor models, breast and lung cancer, which have a high incidence in the global population. PCL NPs were synthesized using a modified nanoprecipitation solvent evaporation method. The in vitro toxicity of PCL NPs was evaluated in breast and lung cancer cell lines from both humans and mice, as was the inhibition of cell proliferation and cell uptake of DOX-loaded PCL NPs compared to free DOX. Breast and lung cancer xenografts were used to study the in vivo antitumor effect of DOX-loaded NPs. Moreover, healthy mice were used for in vivo toxicity studies including weight loss, blood toxicity and tissue damage. The results showed good biocompatibility of PCL NPs in vitro, as well as a significant increase in the cytotoxicity and cell uptake of the drug-loaded in PCL NPs, which induced almost a 98% decrease of the IC50 (E0771 breast cancer cells). Likewise, DOX-loaded PCL NPs led to a greater reduction in tumor volume (≈36%) in studies with C57BL/6 mice compared to free DOX in both lung and breast tumor xenograft models. Nevertheless, no differences were found in terms of mouse weight. Only in the lung cancer model were significant differences in mice survival observed. In addition, DOX-loaded PCL NPs were able to reduce myocardial and blood toxicity in mice compared to free DOX. Our results showed that DOX-loaded PCL NPs were biocompatible, enhanced the antitumor effect of DOX and reduced its toxicity, suggesting that they may have an important potential application in lung and breast cancer treatments. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ex Vivo Mesenchymal Precursor Cell-Expanded Cord Blood Transplantation after Reduced-Intensity Conditioning Regimens Improves Time to Neutrophil Recovery.

    Science.gov (United States)

    Mehta, Rohtesh S; Saliba, Rima M; Cao, Kai; Kaur, Indreshpal; Rezvani, Katy; Chen, Julianne; Olson, Amanda; Parmar, Simrit; Shah, Nina; Marin, David; Alousi, Amin; Hosing, Chitra; Popat, Uday; Kebriaei, Partow; Champlin, Richard; de Lima, Marcos; Skerrett, Donna; Burke, Elizabeth; Shpall, Elizabeth J; Oran, Betul

    2017-08-01

    We previously showed the safety of using cord blood (CB) expanded ex vivo in cocultures with allogeneic mesenchymal precursor cells (MPC) after myeloablative conditioning with faster recovery of neutrophils and platelets compared with historical controls. Herein, we report the transplantation outcomes of 27 patients with hematologic cancers who received 1 CB unit expanded ex vivo with MPCs in addition to an unmanipulated CB (MPC group) after reduced-intensity conditioning (RIC). The results in this group were compared with 51 historical controls who received 2 unmanipulated CB units (control group). The analyses were stratified for 2 RIC treatment groups: (1) total body irradiation 200 cGy + cyclophosphamide + fludarabine) (TCF), and (2) fludarabine + melphalan  (FM). Coculture of CB with MPCs led to an expansion of total nucleated cells by a median factor of 12 and of CD34(+) cells by a median factor of 49. In patients in whom engraftment occurred, the median time to neutrophil engraftment was 12 days in the MPC group, as compared with 16 days in controls (P = .02). The faster neutrophil engraftment was observed in both RIC groups. The cumulative incidence of neutrophil engraftment on day 26 was 75% with expansion versus 50% without expansion in patients who received FM as the RIC regimen (P = .03). Incidence of neutrophil engraftment was comparable in MPC and control groups if treated with TCF (82% versus 79%, P = .40). Transplantation of CB units expanded with MPCs is safe and effective with faster neutrophil engraftment even after RIC regimens. Copyright © 2017. Published by Elsevier Inc.

  16. Studies on genetic transformation of coffee by using electroporation and the biolistic method

    NARCIS (Netherlands)

    Boxtel, van J.H.J.

    1994-01-01

    The present study aimed simultaneously at an improvement of coffee regeneration systems and at a definition of factors influencing the efficiency of direct gene transfer methods. The development of an improved regeneration system, based on high frequency somatic embryogenesis from leaf

  17. The Olive Oil-Based Lipid Clinoleic Blocks Leukocyte Recruitment and Improves Survival during Systemic Inflammation: A Comparative In Vivo Study of Different Parenteral Lipid Emulsions

    Directory of Open Access Journals (Sweden)

    Kirsten Buschmann

    2015-01-01

    Full Text Available Although fish oil-based and olive oil-based lipid emulsions have been shown to exert anti-inflammatory functions, the immunomodulating properties of lipids are still controversial. Therefore, we investigated the anti-inflammatory effect of three different parenterally administered lipid emulsions in vivo: olive oil-based Clinoleic, fish oil-based Smoflipid, and soybean oil-based Lipofundin. We observed leukocyte recruitment in inflamed murine cremaster muscle using intravital microscopy and survival in a murine model of LPS-induced systemic inflammation and analyzed expression of leukocyte and endothelial adhesion molecules. Olive oil-based Clinoleic and fish oil-based Smoflipid profoundly inhibited leukocyte adhesion compared to Lipofundin during LPS-induced inflammation of the murine cremaster muscle. In the trauma model of cremaster muscle inflammation, Lipofundin was the only lipid emulsion that even augmented leukocyte adhesion. In contrast to Smoflipid and Lipofundin, Clinoleic effectively blocked leukocyte recruitment and increased survival during lethal endotoxemia. Flow chamber experiments and analysis of adhesion molecule expression suggest that both endothelial and leukocyte driven mechanisms might contribute to anti-inflammatory effects of Clinoleic. We conclude that the anti-inflammatory properties of Clinoleic are superior to those of Smoflipid and Lipofundin even during systemic inflammation. Thus, these results should stimulate further studies investigating parenteral lipids as an anti-inflammatory strategy in critically ill patients.

  18. Buccal absorption of diazepam is improved when administered in bioadhesive tablets-An in vivo study in conscious Göttingen mini-pigs.

    Science.gov (United States)

    Meng-Lund, Emil; Jacobsen, Jette; Müllertz, Anette; Jørgensen, Erling B; Holm, René

    2016-12-30

    Buccal delivery may be clinically beneficial for compounds with a high gastrointestinal and hepatic first pass metabolism or in situations where a fast systemic absorption is desired. The delivery of a crystalline low soluble compounds, e.g. diazepam, may be limited due to the low volume of saliva available to facilitate solvation in order to drive the permeation of drug through the buccal mucosa. Therefore, the present study investigated the potential benefits of administering diazepam either as an amorphous or as a crystalline form in mucoadhesive tablets to conscious Göttingen mini-pigs. Presentation of the compound in the amorphous form lead to a very fast absorption, however, the obtained bioavailability was at the same level observed following buccal administration of a commercially immediate release tablet. Addition of chitosan, as a mucoadhesive excipient, resulted in a higher absolute bioavailability compared to tablets without chitosan. The absorption rate for the chitosan-based tablets was significant slower, probably due to the slower diffusion of the compound out of the tablet. In vitro release data was able to predict the variations in t max , but otherwise no correlation could be found between in vitro and in vivo data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosoma cruzi drug leads with improved pharmacokinetic profile and in vivo potency.

    Science.gov (United States)

    Calvet, Claudia M; Vieira, Debora F; Choi, Jun Yong; Kellar, Danielle; Cameron, Michael D; Siqueira-Neto, Jair Lage; Gut, Jiri; Johnston, Jonathan B; Lin, Li; Khan, Susan; McKerrow, James H; Roush, William R; Podust, Larissa M

    2014-08-28

    CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4-aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection.

  20. The olive oil-based lipid clinoleic blocks leukocyte recruitment and improves survival during systemic inflammation: a comparative in vivo study of different parenteral lipid emulsions.

    Science.gov (United States)

    Buschmann, Kirsten; Poeschl, Johannes; Braach, Natascha; Hudalla, Hannes; Kuss, Navina; Frommhold, David

    2015-01-01

    Although fish oil-based and olive oil-based lipid emulsions have been shown to exert anti-inflammatory functions, the immunomodulating properties of lipids are still controversial. Therefore, we investigated the anti-inflammatory effect of three different parenterally administered lipid emulsions in vivo: olive oil-based Clinoleic, fish oil-based Smoflipid, and soybean oil-based Lipofundin. We observed leukocyte recruitment in inflamed murine cremaster muscle using intravital microscopy and survival in a murine model of LPS-induced systemic inflammation and analyzed expression of leukocyte and endothelial adhesion molecules. Olive oil-based Clinoleic and fish oil-based Smoflipid profoundly inhibited leukocyte adhesion compared to Lipofundin during LPS-induced inflammation of the murine cremaster muscle. In the trauma model of cremaster muscle inflammation, Lipofundin was the only lipid emulsion that even augmented leukocyte adhesion. In contrast to Smoflipid and Lipofundin, Clinoleic effectively blocked leukocyte recruitment and increased survival during lethal endotoxemia. Flow chamber experiments and analysis of adhesion molecule expression suggest that both endothelial and leukocyte driven mechanisms might contribute to anti-inflammatory effects of Clinoleic. We conclude that the anti-inflammatory properties of Clinoleic are superior to those of Smoflipid and Lipofundin even during systemic inflammation. Thus, these results should stimulate further studies investigating parenteral lipids as an anti-inflammatory strategy in critically ill patients.

  1. Single-step antigen loading and maturation of dendritic cells through mRNA electroporation of a tumor-associated antigen and a TriMix of costimulatory molecules.

    Science.gov (United States)

    Benteyn, Daphné; Van Nuffel, An M T; Wilgenhof, Sofie; Bonehill, Aude

    2014-01-01

    Dendritic cells (DC) are key players in several types of cancer vaccines. Large numbers of DC can easily be generated in closed systems from the monocyte fraction of the peripheral blood. They are the professional antigen-presenting cells, and electroporation of mRNA-encoding tumor antigens is a very efficient and a relatively simple way to load the DC with antigen. The co-electroporation of a tumor antigen of choice and the combination of 3 costimulatory molecules, including CD70, caTLR4, and CD40L (TriMix-DC), leads to fully potent antigen-presenting DC able to generate a broad immune response.Here we describe the in vitro transcription of the mRNA and the subsequent generation and electroporation of autologous DC used for the treatment of melanoma patients.

  2. In utero electroporation as a tool for genetic manipulation in vivo in order to study psychiatric disorders: from genes to circuits and behaviors

    OpenAIRE

    Taniguchi, Yu; Young-Pearse, Tracy; Sawa, Akira; Kamiya, Atsushi

    2011-01-01

    Many genetic risk factors for major mental disorders have key roles in brain development. Thus, exploring the roles for these genetic factors for brain development at the molecular, cellular, and neuronal circuit level is crucial for discovering how genetic disturbances affect high brain functions which ultimately lead to disease pathologies. However, it is a tremendously difficult task, given that most mental disorders have genetic complexities in which many genetic risk factors have multipl...

  3. Supplementation with tocotrienols from Bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound.

    Science.gov (United States)

    Pierpaoli, Elisa; Orlando, Fiorenza; Cirioni, Oscar; Simonetti, Oriana; Giacometti, Andrea; Provinciali, Mauro

    2017-12-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of skin and soft-tissue infection worldwide. An adequate immune response acts as a first line of defence against infections and therefore plays an essential role in the maintenance of health. Tocotrienols (T3s), the lesser known isomers of vitamin E, possess many biological properties and have been recognized as immunomodulators. The aim of this study was to investigate whether the in vivo supplementation with a mixture of 87.1% δ- and 12.9% γ-T3s extract from seeds of Bixa orellana, (T3s) could be effective in increasing the effect of daptomycin (DAP) in a mouse model of wound infection due to MRSA. Bacteria were inoculated onto full-thickness wound on the dorsal side of BALB/c mice at 5 × 106 CFU per mouse. Mice were randomized into five groups: an uninfected group, an infected-untreated group, a T3s-pretreated group with no antibiotics given after challenge, a T3s-pretreated group plus DAP given after challenge, a group only given DAP after challenge. Main outcome measures were: bacterial load on the wounds, analysis of Natural Killer (NK) cytotoxicity, immunological phenotype and markers of tissue repair. Our results showed that bacterial load in wounds from mice receiving T3s or DAP alone was 1- or 3-log10 lower, respectively, compared with the infected-untreated group. T3s plus daptomycin showed the highest efficacy, achieving a 4-log10 decrease in bacterial load. This higher antimicrobial effect was associated with increased levels of NK cytotoxicity and markers of wound repair. These data suggest that treatment with T3s may be useful for the management of infected wounds as immune adjuvants in combination with DAP. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Structure of U2 snRNA genes of Arabidopsis thaliana and their expression in electroporated plant protoplasts.

    Science.gov (United States)

    Vankan, P; Filipowicz, W

    1988-03-01

    We have characterized the U2 snRNA gene family in the higher plant Arabidopsis thaliana. It consists of 10-15 genes which do not appear to be closely clustered. Six of the U2 genes were sequenced and the structure of the Arabidopsis U2 RNA termini was determined in order to define the coding regions. Each of the genes codes for a distinct RNA differing from the others by 2-13 point mutations, localized in the 3' part of the 196 nt-long RNA. The upstream non-coding regions of all genes show strong sequence similarity in positions -81 to -1 and contain three highly conserved sequence elements: GTCCCACATCG (positions -78 to -68; 100% conservation), GTAGTATAAATA (-37 to -26) and CAANTC (-6 to -1). The coding regions are followed by the sequence CAN(7-9)AGTNNAA, a putative termination signal. The expression of three of the genes was studied in electroporated Orychophragmus violaceus and Nicotiana tabacum protoplasts. The genes, one of which contains a T --> C change in the Sm antigen binding site, were actively transcribed and processed into U2 RNAs of the expected size and containing trimethylguanosine caps. Deletion analysis indicates that sequences upstream of the conserved -80 to -1 region are not important for transcription in protoplasts. The 5'-terminal parts of U2 RNAs from several monocot and dicot plants were sequenced. This region, containing the sequence implicated in base-pairing with the branch point in pre-mRNA introns, is identical in all U2 RNAs examined.

  5. Irreversible Electroporation (IRE) Fails to Demonstrate Efficacy in a Prospective Multicenter Phase II Trial on Lung Malignancies: The ALICE Trial

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, Jens, E-mail: jens.ricke@med.ovgu.de; Jürgens, Julian H. W., E-mail: julian.juergens@med.ovgu.de [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Deschamps, Frederic; Tselikas, Lambros [Institut de Cancérologie Gustave Roussy, Department of Image Guided Therapy (France); Uhde, Katja; Kosiek, Ortrud [University of Magdeburg, Department of Radiology and Nuclear Medicine (Germany); Baere, Thierry De [Institut de Cancérologie Gustave Roussy, Department of Image Guided Therapy (France)

    2015-04-15

    PurposeTo assess safety and efficacy of irreversible electroporation (IRE) of lung malignancies.Materials and MethodsPatients with primary and secondary lung malignancies and preserved lung function were included in this prospective single arm trial. Primary and secondary endpoints were safety and efficacy. Recruitment goal was 36 subjects in 2 centers. Patients underwent IRE under general anesthesia with probe placement performed in Fluoroscopy-CT. The IRE system employed was NanoKnife{sup ®} (Angiodynamics). System settings for the ablation procedure followed the manufacturer’s recommendations. The Mann–Whitney U test was used to evaluate the correlation of nine technical parameters with local tumor control. Median follow up was 12 months.ResultsThe expected efficacy was not met at interim analysis and the trial was stopped prematurely after inclusion of 23 patients (13/10 between both centers). The dominant tumor entity was colorectal (n = 13). The median tumor diameter was 16 mm (8–27 mm). Pneumothoraces were observed in 11 of 23 patients with chest tubes required in 8 (35 %). Frequently observed alveolar hemorrhage never led to significant hemoptysis. 14/23 showed progressive disease (61 %). Stable disease was found in 1 (4 %), partial remission in 1 (4 %) and complete remission in 7 (30 %) patients. The relative increase of the current during ablation was significantly higher in the group treated successfully as compared to the group presenting local recurrence (p < 0.05). Needle tract seeding was found in three cases (13 %).ConclusionsIRE is not effective for the treatment of lung malignancies. We hypothesize that the energy deposition with current IRE probes is highly sensitive to air exposure.

  6. Focused Transhepatic Electroporation Mediated by Hypersaline Infusion through the Portal Vein in Rat Model. Preliminary Results on Differential Conductivity.

    Science.gov (United States)

    Pañella, Clara; Castellví, Quim; Moll, Xavier; Quesada, Rita; Villanueva, Alberto; Iglesias, Mar; Naranjo, Dolores; Sánchez-Velázquez, Patricia; Andaluz, Anna; Grande, Luís; Ivorra, Antoni; Burdío, Fernando

    2017-12-01

    Spread hepatic tumours are not suitable for treatment either by surgery or conventional ablation methods. The aim of this study was to evaluate feasibility and safety of selectively increasing the healthy hepatic conductivity by the hypersaline infusion (HI) through the portal vein. We hypothesize this will allow simultaneous safe treatment of all nodules by irreversible electroporation (IRE) when applied in a transhepatic fashion. Sprague Dawley (Group A, n = 10) and Athymic rats with implanted hepatic tumour (Group B, n = 8) were employed. HI was performed (NaCl 20%, 3.8 mL/Kg) by trans-splenic puncture. Deionized serum (40 mL/Kg) and furosemide (2 mL/Kg) were simultaneously infused through the jugular vein to compensate hypernatremia. Changes in conductivity were monitored in the hepatic and tumour tissue. The period in which hepatic conductivity was higher than tumour conductivity was defined as the therapeutic window (TW). Animals were monitored during 1-month follow-up. The animals were sacrificed and selective samples were used for histological analysis. The overall survival rate was 82.4% after the HI protocol. The mean maximum hepatic conductivity after HI was 2.7 and 3.5 times higher than the baseline value, in group A and B, respectively. The mean maximum hepatic conductivity after HI was 1.4 times higher than tumour tissue in group B creating a TW to implement selective IRE. HI through the portal vein is safe when the hypersaline overload is compensated with deionized serum and it may provide a TW for focused IRE treatment on tumour nodules.

  7. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    Directory of Open Access Journals (Sweden)

    Lécluse Yann

    2007-07-01

    Full Text Available Abstract Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC, precursors formed earlier in the yolk sac (YS display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors or early somite (hematopoietic precursors stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ

  8. Comparative evaluation of transmembrane ion transport due to monopolar and bipolar nanosecond, high-intensity electroporation pulses based on full three-dimensional analyses

    Science.gov (United States)

    Hu, Q.; Joshi, R. P.

    2017-07-01

    Electric pulse driven membrane poration finds applications in the fields of biomedical engineering and drug/gene delivery. Here we focus on nanosecond, high-intensity electroporation and probe the role of pulse shape (e.g., monopolar-vs-bipolar), multiple electrode scenarios, and serial-versus-simultaneous pulsing, based on a three-dimensional time-dependent continuum model in a systematic fashion. Our results indicate that monopolar pulsing always leads to higher and stronger cellular uptake. This prediction is in agreement with experimental reports and observations. It is also demonstrated that multi-pronged electrode configurations influence and increase the degree of cellular uptake.

  9. mRNA Electroporation of Dendritic Cells with WT1, Survivin, and TriMix (a Mixture of caTLR4, CD40L, and CD70).

    Science.gov (United States)

    Coosemans, An; Tuyaerts, Sandra; Morias, Kim; Corthals, Jurgen; Heirman, Carlo; Thielemans, Kris; Van Gool, Stefaan W; Vergote, Ignace; Amant, Frédéric

    2016-01-01

    The immune system is a crucial player in the development of cancer. Once it is in imbalance and immunosuppressive mechanisms supporting tumor growth take over control, dendritic cell immunotherapy might offer a solution to restore the balance. There are several methods to manufacture dendritic cells but none of them has yet proven to be superior to others. In this chapter, we discuss the methodology using electroporation of mRNA encoding Wilms' tumor gene 1, survivin, and TriMix (mixture of caTLR4, CD40L, and CD70) to simultaneously load and mature dendritic cells.

  10. Optimizing clinical performance and geometrical robustness of a new electrode device for intracranial tumor electroporation

    DEFF Research Database (Denmark)

    Mahmood, Faisal; Gehl, Julie

    2011-01-01

    and genes to intracranial tumors in humans, and demonstrate a method to optimize the design (i.e. geometry) of the electrode device prototype to improve both clinical performance and geometrical tolerance (robustness). We have employed a semiempirical objective function based on constraints similar to those...

  11. The PPARα/γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat

    Directory of Open Access Journals (Sweden)

    Kristina Wallenius

    2013-01-01

    Full Text Available Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate ( and hepatic glucose output (HGO were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization ( were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of compared to obese controls. This involved increased insulin stimulation of in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (, and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.

  12. Inhibitor of endocytosis impairs gene electrotransfer to mouse muscle in vivo.

    Science.gov (United States)

    Markelc, Bostjan; Skvarca, Eva; Dolinsek, Tanja; Kloboves, Veronika Prevodnik; Coer, Andrej; Sersa, Gregor; Cemazar, Maja

    2015-06-01

    Application of electric pulses (electroporation/electropermeabilization) is an effective method for gene transfer (i.e. gene electrotransfer (GET)) in vitro and in vivo. Currently, the mechanisms by which the DNA enters the cell are not yet fully understood. Experimental evidence is building up that endocytosis is the main mechanism by which the DNA, which is later expressed, enters the cell. Therefore the aim of our study was to elucidate whether inhibitors of endocytosis, methyl-β-cyclodextrin (MβCD), Concanavalin A (ConA) and Dynasore, can impair the transfection efficacy of GET in vitro in B16F1 murine melanoma and in vivo in m. tibialis cranialis in mice. We show that MβCD--general inhibitor of endocytosis--can almost prevent GET of EGFP-N1 plasmid in vitro, that ConA--inhibitor of clathrin mediated endocytosis--also abrogates GET but to a lesser extent, and when using Dynasore--reversible inhibitor of dynamin--there is no effect on GET efficacy, if endocytosis is blocked for only 5 min after GET. Moreover, MβCD also reduced GET efficacy in vivo in m. tibialis cranialis and this effect was long lasting. The results of this study show that endocytosis is probably the main mechanism of entrance of DNA after GET in vitro and also in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Probenecid Improves Cardiac Function in Patients With Heart Failure With Reduced Ejection Fraction In Vivo and Cardiomyocyte Calcium Sensitivity In Vitro.

    Science.gov (United States)

    Robbins, Nathan; Gilbert, Mark; Kumar, Mohit; McNamara, James W; Daly, Patrick; Koch, Sheryl E; Conway, Ginger; Effat, Mohamed; Woo, Jessica G; Sadayappan, Sakthivel; Rubinstein, Jack

    2018-01-13

    Transient receptor potential vanilloid 2 is a calcium channel activated by probenecid. Probenecid is a Food and Drug Administration-approved uricosuric drug that has recently been shown to induce positive lusitropic and inotropic effects in animal models through cardiomyocyte transient receptor potential vanilloid 2 activation. The aim of this study was to test the hypothesis that oral probenecid can improve cardiac function and symptomatology in patients with heart failure with reduced ejection fraction and to further elucidate its calcium-dependent effects on myocyte contractility. The clinical trial recruited stable outpatients with heart failure with reduced ejection fraction randomized in a single-center, double-blind, crossover design. Clinical data were collected including a dyspnea assessment, physical examination, ECG, echocardiogram to assess systolic and diastolic function, a 6-minute walk test, and laboratory studies. In vitro force generation studies were performed on cardiomyocytes isolated from murine tissue exposed to probenecid or control treatments. The clinical trial recruited 20 subjects (mean age 57 years, mean baseline fractional shortening of 13.6±1.0%). Probenecid therapy increased fractional shortening by 2.1±1.0% compared with placebo -1.7±1.0% ( P =0.007). Additionally, probenecid improved diastolic function compared with placebo by decreasing the E/E' by -2.95±1.21 versus 1.32±1.21 in comparison to placebo ( P =0.03). In vitro probenecid increased myofilament force generation (92.36 versus 80.82 mN/mm 2 , P Probenecid improves cardiac function with minimal effects on symptomatology and no significant adverse effects after 1 week in patients with heart failure with reduced ejection fraction and increases force development and calcium sensitivity at the cardiomyocyte level. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01814319. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Sebastian Steven

    2017-01-01

    Full Text Available Objective. Oxidative stress and endothelial dysfunction contribute to pulmonary arterial hypertension (PAH. The role of the nitrovasodilator pentaerythritol tetranitrate (PETN on endothelial function and oxidative stress in PAH has not yet been defined. Methods and Results. PAH was induced by monocrotaline (MCT, i.v. in Wistar rats. Low (30 mg/kg; MCT30, middle (40 mg/kg; MCT40, or high (60 mg/kg; MCT60 dose of MCT for 14, 28, and 42 d was used. MCT induced endothelial dysfunction, pulmonary vascular wall thickening, and fibrosis, as well as protein tyrosine nitration. Pulmonary arterial pressure and heart/body and lung/body weight ratio were increased in MCT40 rats (28 d and reduced by oral PETN (10 mg/kg, 24 d therapy. Oxidative stress in the vascular wall, in the heart, and in whole blood as well as vascular endothelin-1 signaling was increased in MCT40-treated rats and normalized by PETN therapy, likely by upregulation of heme oxygenase-1 (HO-1. PETN therapy improved endothelium-dependent relaxation in pulmonary arteries and inhibited endothelin-1-induced oxidative burst in whole blood and the expression of adhesion molecule (ICAM-1 in endothelial cells. Conclusion. MCT-induced PAH impairs endothelial function (aorta and pulmonary arteries and increases oxidative stress whereas PETN markedly attenuates these adverse effects. Thus, PETN therapy improves pulmonary hypertension beyond its known cardiac preload reducing ability.

  15. Larix laricina, an Antidiabetic Alternative Treatment from the Cree of Northern Quebec Pharmacopoeia, Decreases Glycemia and Improves Insulin Sensitivity In Vivo

    Directory of Open Access Journals (Sweden)

    Despina Harbilas

    2012-01-01

    Full Text Available Larix laricina K. Koch is a medicinal plant belonging to traditional pharmacopoeia of the Cree of Eeyou Istchee (Eastern James Bay area of Canada. In vitro screening studies revealed that, like metformin and rosiglitazone, it increases glucose uptake and adipogenesis, activates AMPK, and uncouples mitochondrial function. The objective of this study was to evaluate the antidiabetic and antiobesity potential of L. laricina in diet-induced obese (DIO C57BL/6 mice. Mice were subjected for eight or sixteen weeks to a high fat diet (HFD or HFD to which L. laricina was incorporated at 125 and 250 mg/kg either at onset (prevention study or in the last 8 of the 16 weeks of administration of the HFD (treatment study. L. laricina effectively decreased glycemia levels, improved insulin resistance, and slightly decreased abdominal fat pad and body weights. This occurred in conjunction with increased energy expenditure as demonstrated by elevated skin temperature in the prevention study and improved mitochondrial function and ATP synthesis in the treatment protocol. L. laricina is thus a promising alternative and complementary therapeutic approach for the treatment and care of obesity and diabetes among the Cree.

  16. Improvement of the surface hydrophilic properties of naproxen particles with addition of hydroxypropylmethyl cellulose and sodium dodecyl sulphate: In vitro and in vivo studies.

    Science.gov (United States)

    García-Herrero, Víctor; Torrado, Carlos; García-Rodríguez, Juan José; López-Sánchez, Alicia; Torrado, Susana; Torrado-Santiago, Santiago

    2017-08-30

    In this study, a new surface-modified naproxen was developed to enhance brain concentration in acute migraine treatment. Fast-dissolving naproxen granules were made by mixing hydroxypropylmethylcellulose (HPMC) sodium dodecyl sulphate (SDS) and sodium croscarmellose with micronized naproxen particles. The aim of this study was to evaluate the effect of adding proportions of SDS to the HPMC film caused changes in the polymer chains of the HPMC, producing a new hydrophilic HPMC-SDS structure. These formulations with different HPMC/SDS ratios were characterised using electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). SDS 10% (w/w) produced a highly hydrophilic HPMC-SDS structure on the surface of the naproxen microparticles. The fast dissolution granules (SF-10%) showed a significant improvement in the dissolution rate of naproxen. Pharmacokinetic studies were conducted with mice, showing an improvement of Cmax (1.38 and 1.41-fold) and AUC0-2h (30% and 10% higher) for plasma and brain samples compared to the reference naproxen suspension. The faster Tmax ratio for SF-10% may be related to increased hydration in the gastrointestinal environment, enabling the drug to permeate the gastrointestinal hydration layer more easily due to the presence of the hydrophilic HPMC-SDS structure in the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Young Ock Kim

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in permanent loss of motor function below the injured site. Neuroinflammatory reaction following SCI can aggravate neural injury and functional impairment. Ginseng is well known to possess anti-inflammatory effects. The present study investigated the neuroprotective effects of Panax ginseng C.A. Mayer (P. ginseng after SCI. A spinal contusion was made at the T11-12 spinal cord in adult male Sprague-Dawley rats (n=47 using the NYU impactor. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB score in P. ginseng (0.1, 0.5, 1, 3, and 5 mg/kg or vehicle (saline treated after SCI. We also assessed the protein expression of cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS at the lesion site by western blot and then measured the cavity area using luxol fast blue/cresyl violet staining. P. ginseng treated group in SCI showed a significant improvement in locomotor function after the injury. The protein expression of COX-2 and iNOS at the lesion site and the cavity area were decreased following SCI by P. ginseng treatment. These results suggest that P. ginseng may improve the recovery of motor function after SCI which provides neuroprotection by alleviating posttraumatic inflammatory responses.

  18. Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Kim, Hye-Joung; Im, Gun-Il

    2011-12-01

    The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.

  19. Optimisation of a 96-well electroporation assay for postnatal rat CNS neurons suitable for cost-effective medium-throughput screening of genes that promote neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Thomas eHutson

    2011-12-01

    Full Text Available Following an injury, central nervous system (CNS neurons show a very limited regenerative response which results in their failure to successfully form functional connections with their original target. This is due in part to the reduced intrinsic growth state of CNS neurons, which is characterised by their failure to express key regeneration-associated genes (RAGs and by the presence of growth inhibitory molecules in CNS environment that form a molecular and physical barrier to regeneration. Here we have optimised a 96-well electroporation and neurite outgrowth assay for postnatal rat cerebellar granule neurons cultured upon an inhibitory cellular substrate expressing myelin-associated glycoprotein or a mixture of growth-inhibitory chondroitin sulphate proteoglycans. Optimal electroporation parameters resulted in 25% transfection efficiency and 50% viability for postnatal rat cerebellar granule neurons (CGNs. The neurite outgrowth of transduced neurons was quantitatively measured using a semi-automated image capture and analysis system. The neurite outgrowth was significantly reduced by the inhibitory substrates which we demonstrated could be partially reversed using a Rho Kinase inhibitor. We are now using this assay to screen large sets of RAGs for their ability to increase neurite outgrowth on a variety of growth inhibitory and permissive substrates.

  20. Viral Vectors for in Vivo Gene Transfer

    Science.gov (United States)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  1. Long-Term Effect of a Leonardite Iron Humate Improving Fe Nutrition As Revealed in Silico, in Vivo, and in Field Experiments.

    Science.gov (United States)

    Cieschi, María T; Caballero-Molada, Marcos; Menéndez, Nieves; Naranjo, Miguel A; Lucena, Juan J

    2017-08-09

    Novel, cheap and ecofriendly fertilizers that solve the usual iron deficiency problem in calcareous soil are needed. The aim of this work is to study the long-term effect of an iron leonardite fertilizer on citrus nutrition taking into account a properly characterization, kinetic response with a ligand competition experiment, efficiency assessment using Saccharomyces cerevisiae strain and finally, in field conditions with citrus as test plants. Its efficiency was compared with the synthetic iron chelate FeEDDHA. Leonardite iron humate (LIH) is mainly humic acid with a high-condensed structure where iron is present as ferrihydrite and Fe(3+) polynuclear compounds stabilized by organic matter. Iron and humic acids form aggregates that decrease the iron release from these kinds of fertilizers. Furthermore, LIH repressed almost 50% of the expression of FET3, FTR1, SIT1, and TIS11 genes in Saccharomyces cerevisiae cells, indicating increasing iron provided in cells and improved iron nutrition in citrus.

  2. Cellular immunogenicity of novel gene immunogens in mice monitored by in vivo imaging.

    Science.gov (United States)

    Starodubova, Elizaveta; Krotova, Olga; Hallengärd, David; Kuzmenko, Yulia; Engström, Gunnel; Legzdina, Diana; Latyshev, Oleg; Eliseeva, Olesja; Karin Maltais, Anna; Tunitskaya, Vera; Karpov, Vadim; Bråve, Andreas; Isaguliants, Maria

    2012-01-01

    The efficient cell-mediated immune response clears cells expressing deoxyribonucleic acid (DNA) immunogens, but there are no methods to monitor this in vivo. We hypothesized that immune-mediated clearance can be monitored in vivo if DNA immunogens are coexpressed with reporter(s). To test this, we designed genes encoding human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) fused via its N- or C-terminus to 30-amino acid-long Gly-Ala-repeat of Epstein-Barr virus nuclear antigen 1 or via the N-terminus to the transport signal of invariant chain/Ii or inserted between the cytoplasmic and luminal domains of lysosome-associated membrane protein I (LAMP). DNA immunogens mixed with luciferase gene were injected into BALB/c mice with subsequent electroporation. Reporter expression seen as luminescence was monitored by in vivo imaging. When luminescence faded, mice were sacrificed, and their splenocytes were stimulated with RT-derived antigens. Fading of luminescence correlated with the RT-specific secretion of interferon-γ and interleukin-2. Both immune and in vivo imaging techniques concordantly demonstrated an enhanced immunogenicity of RT-LAMP and of the N-terminal Gly-Ala-RT fusion genes. In vivo imaging performed as an animal-sparing method to estimate the overall performance of DNA immunogens, predicting it early in the experiment. So far, in vivo imaging cannot be a substitute for conventional immune assays, but it is supplementary to them. Further experiments are needed to identify which arms of cellular immune response in vivo imaging monitors best.

  3. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model

    Science.gov (United States)

    Sahin, Kazim; Pala, Ragip; Tuzcu, Mehmet; Ozdemir, Oguzhan; Orhan, Cemal; Sahin, Nurhan; Juturu, Vijaya

    2016-01-01

    Purpose Exercise (Ex) increases reactive oxygen species and impairs antioxidant defense systems. Recent data suggest that curcumin (CW) possesses peroxisome proliferator-activated receptor gamma activity and anti-inflammatory properties. Therefore, this study was designed to investigate the effects of CW supplementation on Ex performance, endurance, and changes in serum and muscle proteins in rats after exhaustive Ex. Materials and methods Twenty-eight (28) male Wistar rats (age: 8 weeks and body weight: 180±20 g) were divided into four treatment groups: 1) control (C; no Ex), 2) C + CW (no Ex + CW), 3) C + Ex, and 4) C + Ex + CW (Ex + CW). CW was administered as 100 mg/kg CurcuWin®, providing 20 mg of curcuminoids daily for 6 weeks. A motor-driven rodent treadmill was used to carry out the Ex protocols. During a 5-day period, animals in chronic Ex groups were put through different regimens: day 1, 10 m/min for 10 minutes; day 2, 20 m/min for 10 minutes; day 3, 25 m/min for 10 minutes; day 4, 25 m/min for 20 minutes; and day 5, 25 m/min for 30 minutes. Animals were exercised at 25 m/min for 45 min/d for 5 d/wk for 6 weeks. Blood and muscle samples were analyzed for muscle markers, oxidative stress, and antioxidant markers. Results Lactate and muscle malondialdehyde levels decreased in the CW-treated groups (P<0.0001). However, activities of antioxidant enzyme levels increased in the CW-treated groups. Run to exhaustion (minutes) improved in the CW-treated groups. Muscle nuclear factor-κB (P<0.05) and heat shock protein 70 (P<0.05) levels were much lowered in the CW treated group followed by Ex group. In addition, muscle inhibitors of kappa B, peroxisome proliferator-activated receptor gamma coactivator 1-alpha, thioredoxin-1, sirtuin 1, nuclear factor (erythroid-derived 2)-like 2, and glucose transporter 4 protein levels in the Ex + CW group were higher than those in the control and Ex groups (P<0.05). Conclusion This study suggests that novel CW has the

  4. Midterm Safety and Efficacy of Irreversible Electroporation of Malignant Liver Tumors Located Close to Major Portal or Hepatic Veins.

    Science.gov (United States)

    Distelmaier, Martina; Barabasch, Alexandra; Heil, Philipp; Kraemer, Nils A; Isfort, Peter; Keil, Sebastian; Kuhl, Christiane K; Bruners, Philipp

    2017-12-01

    Purpose To investigate the efficacy and safety of irreversible electroporation (IRE) in the treatment of hepatic tumors not suitable for thermal ablation (radiofrequency ablation [RFA] or microwave ablation). Materials and Methods This was an institutional review board-approved prospective study in 29 patients (15 men, 14 women; mean age, 63 years ± 12 [standard deviation]) with 43 primary (n = 8) or secondary (n = 35) malignant liver tumors who underwent computed tomography (CT)-guided IRE. All target tumors were located immediately adjacent to major hepatic veins, portal veins, or both; thus, they were not considered suitable for RFA or microwave ablation. Patients underwent postinterventional CT and magnetic resonance (MR) imaging. Systematic follow-up MR imaging was performed for 24 months on average to assess complete ablation, intrahepatic tumor recurrence, and complications. The 95% confidence intervals (CIs) were determined for the rate of bile duct strictures, incomplete ablation, and tumor recurrence. Results Complete ablation was achieved in 40 (93%; 95% CI: 85, 100) of 43 target tumors, with a safety margin of 5-10 mm, and was confirmed at immediate postinterventional CT and MR imaging. In 13 (33%; 95% CI: 18, 47) of 40 completely ablated tumors, intrahepatic tumor recurrence was observed at 2-18 months. However, only two (15%; 95% CI: 0, 35) of these 13 tumors were observed within the ablation zone. In the remaining 11 (85%; 95% CI: 65, 100), tumor growth was observed alongside the needle tract. None of the two true local recurrences occurred at the site of the vessel. All adjacent vessels remained perfused at follow-up. Five (24%; 95% CI: 5, 39) of 21 patients with target tumors adjacent to portal veins developed mild to moderate cholestasis 2-6 weeks after IRE. Conclusion IRE is useful to avoid incomplete ablation secondary to heat-sink effects and damage to major blood vessels; however, needle tract seeding is observed in 26% of treated tumors, and

  5. Enhanced immunogenicity of an HIV-1 DNA vaccine delivered with electroporation via combined intramuscular and intradermal routes.

    Science.gov (United States)

    Mann, Jamie F S; McKay, Paul F; Fiserova, Anezka; Klein, Katja; Cope, Alethea; Rogers, Paul; Swales, Julie; Seaman, Michael S; Combadiere, Behazine; Shattock, Robin J

    2014-06-01

    It is accepted that an effective prophylactic HIV-1 vaccine is likely to have the greatest impact on viral transmission rates. As previous reports have implicated DNA-priming, protein boost regimens to be efficient activators of humoral responses, we sought to optimize this regimen to further augment vaccine immunogenicity. Here we evaluated single versus concurrent intradermal (i.d.) and intramuscular (i.m.) vaccinations as a DNA-priming strategy for their abilities to elicit humoral and cellular responses against a model HIV-1 vaccine antigen, CN54-gp140. To further augment vaccine-elicited T and B cell responses, we enhanced cellular transfection with electroporation and then boosted the DNA-primed responses with homologous protein delivered subcutaneously (s.c.), intranasally (i.n.), i.m., or transcutaneously (t.c.). In mice, the concurrent priming regimen resulted in significantly elevated gamma interferon T cell responses and high-avidity antigen-specific IgG B cell responses, a hallmark of B cell maturation. Protein boosting of the concurrent DNA strategy further enhanced IgG concentrations but had little impact on T cell reactivity. Interestingly protein boosting by the subcutaneous route increased antibody avidity to a greater extent than protein boosting by either the i.m., i.n., or t.c. route, suggesting that this route may be preferential for driving B cell maturation. Using an alternative and larger animal model, the rabbit, we found the concurrent DNA-priming strategy followed by s.c. protein boosting to again be capable of eliciting high-avidity humoral responses and to also be able to neutralize HIV-1 pseudoviruses from diverse clades (clades A, B, and C). Taken together, we show that concurrent multiple-route DNA vaccinations induce strong cellular immunity, in addition to potent and high-avidity humoral immune responses. The route of vaccination has profound effects on prevailing immune responses. Due to the insufficient immunogenicity and

  6. Native thymic extracellular matrix improves in vivo thymic organoid T cell output, and drives in vitro thymic epithelial cell differentiation.

    Science.gov (United States)

    Hun, Michael; Barsanti, Marco; Wong, Kahlia; Ramshaw, John; Werkmeister, Jerome; Chidgey, Ann P

    2017-02-01

    Although the thymus is a primary lymphoid organ, its function is compromised by an age-induced loss of resident epithelial cells, which results in reduced naïve T cell output. This has important implications for immune recovery in aged and elderly patients following damage from cytoablative therapies. As thymic architecture plays a crucial role in naïve T cell development, a tissue specific scaffold that provides essential supporting matrix may assist in stem cell-based thymus regeneration to recreate complex organoids. Here we investigate thymus decellularization approaches that preserve major extracellular matrix components and support thymic epithelial cells for the generation of a functional thymic microenvironment with improved T cell output. We also established an in vitro, serum-free culture system that both maintains a progenitor thymic epithelial cell pool and drives their differentiation in the presence of decellularized thymic matrix. This approach enables further dissection of key cellular and niche components involved in thymic epithelial stem cell maintenance and T cell production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optogenetic tools for in vivo applications in neonatal mice

    Science.gov (United States)

    Zhang, Yue; Qin, Nan; Diao, Yupu; Guan, Yangtai; Fan, Lu; Crair, Michael C.; Zhang, Jiayi

    2012-10-01

    Spontaneous neural activities exist early in development and their spatiotemporal patterns play important roles in the development of sensory maps such as maps of retinotopy in the visual system. We summarized different optogenetic tools, including transgenic mouse lines, viral-mediated transfection and electroporation methods to enable the expression of light-gated channelrhodopsin (ChR2) in retinal ganglion cells (RGCs) before the onset of vision. Patch-clamp and extracellular recording experiments verified that activities of ChR2-expressing cells were precisely manipulated by the patterns of optical stimuli. In chronic stimulation experiments, light-emitting diodes controlled the activity patterns of ChR2-expressing RGCs in vivo. Changes in the retinotopic map in Superior Colliculus (SC) were examined by quantifying the relative sizes of fluorescently labeled target zones. Our results revealed that various optogenetic and optical tools can manipulate retinal activities with precise temporal patterns. These techniques can be readily used in studying the development of the central nervous system of neonatal rodents.

  8. Low-dose of multi-glycoside of Tripterygium wilfordii Hook. f., a natural regulator of TGF-β1/Smad signaling activity improves adriamycin-induced glomerulosclerosis in vivo.

    Science.gov (United States)

    Wan, Yi-Gang; Che, Xiao-Yan; Sun, Wei; Huang, Yan-Ru; Meng, Xian-Jie; Chen, Hao-Li; Shi, Xi-Miao; Tu, Yue; Wu, Wei; Liu, Ying-Lu

    2014-02-12

    Transforming growth factor (TGF)-β1/Smad signaling pathway plays a critical role in the prolonged glomerulosclerosis (GS), which is an important determinant during the progression in chronic kidney disease (CKD). For recent 30 years, multi-glycoside of Tripterygium wilfordii Hook. f. (GTW), an extract from Chinese herbal medicine has been proved clinically effective in improving GS in CKD in China. However, therapeutic mechanisms involved in vivo are still unclear. In this study, we aimed to explain the dose-effects and molecular mechanisms of GTW on GS by regulating TGF-β1/Smad signaling activity in adriamycin (ADR)-induced nephropathy (ADRN). Rats with ADRN, created by unilateral nephrectomy and twice adriamycin injections (ADR, 4 mg/kg and 2 mg/kg) within 4 weeks, were divided into four groups, the Sham group, the Vehicle group, the low-dose GTW-treated group, and the high-dose GTW-treated group, and that, sacrificed at the end of the 6th week after administration. Proteinuria, blood biochemical parameters, glomerulosclerotic morphological makers, podocyte shape, and nephrin expression were examined, respectively. Protein expressions of key signaling molecules in TGF-β1/Smad pathway, such as TGF-β1, Smad3, phosphorylated-Smad2/3 (p-Smad2/3), and Smad7, were also evaluated individually. The results indicated that the characterizations of ADRN involved the typical prolonged GS, a small amount of abnormal proteinuria, and the failing renal function; TGF-β1/Smad signaling molecules, especially Smad3, p-Smad2/3, and Smad7 were activated in vivo, accompanied by the exasperation of glomerulosclerotic lesion; GTW at high-dose (100 mg/kg) and low-dose (50 mg/kg) could slightly ameliorate the prolonged GS and nephrin expression, furthermore, the anti-proliferative action of GTW at high-dose was superior to that at low-dose, but caused the significant liver injury; in ADRN model rats, protein expressions of TGF-β1, p-Smad2/3, and Smad7 in the kidneys could be

  9. Curcumin prevents muscle damage by regulating NF-kB and Nrf2 pathways and improves performance: an in vivo model

    Directory of Open Access Journals (Sweden)

    Sahin K

    2016-08-01

    Full Text Available Kazim Sahin,1 Ragip Pala,2 Mehmet Tuzcu,3 Oguzhan Ozdemir,3 Cemal Orhan,1 Nurhan Sahin,1 Vijaya Juturu4 1Department of Animal Nutrition, Faculty of Veterinary Medicine, 2Department of Movement and Training Science, 3Department of Biology, Firat University, Elazig, Turkey; 4OmniActive Health Technologies Inc., Morristown, NJ, USA Purpose: Exercise (Ex increases reactive oxygen species and impairs antioxidant defense systems. Recent data suggest that curcumin (CW possesses peroxisome proliferator-activated receptor gamma activity and anti-inflammatory properties. Therefore, this study was designed to investigate the effects of CW supplementation on Ex performance, endurance, and changes in serum and muscle proteins in rats after exhaustive Ex.Materials and methods: Twenty-eight (28 male Wistar rats (age: 8 weeks and body weight: 180±20 g were divided into four treatment groups: 1 control (C; no Ex, 2 C + CW (no Ex + CW, 3 C + Ex, and 4 C + Ex + CW (Ex + CW. CW was administered as 100 mg/kg CurcuWin®, providing 20 mg of curcuminoids daily for 6 weeks. A motor-driven rodent treadmill was used to carry out the Ex protocols. During a 5-day period, animals in chronic Ex groups were put through different regimens: day 1, 10 m/min for 10 minutes; day 2, 20 m/min for 10 minutes; day 3, 25 m/min for 10 minutes; day 4, 25 m/min for 20 minutes; and day 5, 25 m/min for 30 minutes. Animals were exercised at 25 m/min for 45 min/d for 5 d/wk for 6 weeks. Blood and muscle samples were analyzed for muscle markers, oxidative stress, and antioxidant markers.Results: Lactate and muscle malondialdehyde levels decreased in the CW-treated groups (P<0.0001. However, activities of antioxidant enzyme levels increased in the CW-treated groups. Run to exhaustion (minutes improved in the CW-treated groups. Muscle nuclear factor-κB (P<0.05 and heat shock protein 70 (P<0.05 levels were much lowered in the CW treated group followed by Ex group. In

  10. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    Science.gov (United States)

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  11. Plantation Forestry under Global Warming: Hybrid Poplars with Improved Thermotolerance Provide New Insights on the in Vivo Function of Small Heat Shock Protein Chaperones1[C][W

    Science.gov (United States)

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M.; Gómez, Luis

    2014-01-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula × Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones. PMID:24306533

  12. D-cycloserine does not improve but might slightly speed up the outcome of in-vivo exposure therapy in patients with severe agoraphobia and panic disorder in a randomized double blind clinical trial.

    Science.gov (United States)

    Siegmund, Anja; Golfels, Fabian; Finck, Claudia; Halisch, Anna; Räth, Daniela; Plag, Jens; Ströhle, Andreas

    2011-08-01

    D-cycloserine (DCS)-augmented exposure therapy has proven efficacy in the treatment of acrophobia, social phobia, panic disorder and OCD. Here we studied whether DCS can also improve the effect of cognitive behavioral therapy (CBT) in patients with agoraphobia and panic disorder. To this end, 39 patients with the diagnoses of agoraphobia and panic disorder were treated with 11 sessions of CBT including three individual in-vivo exposure sessions (flooding), augmented with either 50mg of DCS (N=20) or placebo (N=19) in a randomized double blind design. Primary outcome was the total score of the panic and agoraphobia scale. Both groups profited considerably from therapy and DCS did not significantly improve this outcome (p=0.475; η(2)p = 0.01). However, there was a statistical trend (p=0.075; η(2)p = 0.17) in the more severely ill patients that DCS accelerated symptom reduction in the primary outcome at post-therapy. No serious adverse effects occurred during the trial. We conclude that in patients with agoraphobia and panic disorder, DCS seems to lack an additional benefit to efficient cbt, probably due to a floor effect. Nonetheless, the acceleration of symptom reduction in severely ill patients might represent a valuable treatment option deserving further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Applications of Tol2 Transposon-Mediated Gene Transfer for Stable Integration and Conditional Expression of Electroporated Genes in Chicken Embryos

    Science.gov (United States)

    Sato, Yuki; Takahashi, Yoshiko

    Because of the high accessibility to developing embryos, avian embryos (chicken and quail) have long been used as a good model animal to study embryogenesis in vertebrates, especially amniotes (reviewed in Wolpert, 2004). The techniques used for “classical” avian embryology included tissue transplantations, tissue ablations, and cell-labeling by vital dye. At the end of the last century, the in ovo electropora tion technique was developed by Nakamura and his colleagues, and this modern method opened a way to study the roles of developmental genes directly in living embryos (Funahashi et al., 1999) reviewed in (Nakamura et al., 2004; Yasuda et al., 2000; Yasugi and Nakamura, 2000). This powerful technique allows us to introduce genes (DNA, RNA, morpholino) into embryos in a tissue-specific way by targeting a restricted area of embryonic tissues. Thus, the electroporation technique using chickens has provided numerous novel insights into the understanding of early development in vertebrates, making the chicken a unique model animal.

  14. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  15. Delayed injection of polypyrrole doped with iodine particle suspension after spinal cord injury in rats improves functional recovery and decreased tissue damage evaluated by 3.0 Tesla in vivo magnetic resonance imaging.

    Science.gov (United States)

    Mondragon-Lozano, Rodrigo; Ríos, Camilo; Roldan-Valadez, Ernesto; Cruz, Guillermo J; Olayo, Maria G; Olayo, Roberto; Salgado-Ceballos, Hermelinda; Morales, Juan; Mendez-Armenta, Marisela; Alvarez-Mejia, Laura; Fabela, Omar; Morales-Guadarrama, Axayacatl; Sánchez-Torres, Stephanie; Diaz-Ruiz, Araceli

    2017-04-01

    Traumatic spinal cord injury (SCI) causes irreversible damage with loss of motor, sensory, and autonomic functions. Currently, there is not an effective treatment to restore the lost neurologic functions. Injection of polypyrrole-iodine(PPy-I) particle suspension is proposed as a therapeutic strategy. This is an in vivo animal study. This study evaluates the use of such particles in rats after SCI by examining spared nervous tissue and the Basso, Beattie, and Bresnahan (BBB) scale to evaluate the functional outcome. Diffusive magnetic resonance imaging (MRI) was employed to measure the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) as non-invasive biomarkers of damage after SCI. Fractional anisotropy decreased, whereas ADC increased in all groups after the lesion. There were significant differences in FA when compared with the SCI-PPy-I group versus the SCI group (p<.05). Significant positive correlations between BBB and FA (r(2)=0.449, p<.05) and between FA and preserved tissue (r(2)=0.395, p<.05) were observed, whereas significant negative associations between BBB and ADC (r(2)=0.367, p<.05) and between ADC and preserved tissue (r(2)=0.421, p<.05) were observed. The results suggested that PPy-I is neuroprotective as it decreased the amount of damaged tissue while improving the motor function. Non-invasive MRI proved to be useful in the characterization of SCI and recovery. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A novel strain of Lactobacillus mucosae isolated from a Gaotian villager improves in vitro and in vivo antioxidant as well as biological properties in D-galactose-induced aging mice.

    Science.gov (United States)

    Yu, Xiaomin; Li, Shengjie; Yang, Dong; Qiu, Liang; Wu, Yaoping; Wang, Dengyuan; Shah, Nagendra P; Xu, Feng; Wei, Hua

    2016-02-01

    Twelve isolates isolated from the gastrointestinal tracts of Gaotian villagers in China, who had a lifespan of 92 yr, were examined for their antioxidants using free radical scavenging activity and 2,2-diphenyl-1-picrylhydrazyl. Three strains (i.e., Lactobacillus mucosae LMU1001, and Lactobacillus plantarum LPL0902 and LPL0302) were selected as candidates to prepare yogurt for testing their antioxidants in a model of d-galactose-induced aging mice, with vitamin C as a positive control. The results showed that L. mucosae LMU1001 was the best strain, which had similar in vivo antioxidant activity as vitamin C. A significant increase was found in the activities of glutathione peroxidase in serum and total superoxide dismutase in the liver, and a decrease in the level of malondialdehyde in serum. Regarding mRNA expression level detected quantitatively by real-time PCR, we observed that L. mucosae LMU1001 significantly upregulated antioxidant genes (i.e., MT1A and MT1M in HT-29 and Caco-2) and those genes (i.e., MT1, MT2, GPx1, and GPx2) in the intestinal tract of the model mice. Hence, this strain could be considered as a potential probiotic lactic acid bacterium for improving antioxidant levels in functional foods. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments.

    Science.gov (United States)

    Marčan, Marija; Pavliha, Denis; Kos, Bor; Forjanič, Tadeja; Miklavčič, Damijan

    2015-01-01

    Treatments based on electroporation are a new and promising approach to treating tumors, especially non-resectable ones. The success of the treatment is, however, heavily dependent on coverage of the entire tumor volume with a sufficiently high electric field. Ensuring complete coverage in the case of deep-seated tumors is not trivial and can in best way be ensured by patient-specific treatment planning. The basis of the treatment planning process consists of two complex tasks: medical image segmentation, and numerical modeling and optimization. In addition to previously developed segmentation algorithms for several tissues (human liver, hepatic vessels, bone tissue and canine brain) and the algorithms for numerical modeling and optimization of treatment parameters, we developed a web-based tool to facilitate the translation of the algorithms and their application in the clinic. The developed web-based tool automatically builds a 3D model of the target tissue from the medical images uploaded by the user and then uses this 3D model to optimize treatment parameters. The tool enables the user to validate the results of the automatic segmentation and make corrections if necessary before delivering the final treatment plan. Evaluation of the tool was performed by five independent experts from four different institutions. During the evaluation, we gathered data concerning user experience and measured performance times for different components of the tool. Both user reports and performance times show significant reduction in treatment-planning complexity and time-consumption from 1-2 days to a few hours. The presented web-based tool is intended to facilitate the treatment planning process and reduce the time needed for it. It is crucial for facilitating expansion of electroporation-based treatments in the clinic and ensuring reliable treatment for the patients. The additional value of the tool is the possibility of easy upgrade and integration of modules with new

  18. IL-5-Induced Eosinophils Suppress the Growth of Leishmania amazonensis In Vivo and Kill Promastigotes In Vitro in Response to Either IL-4 or IFN-gamma.

    Science.gov (United States)

    Watanabe, Yoshiya; Hamaguchi-Tsuru, Emi; Morimoto, Norihito; Nishio, Youhei; Yagyu, Ken-Ichi; Konishi, Yuko; Tominaga, Mari; Miyazaki, Jun-Ichi; Furuya, Masato; Tominaga, Akira

    2004-07-01

    In IL-5 transgenic mice (C3H/HeN-TgN(IL-5)-Imeg), in which 50% of peripheral blood leukocytes are eosinophils, the development of infection by Leishmania amazonensis was clearly suppressed. To determine mechanistically how this protozoan parasite is killed, we performed in vitro killing experiments. Either IL-4 or IFN-gamma effectively stimulated eosinophils to kill Leishmania amazonensis promastigotes, and most of the killing was inhibited by catalase but not by the NO inhibitor L-N5-(1-iminoethyl)-ornithine, suggesting that hydrogen peroxide is responsible for the killing of L. amazonensis by eosinophils. There was no significant degranulation of eosinophils in the culture, because eosinophil peroxidase was not detected in culture supernatants when L. amazonensis promastigotes were killed by activated eosinophils. Such resistance was also observed in BALB/c mice, which are highly susceptible to L. amazonensis. Expression plasmids for IL-4, IL-5, and IFN-gamma were transferred into muscle by electroporation in vivo starting 1 week before infection. Expression plasmid for IL-5 was most effective in slowing the development of infection among three expression plasmids. Expression plasmid for IL-4 was slightly effective and that for IFN-gamma had no effect on the progress of disease. These results suggest that IL-5 gene transfer into muscle by electroporation is useful as a supplementary protection method against L. amazonensis infection.

  19. In aqua vivo EPID dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van [Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  20. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  1. A Phase I Double Blind, Placebo-Controlled, Randomized Study of the Safety and Immunogenicity of Electroporated HIV DNA with or without Interleukin 12 in Prime-Boost Combinations with an Ad35 HIV Vaccine in Healthy HIV-Seronegative African Adults.

    Directory of Open Access Journals (Sweden)

    Juliet Mpendo

    Full Text Available Strategies to enhance the immunogenicity of DNA vaccines in humans include i co-administration of molecular adjuvants, ii intramuscular administration followed by in vivo electroporation (IM/EP and/or iii boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study.Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG plasmid DNA (pDNA vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12 (GENEVAX IL-12 given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM.All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse eve