WorldWideScience

Sample records for vitro targeted photodynamic

  1. Effective treatment of chemoresistant breast cancer in vitro and in vivo by a factor VII-targeted photodynamic therapy.

    Science.gov (United States)

    Duanmu, J; Cheng, J; Xu, J; Booth, C J; Hu, Z

    2011-04-26

    The purpose of this study was to test a novel, dual tumour vascular endothelial cell (VEC)- and tumour cell-targeting factor VII-targeted Sn(IV) chlorin e6 photodynamic therapy (fVII-tPDT) by targeting a receptor tissue factor (TF) as an alternative treatment for chemoresistant breast cancer using a multidrug resistant (MDR) breast cancer line MCF-7/MDR. The TF expression by the MCF-7/MDR breast cancer cells and tumour VECs in MCF-7/MDR tumours from mice was determined separately by flow cytometry and immunohistochemistry using anti-human or anti-murine TF antibodies. The efficacy of fVII-tPDT was tested in vitro and in vivo and was compared with non-targeted PDT for treatment of chemoresistant breast cancer. The in vitro efficacy was determined by a non-clonogenic assay using crystal violet staining for monolayers, and apoptosis and necrosis were assayed to elucidate the underlying mechanisms. The in vivo efficacy of fVII-tPDT was determined in a nude mouse model of subcutaneous MCF-7/MDR tumour xenograft by measuring tumour volume. To our knowledge, this is the first presentation showing that TF was expressed on tumour VECs in chemoresistant breast tumours from mice. The in vitro efficacy of fVII-tPDT was 12-fold stronger than that of ntPDT for MCF-7/MDR cancer cells, and the mechanism of action involved induction of apoptosis and necrosis. Moreover, fVII-tPDT was effective and safe for the treatment of chemoresistant breast tumours in the nude mouse model. We conclude that fVII-tPDT is effective and safe for the treatment of chemoresistant breast cancer, presumably by simultaneously targeting both the tumour neovasculature and chemoresistant cancer cells. Thus, this dual-targeting fVII-tPDT could also have therapeutic potential for the treatment of other chemoresistant cancers.

  2. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    Science.gov (United States)

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  4. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  5. Nanobody-photosensitizer conjugates for targeted photodynamic therapy

    NARCIS (Netherlands)

    Heukers, Raimond; van Bergen en Henegouwen, P; Oliveira, Sabrina

    2014-01-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt

  6. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy

    International Nuclear Information System (INIS)

    Sun Yun; Chen Zhilong; Yang Xiaoxia; Huang Peng; Zhou Xinping; Du Xiaoxia

    2009-01-01

    Photodynamic therapy (PDT) has become an increasingly recognized alternative to cancer treatment in clinic. However, PDT therapy agents, namely photosensitizer (PS), are limited in application as a result of prolonged cutaneous photosensitivity, poor water solubility and inadequate selectivity, which are encountered by numerous chemical therapies. Magnetic chitosan nanoparticles provide excellent biocompatibility, biodegradability, non-toxicity and water solubility without compromising their magnetic targeting. Nevertheless, no previous attempt has been reported to develop an in vivo magnetic drug delivery system with chitosan nanoparticles for magnetic resonance imaging (MRI) monitored targeting photodynamic therapy. In this study, magnetic targeting chitosan nanoparticles (MTCNPs) were prepared and tailored as a drug delivery system and imaging agents for PS, designated as PHPP. Results showed that PHPP-MTCNPs could be used in MRI monitored targeting PDT with excellent targeting and imaging ability. Non-toxicity and high photodynamic efficacy on SW480 carcinoma cells both in vitro and in vivo were achieved with this method at the level of 0-100 μM. Notably, localization of nanoparticles in skin and hepatic tissue was significantly less than in tumor tissue, therefore photosensitivity and hepatotoxicity can be attenuated.

  7. Supramolecular approach for target transport of photodynamic anticancer agents

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Kaplánek, R.; Bříza, T.; Králová, Jarmila; Martásek, P.; Král, V.

    2012-01-01

    Roč. 24, č. 2 (2012), s. 106-116 ISSN 1061-0278 R&D Projects: GA MŠk(CZ) LC06077; GA MŠk(CZ) 1M0520; GA ČR(CZ) GAP303/11/1291; GA ČR GA203/09/1311 Institutional research plan: CEZ:AV0Z50520514 Keywords : photodynamic therapy * photosensitisers * targeted transport * combination therapy * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.546, year: 2012

  8. Tyrosine kinase inhibitor induced growth factor receptor upregulation enhances the efficacy of near-infrared targeted photodynamic therapy in esophageal adenocarcinoma cell lines

    NARCIS (Netherlands)

    Hartmans, Elmire; Linssen, Matthijs D.; Sikkens, Claire; Levens, Afra; Witjes, Max J. H.; van Dam, Gooitzen M.; Nagengast, Wouter B.

    2017-01-01

    Esophageal carcinoma (EC) is a global health problem, with disappointing 5-year survival rates of only 15-25%. Near-infrared targeted photodynamic therapy (NIR-tPDT) is a novel strategy in which cancer-targeted phototoxicity is able to selectively treat malignant cells. In this in vitro report we

  9. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation

    Directory of Open Access Journals (Sweden)

    Dong S

    2018-04-01

    Full Text Available Shuai Dong,1,2 Hongxi Shi,1 Xintong Zhang,1,2 Xi Chen,1 Donghui Cao,2 Chuanbin Mao,3,4 Xiang Gao,1 Li Wang1 1Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, 2First Hospital of Jilin University, Changchun, Jilin, 3School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China; 4Department of Chemistry and Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK, USA Background: Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA’s phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. Methods: In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway.Results: A single-chain variable-fragment phage (JM with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate

  10. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  11. Structural and functional imaging for vascular targeted photodynamic therapy

    Science.gov (United States)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  12. The application of hyaluronic acid-derivatized carbon nanotubes in hematoporphyrin monomethyl ether-based photodynamic therapy for in vivo and in vitro cancer treatment

    Directory of Open Access Journals (Sweden)

    Shi J

    2013-07-01

    Full Text Available Jinjin Shi,* Rourou Ma,* Lei Wang, Jing Zhang, Ruiyuan Liu, Lulu Li, Yan Liu, Lin Hou, Xiaoyuan Yu, Jun Gao, Zhenzhong Zhang School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China*These authors contributed equally to this workAbstract: Carbon nanotubes (CNTs have shown great potential in both photothermal therapy and drug delivery. In this study, a CNT derivative, hyaluronic acid-derivatized CNTs (HA-CNTs with high aqueous solubility, neutral pH, and tumor-targeting activity, were synthesized and characterized, and then a new photodynamic therapy agent, hematoporphyrin monomethyl ether (HMME, was adsorbed onto the functionalized CNTs to develop HMME-HA-CNTs. Tumor growth inhibition was investigated both in vivo and in vitro by a combination of photothermal therapy and photodynamic therapy using HMME-HA-CNTs. The ability of HMME-HA-CNT nanoparticles to combine local specific photodynamic therapy with external near-infrared photothermal therapy significantly improved the therapeutic efficacy of cancer treatment. Compared with photodynamic therapy or photothermal therapy alone, the combined treatment demonstrated a synergistic effect, resulting in higher therapeutic efficacy without obvious toxic effects to normal organs. Overall, it was demonstrated that HMME-HA-CNTs could be successfully applied to photodynamic therapy and photothermal therapy simultaneously in future tumor therapy.Keywords: photodynamic therapy, photothermal therapy, HA-derivatized carbon nanotubes, tumor targeting, synergistic effect, hematoporphyrin monomethyl ether

  13. Difunctional bacteriophage conjugated with photosensitizers for Candida albicans-targeting photodynamic inactivation.

    Science.gov (United States)

    Dong, Shuai; Shi, Hongxi; Zhang, Xintong; Chen, Xi; Cao, Donghui; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2018-01-01

    Candida albicans is the most prevalent fungal pathogen of the human microbiota, causing infections ranging from superficial infections of the skin to life-threatening systemic infections. Due to the increasing occurrence of antibiotic-resistant C. albicans strains, new approaches to control this pathogen are needed. Photodynamic inactivation is an emerging alternative to treat infections based on the interactions between visible light and photosensitisers, in which pheophorbide a (PPA) is a chlorophyll-based photosensitizer that could induce cell death after light irradiation. Due to PPA's phototoxicity and low efficiency, the main challenge is to implement photosensitizer cell targeting and attacking. In this study, PPA was conjugated with JM-phage by EDC/NHS crosslinking. UV-Vis spectra was used to determine the optimum conjugation percentages of PPA and JM-phage complex for photodynamic inactivation. After photodynamic inactivation, the efficacy of PPA-JM-phage was assessed by performing in vitro experiments, such as MTS assay, scanning electron microscopy, measurement of dysfunctional mitochondria, ROS accumulation, S cell arrest and apoptotic pathway. A single-chain variable-fragment phage (JM) with high affinity to MP65 was screened from human single-fold single-chain variable-fragment libraries and designed as a binding target for C. albicans cells. Subsequently, PPa was integrated into JM phage to generate a combined nanoscale material, which was called PPA-JM-phage. After photodynamic inactivation, the growth of C. albicans was inhibited by PPA-JM-phage and apoptosis was observed. Scanning electron microscopy analysis revealed shrinking and rupturing of C. albicans . We also found that depolarization of mitochondrial membrane potential was decreased and intracellular reactive oxygen species levels were elevated significantly in C. albicans inhibited by PPA-JM-phage. Additionally, PPA-JM-phage also lead to S-phase arrest, and metacaspase activation

  14. Candida albicans biofilm development in vitro for photodynamic therapy study

    International Nuclear Information System (INIS)

    Suzuki, Luis Claudio

    2009-01-01

    Photodynamic therapy (PDT) is a phototherapy based on the use of a photo sensitizer (PS) in the presence of low intensity light with resonant wavelength of absorption of the PS and biological systems that can raise awareness, generating reactive oxygen species. Studies show that PDT has a lethal effect on Candida albicans. The biofilm formed by C. albicans is the cause of infections associated with medical devices such as catheters, with a proven resistance to antifungal agents, and the removal of the catheter colonized almost always is necessary. However, few studies in literature report the behavior and response of biofilm organized by C. albicans against PDT. The aims of this study were to develop a methodology for in vitro biofilm formation of C. albicans, evaluate the sensitivity of the biofilm of C. albicans to antimicrobial photodynamic therapy using PS as the methylene blue (MB) and hypocrellin B: La +3 (HBL a+3 ) and analyze the biofilm by Optical Coherence Tomography (OCT). For biofilm formation, discs were made from elastomeric silicone catheters. The PS were dissolved in solution of PBS, and the MB had two different concentrations tested in the biofilm: 100μM and 1mM; HBLa +3 only one of 10μM. The irradiation of both dyes with the microorganism was done by two different LEDs, one with red emission at λ = 630nm ± 20nm and the other one blue emission at λ = 460nm ± 30nm. We performed a curve of survival fraction versus time of irradiation of each sample with biofilm and suspension of the microorganism in the yeast form to verify the susceptibility of the front PDT. The yeast showed 100% reduction using both PS, but at different times of irradiation (30s to HBLa +3 and 6 min for the MB at 100μM). When the therapy was applied in biofilm, the MB 100μM did not show any significant reduction, while at concentration of 1mM was reduced by 100% after 6 min of irradiation. The HBLa +3 biofilm group showed a lower reduction in the concentration of 10μM in

  15. In vitro evaluation of Radachlorin sensitizer for photodynamic therapy.

    Science.gov (United States)

    Douillard, Samuel; Lhommeau, Isabelle; Olivier, David; Patrice, Thierry

    2010-02-12

    This paper reports the evaluation of a new photosensitizer, Radachlorin in comparison with one of its well known components but used solely, Chlorin e(6). The photodynamic properties and cell uptake and localisation of the two drugs were compared. In vitro studies were conducted on human adenocarcinoma cells (HT29) and lung carcinoma cell line (A549). Both dyes showed an absorption maximum between 640 and 650 nm, but those absorption peaks are enhanced by interactions with serum, with a shifted maximum at 661 and 664 nm, and much higher absorbance. As Radachlorin is constituted of different products and as photoreactivity is dependent on absorbed light energy, we chose to adapt concentrations so that both drugs had the same absorption at the irradiation wavelength (664 nm) for photoreactivity tests, and express concentrations in optical density at 664 nm. The capacity of the two drugs to generate Reactive Oxygen Species was identical, but on HT29 cells, Radachlorin reaches its optimal LD50 sooner than Chlorin e(6). Radachlorin LD50 on HT29 cells was 0.0251 OD(664 nm) after 2 h and 0.0672 OD(664 nm) for Chlorin e(6) for a 20 J cm(-2) irradiation. Radachlorin gave very similar results on A549 cells, LD50 being 0.05 for 5 J irradiation, and 0.026 for 10 and 20 J cm(-2). Pharmacokinetics using fluorescence showed that, even if Radachlorin quickly crossed HT29 (a human colonic cancer line) cell membrane, cellular distribution evolved from a diffuse cytoplasmic repartition 1 hour after Radachlorin addition to a delimited localisation into organelles all around the nucleus. Radachlorin intracellular fluorescence decreased after 4 h, whereas we did not observe a decrease of Chlorin e(6) intracellular fluorescence for times up to 24 h. In both case, a quick decline was observed as soon as the culture medium was replaced with a drug-free one. Radachlorin appears to be an excellent photosensitizer, with similar phototoxicity to Chlorin e(6) on cell cultures, but with quicker

  16. OPTICAL COHERENCE TOMOGRAPHY OF ADIPOSE TISSUE AT PHOTODYNAMIC/PHOTOTHERMAL TREATMENT IN VITRO

    Directory of Open Access Journals (Sweden)

    IRINA YU. YANINA

    2013-04-01

    Full Text Available Temporal changes in structure and refractive-index distribution of adipose tissue at photodynamic/photothermal treatment were studied with OCT in vitro. Ethanol–water solutions of indocyanine green (ICG and brilliant green (BG were used for fat tissue staining. CW laser diode (808 nm and LED light source (442 and 597 nm were used for irradiation of stained tissue slices. The data received supporting the hypothesis that photodynamic/photothermal treatment, induces fat cell lipolysis during a certain period of time after light exposure.

  17. Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: synthesis and in vitro photodynamic studies of a water-soluble, non-aggregating photosensitizer

    Czech Academy of Sciences Publication Activity Database

    Macháček, M.; Kollár, J.; Miletin, M.; Kučera, R.; Kubát, Pavel; Šimůnek, T.; Nováková, V.; Zimčík, P.

    2016-01-01

    Roč. 6, JAN 2016 (2016), s. 10064-10077 ISSN 2046-2069 Institutional support: RVO:61388955 Keywords : synthesis * in vitro photodynamic studies * phthalocyanines Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.108, year: 2016

  18. Density functionalized [RuII(NO)(Salen)(Cl)] complex: Computational photodynamics and in vitro anticancer facets.

    Science.gov (United States)

    Mir, Jan Mohammad; Jain, N; Jaget, P S; Maurya, R C

    2017-09-01

    Photodynamic therapy (PDT) is a treatment that uses photosensitizing agents to kill cancer cells. Scientific community has been eager for decades to design an efficient PDT drug. Under such purview, the current report deals with the computational photodynamic behavior of ruthenium(II) nitrosyl complex containing N, N'-salicyldehyde-ethylenediimine (SalenH 2 ), the synthesis and X-ray crystallography of which is already known [Ref. 38,39]. Gaussian 09W software package was employed to carry out the density functional (DFT) studies. DFT calculations with Becke-3-Lee-Yang-Parr (B3LYP)/Los Alamos National Laboratory 2 Double Z (LanL2DZ) specified for Ru atom and B3LYP/6-31G(d,p) combination for all other atoms were used using effective core potential method. Both, the ground and excited states of the complex were evolved. Some known photosensitizers were compared with the target complex. Pthalocyanine and porphyrin derivatives were the compounds selected for the respective comparative study. It is suggested that effective photoactivity was found due to the presence of ruthenium core in the model complex. In addition to the evaluation of theoretical aspects in vitro anticancer aspects against COLO-205 human cancer cells have also been carried out with regard to the complex. More emphasis was laid to extrapolate DFT to depict the chemical power of the target compound to release nitric oxide. A promising visible light triggered nitric oxide releasing power of the compound has been inferred. In vitro antiproliferative studies of [RuCl 3 (PPh 3 ) 3 ] and [Ru(NO)(Salen)(Cl)] have revealed the model complex as an excellent anticancer agent. From IC 50 values of 40.031mg/mL in former and of 9.74mg/mL in latter, it is established that latter bears more anticancer potentiality. From overall study the DFT based structural elucidation and the efficiency of NO, Ru and Salen co-ligands has shown promising drug delivery property and a good candidacy for both chemotherapy as well as

  19. Photodynamic action of methylene blue in osteosarcoma cells in vitro.

    Science.gov (United States)

    Guan, Jiemin; Lai, Xiaoping; Wang, Xinna; Leung, Albert Wingnang; Zhang, Hongwei; Xu, Chuanshan

    2014-03-01

    Osteosarcoma is a common malignant bone tumor which threatens the life of young people worldwide. To explore alternative strategy for combating osteosarcoma, a light-emitting diode (LED) that activates methylene blue (MB) was used in the present study to investigate cell death of osteosarcoma-derived UMR106 cells. Photocytotoxicity in UMR106 cells was investigated 24h after photodynamic activation of MB using sulforhodamine B (SRB) assay and light microscopy. Apoptosis induction was observed 24h after photodynamic treatment using a confocal laser scanning microscopy (CLSM) with Hoechst 33342 staining. The change in mitochondrial membrane potential (MMP) was analyzed using a flow cytometry with rhodamine 123 staining. MB under red light irradiation caused a drug-concentration (0-100μM) and light-dose (0-32J/cm(2)) dependent cytotoxicity in UMR106 cells. The SRB assay and light microscopy observed a significant decrease in the number of UMR106 cells attached to the bottom of culture well after LED light-activated MB (100μM, 32J/cm(2)). Nuclear shrinkage, chromatin condensation and fragmentation were found in the treated cells by nuclear staining. In addition, flow cytometry showed that the MMP in UMR106 cells was rapidly reduced by photo-activated MB (100μM, 32J/cm(2)). Photodynamic action of MB under LED irradiation could remarkably kill osteosarcoma cells and induce cell apoptosis as well as MMP collapse. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy.

    Science.gov (United States)

    Hammerer, Fabien; Poyer, Florent; Fourmois, Laura; Chen, Su; Garcia, Guillaume; Teulade-Fichou, Marie-Paule; Maillard, Philippe; Mahuteau-Betzer, Florence

    2018-01-01

    The proof of concept for two-photon activated photodynamic therapy has already been achieved for cancer treatment but the efficiency of this approach still heavily relies on the availability of photosensitizers combining high two-photon absorption and biocompatibility. In this line we recently reported on a series of porphyrin-triphenylamine hybrids which exhibit high singlet oxygen production quantum yield as well as high two-photon absorption cross-sections but with a very poor cellular internalization. We present herein new photosensitizers of the same porphyrin-triphenylamine hybrid series but bearing cationic charges which led to strongly enhanced water solubility and thus cellular penetration. In addition the new compounds have been found localized in mitochondria that are preferential target organelles for photodynamic therapy. Altogether the strongly improved properties of the new series combined with their specific mitochondrial localization lead to a significantly enhanced two-photon activated photodynamic therapy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy.

    Science.gov (United States)

    Li, Ke; Qiu, Ling; Liu, Qingzhu; Lv, Gaochao; Zhao, Xueyu; Wang, Shanshan; Lin, Jianguo

    2017-09-01

    In order to improve the efficacy of photodynamic therapy (PDT), biotin was axially conjugated with silicon(IV) phthalocyanine (SiPc) skeleton to develop a new tumor-targeting photosensitizer SiPc-biotin. The target compound SiPc-biotin showed much higher binding affinity toward BR-positive (biotin receptor overexpressed) HeLa human cervical carcinoma cells than its precursor SiPc-pip. However, when the biotin receptors of HeLa cells were blocked by free biotin, >50% uptake of SiPc-biotin was suppressed, demonstrating that SiPc-biotin could selectively accumulate in BR-positive cancer cells via the BR-mediated internalization. The confocal fluorescence images further confirmed the target binding ability of SiPc-biotin. As a consequence of specificity of SiPc-biotin toward BR-positive HeLa cells, the photodynamic effect was also largely dependent on the BR expression level of HeLa cells. The photodynamic activities of SiPc-biotin against HeLa cells were dramatically reduced when the biotin receptors were blocked by the free biotin (IC 50 : 0.18μM vs. 0.46μM). It is concluded that SiPc-biotin can selectively damage BR-positive cancer cells under irradiation. Furthermore, the dark toxicity of SiPc-biotin toward human normal liver cell lines LO2 was much lower than that of its precursor SiPc-pip. The targeting photodynamic activity and low dark toxicity suggest that SiPc-biotin is a promising photosensitizer for tumor-targeting photodynamic therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    Science.gov (United States)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  3. In vitro evaluation of ruthenium complexes for photodynamic therapy.

    Science.gov (United States)

    Li, Wenna; Xie, Qiang; Lai, Linglin; Mo, Zhentao; Peng, Xiaofang; Leng, Ennian; Zhang, Dandan; Sun, Hongxia; Li, Yiqi; Mei, Wenjie; Gao, Shuying

    2017-06-01

    Photodynamic therapy (PDT) is a promising anti-tumor treatment strategy. Photosensitizer is one of the most important components of PDT. In this work, the anticancer activities of PDT mediated by six new ruthenium porphyrin complexes were screened. The mechanisms of the most efficacious candidate were investigated. Photocytotoxicity of the six porphyrins was tested. The most promising complex, Rup-03, was further investigated using Geimsa staining, which indirectly detects reactive oxygen species (ROS) and subcellular localization. Mitochondrial membrane potential (MMP), cell apoptosis, DNA fragmentation, c-Myc gene expression, and telomerase activities were also assayed. Rup-03 and Rup-04 had the lowest IC 50 values. Rup-03 had an IC 50 value of 29.5±2.3μM in HepG2 cells and 59.0±6.1μM in RAW264.7 cells, while Rup-04 had an IC 50 value of 40.0±3.8μM in SGC-7901 cells. The complexes also induced cellular morphological changes and impaired cellular ability to scavenge ROS, and accumulated preferentially in mitochondria and endoplasmic reticulum. Rup-03 reduced MMP levels, induced apoptosis, and repressed both c-Myc mRNA expression and telomerase activity in HepG2 cells. Among six candidates, Rup-03-mediated PDT is most effective against HepG2 and RAW264.7, with a similar efficacy as that of Rup-04-mediated PDT against SGC-7901 cells. Repression of ROS scavenging activities and c-Myc expression, which mediated DNA damage-induced cell apoptosis and repression of telomerase activity, respectively, were found to be involved in the anticancer mechanisms of Rup-03. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In Vitro Antimicrobial Photodynamic Therapy Against Trichophyton mentagrophytes Using New Methylene Blue as the Photosensitizer.

    Science.gov (United States)

    López-Chicón, P; Gulías, Ò; Nonell, S; Agut, M

    2016-11-01

    Antimicrobial photodynamic therapy combines the use of a photosensitizing drug with light and oxygen to eradicate pathogens. Trichophyton mentagrophytes is a dermatophytic fungus able to invade the skin and keratinized tissues. We have investigated the use of new methylene blue as the photosensitizing agent for antimicrobial photodynamic therapy to produce the in vitro inactivation of T mentagrophytes. A full factorial design was employed to optimize the parameters for photoinactivation of the dermatophyte. The parameters studied were new methylene blue concentration, contact time between the photosensitizing agent and the fungus prior to light treatment, and the fluence of red light (wavelength, 620-645nm) applied. The minimum concentration of new methylene blue necessary to induce the death of all T. mentagrophytes cells in the initial suspension (approximate concentration, 10 6 colony forming units per milliliter) was 50μM for a fluence of 81J/cm 2 after a contact time of 10minutes with the photosensitizing-agent. Increasing the concentration to 100μM allowed the fluence to be decreased to 9J/cm 2 . Comparison of our data with other published data shows that the susceptibility of T. mentagrophytes to antimicrobial photodynamic therapy with new methylene blue is strain-dependent. New methylene blue is a photosensitizing agent that should be considered for the treatment of fungal skin infections caused by this dermatophyte. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Studies on photodynamic mechanism of a novel chlorine derivative (TDPC and its antitumor effect for photodynamic therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Ying Ye

    2015-01-01

    Full Text Available Photodynamic therapy (PDT represents a promising method for treatment of cancerous tumors. The chemical and physical properties of used photosensitizer (PS play key roles in the treatment efficacy. In this study, a novel PS, 5,10,15,20-tetrakis((5-dipropylaminopentyl-chlorin (TDPC which displayed a characteristic long wavelength absorption peak at 650 nm were synthesized. It also shows a singlet oxygen generation rate of 4.257 min-1. Generally, TDPC is localized in mitochondria and nucleus of cell. After light irradiation with 650 nm laser, it can kill many types of cell, in addition, TDPC–PDT can destroy ECA-109 tumor in nude mice and a necrotic scab was formed eventually. The expression levels of many genes which regulated cell growth and apoptosis were determined by RT-PCR following TDPC–PDT. The results showed that it either increased or decreased, among which, the expression level of TNFSF13, a member of tumor necrosis factor superfamily, increased significantly. In general, TDPC is an effective antitumor PS in vitro and in vivo and is worthy of further study as a new drug candidate. TNFSF13 will be an important molecular target for the discovery of new PSs.

  6. In vitro evaluation of photodynamic therapy using redox-responsive nanoparticles carrying PpIX

    Science.gov (United States)

    Souza Leite, Ilaiáli; Vivero-Escoto, Juan L.; Lyles, Zachary; Salvador Bagnato, Vanderlei; Mayumi Inada, Natalia

    2018-02-01

    Photodynamic therapy (PDT) is a technique that combines light's interaction with a photoactive substance to promote cellular death and that has been used to treat a wide range of maladies. Cancer is among the leading causes of death worldwide and has been a central issue assessed by PDT research and clinical trials over the last 35 years, but its efficiency has been hampered by photosensitizer buildup at treatment site. Nanotechnology has been addressing drug delivery problems by the development of distinct nanostructured platforms capable of increasing pharmacological properties of molecules. The association of nanotechnology's potential to enhance photosensitizer delivery to target tissues with PDT's oxidative damage to induce cell death has been rising as a prospect to optimize cancer treatment. In this study, we aim to verify and compare the efficiency of PDT using redox-responsive silica-based nanoparticles carrying protoporphyrin IX (PpIX) in vitro, in both tumor and healthy cells. Dose-response experiments revealed the higher susceptibility of murine melanoma cells (B16-F10 cell line) to PDT (630 nm, 50 J/cm2) when compared to human dermal fibroblasts (HDFn): after 24 h of incubation with 50 μg/mL nanoparticles solutions, approximately 80 % of B16- F10 cells were killed, while similar results were obtained in HDFn cultures when solutions over 150 μg/mL were used. Uptake and ROS generation assays suggest increased nanoparticle internalization in the tumor cell line, in comparison with the healthy cells, and greater ROS levels were observed in B16-F10 cells.

  7. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    OpenAIRE

    Defu Chen; Huifen Zheng; Zhiyong Huang; Huiyun Lin; Zhidong Ke; Shusen Xie; Buhong Li

    2012-01-01

    The aim of this study is to develop a light-emitting diode- (LED-) based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT). This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irrad...

  8. Photophysical Properties of Pheophorbide-a Derivatives and Their Photodynamic Therapeutic Effects on a Tumor Cell Line In Vitro

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2014-01-01

    Full Text Available Pheophorbide-a derivatives have been reported to be potential photosensitizers for photodynamic therapy (PDT. In this study, photophysics of pheophorbide-a derivatives (PaDs were investigated along with their photodynamic tumoricidal effect in vitro. PaDs were modified by changing the coil length and/or making the hydroxyl group (–OH substitutions. Their photophysical properties were studied by steady-state and time-resolved spectroscopic methods. The photodynamic tumoricidal effect was evaluated in the mouse breast cancer cell line (EMT6. Lifetime and quantum yield of fluorescence and quantum yields of triplet state and singlet oxygen were studied to determine the dynamic energy flow. The coil length of the substituted alkyl group did not significantly affect the spectroscopic properties. However, the substitution with the hydroxyl group increased the quantum yields of the triplet state and the singlet oxygen due to the enhanced intersystem crossing. In order to check the application possibility as a photodynamic therapy agent, the PaDs with hydroxyl group were studied for the cellular affinity and the photodynamic tumoricidal effect of EMT6. The results showed that the cellular affinity and the photodynamic tumoricidal effect of PaDs with the hydroxyl group depended on the coil-length of the substituted alkyl group.

  9. Tissue factor is an angiogenic-specific receptor for factor VII-targeted immunotherapy and photodynamic therapy.

    Science.gov (United States)

    Hu, Zhiwei; Cheng, Jijun; Xu, Jie; Ruf, Wolfram; Lockwood, Charles J

    2017-02-01

    Identification of target molecules specific for angiogenic vascular endothelial cells (VEC), the inner layer of pathological neovasculature, is critical for discovery and development of neovascular-targeting therapy for angiogenesis-dependent human diseases, notably cancer, macular degeneration and endometriosis, in which vascular endothelial growth factor (VEGF) plays a central pathophysiological role. Using VEGF-stimulated vascular endothelial cells (VECs) isolated from microvessels, venous and arterial blood vessels as in vitro angiogenic models and unstimulated VECs as a quiescent VEC model, we examined the expression of tissue factor (TF), a membrane-bound receptor on the angiogenic VEC models compared with quiescent VEC controls. We found that TF is specifically expressed on angiogenic VECs in a time-dependent manner in microvessels, venous and arterial vessels. TF-targeted therapeutic agents, including factor VII (fVII)-IgG1 Fc and fVII-conjugated photosensitizer, can selectively bind angiogenic VECs, but not the quiescent VECs. Moreover, fVII-targeted photodynamic therapy can selectively and completely eradicate angiogenic VECs. We conclude that TF is an angiogenic-specific receptor and the target molecule for fVII-targeted therapeutics. This study supports clinical trials of TF-targeted therapeutics for the treatment of angiogenesis-dependent diseases such as cancer, macular degeneration and endometriosis.

  10. Antimicrobial photodynamic therapy with two photosensitizers on two oral streptococci: an in vitro study

    Science.gov (United States)

    Vahabi, S.; Fekrazad, R.; Ayremlou, S.; Taheri, S.; Lizarelli, R. F. Z.; Kalhori, K. A. M.

    2011-12-01

    Periodontal diseases are caused by infection of tissues supporting the teeth due to complex aggregate of bacteria known as biofilm and firstly colonized by streptococci. The aim of this in vitro study was to evaluate the effect of Radachlorin® and Toluidine Blue O (TBO)-mediated photodynamic therapy (PDT) on the viability of two oral streptococci. Bacterial suspensions of Streptococcus mutans and Streptococcus sanguis were subjected to either TBO or Radachlorin®, Then exposed to two different diode laser light at energy densities of 3, 6 J/cm2 at 633 nm and 6, 12 J/cm2 at 662 nm, respectively. The control groups were subjected to laser light alone, photosensitizer alone or received neither photosensitizer nor light exposure. The suspensions were then spread over specific agar mediums and viable microorganisms were counted after overnight incubation aerobically at 37°C, 5% CO2 and then reported as colony forming unit. The results indicated that photosensitization by the energy density of 6 J/cm2 with Radachlorin® and both 3 and 6 J/cm2 with TBO caused significant reduction in bacterial colony formation ( p < 0.05). Radachlorin® and TBO-mediated photodynamic therapy seem to show excellent potential in significantly killing of two oral streptococci in vitro.

  11. Light-Emitting Diode-Based Illumination System for In Vitro Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Defu Chen

    2012-01-01

    Full Text Available The aim of this study is to develop a light-emitting diode- (LED- based illumination system that can be used as an alternative light source for in vitro photodynamic therapy (PDT. This illumination system includes a red LED array composed of 70 LEDs centered at 643 nm, an air-cooling unit, and a specific-designed case. The irradiance as a function of the irradiation distance between the LED array and the sample, the homogeneity and stability of irradiation, and the effect of long-time irradiation on culture medium temperature were characterized. Furthermore, the survival rate of the CNE1 cells that sensitized with 5-aminolevulinic acid after PDT treatment was evaluated to demonstrate the efficiency of the new LED-based illumination system. The obtained results show that the LED-based illumination system is a promising light source for in vitro PDT that performed in standard multiwell plate.

  12. Physiological oxygen concentration alters glioma cell malignancy and responsiveness to photodynamic therapy in vitro.

    Science.gov (United States)

    Albert, Ina; Hefti, Martin; Luginbuehl, Vera

    2014-11-01

    The partial pressure of oxygen (pO2) in brain tumors ranges from 5 to 15%. Nevertheless, the majority of in vitro experiments with glioblastoma multiforme (GBM) cell lines are carried out under an atmospheric pO2 of 19 to 21%. Recently, 5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX), has been introduced to neurosurgery to allow for photodynamic diagnosis and photodynamic therapy (PDT) in high-grade gliomas. Here, we investigate whether low pO2 affects GBM cell physiology, PpIX accumulation, or PDT efficacy. GBM cell lines (U-87 MG and U-251 MG) were cultured under atmospheric (pO2  =  19%) and physiological (pO2  =  9%) oxygen concentrations. PpIX accumulation and localization were investigated, and cell survival and cell death were observed following in vitro PDT. A physiological pO2 of 9% stimulated GBM cell migration, increased hypoxia-inducible factor (HIF)-1 alpha levels, and elevated resistance to camptothecin in U-87 MG cells compared to cultivation at a pO2 of 19%. This oxygen reduction did not alter 5-ALA-induced intracellular PpIX accumulation. However, physiological pO2 changed the responsiveness of U-87 MG but not of U-251 MG cells to in vitro PDT. Around 20% more irradiation light was required to kill U-87 MG cells at physiological pO2, resulting in reduced lactate dehydrogenase (LDH) release (one- to two-fold) and inhibition of caspase 3 activation. Reduction of oxygen concentration from atmospheric to a more physiological level can influence the malignant behavior and survival of GBM cell lines after in vitro PDT. Therefore, precise oxygen concentration control should be considered when designing and performing experiments with GBM cells.

  13. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Narsireddy A

    2015-11-01

    Full Text Available Amreddy Narsireddy,1 Kurra Vijayashree,2 Mahesh G Adimoolam,1 Sunkara V Manorama,1 Nalam M Rao21CSIR – Indian Institute of Chemical Technology, 2CSIR – Centre for Cellular and Molecular Biology, Hyderabad, IndiaAbstract: Challenges in photodynamic therapy (PDT include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphine [PS] and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine dendrimer (G4 was conjugated with a PS and a nitrilotriacetic acid (NTA group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.Keywords: photodynamic therapy, dendrimers, nanoparticle, targeted delivery, Affibody, xenograft animal model

  14. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    Science.gov (United States)

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  15. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy.

    Science.gov (United States)

    Narsireddy, Amreddy; Vijayashree, Kurra; Adimoolam, Mahesh G; Manorama, Sunkara V; Rao, Nalam M

    2015-01-01

    Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriacetic acid (NTA) group. A peptide specific to human epidermal growth factor 2 was expressed in Escherichia coli with a His-tag and was specifically bound to the NTA group on the dendrimer. Reaction conditions were optimized to result in dendrimers with PS and the NTA at a fractional occupancy of 50% and 15%, respectively. The dendrimers were characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization, absorbance, and fluorescence spectroscopy. Using PS fluorescence, cell uptake of these particles was confirmed by confocal microscopy and fluorescence-activated cell sorting. PS-dendrimers are more efficient than free PS in PDT-mediated cell death assays in HER2 positive cells, SK-OV-3. Similar effects were absent in HER2 negative cell line, MCF-7. Compared to free PS, the PS-dendrimers have shown significant tumor suppression in a xenograft animal tumor model. Conjugation of a PS with dendrimers and with a targeting agent has enhanced photodynamic therapeutic effects of the PS.

  16. Targeted two-photon photodynamic therapy for the treatment of subcutaneous tumors

    Science.gov (United States)

    Spangler, Charles W.; Starkey, Jean R.; Meng, Fanqing; Gong, Aijun; Drobizhev, Mikhail; Rebane, Aleksander; Moss, B.

    2005-04-01

    Photodynamic therapy (PDT) has developed into a mature technology over the past several years, and is currently being exploited for the treatment of a variety of cancerous tumors, and more recently for age-related wet macular degeneration of the eye. However, there are still some unresolved problems with PDT that are retarding a more general acceptance in clinical settings, and thus, for the most part, the treatment of most cancerous rumors still involves some combination of invasive surgery, chemotherapy and radiation treatment, particularly subcutaneous tumors. Currently approved PDT agents are activated in the Visible portion of the spectrum below 700 nm, Laser light in this spectral region cannot penetrate the skin more than a few millimeters, and it would be more desirable if PDT could be initiated deep in the Near-infrared (NIR) in the tissue transparency window (700-1000 nm). MPA Technologies, Inc. and Rasiris, Inc. have been co-developing new porphyrin PDT designed to have greatly enhanced intrinsic two-photon cross-sections (>800 GM units) whose two-photon absorption maxima lie deep in the tissue transparency window (ca. 780-850 nm), and have solubility characteristics that would allow for direct IV injection into animal models. Classical PDT also suffers from the lengthy time necessary for accumulation at the tumor site, a relative lack of discrimination between healthy and diseased tissue, particularly at the tumor margins, and difficulty in clearing from the system in a reasonable amount of time post-PDT. We have recently discovered a new design paradigm for the delivery of our two-photon activated PDT agents by incorporating the porphyrins into a triad ensemble that includes a small molecule targeting agent that directs the triad to over-expressed tumor receptor sites, and a NIR one-photon imaging agent that allows the tracking of the triad in terms of accumulation and clearance rates. We are currently using these new two-photon PDT triads in efficacy

  17. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer.

    Science.gov (United States)

    van Driel, Pieter B A A; Boonstra, Martin C; Slooter, Maxime D; Heukers, Raimond; Stammes, Marieke A; Snoeks, Thomas J A; de Bruijn, Henriette S; van Diest, Paul J; Vahrmeijer, Alexander L; van Bergen En Henegouwen, Paul M P; van de Velde, Cornelis J H; Löwik, Clemens W G M; Robinson, Dominic J; Oliveira, Sabrina

    2016-05-10

    Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has pre-clinically improved tumor selectivity. However, antibodies have long half-lives and relatively poor tissue penetration, which could limit therapeutic efficacy and lead to long photosensitivity. Here, in this feasibility study, we evaluate at the pre-clinical level a recently introduced format of targeted PDT, which employs nanobodies as targeting agents and a water-soluble PS (IRDye700DX) that is traceable through optical imaging. In vitro, the PS solely binds to cells and induces phototoxicity on cells overexpressing the epidermal growth factor receptor (EGFR), when conjugated to the EGFR targeted nanobodies. To investigate whether this new format of targeted PDT is capable of inducing selective tumor cell death in vivo, PDT was applied on an orthotopic mouse tumor model with illumination at 1h post-injection of the nanobody-PS conjugates, as selected from quantitative fluorescence spectroscopy measurements. In parallel, and as a reference, PDT was applied with an antibody-PS conjugate, with illumination performed 24h post-injection. Importantly, EGFR targeted nanobody-PS conjugates led to extensive tumor necrosis (approx. 90%) and almost no toxicity in healthy tissues, as observed through histology 24h after PDT. Overall, results show that these EGFR targeted nanobody-PS conjugates are selective and able to induce tumor cell death in vivo. Additional studies are now needed to assess the full potential of this approach to improving PDT. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer

    NARCIS (Netherlands)

    Van Driel, Pieter B A A; Boonstra, Martin C.; Slooter, Maxime D.; Heukers, Raimond; Stammes, Marieke A.; Snoeks, Thomas J A; De Bruijn, Henriette S.; Van Diest, Paul J.; Vahrmeijer, Alexander L.; Van Bergen En Henegouwen, Paul M P; Van De Velde, Cornelis J H; Löwik, Clemens W G M; Robinson, Dominic J.; Oliveira, Sabrina

    2016-01-01

    Photodynamic therapy (PDT) induces cell death through local light activation of a photosensitizer (PS) and has been used to treat head and neck cancers. Yet, common PS lack tumor specificity, which leads to collateral damage to normal tissues. Targeted delivery of PS via antibodies has

  19. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  20. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy.

    Science.gov (United States)

    Du, Enming; Hu, Xunwu; Roy, Sona; Wang, Peng; Deasy, Kieran; Mochizuki, Toshiaki; Zhang, Ye

    2017-05-30

    The precision and efficacy of photodynamic therapy (PDT) is essential for the treatment of brain tumors because the cancer cells are within or adjacent to the delicate nervous system. Taurine is an abundant amino acid in the brain that serves the central nervous system (CNS). A taurine-modified polypyridyl Ru-complex was shown to have optimized intracellular affinity in cancer cells through accumulation in lysosomes. Symmetrical modification of this Ru-complex by multiple taurine molecules enhanced the efficiency of molecular emission with boosted generation of reactive oxygen species. These characteristic features make the taurine-modified Ru-complex a potentially effective photosensitizer for PDT of target cancer cells, with outstanding efficacy in cancerous brain cells.

  1. Photodynamic inactivation of the models Mycobacterium phlei and Mycobacterium smegmatis in vitro

    Science.gov (United States)

    Bruce-Micah, R.; Gamm, U.; Hüttenberger, D.; Cullum, J.; Foth, H.-J.

    2009-07-01

    Photodynamic inactivation (PDI) of bacterial strains presents an attractive potential alternative to antibiotic therapies. Success is dependent on the effective accumulation in bacterial cells of photochemical substances called photosensitizers, which are usually porphyrins or their derivatives. The kinetics of porphyrin synthesis after treatment with the precursor ALA and the accumulation of the Chlorin e6 and the following illumination were studied. The goal was to estimate effectivity of the destructive power of these PS in vitro in respect of the physiological states of Mycobacteria. So the present results examine the cell destruction by PDI using ALA-induced Porphyrins and Chlorin e6 accumulated in Mycobacterium phlei and Mycobacterium smegmatis, which serve as models for the important pathogens Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium bovis. We could show that both Mycobacterium after ALA and Chlorin e6 application were killed by illumination with light of about 662 nm. A reduction of about 97% could be reached by using a lightdose of 70 mW/cm2.

  2. [Effect of M007 mediated photodynamic therapy on proliferation of human osteosarcoma MG63 cells in vitro].

    Science.gov (United States)

    Zhou, Yu-Kai; Wu, Wen-Zhi; Zhang, Lan; Yang, Chun-Hui; Wang, Yan-Ping

    2012-01-01

    To investigate the effect of a new photosensitizer, M007 mediated photodynamic therapy on proliferation of human osteosarcoma MG63 cells in vitro. Human osteosarcoma MG63 cells were prepared as 1 x 10(6) /mL single-cell suspension, and 1 mL cells were transferred into 60 mL culture dish, then treated with 5 different gradient dosages (0, 2, 4, 8, 16 micromol/L) of M007 followed by photodynamic therapy or dark reaction for 10 min. The survival rate of the cells and the mode of cell death were detected by flow cytometry with the stain of Annexin V-FITC/PI. The effect on proliferation of survival cells was observed by MTT assay and colony-forming assay. M007 mediated photodynamic therapy induced the inactivation of MG63 human osteosarcoma cells in the way of late apoptosis/necrosis or becoming naked nucleus predominately. More than 90% MG63 cells in M007-PDT group were dead under the treatment of 2-16 micromol/L M007. The survival rates of 4-16 micromol/L M007-PDT group were steadily less than 1%. The optical densities did not increase with extension of culture time in 2-8 micromol/L M007-PDT group (P > 0.05). There were 16 survival alive cells found occasionally in 2 micromol/L M007-PDT group, but no colonies found in other groups. M007 mediated photodynamic therapy totally inactivated human osteosarcoma MG63 cells in vitro with the dosage more than 4 micromol/L.

  3. Efficient in vitro photodynamic inactivation of Candida albicans by repetitive light doses

    Science.gov (United States)

    Torres-Hurtado, S. A.; Ramírez Ramírez, J.; Ramos-García, R.; Ramírez-San-Juan, J. C.; Spezzia-Mazzocco, T.

    2018-02-01

    The aim of this study was to compare the effectiveness of Rose Bengal (RB) and Methylene Blue (MB) as photosensitizers (PS) in Photodynamic Inactivation (PDI) on planktonic cultures of Candida albicans, a well-known opportunistic pathogen. RB and MB at concentrations ranging from 0.5 to 60 μM and fluences of 10, 30, 45 and 60 J/cm2 were tested. The light sources consist of an array of 12 led diodes with 30 mW of optical power each; 490-540 nm (green light) to activate RB and 600 -650 nm (red light) to activate MB. We first optimize the in vitro PDI technique using a single light dose and the optimum PS concentration. The novelty of our approach consist in reducing further the PS concentration than the optimum obtained with a single light exposure and using smaller light fluence doses by using repetitive light exposures (two to three times). MB and RB were tested for repetitive exposures at concentrations ranging from 0.1 to 10 μM, with fluences of 3 to 20 J/cm2, doses well below than those reported previously. All experiments were done in triplicate with the corresponding controls; cells without treatment, light control and dark toxicity control. RB-PDI and MB-PDI significantly reduced the number of CFU/mL when compared to the control groups. The results showed that RB was more effective than MB for C. albicans inactivation. Thus, we show that is possible to reduce significantly the amount of PS and light fluence requirements using repetitive light doses of PDI in vitro.

  4. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties.

    Science.gov (United States)

    Thomas, Noémie; Pernot, Marlène; Vanderesse, Régis; Becuwe, Philippe; Kamarulzaman, Ezatul; Da Silva, David; François, Aurélie; Frochot, Céline; Guillemin, François; Barberi-Heyob, Muriel

    2010-07-15

    The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules. 2010 Elsevier Inc. All rights reserved.

  5. An In Vitro Study of the Photodynamic Effectiveness of GO-Ag Nanocomposites against Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fozia Shaheen

    2017-11-01

    Full Text Available Graphene-based materials have garnered significant attention because of their versatile bioapplications and extraordinary properties. Graphene oxide (GO is an extremely oxidized form of graphene accompanied by the functional groups of oxygen on its surface. GO is an outstanding platform on which to pacify silver nanoparticles (Ag NPs, which gives rise to the graphene oxide-silver nanoparticle (GO-Ag nanocomposite. In this experimental study, the toxicity of graphene oxide-silver (GO-Ag nanocomposites was assessed in an in vitro human breast cancer model to optimize the parameters of photodynamic therapy. GO-Ag was prepared using the hydrothermal method, and characterization was done by X-ray diffraction, field-emission scanning electron microscope (FE-SEM, transmission Electron Microscopy (TEM, energy dispersive X-rays Analysis (EDAX, atomic force microscopy and ultraviolet-visible spectroscopy. The experiments were done both with laser exposure, as well as in darkness, to examine the phototoxicity and cytotoxicity of the nanocomposites. The cytotoxicity of the GO-Ag was confirmed via a methyl-thiazole-tetrazolium (MTT assay and intracellular reactive oxygen species production analysis. The phototoxic effect explored the dose-dependent decrease in the cell viability, as well as provoked cell death via apoptosis. An enormously significant escalation of 1O2 in the samples when exposed to daylight was perceived. Statistical analysis was performed on the experimental results to confirm the worth and clarity of the results, with p-values < 0.05 selected as significant. These outcomes suggest that GO-Ag nanocomposites could serve as potential candidates for targeted breast cancer therapy.

  6. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy

    International Nuclear Information System (INIS)

    Chen Bin; Pogue, Brian W.; Hoopes, P. Jack; Hasan, Tayyaba

    2005-01-01

    Purpose: Photodynamic therapy (PDT) can be designed to target either tumor vasculature or tumor cells by varying the drug-light interval. Photodynamic therapy treatments with different drug-light intervals can be combined to increase tumor response by targeting both tumor vasculature and tumor cells. The sequence of photosensitizer and light delivery can influence the effect of combined treatments. Methods and materials: The R3327-MatLyLu rat prostate tumor model was used in this study. Photosensitizer verteporfin distribution was quantified by fluorescence microscopy. Tumor blood flow changes were monitored by laser-Doppler system and tumor hypoxia was quantified by the immunohistochemical staining for the hypoxic marker EF5. The therapeutic effects of PDT treatments were evaluated by the histologic examination and tumor regrowth assay. Results: Fluorescence microscopic studies indicated that tumor localization of verteporfin changed from predominantly within the tumor vasculature at 15 min after injection, to being throughout the tumor parenchyma at 3 h after injection. Light treatment (50 J/cm 2 ) at 15 min after verteporfin injection (0.25 mg/kg, i.v.) induced significant tumor vascular damage, as manifested by tumor blood flow reduction and increase in the tumor hypoxic fraction. In contrast, the vascular effect observed after the same light dose (50 J/cm 2 ) delivered 3 h after administration of verteporfin (1 mg/kg, i.v.) was an initial acute decrease in blood flow, followed by recovery to the level of control. The EF5 staining revealed no significant increase in hypoxic fraction at 1 h after PDT using 3 h drug-light interval. The combination of 3-h interval PDT and 15-min interval PDT was more effective in inhibiting tumor growth than each individual PDT treatment. However, it was found that the combined treatment with the sequence of 3-h interval PDT before 15-min interval PDT led to a superior antitumor effect than the other combinative PDT treatments

  7. Targeted photodynamic therapy of established soft-tissue infections in mice

    Science.gov (United States)

    Gad, Faten; Zahra, Touqir; Hasan, Tayyaba; Hamblin, Michael R.

    2004-06-01

    The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. Although many workers have used photodynamic therapy (PDT) to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We have previously described the first use of PDT to treat excisional wound infections by Gram-negative bacteria in living mice. However these infected wound models used a short time after infection (30 min) before PDT. We now report on the use of PDT to treat an established soft-tissue infection in mice. We used Staphylococcus aureus stably transformed with a Photorhabdus luminescens lux operon (luxABCDE) that was genetically modified to be functional in Gram-positive bacteria. These engineered bacteria emitted bioluminescence allowing the progress of the infection to be monitored in both space and time with a lowlight imaging charged couple device (CCD) camera. One million cells were injected into one or both thigh muscles of mice that had previously been rendered neutropenic by cyclophosphamide administration. Twenty-four hours later the bacteria had multiplied more than one hundred-fold, and poly-L-lysine chlorin(e6) conjugate or free chlorin(e6) was injected into one area of infected muscle and imaged with the CCD camera. Thirty-minutes later red light from a diode laser was delivered as a surface spot or by interstitial fiber into the infection. There was a lightdose dependent loss of bioluminescence (to resistant soft-tissue infections.

  8. In vitro studies of chlorin e6-assisted photodynamic inactivation of Helicobacter pylori

    Science.gov (United States)

    Simon, C.; Mohrbacher, C.; Hüttenberger, D.; Bauer-Marschall, Ina; Krickhahn, C.; Stachon, A.; Foth, H.-J.

    2014-03-01

    Helicobacter pylori (HP), a gram-negative microaerophilic bacterium located in gastric mucosa, plays an im- portant role in gastro carcinogenesis. Due to the increasing emergence of antibiotic resistance, photodynamic inactivation of bacteria presents a new approach to treat bacterial infections, like HP. In vitro experiments were performed to determine the irradiation conditions for a complete inactivation of HP with the photosensitizer Chlorin e6 (Ce6). The HP strain CCUG 38770 (Culture Collection, University of Gothenburg, Sweden) was routinely cultured under microaerophilic conditions, suspended in sodium chloride, incubated with Ce6 and irradiated briefly with red light of the appropriate wavelength of λ = 660 nm. Series of measurements of different Ce6-concentrations (0.1 μM - 100 μM) were carried out, whereby the incubation time was kept constant at 1 min. The absorbed energy dose has been selected in varying the irradiation time (1 s - 300 s) and the power density (4.5 mW/cm2 - 31 mW/cm2 ). Quantification of inactivation was performed by enumeration of the grown colonies. In addition, the accumulation of Ce6 in HP cells was studied more precisely by uorescence spectroscopy. With a Ce6 concentration of 100 μM and a power density of 9 mW cm2 , a 6-log10 reduction in the survival rate of HP was achieved within 30 seconds of irradiation. In conclusion the most relevant factor for the inactivation of HP is the exposure time of irradiation, followed by the concentration of Ce6 and the light intensity. Further studies with HP strains obtained from patient specimens are under current investigation.

  9. Tooth color change caused by photosensitizers after photodynamic therapy: An in vitro study.

    Science.gov (United States)

    Costa, Larissa Menezes; Matos, Felipe de Souza; Correia, Ayla Macyelle de Oliveira; Carvalho, Nayane Chagas; Faria-E-Silva, André Luís; Paranhos, Luiz Renato; Ribeiro, Maria Amália Gonzaga

    2016-07-01

    This study aimed to perform an in vitro evaluation of the effect of photosensitizers used in photodynamic therapy (PDT) on tooth color change when used in combination with conventional endodontic treatment. Forty extracted human mandibular premolars were accessed and underwent root canal therapy and PDT. Photosensitizers were used in accordance with the experimental groups: MB (n=10) - PDT with Methylene Blue at 0.01%; TB (n=10) - PDT with Toluidine Blue at 0.01%; MG (n=10) - PDT with Malachite Green at 0.01%, at the concentration of 0.1mg/mL; and PC (n=10) - positive control, PDT with Endo-PTC cream stained with Methylene Blue at 25%. The samples were irradiated with 660-nm diode laser by means of a 330-μm-diameter optical fiber cable at a power density of 40mW for 120s. After light curing, the photosensitizers were removed from the specimens with 10mL sodium hypochlorite at 1%. A reflectance spectrometer was used for evaluation of color prior to and 60days after the experimental procedure based on the CIE L*a*b* system. According to ANOVA test, there were statistically significant differences between the experimental groups (p=0.003). Tukey's test showed a significant difference between PC and TB (p=0.008), as well as between MG and TB (p=0.009). However, there was no statistically significant difference between PC, MG (p=0.957) and MB (p=0.103). It was concluded that the use of PDT as an adjuvant to root canal therapy, using different photosensitizers, led to color change in tooth structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-11-01

    Full Text Available Abstract Background Photodynamic therapy (PDT is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR, on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors.

  11. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  12. Studies on Preparation of Photosensitizer Loaded Magnetic Silica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Chen Zhi-Long

    2009-01-01

    Full Text Available Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT is an effective, noninvasive, nontoxic therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs were strategically designed and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl-13,17-bis-(3-hydroxypropyl porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite nanoparticles (Fe3O4 and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.

  13. Nicotinamide augments the survival and incidence of apoptosis in glioma cells following photodynamic therapy in vitro

    Science.gov (United States)

    Bisland, Stuart K.; Modi, Nayan; Wilson, Brian C.

    2004-10-01

    The ability to customize photodynamic therapy (PDT) parameters with regards to timing and dosing of administered drug and light can be beneficial in determining target specificity and mode of cell death. Sustained, low level PDT or metronomic PDT (mPDT) may afford enhanced apoptotic cell death. This is of particular importance when considering PDT for the treatment of brain tumors as unlike apoptosis, necrotic cell death often leads to inflammation with increased intracranial pressure. The ability, therefore, to 'fine tune' PDT in favour of apoptosis is paramount. We have studied both acute (one time treatment) PDT (aPDT) and mPDT delivery strategies in combination with nicotinamide (NA) in an attempt to maximize the number of tumor cells dieing by apoptosis. Using several different glioma cell lines (9L, U87-MG and CNS-1) we now confirm that NA provides a dose-dependent (0.1-0.5 mM) increase in apoptotic cells following d-aminolevulinic acid-mediated aPDT or mPDT. Furthermore, using the 9L cell line stably transfected with the luciferase gene, NA was shown to delay the depletion of bioluminscence signal in aPDT and mPDT treated cells, inferring that adenosine triphosphate levels are maintained for longer following NA treatment. NA has previously been reported as promoting neuronal and vascular cell survival in normal brain following a number of neurological insults in which reactive oxygen species are implicated including, stroke, Alzheimer's disease and toxin-induced lesions. It is likely that the effects of NA reflect its capacity as an antioxidant as well as its ability to inhibit poly (adenosine diphosphate-ribose) polymerase-mediated depletion of ATP. Our results indicate that NA may prove therapeutically advantageous when used in combination with PDT treatment of brain tumors.

  14. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    Science.gov (United States)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  15. A Novel Photosensitizer 31,131-phenylhydrazine -Mppa (BPHM and Its in Vitro Photodynamic Therapy against HeLa Cells

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-04-01

    Full Text Available Photodynamic therapy (PDT has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-31,131 bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa, and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm2. Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  16. Photodynamic Therapy (PDT)

    Indian Academy of Sciences (India)

    Photodynamic Therapy (PDT) is a newly emerging modal- ... Porphyrins are a ubiquitous class of naturally occurring heterocyclic ..... mechanism leading to tumor necrosis. ... The vascular endothelium may be the main target of tumor.

  17. Anti-tumor activities of a novel chlorin derivative for photodynamic therapy in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Li-Jun Zhang

    2015-01-01

    Full Text Available In this study, a novel photosensitizer meso-tetra (3-pyrrolidinomethyl-4-methoxyphenyl chlorin (TPMC was reported. It displays a characteristic long wavelength absorption peak at 656 nm and it shows a singlet oxygen quantum yield of 0.48. After light irradiation with 650 nm laser, it can kill Eca-109 and SMMC-7721 cells in vitro (25 mW/cm2, 1.2 to 3.6 J/cm2 and destroy Eca-109 tumor in nude mice (50 mW/cm2, 90 J/cm2. It has the perspective to be developed as a new anti-tumor drug in photodynamic therapy (PDT photodiagnosis, and deserves further investigation.

  18. Enhanced cellular uptake and phototoxicity of Verteporfin-conjugated gold nanoparticles as theranostic nanocarriers for targeted photodynamic therapy and imaging of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Linlin [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384 (China); Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Tae-Hyun; Kim, Hae-Won [Department of Nanobiomedical Science, Dankook University Graduate School, Cheonan 330-714 (Korea, Republic of); Institute of Tissue Regeneration Engineering (ITREN) & College of Dentistry, Dankook University, Cheonan 330-714 (Korea, Republic of); Ahn, Jin-Chul [Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, 330-714 (Korea, Republic of); Kim, So Yeon, E-mail: kimsy@cnu.ac.kr [Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Department of Chemical Engineering Education, College of Education, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2016-10-01

    Activatable theranostics with the capacity to respond to a given stimulus have recently been intensively explored to develop more specific, individualized therapies for various diseases, and to combine diagnostic and therapeutic capabilities into a single agent. In this work, we designed tumor-targeting ligand-conjugated block copolymer-gold nanoparticle (AuNP) conjugates as multifunctional nanocarriers of the hydrophobic photosensitizer (PS), verteporfin (Verte), for simultaneous photodynamic therapy and imaging of cancers. Folic acid (FA)-conjugated block copolymers composed of polyethylene glycol (PEG) and poly-β-benzyl-L-aspartate (PBLA) were attached to citrate-stabilized AuNPs through a bidentate dihydrolipoic acid (DHLA) linker. The resulting AuNP conjugates (FA-PEG-P(Asp-Hyd)-DHLA-AuNPs) were significantly more stable than unmodified AuNPs, and their optical properties were not affected by pH. The hydrophobic PS, Verte, was covalently incorporated onto the surfaces of the AuNP conjugates through a pH-sensitive linkage, which increased the water solubility of Verte from < 1 μg/ml to > 2000 μg/ml. The size of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte as determined by light-scattering measurements was about 110.3 nm, and FE-SEM and FE-TEM images showed that these nanoparticles were spherical and showed adequate dispersivity after modification. In particular, an in vitro cell study revealed high intracellular uptake of FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte (about 98.62%) and marked phototoxicity after laser irradiation compared with free Verte. These results suggest that FA-PEG-P(Asp-Hyd)-DHLA-AuNPs-Verte has great potential as an effective nanocarrier for dual imaging and photodynamic therapy. - Highlights: • We designed theranostic nanocarriers for photodynamic therapy and imaging of cancers. • AuNP conjugates had a spherical shape and a narrow size distribution with a mean diameter of 110.3 nm. • Cellular uptake of free Verte was 18.86%, whereas that of Au

  19. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    Science.gov (United States)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  20. Photodynamic therapy and imaging based on tumor-targeted nanoprobe, polymer-conjugated zinc protoporphyrin

    Czech Academy of Sciences Publication Activity Database

    Fang, J.; Liao, L.; Yin, H.; Nakamura, H.; Šubr, Vladimír; Ulbrich, Karel; Maeda, H.

    2015-01-01

    Roč. 2015, č. 4 (2015), s. 1-13 ISSN 2056-5623 R&D Projects: GA ČR(CZ) GAP301/12/1254 Grant - others:AV ČR(CZ) AP0802 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61389013 Keywords : fluorescent nanoprobe * photodynamic therapy * theranostic nanomedicine Subject RIV: CD - Macromolecular Chemistry

  1. Photodynamic effect of photosensitizer-loaded hollow silica nanoparticles for hepatobiliary malignancies: an in vitro and in vivo study

    Science.gov (United States)

    Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying

    2014-03-01

    Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.

  2. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    Science.gov (United States)

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  3. Photodynamic Therapy Combined with Terbinafine Against Chromoblastomycosis and the Effect of PDT on Fonsecaea monophora In Vitro

    Science.gov (United States)

    Hu, Yongxuan; Huang, Xiaowen; Lu, Sha; Hamblin, Michael R.; Mylonakis, Eleftherios; Zhang, Junmin

    2014-01-01

    Chromoblastomycosis, a chronic fungal infection of skin and subcutaneous tissue caused by dematiaceous fungi, is associated with low cure and high relapse rates. Among all factors affecting clinical outcome, etiological agents have an important position. In southern China, Fonsecaea pedrosoi and Fonsecaea monophora are main causative agents causing Chromoblastomycosis. We treated one case of chromoblastomycosis by photodynamic therapy (PDT) of 5-aminolevulinic acid (ALA) irradiation combined with terbinafine 250 mg a day. The lesions were improved after two sessions of ALA-PDT treatment, each including nine times, at an interval of 1 week, combined with terbinafine 250 mg/day oral, and clinical improvement could be observed. In the following study, based on the clinical treatment, the effect of PDT and antifungal drugs on this isolate was detected in vitro. It showed sensitivity to terbinafine, itraconazole or voriconazole, and PDT inhibited the growth. Both the clinic and experiments in vitro confirm the good outcome of ALA-PDT applied in the inhibition of F. monophora. It demonstrated that combination of antifungal drugs with ALA-PDT arises as a promising alternative method for the treatment of these refractory cases of chromoblastomycosis. PMID:25366276

  4. Photodynamic actions of indocyanine green and trypan blue on human lens epithelial cells in vitro.

    Science.gov (United States)

    Melendez, Robert F; Kumar, Neeru; Maswadi, Saher M; Zaslow, Kenneth; Glickmank, Randolph D

    2005-07-01

    The purpose of this study was to evaluate the toxicity and photodynamic activity of indocyanine green (ICG) and trypan blue (TryB) on cultured human lensepithelial cells (LECs). Experimental study. Lens epithelial cell viability was assessed after treatment with ICG and TryB concentrations ranging from 0.025 to 5.0 mg/ml, and exposure to 806 nm diode laser. At ICG concentrations below 0.5 mg/ml, there was > or =75% cell viability; at higher ICG concentrations there was dose-dependent cytotoxicity in addition to loss of cellular viability due to ICG photosensitization. TryB had little cytotoxicity to the LECs: >80% cells were viable irrespective of the dye concentration or laser treatment. These data indicate that ICG may have application as a photosensitizer in the selective eradication of residual LECs after cataract surgery to reduce the incidence of posterior capsule opacification.

  5. The influence of photodynamic therapy parameters on the inactivation of Candida spp: in vitro and in vivo studies

    International Nuclear Information System (INIS)

    Alves, F; Mima, E G; Jorge, J H; Pavarina, A C; Dovigo, L N; Bagnato, V S; De Souza Costa, C A

    2014-01-01

    The influence of parameters of photodynamic therapy (PDT), such as pre-irradiation time (PIT), on the inactivation of Candida spp. was assessed in vitro and in vivo. Suspensions of Candida albicans, Candida tropicalis, Candida krusei and Candida glabrata were treated with Photogem ® , incubated for 5, 10 or 15 min and illuminated with a blue LED light. Colonies were cultivated and log values of CFU ml −1 were analyzed by ANOVA and Kruskall–Wallis test. For in vivo evaluation, immunosuppressed mice were inoculated with C. albicans. PDT was performed on the dorsum of the tongue by topical administration of Photogem ®  and illumination after 5, 10 or 15 min. C. albicans was recovered from the tongue and the number of CFU ml −1 was analyzed by ANOVA and Tukey test. Animals were killed and the tongues were surgically removed for histological analysis. Susceptibility of Candida spp. suspensions to PDT was in decreasing order: C. albicans  = C. tropicalis  < C. krusei  < C. glabrata. No significant difference was observed among the different PIT (p > 0.05), both in vivo and in vitro. A significant reduction (p < 0.05) of log(CFU ml −1 ) of C. albicans from tongues of mice was observed with no adverse effects in the tissue. PDT was effective to inactivate in vitroCandida spp. and for reduction of C. albicans in vivo, independently of the PIT used. (paper)

  6. A pre-protective strategy for precise tumor targeting and efficient photodynamic therapy with a switchable DNA/upconversion nanocomposite.

    Science.gov (United States)

    Yu, Zhengze; Ge, Yegang; Sun, Qiaoqiao; Pan, Wei; Wan, Xiuyan; Li, Na; Tang, Bo

    2018-04-14

    Tumor-specific targeting based on folic acid (FA) is one of the most common and significant approaches in cancer therapy. However, the expression of folate receptors (FRs) in normal tissues will lead to unexpected targeting and unsatisfactory therapeutic effect. To address this issue, we develop a pre-protective strategy for precise tumor targeting and efficient photodynamic therapy (PDT) using a switchable DNA/upconversion nanocomposite, which can be triggered in the acidic tumor microenvironment. The DNA/upconversion nanocomposite is composed of polyacrylic acid (PAA) coated upconversion nanoparticles (UCNPs), the surface of which is modified using FA and chlorin e6 (Ce6) functionalized DNA sequences with different lengths. Initially, FA on the shorter DNA was protected by a longer DNA to prevent the bonding to FRs on normal cells. Once reaching the acidic tumor microenvironment, C base-rich longer DNA forms a C-quadruplex, resulting in the exposure of the FA groups and the bonding of FA and FRs on cancer cell membranes to achieve precise targeting. Simultaneously, the photosensitizer chlorin e6 (Ce6) gets close to the surface of UCNPs, enabling the excitation of Ce6 to generate singlet oxygen ( 1 O 2 ) under near infrared light via Förster resonance energy transfer (FRET). In vivo experiments indicated that higher tumor targeting efficiency was achieved and the tumor growth was greatly inhibited through the pre-protective strategy.

  7. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities

    Directory of Open Access Journals (Sweden)

    Malini Olivo

    2010-05-01

    Full Text Available Photodynamic therapy (PDT has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS, which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS, that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body’s immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.

  8. Photodynamic dosimetry in the treatment of periodontitis

    Science.gov (United States)

    Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.

    2009-06-01

    Photodynamic therapy has been demonstrated to effectively kill human periopathogens in vitro. However, the translation of in vitro work to in vivo clinical efficacy has been difficult due to the number of variables present in any given patient. Parameters such as photosensitizer concentration, duration of light therapy and amount of light delivered to the target tissue all play a role in the dose response of PDT in vivo. In this 121 patient study we kept all parameters the same except for light dose which was delivered at either 150 mW or 220 mW. This clearly demonstrated the clinical benefits of a higher light dose in the treatment of periodontitis.

  9. Photodynamic therapy in Pythium insidiosum - an in vitro study of the correlation of sensitizer localization and cell death.

    Directory of Open Access Journals (Sweden)

    Layla Pires

    Full Text Available Pythiosis is an infectious disease caused by Pythium insidiosum, a fungus-like organism. Due to the lack of ergosterol on its cell membrane, antibiotic therapy is ineffective. The conventional treatment is surgery, but lesion recurrence is frequent, requiring several resections or limb amputation. Photodynamic therapy uses photo-activation of drugs and has the potential to be an attractive alternative option. The in vitro PDT response on the growing of Pythium insidiosum culture was investigated using three distinct photosensitizers: methylene blue, Photogem, and Photodithazine. The photosensitizer distribution in cell structures and the PDT response for incubation times of 30, 60, and 120 minutes were evaluated. Methylene blue did not penetrate in the pathogen's cell and consequently there was no PDT inactivation. Photogem showed heterogenous distribution in the hyphal structure with small concentration inside the cells. Porphyrin-PDT response was heterogenous, death and live cells were observed in the treated culture. After 48 hours, hyphae regrowth was observed. Photodithazine showed more homogenous distribution inside the cell and with the specific intracellular localization dependent on incubation time. Photodithazine first accumulates in intracellular vacuoles, and at incubation times of one hour, it is located at all cell membranes. Higher inhibition of the growing rates was achieved with Photodithazine -PDT, over 98%. Our results showed that the photosensitizers that cross more efficiently the Pythium insidiosum membranes are able to cause extensive damage to the organism under illumination and therefore, are the best options for clinical treatment.

  10. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    Science.gov (United States)

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  11. Potassium iodide potentiates antimicrobial photodynamic inactivation mediated by Rose Bengal: in vitro and in vivo studies

    Science.gov (United States)

    Wen, Xiang; Zhang, Xiaoshen; Szewczyk, Grzegorz; ElHussien, Ahmed; Huang, Ying-Ying; Sarna, Tadeusz; Hamblin, Michael R.

    2018-02-01

    Rose Bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation. While highly active against Gram-positive bacteria, RB is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the non-toxic salt potassium iodide (100mM) potentiates green light (540nm)-mediated killing by up to six extra logs with Gramnegative bacteria Escherichia coli and Pseudomonas aeruginosa,Gram-positive methicillin resistant Staphylococcus aureus, and fungal yeast Candida albicans. The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals, finally forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing killing in three different scenarios: (1) cells+RB+KI are mixed together then illuminated with green light; (2) cells+RB are centrifuged then KI added then green light; (3) RB+KI+green light then cells added after light. We showed that KI could potentiate RBPDT in a mouse model of skin abrasions infected with bioluminescent P.aeruginosa.

  12. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.; Ruppel, M. E.; Smith, R. J.; Tsang, T.; Miller, L. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.

  13. Use of photodynamic inactivation for in vitro reduction of prevalent bacteria in Fournier's Gangrene

    Directory of Open Access Journals (Sweden)

    Nalisson Marques Pereira

    Full Text Available ABSTRACT Fournier's Gangrene (FG is an infectious disease caused by several synergic microbes, with high morbidity and mortality rates; therefore, the search for new less invasive and mutilating treatments, with faster recovery, has been proposed. Surgical intervention, the use of several systemic and topic antibiotics, and hyperbaric oxygen therapy are currently the best approach for the treatment of these patients. The use of Photodynamic Inactivation (PDI aims to lower morbidity and mortality, by reducing bacterial microbiota and speeding wound healing. In the present study, viable bacteria were separated in four groups: Group L-/F- (no irradiation with red laser and absence of methylene blue photosensitizer, Group L-/F+ (no irradiation with red laser and presence of methylene blue, Group L+/F- (irradiation with red laser and absence of methylene blue and L+/F+ (irradiation with red laser associated to methylene blue. In all groups, exposure time to treatment was 5, 10 and 15 minutes. The concentration of methylene blue photosensitizer was 0.1mg/L, and the dose of red laser (660nm wave length was 176.9mW/cm2. Following irradiation, the reduction of number of bacteria was evaluated, and the results were expressed in colony forming units (CFU and as exponential reduction. As the main results, in the L+/F+ group, there were no Clostridium perfringens and Staphylococcus aureus CFUs and there was a reduction of Escherichia coli that was not observed in the other groups.

  14. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    Science.gov (United States)

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  15. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy

    Czech Academy of Sciences Publication Activity Database

    Makhseed, S.; Macháček, M.; Alfadly, W.; Tuhl, A.; Vinodh, M.; Šimůnek, T.; Nováková, V.; Kubát, Pavel; Rudolf, E.; Zimčík, P.

    2013-01-01

    Roč. 49, č. 95 (2013), s. 11149-11151 ISSN 1359-7345 Institutional support: RVO:61388955 Keywords : photosensitizers * in vitro studies * substituents Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.718, year: 2013

  16. Necrosis and apoptosis pathways of cell death at photodynamic treatment in vitro as revealed by digital holographic microscopy

    Science.gov (United States)

    Semenova, I. V.; Belashov, A. V.; Belyaeva, T. N.; Kornilova, E. S.; Salova, A. V.; Zhikhoreva, A. A.; Vasyutinskii, O. S.

    2018-02-01

    Monitoring of variations in morphological characteristics of cultured HeLa cells after photodynamic treatment with Radachlorin photosensitizer is performed by means of digital holographic microscopy. The observed dose-dependent post-treatment variations of phase shift evidence threshold effect of photodynamic treatment and allow for distinguishing between necrotic or apoptotic pathways of cell death. Results obtained by holographic microscopy were confirmed by means of far-field optical microscopy and confocal fluorescence microscopy with commonly used test assays.

  17. Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo.

    Science.gov (United States)

    Rineh, Ardeshir; Bremner, John B; Hamblin, Michael R; Ball, Anthony R; Tegos, George P; Kelso, Michael J

    2018-02-24

    Resistance of bacteria to antibiotics is a public health concern worldwide due to the increasing failure of standard antibiotic therapies. Antimicrobial photodynamic inactivation (aPDI) is a promising non-antibiotic alternative for treating localized bacterial infections that uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species and kill microbes. Phenothiazinium photosensitizers like methylene blue (MB) and toluidine blue O are hydrophobic cations that are naturally expelled from bacterial cells by multidrug efflux pumps, which reduces their effectiveness. We recently reported the discovery of a NorA efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en-MB that shows enhanced photodynamic inactivation of the Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) relative to MB, both in vitro and in vivo. Here, we report the surprising observation that INF55-(Ac)en-MB and two related hybrids bearing the NorA efflux pump inhibitors INF55 and INF271 also show enhanced aPDI activity in vitro (relative to MB) against the Gram-negative bacteria Escherichia coli and Acinetobacter baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed superior effects to MB in murine aPDI infection models. The findings motivate wider exploration of aPDI with EPI-MB hybrids against Gram-negative pathogens and more detailed studies into the molecular mechanisms underpinning their activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Mai B

    2017-08-01

    Full Text Available Bingjie Mai,1,2 Yiru Gao,1,2 Min Li,1,2 Xiaobing Wang,1,2 Kun Zhang,1,2 Quanhong Liu,1,2 Chuanshan Xu,3 Pan Wang1,2 1Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, 2National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, 3School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China Background and objectives: Antibiotic resistance has emerged as one of the most important determinants of outcome in patients with serious infections, along with the virulence of the underlying pathogen. Photodynamic antimicrobial chemotherapy (PACT has been proposed as an alternative approach for the inactivation of bacteria. This study aims to evaluate the antibacterial effect of sinoporphyrin sodium (DVDMS-mediated PACT on Staphylococcus aureus and multidrug resistant S. aureus in vitro and in vivo.Materials and methods: Bacteria were incubated with DVDMS and exposed to treatment with light. After PACT treatment, colony-forming units were counted to estimate the bactericidal effect. Intracellular reactive oxygen-species production was detected by flow cytometry. Flow cytometry and fluorescence-microscopy detection of bacterial cell-membrane permeability. Enzyme-linked immunosorbent assays were used to determine expression of VEGF, TGFβ1, TNFα, IL6, and bFGF factors in burn infection.Results: DVDMS-PACT effectively killed bacterial proliferation. Intracellular ROS levels were enhanced obviously in the PACT-treatment group. SYTO 9 and propidium iodide staining showed a decrease in the ratio of green:red fluorescence intensity in the PACT-treatment group in comparison to the control group. Enzyme-linked immunosorbent-assay results revealed that in the healing process, the expression of bFGF, TGFβ1, and VEGF in the treatment group were higher than in the control group

  19. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro

    DEFF Research Database (Denmark)

    Labanauskiene, J; Gehl, J; Didziapetriene, J

    2007-01-01

    14, emitted light from 660 nm). The fluence rate at the level of the cells was 3 mW/m(2). Cytotoxic effect on cells viability was evaluated using MTT assay. Our in vitro data showed that the cytotoxicity of PDT in combination with EP increases fourfold on the average. Based on the results we suggest...... tumor therapy (PDT)--the cancer treatment method based on the use of photosensitizers that localize selectively in malignant tumors and become cytotoxic when exposed to light, and EP, with the aim to enhance the delivery of photosensitizers into the tumor and therefore to increase the efficacy of PDT....... Thus, the aim of study was to evaluate the cytotoxic effect of PDT in combination with EP. A Chinese hamster lung fibroblast cell line (DC-3F) was used. The cells were affected by photosensitizers chlorin e(6) (C e(6)) at the dose of 10 mug/ml and aluminium phthalocyanine tetrasulfonate (AlPcS4...

  20. In vitro photodynamic antimicrobial chemotherapy in dentine contaminated by cariogenic bacteria

    Science.gov (United States)

    Melo, M. A. S.; de-Paula, D. M.; Lima, J. P. M.; Borges, F. M. C.; Steiner-Oliveira, C.; Nobre-Dos-Santos, M.; Zanin, I. C. J.; Barros, E. B.; Rodrigues, L. K. A.

    2010-06-01

    The development of a method to ensure bacterial-free substrates without extensive cavity preparation would be highly useful to dentistry, since there is no currently available effective method for killing residual bacteria in dentinal tissue. This randomized in vitro study determined parameters for using toluidine blue O (TBO) with a light-emitting diode (LED) for dentine caries disinfection and monitored intrapulpal/periodontal temperatures during irradiation. Occlusal human dentine slabs were immersed in Streptococcus mutans culture for demineralization induction. Slabs were allocated to 10 groups ( n = 15), which were treated with 0.1 mg ml-1 TBO with 5 min of incubation time or 0.9% NaCl solution for 5, 10 or 15 min, and submitted or not to irradiation for 5, 10 or 15 min (47, 94, and 144 J/cm2). Before and after treatments, dentine samples were analyzed with regard to S. mutans counts. In whole teeth, temperature in pulp and periodontium was measured by thermocouples during irradiation. Kruskal-Wallis/Student-Newman-Keuls, and ANOVA/Tukey test were respectively utilized to compare log reductions and temperature rises between groups. Bacterial reduction was observed when dentine was exposed to both TBO and LED at all irradiation times, as well as to LED alone for 10 and 15 min. Temperature increases lower than 2°C were observed for either pulp or periodontium. Concluding, LED combined with TBO is a safe and effective approach for dentine caries disinfection. Nevertheless, additional studies should be conducted to determine the influence of the irradiation in S. mutans viability in dentinal surface/tubules.

  1. In vitro study of the photodynamic antimicrobial therapy (PACT) against promastigotes form of the leishmania (viannia) braziliensis: in vitro study

    Science.gov (United States)

    Barbosa, Artur F. S.; Sangiorgi, Bruno B.; Galdino, Suely L.; Pitta, Ivan R.; Barral-Netto, Manoel; Pinheiro, Antônio L. B.

    2013-03-01

    Leishmaniasis, a protozoan parasitic disease that remains a major worldwide health problem with high endemicity in developing countries. Treatment of cutaneous Leishmaniasis (CL) should be decided by the clinical lesions, etiological species and its potential to develop into mucosal Leishmaniasis. High cost, systemic toxicity, and diminished efficacy due to development of parasite resistance are the serious drawbacks of current treatment options. Thus, identifying new, effective, and safer anti-leishmanial drug(s) is of paramount importance. The aim of this study was to verify the effectiveness of PACT in vitro, as a new technique for the treatment of Leishmaniasis. For this, semiconductor laser (λ = 660nm, 40mW, 8.4J/cm2, CW) associated to phenothiazine's derivatives (5 and 10 μg/ml, TBO, Methylene Blue or Phenothiazine) on the promastigotes form of Leishmania braziliensis in a single session was used. Viability of the parasites was assessed in quadruplicates of each group. The samples were removed and analyzed in a hemocytometer 72h after PACT. We found an important decrease in the number of viable parasites on all treated groups in comparison to their controls. The results of present study showed significant percentage of lethality (above 92%) of the protocol. The 98.33% of lethality was achieved with 10 μg/ml of FTZ. No lethality was seen on groups treated neither with laser nor with each compounds separately. The results are promising and indicative that the use of PACT may be a powerful treatment of Leishmaniasis when compared to already available ones.

  2. Laser Doppler line scanner for monitoring skin perfusion changes of port wine stains during vascular-targeted photodynamic therapy

    Science.gov (United States)

    Chen, Defu; Ren, Jie; Wang, Ying; Gu, Ying

    2014-11-01

    Vascular-targeted photodynamic therapy (V-PDT) is known to be an effective therapeutic modality for the treatment of port wine stains (PWS). Monitoring the PWS microvascular response to the V-PDT is crucial for improving the effectiveness of PWS treatment. The objective of this study was to use laser Doppler technique to directly assess the skin perfusion in PWS before and during V-PDT. In this study, 30 patients with PWS were treated with V-PDT. A commercially laser Doppler line scanner (LDLS) was used to record the skin perfusion of PWS immediately before; and at 1, 3, 5, 7, 10, 15 and 20 minutes during V-PDT treatment. Our results showed that there was substantial inter- and intra-patient perfusion heterogeneity in PWS lesion. Before V-PDT, the comparison of skin perfusion in PWS and contralateral healthy control normal skin indicated that PWS skin perfusion could be larger than, or occasionally equivalent to, that of control normal skin. During V-PDT, the skin perfusion in PWS significantly increased after the initiation of V-PDT treatment, then reached a peak within 10 minutes, followed by a slowly decrease to a relatively lower level. Furthermore, the time for reaching peak and the subsequent magnitude of decrease in skin perfusion varied with different patients, as well as different PWS lesion locations. In conclusion, the LDLS system is capable of assessing skin perfusion changes in PWS during V-PDT, and has potential for elucidating the mechanisms of PWS microvascular response to V-PDT.

  3. A Novel Photosensitizer 3¹,13¹-phenylhydrazine -Mppa (BPHM) and Its in Vitro Photodynamic Therapy against HeLa Cells.

    Science.gov (United States)

    Li, Wenting; Tan, Guanghui; Cheng, Jianjun; Zhao, Lishuang; Wang, Zhiqiang; Jin, Yingxue

    2016-04-29

    Photodynamic therapy (PDT) has attracted widespread attention due to its potential in the treatment of various cancers. Porphyrinic pyropheophorbide-a (PPa) has been shown to be a potent photosensitizer in PDT experiments. In this paper, a C-3¹,13¹ bisphenylhydrazone modified methyl pyropheophorbide-a (BPHM) was designed and synthesized with the consideration that phenylhydrazone structure may extend absorption wavelength of methyl pyro-pheophorbide-a (Mppa), and make the photosensitizer potential in deep tumor treatment. The synthesis, spectral properties and in vitro photodynamic therapy (PDT) against human HeLa cervical cancer cell line was studied. Methyl thiazolyl tetrazolium (MTT) assay showed the title compound could achieve strong inhibition of cervical cancer cell viability under visible light (675 nm, 25 J/cm²). Cell uptake experiments were performed on HeLa cells. Morphological changes were examined and analyzed by fluorescent inverted microscope. In addition, the mechanism of the photochemical processes of PDT was investigated, which showed that the formation of singlet oxygen after treatment with PDT played a moderate important role.

  4. Photodynamic efficacy of liposome-delivered hypocrellin B in microvascular endothelial cells in vitro and chicken combs in vivo: a potential photosensitizer for port wine stain

    International Nuclear Information System (INIS)

    Chen, H X; Zou, X B; Yang, Z F; Zhu, J G; Gu, Y; Deng, H; Zhao, J Q

    2013-01-01

    Photodynamic therapy (PDT) has been proved a successful method for port wine stain (PWS), but the prolonged skin photosensitivity induced by the photosensitizers used currently seriously limits the clinical application of PDT. In this study, we investigate the feasibility of hypocrellin B (HB), a promising second-generation photosensitizer for the treatment of PWS. The photodynamic effect of liposome-delivered HB was evaluated in vitro with microvascular endothelial cells (MEC) and in vivo with chicken combs. The dark cytotoxicity and photocytotoxicity of liposomal HB in MEC were evaluated using the MTT assay. Gross and histological examinations were performed to investigate the selective occlusion of the superficial dermal microvasculature in the chicken comb. The result showed that photocytotoxicity of liposomal HB was dependent on both light dose and drug concentration. PDT with HB (0.5–1 mg kg −1 ) and a light dose of 120 J cm −2 showed selective destruction of the superficial dermal microvasculature of the chicken comb, leaving the overlying epidermis intact. This is the first study to investigate the potential efficacy of HB-PDT as a novel modality for the treatment of PWS. These findings suggest that liposomal HB is a safe and effective photosensitizer for PWS. (paper)

  5. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  6. Photodynamic efficacy of hypericin targeted by two delivery techniques to hepatocellular carcinoma cells.

    Science.gov (United States)

    Fadel, Maha; Kassab, Kawser; Youssef, Tareq

    2010-09-01

    The photocytotoxic effect of hypericin (Hyp) targeted by two different delivery techniques, namely, liposomes and anti-hepatocyte specific antigen (anti-HSA) was investigated. Optical absorption and steady-state fluorescence were used to analyze the conjugation of Hyp with anti-HSA model and to evaluate the encapsulation capacity and drug release in a liposome model. Particle size and thermal analysis of the prepared liposomes were performed using laser-light scattering and differential scanning calorimetry (DSC), respectively. Viability study of HepG2 cells exposed to Hyp in the two delivery systems, in the dark and following visible light irradiation, was performed in comparison to free Hyp. The intracellular uptake and localization of Hyp in HepG2 cells were analyzed by means of spectrofluorometry and fluorescence microscopy. Spectroscopic measurements demonstrated that Hyp binds to anti-HSA in its monomeric form. The photocytotoxic effect of Hyp depended clearly on the form of Hyp administered, either in free form, loaded into liposomes or conjugated with anti-HSA. While liposomes loaded with Hyp (Lip-Hyp) did not induce significant phototoxicity, both free Hyp or anti-HSA-Hyp inflicted substantial cell mortality, after photoirradiation. The intracellular uptake of Lip-Hyp by HepG2 cells was estimated to be 20% less compared to free Hyp or anti-HSA-Hyp. In spite of the equal uptake of both free Hyp and anti-HSA-Hyp, HepG2 cells demonstrated a relatively higher mortality with anti-HSA-Hyp compared to free Hyp.

  7. Photodynamic therapy in endodontics: a literature review.

    Science.gov (United States)

    Trindade, Alessandra Cesar; De Figueiredo, José Antônio Poli; Steier, Liviu; Weber, João Batista Blessmann

    2015-03-01

    Recently, several in vitro and in vivo studies demonstrated promising results about the use of photodynamic therapy during root canal system disinfection. However, there is no consensus on a standard protocol for its incorporation during root canal treatment. The purpose of this study was to summarize the results of research on photodynamic therapy in endodontics published in peer-reviewed journals. A review of pertinent literature was conducted using the PubMed database, and data obtained were categorized into sections in terms of relevant topics. Studies conducted in recent years highlighted the antimicrobial potential of photodynamic therapy in endodontics. However, most of these studies were not able to confirm a significant improvement in root canal disinfection for photodynamic therapy as a substitute for current disinfection methods. Its indication as an excellent adjunct to conventional endodontic therapy is well documented, however. Data suggest the need for protocol adjustments or new photosensitizer formulations to enhance photodynamic therapy predictability in endodontics.

  8. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  9. Effects of scavengers of reactive oxygen and radical species on cell survival following photodynamic treatment in vitro: comparison to ionizing radiation

    International Nuclear Information System (INIS)

    Henderson, B.W.; Miller, A.C.

    1986-01-01

    The effects of various scavengers of reactive oxygen and/or radical species on cell survival in vitro of EMT6 and CHO cells following photodynamic therapy (PDT) or gamma irradiation were compared. None of the agents used exhibited major direct cytotoxicity. Likewise, none interfered with cellular porphyrin uptake, and none except tryptophan altered singlet oxygen production during porphyrin illumination. The radioprotector cysteamine (MEA) was equally effective in reducing cell damage in both modalities. In part, this protection seems to have been induced by oxygen consumption in the system due to MEA autoxidation under formation of H 2 O 2 . The addition of catalase, which prevents H 2 O 2 buildup, reduced the effect of MEA to the same extent in both treatments. Whether the remaining protection was due to MEA's radical-reducing action or some remaining oxygen limitation is unclear. The protective action of MEA was not mediated by a doubling of cellular glutathione levels, since addition of buthionine sulfoximine, which prevented glutathione increase, did not diminish the observed MEA protection. The hydroxyl radical scavenger mannitol also afforded protection in both, but it was approximately twice as effective in gamma irradiation as in PDT. This is consistent with the predominant role of OH radicals in ionizing radiation damage and their presumed minor involvement in PDT damage. Superoxide dismutase, a scavenger of O 2 , acted as a radiation protector but was not significantly effective in PDT. Catalase, which scavenges H 2 O 2 , was ineffective in both modalities. Tryptophan, an efficient singlet oxygen scavenger, reduced cell death through PDT by several orders of magnitude while being totally ineffective in gamma irradiation. These data reaffirm the predominant role of 1O2 in the photodynamic cell killing but also indicate some involvement of free radical species

  10. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study.

    Science.gov (United States)

    Vilela, Simone Furgeri Godinho; Junqueira, Juliana Campos; Barbosa, Junia Oliveira; Majewski, Marta; Munin, Egberto; Jorge, Antonio Olavo Cardoso

    2012-06-01

    The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms. The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 μM. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis. The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 μM methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 μM toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 μM malachite green, with microbial reductions of 1.6-4.0 log(10). Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The in vitro effect of Antimicrobial Photodynamic Therapy on dental microcosm biofilms from partially erupted permanent molars: A pilot study.

    Science.gov (United States)

    de Oliveira, Fabiana Sodré; Cruvinel, Thiago; Cusicanqui Méndez, Daniela Alejandra; Dionísio, Evandro José; Rios, Daniela; Machado, Maria Aparecida Andrade Moreira

    2018-03-01

    Antimicrobial Photodynamic Therapy (aPDT) could enhance the prevention of dental caries lesions in pits and fissures of partially erupted molars, by killing microorganisms from complex dental biofilms. This pilot study aimed to evaluate the effect of Antimicrobial Photodynamic Therapy (aPDT) on the viability of specific microorganism groups of dental microcosm biofilms from occlusal surfaces of first permanent molars in eruption. Dental microcosm biofilms grown on bovine enamel blocks, from dental plaque collected on occlusal surfaces of a partially erupted lower right first permanent molar, with McBain medium plus 1% sucrose in anaerobic condition at 37 °C for 72 h. The experiments were performed in eight groups: L-P- = no treatment (control), L18.75P- = 18.75 J/cm 2 LED, L37.5P- = 37.5 J/cm 2 LED, L75P- = 75 J/cm 2 LED, L-P+ = 200 mM TBO, L18.75P+ = 200 mM TBO + 18.75 J/cm 2 LED, L37.5P+ = 200 mM TBO + 37.5 J/cm 2 LED, and L75P+ = 200 mM TBO + 75 J/cm 2 LED. The counts of total microorganisms, total streptococci and mutans streptococci were determined on selective media agar plates by colony-forming units per mL. The log-transformed counts were analyzed by Kruskal-Wallis and post-hoc Dunn's test (P < 0.05). The counts of all microorganisms treated in the group L75P+ were statistically lower than those treated in L-P-. The aPDT promoted a significant reduction of microorganisms, with a trend of dose-dependent effect. TBO-mediated aPDT was effective in reducing the viability of specific microbial groups in dental microcosm biofilms originated from occlusal of permanent molars in eruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Efficacy of the photodynamic antimicrobial therapy (PACT) with the use of methylene blue associated with the λ660nm laser in Leishmania (Leishmania) amazonesis: in vitro study

    Science.gov (United States)

    Pires-Santos, Gustavo M.; Marques, Aparecida M. C.; Alves, Eliomara S. S.; Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Rosa, Cristiane B.; Colombo, Fabio; Pinheiro, Antônio L. B.; Vannier-Santos, Marcos A.

    2012-03-01

    The present studied evaluated the in vitro effects of PDT on Leishmania (Leishmania) amazonensis promastigotes. For this examination L. amazonensis promastigotes, stain Josefa, were used and maintained in Warren media supplement with fetal bovine serum at 26°C for 96 hours. A viability curve was accomplished using different concentrations of methylene blue photosensitizer associated to red laser light in order to obtain the most effective interaction to inhibit the parasite's growth. Two pre-irradiation periods, 5 and 30 minutes, were evaluated and the promastigotes were counted by colorimetry. On fluorescence microscopy the autophagic processes and reactive oxygen species were detected. Promastigotes treated with Photodynamic Therapy (PDT) by concentrations of 5 and 0,315ug/mL, presented cellular proliferation inhibition when compared to the control. In the first condition, the cells had structural alterations such as truncated cells, cells with two flagella, bleb formation and cells body deformation, while none of these modifications could be visualized in the control group. When analyzed through fluorescence microscopy, the promastigotes treated were positives for free radicals immediately after light application and also 1 hour after treatment presenting signs of autophagia. PDT on L. (L.) amazonensis is effective causing alterations that can help elucidate the mechanisms of the parasite's death when treated with methilene

  13. Attaching the NorA Efflux Pump Inhibitor INF55 to Methylene Blue Enhances Antimicrobial Photodynamic Inactivation of Methicillin-Resistant Staphylococcus aureus in Vitro and in Vivo.

    Science.gov (United States)

    Rineh, Ardeshir; Dolla, Naveen K; Ball, Anthony R; Magana, Maria; Bremner, John B; Hamblin, Michael R; Tegos, George P; Kelso, Michael J

    2017-10-13

    Antimicrobial photodynamic inactivation (aPDI) uses photosensitizers (PSs) and harmless visible light to generate reactive oxygen species (ROS) and kill microbes. Multidrug efflux systems can moderate the phototoxic effects of PSs by expelling the compounds from cells. We hypothesized that increasing intracellular concentrations of PSs by inhibiting efflux with a covalently attached efflux pump inhibitor (EPI) would enhance bacterial cell phototoxicity and reduce exposure of neighboring host cells to damaging ROS. In this study, we tested the hypothesis by linking NorA EPIs to methylene blue (MB) and examining the photoantimicrobial activity of the EPI-MB hybrids against the human pathogen methicillin-resistant Staphylococcus aureus (MRSA). Photochemical/photophysical and in vitro microbiological evaluation of 16 hybrids carrying four different NorA EPIs attached to MB via four linker types identified INF55-(Ac)en-MB 12 as a lead. Compound 12 showed increased uptake into S. aureus cells and enhanced aPDI activity and wound healing effects (relative to MB) in a murine model of an abrasion wound infected by MRSA. The study supports a new approach for treating localized multidrug-resistant MRSA infections and paves the way for wider exploration of the EPI-PS hybrid strategy in aPDI.

  14. Potentiation of the photodynamic action of hypericin.

    Science.gov (United States)

    Saw, Constance Lay Lay; Heng, Paul Wan Sia; Olivo, Malini

    2008-01-01

    Hypericin (HY) is an interesting photosensitizer with dark activity and photodynamic therapy (PDT) effects via p53-independent pathway. In photodynamic diagnosis (PDD) of bladder cancer using HY, very high sensitivity and specificity were reported, in comparison with its counterpart, 5-aminolevulinic acid (5-ALA). HY was tested for the detection of human gastric cancer. It was also studied for treating some cancers and age-related macular degeneration and showed some promising findings. Several strategies to enhance the efficacy of HY-PDD and HY-PDT are reviewed. Using fractionated light dosing, fractionated drug dosing, hyperthermia, adjuvants such as oxygen carrier/antiangiogenesis, chemical modifications, and formulation approaches to enhance the PDT effects of HY are topics of this review. Despite cutting-edge technology approach such as preparing transferring-mediated targeting HY liposomes and nanoparticles of HY, such preparations did not always offer the desired enhanced treatment effects. It turns out that simple solutions of HY, especially those prepared without using plasma protein, were more successful in enhancing the delivery of HY for in vitro and in vivo systems. Thus, the HY-PDT with these formulations performed better. It is anticipated that HY-PDD and HY-PDT can be enhanced and optimized with the right combination of light dosimetry and drug dose in an effective formulation containing a suitable adjuvant. Hyperoxygenation and hyperthermia can also be used to further enhance the efficacy of HY-PDT.

  15. In vitro toxicity testing of zinc tetrasulfophthalocyanines in fibroblast and keratinocyte cells for the treatment of melanoma cancer by photodynamic therapy

    CSIR Research Space (South Africa)

    Maduray, K

    2011-05-01

    Full Text Available and United States [3]. The standard oncology treatment for melanoma cancer is surgi- Available online xxxx Keywords: Photodynamic therapy Zinc tetrasulfophthalocyanines Melanoma cancer Phthalocyanines 1011-1344/$ - see front matter � 2011 Elsevier B... of cancer, 567 The Lancet Oncology 1 (2000) 4212?4219. 568 [15] K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Photophysics and 569 photochemistry of photodynamic therapy: fundamental aspects, Laser Medical 570 Science 24 (2009) 259...

  16. Photodynamic therapy in clinical practice

    Directory of Open Access Journals (Sweden)

    E. V. Filonenko

    2016-01-01

    Full Text Available The review is on opportunities and possibilities of application of photodynamic therapy in clinical practice. The advantages of this method are the targeting of effect on tumor foci and high efficiency along with low systemic toxicity. The results of the set of recent Russian and foreign clinical trials are represented in the review. The method is successfully used in clinical practice with both radical (for early vulvar, cervical cancer and pre-cancer, central early lung cancer, esophageal and gastric cancer, bladder cancer and other types of malignant tumors, and palliative care (including tumor pleuritis, gastrointestinal tumors and others. Photodynamic therapy delivers results which are not available for other methods of cancer therapy. Thus, photodynamic therapy allows to avoid gross scars (that is very important, for example, in gynecology for treatment of patients of reproductive age with cervical and vulvar cancer, delivers good cosmetic effect for skin tumors, allows minimal trauma for intact tissue surrounding tumor. Photodynamic therapy is also used in other fields of medicine, such as otorhinolaryngology, dermatology, ophthalmology, orthopaedics, for treatment of papilloma virus infection and purulent wounds as antibacterial therapy.

  17. Analysis of the in vitro and in vivo effects of photodynamic therapy on prostate cancer by using new photosensitizers, protoporphyrin IX-polyamine derivatives.

    Science.gov (United States)

    Fidanzi-Dugas, Chloë; Liagre, Bertrand; Chemin, Guillaume; Perraud, Aurélie; Carrion, Claire; Couquet, Claude-Yves; Granet, Robert; Sol, Vincent; Léger, David Yannick

    2017-07-01

    Photodynamic therapy, using porphyrins as photosensitizers (PS), has been approved in treatment of several solid tumors. However, commonly used PS induce death but also resistance pathways in cancer cells and an alteration of surrounding normal tissues. Because polyamines (PA) are actively accumulated in cancer cells by the Polyamine Transport System (PTS), they may enable PS to specifically target cancer cells. Here, we investigated whether new protoporphyrin IX-polyamine derivatives were effective PS against prostate cancer and whether PA increased PDT specificity after 630nm irradiation. CHO and CHO-MG cells (differing in their PTS activity) were used to assess efficacy of polyamine vectorization. MTT assays were performed on human prostate non-malignant (RWPE-1) and malignant (PC-3, DU 145 and LNCaP) cell lines to test PS phototoxicity. ROS generation, DNA fragmentation and cell signalling were assessed by ELISA/EIA, western-blots and gel shift assays. Finally, PS effects were studied on tumor growth in nude mice. Our PS were more effective on cancer cells compared to non-malignant cells and more effective than PpIX alone. PpIX-PA generated ROS production involved in induction of apoptotic intrinsic pathways. Different pathways involved in apoptosis resistance were studied: PS inhibited Bcl-2, Akt, and NF-κB but activated p38/COX-2/PGE 2 pathways which were not implicated in apoptosis resistance in our model. In vivo experiments showed PpIX-PA efficacy was greater than results obtained with PpIX. All together, our results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of photodynamic antimicrobial therapy (PACT) against promastigotes form of the Leishmania (Viannia) braziliensis: in vitro study

    Science.gov (United States)

    Barbosa, Artur F. S.; Sangiorgi, Bruno B.; Galdino, Suely L.; Pitta, Ivan R.; Barral Netto, Manoel; Correia, Neandder A.; Pinheiro, Antônio L. B.

    2012-03-01

    Leishmaniasis is a complex disease that affects more than 12 million people in 88 countries worldwide. Leishmania (Viannia) braziliensis is the most common species in the Americas and the most important causative agent of cutaneous and mucocutaneous leishmaniasis in Brazil. The therapeutic arsenal routinely employed to treat patients with leishmaniasis is limited and unsatisfactory. For cutaneous leishmaniasis, pentavalent antimonials are the first line therapeutic scheme recommended by the WHO. These compounds are highly toxic, poorly tolerated and their effectiveness highly variable. In this work, a technique with, so far, an unknown disadvantage is discussed. The aim of this study was to verify the effectiveness of PACT in vitro, as a new technique for the treatment of Leishmaniasis. For this, semiconductor laser (λ = 660nm, 40mW, 4.2J/cm2, CW) associated to phenothiazine's derivatives (5 and 10 μg/ml, TBO, Methylene Blue or Phenothiazine) on the promastigotes form of Leishmania braziliensis in a single session was used. Viability of the parasites was assessed in quadruplicates of each group. The samples were removed and analyzed in a hemocytometer 72h after PACT. We found an important decrease in the number of viable parasites on all treated groups in comparison to their controls. The results of present study showed significant percentage of lethality (above 95%) of the protocol. The 99.23% of lethality was achieved with 10 μg/ml of TBO. No lethality was seen on groups treated neither with laser nor with each compounds separately. The results are promising and indicative that the use of PACT may be a powerful treatment of leishmaniasis when compared to already available ones.

  19. Photodynamic Therapy for Cancer

    Science.gov (United States)

    ... et al. Photodynamic therapy. Journal of the National Cancer Institute 1998; 90(12):889–905. [PubMed Abstract] Gudgin Dickson EF, Goyan RL, Pottier RH. New directions in photodynamic therapy. Cellular and Molecular Biology 2002; 48(8):939–954. [PubMed Abstract] Capella ...

  20. Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment.

    LENUS (Irish Health Repository)

    Byrne, A T

    2009-11-03

    Photodynamic therapy (PDT) is a treatment modality for a range of diseases including cancer. The BF(2)-chelated tetraaryl-azadipyrromethenes (ADPMs) are an emerging class of non-porphyrin PDT agent, which have previously shown excellent photochemical and photophysical properties for therapeutic application. Herein, in vivo efficacy and mechanism of action studies have been completed for the lead agent, ADMP06.

  1. Photodynamic inactivation of in vitro bacterial cultures from pressure ulcers Inativação fotodinâmica de culturas de bactérias in vitro provenientes de úlceras de pressão

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso Camillo de Carvalho

    2006-01-01

    Full Text Available PURPOSE: To evaluate in vitro the antibacterial effect of diode laser light of wavelength 650 nm, in association with the photosensitive substance toluidine blue, on the bacteria in infected skin ulcers. METHODS: Samples were collected by means of swabs containing a medium for transporting infected material from skin ulcers. The material was inoculated into culturing medium containing azide blood agar for the growth of Gram-positive bacteria, and MacConkey agar for Gram-negative bacteria, and incubated for 48 hours. The results obtained from counting the colony-forming units were correlated and subjected to statistical analysis, adopting the significance level of p > or = 0.05. RESULTS: From analysis of variance (ANOVA, the result for the general mean was p = 0.0215. Using the t test with post-hoc test, the result for TBO vs. Control was p = 0.0186, and for TBO + Laser vs. Control it was p = 0.0039. CONCLUSION: There was a significant reduction in colony-forming units when the cultures were subjected to photodynamic therapy.OBJETIVO: Avaliar in vitro o efeito antibacteriano do laser diodo com comprimento de onda de 650nn, associado a substancia fotossensível azul de toluidina sobre as bactérias de ulceras cutâneas infectadas. MÉTODOS: Foram coletadas amostras através de um swab com meio de transporte, de material infectado de úlceras cutâneas. Os materiais foram inoculadas em meios de cultura contendo ágar sangue azida para o crescimento de bactérias gram-positivas e agar Mac Conkey para as gram-negativas, e incubadas por 48 horas. Os resultados obtidos da contagem das unidades formadoras de colônias foram relacionados e submetidos a analise estatística adotando como nível de significância p > ou = 0.05. RESULTADOS: Os resultados da análise de variância ANOVA para a media geral foi p= 0,0215 e para o post hoc test teste t. TBO x Controle p=0,0186, TBO + Laser x Controle p=0,0039. CONCLUSÃO: Houve redução, significativa das

  2. In vitro and preclinical targeted alpha therapy for cancer

    International Nuclear Information System (INIS)

    Allen, B.J.; Rizvi, S.; Li, Y.; Tian, Z.; University of Wollongong, NSW; Ranson, M.; Russell, P.J.

    2000-01-01

    Full text: Targeted Alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The alpha emitting radioisotope Bi-213 is produced by generator and chelated to a cancer affined monoclonal antibody or protein to form the alpha-conjugate (AC) against melanoma, leukaemia, colorectal, bladder, breast and prostate cancers. These ACs are tested for stability, specificity and cytotoxicity. Subcutaneous inoculation of 1.5 million cells into the flanks of nude mice causes tumours to grow in all mice. The tumour growth is compared between untreated controls, nonspecific RIC and specific RIC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. Results: Stable alpha-ACs can be produced which are highly specific and cytotoxic in vitro. Local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Local TAT can also completely regress (11/12) sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts. These results point to the potential application of local TAT and systemic TAT in the management of these cancers. A phase 1 and 2 clinical trial is planned for local TAT of sc recurrent melanoma. Copyright (2000) Australasian College of Physical Scientists and Engineers in Medicine

  3. Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Yin, Huimin; Cui, Peng; Hetu, Marc; Wang, Chengzhe; Monro, Susan; Schaller, Richard D.; Cameron, Colin G.; Liu, Bingqing; Kilina, Svetlana; McFarland, Sherri A.; Sun, Wenfang

    2017-05-19

    Five heteroleptic cationic iridium complexes with a π-expansive cyclometalating 2,3-diphenylbenzo[g] quinoxaline (dpbq) ligand (C^N ligand) and different diimine ligands (N^N ligands) (i.e. 2,2’-bipyridine (bpy, 1), phenanthroline (phen, 2), 2-(2-pyridinyl)quinoline (pqu, 3), 2,2’-bisquinoline (bqu, 4), and 2-(quinolin-2-yl)quinoxaline (quqo, 5)) were synthesized and characterized. The lowest-energy singlet electronic transitions (S1 states) were mainly dpbq ligand-centred 1ILCT (intraligand charge transfer)/1MLCT (metal to ligand charge transfer) transitions mixed with some 1π,π* transitions for complexes 1–4 with increased contributions from 1LLCT (ligand to ligand charge transfer) in 3 and 4. For complex 5, the S1 state was switched to the 1LLCT/1MLCT transitions. All five complexes displayed weak near-infrared (NIR) phosphorescence, with maximal emission output spanning 700–1400 nm and quantum yields being on the order of 10-3. The triplet state absorptions of 1–4 all resembled that of the [Ir(dpbq)2Cl]2 dimer with lifetimes of ca. 400 ns, while the TA spectrum of 5 possessed the characteristics of both the quqo ligand and the [Ir(dpbq)2Cl]2 dimer with a bi-exponential decay of ca. 5 μs and 400 ns. While the photophysics of these complexes differ slightly, their theranostic photodynamic therapy (PDT) effects varied drastically. All of the complexes were biologically active toward melanoma cells. Complexes 2 and 3 were the most cytotoxic, with 230–340 nM activity and selectivity factors for melanoma cells over normal skin fibroblasts of 34 to 40 fold. Complexes 2, 3, and 5 became very potent cytotoxins with light activation, with EC50 values as low as 12–18 nM. This potent nanomolar light-triggered activity combined with a lower dark toxicity resulted in 5 having a phototherapeutic index (PI) margin of almost 275. The bpy coligand led to the least amount of dark toxicity of 1, while phen and pqu produced cytotoxic but selective complexes 2 and

  4. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  5. Photodynamic antibacterial enhanced effect of methylene blue-gold nanoparticles conjugate on Staphylococcal aureus isolated from impetigo lesions in vitro study.

    Science.gov (United States)

    Tawfik, Abeer Attia; Alsharnoubi, Jehan; Morsy, Mona

    2015-06-01

    Staphylococcal aureus is the most common organism which has been encountered in impetigo infection. Gold nanoparticles can be used as a tool to deliver antimicrobials or to enhance photodynamic destruction of bacteria. To evaluate the photodynamic effect of methylene blue gold nanoparticles (MB-gold nanoparticles conjugate) on S. aureus which were isolated from impetigo lesions. Twenty children were diagnosed clinically as impetigo, and aged from 3 to 5 years of both sexes were recruited in the study. Two bacteriological samples were collected from each patient, identified and cultured. Samples of S. aureus of a concentration of 10(-1)ml were divided into four groups. S. aureus was treated by MB-gold nanoparticles conjugate, gold nanoparticles, MB, and the fourth group served as a control group. Diode laser (660 nm) was used for photoactivation. The bacterial growth inhibition was determined by two methods: the percentage of reduction of viable bacteria count and the optical density (O.D) of bacterial growth. The highest significant inhibitory effect on S. aureus was obtained with MB-gold nanoparticles conjugate when irradiated by diode laser 660 nm (P < 0.0001). The percentage of viable bacteria was 3%. The photoactivated gold nanoparticles showed a significant inhibitory effect on bacterial growth (P < 0.05). A non-significant inhibitory effect was elicited in other groups. The photoactivated MB-gold nanoparticles conjugate showed the maximum inhibitory effect on S. aureus activity. The gold nanoparticles proved efficacy as a drug delivery system. It enhanced the photodynamic antibacterial effect of methylene blue. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Subcellular localization and photodynamic activity of Photodithazine (glucosamine salt of chlorin e6) in murine melanoma B16-F10: an in vitro and in vivo study

    Science.gov (United States)

    Ono, Bruno Andrade; Pires, Layla; Nogueira, Marcelo Saito; Kurachi, Cristina; Pratavieira, Sebastião.

    2018-02-01

    Photodynamic therapy (PDT) is already a good option for the clinical treatment of several lesions, including mainly nonmelanoma skin cancers. However, cutaneous melanoma treatment remains a challenge when using PDT. One of the reasons for its reduced efficacy is the high pigmentation of melanoma cells. The object of our study is to evaluate the feasibility of the Photodithazine as a photosensitizer for melanoma. Photodithazine is already used in some malignant tumors with satisfactory results and has significant absorption band around 660 nm where the absorption of melanin is low. In this study, we measured the subcellular localization and photodynamic activity of Photodithazine (PDZ) in murine melanoma B16-F10 cell culture. Additionally, a PDT procedure was applied in an animal melanoma model. This first result demonstrates that Photodithazine is more localized at mitochondria in B16F10 cell culture and the cell viability is reduced to less than 90% using 1 µg/mL (PDZ) and 2 J/cm2. We also noticed a rapid PDZ (less than one hour) accumulation in a murine melanoma model. The treatment of melanoma resulted in 20 % more animal survival after one session of PDT compared with the control group. More studies are required to evaluate the cytotoxic effects of Photodithazine at human melanoma.

  7. Folate-conjugated polymeric micelle HB-loaded on targeting effect by intraperitoneal to ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Li, Jie; Yao, Shu; Wang, Kai; Lu, Zaijun; Su, Xuantao; Li, Li; Yuan, Cunzhong; Feng, Jinbo; Yan, Shi; Kong, Beihua; Song, Kun

    2018-04-04

    Photodynamic therapy (PDT) is considered as an innovative and attractive modality to treat ovarian cancer. In this study, a biodegradable polymer poly (ethylene glycol)-poly (lactic acid)(PLA)-folate (FA-PEG-PLA) was prepared in order to synthesize an active targeting, water soluble and pharmacomodulated photosensitizer nano-carriers. The drug loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which HB/FA-PEG-PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (pHB/FA-PEG-PLA micelles, the cellular uptake study in vitro were tested, which owned significantly enhanced uptake of HB/FA-PEG-PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR-). The enhanced uptake of HB/FA-PEG-PLA micelles to cancer cells resulted in a more effective post-PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA-PEG-PLA micelles by SKOV3 cells were also observed in vivo after intraperitoneal injection of folate targeted micelles in tumor-bearing ascitic ovarian cancer animals. The drug levels in ascitic tumor tissues were increased by 20-fold (pHB-loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results demonstrated that our new developed PDT photosensitizer HB/FA-PEG-PLA micelles has a high drug-loading capacity, good biocompatibility, control drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    Science.gov (United States)

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  9. In vitro Perturbations of Targets in Cancer Hallmark Processes Predict Rodent Chemical Carcinogenesis

    Science.gov (United States)

    Thousands of untested chemicals in the environment require efficient characterization of carcinogenic potential in humans. A proposed solution is rapid testing of chemicals using in vitro high-throughput screening (HTS) assays for targets in pathways linked to disease processes ...

  10. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro

    Science.gov (United States)

    Helander, Linda; Krokan, Hans E.; Johnsson, Anders; Gederaas, Odrun A.; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT624 induced more apoptosis than HAL-PDT410 and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  11. Red versus blue light illumination in hexyl 5-aminolevulinate photodynamic therapy: the influence of light color and irradiance on the treatment outcome in vitro.

    Science.gov (United States)

    Helander, Linda; Krokan, Hans E; Johnsson, Anders; Gederaas, Odrun A; Plaetzer, Kristjan

    2014-08-01

    Hexyl 5-aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinate, a key intermediate in biosynthesis of the photosensitizer protoporphyrin IX (PpIX). The photodynamic efficacy and cell death mode after red versus blue light illumination of HAL-induced PpIX have been examined and compared using five different cancer cell lines. LED arrays emitting at 410 and 624 nm served as homogenous and adjustable light sources. Our results show that the response after HAL-PDT is cell line specific, both regarding the shape of the dose-survival curve, the overall dose required for efficient cell killing, and the relative amount of apoptosis. The ratio between 410 and 624 nm in absorption coefficient correlates well with the difference in cell killing at the same wavelengths. In general, the PDT efficacy was several folds higher for blue light as compared with red light, as expected. However, HAL-PDT₆₂₄ induced more apoptosis than HAL-PDT₄₁₀ and illumination with low irradiance resulted in more apoptosis than high irradiance at the same lethal dose. This indicates differences in death modes after low and high irradiance after similar total light doses. From a treatment perspective, these differences may be important.

  12. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    OpenAIRE

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for moni...

  13. Photodynamic Therapy (PDT)

    Indian Academy of Sciences (India)

    transfer to oxygen, the cytotoxic singlet oxygen (102) resulting ... reactions. Thus, the available wavelengths for photodynamic sensitizers are 600-850 nm (red light). .... a: squamous cell carcinoma of a 78-year-old man. b: 1 week after PDT, .... relying on the heme's PDT action and (ii) noncancerous objects (i.e., healthy ...

  14. Graphene-based nanovehicles for photodynamic medical therapy

    Directory of Open Access Journals (Sweden)

    Li Y

    2015-03-01

    Full Text Available Yan Li,1 Haiqing Dong,1 Yongyong Li,1 Donglu Shi1,2 1Shanghai East Hospital, The Institute for Biomedical Engineering and Nano Science (iNANO, Tongji University School of Medicine, Shanghai, People’s Republic of China; 2The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA Abstract: Graphene and its derivatives such as graphene oxide (GO have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review. Keywords: graphene, nanovehicle, photodynamic therapy, photosensitizer, hyperthermia

  15. MS2 bacteriophage as a delivery vessel of porphyrins for photodynamic therapy

    Science.gov (United States)

    Cohen, Brian A.; Kaloyeros, Alain E.; Bergkvist, Magnus

    2011-02-01

    Challenges associated with photodynamic therapy (PDT) include the packaging and site-specific delivery of therapeutic agents to the tissue of interest. Nanoscale encapsulation of PDT agents inside targeted virus capsids is a novel concept for packaging and site-specific targeting. The icosahedral MS2 bacteriophage is one potential candidate for such a packaging-system. MS2 has a porous capsid with an exterior diameter of ~28 nm where the pores allow small molecules access to the capsid interior. Furthermore, MS2 presents suitable residues on the exterior capsid for conjugation of targeting ligands. Initial work by the present investigators has successfully demonstrated RNA-based self-packaging of a heterocyclic PDT agent (meso-tetrakis(para-N-trimethylanilinium)porphine, TMAP) into the MS2 capsid. Packaging photoactive compounds in confined spaces could result in energy transfer between the molecules upon photoactivation, which could in turn reduce the production of radical oxygen species (ROS). ROS are key components in photodynamic therapy, and a reduced production could negatively impact the efficacy of PDT treatment. Here, findings are presented from an investigation of ROS generation of TMAP encapsulated within the MS2 capsid compared to free TMAP in solution. Monitoring of ROS production upon photoactivation via a specific singlet oxygen assay revealed the impact on ROS generation between packaged porphyrins as compared to free porphyrin in an aqueous solution. Follow on work will study the ability of MS2-packaged porphyrins to generate ROS in vitro and subsequent cytotoxic effects on cells in culture.

  16. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  17. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    International Nuclear Information System (INIS)

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Li, Linsen; Hu, Ping; Chen, Song; Huang, Mingdong

    2014-01-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys) 5 ) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys) 5 shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys) 5 in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys) 5 toward bacteria. These findings suggest ZnPc-(Lys) 5 is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys) 5 is a potent photosensitizer for treatment of infectious diseases

  18. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    Science.gov (United States)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  19. Photodynamic Cancer Therapy - Recent Advances

    International Nuclear Information System (INIS)

    Abrahamse, Heidi

    2011-01-01

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  20. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.

    Science.gov (United States)

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R

    2012-08-01

    Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in Na

  1. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles

    International Nuclear Information System (INIS)

    Alexiou, Christoph; Jurgons, Roland; Schmid, Roswitha; Hilpert, Andrea; Bergemann, Christian; Parak, Fritz; Iro, Heinrich

    2005-01-01

    Magnetic drug targeting is a local drug delivery system. Electromicroscopic pictures document the ferrofluid enrichment in the intracellular space in vitro. In vivo experiments were performed in VX2 tumor-bearing rabbits using magnetic nanoparticles bound to mitoxantrone. High-pressure liquid chromatography (HPLC) analyses after magnetic drug targeting showed an increasing concentration of the chemotherapeutic agent in the tumor region compared to regular systemic chemotherapy

  2. Transferrin-Modified Nanoparticles for Photodynamic Therapy Enhance the Antitumor Efficacy of Hypocrellin A

    Directory of Open Access Journals (Sweden)

    Xi Lin

    2017-11-01

    Full Text Available Photodynamic therapy (PDT has emerged as a potent novel therapeutic modality that induces cell death through light-induced activation of photosensitizer. But some photosensitizers have characteristics of poor water-solubility and non-specific tissue distribution. These characteristics become main obstacles of PDT. In this paper, we synthesized a targeting drug delivery system (TDDS to improve the water-solubility of photosensitizer and enhance the ability of targeted TFR positive tumor cells. TDDS is a transferrin-modified Poly(D,L-Lactide-co-glycolide (PLGA and carboxymethyl chitosan (CMC nanoparticle loaded with a photosensitizer hypocrellin A (HA, named TF-HA-CMC-PLGA NPs. Morphology, size distribution, Fourier transform infrared (FT-IR spectra, encapsulation efficiency, and loading capacity of TF-HA-CMC-PLGA NPs were characterized. In vitro TF-HA-CMC-PLGA NPs presented weak dark cytotoxicity and significant photo-cytotoxicity with strong reactive oxygen species (ROS generation and apoptotic cancer cell death. In vivo photodynamic antitumor efficacy of TF-HA-CMC-PLGA NPs was investigated with an A549 (TFR positive tumor-bearing model in male athymic nude mice. TF-HA-CMC-PLGA NPs caused tumor delay with a remarkable tumor inhibition rate of 63% for 15 days. Extensive cell apoptosis in tumor tissue and slight side effects in normal organs were observed. The results indicated that TDDS has great potential to enhance PDT therapeutic efficacy.

  3. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    Science.gov (United States)

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  4. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    International Nuclear Information System (INIS)

    Liu, Shijie; Shao, Chen; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao

    2015-01-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml"−"1, compared with the free Ce6 value of 29.85 μg ml"−"1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects. (paper)

  5. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections

    Science.gov (United States)

    Liu, Shijie; Qiao, Shenglin; Li, Lili; Qi, Guobin; Lin, Yaoxin; Qiao, Zengying; Wang, Hao; Shao, Chen

    2015-12-01

    Urinary tract infections are typical bacterial infections which result in a number of economic burdens. With increasing antibiotic resistance, it is urgent that new approaches are explored that can eliminate pathogenic bacteria without inducing drug resistance. Antimicrobial photodynamic therapy (PDT) is a new promising tactic. It is a gentle in situ photochemical reaction in which a photosensitizer (PS) generates reactive oxygen species (ROS) under laser irradiation. In this work, we have demonstrated Chlorin e6 (Ce6) encapsulated charge-conversion polymeric nanoparticles (NPs) for efficiently targeting and killing pathogenic bacteria in a weakly acidic urinary tract infection environment. Owing to the surface charge conversion of NPs in an acidic environment, the NPs exhibited enhanced recognition for Gram-positive (ex. S. aureus) and Gram-negative (ex. E. coli) bacteria due to the charge interaction. Also, those NPs showed significant antibacterial efficacy in vitro with low cytotoxicity. The MIC value of NPs to E. coli is 17.91 μg ml-1, compared with the free Ce6 value of 29.85 μg ml-1. Finally, a mouse acute cystitis model was used to assess the photodynamic therapy effects in urinary tract infections. A significant decline (P < 0.05) in bacterial cells between NPs and free Ce6 occurred in urine after photodynamic therapy treatment. And the plated counting results revealed a remarkable bacterial cells drop (P < 0.05) in the sacrificed bladder tissue. Above all, this nanotechnology strategy opens a new door for the treatment of urinary tract infections with minimal side effects.

  6. Photodynamic therapy: Theoretical and experimental approaches to dosimetry

    Science.gov (United States)

    Wang, Ken Kang-Hsin

    Singlet oxygen (1O2) is the major cytotoxic species generated during photodynamic therapy (PDT), and 1O 2 reactions with biological targets define the photodynamic dose at the most fundamental level. We have developed a theoretical model for rigorously describing the spatial and temporal dynamics of oxygen (3O 2) consumption and transport and microscopic 1O 2 dose deposition during PDT in vivo. Using experimentally established physiological and photophysical parameters, the mathematical model allows computation of the dynamic variation of hemoglobin-3O 2 saturation within vessels, irreversible photosensitizer degradation due to photobleaching, therapy-induced blood flow decrease and the microscopic distributions of 3O2 and 1O 2 dose deposition under various irradiation conditions. mTHPC, a promising photosensitizer for PDT, is approved in Europe for the palliative treatment of head and neck cancer. Using the theoretical model and informed by intratumor sensitizer concentrations and distributions, we calculated photodynamic dose depositions for mTHPC-PDT. Our results demonstrate that the 1O 2 dose to the tumor volume does not track even qualitatively with long-term tumor responses. Thus, in this evaluation of mTHPC-PDT, any PDT dose metric that is proportional to singlet oxygen creation and/or deposition would fail to predict the tumor response. In situations like this one, other reporters of biological response to therapy would be necessary. In addition to the case study of mTHPC-PDT, we also use the mathematical model to simulate clinical photobleaching data, informed by a possible blood flow reduction during treatment. In a recently completed clinical trial at Roswell Park Cancer Institute, patients with superficial basal cell carcinoma received topical application of 5-aminolevulinic acid (ALA) and were irradiated with 633 nm light at 10-150 mW cm-2 . Protoporphyrin IX (PpIX) photobleaching in the lesion and the adjacent perilesion normal margin was monitored by

  7. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: An in vitro study.

    Science.gov (United States)

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2015-05-01

    To evaluate the in vitro effectiveness of APDI with a 660 nm laser combined with methylene blue (MB), toluidine blue ortho (TBO) and malachite green (MG) dyes to inactivate Staphylococcus aureus (ATCC 25923) biofilms in compact and cancellous bone specimens. Eighty specimens of compact and 80 of cancellous bone were contaminated with a standard suspension of the microorganism and incubated for 14 days at 37°C to form biofilms. After this period, the specimens were divided into groups (n=10) according to established treatment: PS-L- (control - no treatment); PSmb+L-, PStbo+L-, PSmg+L- (only MB, TBO or MG for 5 min in the dark); PS-L+ (only laser irradiation for 180 s); and APDImb, APDItbo and APDImg (APDI with MB, TBO or MG for 180 s). The findings were statistically analyzed by ANOVA at 5% significance levels. All experimental treatments showed significant reduction of log CFU/mL S. aureus biofilms when compared with the control group for compact and cancellous bones specimens; the APDI group's treatment was more effective. The APDI carried out for the compact specimens showed better results when compared with cancellous specimens at all times of application. For the group of compact bone, APDImg showed greater reductions in CFU/mL (4.46 log 10). In the group of cancellous bone, the greatest reductions were found in the APDImb group (3.06 log 10). APDI with methylene blue, toluidine blue ortho and malachite green dyes and a 660 nm laser proved to be effective in the inactivation of S. aureus biofilms formed in compact and cancellous bone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    Directory of Open Access Journals (Sweden)

    Isabel O. L. Bacellar

    2015-08-01

    Full Text Available Photodynamic therapy (PDT is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS, which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  9. Development of Smart Phthalocyanine-based Photosensitizers for Photodynamic Therapy

    Science.gov (United States)

    Chow, Yun Sang

    Phthalocyanines are versatile functional dyes that have shown great potential in cancer theranostics, especially in photodynamic therapy (PDT). This research work aims to develop "smart" phthalocyanine-based photosensitizers for targeted PDT. This thesis describes the synthesis, spectroscopic characterization, photophysical properties, and in vitro photodynamic activities of several series of carefully designed phthalocyanine-based photosensitizers. Chapter 1 presents an overview of PDT, including its historical development, photophysical mechanisms, and biological mechanisms. Various classes of photosensitizers are introduced with emphasis putting on phthalocyanines, which exhibit ideal characteristics of photosensitizers for PDT. In recent years, several approaches have been used to develop photosensitizers with higher tumor selectivity and minimal skin photosensitivity after PDT. Activatable photosensitizers can provide a "turn on" mechanism to offer an additional control of the specificity of treatment. Photosensitizers can also work cooperatively with the tumor-targeting groups or anticancer drugs so as to achieve targeted or dual therapy, which can enhance the efficacy of PDT. The novel approaches mentioned above have been widely used and combined to form multi-functional photosensitizing agents. These novel concepts and development of PDT are discussed and illustrated with relevant examples at the end of this chapter. To minimize the prolonged skin photosensitivity, photosensitizers that can only be activated by tumor-associated stimuli have been developed. Due to the abnormal metabolism in tumor tissues, their surface usually exhibits a lower pH compared to that of the normal tissues. Also, the pH difference between the intracellular and the physiological environment provides a pH-activation mechanism. Chapter 2 presents the synthesis and spectroscopic characterization of a pH-responsive zinc(II) phthalocyanine tetramer, in which the phthalocyanine units

  10. Metformin Targets Brown Adipose Tissue in vivo and Reduces Oxygen Consumption in vitro

    DEFF Research Database (Denmark)

    Breining, Peter; Jensen, Jonas B; Sundelin, Elias I

    2018-01-01

    basic metabolic rate, making BAT an attractive target for treatment of type 2 diabetes. Under the hypothesis that BAT is a metformin target tissue, we investigated in vivo uptake of [11 C]-metformin tracer in mice and studied in vitro effects of metformin on cultured human brown adipocytes. Injected [11......Metformin is the most widely prescribed oral antidiabetic drug worldwide. Despite well-documented beneficial effects on health outcomes in diabetic patients, the target organs that mediate the effects of metformin remain to be established. In adult humans, brown adipose tissue (BAT) can influence...... uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose dependent manner. Collectively, these results support BAT as a putative metformin...

  11. In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project.

    Science.gov (United States)

    Judson, Richard S; Houck, Keith A; Kavlock, Robert J; Knudsen, Thomas B; Martin, Matthew T; Mortensen, Holly M; Reif, David M; Rotroff, Daniel M; Shah, Imran; Richard, Ann M; Dix, David J

    2010-04-01

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. We tested 309 mostly pesticide active chemicals in 467 assays across nine technologies, including high-throughput cell-free assays and cell-based assays, in multiple human primary cells and cell lines plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Chemicals displayed a broad spectrum of activity at the molecular and pathway levels. We saw many expected interactions, including endocrine and xenobiotic metabolism enzyme activity. Chemicals ranged in promiscuity across pathways, from no activity to affecting dozens of pathways. We found a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also found associations between a small set of in vitro assays and rodent liver lesion formation. This approach promises to provide meaningful data on the thousands of untested environmental chemicals and to guide targeted testing of environmental contaminants.

  12. Methylene Blue-Loaded Dissolving Microneedles: Potential Use in Photodynamic Antimicrobial Chemotherapy of Infected Wounds

    Directory of Open Access Journals (Sweden)

    Ester Caffarel-Salvador

    2015-09-01

    Full Text Available Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed “photodynamic antimicrobial chemotherapy” (PACT. In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez® AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1–2.5 mg/mL and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96

  13. Progress toward development of photodynamic vaccination against infectious/malignant diseases and photodynamic mosquitocides

    Science.gov (United States)

    Chang, Kwang Poo; Kolli, Bala K.; Fan, Chia-Kwung; Ng, Dennis K. P.; Wong, Clarence T. T.; Manna, Laura; Corso, Raffaele; Shih, Neng-Yao; Elliott, Robert; Jiang, X. P.; Shiao, Shin-Hong; Fu, Guo-Liang

    2018-02-01

    Photodynamic therapy (PDT) uses photosensitizers (PS) that are excited with light to generate ROS in the presence of oxygen for treating various diseases. PS also has the potential use as photodynamic insecticides (PDI) and for light-inactivation of Leishmania for photodynamic vaccination (PDV). PDT-inactivated Leishmania are non-viable, but remain immunologically competent as whole-cell vaccines against leishmaniasis, and as a universal carrier for delivery of add-on vaccines against other infectious and malignant diseases. We have screened novel PS, including Zn- and Si-phthalocyanines (PC) for differential PDT activities against Leishmania, insect and mammalian cells in vitro to assess their PDI and PDV potential. Here, Zn-PC were conjugated with various functional groups. The conjugates were examined for uptake by cells as a prerequisite for their susceptibility to light-inactivation. PDT sensitivity was found to vary with cell types and PS used. PDI potential of several PS was demonstrated by their mosquito larvicidal PDT activities in vitro. PDT-inactivated Leishmania were stored frozen for PDV in several ongoing studies: [1] Open label trial with 20 sick dogs for immunotherapy of canine leishmaniasis after chemotherapy in Naples, Italy. Clinical follow-up for >3 years indicate that the PDV prolongs their survival; [2] PDV of murine models with a human lung cancer vaccine showed dramatic tumor suppression; [3] Open label trial of multiple PDV via compassionate access to 4 advanced cancer patients showed no clinically adverse effects. Two subjects remain alive. Genetic modifications of Leishmania are underway to further enhance their safety and efficacy for PDV by installation of activable mechanisms for self-destruction and spontaneous light-emission.

  14. Targeted femtosecond laser driven drug delivery within HIV-1 infected cells: In-vitro studies [conference paper

    CSIR Research Space (South Africa)

    Maphanga, Charles

    2017-01-01

    Full Text Available of SPIE 10062, Optical Interactions with Tissue and Cells XXVIIISan Francisco, California, USA, 26 January - 03 February 2017 Targeted femtosecond laser driven drug delivery within HIV-1 infected cells: In-vitro studies Charles Maphanga 1, 2...

  15. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  16. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    Science.gov (United States)

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  17. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  18. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  19. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  20. PHOTODYNAMIC THERAPY OF CONDYLOMATA ACUMINATE

    Directory of Open Access Journals (Sweden)

    V. N. Galkin

    2016-01-01

    Full Text Available Reliably established a causal role of human papillomavirus in the formation of condylomata acuminate. In 10% of people with the human papilloma virus develops condylomata acuminate, which can be transformed into malignant tumors. The most common treatment of condylomata acuminate is a conservative treatment, namely, the local chemical or physical destruction of the lesions and immunotherapy. With the ineffectiveness of conservative treatment resort to surgical excision. At the same time the traditional methods of treatment condylomata acuminate associated with high rates of recurrence. Moreover, these treatments are often associated with significant risk of bleeding, ulceration and scarring. The emergence of new methods of diagnosis and treatment of condylomata acuminate – fluorescence diagnosis and photodynamic therapy has opened up new opportunities to improve the treatment of this pathology. Topical administration of photosensitizers during photodynamic therapy is more convenient and less phototoxic and broaden the range of clinical applications of this technology in the medical dermatology. An increasing amount of evidence that photodynamic therapy with topical application of the photosensitizer is highly effective in the treatment of a variety of benign skin diseases, including condylomata acuminataca, for which traditional methods are ineffective treatment. However, many parameters of photodynamic therapy of this disease has not yet been optimized. It is necessary to conduct large-scale clinical studies on the effectiveness of photodynamic therapy of condylomata acuminatain order to standardize the treatment parameters.

  1. Photodynamic activity of polycyclic hydrocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, S S

    1963-01-01

    Exposure of Paramecium caudatum to suspensions of 3,4-benzopyrene, followed by long wave ultraviolet irradiation, results in cell death at times related, inter alia, to carcinogen concentration. Prior to death, the cells exhibit progressive immobilization and blebbing. This photodynamic response is a sensitized photo-oxidation, as it is oxygen-dependent and inhibited by anti-oxidants, such as butylated hydroxy anisole and ..cap alpha..-tocopherol. Protection is also afforded by other agents, including Tweens, tryptophan and certain fractions of plasma proteins. No evidence was found for the involvement of peroxides or sulfhydryl groups. The correlations between photodynamic toxicity and carcinogenicity in a large series of polycyclic hydrocarbons is under investigation. Assays of air extracts for photodynamic toxicity are in progress. Significant toxicity has been found in oxygenated besides aromatic fractions.

  2. Photodynamic therapy in dentistry: a literature review.

    Science.gov (United States)

    Gursoy, Hare; Ozcakir-Tomruk, Ceyda; Tanalp, Jale; Yilmaz, Selçuk

    2013-05-01

    The purpose of this review was to summarize recent developments regarding photodynamic therapy (PDT) in the field of dentistry. A review of pertinent literature was carried out in PubMED to determine the current position of PDT applications in dentistry. One hundred thirteen relevant articles were retrieved from PubMED by inserting the keywords "photodynamic therapy", "dentistry", "periodontology", "oral surgery", and "endodontics". It is anticipated that this overview will create a specific picture in the practitioner's mind regarding the current status and use of PDT. In spite of different results and suggestions brought about by different researchers, PDT can be considered as a promising and less invasive technique in dentistry. PDT seems to be an effective tool in the treatment of localized and superficial infections. Within the limitations of the present review, it can be concluded that although PDT cannot replace antimicrobial therapy at its current stage, it may be used as an adjunctive tool for facilitating the treatment of oral infections. Oral infections (such as mucosal and endodontic infections, periodontal diseases, caries, and peri-implantitis) are among the specific targets where PDT can be applied. Further long-term clinical studies are necessary in establishing a more specific place of the technique in the field of dentistry.

  3. Drug Carrier for Photodynamic Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tilahun Ayane Debele

    2015-09-01

    Full Text Available Photodynamic therapy (PDT is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS, and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0 to an excited singlet state (S1–Sn, followed by intersystem crossing to an excited triplet state (T1. The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*, which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer.

  4. Evaluation of photodynamic therapy (PDT) procedures using microfluidic system

    Energy Technology Data Exchange (ETDEWEB)

    Jedrych, Elzbieta, E-mail: ejedrych@ch.pw.edu.pl [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland); Pawlicka, Zuzanna; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew [Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 300-664 Warsaw (Poland)

    2011-01-10

    A hybrid PDMS/glass microfluidic system for evaluation of the efficiency of photodynamic therapy is presented. 5-aminolevulinic acid (ALA) was used as a precursor of photosensitizer. The geometry of the microdevice presented in this paper enables to test different concentrations of the photosensitizer in a single assay. The viability of the A549 cells was determined 24 h after PDT procedure (irradiation with light which induced a photosensitizer accumulated in carcinoma cells, {lambda} = 625 nm). The presented results confirmed the possibility to perform the photodynamic therapy process in vitro in microscale and the possibility to assess its effectiveness. Moreover, because two identical microstructures on a single chip were performed, the microchip can be used for examination simultaneously various cell lines (carcinoma and normal) or various photosensitizers.

  5. In vitro and in vivo ion beam targeted micro-irradiation for radiobiology

    International Nuclear Information System (INIS)

    Vianna, Francois

    2014-01-01

    The main goal of radiobiology is to understand the effects of ionizing radiations on the living. These past decades, ion microbeams have shown to be important tools to study for example the effects of low dose exposure, or the bystander effect. Since 2003, the CENBG has been equipped with a system to perform targeted micro-irradiation of living samples. Recently, microbeams applications on this subject have diversified and the study of DNA repair mechanisms at the cellular and multicellular scales, in vitro and in vivo, has become possible thanks to important evolutions of fluorescence imaging techniques and cellular biology. To take into account these new approaches, the CENBG micro-irradiation beamline has been entirely redesigned and rebuilt to implement new features and to improve the existing ones. My PhD objectives were i) commissioning the facility, ii) characterizing the system on track etch detectors, and on living samples, iii) implementing protocols to perform targeted irradiations of living samples with a con-trolled delivered dose, at the cellular and multicellular scales, and to visualize the early consequences online, iv) modelling these irradiations to explain the biological results using the calculated physical data. The work of these past years has allowed us i) to measure the performances of our system: a beam spot size of about 2 μm and a targeting accuracy of ± 2 μm, and to develop ion detection systems for an absolute delivered dose control, ii) to create highly localized radiation-induced DNA damages and to see online the recruitment of DNA repair proteins, iii) to apply these protocols to generate radiation-induced DNA damages in vivo inside a multicellular organism at the embryonic stage: Caenorhabditis elegans. These results have opened up many perspectives on the study of the interaction between ionizing radiations and the living, at the cellular and multicellular scales, in vitro and in vivo. (author) [fr

  6. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  7. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Science.gov (United States)

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  8. In Vitro Drug Sensitivity Tests to Predict Molecular Target Drug Responses in Surgically Resected Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Ryohei Miyazaki

    Full Text Available Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs and anaplastic lymphoma kinase (ALK inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI test and collagen gel droplet embedded culture drug sensitivity test (CD-DST are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs.The growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status.HCC827 (Exon19: E746-A750 del and H3122 (EML4-ALK cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003. The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026 in CD-DST.In vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically.

  9. Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yinzhi Zhao

    2012-02-01

    Full Text Available To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As3+ on microtubule (MT assembly in vitro (0–40 µM, in cultured rat lung fibroblasts (RFL6, 0–20 µM for 24 h and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks. As3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin of [3H]N-ethylmaleimide (NEM, an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT suggesting As3+ action upon tubulin through -SH groups. In response to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs essential for the MT stability were markedly suppressed in As3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to the lung triggering MT disassembly cascades.

  10. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    International Nuclear Information System (INIS)

    Akbari, Vajihe; Abedi, Daryoush; Pardakhty, Abbas; Sadeghi-Aliabadi, Hojjat

    2013-01-01

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300–600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  11. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Vajihe; Abedi, Daryoush [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of); Pardakhty, Abbas [Kerman University of Medical Sciences, Pharmaceutics Research Center (Iran, Islamic Republic of); Sadeghi-Aliabadi, Hojjat, E-mail: sadeghi@pharm.mui.ac.ir [Isfahan University of Medical Sciences, Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy (Iran, Islamic Republic of)

    2013-04-15

    In order to propose non-ionic surfactant vesicles (niosomes) for the treatment of intracellular infections, a remote loading method (active drug encapsulation) followed by sonication was used to prepare nano-niosome formulations containing ciprofloxacin (CPFX). Size analysis, size distribution and zeta potentials of niosomes were evaluated and then their antimicrobial activity, cellular uptake, cytotoxicity, intracellular distribution, and antibacterial activity against intracellular Staphylococcus aureus infection of murine macrophage-like, J774, cells were investigated in comparison to free drug. Our findings reveal that size and composition of the niosome formula can influence their in vitro biological properties. Vesicles in the 300-600 nm size range were phagocytosed to a greater degree by macrophages in comparison to other size vesicles. The minimum inhibitory concentrations (MICs) of CPFX-loaded niosomes were two to eightfold lower than MICs of free CPFX. In addition, niosome encapsulation of CPFX provided high intracellular antimicrobial activities while free CPFX is ineffective for eradicating intracellular forms of S. aureus. Encapsulation of CPFX in niosomes generally decreased its in vitro cytotoxicity. Our results show that niosomes are suitable drug delivery systems with good efficacy and safety properties to be proposed for drug targeting against intracellular infections.

  12. Synthesis of taurine–fluorescein conjugate and evaluation of its retina-targeted efficiency in vitro

    Directory of Open Access Journals (Sweden)

    Meihong Huang

    2014-12-01

    Full Text Available In this work, retinal penetration of fluorescein was achieved in vitro by covalent attachment of taurine to fluorescein, yielding the F–Tau conjugate. Nuclear magnetic resonance (NMR and high resolution mass spectrometry (HRMS were used to confirm the successful synthesis of F–Tau. The cellular uptake of F–Tau in adult retinal pigment epithelial cells (ARPE-19 and human retinal microvascular endothelial cells (hRMECs was visualized via confocal scanning microscopy. The results indicated an improvement of solubility and a reduction of logP of F–Tau compared with fluorescein. As compared with fluorescein, F–Tau showed little toxicity, and was retained longer by cells in uptake experiments. F–Tau also displayed higher transepithelial permeabilities than fluorescein in ARPE-19 and hRMECs monolayer cells (P<0.05. These results showed that taurine may be a useful ligand for targeting small-molecule hydrophobic pharmaceuticals into the retina.

  13. Photodynamic Therapy (PDT) - Basic Principles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 4. Photodynamic Therapy (PDT) - Basic Principles. Bhaskar G Maiya. Series Article Volume 5 Issue 4 April 2000 pp 6-18. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/005/04/0006-0018 ...

  14. [Primary study on fluro [ 19F] berberine derivative for human hepatocellular carcinoma targetting in vitro].

    Science.gov (United States)

    Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong

    2017-04-01

    [ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.

  15. Photodynamic therapy: the role of paraptosis

    Science.gov (United States)

    Kessel, David; Cho, Won-Jin; Kim, Hyeong-Reh

    2018-02-01

    Apoptosis is a pathway to cell death frequently observed after photodynamic therapy (PDT). Sub-cellular photodamage to mitochondria, lysosomes, the ER, or combinations of these targets, can lead to apoptotic death. We have recently investigated another pathway to cell death after PDT termed `paraptosis'. This is characterized by extensive cytoplasmic vacuolization, does not involve caspase activation or nuclear fragmentation, requires a brief interval of continued protein synthesis and appears to derive from ER stress. Determinants and further characteristics of PDT-derived paraptosis are explored in the A549 non small-cell lung cancer cell line and in cells derived from head and neck cancer tissues. We provide evidence that ER photodamage and JNK pathway activation are involved in PDT-mediated paraptosis.

  16. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  17. In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides.

    Science.gov (United States)

    Momin, Munira; Pundarikakshudu, K

    2004-09-24

    The objective of the present study is to develop colon targeted drug delivery systems for sennosides using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study as per BP method. T(50) % value from the dissolution studies was taken for selecting the best formulation. Guar gum matrix tablets released 4-18% sennosides in the physiological environment of gastrointestinal tract depending on the proportion of the guar gum used in the formulation. The matrix tablets containing 50% of guar gum were found to be suitable for targeting of sennosides for local action in the colon. Compared to tablets having 30% and 40% of guar gum, those with 50% guar gum gave better T(50)% (11.7 h) le and fewer amounts (5-8%) of drug release in upper GIT. These tablets with 50% guar gum released 43% and 96% sennosides with and without rat caecal fluids. This suggests the susceptibility of matrix to the colonic micro flora. The similarity factor (f2 value) for drug release with and without rat caecal fluids was found to be less than 30. When hydroxy propyl methylcellulose phthalate (10%) was used as a coat material on the matrix tablets, the initial loss of 5-8% sennosides in stomach could be completely averted. These tablets showed no change in physical appearance, content and dissolution profile upon storage at 45 degrees C / 75% relative humidity for 3 months. The results of our study indicates that matrix tablets containing 50% guar gum and coated with 10% hydroxy propyl methylcellulose phthalate are most suitable for drugs like sennosides which are mainly active in the lower GIT.

  18. Targeted therapeutic approach for an anaplastic thyroid cancer in vitro and in vivo.

    Science.gov (United States)

    Stenner, Frank; Liewen, Heike; Zweifel, Martin; Weber, Achim; Tchinda, Joelle; Bode, Beata; Samaras, Panagiotis; Bauer, Stefan; Knuth, Alexander; Renner, Christoph

    2008-09-01

    Anaplastic thyroid carcinoma (ATC) is among the most aggressive human malignancies, being responsible for the majority of thyroid cancer-related deaths. Despite multimodal therapy including surgery, chemotherapy, and radiotherapy, the outcome of ATC is poor. The human ATC cell line MB1, derived from tumor tissue of a 57-year-old man with thyroid cancer and pronounced neutrophilia, was established from surgically excised tumor tissue. The karyotype of the cell line shows many chromosomal abnormalities. Preclinical investigations have shown antitumor activity and effectiveness of the BRAF kinase inhibitor Sorafenib and the proteasome inhibitor Bortezomib. After establishment of the MB1 cell line these agents were applied in vitro and, showing activity in a cell culture model, were also used for in vivo treatment. Sorafenib had some clinical effect, namely normalization of leucocytosis, but had no sustained impact on subsequent tumor growth and development of distant metastasis. Molecular diagnostics of the tumor demonstrated no BRAF mutations in exons 11 and 15 concordant with a rather modest effect of Sorafenib on MB1 cell growth. Clinical benefit was seen with subsequent bortezomib therapy inducing a temporary halt to lymph node growth and a progression-free interval of 7 weeks. Our observations together with previous data from preclinical models could serve as a rationale for selecting those patients suffering from ATC most likely to benefit from targeted therapy. A prospective controlled randomized trial integrating kinase and proteasome inhibitors into a therapeutic regime for ATC is warranted.

  19. Applicator for in-vitro ultrasound-activated targeted drug delivery

    Science.gov (United States)

    Gerold, B.; Gourevich, D.; Volovick, A.; Xu, D.; Arditti, F.; Prentice, P.; Cochran, S.; Gnaim, J.; Medan, Y.; Wang, L.; Melzer, A.

    2012-10-01

    Reducing toxicity and improving uptake of cancer drugs in tumors are important goals of targeted drug delivery (TDD). Ultrasonic drug release from various encapsulants has been a focus of many research groups. However, a single standard ultrasonic device, viable for use by biologists, is not currently present in the market. The device reported here is designed to allow investigation of the impact of ultrasound on cellular uptake and cell viability in-vitro. In it, single-element transducers with different operating frequencies are mounted below a standard 96-well plate. The plate is moved above the transducers, such that each line of wells can be sonicated at a different frequency. To assess the device, 96-well plates were seeded with cells and sonicated using different ultrasonic parameters, with and without doxorubicin. Cell viability was measured by colorimetric MTT assay and the uptake of doxorubicin by cells was also determined. The device proved to be highly viable in preliminary tests; it demonstrated that change in ultrasonic parameters produces different effect on cells. For example, increase in uptake of doxorubicin was demonstrated following ultrasound application. The growing interest in ultrasound-activated TDD emphasizes the need for standardization of the ultrasound device and the one reported here may offer some indications of how that may be achieved. It is planned to further improve the prototype by increasing the number of ultrasonic frequencies and degrees of freedom for each transducer.

  20. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers.

    Directory of Open Access Journals (Sweden)

    Patrícia M R Pereira

    Full Text Available Photodynamic Therapy (PDT relies on the use of non-toxic photosensitizers that are locally and selectively activated by light to induce cell death or apoptosis through reactive oxygen species generation. The conjugation of porphyrinoids with sugars that target cancer is increasingly viewed as an effective way to increase the selectivity of PDT. To date, in vitro PDT efficacy is mostly screened using two-dimensional monolayer cultures. Compared to monolayer cultures, three-dimensional spheroid cultures have unique spatial distributions of nutrients, metabolites, oxygen and signalling molecules; therefore better mimic in vivo conditions. We obtained 0.05 mm3 spheroids with four different human tumor cell lines (HCT-116, MCF-7, UM-UC-3 and HeLa with appropriate sizes for screening PDT agents. We observed that detachment from monolayer culture and growth as tumor spheroids was accompanied by changes in glucose metabolism, endogenous ROS levels, galectin-1 and glucose transporter GLUT1 protein levels. We compared the phototoxic responses of a porphyrin conjugated with four glucose molecules (PorGlu4 in monolayer and spheroid cultures. The uptake and phototoxicity of PorGlu4 is highly dependent on the monolayer versus spheroid model used and on the different levels of GLUT1 protein expressed by these in vitro platforms. This study demonstrates that HCT-116, MCF-7, UM-UC-3 and HeLa spheroids afford a more rational platform for the screening of new glycosylated-photosensitizers compared to monolayer cultures of these cancer cells.

  1. Nanodrug applications in photodynamic therapy.

    LENUS (Irish Health Repository)

    Paszko, Edyta

    2011-03-01

    Photodynamic therapy (PDT) has developed over last century and is now becoming a more widely used medical tool having gained regulatory approval for the treatment of various diseases such as cancer and macular degeneration. It is a two-step technique in which the delivery of a photosensitizing drug is followed by the irradiation of light. Activated photosensitizers transfer energy to molecular oxygen which results in the generation of reactive oxygen species which in turn cause cells apoptosis or necrosis. Although this modality has significantly improved the quality of life and survival time for many cancer patients it still offers significant potential for further improvement. In addition to the development of new PDT drugs, the use of nanosized carriers for photosensitizers is a promising approach which might improve the efficiency of photodynamic activity and which can overcome many side effects associated with classic photodynamic therapy. This review aims at highlighting the different types of nanomedical approaches currently used in PDT and outlines future trends and limitations of nanodelivery of photosensitizers.

  2. Liquid crystal nanoparticles for delivery of photosensitizers for photodynamic therapy

    Science.gov (United States)

    Nag, Okhil K.; Naciri, Jawad; Delehanty, James B.

    2018-02-01

    The main principle of photodynamic therapy (PDT) is to kill malignant cells by generation of reactive oxygen species (ROS). PDT appeared highly effective when ROS can be produced in subcellular location such as plasma membrane. The plasma membrane maintains the structural integrity of the cell and regulates multiple important cellular processes, such as endocytosis, trafficking, and apoptotic pathways, could be one of the best points to kill the cancer cells. Previously, we have developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs. Here we highlight the utility of this LCNP for membrane targeted delivery and imaging for a photosensitizer (PS) for PDT applications.

  3. Porphyrin-based polysilsesquioxane nanoparticles to improve photodynamic therapy for cancer treatment

    Science.gov (United States)

    Vivero-Escoto, Juan L.; DeCillis, Daniel; Fritts, Laura; Vega, Daniel L.

    2014-03-01

    Photodynamic therapy (PDT) has emerged as an alternative approach to chemotherapy and radiotherapy for cancer treatment. The photosensitizer (PS) is perhaps the most critical component of PDT, and continues to be an area of intense scientific research. Traditionally, PS molecules (e.g. porphyrins) have dominated the field. Nevertheless, these PS agents have several disadvantages, with low water solubility, poor light absorption and reduced selectivity for targeted tissues being some of the main drawbacks. Polysilsesquioxane (PSilQ) nanoparticles are crosslinked homopolymers formed by the condensation of functionalized trialkoxysilanes or bis(trialkoxysilanes). We believe that PSilQ particles provide an interesting platform for developing PS nanocarriers. Several advantages can be foreseen by using this platform such as carrying a large payload of PS molecules; their surface and composition can be tailored to develop multifunctional systems (e.g. target-specific); and due to their small size, nanoparticles can penetrate deep into tissues and be readily internalized by cells. In this work, PSilQ nanoparticles with a high payload of photosensitizers were synthesized, characterized, and applied in vitro. The network of this nanomaterial is formed by protoporphyrin IX (PpIX) molecules chemically connected via a redox-responsive linker. Under reducing environment such as the one found in cancer cells the nanoparticles can be degraded to efficiently release single photosensitizers in the cytoplasm. The phototoxicity of this porphyrin-based PSilQ nanomaterial was successfully demonstrated in vitro using human cervical (HeLa) cancer cells. We envision that this platform can be further functionalized with polyethylene glycol (PEG) and targeting ligands to improve its biocompatibility and target specificity.

  4. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    Science.gov (United States)

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  5. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Science.gov (United States)

    2010-01-01

    Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL). We have developed a computational model of solution particokinetics (sedimentation, diffusion) and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation) and the Stokes-Einstein equation (diffusion). Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD) was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm), 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a μg/mL basis and target cell

  6. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies

    Directory of Open Access Journals (Sweden)

    Chrisler William B

    2010-11-01

    Full Text Available Abstract Background The difficulty of directly measuring cellular dose is a significant obstacle to application of target tissue dosimetry for nanoparticle and microparticle toxicity assessment, particularly for in vitro systems. As a consequence, the target tissue paradigm for dosimetry and hazard assessment of nanoparticles has largely been ignored in favor of using metrics of exposure (e.g. μg particle/mL culture medium, particle surface area/mL, particle number/mL. We have developed a computational model of solution particokinetics (sedimentation, diffusion and dosimetry for non-interacting spherical particles and their agglomerates in monolayer cell culture systems. Particle transport to cells is calculated by simultaneous solution of Stokes Law (sedimentation and the Stokes-Einstein equation (diffusion. Results The In vitro Sedimentation, Diffusion and Dosimetry model (ISDD was tested against measured transport rates or cellular doses for multiple sizes of polystyrene spheres (20-1100 nm, 35 nm amorphous silica, and large agglomerates of 30 nm iron oxide particles. Overall, without adjusting any parameters, model predicted cellular doses were in close agreement with the experimental data, differing from as little as 5% to as much as three-fold, but in most cases approximately two-fold, within the limits of the accuracy of the measurement systems. Applying the model, we generalize the effects of particle size, particle density, agglomeration state and agglomerate characteristics on target cell dosimetry in vitro. Conclusions Our results confirm our hypothesis that for liquid-based in vitro systems, the dose-rates and target cell doses for all particles are not equal; they can vary significantly, in direct contrast to the assumption of dose-equivalency implicit in the use of mass-based media concentrations as metrics of exposure for dose-response assessment. The difference between equivalent nominal media concentration exposures on a

  7. Efeitos da terapia fotodinâmica e de uma única aplicação de laser de baixa potência em bactérias in vitro Effects of photodynamic therapy and of a sole low-power laser irradiation on bacteria in vitro

    Directory of Open Access Journals (Sweden)

    Rogério Gubert Benvindo

    2008-01-01

    Full Text Available O laser de baixa potência vem sendo usado para acelerar a cicatrização em úlceras de pressão devido a seus efeitos cicatrizante, antiinflamatório, antiedematoso e analgésico. No entanto, não há consenso quanto a seu efeito em úlceras infectadas. O objetivo deste estudo foi verificar o efeito bactericida da laserterapia e da terapia fotodinâmica (TFD com laser de baixa potência, InGaP, 670 nm, em doses de 2, 4 e 6 J/cm², em bactérias gram-positivas e gram-negativas in vitro. Foram preparadas 32 placas de Petri com bactérias, 16 com Pseudomonas aeruginosa e 16 com Staphilococcus aureus. Aleatoriamente dividiu-se cada grupo em oito subgrupos (duas placas cada: três subgrupos tratados só com laserterapia, em doses de 2 J/cm², 4 J/cm² e 6 J/cm²; três subgrupos tratados com TFD, em doses de 2 J/cm², 4 J/cm² e 6 J/cm²; um tratado apenas com fotossensibilizante (azul de metileno a 0,1 µg/ml; e um subgrupo não tratado (controle. Os subgrupos laser e TFD foram irradiados uma única vez e incubados por 24 horas. Os outros dois subgrupos não receberam irradiação. As culturas foram analisadas visualmente para verificação ou não do halo de inibição. Em todos os subgrupos, de ambas as bactérias, não foi observado qualquer halo de inibição nem de crescimento. Conclui-se que a terapia a laser e a fotodinâmica de baixa potência (InGaP, 670 nm não produziram efeitos bactericidas e/ou bacteriostáticos, tampouco tendo havido efeito bioestimulante sobre as bactérias.Low-level laser therapy has been used to speed up healing process of pressure ulcers due to its antiinflammatory, analgesic, anti-edematous, and scarring effects. However there is no consensus on its effect on infected ulcers. The aim of this study was to verify the bactericidal effect of low-level laser therapy (InGaP, 670 nm and photodynamic therapy (PDT at 2, 4 and 6 J/cm² doses, onto gram-negative and gram-positive bacteria in vitro. Thirty two Petri plates

  8. Photodynamic inactivation of pathogens causing infectious keratitis

    Science.gov (United States)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  9. Histological responses of cutaneous vascular lesions following photodynamic therapy with talaporfin sodium: a chicken comb model.

    Science.gov (United States)

    Ohshiro, Takafumi; Nakajima, Tatsuo; Ogata, Hisao; Kishi, Kazuo

    2009-09-01

    Mono-L-aspartyl chlorin e6 (Talaporfin sodium) is a novel photosensitizer, and is currently being used in photodynamic therapy for various malignant tumors in combination with irradiation with a 664 nm laser. An interesting characteristic of Talaporfin sodium is that the skin photosensitivity after injection of this agent disappears faster than any other existing photosensitizers. This study examined the vascular events that occurred postirradiation in the chicken comb as a capillary malformation model after photosensitization with Talaporfin sodium. A single intravenous bolus injections of Talaporfin sodium was administered to the chickens, and a 1 cm diameter area of the comb of each animal was irradiated with a 664 nm visible red laser. The gross changes in the chicken combs were recorded for 7-14 days after photodynamic therapy. For the histological examination, HE, PTAH and Azan stained sections were analyzed. All treated chicken combs had blanched after photodynamic therapy. Microscopy demonstrated an absence of erythrocytes and the vessel lumina were obliterated, leaving the normal overlying epidermis completely intact. Concomitantly with selective destruction of the capillaries in the target area, moderate invasion of inflammatory cells and a slight increase in the stroma were observed. In the chicken comb model, photodynamic therapy with Talaporfin sodium effectively achieved selective destruction of the microvasculature while leaving the epidermis intact. Our results strongly suggest that photodynamic therapy with Talaporfin sodium could be a feasible method to treat dermal hypervascular lesions.

  10. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Zhang, L.; Xia, L.; Liu, Xiaomin; Li, C.; Zhang, Y.; Tu, L.; Xue, B.; Zhao, H.; Zhang, H.; Kong, X.

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory

  11. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    Science.gov (United States)

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Photodynamic therapy of intraocular cancers

    International Nuclear Information System (INIS)

    Gravier, N.; Duvournau, Y.; Querec, M.A.; Pechereau, A.; Patrice, T.

    1992-01-01

    The most common intraocular tumors are choroidal malignant melanomas (70%) and retinoblastomas (13%). Each time that visual acuity is preserved, various conservative treatments are considered relative to the potential risk of metastatic disease during enucleation. In addition to standard techniques, photodynamic therapy is a potentially attractive new approach limited in its effects to the area of the treated tumor. The purpose of this preclinical study is to determine a reference dose-effect for single laser doses and to study effects of fractionation of the laser dose. (author). 9 refs., 1 tab

  13. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    OpenAIRE

    Judson, Richard S.; Houck, Keith A.; Kavlock, Robert J.; Knudsen, Thomas B.; Martin, Matthew T.; Mortensen, Holly M.; Reif, David M.; Rotroff, Daniel M.; Shah, Imran; Richard, Ann M.; Dix, David J.

    2009-01-01

    Background Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency?s ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives This project aims to evaluate the use of in vitro assays for understanding the ty...

  14. Transcellular targeting of fiber- and hexon-modified adenovirus vectors across the brain microvascular endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Johanna P Laakkonen

    Full Text Available In central nervous system (CNS-directed gene therapy, efficient targeting of brain parenchyma through the vascular route is prevented by the endothelium and the epithelium of the blood-brain and the blood-cerebrospinal fluid barriers, respectively. In this study, we evaluated the feasibility of the combined genetic and chemical adenovirus capsid modification technology to enable transcellular delivery of targeted adenovirus (Ad vectors across the blood-brain barrier (BBB in vitro models. As a proof-of-principle ligand, maleimide-activated full-length human transferrin (hTf was covalently attached to cysteine-modified Ad serotype 5 vectors either to its fiber or hexon protein. In transcytosis experiments, hTf-coupled vectors were shown to be redirected across the BBB models, the transcytosis activity of the vectors being dependent on the location of the capsid modification and the in vitro model used. The transduction efficiency of hTf-targeted vectors decreased significantly in confluent, polarized cells, indicating that the intracellular route of the vectors differed between unpolarized and polarized cells. After transcellular delivery the majority of the hTf-modified vectors remained intact and partly capable of gene transfer. Altogether, our results demonstrate that i covalent attachment of a ligand to Ad capsid can mediate transcellular targeting across the cerebral endothelium in vitro, ii the attachment site of the ligand influences its transcytosis efficiency and iii combined genetic/chemical modification of Ad vector can be used as a versatile platform for the development of Ad vectors for transcellular targeting.

  15. Assessment of Photodynamic Inactivation against Periodontal Bacteria Mediated by a Chitosan Hydrogel in a 3D Gingival Model

    OpenAIRE

    Po-Chun Peng; Chien-Ming Hsieh; Chueh-Pin Chen; Tsuimin Tsai; Chin-Tin Chen

    2016-01-01

    Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. ac...

  16. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    Science.gov (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  17. Photodynamic therapy for cervical lesions

    Directory of Open Access Journals (Sweden)

    E. V. Grebenkina

    2014-01-01

    Full Text Available The experience of treatment for precancer and early cervical cancer by photodynamic therapy in 12 patients with primary diagnosis H-SIL (CIN II–III and cancer in situ is described. Chlo-rine photosensitizer Photolon was given intravenously at a dose of 0.75–1.15 mg/kg body weight. 2.5 h later the treatment with polyposition laser exposure (light dose – 150 J/cm2, light power density – 400–500 mW/cm2 was made. Thirty days later conization of the cervix with endocervical curettage assessing therapeutic response of cervical tumor tissue was per-formed. According to histological data complete response was in 4 patients, minute foci of CIN I were determined in 7 patients, 1 patient had foci of CIN II. 8 of 10 HPV-positive patients had complete eradication of HPV after treatment. There were no serious adverse events after light exposure. Marked therapeutic response, high anti-viral activity and good feasibility allow to consider photodynamic therapy as alternative organ-sparing treatment of early cancer and pre-cancer of cervix. 

  18. Fluorescent standards for photodynamic therapy

    Science.gov (United States)

    Belko, N.; Kavalenka, S.; Samtsov, M.

    2016-08-01

    Photodynamic therapy is an evolving technique for treatment of various oncological diseases. This method employs photosensitizers - species that lead to death of tumor cells after the photoactivation. For further development and novel applications of photodynamic therapy new photosensitizers are required. After synthesis of a new photosensitizer it is important to know its concentration in different biological tissues after its administration and distribution. The concentration is frequently measured by the extraction method, which has some disadvantages, e.g. it requires many biological test subjects that are euthanized during the measurement. We propose to measure the photosensitizer concentration in tissue by its fluorescence. For this purpose fluorescent standards were developed. The standards are robust and simple to produce; their fluorescence signal does not change with time. The fluorescence intensity of fluorescent standards seems to depend linearly on the dye concentration. A set of standards thus allow the calibration of a spectrometer. Finally, the photosensitizer concentration can be determined by the fluorescence intensity after comparing the corresponding spectrum with spectra of the set of fluorescent standards. A biological test subject is not euthanized during this kind of experiment. We hope this more humane technique can be used in future instead of the extraction method.

  19. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Paronyan, M.H.

    2015-01-01

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  20. Effects of Polyethylene Glycol Spacer Length and Ligand Density on Folate Receptor Targeting of Liposomal Doxorubicin In Vitro

    Directory of Open Access Journals (Sweden)

    Kumi Kawano

    2011-01-01

    Full Text Available The folate receptor is an attractive target for selective tumor delivery of liposomal doxorubicin (DXR because it is abundantly expressed in a large percentage of tumors. This study examined the effect of polyethylene glycol (PEG spacer length and folate ligand density on the targeting ability of folate-modified liposomes. Liposomes were modified with folate-derivatized PEG-distearoylphosphatidylethanolamine with PEG molecular weights of 2000, 3400, or 5000. The association of DXR-loaded liposomes with KB cells, which overexpress the folate receptor, was evaluated by flow cytometry at various ratios of folate modification. A low ratio of folate modification with a sufficiently long PEG chain showed the highest folate receptor-mediated association with the cells, but did not show the highest in vitro cytotoxicity. DXR release from folate-modified liposomes in endosomes might be different. These findings will be useful for designing folate receptor-targeting carriers.

  1. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    Science.gov (United States)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  2. Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages in vitro and in vivo

    International Nuclear Information System (INIS)

    Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei

    2014-01-01

    Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe 3 O 4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe 3 O 4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue. (papers)

  3. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    Science.gov (United States)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  4. Microvascular blood flow dynamics associated with photodynamic therapy, pulsed dye laser irradiation and combined regimens

    OpenAIRE

    Smith, TK; Choi, B; Ramirez-San-Juan, JC; Nelson, JS; Osann, K; Kelly, KM

    2006-01-01

    Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal sk...

  5. The photodynamic and non-photodynamic actions of porphyrins

    Directory of Open Access Journals (Sweden)

    S.G. Afonso

    1999-03-01

    Full Text Available Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions or with molecular oxygen, generating excited singlet oxygen (type II reactions. Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.

  6. Preparation of a folate-mediated tumor targeting ultraparamagnetic polymeric micelles and its in vitro experimental study

    International Nuclear Information System (INIS)

    Hong Guobin; Zhou Jingxing; Shen Jun; Liang Biling; Yuan Renxu; Shuai Xintao

    2008-01-01

    Objective: To evaluate the tumor targeting characteristic of the Folate-SPIO-DOX- Micelles by in vitro studies, and to test the feasibility of monitor tumor targeting using it and clinical MRI. Methods: The polymeric micelles, Folate-SPIO-DOXO-Micelles were prepared. The in vitro tumor cell targeting efficacy of these folate modified and DOX or SPIO-loaded micelles (Folate-SPIO-DOX- MiceUes) was evaluated by observing the cellular uptake of micelles by human hepatic carcinoma cells (Bel 7402 cells) which overexpressed folate surface receptors. Cell suspensions were incubated with Folate-SPIO- DOXO-Micelles for 1 h. Prussian blue staining was performed to show intracellular irons. Flow cytometry was used to further quantify the cellular uptake of the nanoparticles into Bel 7402 cells. MRI was performed to show the signal intensity changes by using T 2 WI sequences at a clinical 1.5 T MR system. Results Prussian blue staining showed much more intracellular iron in cells incubated with Folate-SPIO-DOX- Micelles than the cells incubated with the non-targeting SPIO-DOX-Micelles. As revealed by flow cytometry, the mean fluorescence intensity of cells in the folate group and the non-folate group were 117.88 and 46. 33, respectively. The T 2 signal intensity in MRI of cells treated with the folate targeting micelles decreased significantly(when the concentration of SPIO in cell culture medium was 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -5.02%, -23.58%, -45.89%, -70.34%, and -92.41%, respectively). In contrast, T 2 signal intensity did not show obvious decrease for cells treated with the folate-free micelles (when the concentration of SPIO in cell culture medium was at 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -3.77%, -2.16%, -2.18%, -2.74% and -19.77%, respectively). Conclusion: The polymeric micelles, Folate-SPIO-DOX-Micelles has good targeting ability to the hepatic carcinoma cells in vitro, and

  7. Photodynamic action of the methylene blue: mutagenesis and sinergism

    International Nuclear Information System (INIS)

    Capella, M.A.M.

    1988-01-01

    Two aspects of photodynamic therapy were studied: the associated mutagenesis and the interactions with physical agents, in order to increase its biological effects. The photodynamic action with methylene blue in the mutagenesis and sinergism is studied. (L.M.J.)

  8. Photodynamic therapy for periodontal disease

    Science.gov (United States)

    Weersink, Robert A.

    2002-05-01

    Periodontal disease is a family of chronic inflammatory conditions caused by bacterial infections.' It is manifested in red, swollen gingiva (gums) and can lead to destruction of the connective tissue and bone that hold teeth in place. Conventional treatments typically require some form of invasive surgery, depending on the disease stage at time of detection. Photodynamic Therapy (PDT) is the use of light-activated drugs (photosensitizers) for treatment of a variety of conditions 2 such as solid tumors, pre-malignancies, macular degeneration and actinic keratitis. There have been a number of studies of PDT as an antibacterial agent. 3'4 Depending on the photosensitizer and strain of bacteria, significant killing (several LOGS) can be achieved.

  9. Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro.

    Science.gov (United States)

    Ito, Shoko; Takeichi, Masatoshi

    2009-08-04

    Neural circuits are generated by precisely ordered synaptic connections among neurons, and this process is thought to rely on the ability of neurons to recognize specific partners. However, it is also known that neurons promiscuously form synapses with nonspecific partners, in particular when cultured in vitro, causing controversies about neural recognition mechanisms. Here we reexamined whether neurons can or cannot select particular partners in vitro. In the cerebellum, granule cell (GC) dendrites form synaptic connections specifically with mossy fibers, but not with climbing fibers. We cocultured GC neurons with pontine or inferior olivary axons, the major sources for mossy and climbing fibers, respectively, as well as with hippocampal axons as a control. The GC neurons formed synapses with pontine axons predominantly at the distal ends of their dendrites, reproducing the characteristic morphology of their synapses observed in vivo, whereas they failed to do so when combined with other axons. In the latter case, synaptic proteins could accumulate between axons and dendrites, but these synapses were randomly distributed throughout the contact sites, and also their synaptic vesicle recycling was anomalous. These observations suggest that GC dendrites can select their authentic partners for synaptogenesis even in vitro, forming the synapses with a GC-specific nature only with them.

  10. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Mitochondria-Targeted Nitroxide, Mito-CP, Suppresses Medullary Thyroid Carcinoma Cell Survival In Vitro and In Vivo

    Science.gov (United States)

    Starenki, Dmytro

    2013-01-01

    Context: Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor mainly caused by mutations in the RET proto-oncogene. For MTC therapy, the U.S. Food and Drug Administration recently approved vandetanib and cabozantinib, multikinase inhibitors targeting RET and other tyrosine kinase receptors of vascular endothelial growth factor, epidermal growth factor, or hepatocyte growth factor. Nevertheless, not all patients with the progressive MTC respond to these drugs, requiring the development of additional therapeutic modalities that have distinct activity. Objective: We aimed to evaluate mitochondria-targeted carboxy-proxyl (Mito-CP), a mitochondria-targeted redox-sensitive agent, for its tumor-suppressive efficacy against MTC. Design: In vitro cultures of 2 human MTC cell lines, TT and MZ-CRC-1, and TT xenografts in mice were treated with Mito-CP in comparison with vandetanib. The effects on cell survival/death, RET expression, mitochondrial integrity, and oxidative stress were determined. Results: Contrary to vandetanib, Mito-CP induced RET downregulation and strong cytotoxic effects in both cell lines in vitro, including caspase-dependent apoptosis. These effects were accompanied by mitochondrial membrane depolarization, decreased oxygen consumption, and increased oxidative stress in cells. Intriguingly, Mito-CP–induced cell death, but not RET downregulation, was partially inhibited by the reactive oxygen species scavenger, N-acetyl-cysteine, indicating that Mito-CP mediates tumor-suppressive effects via redox-dependent as well as redox-independent mechanisms. Orally administered Mito-CP effectively suppressed TT xenografts in mice, with an efficacy comparable to vandetanib and relatively low toxicity to animals. Conclusion: Our results suggest that Mito-CP can effectively suppress MTC cell growth/survival via a mechanism distinct from vandetanib effects. Mitochondrial targeting may be a potential strategy for MTC therapy. PMID:23509102

  12. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.

    Science.gov (United States)

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2013-03-01

    Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.

  13. EXPERIMENTAL CONFIRMATION FOR SELECTION OF IRRADIATION REGIMENS FOR INTRAPERITONEAL PHOTODYNAMIC THERAPY WITH PORPHYRIN AND PHTHALOCYANINE PHOTOSENSITIZERS

    Directory of Open Access Journals (Sweden)

    A. A. Pankratov

    2017-01-01

    Full Text Available Optimized irradiation regimens for intraperitoneal photodynamic therapy with porphyrin and phthalocyanine photosensitizers are determined in in vitro and in vivo studies.The experimental  study on НЕр2 cell line showed that reduce of power density for constant  light dose increased significantly the efficacy of photodynamic therapy (the reduce of power density from 20-80 mW/cm2 to 10 mW/cm2 had the same results (90% cell death for half as much concentration of the photosensitizer.The obtained results were confirmed in vivo in mice with grafted tumor S-37. For light dose of 90 J/cm2  and power density of 25 mW/cm2 none of animals in the experimental  group had total resorption of the tumor. For the same light dose and decrease  of power density to 12 mW/cm2  total tumor resorption was achieved in 34% of animals, 66% of animals died from phototoxic  shock. For twofold decrease  of light dose – to 45 J/cm2  with the same low-intensity power density (12 mW/cm2 we managed total tumor resorption in 100% of animals.In the following studies of optimized irradiation regimen for intrapleural photodynamic therapy the reaction of intact peritoneum of rats on photodynamic exposure was assessed and optimized parameters of laser irradiation, which did not cause necrosis and intense inflammatory reaction of peritoneum, were determined – light dose of 10 J/cm2  with power density of mW/cm2.Thus, the reasonability for use of low-intensity regimens of irradiation for intraperitoneal photodynamic therapy was confirmed experimentally with possibility of high efficacy of treatment without inflammatory reactions of peritoneum.

  14. Targeted in vitro and in vivo gene transfer into T Lymphocytes: potential of direct inhibition of allo-immune activation

    Directory of Open Access Journals (Sweden)

    Mehra Mandeep R

    2006-11-01

    Full Text Available Abstract Background Successful inhibition of alloimmune activation in organ transplantation remains one of the key events in achieving a long-term graft survival. Since T lymphocytes are largely responsible for alloimmune activation, targeted gene transfer of gene of cyclin kinase inhibitor p21 into T cells might inhibit their aberrant proliferation. A number of strategies using either adenoviral or lentiviral vectors linked to mono or bispecific antibodies directed against T cell surface markers/cytokines did not yield the desired results. Therefore, this study was designed to test if a CD3promoter-p21 chimeric construct would in vitro and in vivo transfer p21 gene to T lymphocytes and result in inhibition of proliferation. CD3 promoter-p21 chimeric constructs were prepared with p21 in the sense and antisense orientation. For in vitro studies EL4-IL-2 thyoma cells were used and for in vivo studies CD3p21 sense and antisense plasmid DNA was injected intramuscularly in mice. Lymphocyte proliferation was quantified by 3H-thymidine uptake assay; IL-2 mRNA expression was studied by RT-PCR and using Real Time PCR assay, we monitored the CD3, p21, TNF-α and IFN-γ mRNA expression. Results Transfection of CD3p21 sense and antisense in mouse thyoma cell line (EL4-IL-2 resulted in modulation of mitogen-induced proliferation. The intramuscular injection of CD3p21 sense and antisense plasmid DNA into mice also modulated lymphocyte proliferation and mRNA expression of pro-inflammatory cytokines. Conclusion These results demonstrate a novel strategy of in vitro and in vivo transfer of p21 gene to T cells using CD3-promoter to achieve targeted inhibition of lymphocyte proliferation and immune activation.

  15. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation.

    Science.gov (United States)

    Fu, Yin-Chih; Fu, Tzu-Fun; Wang, Hung-Jen; Lin, Che-Wei; Lee, Gang-Hui; Wu, Shun-Cheng; Wang, Chih-Kuang

    2014-11-01

    Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy.

    Science.gov (United States)

    He, Haozhe; Zheng, Xiaohua; Liu, Shi; Zheng, Min; Xie, Zhigang; Wang, Yong; Yu, Meng; Shuai, Xintao

    2018-06-01

    The development of a simple and straightforward strategy to synthesize multifunctional carbon dots for photodynamic therapy (PDT) has been an emerging focus. In this work, diketopyrrolopyrrole-based fluorescent carbon dots (DPP CDs) were designed and synthesized through a facile one-pot hydrothermal method by using diketopyrrolopyrrole (DPP) and chitosan (CTS) as raw materials. DPP CDs not only maintained the ability of DPP to generate singlet oxygen (1O2) but also have excellent hydrophilic properties and outstanding biocompatibility. In vitro and in vivo experiments demonstrated that DPP CDs greatly inhibited the growth of tumor cells under laser irradiation (540 nm). This study highlights the potential of the rational design of CDs for efficient cancer therapy.

  17. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.

  18. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  19. Synthesis, characterization and in vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells

    International Nuclear Information System (INIS)

    Almaki, Javad Hamzehalipour; Nasiri, Rozita; Idris, Ani; Majid, Fadzilah Adibah Abdul; Wong, Tet Soon; Salouti, Mojtaba; Dabagh, Shadab; Marvibaigi, Mohsen; Amini, Neda

    2016-01-01

    A stable, biocompatible and exquisite SPIONs–PEG–HER targeting complex was developed. Initially synthesized superparamagnetic iron oxide nanoparticles (SPIONs) were silanized using 3-aminopropyltrimethoxysilane (APS) as the coupling agent in order to allow the covalent bonding of polyethylene glycol (PEG) to the SPIONs to improve the biocompatibility of the SPIONs. SPIONs–PEG were then conjugated with herceptin (HER) to permit the SPIONs–PEG–HER to target the specific receptors expressed over the surface of the HER2+ metastatic breast cancer cells. Each preparation step was physico-chemically analyzed and characterized by a number of analytical methods including AAS, FTIR spectroscopy, XRD, FESEM, TEM, DLS and VSM. The biocompatibility of SPIONs–PEG–HER was evaluated in vitro on HSF-1184 (human skin fibroblast cells), SK-BR-3 (human breast cancer cells, HER+), MDA-MB-231 (human breast cancer cells, HER−) and MDA-MB-468 (human breast cancer cells, HER−) cell lines by performing MTT and trypan blue assays. The hemolysis analysis results of the SPIONs–PEG–HER and SPIONs–PEG did not indicate any sign of lysis while in contact with erythrocytes. Additionally, there were no morphological changes seen in RBCs after incubation with SPIONs–PEG–HER and SPIONs–PEG under a light microscope. The qualitative and quantitative in vitro targeting studies confirmed the high level of SPION–PEG–HER binding to SK-BR-3 (HER2+ metastatic breast cancer cells). Thus, the results reflected that the SPIONs–PEG–HER can be chosen as a favorable biomaterial for biomedical applications, chiefly magnetic hyperthermia, in the future. (paper)

  20. Preparation of a chlorophyll derivative and investigation of its photodynamic activities against cholangiocarcinoma.

    Science.gov (United States)

    Wu, Zhong-Ming; Wang, Li; Zhu, Wei; Gao, Ying-Hua; Wu, Hai-Ming; Wang, Mi; Hu, Tai-Shan; Yan, Yi-Jia; Chen, Zhi-Long

    2017-08-01

    Photodynamic therapy (PDT) is emerging as a promising method for the treatment of various cancer diseases. However, the clinical application of PDT is limited due to the lack of effective photosensitizers. In this study, a novel chlorophyll derivative, N,N-bis(2-carboxyethyl)pyropheophorbide a (BPPA), had been synthesized and characterized. BPPA had a characteristic long wavelength absorption peak at 669nm and a singlet oxygen quantum yield of 0.54. To investigate the photodynamic ability of BPPA against cholangiocarcinoma (CCA), cellular uptake, subcellular location and bio-distribution, in vitro and in vivo PDT efficacy of BPPA were studied. The results showed that BPPA could rapidly accumulate in QBC-939 cells and localize in the cytoplasm. BPPA- PDT was effective in reducing the cell viability in a drug dose- and light dose-dependent manner in vitro. In CCA xenograft nude mouse model, the concentration of BPPA in the plasma lowered rapidly, and the fluorescence signal peaked at 0.5h and 2h after injection in the skin and tumor, respectively. Significant quantities could be observed in the tumor. BPPA followed by irradiation could significantly inhibit growth of tumors, and histological examination revealed necrotic damage in PDT-treated tumors. These results suggested that BPPA could be a promising drug candidate for photodynamic therapy in cholangiocarcinoma. Published by Elsevier Masson SAS.

  1. Preparation and in vitro evaluation of polymer conjugates actively targeted using RGD-based peptides

    Czech Academy of Sciences Publication Activity Database

    Böhmová, Eliška; Pola, Robert; Pechar, Michal; Janoušková, Olga; Zuska, K.; Etrych, Tomáš

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 91 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 Keywords : polymer drug carriers * HPMA * peptide tumor targeting Subject RIV: CD - Macromolecular Chemistry

  2. Identification and in vitro characterization of phage-displayed VHHs targeting VEGF

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potential target for cancer treatment because of its role in angiogenesis and its overexpression in most human cancers. Currently, anti-VEGF antibodies have been shown to be promising tools for therapeutic applications. However, large size, poor tumo...

  3. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    International Nuclear Information System (INIS)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin; Wan, Qianya; Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi; Zhou, Qin

    2013-01-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons

  4. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wan, Qianya [The Undergraduates Class of 2011 entry, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Zhou, Qin, E-mail: zhouqin@cqmu.edu.cn [The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.

  5. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    Directory of Open Access Journals (Sweden)

    Salem HF

    2015-07-01

    Full Text Available Heba F Salem,1 Sayed M Ahmed,2 Ashraf E Hassaballah,3 Mahmoud M Omar1,4 1Department of Pharmaceutics and Industrial Pharmacy, Beni-suef University, 2Department of Industrial Pharmacy, Assiut University, 3Department of Clinical Pathology, Faculty of Medicine, Assiut University, Assuit, 4Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Egypt Background: The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods: Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results: The size of glutathione-modulated nanoliposomes was <100 nm and the zeta potential was more than -65 mV. The cumulative release reached 70% for certain formulations. The cellular uptake increased as molar percent of glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion: Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new

  6. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies

    Science.gov (United States)

    Hu, Yuwei; Chen, Jian; Li, Xiufang; Sun, Yanhua; Huang, Shen; Li, Yuqing; Liu, Hui; Xu, Jiangfeng; Zhong, Shian

    2017-09-01

    The current state of cancer therapy encourages researchers to develop novel efficient nanocarriers. Halloysite nanotubes (HNTs) are good nanocarrier candidates due to their unique nanoscale (40-80 nm in diamter and 200-500 nm in length) and hollow lumen, as well as good biocompatibility and low cost. In our study, we prepared a type of folate-mediated targeting and redox-triggered anticancer drug delivery system, so that Doxorubicin (DOX) can be specifically transported to tumor sites due to the over-expressed folate-receptors on the surface of cancer cells. Furthermore, it can then be released by the reductive agent glutathione (GSH) in cancer cells where the content of GSH is nearly 103-fold higher than in the extracellular matrix. A series of methods have demonstrated that per-thiol-β-cyclodextrin (β-CD-(SH)7) was successfully combined with HNTs via a redox-responsive disulfide bond, and folic acid-polyethylene glycol-adamantane (FA-PEG-Ad) was immobilized on the HNTs through the strong complexation between β-CD/Ad. In vitro studies indicated that the release rate of DOX raised sharply in dithiothreitol (DTT) reducing environment and the amount of released DOX reached 70% in 10 mM DTT within the first 10 h, while only 40% of DOX was released in phosphate buffer solution (PBS) even after 79 h. Furthermore, the targeted HNTs could be specifically endocytosed by over-expressed folate-receptor cancer cells and significantly accelerate the apoptosis of cancer cells compared to non-targeted HNTs. In vivo studies further verified that the targeted HNTs had the best therapeutic efficacy and no obvious side effects for tumor-bearing nude mice, while free DOX showed damaging effects on normal tissues. In summary, this novel nanocarrier system shows excellent potential for targeted delivery and controlled release of anticancer drugs and provides a potential platform for tumor therapy.

  7. Photodynamic Vaccination of BALB/c Mice for Prophylaxis of Cutaneous Leishmaniasis Caused by Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Sayonara M. Viana

    2018-02-01

    Full Text Available Background: Photosensitizers (PS, like porphyrins and phthalocyanines (PC are excitable by light to generate cytotoxic singlet oxygen and other reactive oxygen species in the presence of atmospheric O2. Photodynamic inactivation of Leishmania by this means renders them non-viable, but preserves their effective use as vaccines. Leishmania can be photo-inactivated after PS-sensitization by loading via their endocytic uptake of PC or endogenous induction of transgenic mutants with delta-aminolevulinate (ALA to accumulate cytosolic uroporphyrin I (URO. Here, PS-sensitization and photo-inactivation of Leishmaniaamazonensis was further examined in vitro and in vivo for vaccination against cutaneous leishmaniasis (CL.Methods and Results:Leishmania amazonensis promastigotes were photodynamically inactivated in vitro by PC-loading followed by exposure to red light (1–2 J/cm2 or ALA-induction of uroporphyrinogenic transfectants to accumulate cytosolic URO followed by longwave UV exposure. When applied individually, both strategies of photodynamic inactivation were found to significantly, albeit incompletely abolish the MTT reduction activities of the promastigotes, their uptake by mouse bone marrow-derived macrophages in vitro and their infectivity to mouse ear dermis in vivo. Inactivation of Leishmania to completion by using a combination of both strategies was thus used for the sake of safety as whole-cell vaccines for immunization of BALB/c mice. Different cutaneous sites were assessed for the efficacy of such photodynamic vaccination in vivo. Each site was inoculated first with in vitro doubly PS-sensitized promastigotes and then spot-illuminated with white light (50 J/cm2 for their photo-inactivation in situ. Only in ear dermis parasites were photo-inactivated beyond detection. Mice were thus immunized once in the ear and challenged 3 weeks later at the tail base with virulent L. amazonensis. Prophylaxis was noted in mice photodynamically

  8. Novel targeted siRNA-loaded hybrid nanoparticles: preparation, characterization and in vitro evaluation.

    Science.gov (United States)

    Dim, Nneka; Perepelyuk, Maryna; Gomes, Olukayode; Thangavel, Chellappagounder; Liu, Yi; Den, Robert; Lakshmikuttyamma, Ashakumary; Shoyele, Sunday A

    2015-09-26

    siRNAs have a high potential for silencing critical molecular pathways that are pathogenic. Nevertheless, their clinical application has been limited by a lack of effective and safe nanotechnology-based delivery system that allows a controlled and safe transfection to cytosol of targeted cells without the associated adverse effects. Our group recently reported a very effective and safe hybrid nanoparticle delivery system composing human IgG and poloxamer-188 for siRNA delivery to cancer cells. However, these nanoparticles need to be optimized in terms of particle size, loading capacity and encapsulation efficiency. In the present study, we explored the effects of certain production parameters on particle size, loading capacity and encapsulation efficiency. Further, to make these nanoparticles more specific in their delivery of siRNA, we conjugated anti-NTSR1-mAb to the surface of these nanoparticles to target NTSR1-overexpressing cancer cells. The mechanism of siRNA release from these antiNTSR1-mAb functionalized nanoparticles was also elucidated. It was demonstrated that the concentration of human IgG in the starting nanoprecipitation medium and the rotation speed of the magnetic stirrer influenced the encapsulation efficiency, loading capacity and the size of the nanoparticles produced. We also successfully transformed these nanoparticles into actively targeted nanoparticles by functionalizing with anti-NTSR1-mAb to specifically target NTSR1-overexpressing cancer cells, hence able to avoid undesired accumulation in normal cells. The mechanism of siRNA release from these nanoparticles was elucidated to be by Fickian diffusion. Using flow cytometry and fluorescence microscopy, we were able to confirm the active involvement of NTSR1 in the uptake of these anti-NTSR1-mAb functionalized hybrid nanoparticles by lung adenocarcinoma cells. This hybrid nanoparticle delivery system can be used as a platform technology for intracellular delivery of siRNAs to NTSR1

  9. Biophysical aspects of photodynamic therapy.

    Science.gov (United States)

    Juzeniene, Asta; Nielsen, Kristian Pagh; Moan, Johan

    2006-01-01

    Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue. These are all important parameters for optimally effective PDT. The present review will give a brief, physically based, overview of PDT and then discuss some of the main biophysical aspects of this therapeutic modality.

  10. Photodynamic therapy for skin cancer

    Science.gov (United States)

    Panjehpour, Masoud; Julius, Clark E.; Hartman, Donald L.

    1996-04-01

    Photodynamic therapy was used to treat 111 lesions in 27 cases with squamous and basal cell carcinoma. There were 82 squamous cell carcinomas and 29 basal cell carcinomas. Photofrin was administered intravenously at either 1.0 mg/kg or 0.75 mg/kg. An argon/dye laser was used to deliver 630 nm light to the lesion superficially at either 215 J/cm2 or 240 J/cm2. In some cases the laser light was delivered both superficially and interstitially. The laser light was delivered two to four days after the Photofrin injection. There were 105 complete responses and 5 partial responses. One patient was lost to follow-up. Among partial responses were basal cell carcinoma on the tip of the nose and morphea basal cell carcinoma of the left cheek. Another partial response occurred in a basal cell carcinoma patient where insufficient margins were treated due to the proximity to the eye. When 0.75 mg/kg drug dose was used, the selectivity of tumor necrosis was improved. Decreased period of skin photosensitivity was documented in some cases.

  11. Dye Sensitizers for Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Harold S. Freeman

    2013-03-01

    Full Text Available Photofrin® was first approved in the 1990s as a sensitizer for use in treating cancer via photodynamic therapy (PDT. Since then a wide variety of dye sensitizers have been developed and a few have been approved for PDT treatment of skin and organ cancers and skin diseases such as acne vulgaris. Porphyrinoid derivatives and precursors have been the most successful in producing requisite singlet oxygen, with Photofrin® still remaining the most efficient sensitizer (quantum yield = 0.89 and having broad food and drug administration (FDA approval for treatment of multiple cancer types. Other porphyrinoid compounds that have received approval from US FDA and regulatory authorities in other countries include benzoporphyrin derivative monoacid ring A (BPD-MA, meta-tetra(hydroxyphenylchlorin (m-THPC, N-aspartyl chlorin e6 (NPe6, and precursors to endogenous protoporphyrin IX (PpIX: 1,5-aminolevulinic acid (ALA, methyl aminolevulinate (MAL, hexaminolevulinate (HAL. Although no non-porphyrin sensitizer has been approved for PDT applications, a small number of anthraquinone, phenothiazine, xanthene, cyanine, and curcuminoid sensitizers are under consideration and some are being evaluated in clinical trials. This review focuses on the nature of PDT, dye sensitizers that have been approved for use in PDT, and compounds that have entered or completed clinical trials as PDT sensitizers.

  12. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line.

    Directory of Open Access Journals (Sweden)

    Muhammad Hammad Aziz

    Full Text Available Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs were tested in an in vitro cervical cancer model (HeLa cell line to optimize the parameters of photodynamic therapy (PDT for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM, an energy dispersive X-ray analysis (EDAX and a vibrating sample magnetometer (VSM analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA; this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA and by detection of intracellular reactive oxygen species (ROS production. Furthermore, 10-200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65-68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.

  13. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    Science.gov (United States)

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  14. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  15. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro.

    Science.gov (United States)

    Zhu, Fang; McCaw, Lindsay; Spaner, David E; Gorczynski, Reginald M

    2018-03-01

    The tumor microenvironment (TME) is critical to the longevity of tumor B cells in chronic lymphocytic leukemia (CLL). Bone marrow mesenchymal stem cells (BMMSCs) and the cytokines they produce including IL-6 are important components of the TME in CLL. We found BMMSCs supported the survival of CLL cells in vitro through an IL-6 dependent mechanism. IL-17 which induces IL-6 generation in a variety of cells increased production of IL-6 both in CLL cells and BMMSCs in vitro. In a xenograft CLL mouse model, BMMSCs and the culture supernatant of BMMSCs increased engraftment of CLL cells through an IL-6 mediated mechanism with human recombinant IL-6 showing similar effects in vivo. Human recombinant IL-17 treatment also increased CLL engraftment in mice through an IL-6 mediated mechanism. Plasma of CLL patients showed elevated levels of both IL-6 and IL-17 by ELISA compared with healthy controls, with levels of IL-6 linearly correlated with IL-17 levels. CLL patients requiring fludarabine based chemotherapy expressed higher levels of IL-6 and IL-17, while CLL patients with the lowest levels of IgA/IgM had higher levels of IL-6, but not IL-17. These data imply an important role for the IL-17/IL-6 axis in CLL which could be therapeutic targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. From Chemotherapy to Combined Targeted Therapeutics: In Vitro and in Vivo Models to Decipher Intra-tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    2018-02-01

    Full Text Available Recent advances in next-generation sequencing and other omics technologies capable to map cell fate provide increasing evidence on the crucial role of intra-tumor heterogeneity (ITH for cancer progression. The different facets of ITH, from genomic to microenvironmental heterogeneity and the hierarchical cellular architecture originating from the cancer stem cell compartment, contribute to the range of tumor phenotypes. Decoding these complex data resulting from the analysis of tumor tissue complexity poses a challenge for developing novel therapeutic strategies that can counteract tumor evolution and cellular plasticity. To achieve this aim, the development of in vitro and in vivo cancer models that resemble the complexity of ITH is crucial in understanding the interplay of cells and their (microenvironment and, consequently, in testing the efficacy of new targeted treatments and novel strategies of tailoring combinations of treatments to the individual composition of the tumor. This challenging approach may be an important cornerstone in overcoming the development of pharmaco-resistances during multiple lines of treatment. In this paper, we report the latest advances in patient-derived 3D (PD3D cell cultures and patient-derived tumor xenografts (PDX as in vitro and in vivo models that can retain the genetic and phenotypic heterogeneity of the tumor tissue.

  17. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  18. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: In vitro and rat in vivo studies.

    Science.gov (United States)

    El-Zaafarany, Ghada M; Soliman, Mahmoud E; Mansour, Samar; Awad, Gehanne A S

    2016-04-30

    Lipid-based nanovectors offer effective carriers for brain delivery by improving drug potency and reducing off-target effects. Emulsomes are nano-triglyceride (TG) carriers formed of lipid cores supported by at least one phospholipid (PC) sheath. Due to their surface active properties, PC forms bilayers at the aqueous interface, thereby enabling encapsulated drug to benefit from better bioavailability and stability. Emulsomes of oxcarbazepine (OX) were prepared, aimed to offer nanocarriers for nasal delivery for brain targeting. Different TG cores (Compritol(®), tripalmitin, tristearin and triolein) and soya phosphatidylcholine in different amounts and ratios were used for emulsomal preparation. Particles were modulated to generate nanocarriers with suitable size, charge, encapsulation efficiency and prolonged release. Cytotoxicity and pharmacokinetic studies were also implemented. Nano-spherical OX-emulsomes with maximal encapsulation of 96.75% were generated. Stability studies showed changes within 30.6% and 11.2% in the size and EE% after 3 months. MTT assay proved a decrease in drug toxicity by its encapsulation in emulsomes. Incorporation of OX into emulsomes resulted in stable nanoformulations. Tailoring emulsomes properties by modulating the surface charge and particle size produced a stable system for the lipophilic drug with a prolonged release profile and mean residence time and proved direct nose-to-brain transport in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Green David E

    2010-02-01

    Full Text Available Abstract Background Few treatment options exist for patients with metastatic melanoma, resulting in poor prognosis. One standard treatment, dacarbazine (DTIC, shows low response rates ranging from 15 to 25 percent with an 8-month median survival time. The development of targeted therapeutics with novel mechanisms of action may improve patient outcome. Ribosome-inactivating proteins (RIPs such as Shiga-like Toxin 1 (SLT-1 represent powerful scaffolds for developing selective anticancer agents. Here we report the discovery and properties of a single chain ribosome-inactivating protein (scRIP derived from the cytotoxic A subunit of SLT-1 (SLT-1A, harboring the 7-amino acid peptide insertion IYSNKLM (termed SLT-1AIYSNKLM allowing the toxin variant to selectively target and kill human melanoma cells. Results SLT-1AIYSNKLM was able to kill 7 of 8 human melanoma cell lines. This scRIP binds to 518-A2 human melanoma cells with a dissociation constant of 18 nM, resulting in the blockage of protein synthesis and apoptosis in such cells. Biodistribution and imaging studies of radiolabeled SLT-1AIYSNKLM administered intravenously into SCID mice bearing a human melanoma xenograft indicate that SLT-1AIYSNKLM readily accumulates at the tumor site as opposed to non-target tissues. Furthermore, the co-administration of SLT-1AIYSNKLM with DTIC resulted in tumor regression and greatly increased survival in this mouse xenograft model in comparison to DTIC or SLT-1AIYSNKLM treatment alone (115 day median survival versus 46 and 47 days respectively; P values IYSNKLM is stable in serum and its intravenous administration resulted in modest immune responses following repeated injections in CD1 mice. Conclusions These results demonstrate that the evolution of a scRIP template can lead to the discovery of novel cancer cell-targeted compounds and in the case of SLT-1AIYSNKLM can specifically kill human melanoma cells in vitro and in vivo.

  20. Green synthesis of zero valent colloidal nanosilver targeting A549 lung cancer cell: In vitro cytotoxicity

    Directory of Open Access Journals (Sweden)

    Minakshi Jha

    2018-06-01

    Full Text Available An eco-friendly green approach was proposed to synthesise stable, cytotoxic colloidal silver nanoparticles (AgNPs using Momordica charantia (M. charantia fruit extract. Bioinspired green method adopted for fabrication of AgNPs because of easy, fast, low-cost and benign bioprocess. Phytocomponents played the crucial role in capping, stabilisation and inherent cytotoxic potential of colloidal nanosilver. The physiochemical, crystalline, optical and morphological properties of AgNPs were characterized using UV-vis, FT-IR, XRD, SEM, TEM, EDX and AFM. FT-IR reveals the presence of carbonyl, methyl, polyphenol (flavonoid, primary and secondary amine (protein, carboxyl group, ester as major functional groups over the surface of nanomaterials. Mechanistic pathway for formation and stabilisation of colloidal nanosilver has been discussed. Average crystalline size of AgNPs was found to be 12.55 nm from XRD. TEM shows AgNPs nanosphere with size range 1–13.85 nm. Consistency in spherical morphology was also confirmed through Atomic Force Microscopy (AFM. AFM measurement provided image Rq value 3.62, image Ra 2.47, roughness Rmax 36.4 nm, skewness 1.99 and kurtosis 9.87. The SRB assay revealed substantial in vitro noticeable anti-cancer activity of colloidal nanosilver on A549 and HOP-62 human lung cancer cells in a dose dependent manner with IC50 value of 51.93 µg/ml and 76.92 µg/ml. In addition, M. charantia capped AgNPs were found to be more biocompatible in comparison to M. charantia FE. Our study demonstrated the integration of green chemistry principle in nanomaterials fabrication and focused on the potential use of M. charantia fruit extract as an efficient precursor for biocompatible AgNPs anodrug formulation with improved cytotoxic applications. Keywords: M. charantia, Silver nanoparticles, TEM, Anticancer activity, A549, HOP-62

  1. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic ther

    OpenAIRE

    Unterweger, H; Subatzus, D; Tietze, R; Janko, C; Poettler, M; Stiegelschmitt, A; Schuster, M; Maake, C; Boccaccini, A R; Alexiou, C

    2015-01-01

    Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparama...

  2. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    Science.gov (United States)

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  3. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis.

    Science.gov (United States)

    Salinas-Jazmín, Nohemi; González-González, Edith; Vásquez-Bochm, Luz X; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2017-05-04

    Therapeutic monoclonal antibodies (mAbs) are relevant to the treatment of different pathologies, including cancers. The development of biosimilar mAbs by pharmaceutical companies is a market opportunity, but it is also a strategy to increase drug accessibility and reduce therapy-associated costs. The protocols detailed here describe the evaluation of target binding and CDC induction by rituximab in Daudi cells. These two functions require different structural regions of the antibody and are relevant to the clinical effect induced by rituximab. The protocols allow the side-to-side comparison of a reference rituximab and a marketed rituximab biosimilar. The evaluated products showed differences both in target binding and CDC induction, suggesting that there are underlying physicochemical differences and highlighting the need to analyze the impact of those differences in the clinical setting. The methods reported here constitute simple and inexpensive in vitro models for the evaluation of the activity of rituximab biosimilars. Thus, they can be useful during biosimilar development, as well as for quality control in biosimilar production. Furthermore, the presented methods can be extrapolated to other therapeutic mAbs.

  4. In Vitro Investigation of the Individual Contributions of Ultrasound-Induced Stable and Inertial Cavitation in Targeted Drug Delivery.

    Science.gov (United States)

    Gourevich, Dana; Volovick, Alexander; Dogadkin, Osnat; Wang, Lijun; Mulvana, Helen; Medan, Yoav; Melzer, Andreas; Cochran, Sandy

    2015-07-01

    Ultrasound-mediated targeted drug delivery is a therapeutic modality under development with the potential to treat cancer. Its ability to produce local hyperthermia and cell poration through cavitation non-invasively makes it a candidate to trigger drug delivery. Hyperthermia offers greater potential for control, particularly with magnetic resonance imaging temperature measurement. However, cavitation may offer reduced treatment times, with real-time measurement of ultrasonic spectra indicating drug dose and treatment success. Here, a clinical magnetic resonance imaging-guided focused ultrasound surgery system was used to study ultrasound-mediated targeted drug delivery in vitro. Drug uptake into breast cancer cells in the vicinity of ultrasound contrast agent was correlated with occurrence and quantity of stable and inertial cavitation, classified according to subharmonic spectra. During stable cavitation, intracellular drug uptake increased by a factor up to 3.2 compared with the control. Reported here are the value of cavitation monitoring with a clinical system and its subsequent employment for dose optimization. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  6. MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro.

    Science.gov (United States)

    Liu, Jingtian; Chen, Zongyou; Xiang, Jianbin; Gu, Xiaodong

    2018-04-01

    Colorectal cancer is one of the most common malignancies. Aberrant expressed microRNAs (miRNAs) have been demonstrated to have strong associations with colorectal cancer by repressing their targets. Therefore, miRNAs are thought to have significant promise in the diagnosis and prognosis of colorectal cancer. Previous studies indicated that miR-155 and collagen triple helix repeat containing 1 (CTHRC1) were both involved in pathogenesis of colorectal cancer, but the underlying mechanisms of miR-155 and CTHRC1 are still unknown. The present study aimed to investigate the biological functions of miR-155 and CTHRC1 in colorectal cancer. Reverse transcription-quantitative polymerase chain reaction was used to examine miR-155 and CTHRC1 expression levels. A dual-luciferase reporter assay was applied to verify the target interaction between miR-155 and CTHRC1. Proliferation, cell cycle, apoptosis, cell migration and invasion were measured using the MTT assay, flow cytometry and Transwell assays, respectively. Results showed that miR-155 expression was decreased, but CTHRC1 expression was increased in colorectal cancer tissue and cell lines. Furthermore, it was demonstrated that miR-155 negatively regulated CTHRC1. Additionally, miR-155 overexpression suppressed cell proliferation, induced cell cycle arrest and promoted cell apoptosis, while an inhibitor of miR-155 facilitated cell proliferation and cell cycle and repressed apoptosis. Transwell experiments indicated that miR-155 inhibited the cell migratory and invasive abilities of HT-29 cells, but miR-155 inhibitor enhanced these abilities of HT-29 cells. These results suggested that miR-155 prevented colorectal cancer progression and metastasis via silencing CTHRC1 in vitro , which provides evidence for miR-155 and CTHRC1 as a novel anti-onco molecular target for the treatment of colorectal cancer in the future.

  7. Assessment of thrombus imaging potency of thrombin-targeting recombinant hirudin in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Tan; Rongjun, Zhang; Weixing, Wan; Gangming, Cai; Huixin, Yu; Mengjun, Jiang; Lianfen, Zhang; Guoping, Sheng; Yijun, Fan; Yonghui, Tao; Jian, Jin [Jiangsu Inst. of Nuclear Medicine, Wuxi (China)

    2003-07-01

    The purpose of this study is to evaluate the effect of recombinant hirudin HV2 (rHHV2) as a thrombus imaging agent. {sup 125}I-rHHV2 and {sup 125}I-Th were prepared with Chloramine method, the labeling rate were 86.64% and 62.20%, with the radioactive purity of 89.70% and 91.22%, with the specific activity of 22.4 TBq/mmol and 94.43 TBq/mmol respectively. The competitive radioassay showed that the Th-fibrin complex formation did not affect the ability of rHHV2 binding with Th. In the complex, the molecular binding ratio of rHHV2 to Th and fibrinogen was 14:14:1. {sup 99m}Tc-rHHV2 was prepared by 2-iminothiolane modified method, the labeled rate was 94%, with the radioactive purity of 93.90%, with the specific activity of 2.30 TBq/mmol. It was used to image fresh thrombi on arteries and veins of dog or rabbit (30 {mu}g/kg). In SPECT images, all thrombin were clearly visible, arterial thrombosis imaging can be seen clearly within 45 min after injection and fade away slowly, venous thrombosis imaging also can be seen within 30 min after injection and quantitative imaging ratios between the thrombus and opposite vessel increased following the time. Biodistribution studies in mouse demonstrated that rHHV2 was excreted from kidneys. These data indicate that Th in Th-fibrin complex could be a potent target for diagnosis of thrombus and {sup 99m}Tc-rHHV2 could be a new thrombotic imaging agent. (authors)

  8. The physics, biophysics and technology of photodynamic therapy

    International Nuclear Information System (INIS)

    Wilson, Brian C; Patterson, Michael S

    2008-01-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  9. The physics, biophysics and technology of photodynamic therapy.

    Science.gov (United States)

    Wilson, Brian C; Patterson, Michael S

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components -- light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  10. Photodynamic therapy of Cervical Intraepithelial Neoplasia (CIN) high grade

    Science.gov (United States)

    Carbinatto, Fernanda M.; Inada, Natalia M.; Lombardi, Welington; da Silva, Eduardo V.; Belotto, Renata; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-02-01

    Cervical intraepithelial neoplasia (CIN) is the precursor of invasive cervical cancer and associated with human papillomavirus (HPV) infection. Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors. PDT is based on the accumulation of a photosensitizer in target cells that will generate cytotoxic reactive oxygen species upon illumination, inducing the death of abnormal tissue and PDT with less damaging to normal tissues than surgery, radiation, or chemotherapy and seems to be a promising alternative procedure for CIN treatment. The CIN high grades (II and III) presents potential indications for PDT due the success of PDT for CIN low grade treatment. The patients with CIN high grade that were treated with new clinic protocol shows lesion regression to CIN low grade 60 days after the treatment. The new clinical protocol using for treatment of CIN high grade shows great potential to become a public health technique.

  11. The physics, biophysics and technology of photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Brian C [Division of Biophysics and Bioimaging, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON M5G 2M9 (Canada); Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, 699 Concession Street, Hamilton, ON L8V 5C2 (Canada)], E-mail: wilson@uhnres.utoronto.ca, E-mail: mike.patterson@jcc.hhsc.ca

    2008-05-07

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components-light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT. (topical review)

  12. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro

    International Nuclear Information System (INIS)

    Cardillo, Thomas M; Trisal, Preeti; Arrojo, Roberto; Goldenberg, David M; Chang, Chien-Hsing

    2013-01-01

    Advanced or metastatic renal cell carcinoma (RCC) has a poor prognosis, because it is relatively resistant to conventional chemotherapy or radiotherapy. Treatments with human interferon-α2b alone or in combination with mammalian target of rapamycin (mTOR) inhibitors have led to only a modest improvement in clinical outcome. One observation made with mTOR inhibitors is that carcinomas can overcome these inhibitory effects by activating the insulin-like growth factor-I (IGF-I) signaling pathway. Clinically, there is an association of IGF-I receptor (IGF-IR) expression in RCC and poor long-term patient survival. We have developed a humanized anti-IGF-IR monoclonal antibody, hR1, which binds to RCC, resulting in effective down-regulation of IGF-IR and moderate inhibition of cell proliferation in vitro. In this work, we evaluate the anti-tumor activity of two novel IGF-1R-targeting agents against renal cell carcinoma given alone or in combination with an mTOR inhibitor. hR1 was linked by the DOCK-AND-LOCK™ (DNL™) method to four Fabs of hR1, generating Hex-hR1, or to four molecules of interferon-α2b, generating 1R-2b. Eight human RCC cell lines were screened for IGF-1R expression and sensitivity to treatment with hR1 in vitro. Synergy with an mTOR inhibitor, temsirolimus, was tested in a cell line (ACHN) with low sensitivity to hR1. Hex-hR1 induced the down-regulation of IGF-IR at 10-fold lower concentrations compared to the parental hR1. Sensitivity to growth inhibition mediated by hR1 and Hex-hR1 treatments correlated with IGF-1R expression (higher expression was more sensitive). The potency of 1R-2b to inhibit the in vitro growth of RCC was also demonstrated in two human cell lines, ACHN and 786-O, with EC 50 –values of 63 and 48 pM, respectively. When combined with temsirolimus, a synergistic growth-inhibition with hR1, Hex-hR1, and 1R-2b was observed in ACHN cells at concentrations as low as 10 nM for hR1, 1 nM for Hex-hR1, and 2.6 nM for 1R-2b. Both Hex-hR1

  13. Iridium complexes for the application of photodynamic therapy

    Directory of Open Access Journals (Sweden)

    SHI Min

    2015-10-01

    Full Text Available Photodynamic therapy can destruct tumor cells by singlet oxygen which is generated via a photodynamic reaction of the photosensitizer under a specfic excitation wavelength.Due to the heavy atom effect of metal iridium,iridiumcomplexes are excited by suitable light and then reach their excited triple state through intersystem crossing.The excited iridium complexes transfer energy to oxygen molecules to produce singlet oxygen for photodynamic therapy.

  14. Treating Melanoma Metastases with a Novel Photodynamic Approach

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0270 TITLE: Treating Melanoma Metastases with a Novel Photodynamic Approach PRINCIPAL INVESTIGATOR: Jin Xie...Metastases with a Novel Photodynamic Approach 5a. CONTRACT NUMBER Treating Melanoma Metastases with a Novel Photodynamic Approach 5b. GRANT NUMBER...ligand and after systemic injection, home to tumors in the lung. X-ray of relatively low doses can then be applied externally to the lung area to

  15. Influence of protoporphyrin IX loaded phloroglucinol succinic acid dendrimer in photodynamic therapy

    Science.gov (United States)

    Kumar, M. Suresh; Aruna, P.; Ganesan, S.

    2018-03-01

    One of the major problems reported clinically for photosensitizers (PS) in Photodynamic therapy (PDT) is, the cause of side-effects to normal tissue due to dark toxicity. The usefulness of photosensitizers can be made possible by reducing its dark toxicity nature. In such scenario, biocompatible carriers can be used as a drug delivery system to evade the problems that arises while using free (dark toxic) drugs. So in this study, we have developed a nano drug delivery system called Phloroglucinol Succinic acid (PGSA) dendrimer, entrapped a photosensitizer, protoporphyrin IX (PpIX) inside the system and investigated whether the photodynamic efficacy of the anionic surface charged dendrimer-PpIX nano formulation is enhanced than achieved by the free PpIX in HeLa cancer cell lines. Moreover, the Reactive oxygen species (ROS) production was monitored using 2‧,7‧-dichlorodihydrofluorescein diacetate (H2DCF-DA)- ROS Marker with phase contrast microscopy for the IC50 values of free and dendrimer-PpIX nano formulation. Similarly, the mode of cell death has been confirmed by cell cycle analysis for the same. For the in vitro PDT application, we have used a simple light source (Light Emitting Diode) with a power of 30-50 mW for 20 min irradiation. Hence, in this study we have taken steps to report this anionic drug delivery system is good to consider for the photodynamic therapy applications with the photosensitizer, PpIX which satisfied the prime requirement of PDT.

  16. A simple way for targeted delivery of an antibiotic: In vitro evaluation of a nanoclay-based composite.

    Directory of Open Access Journals (Sweden)

    Leslie Valdés

    Full Text Available The sodium-modified form of fluorohectorite nanoclay (NaFh is introduced as a potential drug carrier, demonstrating its ability for the controlled release of the broad-spectrum antibiotic Ciprofloxacin through in vitro tests. The new clay-drug composite is designed to target the local infections in the large intestine, where it delivers most of the incorporated drug thanks to its pH-sensitive behavior. The composite has been conceived to avoid the use of coating technology and to decrease the side-effects commonly associated to the burst-release of the ciprofloxacin at the stomach level. NaFh was obtained from lithium-fluorohectorite by ion exchange, and its lack of toxicity was demonstrated by in vivo studies. Ciprofloxacin hydrochloride (Cipro was encapsulated into the clay at different values of the pH, drug initial concentration, temperature and time. Systematic studies by X-ray diffraction (XRD, infrared and visible spectrophotometry (FT-IR and UV-vis, and thermal analysis (TGA indicated that the NaFh host exhibits a high encapsulation efficiency for Cipro, which reaches a 90% of the initial Cipro in solution at 65 oC, with initial concentration of drug in solution of 1.36 x 10-2 mol L-1 at acid pH. XRD revealed that a true intercalation of Cipro takes place between clay layers. TG showed an increased thermal stability of the drug when intercalated into the clay, as compared to the "free" Cipro. IR suggested a strong clay-Cipro interaction via ketone group, as well as the establishment of hydrogen bonds between the two materials. In vitro drug release tests revealed that NaFh is a potentially efficient carrier to deliver Cipro in the large intestine, where the release process is mediated by more than just one mechanism.

  17. The Influence of Photodynamic Therapy on Tumor Cell S180

    Directory of Open Access Journals (Sweden)

    Pouran Sadat Tayebi

    2017-05-01

    Full Text Available Today cancer is the second important factor of the death in the world. Most of the cancer patients are treated with standard therapies, including surgery, radiation and/or chemotherapy. These standard therapies are most efficient on the primary tumor, but in the case of disseminated disease, they are often not effective. Treatment of disease that has disseminated from the primary tumor and metastasized to distant sites has promoted the investigation of immunotherapeutic strategies for cancer, and has been a major area of research over the last couple of decades. Chemotherapy and radiotherapy, standard therapies, are the main treatments for majority of cancer patients. Our studies demonstrate that ALA-HMME-PDT has a role in enhanced the quality of life and lengthens survival in mice infected by sarcoma 180. The reported method is hardly implemented but it possible in any clinical situation where PDT is needed. These therapies are most efficient in bearing the tumor in its first process of formation. Currently, the hot topic of discussion and research in the cancer arena is photodynamic Therapy (PDT. This type of therapy is an emerging channel of treatment that is very successful in eradicating cancer, with few side effects. The effectiveness of photodynamic therapy on the sarcoma treating process in mice by using ALA and HMME photosensitizers is investigated by this study. Many factors help us determine effectiveness of PDT including concentration of the sensitizer, absorption of light energy and accessibility of molecular oxygen in the target tissue during light irradiation, besides intrinsic sensitivity of target tissue.

  18. Photodynamic therapy in treatment of severe oral lichen planus.

    Science.gov (United States)

    Rabinovich, O F; Rabinovich, I M; Guseva, A V

    2016-01-01

    The aim of the study was to elaborate the rationale for the application of photodynamic therapy in complex treatment of patient with severe oral lichen planus. Complex clinical and laboratory examination and treatment was performed in 54 patients divided on 3 groups. Diagnosis of oral lichen planus was based on clinical, histological and immunohistochemical features. Group 1 received standard treatment, in the second group photodynamic therapy was conducted in addition to conventional treatment, patients in the third group received only photodynamic therapy. The study results proved photodynamic therapy to be useful tool in complex treatment of severe oral lichen planus.

  19. Porous Porphyrin-Based Organosilica Nanoparticles for NIR Two-Photon Photodynamic Therapy and Gene Delivery in Zebrafish

    KAUST Repository

    Mauriello Jimenez, Chiara

    2018-03-30

    Periodic mesoporous organosilica nanoparticles emerge as promising vectors for nanomedicine applications. Their properties are very different from those of well-known mesoporous silica nanoparticles as there is no silica source for their synthesis. So far, they have only been synthesized from small bis-silylated organic precursors. However, no studies employing large stimuli-responsive precursors have been reported on such hybrid systems yet. Here, the synthesis of porphyrin-based organosilica nanoparticles from a large octasilylated metalated porphyrin precursor is described for applications in near-infrared two-photon-triggered spatiotemporal theranostics. The nanoparticles display unique interconnected large cavities of 10-80 nm. The framework of the nanoparticles is constituted with J-aggregates of porphyrins, which endows them with two-photon sensitivity. The nanoparticle efficiency for intracellular tracking is first demonstrated by the in vitro near-infrared imaging of breast cancer cells. After functionalization of the nanoparticles with aminopropyltriethoxysilane, two-photon-excited photodynamic therapy in zebrafish is successfully achieved. Two-photon photochemical internalization in cancer cells of the nanoparticles loaded with siRNA is also performed for the first time. Furthermore, siRNA targeting green fluorescent protein complexed with the nanoparticles is delivered in vivo in zebrafish embryos, which demonstrates the versatility of the nanovectors for biomedical applications.

  20. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  1. Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation

    Science.gov (United States)

    Suzuki, Isabella L.; Inada, Natália M.; Marangoni, Valéria S.; Corrêa, Thaila Q.; Zucolotto, Valtencir; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    Because of excessive use of antibiotics there is a growth in the number of resistant strains. Due to this growth of multiresistant bacteria, the number of searches looking for alternatives antibacterial therapeutic has increased, and among them is the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI). The photodynamic inactivation involves the action of a photosensitizer (PS), activated by a specific wavelength, in the present of oxygen, resulting in cytotoxic effect. Natural curcumin, consists of a mixture of three curcuminoids: curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin has various pharmacological properties, however, has extremely low solubility in aqueous solutions, which difficult the use as therapeutic agent. The present study aims to develop polymeric PLGA nanoparticles containing curcuminoids to improve water solubility, increase bioavailability providing protection from degradation (chemistry and physics), and to verify the efficacy in photodynamic inactivation of microorganisms. The PLGA-CURC were synthesized by nanoprecipitation, resulting in two different systems, with an average size of 172 nm and 70% encapsulation efficiency for PLGA-CURC1, and 215 nm and 80% for PLGA-CURC2. Stability tests showed the polymer protected the curcuminoids against premature degradation. Microbiological tests in vitro with curcuminoids water solution and both suspension of PLGA-CURC were efficient in Gram-positive bacterium and fungus. However, the solution presented dark toxicity at high concentrations, unlike the nanoparticles. Thus, it was concluded that it was possible to let curcuminoids water soluble by encapsulation in PLGA nanoparticles, to ensure improved stability in aqueous medium (storage), and to inactivate bacteria and fungus.

  2. Singlet oxygen production by combining erythrosine and halogen light for photodynamic inactivation of Streptococcus mutans.

    Science.gov (United States)

    Fracalossi, Camila; Nagata, Juliana Yuri; Pellosi, Diogo Silva; Terada, Raquel Sano Suga; Hioka, Noboru; Baesso, Mauro Luciano; Sato, Francielle; Rosalen, Pedro Luiz; Caetano, Wilker; Fujimaki, Mitsue

    2016-09-01

    Photodynamic inactivation of microorganisms is based on a photosensitizing substance which, in the presence of light and molecular oxygen, produces singlet oxygen, a toxic agent to microorganisms and tumor cells. This study aimed to evaluate singlet oxygen quantum yield of erythrosine solutions illuminated with a halogen light source in comparison to a LED array (control), and the photodynamic effect of erythrosine dye in association with the halogen light source on Streptococcus mutans. Singlet oxygen quantum yield of erythrosine solutions was quantified using uric acid as a chemical-probe in an aqueous solution. The in vitro effect of the photodynamic antimicrobial activity of erythrosine in association with the halogen photopolimerizing light on Streptococcus mutans (UA 159) was assessed during one minute. Bacterial cultures treated with erythrosine alone served as negative control. Singlet oxygen with 24% and 2.8% degradation of uric acid in one minute and a quantum yield of 0.59 and 0.63 was obtained for the erythrosine samples illuminated with the halogen light and the LED array, respectively. The bacterial cultures with erythrosine illuminated with the halogen light presented a decreased number of CFU mL(-1) in comparison with the negative control, with minimal inhibitory concentrations between 0.312 and 0.156mgmL(-1). The photodynamic response of erythrosine induced by the halogen light was capable of killing S. mutans. Clinical trials should be conducted to better ascertain the use of erythrosine in association with halogen light source for the treatment of dental caries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. 2-Bromo-5-hydroxyphenylporphyrins for photodynamic therapy: photosensitization efficiency, subcellular localization and in vivo studies.

    Science.gov (United States)

    Laranjo, Mafalda; Serra, Arménio C; Abrantes, Margarida; Piñeiro, Marta; Gonçalves, Ana C; Casalta-Lopes, João; Carvalho, Lina; Sarmento-Ribeiro, Ana B; Rocha-Gonsalves, António; Botelho, Filomena

    2013-02-01

    Photodynamic therapy (PDT) is a therapeutic modality capable of inducing cell death by oxidative stress through activation of a sensitizer by light. Aryl-porphyrin with hydroxyl groups are good photosensitizers and presence of bromine atoms can enhance the photodynamic activity through heavy atom effect. These facts and our previous work made pertinent to compare the photodynamic capacity of tetraaryl brominated porphyrin (TBr4) with the corresponding diaryl (BBr2) derivative. Cell cultures were incubated with the sensitizers, ranging from 50nM to 10μM and irradiated until 10J. Cell proliferation was analysed by MTT assay. Flow cytometry studies evaluated cell death pathways, mitochondrial membrane potential and ROS. For in vivo studies Balb/c nu/nu mice were injected with 4×10(6)cells. After PDT, monitoring was carried out for 12 days to establish Kaplan-Meier survival curves. Tumours were excised and histological analysis was performed. Both sensitizers seem to accumulate in the mitochondria. The molecules have no intrinsic cytotoxicity or in non-tumour cells at therapeutic concentrations. Both sensitizers induced a significant decrease of cell proliferation and growth of xenografts of melanoma and colorectal adenocarcinoma. Diaryl BBr2 is more efficient than tetraaryl TBr4, concerning intracellular ROS production, mitochondrial disruption and induction of cell death. The main cell death pathway is necrosis. TBr2 and BBr4 are promising sensitizers with good photodynamic properties and have the ability to induce cell death in human melanoma and colorectal adenocarcinoma in vitro and in vivo. We consider that BBr2 is a molecule that should be the subject of extensive studies towards clinical use. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Photodynamic therapy for recurrent respiratory papillomatosis.

    Science.gov (United States)

    Lieder, Anja; Khan, Muhammad K; Lippert, Burkard M

    2014-06-05

    Recurrent respiratory papillomatosis (RRP) is a benign condition of the mucosa of the upper aerodigestive tract. It is characterised by recurrent papillomatous lesions and is associated with human papillomavirus (HPV). Frequent recurrence and rapid papilloma growth are common and in part responsible for the onset of potentially life-threatening symptoms. Most patients afflicted by the condition will require repeated surgical treatments to maintain their airway, and these may result in scarring and voice problems. Photodynamic therapy introduces a light-sensitising agent, which is administered either orally or by injection. This substance (called a photo-sensitiser) is selectively retained in hyperplastic and neoplastic tissue, including papilloma. It is then activated by light of a specific wavelength and may be used as a sole or adjuvant treatment for RRP. To assess the effects of photodynamic therapy in the management of recurrent respiratory papillomatosis (RRP) in children and adults. We searched the Cochrane Ear, Nose and Throat Disorders Group Trials Register; the Cochrane Central Register of Controlled Trials (CENTRAL); PubMed; EMBASE; CINAHL; Web of Science; Cambridge Scientific Abstracts; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 January 2014. Randomised controlled trials utilising photodynamic therapy as sole or adjuvant therapy in participants of any age with proven RRP versus control intervention. Primary outcome measures were symptom improvement (respiratory distress/dyspnoea and voice quality), quality of life improvement and recurrence-free interval. Secondary outcomes included reduction in the frequency of surgical intervention, reduction in disease volume and adverse effects of treatment.   We used the standard methodological procedures expected by The Cochrane Collaboration. Meta-analysis was not possible and results are presented descriptively. We included one trial with a total of 23

  5. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives.

    Science.gov (United States)

    Cormick, M Paula; Alvarez, M Gabriela; Rovera, Marisa; Durantini, Edgardo N

    2009-04-01

    The photodynamic action of 5-(4-trifluorophenyl)-10,15,20-tris(4-trimethylammoniumphenyl)porphyrin iodide (TFAP(3+)) and 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP(4+)) has been studied in vitro on Candida albicans. The results of these cationic porphyrins were compared with those of 5,10,15,20-tetra(4-sulphonatophenyl)porphyrin (TPPS(4-)), which characterizes an anionic sensitizer. In vitro investigations show that these cationic porphyrins are rapidly bound to C. albicans cells, reaching a value of approximately 1.4 nmol/10(6) cells, when the cellular suspensions were incubated with 5 microM sensitizer for 30 min. In contrast, TPPS(4-) is poorly uptaken by yeast cells. The fluorescence spectra of these sensitizers into the cells confirm this behaviour. The amount of porphyrin binds to cells is dependent on both sensitizer concentrations (1-5 microM) and cells densities (10(6)-10(8) cells/mL). Photosensitized inactivation of C. albicans cellular suspensions increases with sensitizer concentration, causing a approximately 5 log decrease of cell survival, when the cultures are treated with 5 microM of cationic porphyrin and irradiated for 30 min. However, the photocytotoxicity decreases with an increase in the cell density, according to its low binding to cells. Under these conditions, the photodynamic activity of TFAP(3+) is quite similar to that produced by TMAP(4+), whereas no important inactivation effect was found for TPPS(4)(-). The high photodynamic activity of cationic porphyrins was confirmed by growth delay experiments. Thus, C. albicans cell growth was not detected in the presence of 5 microM TFAP(3+). Photodynamic inactivation capacities of these sensitizers were also evaluated on C. albicans cells growing in colonies on agar surfaces. Cationic porphyrins produce a growth delay of C. albicans colonies and viability of cells was not observed after 3 h irradiation, indicating a complete inactivation of yeast cells

  6. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  8. Tau Antibody Targeting Pathological Species Blocks Neuronal Uptake and Interneuron Propagation of Tau in Vitro.

    Science.gov (United States)

    Nobuhara, Chloe K; DeVos, Sarah L; Commins, Caitlin; Wegmann, Susanne; Moore, Benjamin D; Roe, Allyson D; Costantino, Isabel; Frosch, Matthew P; Pitstick, Rose; Carlson, George A; Hock, Christoph; Nitsch, Roger M; Montrasio, Fabio; Grimm, Jan; Cheung, Anne E; Dunah, Anthone W; Wittmann, Marion; Bussiere, Thierry; Weinreb, Paul H; Hyman, Bradley T; Takeda, Shuko

    2017-06-01

    The clinical progression of Alzheimer disease (AD) is associated with the accumulation of tau neurofibrillary tangles, which may spread throughout the cortex by interneuronal tau transfer. If so, targeting extracellular tau species may slow the spreading of tau pathology and possibly cognitive decline. To identify suitable target epitopes, we tested the effects of a panel of tau antibodies on neuronal uptake and aggregation in vitro. Immunodepletion was performed on brain extract from tau-transgenic mice and postmortem AD brain and added to a sensitive fluorescence resonance energy transfer-based tau uptake assay to assess blocking efficacy. The antibodies reduced tau uptake in an epitope-dependent manner: N-terminal (Tau13) and middomain (6C5 and HT7) antibodies successfully prevented uptake of tau species, whereas the distal C-terminal-specific antibody (Tau46) had little effect. Phosphorylation-dependent (40E8 and p396) and C-terminal half (4E4) tau antibodies also reduced tau uptake despite removing less total tau by immunodepletion, suggesting specific interactions with species involved in uptake. Among the seven antibodies evaluated, 6C5 most efficiently blocked uptake and subsequent aggregation. More important, 6C5 also blocked neuron-to-neuron spreading of tau in a unique three-chamber microfluidic device. Furthermore, 6C5 slowed down the progression of tau aggregation even after uptake had begun. Our results imply that not all antibodies/epitopes are equally robust in terms of blocking tau uptake of human AD-derived tau species. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Elnaggar YSR

    2016-10-01

    Full Text Available Yosra SR Elnaggar,1,2 Sara M Talaat,1 Mohammed Bahey-El-Din,3 Ossama Y Abdallah1 1Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 2Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, 3Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: Terconazole (Tr is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. Keywords: terconazole, liquid crystalline, organogel, skin targeting, skin mycosis

  10. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    Science.gov (United States)

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor-targeted

  12. Quantification of the In Vitro Radiosensitivity of Mung Bean Sprout Elongation to 6MV X-Ray: A Revised Target Model Study.

    Directory of Open Access Journals (Sweden)

    Tzu Hwei Wang

    Full Text Available In this study, a revised target model for quantifying the in vitro radiosensitivity of mung bean sprout elongation to 6-MV X-rays was developed. The revised target model, which incorporated the Poisson prediction for a low probability of success, provided theoretical estimates that were highly consistent with the actual data measured in this study. The revised target model correlated different in vitro radiosensitivities to various effective target volumes and was successfully confirmed by exposing mung beans in various elongation states to various doses of 6-MV X-rays. For the experiment, 5,000 fresh mung beans were randomly distributed into 100 petri dishes, which were randomly divided into ten groups. Each group received an initial watering at a different time point prior to X-ray exposure, resulting in different effective target volumes. The bean sprouts were measured 70 hr after X-ray exposure, and the average length of the bean sprouts in each group was recorded as an index of the mung bean in vitro radiosensitivity. Mung beans that received an initial watering either six or sixteen hours before X-ray exposure had the shortest sprout length, indicating that the maximum effective target volume was formed within that specific time period. The revised target model could be also expanded to interpret the "two-hit" model of target theory, although the experimental data supported the "one-hit" model. If the "two-hit" model was sustained, theoretically, the target size would be 2.14 times larger than its original size to produce the same results.

  13. Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Chien

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A, a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs/fibroblast growth factor receptors (FGFRs, on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc+. We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc+ and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL and microvessel density (MVD. 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.

  14. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies

    Science.gov (United States)

    Elnaggar, Yosra SR; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    2016-01-01

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose. PMID:27822033

  15. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: development, in vitro and in vivo studies.

    Science.gov (United States)

    Elnaggar, Yosra Sr; Talaat, Sara M; Bahey-El-Din, Mohammed; Abdallah, Ossama Y

    Terconazole (Tr) is the first marketed, most active triazole for vaginal candidiasis. Owing to poor skin permeation and challenging physicochemical properties, Tr was not employed for the treatment of cutaneous candidiasis. This is the first study to investigate the relevance of novel lecithin-integrated liquid crystalline nano-organogels (LCGs) to improve physicochemical characteristics of Tr in order to enable its dermal application in skin candidiasis. Ternary phase diagram was constructed using lecithin/capryol 90/water to identify the region of liquid crystalline organogel. The selected organogel possessed promising physicochemical characteristics based on particle size, rheological behavior, pH, loading efficiency, and in vitro antifungal activity. Microstructure of the selected organogel was confirmed by polarized light microscopy and transmission electron microscopy. Ex vivo and in vivo skin permeation studies revealed a significant 4.7- and 2.7-fold increase in the permeability of Tr-loaded LCG when compared to conventional hydrogel. Moreover, acute irritation study indicated safety and compatibility of liquid crystalline organogel to the skin. The in vivo antifungal activity confirmed the superiority of LCG over the conventional hydrogel for the eradication of Candida infection. Overall, lecithin-based liquid crystalline organogel confirmed its potential as an interesting dermal nanocarrier for skin targeting purpose.

  16. Photodynamic antimicrobial chemotherapy using zinc phthalocyanine derivatives in treatment of bacterial skin infection

    Science.gov (United States)

    Chen, Zhuo; Zhang, Yaxin; Wang, Dong; Li, Linsen; Zhou, Shanyong; Huang, Joy H.; Chen, Jincan; Hu, Ping; Huang, Mingdong

    2016-01-01

    Photodynamic antimicrobial chemotherapy (PACT) is an effective method for killing bacterial cells in view of the increasing problem of multiantibiotic resistance. We herein reported the PACT effect on bacteria involved in skin infections using a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-Lys). Compared with its anionic ZnPc counterpart, ZnPc-Lys showed an enhanced antibacterial efficacy in vitro and in an animal model of localized infection. Meanwhile, ZnPc-Lys was observed to significantly reduce the wound skin blood flow during wound healing, indicating an anti-inflammation activity. This study provides new insight on the mechanisms of PACT in bacterial skin infection.

  17. Photodynamic therapy of cervical intraepithelial neoplasia

    Science.gov (United States)

    Inada, Natalia M.; Lombardi, Welington; Leite, Marieli F. M.; Trujillo, Jose R.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors, especially in Gynecology. The photodynamic reaction is based on the production of reactive oxygen species after the activation of a photosensitizer. Advantages of the PDT in comparison to the surgical resection are: ambulatory treatment and tissue recovery highly satisfactory, through a non-invasive procedure. The cervical intraepithelial neoplasia (CIN) grades I and II presents potential indications for PDT. The aim of the proposed study is to evaluate the safety and efficacy of the PDT for the diagnostics and treatment of CIN I and II. The equipment and the photosensitizer are produced in Brazil with a representative low cost. It is possible to visualize the fluorescence of the cervix and to treat the lesions, without side effects. The proposed clinical protocol shows great potential to become a public health technique.

  18. INTRAOPERATIVE PHOTODYNAMIC THERAPY FOR METASTATIC PERITONEAL TUMORS

    Directory of Open Access Journals (Sweden)

    E. A. Suleimanov

    2016-01-01

    Full Text Available This review is devoted to the cytoreductive treatment of malignant tumors of the abdominal organs. The actuality of the issue is determined both by increase of the incidence of abdominal cancer in Russia and in majority of developed countries and by high rate diagnosis on late stages of disease. The methods of treatment of peritoneal carcinomatosis, based on possible effects on the secondary peritoneal tumors after surgical cytoreduction to reduce the risk of local recurrence and disease progression are described. These methods of additional intraoperative specific antitumor action include intraoperative radiation therapy, hyperthermic intraperitoneal chemotherapy, intraoperative photodynamic therapy characterized by differences in difficulty of performance, mechanisms of effect on tumor and healthy tissues, efficiency. Benefits, opportunities and possibilities of application of intraoperative photodynamic therapy (IOPDT for secondary peritoneal tumors are described in details, the results of a number of domestic and foreign clinical studies are shown, the successful application of intraoperative photodynamic therapy in clinical oncology, which allows reducing the risk of secondary tumor lesions of the peritoneum significantly, is demonstrated. Photodynamic therapy – a method with high efficiency and almost no side effects and complications, based on the ability of photosensitizer to accumulate selectively and retain in the high proliferative tissues. The advantages of this type of treatment of patients with peritoneal carcinomatosis are a selective effect on the peritoneal carcinomatosis and on visually detected tumor tissue, high efficiency in patients with malignant tumors of the abdominal cavity and pelvis combined with surgical cytoreduction, minimal effect on normal organs and tissues of the patient, well tolerated procedure.

  19. Scope of photodynamic therapy in periodontics

    OpenAIRE

    Vivek Kumar; Jolly Sinha; Neelu Verma; Kamal Nayan; C S Saimbi; Amitandra K Tripathi

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is...

  20. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  1. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    Science.gov (United States)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  2. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches

    OpenAIRE

    Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej

    2012-01-01

    Purpose Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Methods Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faec...

  3. Small interfering RNA targeting HIF-1{alpha} reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Staab, Adrian [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Paul Scherrer Institute (PSI), Villigen (Switzerland); Fleischer, Markus [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Wuerzburg Univ. (Germany). Medical Clinic II; Loeffler, Juergen; Einsele, Herrmann [Wuerzburg Univ. (Germany). Medical Clinic II; Said, Harun M.; Katzer, Astrid; Flentje, Michael [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Plathow, Christian [Freiburg Univ. (Germany). Dept. of Nuclear Medicine; Vordermark, Dirk [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; Halle-Wittenberg Univ. (Germany). Dept. of Radiation Oncology

    2011-04-15

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1{alpha} expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1{alpha} siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1{alpha}. HIF-1{alpha} protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O{sub 2} (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1{alpha}-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O{sub 2} as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1{alpha}-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1{alpha}-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1{alpha}-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  4. Small interfering RNA targeting HIF-1α reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro

    International Nuclear Information System (INIS)

    Staab, Adrian; Fleischer, Markus; Wuerzburg Univ.; Loeffler, Juergen; Einsele, Herrmann; Said, Harun M.; Katzer, Astrid; Flentje, Michael; Plathow, Christian; Vordermark, Dirk; Halle-Wittenberg Univ.

    2011-01-01

    Background: Hypoxia inducible factor-1 has been identified as a potential target to overcome hypoxia-induced radioresistance The aim of the present study was to investigate whether selective HIF-1 inhibition via small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α) affects hypoxia-induced radioresistance in HT 1080 human fibrosarcoma cells. Material and Methods: HIF-1α expression in HT 1080 human fibrosarcoma cells in vitro was silenced using HIF-1α siRNA sequence primers. Quantitative real-time polymerase chain reaction assay was performed to quantify the mRNA expression of HIF-1α. HIF-1α protein levels were studied by Western blotting at 20% (air) or after 12 hours at 0.1% O 2 (hypoxia). Cells were assayed for clonogenic survival after irradiation with 2, 5, or 10 Gy, under normoxic or hypoxic conditions in the presence of HIF-1α-targeted or control siRNA sequences. A modified oxygen enhancement ratio (OER') was calculated as the ratio of the doses to achieve the same survival at 0.1% O 2 as at ambient oxygen tensions. OER' was obtained at cell survival levels of 50%, 37%, and 10%. Results: HIF-1α-targeted siRNA enhanced radiation treatment efficacy under severely hypoxic conditions compared to tumor cells treated with scrambled control siRNA. OER was reduced on all survival levels after treatment with HIF-1α-targeted siRNA, suggesting that inhibition of HIF-1 activation by using HIF-1α-targeted siRNA increases radiosensitivity of hypoxic tumor cells in vitro. Conclusion: Inhibition of HIF-1 activation by using HIF-1α-targeted siRNA clearly acts synergistically with radiotherapy and increase radiosensitivity of hypoxic cells in vitro. (orig.)

  5. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo.

    Science.gov (United States)

    Wang, Yujuan; Jiang, Liangqian; Yin, Qifeng; Liu, Huihui; Liu, Guoxiang; Zhu, Guoteng; Li, Bing

    2017-01-01

    The novel C-PC/CMC-CD59sp-NPs were made by carbocymethyl chitosan (CMC) loading C-phycocyanin (C-PC) with the lead of CD59 specific ligand peptide (CD59sp) for targeting, and the characteristics and targeted anti-tumor mechanism were explored in order to realize the targeted therapy of C-PC on the growth of HeLa cells both in vitro and vivo . The targeting nanoparticles were synthesized by ionic-gelation method, and the optimal condition was selected out by orthogonal analysis. The properties of nanoparticles were observed by laser particle analyzer and dynamic light scattering (DLS) and Fourier Transform Infrared Spectrometer (FTIR). The effects of nanoparticles on the proliferation of HeLa cells in vitro were assessed by MTT assay. The mice model with tumor was constructed by subcutaneous injection of HeLa cells into the left axilla of NU/NU mice. The weight of tumor and the spleen were tested. The expression quantities of cleaved caspase-3, Bcl-2 were determined by western blot and immunofluorescent staining. Results showed the morphology of the finally prepared nanoparticles was well distributed with a diameter distribution of 200±11.3 nm and zeta potential of -19.5±4.12mV. Under the guidance of CD59sp, the targeting nanoparticles could targetedly and efficiently arrive at the surface of HeLa cells, and had obvious inhibitory effect on HeLa cells proliferation both in vitro and vivo. Moreover, the nanoparticles could induce cell apoptosis by up-regulation of cleaved caspase-3 proteins expression, but down-regulation of Bcl-2 and cyclinD1 proteins. Our study provided a new idea for the research and development of marine drugs, and supplied a theoretical support for the target therapy of anticancer drug.

  6. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  7. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro.

    Science.gov (United States)

    Tonelli, R R; Colli, W; Alves, M J M

    2012-01-01

    Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be

  8. Antagomirs Targeting MicroRNA-134 Increase Limk1 Levels After Experimental Seizures in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Jiahang Sun

    2017-09-01

    Full Text Available Background: MiR-134 is enriched in dendrites of hippocampal neurons and plays crucial roles in the progress of epilepsy. The present study aims to investigate the effects of antagomirs targeting miroRNA-134 (Ant-134 on limk1 expression and the binding of miR-134 and limk1 in experimental seizure. Methods: Status epilepticus (SE rat model was established by lithium chloride-pilocarpine injection and was treated with Ant-134 by intracerebroventricular injection. Low Mg2+-exposed primary neurons were used as an in vitro model of SE. The expression of miR-134 was determined using real-time PCR. Protein expressions of limk1 and cofilin were determined by Western blotting. Luciferase reporter assay was used to examine the binding between miR-134 and limk1 3’-untranslated region. Results: The expression of miR-134 was markedly enhanced in hippocampus of the SE rats and low Mg2+-exposed neurons. Ant-134 increased the expression of limk1 and reduced the expression of cofilin in the SE hippocampus and Low Mg2+-exposed neurons. In addition, luciferase reporter assay confirmed that miR-134 bound limk1 3’-UTR. MiR-134 overexpression inhibited limk1 mRNA and protein expressions in neurons. Conclusion: Blockage of miR-134 upregulates limk1 expression and downregulated cofilin expression in hippocampus of the SE rats. This mechanism may contribute to the neuroprotective effects of Ant-134.

  9. A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies.

    Science.gov (United States)

    Nallamothu, Ramakrishna; Wood, George C; Kiani, Mohammad F; Moore, Bob M; Horton, Frank P; Thoma, Laura A

    2006-01-01

    Efficient liposomal therapeutics require high drug loading and low leakage. The objective of this study is to develop a targeted liposome delivery system for combretastatin A4 (CA4), a novel antivascular agent, with high loading and stable drug encapsulation. Liposomes composed of hydrogenated soybean phosphatidylcholine (HSPC), cholesterol, and distearoyl phosphoethanolamine-PEG-2000 conjugate (DSPE-PEG) were prepared by the lipid film hydration and extrusion process. Cyclic arginine-glycine-aspartic acid (RGD) peptides with affinity for alphav beta3-integrins overexpressed on tumor vascular endothelial cells were coupled to the distal end of polyethylene glycol (PEG) on the liposomes sterically stabilized with PEG (non-targeted liposomes; LCLs). Effect of lipid concentration, drug-to-lipid ratio, cholesterol, and DSPE-PEG content in the formulation on CA4 loading and its release from the liposomes was studied. Total liposomal CA4 levels obtained increased with increasing lipid concentration in the formulation. As the drug-to-lipid ratio increased from 10:100 to 20:100, total drug in the liposome formulation increased from 1.05+/-0.11 mg/mL to 1.55+/-0.13 mg/mL, respectively. When the drug-to-lipid ratio was further raised to 40:100, the total drug in liposome formulation did not increase, but the amount of free drug increased significantly, thereby decreasing the percent of entrapped drug. Increasing cholesterol content in the formulation decreased drug loading. In vitro drug leakage from the liposomes increased with increase in drug-to-lipid ratio or DSPE-PEG content in the formulation; whereas increasing cholesterol content of the formulation up to 30 mol-percent, decreased CA4 leakage from the liposomes. Ligand coupling to the liposome surface increased drug leakage as a function of ligand density. Optimized liposome formulation with 100 mM lipid concentration, 20:100 drug-to-lipid ratio, 30 mol-percent cholesterol, 4 mol-percent DSPE-PEG, and 1 mol

  10. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles

    Science.gov (United States)

    Yuan, Youyong; Min, Yuanzeng; Hu, Qinglian; Xing, Bengang; Liu, Bin

    2014-09-01

    The design of nanoplatforms with target recognition and near-infrared (NIR) laser photoregulated chemo- and photodynamic therapy is highly desirable but remains challenging. In this work, we have developed such a system by taking advantage of a conjugated polyelectrolyte (CPE)-drug conjugate and upconversion nanoparticles (UCNPs). The poly(ethylene glycol) (PEG) grafted CPE not only serves as a polymer matrix for UCNP encapsulation, but also as a fluorescent imaging agent, a photosensitizer as well as a carrier for chemotherapeutic drug doxorubicin (DOX) through a UV-cleavable ortho-nitrobenzyl (NB) linker. Upon 980 nm laser irradiation, the UCNPs emit UV and visible light. The up-converted UV light is utilized for controlled drug release through the photocleavage of the ortho-nitrobenzyl linker, while the up-converted visible light is used to initiate the polymer photosensitizer to produce reactive oxygen species (ROS) for photodynamic therapy. The NIR photo-regulated UCNP@CPE-DOX showed high efficiency of ROS generation and controlled drug release in cancer cells upon single laser irradiation. In addition, the combination therapy showed enhanced inhibition of U87-MG cell growth as compared to sole treatments. As two light sources with different wavelengths are always needed for traditional photodynamic therapy and photoregulated drug release, the adoption of UCNPs as an NIR light switch is highly beneficial to combined chemo- and photodynamic therapy with enhanced therapeutic effects.

  11. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-04-01

    Full Text Available Lei Zhang,1 Faming Gong,2 Fang Zhang,3 Jing Ma,1 Peidong Zhang,1 Jun Shen3 1Department of Hepatobiliary and Pancreatic Surgery, 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, 3Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: The purpose of this study was to evaluate the inhibitory effect of targeted folate-functionalized micelles containing superparamagnetic iron oxide nanoparticles (SPIONs and sorafenib on human hepatic carcinoma (HepG2 cells in vitro, and to observe the feasibility of surveillance of this targeting therapeutic effect by magnetic resonance imaging. Methods: Sorafenib and SPIONs were loaded into polymeric micelles. The targeted nanocarrier was synthesized by functionalizing the micelles with folate. Folate-free micelles loaded with sorafenib and SPIONs were used as control (nontargeted micelles. Uptake of the nanocarrier by cells was assessed using Prussian blue staining after 1 hour of incubation with the polymeric micelles. The inhibitory effect of the targeted micelles on HepG2 cell proliferation at various concentrations of sorafenib was assessed in vitro using the methyl thiazolyl tetrazolium (MTT assay and apoptotic analysis using flow cytometry. Magnetic resonance imaging using a clinical 1.5 T scanner was performed to detect changes in the signal intensity of cells after incubation with the targeted micelles. Results: Prussian blue staining showed significantly more intracellular SPIONs in cells incubated with the targeted micelles than those incubated with nontargeted micelles. The MTT assay showed that the average inhibitory ratio in the targeted group was significantly higher than that in the nontargeted group (38.13% versus 22.54%, P = 0.028. The mean apoptotic rate in the targeted cells, nontargeted cells, and untreated cells was 17.01%, 11.04%, and 7.89%, respectively. The apoptotic rate in the

  12. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    Science.gov (United States)

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Usefulness of Photodynamic Therapy in the Management of Onychomycosis.

    Science.gov (United States)

    Robres, P; Aspiroz, C; Rezusta, A; Gilaberte, Y

    2015-12-01

    Onychomycosis, or fungal infection of the nails, is one of the most prevalent fungal diseases in the general population. Treatment is of limited effectiveness, tedious, and must be administered for long periods. Furthermore, systemic antifungal agents are associated with adverse effects. Photodynamic therapy (PDT) may prove to be a viable alternative in the treatment of superficial skin infections, including onychomycosis. We review articles relating to the usefulness of PDT in onychomycosis in both in vitro and in vivo settings and discuss the potential and limitations of various photosensitizing agents. In vivo, methylene blue and 5-aminolevulinic acid have led to cure rates in 80% and 43% of cases, respectively, at 12 months. Finally, based on data in the literature and our own experience, we propose a protocol of 3 PDT sessions, separated by an interval of 1 or 2 weeks, using methyl aminolevulinate 16% as a photosensitizing agent and red light (λ=630 nm, 37 J.cm(-2)). Each session is preceded by the topical application of urea 40% over several days. Clinical trials are needed to optimize PDT protocols and to identify those patients who will benefit most from this treatment. Copyright © 2015 Elsevier España, S.L.U. and AEDV. All rights reserved.

  14. A quaternary ammonium modified coumarin derivative for antimicrobial photodynamic therapy

    Science.gov (United States)

    Sun, Zhiyuan; Zhou, Shaona; Gu, Ying; Zhao, Yuxia

    2018-02-01

    A new cationic modified coumarin derivative, 7-diethylamino-3-(3-(4-(trimethylbenzenaminium iodide) phenyl) acryloyl)-2H-chromen-2-one (1), was synthesized and characterized by 1H NMR and mass spectra. It had a strong intramolecular charge transfer absorption band around 460 nm with large molar extinction coefficients of 3.94 × 104 M-1 cm-1 in DMF and 3.86 × 104 M-1 cm-1 in PBS, respectively. Moreover, a moderate singlet oxygen quantum yield of 0.16 was obtained for 1 in DMF. Using methylene blue (MB) under a 630 nm laser as reference, the in vitro antimicrobial photodynamic therapy (aPDT) activity of 1 against three strains, gram positive bacteria methicillin-resistant staphylococcus aureus (MRSA), negative bacteria acinetobacter baumannii (A. baumannii) and fungus Candida albicans (C. albicans), was carried out by irradiation with a 457 nm laser. It was shown that 1 had no dark toxicity to these bacteria when its concentration was up to 100 μM, while under the 457 nm laser it could kill them effectively with an over 3 log CFU/ml decrease of the bacterial viability with its concentration up to 5 μM. The aPDT capability of 1 against MRSA and A. baumannii was equivalent to that of MB. For C. albicans, 1 exhibited much better aPDT effect than MB.

  15. Antitumor effects evaluation of a novel porphyrin derivative in photodynamic therapy.

    Science.gov (United States)

    Li, Jian-Wei; Wu, Zhong-Ming; Magetic, Davor; Zhang, Li-Jun; Chen, Zhi-Long

    2015-12-01

    In this paper, the antitumor activity of a novel porphyrin-based photosensitizer 5,10,15,20-tetrakis[(5-diethylamino)pentyl] porphyrin (TDPP) was reported in vitro and in vivo. The photophysical and cellular properties of TDPP were investigated. The singlet oxygen generation quantum yield of TDPP was detected; it showed a high singlet oxygen quantum yield of 0.52. The intracellular distribution of photosensitizer was detected with laser scanning confocal microscopy. The efficiency of TDPP-photodynamic therapy (PDT) in vitro was analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and in situ trypan blue exclusion test. Treated with a 630-nm laser, TDPP can kill cultured human esophageal cancer cell line (Eca-109) cells and reduce the growth of Eca-109 xenograft tumors significantly in BABL/c nude mice. And histopathological study was also used to confirm the antitumor effect. It has the perspective to be developed as a new antitumor drug in photodynamic therapy and deserves further investigation.

  16. Synthesis and Evaluation of New Potential Benzo[a]phenoxazinium Photosensitizers for Anticancer Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2018-06-01

    Full Text Available The use of photodynamic therapy (PDT and development of novel photosensitizers (PSs for cancer treatment have received more and more attention nowadays. In the present work, five benzo[a]phenoxazinium derivatives have been prepared and evaluated for their in vitro anticancer photodynamic activity for the first time. They are red light absorbers and show low fluorescence quantum yield. Of these compounds, PS4 exhibited a higher quantum yield for reactive oxygen species (ROS generation. The assays with cells in vitro showed that PS1 and PS4 were not significantly toxic in the dark, but was robustly toxic against the murine breast adenocarcinoma cells 4T1 and normal murine fibroblast cells NIH-3T3 upon photoactivation. More interestingly, PS5 was particularly selective towards 4T1 cancer cells and nearly non-phototoxic to non-cancerous NIH-3T3 cells. The results described in this report suggest that these new benzo[a]phenoxazinium derivatives are potential candidates as PSs for anticancer PDT. Further investigation of benzo[a]phenoxaziniums for anticancer PDT is warranted.

  17. The use of photodynamic therapy in the treatment of keratoacanthomas

    Directory of Open Access Journals (Sweden)

    V. N. Galkin

    2016-01-01

    Full Text Available The review is on treatment of keratoacanthomas using photodynamic therapy. The defining characteristic of keratoacanthoma among epithelial tumors is a rapid spontaneous regression in the case of typical keratoacanthoma and long-term persistence, recurrence and common malignant transformation to squamous cell carcinoma in the case of atypical keratoacanthoma. In recent years, photodynamic therapy which is an effective method of treatment of different types of cancer and pre-cancer diseases of the skin including actinic keratosis, Bowen’s disease, basal cell carcinoma, is increasingly used in clinical practice. There are few data for photodynamic therapy in the treatment of keratoacanthoma. The analysis of the literature shows that using of photodynamic therapy in the set of treatment modalities in patients with keratoacanthoma improves the efficacy and reduces the terms of the therapy. In all investigations except one there was complete tumor regression in 100% patients with keratoacanthoma who underwent photodynamic therapy. In one study complete tumor regression was observed in 66.7% of patients with atypical keratoacanthoma after photodynamic therapy. The follow-up of patients in all analyzed studies accounted for at least 2-3 years. During this time none of the patients had evidence for recurrence. This approach has minimal restrictions for application. Thus, photodynamic therapy may become a therapeutic alternative to surgical treatment of keratoacanthoma with good clinical and cosmetic results.

  18. Phthalocyanines as sensitizers for photodynamic water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, N.; Slivka, L.; Kaliya, O.; Lukyanets, E.; Negrimovsky, V.; Vorozhtsov, G. [Organic Intermediates and Dyes Inst., Moscow (Russian Federation); Nedachin, E.; Artemova, T.; Ivanova, L.; Lavrova, D. [A.N. Sysin Research Inst. of Human Ecology and Environmental Health of Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2003-07-01

    New octapyridiniomethyl-substituted phthalocyanines of Al and Zn have been synthesized. These octacationic complexes are readily soluble in water, show monomeric behavior and sensitize formation of singlet oxygen efficiently. They are of high photodynamic potential in killing both Gram-negative and Gram-positive bacteria in contrast to negatively charged sulfonated derivatives, which are substantially less effective, particularly towards coliform bacteria in natural or sewage water. The present study confirms that cationic phthalocyanines represent a class of photosensitizing agents with an efficient antibacterial activity. (orig.)

  19. Photodynamic therapy using aminolevulinic acid (ALA)

    Science.gov (United States)

    Bachor, Ruediger; Reich, Ella D.; Miller, Kurt; Hautmann, Richard E.

    1994-03-01

    Photodynamic therapy (PDT) is a treatment modality for a variety of cancers. Since no ideal photosensitizer is available yet, new photosensitizers are being sought. A new concept of PDT is the use of endogenous photosensitizers. ALA is a metabolite in heme synthesis. It is a precursor of protoporphyrin IX, a potent photosensitizer. After administration of ALA it is transformed by the cells to protoporphyrin IX. The goal of our study was to examine dark toxicity of ALA and its phototoxic potential in two different human cell lines.

  20. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun [Korea Institute of Radiological and Medical and Medical Sciences, Seoul (Korea, Republic of); Chung, June Key [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using {sup 125}I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of {sup 131}I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by {sup 125}I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to {sup 131}I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system.

  1. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    International Nuclear Information System (INIS)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun; Chung, June Key

    2012-01-01

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using 125 I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of 131 I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by 125 I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to 131 I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system

  2. pH-Responsive Magnetic Mesoporous Silica-Based Nanoplatform for Synergistic Photodynamic Therapy/Chemotherapy.

    Science.gov (United States)

    Tang, Xiang-Long; Jing, Feng; Lin, Ben-Lan; Cui, Sheng; Yu, Ru-Tong; Shen, Xiao-Dong; Wang, Ting-Wei

    2018-05-02

    By overcoming drug resistance and subsequently enhancing the treatment, the combination therapy of photodynamic therapy (PDT) and chemotherapy has promising potential for cancer treatment. However, the major challenge is how to establish an advanced nanoplatform that can be efficiently guided to tumor sites and can then stably release both chemotherapy drugs and a photosensitizer simultaneously and precisely. In this study, which considered the possibility and targeting efficiency of a magnetic targeting strategy, a novel Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was successfully built; this platform could be employed as an efficient synergistic antitumor nanoplatform with magnetic guidance for highly specific targeting and retention. Doxorubicin (DOX) molecules were loaded into mesoporous silica with high loading capability, and the mesoporous channels were blocked by a polydopamine coating. Human serum albumin (HSA) was conjugated to the outer surface to increase the biocompatibility and blood circulation time, as well as to provide a vehicle for loading photosensitizer chlorin e6 (Ce6). The sustained release of DOX under acidic conditions and the PDT induced by red light exerted a synergistic inhibitory effect on glioma cells. Our experiments demonstrated that the pH-responsive Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was guided to the tumor region by magnetic targeting and that the nanoplatform suppressed glioma tumor growth efficiently, implying that the system is a highly promising photodynamic therapy/chemotherapy combination nanoplatform with synergistic effects for cancer treatment.

  3. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    International Nuclear Information System (INIS)

    Korbelik, M.; Sun, J.

    2003-01-01

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  4. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration.

    Science.gov (United States)

    Li, Wenbo; Dong, Lijie; Ma, Minwang; Hu, Bojie; Lu, Zhenyu; Liu, Xun; Liu, Juping; Li, Xiaorong

    2016-01-01

    Choroidal neovascularization (CNV) in age-related macular degeneration usually causes blindness. We established a novel targeted inhibitor for CNV in age-related macular degeneration. The inhibitor CR2-sFlt 1 comprises a CR2-targeting fragment and an anti-vascular endothelial growth factor (VEGF) domain (sFlt 1). The targeting of CR2-sFlt 1 was studied using the transwell assay in vitro and frozen sections in vivo using green fluorescent labeling. Transwell assay results showed that CR2-sFlt 1 migrated to the interface of complement activation products and was present in the retinal tissue of the CR2-sFlt 1-treated CNV mice. Treatment effects were assessed by investigating the VEGF concentration in retinal pigmented epithelial cell medium and the thickness of the CNV complex in the mice treated with CR2-sFlt 1. CR2-sFlt 1 significantly reduced the VEGF secretion from retinal pigmented epithelial cells in vitro and retarded CNV progress in a mouse model. Expression analysis of VEGF and VEGFRs after CR2-sFlt 1 intervention indicated the existence of feedback mechanisms in exogenous CR2-sFlt 1, endogenous VEGF, and VEGFR interaction. In summary, we demonstrated for the first time that using CR2-sFlt 1 could inhibit CNV with clear targeting and high selectivity.

  5. Fighting fish parasites with photodynamically active chlorophyllin.

    Science.gov (United States)

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P

    2016-06-01

    Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective.

  6. Experimental validation of plant peroxisomal targeting prediction algorithms by systematic comparison of in vivo import efficiency and in vitro PTS1 binding affinity.

    Science.gov (United States)

    Skoulding, Nicola S; Chowdhary, Gopal; Deus, Mara J; Baker, Alison; Reumann, Sigrun; Warriner, Stuart L

    2015-03-13

    Most peroxisomal matrix proteins possess a C-terminal targeting signal type 1 (PTS1). Accurate prediction of functional PTS1 sequences and their relative strength by computational methods is essential for determination of peroxisomal proteomes in silico but has proved challenging due to high levels of sequence variability of non-canonical targeting signals, particularly in higher plants, and low levels of availability of experimentally validated non-canonical examples. In this study, in silico predictions were compared with in vivo targeting analyses and in vitro thermodynamic binding of mutated variants within the context of one model targeting sequence. There was broad agreement between the methods for entire PTS1 domains and position-specific single amino acid residues, including residues upstream of the PTS1 tripeptide. The hierarchy Leu>Met>Ile>Val at the C-terminal position was determined for all methods but both experimental approaches suggest that Tyr is underweighted in the prediction algorithm due to the absence of this residue in the positive training dataset. A combination of methods better defines the score range that discriminates a functional PTS1. In vitro binding to the PEX5 receptor could discriminate among strong targeting signals while in vivo targeting assays were more sensitive, allowing detection of weak functional import signals that were below the limit of detection in the binding assay. Together, the data provide a comprehensive assessment of the factors driving PTS1 efficacy and provide a framework for the more quantitative assessment of the protein import pathway in higher plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites

    Directory of Open Access Journals (Sweden)

    Habiba K

    2015-12-01

    Full Text Available Khaled Habiba,1,2 Joel Encarnacion-Rosado,2,3 Kenny Garcia-Pabon,2,4 Juan C Villalobos-Santos,2,5 Vladimir I Makarov,1 Javier A Avalos,2,6 Brad R Weiner,2,7,8 Gerardo Morell1,2,7 1Department of Physics, University of Puerto Rico – Rio Piedras Campus, 2Molecular Sciences Research Center, University of Puerto Rico, 3Department of Biology, 4Faculty of Education, University of Puerto Rico – Rio Piedras Campus, San Juan, 5Department of Biology, 6Department of Physics, University of Puerto Rico – Bayamon Campus, Bayamon, 7Institute for Functional Nanomaterials, University of Puerto Rico, 8Department of Chemistry, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA Abstract: The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells. The Ag-GQDs exhibited a strong antitumor activity by inducing apoptosis in cancer cells without affecting the viability of normal cells. Moreover, the Ag-GQDs exhibited a cytotoxic effect due to the generation of the reactive singlet oxygen upon 425 nm irradiation, indicating their applicability in photodynamic therapy. In comparison with chemo or photodynamic treatment alone, the combined treatment of Ag-GQDs conjugated with doxorubicin under irradiation with a 425 nm lamp significantly increased the death in DU145 and HeLa. This study suggests Ag-GQDs as a multifunctional and efficient therapeutic system for chemo-photodynamic modalities in cancer therapy. Keywords: multifunctional nanoparticles, silver nanoparticles, cancer therapy, drug

  8. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  9. Enhanced photodynamic efficacy of zinc phthalocyanine by conjugating to heptalysine.

    Science.gov (United States)

    Li, Linsen; Luo, Zhipu; Chen, Zhuo; Chen, Jincan; Zhou, Shanyong; Xu, Peng; Hu, Ping; Wang, Jundong; Chen, Naisheng; Huang, Jinling; Huang, Mingdong

    2012-11-21

    Zinc phthalocyanine (ZnPc) is a promising photosensitizer for photodynamic therapy, but faces some challenges: ZnPc is insoluble in water and thus requires either special formulation of ZnPc by, e.g., liposome or Cremophor EL, or chemical modification of Pc ring to enhance its bioavailability and photodynamic efficacy. Here, we conjugated monosubstituted ZnPc-COOH with a series of oligolysine moieties with different numbers of lysine residues (ZnPc-(Lys)(n) (n = 1, 3, 5, 7, 9) to improve the water solubility of the ZnPc conjugates. We measured the photosensitizing efficacies and the cellular uptakes of this series of conjugates on a normal and a cancerous cell line. In addition, we developed a sensitive in situ method to distinguish the difference in photodynamic efficacy among conjugates. Our results showed that ZnPc-(Lys)(7) has the highest photodynamic efficacy compared to the other conjugates investigated.

  10. Different light sources in photodynamic therapy for use in photorejuvenation

    CSIR Research Space (South Africa)

    Van Kets, V

    2010-09-01

    Full Text Available Photodynamic therapy (PDT) has recently emerged as a treatment modality for photorejuvenation of the skin. This study is a preliminary investigation into the effect of different light sources to activate hypericin, a plant-derived photosensitizer...

  11. Photodynamic action of methylene blue: mutagenesis and synergism

    International Nuclear Information System (INIS)

    Capella, M.A.M.

    1988-01-01

    The associated mutagenesis and the interactions with physical agents in order to potencialize its biological effects are studied. The induction of mutation in bacterias due to photodynamic action of methylene blue is presented as well as the induction of single breaks in bacterial DNA and the relationship between the repair systems, especially the SOS one. The interaction of the photodynamic therapy with low intensity electric current is discussed. (M.A.C.) [pt

  12. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays.

    Science.gov (United States)

    Wischhusen, Jennifer; Padilla, Frederic

    2017-07-01

    Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Molecular photosensitisers for two-photon photodynamic therapy.

    Science.gov (United States)

    Bolze, F; Jenni, S; Sour, A; Heitz, V

    2017-11-30

    Two-photon excitation has attracted the attention of biologists, especially after the development of two-photon excited microscopy in the nineties. Since then, new applications have rapidly emerged such as the release of biologically active molecules and photodynamic therapy (PDT) using two-photon excitation. PDT, which requires a light-activated drug (photosensitiser), is a clinically approved and minimally invasive treatment for cancer and for non-malignant diseases. This feature article focuses on the engineering of molecular two-photon photosensitisers for PDT, which should bring important benefits to the treatment, increase the treatment penetration depth with near-infrared light excitation, improve the spatial selectivity and reduce the photodamage to healthy tissues. After an overview of the two-photon absorption phenomenon and the methods to evaluate two-photon induced phototoxicity on cell cultures, the different classes of photosensitisers described in the literature are discussed. The two-photon PDT performed with historical one-photon sensitisers are briefly presented, followed by specifically engineered cyclic tetrapyrrole photosensitisers, purely organic photosensitisers and transition metal complexes. Finally, targeted two-photon photosensitisers and theranostic agents that should enhance the selectivity and efficiency of the treatment are discussed.

  14. Photodynamic therapy and diagnosis: Principles and comparative aspects.

    Science.gov (United States)

    Dobson, Jane; de Queiroz, Genilson Fernandes; Golding, Jon P

    2018-03-01

    Photodynamic therapy (PDT) is an evolving method of treating superficial tumours that is non-invasive and carries minimal risk of toxicity. It combines tumour-selective photosensitiser dyes, tissue oxygen and targeted illumination to generate cytotoxic reactive oxygen species (ROS) within the tumour. In addition to directly acting on tumour cells, PDT damages and restricts tumour microvasculature, and causes a local inflammatory response that stimulates an immune response against the tumour. Unlike surgery or radiotherapy, the surrounding extracellular matrix is unaffected by PDT; thus, tissue healing is excellent and PDT seldom causes scars. This, combined with the ease of light application, has made PDT a popular treatment for cancers and pre-cancerous conditions in human beings. Moreover, because photosensitiser dyes are fluorescent and selectively accumulate in tumour tissues, they can additionally be used to visualise and discriminate tumour from normal tissues, thereby improving the accuracy of tumour surgery. In veterinary practice, PDT has been used successfully for treatment of superficial squamous cell carcinomas of the feline nasal planum; urinary tract, urinary bladder and prostate neoplasia in dogs; and equine sarcoids. The purpose of this article is to provide a comparative review of the current literature on PDT in human and veterinary medicine, and to establish a basis for future development of PDT in veterinary medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Photodynamic therapy platform for glioblastoma and intrabronchial tumors

    Science.gov (United States)

    Orsila, Lasse; Alanko, Jukka-Pekka; Kaivosoja, Visa; Uibu, Toomas

    2018-02-01

    Photodynamic therapy (PDT) is bringing new, effective, and less invasive, possibilities for cancer treatment. ML7710 (Modulight Inc.) medical laser system offers a platform for performing PDT for multiple indications and drugs. Latest avenue is glioblastoma treatment with 5-Aminolevulinic acid (ALA-5) and 635-nm light, where clinical trials are about to begin. Preliminary work suggests major advantages in treatment control, including active in-situ feedback. ML7710 platform has already proven itself for clinical work with intrabronchial obstructive tumors. Preliminary result with 10 patients show that intrabronchial tumors, that strongly affect both the survival and the performance of the patient, can be significantly reduced with ML7710 operated at 665 nm and sodium chlorine E6 photosensitizer. The aim in most of the patients has been a palliative recanalization of the bronchial lumen in order to alleviate the symptoms such as breathlessness and hemoptysis. The illumination dose for the target area was 50-75 J/cm2. All the patients have received multimodality cancer treatment using other intrabronchial interventions, radiotherapy and chemotherapy as needed. In most of the patients, satisfactory treatment results were achieved and it was possible to restart chemotherapy in several patients. In one patient with local cancer a complete remission was established. PDT has also the advantage that it is possible to give PDT after a maximum dose of radiation therapy has already been used and fewer side effects if used in locally advanced intraluminar lung cancer.

  16. Photodynamic Therapy and Non-Melanoma Skin Cancer

    Directory of Open Access Journals (Sweden)

    Liezel L. Griffin

    2016-10-01

    Full Text Available Non-melanoma skin cancer (NMSC is the most common malignancy among the Caucasian population. Photodynamic therapy (PDT is gaining popularity for the treatment of basal cell carcinoma (BCC, Bowen’s disease (BD and actinic keratosis (AK. A topical or systemic exogenous photosensitiser, results in selective uptake by malignant cells. Protoporphyrin IX (PpIX is produced then activated by the introduction of a light source. Daylight-mediated MAL (methyl aminolaevulinate PDT for AKs has the advantage of decreased pain and better patient tolerance. PDT is an effective treatment for superficial BCC, BD and both individual and field treatment of AKs. Excellent cosmesis can be achieved with high patient satisfaction. Variable results have been reported for nodular BCC, with improved outcomes following pretreatment and repeated PDT cycles. The more aggressive basisquamous, morphoeic infiltrating subtypes of BCC and invasive squamous cell carcinoma (SCC are not suitable for PDT. Prevention of “field cancerization” in organ transplant recipients on long-term immunosuppression and patients with Gorlin syndrome (naevoid basal cell carcinoma syndrome is a promising development. The optimisation of PDT techniques with improved photosensitiser delivery to target tissues, new generation photosensitisers and novel light sources may expand the future role of PDT in NMSC management.

  17. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    International Nuclear Information System (INIS)

    Wang, W; Moriyama, L T; Bagnato, V S

    2013-01-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed. (review)

  18. Dihydroartemisinin Accentuates the Anti-Tumor Effects of Photodynamic Therapy via Inactivation of NF-κB in Eca109 and Ec9706 Esophageal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yan Jing Li

    2014-05-01

    Full Text Available Background: Photodynamic therapy (PDT is a new treatment for esophageal cancer which has been shown to be effective in the elimination of tumor. However, PDT could induce the activation of nuclear factor-kappa B (NF-κB in many photosensitizers based PDT, which plays a negative role in PDT. In addition, our previous results have shown that dihydroartemisinin (DHA, which was the most potent one of artemisinin derivatives, has anticancer activity in esophageal cancer cells. Methods: Cell viability was determined by MTT analysis, and apoptosis was evaluated by flow cytometry. Nuclear extract was obtained for determining NF-κB DNA-binding activity, while total protein extract obtained for downstream gene expression by western blot. Results: We demonstrated DHA enhanced PDT-induced growth inhibition and apoptosis in both human esophageal cancer cell lines Eca109 and Ec9706 in vitro. The mechanism was at least partially due to DHA deactivated PDT-induced NF-κB activation, so as to decrease tremendously the expression of its target gene Bcl-2. Conclusion: Our results demonstrate that DHA augments PDT-induced growth inhibition and apoptosis in esophageal cancer cells, and that inactivation of NF-κB activity is a potential mechanism by which DHA sensitizes esophageal cancer cells to PDT-induced growth inhibition and apoptosis.

  19. Photodynamic therapy of solid tumors

    Science.gov (United States)

    Jori, Giulio

    Some porphyrin compounds, which are characterized by a relatively large degree of hydrophobicity (n-octanol/water partition coefficient above 8), are accumulated in greater amounts and retained for longer periods of time by neoplastic as compared with normal tissues. The affinity of these dyes for tumors is partially a consequence of their in vivo transport by low-density lipoproteins, which are preferentially endocytosized by hyperproliferating tissues in a receptor-mediated process. In general, at 24-48 h after the systematic administration of porphyrin doses in the range of 2.5 mg/kg body weight, the ratio of drug concentration between the neoplastic and the surrounding tissues is sufficiently large to guarantee a selective photoexcitation of the porphyrin. Toward this aim, the porphyrin-containing tumor tissues are irradiated with light wavelengths longer than 600 nm, since the transmittance of biological tissues is maximal in this spectral region. The electronically excited porphyrin transfers its excitation energy to oxygen, thus generating activated oxygen species (mainly, singlet oxygen): as a consequence, the photooxidative modification of subcellular targets (e.g. the plasma membrane and mitochondria) is readily obtained leading to an irreversible necrosis of the cell. With the most frequently used porphyrins for clinical phototherapy (including hematoporphyrin and its derivatives HpD and Photofrin II), one observes the preferential photosensitized destruction of endothelial cells, hence the vascular damage is a major process involved in the necrosis of tumors. The optimization of the phototherapy of tumors is presently pursued by the definition of clinical protocols tailored to the optical properties of specific neoplastic tissues as well as by the use of porphyrin analogs, such as chlorins and phthalocyanines, having an extinction coefficient in the red spectral region larger than that typical of hematoporphyrin and HpD.

  20. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    NARCIS (Netherlands)

    Witte, W.E.; Wong, Y.C.; Nederpelt, I.; Heitman, L.H.; Danhof, M.; Graaf, van der P.H.; Gilissen, R.A.; de, Lange E.C.

    2016-01-01

    INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target

  1. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C

    1990-01-01

    Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  2. [Effect of Photodynamic Inactivation (PDI) using Riboflavin-Conjugated Antibody against Staphylococcus aureus].

    Science.gov (United States)

    Song, X; Stachon, T; Seitz, B; Wang, J; Bischoff, M; Langenbucher, A; Janunts, E; Szentmáry, N

    2015-08-01

    Crosslinking/riboflavin-UVA photodynamic therapy is a potential treatment alternative in antibiotic resistant infectious keratitis. For photodynamic therapy a specific (against bacteria) conjugated antibody may be used in order to increase the effect of the treatment. In our present study we analysed the impact of photodynamic inactivation using riboflavin-conjugated antibody or riboflavin alone on Staphylococcus aureus, in vitro. Staphylococcus aureus (S. aureus) was incubated in 1 : 100 diluted riboflavin-conjugated antibody (R-AB) for 30 minutes in darkness. Following UVA-light illumination (375 nm) with an energy dose of 2, 3, 4 and 8 J/cm(2), bacteria were brought to blood agar Plates for 24 hours before colony-forming unit (CFU) counting. In an additional group, we incubated bacteria to 0, 0.05 or 0.1 % riboflavin 5-phosphate as described above followed by illumination using UVA light (375 nm) with an energy dose of 2 J/cm(2), before CFU counting. The number of CFU decreased significantly (inactivation of 36 %, p = 0.022) using 1 : 100 diluted riboflavin-conjugated antibody and 2 J/cm(2) UVA-light illumination, compared to untreated controls. The use of 3, 4 und 8 J/cm(2) energy dose and R-AB in 1 : 100 dilution did not further change the decrease of CFU (inactivation of 39, 39 and 40 %; p = 0.016; p = 0.016; p = 0.015). The use of 0.05 % or 0.1 % riboflavin 5-phosphate alone and UVA-light illumination reduced the CFU count significantly (inactivation of 73 and 55 %; p = 0.002; p = 0.005), compared to untreated controls. The use of riboflavin-conjugated antibody or 0.05 % or 0.1 % riboflavin 5-phosphate and UVA-light illumination reduces the number of CFU of S. aureus. However, none of these photodynamic therapies reached the necessary 99 % killing rate of these bacteria. Further work is needed to increase the efficacy of riboflavin-conjugated antibodies against antibiotic resistant bacteria. Georg

  3. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    International Nuclear Information System (INIS)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.; Rozengurt, Enrique

    2007-01-01

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic 32 P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate into Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains

  4. High-sensitivity imaging method of singlet oxygen and superoxide anion in photodynamic and sonodynamic actions

    Science.gov (United States)

    Xing, Da; He, Yonghong; Hao, Min; Chen, Qun

    2004-07-01

    A novel method of photodynamic diagnosis (PDD) of cancer mediated by chemiluminescence (CL) probe is presented. The mechanism for photodynamic therapy (PDT) involves reactive oxygen species (ROS), such as singlet oxygen (1O2) and superoxide (O2-), generated by during the photochemical process. Both 1O2 and O2- can react with Cypridina luciferin analogue (FCLA), a highly selective CL probe for detecting the ROS. Chemiluminescence from the reaction of FCLA with the ROS, at about 530 nm, was detected by a highly sensitive ICCD system. The CL was markedly inhibited by the addition of 10 mmol/L sodium azide (NaN3) in a sample solution. Similar phenomena, with lesser extents of changes, were observed at the additions of 10 μmol/L superoxide dismutase (SOD), 10 mmol/L mannitol, and 100 μg/mL catalase, respectively. This indicates that the detected CL signals were mainly from ROS generated during the photosensitization reactions. Also, the chemiluminescence method was used to detect the ROS during sonodynamic action, both in vitro and in vivo. ROS formation during sonosensitizations of HpD and ATX-70 were detected using our newly-developed imaging technique, in real time, on tumor bearing animals. This method can provide a new means in clinics for tumor diagnosis.

  5. The application of antimicrobial photodynamic therapy (aPDT) in dentistry: a critical review

    Science.gov (United States)

    Carrera, E. T.; Dias, H. B.; Corbi, S. C. T.; Marcantonio, R. A. C.; Bernardi, A. C. A.; Bagnato, V. S.; Hamblin, M. R.; Rastelli, A. N. S.

    2016-12-01

    In recent years there have been an increasing number of in vitro and in vivo studies that show positive results regarding antimicrobial photodynamic therapy (aPDT) used in dentistry. These include applications in periodontics, endodontics, and mucosal infections caused by bacteria present as biofilms. Antimicrobial photodynamic therapy is a therapy based on the combination of a non-toxic photosensitizer (PS) and appropriate wavelength visible light, which in the presence of oxygen is activated to produce reactive oxygen species (ROS). ROS induce a series of photochemical and biological events that cause irreversible damage leading to the death of microorganisms. Many light-absorbing dyes have been mentioned as potential PS for aPDT and different wavelengths have been tested. However, there is no consensus on a standard protocol yet. Thus, the goal of this review was to summarize the results of research on aPDT in dentistry using the PubMed database focusing on recent studies of the effectiveness aPDT in decreasing microorganisms and microbial biofilms, and also to describe aPDT effects, mechanisms of action and applications.

  6. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    International Nuclear Information System (INIS)

    Hariharan, R.; Senthilkumar, S.; Suganthi, A.; Rajarajan, M.

    2012-01-01

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of 1 O 2 and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  7. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, R.; Senthilkumar, S. [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India); Suganthi, A., E-mail: suganthiphd09@gmail.com [P.G. and Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamil Nadu (India); Rajarajan, M., E-mail: rajarajan_1962@yahoo.com [P.G. Department of Chemistry, Cardamom Planters’ Association College, Bodinayakanur 625513, Tamil Nadu (India)

    2012-11-15

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of {sup 1}O{sub 2} and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized using XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.

  8. Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy.

    Science.gov (United States)

    Nie, Zhuxiang; Bayat, Ardeshir; Behzad, Farhad; Rhodes, Lesley E

    2010-12-01

    A 36-year-old Caucasian female of Iranian origin presented with a persistently raised dermal lesion under her chin, confirmed histologically to be a keloid scar. There was a 4-year history of a negative response to a range of conventional treatments including topical silicone gel sheets, steroid creams, steroid injections and surgical excision. In view of treatment failure and an in vitro study indicating a positive effect of photodynamic therapy (PDT)on keloid fibroblasts, we treated our patient's lesion with five sessions of methyl aminolevulinate photodynamic therapy (MAL-PDT) over a period of 5 months. Following this treatment regime, her keloid scar had considerably reduced in size and become flattened.The surface of the keloid also became smooth, with attenuation in erythema at the margin as well as an improvement in the colour of the scar, which was better matched to the surrounding skin. There was no recurrence at 1-year follow-up and this treatment resulted in an overall acceptable cosmetic outcome. This case report presents PDT as a potential treatment option for persistent keloid lesions unresponsive to conventional scar modulation therapies and suggests a need for further research in this area.

  9. Squaraine dyes for photodynamic therapy: study of their cytotoxicity and genotoxicity in bacteria and mammalian cells.

    Science.gov (United States)

    Ramaiah, Danaboyina; Eckert, Inge; Arun, Kalliat T; Weidenfeller, Lydia; Epe, Bernd

    2002-12-01

    Halogenated squaraine dyes are characterized by long wavelength absorption (>600 nm) and high triplet yields and therefore represent new types of photosensitizers that could be useful for photodynamic therapy. We have analyzed the cytotoxicity and genotoxicity of the bromo derivative 1, the iodo derivative 2 and the corresponding nonhalogenated dye 3 in the absence and presence of visible light. At concentrations of 1-2 microM, 1 and 2 reduced the cloning efficiency of AS52 Chinese hamster ovary cells to less than 1% under conditions that were well tolerated in the dark. Similarly, the proliferation of L5178Y mouse lymphoma cells was inhibited by photoexcited 1 and 2 with high selectivity. The squaraine 3 was much less efficient. Both 1 and 2 induced only few mutations in the gpt locus of the AS52 cells in the presence of light and were not mutagenic in the dark. No mutagenicity with and without irradiation was observed in Salmonella typhimurium TA100 and TA2638. However, both 1 and 2 plus light increased the frequency of micronuclei in AS52 cells. The results indicate that halogenated squaraines exhibit photobiological properties in vitro that are favorable for photodynamic therapeutical applications.

  10. Scope of photodynamic therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2015-01-01

    Full Text Available Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  11. Scope of photodynamic therapy in periodontics.

    Science.gov (United States)

    Kumar, Vivek; Sinha, Jolly; Verma, Neelu; Nayan, Kamal; Saimbi, C S; Tripathi, Amitandra K

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer) activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  12. Endoscopic and Photodynamic Therapy of Cholangiocarcinoma.

    Science.gov (United States)

    Meier, Benjamin; Caca, Karel

    2016-12-01

    Most patients with cholangiocarcinoma (CCA) have unresectable disease. Endoscopic bile duct drainage is one of the major objectives of palliation of obstructive jaundice. Stent implantation using endoscopic retrograde cholangiography is considered to be the standard technique. Unilateral versus bilateral stenting is associated with different advantages and disadvantages; however, a standard approach is still not defined. As there are various kinds of stents, there is an ongoing discussion on which stent to use in which situation. Palliation of obstructive jaundice can be augmented through the use of photodynamic therapy (PDT). Studies have shown a prolonged survival for the combinations of PDT and different stent applications as well as combinations of PDT and additional systemic chemotherapy. More well-designed studies are needed to better evaluate and standardize endoscopic treatment of unresectable CCA.

  13. Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo.

    Science.gov (United States)

    Quarta, Alessandra; Bernareggi, Davide; Benigni, Fabio; Luison, Elena; Nano, Giuseppe; Nitti, Simone; Cesta, Maria Candida; Di Ciccio, Luciano; Canevari, Silvana; Pellegrino, Teresa; Figini, Mariangela

    2015-02-14

    Efficient targeting in tumor therapies is still an open issue: systemic biodistribution and poor specific accumulation of drugs weaken efficacy of treatments. Engineered nanoparticles are expected to bring benefits by allowing specific delivery of drug to the tumor or acting themselves as localized therapeutic agents. In this study we have targeted epithelial ovarian cancer with inorganic nanoparticles conjugated to a human antibody fragment against the folate receptor over-expressed on cancer cells. The conjugation approach is generally applicable. Indeed several types of nanoparticles (either magnetic or fluorescent) were engineered with the fragment, and their biological activity was preserved as demonstrated by biochemical methods in vitro. In vivo studies with mice bearing orthotopic and subcutaneous tumors were performed. Elemental and histological analyses showed that the conjugated magnetic nanoparticles accumulated specifically and were retained at tumor sites longer than the non-conjugated nanoparticles.

  14. In vitro Evaluation of a Bombesin Antagonistic Analogue Conjugated with DOTA-Ala(SO3H)-Aminooctanoyl for Targeting of the Gastrin-releasing Peptide Receptor

    International Nuclear Information System (INIS)

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Lee, So Young; Choi, Sang Mu

    2014-01-01

    As Bombesin (BBS) binds with high affinity to GRPR, BBS derivatives have been labeled with various radionuclides such as 99 mTc, 111 In, 90 Y, 64 Cu, 177 Lu, 68 Ga, or 18 F and have proved to be successful candidates for peptide receptor radiotherapy (PRRT). In this study, we employed Ala(SO 3 H)-Aminooctanoyl as a linker of BBS antagonistic peptide sequence, Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH 2 , with DOTA to prepare radiolabeled candidates for GRPR targeting. A DOTA-conjugated BBS antagonistic analogue was synthesized and radiolabeled with 177 Lu, and in vitro characteristics on GRPR-overexpressing human prostate tumor cells were evaluated. In conclusion, a novel BBS antagonistic analogue, 177 Lu-DOTA-sBBNA, is a promising candidate for the targeting of GRPR-over-expressing tumors. Further investigations to evaluate its in vivo characteristics and therapeutic efficacy are needed

  15. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  16. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-01-01

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  17. INTRAOPERATIVE PHOTODYNAMIC THERAPY FOR PERITONEAL MESOTHELIOMA

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2017-01-01

    Full Text Available Abstract Results of application of a new technology of intraoperative photodynamic therapy (IOFDT in patients with peritoneal mesothelioma developed at P. Herzen Moscow Oncology Research Institute are presented. The study included 8 patients. 3 patients underwent surgery in various amount: 1 – limited peritonectomy in the volume of tumor foci resection and resection of a large omentum, 1 – limited peritonectomy in the volume of tumor foci resection and atypical resection of the right lobe of the liver, 1 – only resection of the large omentum due to the fact that the tumor was located only in a large omentum and no signs of lesions of the parietal peritoneum was revealed by intraoperative revision. Surgical intervention in these patients was concluded by IOPDT. The remaining 5 patients underwent only IOPDT. After the treatment, two patients underwent additional courses of laparoscopic IOPDT. Of the 8 patients enrolled in the study, 4 died from the underlying disease, 1 from cardiovascular disease with recurrence of the disease, 1 from cardiovascular disease without signs of recurrence, 2 were monitored for 6 months and 146 months (12 years. Thus, in the group of patients with peritoneal mesothelioma, the maximum observation period was 146.44 months, the median survival was 48.4 months, the total specific 1-year survival was 85.7±13.2%, the three-year survival was 68.5±18.6%, the 5-year survival was 45.7 ± 22.4 %. The average life expectancy after treatment of patients with repeated courses of laparoscopic IOPDT was 87 months, without repeated courses – 35.8 months. Thus, life expectancy was higher in patients with repeated courses of laparoscopic IOPDT. Small sample size caused to the rarity of this pathology does not allow for statistically significant conclusions. However, the results of the study indicate the prospects of multi-course intraoperative photodynamic therapy in patients with peritoneal mesothelioma.

  18. MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2

    Science.gov (United States)

    Werner, Tamara V.; Hart, Martin; Nickels, Ruth; Kim, Yoo-Jin; Menger, Michael D.; Bohle, Rainer M.; Keller, Andreas; Ludwig, Nicole; Meese, Eckart

    2017-01-01

    Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas. PMID:28340489

  19. The p53-mediated cytotoxicity of photodynamic therapy of cancer: Recent advances

    International Nuclear Information System (INIS)

    Zawacka-Pankau, Joanna; Krachulec, Justyna; Grulkowski, Ireneusz; Bielawski, Krzysztof P.; Selivanova, Galina

    2008-01-01

    Photodynamic therapy (PDT) is a promising modality for the treatment of both pre-malignant and malignant lesions. The mechanism of action converges mainly on the generation of reactive oxygen species which damage cancer cells directly as well as indirectly acting on tumor vasculature. The exact mechanism of PDT action is not fully understood, which is a formidable barrier to its successful clinical application. Elucidation of the mechanisms of cancer cell elimination by PDT might help in establishing highly specific, non-genotoxic anti-cancer treatment of tomorrow. One of the candidate PDT targets is the well-known tumor suppressor p53 protein recognized as the guardian of the genome. Together with its family members, p73 and p63 proteins, p53 is involved in apoptosis induction upon stress stimuli. The wild-type and mutant p53-targeting chemotherapeutics are currently extensively investigated as a promising strategy for highly specific anti-cancer therapy. In photodynamic therapy porphyrinogenic sensitizers are the most widely used compounds due to their potent biophysical and biochemical properties. Recent data suggest that the p53 tumor suppressor protein might play a significant role in porphyrin-PDT-mediated cell death by direct interaction with the drug which leads to its accumulation and induction of p53-dependent cell death both in the dark and upon irradiation. In this review we describe the available evidence on the role of p53 in PDT

  20. Glioma stem cells targeted by oncolytic virus carrying endostatin-angiostatin fusion gene and the expression of its exogenous gene in vitro.

    Science.gov (United States)

    Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng

    2011-05-16

    The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting.

    Science.gov (United States)

    Courtney, D G; Moore, J E; Atkinson, S D; Maurizi, E; Allen, E H A; Pedrioli, D M L; McLean, W H I; Nesbit, M A; Moore, C B T

    2016-01-01

    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics.

  2. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer 177Lu-AMBA

    International Nuclear Information System (INIS)

    Waser, Beatrice; Eltschinger, Veronique; Reubi, Jean C.; Linder, Karen; Nunn, Adrian

    2007-01-01

    To investigate the in vitro binding properties of a novel radiolabelled bombesin analogue, 177 Lu-AMBA, in human neoplastic and non-neoplastic tissues selected for their expression of the bombesin receptor subtypes GRP-R, NMB-R and BRS-3. In vitro receptor autoradiography was performed in cancers expressing the various bombesin receptor subtypes. The novel radioligand 177 Lu-AMBA was used and compared with established bombesin radioligands such as 125 I-Tyr 4 -bombesin and 125 I-[D-Tyr 6 ,β-Ala 11 ,Phe 13 ,Nle 14 ]-bombesin(6-14). In vitro incidence of detection of each of the three bombesin receptor subtypes was evaluated in each tumour. 177 Lu-AMBA identified all GRP-R-expressing tumours, such as prostatic, mammary and renal cell carcinomas as well as gastrointestinal stromal tumours. 177 Lu-AMBA also identified all NMB-expressing tumours, but did not detect BRS-3-expressing tumours or BRS-3-expressing pancreatic islets. GRP-R-expressing peritumoural vessels were heavily labelled with 177 Lu-AMBA. In contrast to the strongly GRP-R-positive mouse pancreas, the human pancreas was not labelled with 177 Lu-AMBA unless chronic pancreatitis was diagnosed. In general, the sensitivity was slightly better with 177 Lu-AMBA than with the conventional bombesin radioligands. The present in vitro study suggests that 177 Lu-AMBA may be a very useful in vivo targeting agent for GRP-R-expressing tumours, NMB-R-expressing tumours and GRP-R-expressing neoangiogenic vessels. (orig.)

  3. Selective in vitro targeting of GRP and NMB receptors in human tumours with the new bombesin tracer {sup 177}Lu-AMBA

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Eltschinger, Veronique; Reubi, Jean C. [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, P.O. Box 62, Bern (Switzerland); Linder, Karen; Nunn, Adrian [Bracco Research USA Inc, Princeton, NJ (United States)

    2007-01-15

    To investigate the in vitro binding properties of a novel radiolabelled bombesin analogue, {sup 177}Lu-AMBA, in human neoplastic and non-neoplastic tissues selected for their expression of the bombesin receptor subtypes GRP-R, NMB-R and BRS-3. In vitro receptor autoradiography was performed in cancers expressing the various bombesin receptor subtypes. The novel radioligand {sup 177}Lu-AMBA was used and compared with established bombesin radioligands such as {sup 125}I-Tyr{sup 4}-bombesin and {sup 125}I-[D-Tyr{sup 6},{beta}-Ala{sup 11},Phe{sup 13},Nle{sup 14}]-bombesin(6-14). In vitro incidence of detection of each of the three bombesin receptor subtypes was evaluated in each tumour. {sup 177}Lu-AMBA identified all GRP-R-expressing tumours, such as prostatic, mammary and renal cell carcinomas as well as gastrointestinal stromal tumours. {sup 177}Lu-AMBA also identified all NMB-expressing tumours, but did not detect BRS-3-expressing tumours or BRS-3-expressing pancreatic islets. GRP-R-expressing peritumoural vessels were heavily labelled with {sup 177}Lu-AMBA. In contrast to the strongly GRP-R-positive mouse pancreas, the human pancreas was not labelled with {sup 177}Lu-AMBA unless chronic pancreatitis was diagnosed. In general, the sensitivity was slightly better with {sup 177}Lu-AMBA than with the conventional bombesin radioligands. The present in vitro study suggests that {sup 177}Lu-AMBA may be a very useful in vivo targeting agent for GRP-R-expressing tumours, NMB-R-expressing tumours and GRP-R-expressing neoangiogenic vessels. (orig.)

  4. Synthesis, characterization and target protein binding of drug-conjugated quantum dots in vitro and in living cells

    International Nuclear Information System (INIS)

    Choi, Youngseon; Kim, Minjung; Cho, Yoojin; Yun, Eunsuk; Song, Rita

    2013-01-01

    Elucidation of unknown target proteins of a drug is of great importance in understanding cell biology and drug discovery. There have been extensive studies to discover and identify target proteins in the cell. Visualization of targets using drug-conjugated probes has been an important approach to gathering mechanistic information of drug action at the cellular level. As quantum dot (QD) nanocrystals have attracted much attention as a fluorescent probe in the bioimaging area, we prepared drug-conjugated QD to explore the potential of target discovery. As a model drug, we selected a well-known anticancer drug, methotrexate (MTX), which has been known to target dihydrofolate reductase (DHFR) with high affinity binding (K d = 0.54 nM). MTX molecules were covalently attached to amino-PEG-polymer-coated QDs. Specific interactions of MTX-conjugated QDs with DHFR were identified using agarose gel electrophoresis and fluorescence microscopy. Cellular uptake of the MTX-conjugated QDs in living CHO cells was investigated with regard to their localization and distribution pattern. MTX–QD was found to be internalized into the cells via caveolae-medicated endocytosis without significant sequestration in endosomes. A colocalization experiment of the MTX–QD conjugate with antiDHFR-TAT-QD also confirmed that MTX–QD binds to the target DHFR. This study showed the potential of the drug-QD conjugate to identify or visualize drug–target interactions in the cell, which is currently of great importance in the area of drug discovery and chemical biology. (paper)

  5. Formulation, Development, and In Vitro Evaluation of a CD22 Targeted Liposomal System Containing a Non-Cardiotoxic Anthracycline for B Cell Malignancies

    Directory of Open Access Journals (Sweden)

    Nivesh K. Mittal

    2018-04-01

    Full Text Available Doxorubicin cardiotoxicity has led to the development of superior chemotherapeutic agents such as AD 198. However, depletion of healthy neutrophils and thrombocytes from AD 198 therapy must be limited. This can be done by the development of a targeted drug delivery system that delivers AD 198 to the malignant cells. The current research highlights the development and in vitro analysis of targeted liposomes containing AD 198. The best lipids were identified and optimized for physicochemical effects on the liposomal system. Physiochemical characteristics such as size, ζ-potential, and dissolution were also studied. Active targeting to CD22 positive cells was achieved by conjugating anti-CD22 Fab’ to the liposomal surface. Size and ζ-potential of the liposomes was between 115 and 145 nm, and −8 to−15 mV. 30% drug was released over 72 h. Higher cytotoxicity was observed in CD22+ve Daudi cells compared to CD22−ve Jurkat cells. The route of uptake was a clathrin- and caveolin-independent pathway. Intracellular localization of the liposomes was in the endolysosomes. Upon drug release, apoptotic pathways were activated partly by the regulation of apoptotic and oncoproteins such as caspase-3 and c-myc. It was observed that the CD22 targeted drug delivery system was more potent and specific compared to other untargeted formulations.

  6. Molecular profiling of angiogenesis in hypericin mediated photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Ali Seyed M

    2008-06-01

    Full Text Available Abstract Background Photodynamic therapy (PDT involves the administration of a tumor-localizing photosensitizing drug, which is activated by light of specific wavelength in the presence of molecular oxygen thus generating reactive oxygen species that is toxic to the tumor cells. PDT selectively destroys photosensitized tissue leading to various cellular and molecular responses. The present study was designed to examine the angiogenic responses at short (0.5 h and long (6 h drug light interval (DLI hypericin-PDT (HY-PDT treatment at 24 h and 30 days post treatment in a human bladder carcinoma xenograft model. As short DLI targets tumor vasculature and longer DLI induces greater cellular damage, we hypothesized a differential effect of these treatments on the expression of angiogenic factors. Results Immunohistochemistry (IHC results showed minimal CD31 stained endothelium at 24 h post short DLI PDT indicating extensive vascular damage. Angiogenic proteins such as vascular endothelial growth factor (VEGF, tumor necrosis growth factor-α (TNF-α, interferon-α (IFN-α and basic fibroblast growth factor (bFGF were expressed to a greater extent in cellular targeting long DLI PDT compared to vascular mediated short DLI PDT. Gene expression profiling for angiogenesis pathway demonstrated downregulation of adhesion molecules – cadherin 5, collagen alpha 1 and 3 at 24 h post treatment. Hepatocyte growth factor (HGF and Ephrin-A3 (EFNA3 were upregulated in all treatment groups suggesting a possible activation of c-Met and Ephrin-Eph signaling pathways. Conclusion In conclusion, long DLI HY-PDT induces upregulation of angiogenic proteins. Differential expression of genes involved in the angiogenesis pathway was observed in the various groups treated with HY-PDT.

  7. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Preliminary evaluation of two radioiodinated maleimide derivatives targeting peripheral and membrane sulfhydryl groups for in vitro cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Amartey, John K., E-mail: amarjk48@hotmail.co [Cyclotron and Radiopharmaceuticals Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Parhar, Ranjit S. [Biological and Medical Research Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Shi, Yufei [Genetics Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Al-Mohanna, Futwan [Biological and Medical Research Department, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)

    2011-01-15

    A factor impeding the advancement of cell mediated therapy is the inability to track these cells in vivo by noninvasive techniques. It has been shown that cells express high levels of sulfhydryl groups. We sought to explore these groups to covalently label cells with radiolabeled maleimide derivatives. Two maleimide derivatives; N-[2-(2,5-dioxoazolinyl)ethyl](5-iodo(3-pyridyl))carboxamide and N-[2-(2,5-dioxoazolinyl)ethyl](3-iodophenyl)carboxamide ([{sup 125}I]-4 and [{sup 125}I]-8) were synthesized and radioiodinated. These compounds were evaluated for in vitro binding to neutrophils, endothelial and mesenchymal stem cells, and biodistribution of the radiolabeled stem cells in nude mice. These radiotracers were obtained in moderate to high radiochemical yields. Binding to cells were moderate (20-60%/10{sup 6} cells) and the label was retained, although washout (an average of 18-55%) was observed depending on the cell type and the tracer used. The labeled cells initially localized in well perfused organs and at a later time showed a general distribution as expected. The novel tracers labeled several cell types and shown that the stability of the label and viability of the cells were maintained in vitro and in vivo for a reasonable period and warrant further in vivo investigation.

  9. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo.

    Science.gov (United States)

    Wang, Chunmao; Ding, Chao; Kong, Minjian; Dong, Aiqiang; Qian, Jianfang; Jiang, Daming; Shen, Zhonghua

    2011-07-08

    Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1 insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1±6% and by liposomal magnetofection by 85.1±3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R specific-shRNA by lipofection inhibited IGF-1R protein by an average of 43.8±5.3%; that by liposomal magnetofection inhibited IGF-1R protein by 43.4±5.7%, 56.3±9.6%, and 72.2±6.8%, at 24, 48, and 72 h, respectively, after pGFPshIGF-1R injection. Our findings indicate that liposomal magnetofection may be a promising method that allows the targeting of gene therapy to lung cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Construction and Biological Evaluation of a Novel Integrin ανβ3-Specific Carrier for Targeted siRNA Delivery In Vitro

    Directory of Open Access Journals (Sweden)

    Xueqi Chen

    2017-02-01

    Full Text Available (1 Background: The great potential of RNA interference (RNAi-based gene therapy is premised on the effective delivery of small interfering RNAs (siRNAs to target tissues and cells. Hence, we aimed at developing and examining a novel integrin αvβ3-specific delivery carrier for targeted transfection of siRNA to malignant tumor cells; (2 Methods: Arginine-glycine-aspartate motif (RGD was adopted as a tissue target for specific recognition of integrin αvβ3. To enable siRNA binding, a chimeric peptide was synthesized by adding nonamer arginine residues (9R at the carboxy terminus of cyclic-RGD dimer, designated as c(RGD2-9R. The efficiency of 9R peptide transferring siRNA was biologically evaluated in vitro by flow cytometry, confocal microscopy, and Western blot; (3 Results: An optimal 10:1 molar ratio of c(RGD2-9R to siRNA was confirmed by the electrophoresis on agarose gels. Both the flow cytometry and confocal microscopy results testified that transfection of c(RGD2-9R as an siRNA delivery carrier was obviously higher than the naked-siRNA group. The results of Western blot demonstrated that these 9R peptides were able to transduce siRNA to HepG2 cells in vitro, resulting in efficient gene silencing; and (4 Conclusion: The chimeric peptide of c(RGD2-9R can be developed as an effective siRNA delivery carrier and shows potential as a new strategy for RNAi-based gene therapy.

  11. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier.

    Science.gov (United States)

    Molino, Yves; David, Marion; Varini, Karine; Jabès, Françoise; Gaudin, Nicolas; Fortoul, Aude; Bakloul, Karima; Masse, Maxime; Bernard, Anne; Drobecq, Lucile; Lécorché, Pascaline; Temsamani, Jamal; Jacquot, Guillaume; Khrestchatisky, Michel

    2017-05-01

    The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals ( ldlr -/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. © FASEB.

  12. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro - A quantitative study

    NARCIS (Netherlands)

    Asgeirsdottir, Sigridur A.; Talman, Eduard G.; de Graaf, Inge A.; Kamps, Jan A. A. M.; Satchell, Simon C.; Mathieson, Peter W.; Ruiters, Marcel H. J.; Molema, Grietje

    2010-01-01

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic

  13. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  14. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    Science.gov (United States)

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  15. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer

    International Nuclear Information System (INIS)

    Zerp, Shuraila F.; Stoter, T. Rianne; Hoebers, Frank J. P.; Brekel, Michiel W. M. van den; Dubbelman, Ria; Kuipers, Gitta K.; Lafleur, M. Vincent M.; Slotman, Ben J.; Verheij, Marcel

    2015-01-01

    Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI’s below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF 37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis

  16. Doxorubicin-conjugated bacteriophages carrying anti-MHC class I chain-related A for targeted cancer therapy in vitro

    Directory of Open Access Journals (Sweden)

    Phumyen A

    2014-11-01

    Full Text Available Achara Phumyen,1–3 Siriporn Jantasorn,1 Amonrat Jumnainsong,1 Chanvit Leelayuwat1–4 1The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL, Faculty of Associated Medical Sciences, 2The Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, 3Research Cluster: Specific Health Problem of Grater Maekong Subregion (SHeP-GMS, 4Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand Background: Cancer therapy by systemic administration of anticancer drugs, besides the effectiveness shown on cancer cells, demonstrated the side effects and cytotoxicity on normal cells. The targeted drug-carrying nanoparticles may decrease the required drug concentration at the site and the distribution of drugs to normal tissues. Overexpression of major histocompatibility complex class I chain–related A (MICA in cancer is useful as a targeted molecule for the delivery of doxorubicin to MICA-expressing cell lines. Methods: The application of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC chemistry was employed to conjugate the major coat protein of bacteriophages carrying anti-MICA and doxorubicin in a mildly acid condition. Doxorubicin (Dox on phages was determined by double fluorescence of phage particles stained by M13-fluorescein isothiocyanate (FITC and drug autofluorescence by flow cytometry. The ability of anti-MICA on phages to bind MICA after doxorubicin conjugation was evaluated by indirect enzyme-linked immunosorbent assay. One cervical cancer and four cholangiocarcinoma cell lines expressing MICA were used as models to evaluate targeting activity by cell cytotoxicity test. Results: Flow cytometry and indirect enzyme-linked immunosorbent assay demonstrated that most of the phages (82% could be conjugated with doxorubicin, and the Dox-carrying phage-displaying anti-MICA (Dox-phage remained the binding activity against MICA

  17. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Gu MJ

    2015-08-01

    Full Text Available Meng-Jie Gu,1,* Kun-Feng Li,1,* Lan-Xin Zhang,1 Huan Wang,1 Li-Si Liu,2 Zhuo-Zhao Zheng,2 Nan-Yin Han,1 Zhen-Jun Yang,1 Tian-Yuan Fan1 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 2Department of Radiology, Peking University Third Hospital, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Novel gadolinium-loaded liposomes guided by GBI-10 aptamer were developed and evaluated in vitro to enhance magnetic resonance imaging (MRI diagnosis of tumor. Nontargeted gadolinium-loaded liposomes were achieved by incorporating amphipathic material, Gd (III [N,N-bis-stearylamidomethyl-N'-amidomethyl] diethylenetriamine tetraacetic acid, into the liposome membrane using lipid film hydration method. GBI-10, as the targeting ligand, was then conjugated onto the liposome surface to get GBI-10-targeted gadolinium-loaded liposomes (GTLs. Both nontargeted gadolinium-loaded liposomes and GTLs displayed good dispersion stability, optimal size, and zeta potential for tumor targeting, as well as favorable imaging properties with enhanced relaxivity compared with a commercial MRI contrast agent (CA, gadopentetate dimeglumine. The use of GBI-10 aptamer in this liposomal system was intended to result in increased accumulation of gadolinium at the periphery of C6 glioma cells, where the targeting extracellular matrix protein tenascin-C is overexpressed. Increased cellular binding of GTLs to C6 cells was confirmed by confocal microscopy, flow cytometry, and MRI, demonstrating the promise of this novel delivery system as a carrier of MRI contrast agent for the diagnosis of tumor. These studies provide a new strategy furthering the development of nanomedicine for both diagnosis and therapy of tumor. Keywords: magnetic resonance imaging, gadolinium, liposomes, tenascin-C, GBI-10 aptamer, tumor targeting

  18. miR-320 enhances the sensitivity of human colon cancer cells to chemoradiotherapy in vitro by targeting FOXM1

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Lu-Ying; Deng, Jun; Xiang, Xiao-Jun; Zhang, Ling; Yu, Feng; Chen, Jun; Sun, Zhe; Feng, Miao; Xiong, Jian-Ping, E-mail: jpxiong@medmail.com.cn

    2015-02-06

    Highlights: • miR-320 plays a significant role in chemoresistance. • This role might be attribute to targeting FOXM1. • The Wnt/β-catenin pathway also involves in this chemotherapy sensitivity. - Abstract: miR-320 expression level is found to be down-regulated in human colon cancer. To date, however, its underlying mechanisms in the chemo-resistance remain largely unknown. In this study, we demonstrated that ectopic expression of miR-320 led to inhibit HCT-116 cell proliferation, invasion and hypersensitivity to 5-Fu and Oxaliplatin. Also, knockdown of miR-320 reversed these effects in HT-29 cells. Furthermore, we identified an oncogene, FOXM1, as a direct target of miR-320. In addition, miR-320 could inactive the activity of Wnt/β-catenin pathway. Finally, we found that miR-320 and FOXM1 protein had a negative correlation in colon cancer tissues and adjacent normal tissues. These findings implied that miR-320–FOXM1 axis may overcome chemo-resistance of colon cancer cells and provide a new therapeutic target for the treatment of colon cancer.

  19. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo.

    Science.gov (United States)

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Ramezani, Mohammad; Lavaee, Parirokh; Jalalian, Seyed Hamid; Robati, Rezvan Yazdian; Abnous, Khalil

    2016-05-01

    Clinical use of epirubicin (Epi) in the treatment of cancer has been limited, due to its cardiotoxicity. Targeted delivery of chemotherapeutic agents could increase their efficacy and reduce their off-target effects. High drug loading and excellent stability of DNA dendrimers make these DNA nanostructures unique candidates for biological applications. In this study a modified and promoted dendrimer using three kinds of aptamers (MUC1, AS1411 and ATP aptamers) was designed for targeted delivery of Epi and its efficacy was evaluated in target cells including MCF-7 cells (breast cancer cell) and C26 cells (murine colon carcinoma cell). Aptamers (Apts)-Dendrimer-Epi complex formation was analyzed by fluorometric analysis and gel retardation assay. Release profiles of Epi from the designed complex were assessed at pHs 5.4 and 7.4. For MTT assay (cytotoxic study) MCF-7 and C26 cells (target cells) and CHO cells (Chinese hamster ovary cell, nontarget) were treated with Epi, Apts-Dendrimer-Epi complex and Apts-Dendrimer conjugate. Internalization was evaluated using flow cytometry analysis. Finally, the developed complex was used for inhibition of tumor growth in vivo. 25μM Epi was efficiently intercalated to 1μM dendrimer. Epi was released from the Apts-Dendrimer-Epi complex in a pH-sensitive manner (more release at pH 5.5). The results of flow cytometry analysis indicated that the designed complex was efficiently internalized into target cells, but not into control cells. The internalization data were confirmed by the results of MTT assay. Apts-Dendrimer-Epi complex had less cytotoxicity in CHO cells compared to Epi alone. The complex had more cytotoxicity in C26 and MCF-7 cells compared to Epi alone. Moreover, the Apts-Dendrimer-Epi complex could efficiently prohibit tumor growth in vivo. In conclusion, the designed targeted drug delivery system inherited characteristics of pH-dependent drug release, high drug loading and tumor targeting in vitro and in vivo

  20. Effect of dasatinib in a xenograft mouse model of canine histiocytic sarcoma and in vitro expression status of its potential target EPHA2.

    Science.gov (United States)

    Ito, K; Miyamoto, R; Tani, H; Kurita, S; Kobayashi, M; Tamura, K; Bonkobara, M

    2018-02-01

    Canine histiocytic sarcoma (HS) is an aggressive and highly metastatic tumor. Previously, the kinase inhibitor dasatinib was shown to have potent growth inhibitory activity against HS cells in vitro, possibly via targeting the EPHA2 receptor. Here, the in vivo effect of dasatinib in HS cells was investigated using a xenograft mouse model. Moreover, the expression status of EPHA2 was examined in six HS cell lines, ranging from insensitive to highly sensitive to dasatinib. In the HS xenograft mouse model, dasatinib significantly suppressed tumor growth, as illustrated by a decrease in mitotic and Ki67 indices and an increase in apoptotic index in tumor tissues. On Western blot analysis, EPHA2 was only weakly detected in all HS cell lines, regardless of sensitivity to dasatinib. Dasatinib likely results in the inhibition of xenograft tumor growth via a mechanism other than targeting EPHA2. The findings of this study suggest that dasatinib is a targeted therapy drug worthy of further exploration for the treatment of canine HS. © 2017 John Wiley & Sons Ltd.

  1. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo

    International Nuclear Information System (INIS)

    Schuster, K; Zheng, J; Arbini, A A; Zhang, C C; Scaglioni, P P

    2011-01-01

    The BCR/ABL tyrosine kinase promotes leukemogenesis through activation of several targets that include the phosphoinositide 3-kinase (PI3K). Tyrosine kinase inhibitors (TKIs), which target BCR/ABL, induce striking clinical responses. However, therapy with TKIs is associated with limitations such as drug intolerance, inability to universally eradicate the disease and emergence of BCR/ABL drug-resistant mutants. To overcome these limitations, we tested whether inhibition of the PI3K/target of rapamycin (mTOR) signaling pathway has antileukemic effect in primary hematopoietic stem cells and BA/F3 cells expressing the BCR/ABL oncoprotein. We determined that dual inhibition of PI3K/mTOR causes growth arrest and apoptosis leading to profound antileukemic effects both in vitro and in vivo. We also established that pharmacologic inhibition of the mTORC1/mTORC2 complexes is sufficient to cause these antileukemic effects. Our results support the development of inhibitors of the mTORC1/2 complexes for the therapy of leukemias that either express BCR/ABL or display deregulation of the PI3K/mTOR signaling pathway

  2. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    Science.gov (United States)

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  3. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation.

    Science.gov (United States)

    Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang

    2012-06-01

    A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  5. Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro.

    Science.gov (United States)

    Miranda, M A; Castell, J V; Sarabia, Z; Hernández, D; Puertes, I; Morera, I M; Gómez-Lechón, M J

    1997-10-01

    The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensitizing drugs gave rise to similar processes when irradiated in the presence of BSA or the isolated amino acids. In conclusion, histidine and tyrosine appear to be key sites for the photosensitized damage to proteins. Photodegradation of the isolated amino acids in vitro may be an indicator of the photosensitizing potential of drugs.

  6. In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets.

    Science.gov (United States)

    Bernardo, João; Ferreres, Federico; Gil-Izquierdo, Ángel; Videira, Romeu António; Valentão, Patrícia; Veiga, Francisco; Andrade, Paula B

    2018-01-30

    The bark of Trichilia catigua A. Juss. (Meliaceae), popularly known as "big catuaba", is traditionally used in Brazilian folk medicine for its neuroactive potential as memory stimulant, and antinociceptive and antidepressant effects. To study the aqueous extract of T. catigua bark as dual inhibitor of monoamine oxidase A (MAO-A) and acetylcholinesterase (AChE). To explore its antioxidant potential through interaction with xanthine/xanthine oxidase (X/XO) pathway, and to attempt a relationship between its phenolic profile and effects displayed. Phenolic profiling was achieved by HPLC-DAD-ESI/MS n and UPLC-ESI-QTOF-MS analyses. The capacity to inhibit hMAO-A was assessed in vitro, as was that for AChE, evaluated in rat brain homogenates. The direct inhibition of the X/XO pathway and the scavenging of superoxide anion radical were the selected in vitro models to explore the antioxidant potential. The cytotoxic effects were assayed in the human neuronal SH-SY5Y cells by MTT reduction, after direct exposure (24h). Twenty-six compounds were identified and quantified (551.02 ± 37.61mg/g of lyophilized extract). The phenylpropanoid substituted flavan-3-ols were the most representative compounds (~81% of quantified mass). The extract inhibited hMAO activity in a concentration-dependent manner (IC 50 = 121.06 ± 2.13μg/mL). A mixed model of inhibition of AChE activity was observed, reflected by the pronounced increase of Km values and a more discreet effect over the Vmax parameters, calculated from Michaelis-Menten fitted equations. In addition, it was demonstrated that the extract directly inhibits the X/XO pathway (IC 50 = 121.06 ± 2.13μg/mL) and also imbalances the oxidative stress acting as superoxide anion radical scavenger (EC 50 = 104.42 ± 10.67μg/mL), an oxidative by-product of this reaction. All these neuroprotective and neurotrophic effects were displayed within the non-toxic range of concentrations (0.063-0.500μg/mL) in SH-SY5Y cells. Our results validate

  7. Evaluation of the Effects of Photodynamic Therapy Alone and Combined with Standard Antifungal Therapy on Planktonic Cells and Biofilms of Fusarium spp. and Exophiala spp.

    Science.gov (United States)

    Gao, Lujuan; Jiang, Shaojie; Sun, Yi; Deng, Meiqi; Wu, Qingzhi; Li, Ming; Zeng, Tongxiang

    2016-01-01

    Infections of Fusarium spp. and Exophiala spp. are often chronic, recalcitrant, resulting in significant morbidity, causing discomfort, disfigurement, social isolation. Systemic disseminations happen in compromised patients, which are often refractory to available antifungal therapies and thereby lead to death. The antimicrobial photodynamic therapy (aPDT) has been demonstrated to effectively inactivate multiple pathogenic fungi and is considered as a promising alternative treatment for mycoses. In the present study, we applied methylene blue (8, 16, and 32 μg/ml) as a photosensitizing agent and light emitting diode (635 ± 10 nm, 12 and 24 J/cm(2)), and evaluated the effects of photodynamic inactivation on five strains of Fusarium spp. and five strains of Exophiala spp., as well as photodynamic effects on in vitro susceptibility to itraconazole, voriconazole, posaconazole and amphotericin B, both planktonic and biofilm forms. Photodynamic therapy was efficient in reducing the growth of all strains tested, exhibiting colony forming unit-reductions of up to 6.4 log10 and 5.6 log10 against planktonic cultures and biofilms, respectively. However, biofilms were less sensitive since the irradiation time was twice longer than that of planktonic cultures. Notably, the photodynamic effects against Fusarium strains with high minimal inhibitory concentration (MIC) values of ≥16, 4-8, 4-8, and 2-4 μg/ml for itraconazole, voriconazole, posaconazole and amphotericin B, respectively, were comparable or even superior to Exophiala spp., despite Exophiala spp. showed relatively better antifungal susceptibility profile. MIC ranges against planktonic cells of both species were up to 64 times lower after aPDT treatment. Biofilms of both species showed high sessile MIC50 (SMIC50) and SMIC80 of ≥16 μg/ml for all azoles tested and variable susceptibilities to amphotericin B, with SMIC ranging between 1 and 16 μg/ml. Biofilms subjected to aPDT exhibited a distinct reduction in

  8. Bovine serum albumin nanoparticles loaded with Photosens photosensitizer for effective photodynamic therapy

    Science.gov (United States)

    Khanadeev, Vitaly; Khlebtsov, Boris; Packirisamy, Gopinath; Khlebtsov, Nikolai

    2017-03-01

    Polymeric nanoparticles (NPs) are widely used for drug delivery applications due to high biodegradability, low toxicity and high loading capacity. The focus of this study is the development of photosensitizer Photosens (PS) loaded albumin NPs for efficient photodynamic therapy (PDT). To fabricate PS-loaded bovine serum albumin nanoparticles (BSA-PS NPs), we used a coacervation method with glutaraldehyde followed by passive loading of PS. Successful loading of PS was confirmed by appearance of characteristic peak in absorption spectrum which allows to determine the PS loading in BSA NPs. The synthesized BSA-PS NPs demonstrated low toxicity to HeLa cells at therapeutic concentrations of loaded PS. Compared to free PS solution, the synthesized BSA-PS NPs generated the singlet oxygen more effectively under laser irradiation at 660 nm. In addition, due to presence of various chemical groups on the surface of BSA-PS NPs, they are capable to adsorb on cell surface and accumulate in cells due to cellular uptake mechanisms. Owing to combination of PD and cell uptake advantages, BSA-PS NPs demonstrated higher efficacy of photodynamic damage to cancer cells as compared to free PS at equivalent concentrations. These results suggest that non-targeted BSA-PS NPs with high PD activity and low-fabrication costs of are promising candidates for transfer to PD clinic treatments.

  9. Photodynamic killing of cancer cells by a Platinum(II) complex with cyclometallating ligand

    Science.gov (United States)

    Doherty, Rachel E.; Sazanovich, Igor V.; McKenzie, Luke K.; Stasheuski, Alexander S.; Coyle, Rachel; Baggaley, Elizabeth; Bottomley, Sarah; Weinstein, Julia A.; Bryant, Helen E.

    2016-03-01

    Photodynamic therapy that uses photosensitizers which only become toxic upon light-irradiation provides a strong alternative to conventional cancer treatment due to its ability to selectively target tumour material without affecting healthy tissue. Transition metal complexes are highly promising PDT agents due to intense visible light absorption, yet the majority are toxic even without light. This study introduces a small, photostable, charge-neutral platinum-based compound, Pt(II) 2,6-dipyrido-4-methyl-benzenechloride, complex 1, as a photosensitizer, which works under visible light. Activation of the new photosensitizer at low concentrations (0.1-1 μM) by comparatively low dose of 405 nm light (3.6 J cm-2) causes significant cell death of cervical, colorectal and bladder cancer cell lines, and, importantly, a cisplatin resistant cell line EJ-R. The photo-index of the complex is 8. We demonstrate that complex 1 induces irreversible DNA single strand breaks following irradiation, and that oxygen is essential for the photoinduced action. Neither light, nor compound alone led to cell death. The key advantages of the new drug include a remarkably fast accumulation time (diffusion-controlled, minutes), and photostability. This study demonstrates a highly promising new agent for photodynamic therapy, and attracts attention to photostable metal complexes as viable alternatives to conventional chemotherapeutics, such as cisplatin.

  10. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2015-11-01

    Full Text Available Harald Unterweger,1 Daniel Subatzus,1 Rainer Tietze,1 Christina Janko,1 Marina Poettler,1 Alfons Stiegelschmitt,2 Matthias Schuster,3 Caroline Maake,4 Aldo R Boccaccini,5 Christoph Alexiou11ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen; 2Institute of Glass and Ceramics, Department of Materials Science and Engineering, University Erlangen-Nuremberg, 3Materials for Electronics and Energy Technology, Department of Materials Science and Engineering, University Erlangen-Nürnberg, Erlangen, Germany; 4Institute of Anatomy, University of Zurich, Winterthurerstr, Zurich, Switzerland; 5Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparamagnetic iron oxide nanoparticles (SPIONs with a hypericin-linked functionalized dextran coating. For that, sterically stabilized dextran-coated SPIONs were produced by coprecipitation and crosslinking with epichlorohydrin to enhance stability. Carboxymethylation of the dextran shell provided a functionalized platform for linking hypericin via glutaraldehyde. Particle sizes obtained by dynamic light scattering were in a range of 55–85 nm, whereas investigation of single magnetite or maghemite particle diameter was performed by transmission electron microscopy and X-ray diffraction and resulted in approximately 4.5–5.0 nm. Surface chemistry of those

  11. In Vitro and In Vivo Evaluations of A High Affinity and Specificity Photoacoustic Nanoparticle Targeting to Cancer

    DEFF Research Database (Denmark)

    Ma, Lixin; Xu, Hang; Lee, Li Ean

    oxide (SIO) nanoparticle as a potent cancer cell selective PA contrast agent, with a high binding affinity and selectivity to the gastrin releasing peptide receptor (GRPR) which is overexpressed in many human cancers including prostate cancer, breast cancer and small cell lung cancer etc.......Photoacoustic (PA) imaging uses a short-pulsed laser to create ultrasound signals for the high resolution acoustic imaging. The development of targeting PA contrast agents offers a unique opportunity to improve the early detection of cancer cells. This work aims to develop a silica coated iron...

  12. Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo.

    Science.gov (United States)

    Zeng, Xingruo; Xu, Zhou; Gu, Jiayan; Huang, Haishan; Gao, Guangxun; Zhang, Xiaoru; Li, Jingxia; Jin, Honglei; Jiang, Guosong; Sun, Hong; Huang, Chuanshu

    2016-03-01

    Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. ©2016 American Association for Cancer Research.

  13. Light emitting fabric technologies for photodynamic therapy.

    Science.gov (United States)

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. New Photosensitizers for Photodynamic Therapy in Gastroenterology

    Directory of Open Access Journals (Sweden)

    SG Bown

    1999-01-01

    Full Text Available Most applications of photodynamic therapy (PDT in gastroenterology to date have used porfimer sodium as the photosensitizing agent. For destroying small lesions in the wall of the gastrointestinal tract in inoperable patients, it has proved to be most effective, but attempts to achieve circumferential mucosal ablation, as in the treatment of Barrett’s esophagus, have led to a high incidence of strictures, and all patients have cutaneous photosensitivity, which can last up to three months. Two new photosensitizers are of particular interest to gastroenterologists. PDT with metatetrahydroxyphenyl chlorin produces a similar biological effect as PDT with porfimer sodium, but the light doses required are much smaller, and cutaneous photosensitivity lasts only two to three weeks. Further, it can be used with percutaneous light delivery to destroy localized pancreatic cancers. The photosensitizing agent 5-amino levulinic acid, converted in vivo into the photoactive derivative protoporphyrin IX, sensitizes the mucosa much more than the underlying layers. This makes it feasible to destroy areas of abnormal mucosa without damaging the underlying muscle and is, therefore, better for treating Barrett’s esophagus. Detailed clinical studies are required to establish the real role of PDT with the use of these and other new photosensitizers.

  15. Photodynamic antimicrobial polymers for infection control.

    Directory of Open Access Journals (Sweden)

    Colin P McCoy

    Full Text Available Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene (HDPE using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA, and by up to 1.51 Log CFU/cm(2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.

  16. Novel Photodynamics in Phytochrome & Cyanobacteriochrome Photosensory Proteins

    Science.gov (United States)

    Larsen, Delmar

    2015-03-01

    The photodynamics of recently characterized phytochrome and cyanobacteriochrome photoreceptors are discussed. Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but exhibit greater spectral diversity. The excited-state mechanisms underlying the initial photoisomerization in the forward reactions of the cyanobacterial photoreceptor Cph1 from Synechocystis, the RcaE CBCR from Fremyella diplosiphon, and Npr6012g4 CBCR from Nostoc punctiforme were contrasted via multipulse pump-dump-probe transient spectroscopy. A rich excited-state dynamics are resolved involving a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates, and Le Chatelier redistribution. NpR6012g4 exhibits a high quantum yield for its forward photoreaction (40%) that was ascribed to the activity of hidden, productive ground-state intermediates via a ``second chance initiation dynamics'' (SCID) mechanism. This work was supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117).

  17. Corneal endothelial glutathione after photodynamic change

    International Nuclear Information System (INIS)

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-01-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system

  18. Photodynamic therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Kamil H Nelke

    2014-02-01

    Full Text Available Photodynamic therapy (PDT is a special type of treatment involving the use of a photosensitizer or a photosensitizing agent along with a special type of light, which, combined together, induces production of a form of oxygen that is used to kill surrounding cells in different areas of the human body. Specification of the head and neck region requires different approaches due to the surrounding of vital structures. PDT can also be used to treat cells invaded with infections such as fungi, bacteria and viruses. The light beam placed in tumor sites activates locally applied drugs and kills the cancer cells. Many studies are taking place in order to invent better photosensitizers, working on a larger scale and to treat deeply placed and larger tumors. It seems that PDT could be used as an alternative surgical treatment in some tumor types; however, all clinicians should be aware that the surgical approach is still the treatment of choice. PDT is a very accurate and effective therapy, especially in early stages of head and neck squamous cell carcinomas (HNSCC, and can greatly affect surgical outcomes in cancerous patients. We present a detailed review about photosensitizers, their use, and therapeutic advantages and disadvantages.

  19. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Li W

    2016-10-01

    Full Text Available Wenbo Li,1,* Lijie Dong,1,* Minwang Ma,2,* Bojie Hu,1 Zhenyu Lu,3 Xun Liu,1 Juping Liu,1 Xiaorong Li1 1Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China; 2Affiliated Hospital of Medical College of Chinese People’s Armed Police Forces (CapF, Tianjin, People’s Republic of China; 3Tianjin Precision Cell Biotechnology Co. Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Choroidal neovascularization (CNV in age-related macular degeneration usually causes blindness. We established a novel targeted inhibitor for CNV in age-related macular degeneration. The inhibitor CR2-sFlt 1 comprises a CR2-targeting fragment and an anti-vascular endothelial growth factor (VEGF domain (sFlt 1. The targeting of CR2-sFlt 1 was studied using the transwell assay in vitro and frozen sections in vivo using green fluorescent labeling. Trans­well assay results showed that CR2-sFlt 1 migrated to the interface of complement activation products and was present in the retinal tissue of the CR2-sFlt 1-treated CNV mice. Treatment effects were assessed by investigating the VEGF concentration in retinal pigmented epithelial cell medium and the thickness of the CNV complex in the mice treated with CR2-sFlt 1. CR2-sFlt 1 significantly reduced the VEGF secretion from retinal pigmented epithelial cells in vitro and retarded CNV progress in a mouse model. Expression analysis of VEGF and VEGFRs after CR2-sFlt 1 intervention indicated the existence of feedback mechanisms in exogenous CR2-sFlt 1, endogenous VEGF, and VEGFR interaction. In summary, we demonstrated for the first time that using CR2-sFlt 1 could inhibit CNV with clear targeting and high selectivity. Keywords: choroidal neovascularization, macular degeneration, complement activation, vascular endothelial growth factor

  20. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure.

    Science.gov (United States)

    Okee, Moses; Bayiyana, Alice; Musubika, Carol; Joloba, Moses L; Ashaba-Katabazi, Fred; Bagaya, Bernard; Wayengera, Misaki

    2018-01-01

    Efficiency of artificial restriction enzymes toward curing HIV has only been separately examined, using differing delivery vehicles. We compared the in vitro transduction and target-mutagenesis efficiency of consortium plasmid and adenoviral vector delivered HIV-1 pol gene targeting zinc finger nuclease (ZFN) with CRISPR/Cas, Custom-ZFN, CRISPR-Cas-9, and plasmids and vectors (murCTSD_pZFN, pGS-U-gRNA, pCMV-Cas-D01A, Ad5-RGD); cell lines (TZM-bl and ACH-2/J-Lat cells); and the latency reversing agents prostratin, suberoylanilide hydroxamic acid, and phorbol myristate acetate. Cell lines were grown in either Dulbecco's modified Eagle's medium or Roswell Park Memorial Institute with the antibiotics kanamycin, zeocin, and efavirenz. Efficiency was assayed by GFP/luciferase activity and/or validated by yeast MEL1 reporter assay, CEL1 restriction fragment assay, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Ad5-RGD vectors had better transduction efficiency than murCTSD and pGS-U-gRNA/pCMV-Cas-D01A plasmids. CRISPR/Cas9 exhibited better target-mutagenesis efficiency relative to ZFN (delivered by either plasmid or Ad5 vector) based on gel electrophoresis of pol gene amplicons within ACH-2 and J-Lat cells. Ad-5-RGD vectors enhanced target mutagenesis of ZFN, relative to murCTSD_pZFN plasmids, to levels of CRISPR/Cas9 plasmids. Similar reduction of luciferase activity among TZM-bl treated with Ad5-ZFN vectors relative to CRISPR/Cas-9 and murCTSD_pZFN plasmids was observed on challenge with HIV-1. qRT-PCR of HIV-1 pol gene transcripts affirmed that Ad5 (RGD) vectors enhanced target mutagenesis of ZFN. Whereas CRISPR/Cas-9 may possess inherent superior target-mutagenesis efficiency; the efficiency of ZFN (off-target toxicity withstanding) can be enhanced by altering delivery vehicle from plasmid to Ad5 (RGD) vectors.

  1. Phloretin Attenuates Listeria monocytogenes Virulence Both In vitro and In vivo by Simultaneously Targeting Listeriolysin O and Sortase A.

    Science.gov (United States)

    Wang, Jianfeng; Liu, Bowen; Teng, Zihao; Zhou, Xuan; Wang, Xiyan; Zhang, Bing; Lu, Gejin; Niu, Xiaodi; Yang, Yongjun; Deng, Xuming

    2017-01-01

    The critical roles of sortase A (SrtA) and listeriolysin O (LLO) in Listeria monocytogenes pathogenicity render these two virulence factors as ideal targets for the development of anti-virulence agents against L. monocytogenes infection. Additionally, the structures of SrtA and LLO are highly conserved among the members of sortase enzyme family and cholesterol dependent toxin family. Here, phloretin, a natural polyphenolic compound derived from apples and pears that has little anti- L. monocytogenes activity, was identified to simultaneously inhibit LLO expression and neutralize SrtA catalytic activity. Phloretin neutralized SrtA activity by causing a conformational change in the protein's active pocket, which prevented engagement with its substrate. Treatment with phloretin simultaneously reduced L. monocytogenes invasion into host cells and blocked the escape of vacuole-entrapped L. monocytogenes into cytoplasm. Further, L. monocytogenes -infected mice that received phloretin showed lower mortality, decreased bacterial burden and reduced pathological injury. Our results demonstrate that phloretin is a promising anti-infective therapeutic for infections caused by L. monocytogenes due to its simultaneous targeting of SrtA and LLO, which may result in fewer side effects than those caused by other antibiotics.

  2. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation.

    Science.gov (United States)

    Li, Liwei; Khanna, May; Jo, Inha; Wang, Fang; Ashpole, Nicole M; Hudmon, Andy; Meroueh, Samy O

    2011-04-25

    We assess the performance of our previously reported structure-based support vector machine target-specific scoring function across 41 targets, 40 among them from the Directory of Useful Decoys (DUD). The area under the curve of receiver operating characteristic plots (ROC-AUC) revealed that scoring with SVM-SP resulted in consistently better enrichment over all target families, outperforming Glide and other scoring functions, most notably among kinases. In addition, SVM-SP performance showed little variation among protein classes, exhibited excellent performance in a test case using a homology model, and in some cases showed high enrichment even with few structures used to train a model. We put SVM-SP to the test by virtual screening 1125 compounds against two kinases, EGFR and CaMKII. Among the top 25 EGFR compounds, three compounds (1-3) inhibited kinase activity in vitro with IC₅₀ of 58, 2, and 10 μM. In cell cultures, compounds 1-3 inhibited nonsmall cell lung carcinoma (H1299) cancer cell proliferation with similar IC₅₀ values for compound 3. For CaMKII, one compound inhibited kinase activity in a dose-dependent manner among 20 tested with an IC₅₀ of 48 μM. These results are encouraging given that our in-house library consists of compounds that emerged from virtual screening of other targets with pockets that are different from typical ATP binding sites found in kinases. In light of the importance of kinases in chemical biology, these findings could have implications in future efforts to identify chemical probes of kinases within the human kinome.

  3. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin.

    Science.gov (United States)

    Sidhu, Amar Bir Singh; Sun, Qingan; Nkrumah, Louis J; Dunne, Michael W; Sacchettini, James C; Fidock, David A

    2007-01-26

    Azithromycin (AZ), a broad-spectrum antibacterial macrolide that inhibits protein synthesis, also manifests reasonable efficacy as an antimalarial. Its mode of action against malarial parasites, however, has remained undefined. Our in vitro investigations with the human malarial parasite Plasmodium falciparum document a remarkable increase in AZ potency when exposure is prolonged from one to two generations of intraerythrocytic growth, with AZ producing 50% inhibition of parasite growth at concentrations in the mid to low nanomolar range. In our culture-adapted lines, AZ displayed no synergy with chloroquine (CQ), amodiaquine, or artesunate. AZ activity was also unaffected by mutations in the pfcrt (P. falciparum chloroquine resistance transporter) or pfmdr1 (P. falciparum multidrug resistance-1) drug resistance loci, as determined using transgenic lines. We have selected mutant, AZ-resistant 7G8 and Dd2 parasite lines. In the AZ-resistant 7G8 line, the bacterial-like apicoplast large subunit ribosomal RNA harbored a U438C mutation in domain I. Both AZ-resistant lines revealed a G76V mutation in a conserved region of the apicoplast-encoded P. falciparum ribosomal protein L4 (PfRpl4). This protein is predicted to associate with the nuclear genome-encoded P. falciparum ribosomal protein L22 (PfRpl22) and the large subunit rRNA to form the 50 S ribosome polypeptide exit tunnel that can be occupied by AZ. The PfRpl22 sequence remained unchanged. Molecular modeling of mutant PfRpl4 with AZ suggests an altered orientation of the L75 side chain that could preclude AZ binding. These data imply that AZ acts on the apicoplast bacterial-like translation machinery and identify Pfrpl4 as a potential marker of resistance.

  4. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177Lu-Au-nanoradiopharmaceutical

    International Nuclear Information System (INIS)

    Gonzalez-Ruiz, Abraham; Ferro-Flores, Guillermina; Azorin-Vega, Erika; Ocampo-Garcia, Blanca; Maria Ramirez, Flor de; Santos-Cuevas, Clara; Luna-Gutierrez, Myrna; Leon-Rodriguez, Luis De; Isaac-Olive, Keila; Morales-Avila, Enrique

    2017-01-01

    The aim of this research was to synthesize and chemically characterize a cancer-specific 177 Lu-Au-nanoradiopharmaceutical based on gold nanoparticles (NPs), the nuclear localization sequence (NLS)-Arg-Gly-Asp peptide and an aptamer (HS-pentyl-pegaptanib) to target both the α(v)β(3) integrin and the vascular endothelial growth factor (VEGF) overexpressed in the tumor neovasculature, as well as to evaluate by the tube formation assay, the nanosystem capability to inhibit angiogenesis. 177 Lu-NP-RGD-NLS-Aptamer was obtained with a radiochemical purity of 99 ± 1%. Complete inhibition of tube formation (angiogenesis) was demonstrated when endothelial cells (EA.hy926), cultured in a 3D-extracellular matrix support, were treated with the developed nanosystem. (author)

  5. Co-targeting androgen receptor and DNA for imaging and molecular radiotherapy of prostate cancer: in vitro studies.

    Science.gov (United States)

    Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina

    2014-12-01

    The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.

  6. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy.

    Science.gov (United States)

    Yuan, Youyong; Liu, Bin

    2014-09-10

    A drug delivery system based on poly(ethylene glycol) (PEG) grafted conjugated polyelectrolyte (CPE) has been developed to serve as a polymeric photosensitizer and drug carrier for combined photodynamic and chemotherapy. The amphiphilic brush copolymer can self-assemble into micellar nanopaticles (NPs) in aqueous media with hydrophobic conjugated polyelectrolyte backbone as the core and hydrophilic PEG as the shell. The NPs have an average diameter of about 100 nm, with the absorption and emission maxima at 502 and 598 nm, respectively, making them suitable for bioimaging applications. Moreover, the CPE itself can serve as a photosensitizer, which makes the NPs not only a carrier for drug but also a photosensitizing unit for photodynamic therapy, resulting in the combination of chemo- and photodynamic therapy for cancer. The half-maximal inhibitory concentration (IC50) value for the combination therapy to U87-MG cells is 12.7 μg mL(-1), which is much lower than that for the solely photodynamic therapy (25.5 μg mL(-1)) or chemotherapy (132.8 μg mL(-1)). To improve the tumor specificity of the system, cyclic arginine-glycine-aspartic acid (cRGD) tripeptide as the receptor to integrin αvβ3 overexpressed cancer cells was further incorporated to the surface of the NPs. The delivery system based on PEGylated CPE is easy to fabricate, which integrates the merits of targeted cancer cell image, chemotherapeutic drug delivery, and photodynamic therapy, making it promising for cancer treatment.

  7. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9.

    Science.gov (United States)

    Li, Jingyuan; Wang, Lijuan; Liu, Zongzhi; Zu, Chao; Xing, Fanfan; Yang, Pei; Yang, Yongkang; Dang, Xiaoqian; Wang, Kunzheng

    2015-09-22

    Accumulating evidence indicates that dysregulation of miRNAs could contribute to tumor growth and metastasis of chondrosarcoma by infuencing cell proliferation and invasion. In the current study, we are interested to examine the role of miRNAs in the carcinogenesis and progression of chondrosarcoma. Here, using comparative miRNA profiling of tissues and cells of chondrosarcoma and cartilage, we identified miR-494 as a commonly downregulated miRNA in the tissues of patients with chondrosarcoma and chondrosarcoma cancer cell line, and upregulation of miR-494 could inhibit proliferation and invasion of chondrosarcoma cancer cells in vivo and in vitro. Moreover, our data demonstrated that SOX9, the essential regulator of the process of cartilage differentiation, was the direct target and functional mediator of miR-494 in chondrosarcoma cells. And downregulation of SOX9 could also inhibit migration and invasion of chondrosarcoma cells. In the last, we identified low expression of miR-494 was significantly correlated with poor overall survival and prognosis of chondrosarcoma patients. Thus, miR-494 may be a new common therapeutic target and prognosis biomarker for chondrosarcoma.

  8. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Science.gov (United States)

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies.

    Science.gov (United States)

    Nour, Samia A; Abdelmalak, Nevine S; Naguib, Marianne J; Rashed, Hassan M; Ibrahim, Ahmed B

    2016-11-01

    Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99m Tc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.

  10. In vitro Evaluation of a Bombesin Antagonistic Analogue Conjugated with DOTA-Ala(SO{sub 3}H)-Aminooctanoyl for Targeting of the Gastrin-releasing Peptide Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Lee, So Young; Choi, Sang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    As Bombesin (BBS) binds with high affinity to GRPR, BBS derivatives have been labeled with various radionuclides such as {sup 99}mTc, {sup 111}In, {sup 90}Y, {sup 64}Cu, {sup 177}Lu, {sup 68}Ga, or {sup 18}F and have proved to be successful candidates for peptide receptor radiotherapy (PRRT). In this study, we employed Ala(SO{sub 3}H)-Aminooctanoyl as a linker of BBS antagonistic peptide sequence, Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH{sub 2}, with DOTA to prepare radiolabeled candidates for GRPR targeting. A DOTA-conjugated BBS antagonistic analogue was synthesized and radiolabeled with {sup 177}Lu, and in vitro characteristics on GRPR-overexpressing human prostate tumor cells were evaluated. In conclusion, a novel BBS antagonistic analogue, {sup 177}Lu-DOTA-sBBNA, is a promising candidate for the targeting of GRPR-over-expressing tumors. Further investigations to evaluate its in vivo characteristics and therapeutic efficacy are needed.

  11. Clarified Açaí (Euterpe oleracea Juice as an Anticonvulsant Agent: In Vitro Mechanistic Study of GABAergic Targets

    Directory of Open Access Journals (Sweden)

    Gabriela P. F. Arrifano

    2018-01-01

    Full Text Available Seizures affect about 50 million people around the world. Approximately 30% of seizures are refractory to the current pharmacological arsenal, so, the pursuit of new therapeutic alternatives is essential. Clarified Euterpe oleracea (EO juice showed anticonvulsant properties similar to diazepam in an in vivo model with pentylenetetrazol, a GABAA receptor blocker. This study investigated the effects of EO on the main GABAergic targets for anticonvulsant drugs, analyzing the effect on the GABA receptor’s benzodiazepine and picrotoxinin binding sites and the GABA uptake. Primary cultures of cortical neurons and astrocytes were treated with EO (0–25% for up to 90 min. [3H]Flunitrazepam and [3H]TBOB binding, [3H]GABA uptake, cell viability, and morphology were assayed. Nonlethal concentrations of EO increased agonist binding and decreased antagonist binding in cortical neurons. Low concentrations significantly inhibited GABA uptake, especially in astrocytes, suggesting an accumulation of endogenous GABA in the synaptic cleft. The results demonstrate, for the first time, that EO can improve GABAergic neurotransmission via interactions with GABAA receptor and modulation of GABA uptake. Understanding these molecular mechanisms will help in the treatment of seizures and epilepsy, especially in developing countries where geographic isolation and low purchasing power are the main barriers to access to adequate treatment.

  12. RNA interference targeting cytosolic NADP(+)-dependent isocitrate dehydrogenase exerts anti-obesity effect in vitro and in vivo.

    Science.gov (United States)

    Nam, Woo Suk; Park, Kwon Moo; Park, Jeen-Woo

    2012-08-01

    A metabolic abnormality in lipid biosynthesis is frequently associated with obesity and hyperlipidemia. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) is an essential reducing equivalent for numerous enzymes required in fat and cholesterol biosynthesis. Cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) has been proposed as a key enzyme for supplying cytosolic NADPH. We report here that knockdown of IDPc expression by Ribonucleic acid (RNA) interference (RNAi) inhibited adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes and mice. Attenuated IDPc expression by IDPc small interfering RNA (siRNA) resulted in a reduction of differentiation and triglyceride level and adipogenic protein expression as well as suppression of glucose uptake in cultured adipocytes. In addition, the attenuation of Nox activity and Reactive oxygen species (ROS) generation accompanied with knockdown of IDPc was associated with inhibition of adipogenesis and lipogenesis. The loss of body weight and the reduction of triglyceride level were also observed in diet-induced obese mice transduced with IDPc short-hairpin (shRNA). Taken together, the inhibiting effect of RNAi targeting IDPc on adipogenesis and lipid biosynthesis is considered to be of therapeutic value in the treatment and prevention of obesity and obesity-associated metabolic syndrome. © 2012 Elsevier B.V. All rights reserved.

  13. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    Directory of Open Access Journals (Sweden)

    Zijian Xiao

    Full Text Available This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  14. Oridonin Targets Multiple Drug-Resistant Tumor Cells as Determined by in Silico and in Vitro Analyses

    Directory of Open Access Journals (Sweden)

    Onat Kadioglu

    2018-04-01

    Full Text Available Drug resistance is one of the main reasons of chemotherapy failure. Therefore, overcoming drug resistance is an invaluable approach to identify novel anticancer drugs that have the potential to bypass or overcome resistance to established drugs and to substantially increase life span of cancer patients for effective chemotherapy. Oridonin is a cytotoxic diterpenoid isolated from Rabdosia rubescens with in vivo anticancer activity. In the present study, we evaluated the cytotoxicity of oridonin toward a panel of drug-resistant cancer cells overexpressing ABCB1, ABCG2, or ΔEGFR or with a knockout deletion of TP53. Interestingly, oridonin revealed lower degree of resistance than the control drug, doxorubicin. Molecular docking analyses pointed out that oridonin can interact with Akt/EGFR pathway proteins with comparable binding energies and similar docking poses as the known inhibitors. Molecular dynamics results validated the stable conformation of oridonin docking pose on Akt kinase domain. Western blot experiments clearly revealed dose-dependent downregulation of Akt and STAT3. Pharmacogenomics analyses pointed to a mRNA signature that predicted sensitivity and resistance to oridonin. In conclusion, oridonin bypasses major drug resistance mechanisms and targets Akt pathway and might be effective toward drug refractory tumors. The identification of oridonin-specific gene expressions may be useful for the development of personalized treatment approaches.

  15. Telomerase: A Target for Therapeutic Effects of Curcumin and a Curcumin Derivative in Aβ1-42 Insult In Vitro

    Science.gov (United States)

    Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1–42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1–42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1. PMID:24983737

  16. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Dearling, J.L.J.; Lewis, J.S.; Mullen, G.E.D.; Rae, M.T.; Zweit, J.; Blower, P.J.

    1998-01-01

    The well-known perfusion tracer CuPTSM, labelled with 62 Cu or 64 Cu, is believed to be trapped in cells non-selectively by a bioreductive mechanism. It is proposed that by modifying the ligand to increase its electron donor strength (for example by adding alkyl functionality or replacing sulphur ligands with oxygen ligands), the copper complexes will become less easily reduced and tracers with selectivity for hypoxic tissues could thus be developed. The aim of this work was to prepare 64 Cu-labelled complexes of two series of ligands, based on the bis(thiosemicarbazone) (13 ligands) and bis(salicylaldimine) (3 ligands) skeletons, and to evaluate the hypoxia dependence of their uptake in cells. The complexes were incubated with Chinese hamster ovary cells under normoxic and hypoxic conditions, and the cells isolated by centrifugation to determine radioactivity uptake at various time points up to 90 min. Several members of both series demonstrated significant (P 60 Cu, 61 Cu, 62 Cu, 64 Cu) and targeted radiotherapy ( 64 Cu, 67 Cu). (orig.)

  17. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

    Science.gov (United States)

    Unterweger, Harald; Subatzus, Daniel; Tietze, Rainer; Janko, Christina; Poettler, Marina; Stiegelschmitt, Alfons; Schuster, Matthias; Maake, Caroline; Boccaccini, Aldo R; Alexiou, Christoph

    2015-01-01

    Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) with a hypericin-linked functionalized dextran coating. For that, sterically stabilized dextran-coated SPIONs were produced by coprecipitation and crosslinking with epichlorohydrin to enhance stability. Carboxymethylation of the dextran shell provided a functionalized platform for linking hypericin via glutaraldehyde. Particle sizes obtained by dynamic light scattering were in a range of 55-85 nm, whereas investigation of single magnetite or maghemite particle diameter was performed by transmission electron microscopy and X-ray diffraction and resulted in approximately 4.5-5.0 nm. Surface chemistry of those particles was evaluated by Fourier transform infrared spectroscopy and ζ potential measurements, indicating successful functionalization and dispersal stabilization due to a mixture of steric and electrostatic repulsion. Flow cytometry revealed no toxicity of pure nanoparticles as well as hypericin without exposure to light on Jurkat T-cells, whereas the combination of hypericin, alone or loaded on particles, with light-induced cell death in a concentration and exposure time-dependent manner due to the generation of reactive oxygen species. In conclusion, the combination of SPIONs' targeting abilities with hypericin's phototoxic properties represents a promising approach for merging magnetic drug targeting with photodynamic therapy for the treatment of cancer.

  18. Active and passive control of zinc phthalocyanine photodynamics

    NARCIS (Netherlands)

    Sharma, Divya; Huijser, Jannetje Maria; Savolainen, Janne; Steen, Gerrit Willem; Herek, Jennifer Lynn

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of

  19. A novel diode laser system for photodynamic therapy

    DEFF Research Database (Denmark)

    Samsøe, E.; Andersen, P. E.; Petersen, P.

    2001-01-01

    In this paper a novel diode laser system for photodynamic therapy is demonstrated. The system is based on linear spatial filtering and optical phase conjugate feedback from a photorefractive BaTiO3 crystal. The spatial coherence properties of the diode laser are significantly improved. The system...

  20. The Reaction Microscope: Imaging and Pulse Shaping Control in Photodynamics

    NARCIS (Netherlands)

    Vredenborg, A.; Lehmann, C.S.; Irimia, D.; Roeterdink, W.; Janssen, M.H.M.

    2011-01-01

    Herein, we review the current capabilities and potential of advanced single-particle imaging techniques to study photodynamics in isolated molecules. These reaction microscopes are able to measure the full three-dimensional energy and angular distribution of (correlated) particles such as electrons

  1. Efficiency of photodynamic treatment in patients with early gastric cancer

    Directory of Open Access Journals (Sweden)

    Е. V. Filonenko

    2013-01-01

    Full Text Available The experience of photodynamic therapy for early gastric cancer is described in the article. The treatment results in 68 patients who were excluded for convenient surgical treatment because of advanced age or severe co-morbidity are represented. 63 patients had single tumor, 5 patients – 2 tumors. Four Russian agents: photogem, photosens, radaсhlorin and alasens, were used for photodynamic therapy. The treatment session was performed under local anesthesia during routine endoscopy with diode laser with wavelength consistent with photosensitizer (photogem – 630 nm, photosens – 670 nm, alasens-induced protoporphyrin IX – 635 nm, radaсhlorin – 662 nm. The short-term results were analyzed 1 month after treatment according to endoscopy, morphological study, CT, ultrasound or endosonography. For 73 lesions complete regression was observed in 53 (72.6% and partial regression in 20 tumors (27.4%. The efficacy of photodynamic therapy was shown to be directly associated with tumor size. Thus, for tumors up to 1 cm regression occurred in 100% of cases, up to 1.5 cm – in 70.8%, up to 3 cm – in 65.2%, up to 5 cm – in 58.3%. The median survival rates accounted for 7.31 years, 3-year survival – 83±5%, 5-year - 69±8%. The experience showed that the developed method of photodynamic therapy was promising in treatment for early gastric cancer as an alternative to surgery. 

  2. Photodynamic therapy: A new vista in management of periodontal diseases

    Directory of Open Access Journals (Sweden)

    Yogesh Doshi

    2010-01-01

    Full Text Available Aim: The purpose of this review was to evaluate the effectiveness of photodynamic therapy (PDT for periodontitis. This review also elucidates application of photodynamic therapy for noninvasive management of periodontitis without leading to bacterial resistance. Background: Periodontal diseases are one of the major causes of tooth loss in adults and are considered primarily an anaerobic bacterial infections caused by the so-called red complex species. Bacteria present in a biofilm community, enzymes, endotoxins, and other cytotoxic factors lead to tissue destruction and initiate chronic inflammation. Since many years pioneers have been working to provide logical and cost-effective therapy for management of periodontitis. Periodontal researchers have found that PDT is advantageous to suppress anaerobic bacteria. Clinical Significance: Applications of PDT in dentistry are growing rapidly. PDT application has an adjunctive benefit besides mechanical treatment at sites with difficult access. Necessity for flap surgery may be reduced, patient comfort may increase, and treatment time may decrease. The application of photosensitizing dyes and their excitation by visible light enables effective killing of periodonto-pathogens. The introduction of laser along with photosensitizers has brought a revolutionary change. Conclusion: The application of photodynamic therapy in management of periodontal diseases is very valuable. The therapy should be combined with nonsurgical periodontal therapy. Proper clinical application of photodynamic therapy can and will help patients who are systemically compromised and cannot undergo surgical therapy.

  3. Weather conditions and daylight-mediated photodynamic therapy

    DEFF Research Database (Denmark)

    Wiegell, S R; Fabricius, S; Heydenreich, J

    2013-01-01

    Photodynamic therapy (PDT) is an attractive therapy for nonmelanoma skin cancers and actinic keratoses (AKs). Daylight-mediated methyl aminolaevulinate PDT (daylight-PDT) is a simple and painless treatment procedure for PDT. All daylight-PDT studies have been performed in the Nordic countries...

  4. Uniform irradiation of irregularly shaped cavities for photodynamic therapy

    NARCIS (Netherlands)

    Rem, A. I.; van Gemert, M. J.; van der Meulen, F. W.; Gijsbers, G. H.; Beek, J. F.

    1997-01-01

    It is difficult to achieve a uniform light distribution in irregularly shaped cavities. We have conducted a study on the use of hollow 'integrating' moulds for more uniform light delivery of photodynamic therapy in irregularly shaped cavities such as the oral cavity. Simple geometries such as a

  5. Photodynamic diagnosis of bladder cancer:Initial experience of a ...

    African Journals Online (AJOL)

    Objectives: To describe the introduction and evaluate efficacy of photodynamic diagnosis with Hexvix fordetecting tumours and abnormal mucosal lesions during transurethral resection of bladder tumour (TURBT). Subjects and methods: Prospective study of consecutive eligible patients who underwent TURBT with aidof ...

  6. Identification of neutrophils as important effector cells in photodynamic therapy

    NARCIS (Netherlands)

    W.J.A. de Vree (Wil)

    2000-01-01

    textabstractPhotodynamic therapy (PDT) is a treatment modality, which is at present widely used on an experimental basis for the treatment of cancer patients. It is based on the light induced excitation of light sensitive chemical compounds localized in malignant tissue. These so-called

  7. An upconversion nanoparticle - Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy

    NARCIS (Netherlands)

    Xia, L.; Kong, X.; Liu, X.; Tu, L.; Zhang, Y.; Chang, Y.; Liu, K.; Shen, D.; Zhao, H.; Zhang, H.

    2014-01-01

    Recent advances in NIR triggering upconversion-based photodynamic therapy have led to substantial improvements in upconversion-based nanophotosensitizers. How to obtain the high efficiency of singlet oxygen generation under low 980 nm radiation dosage still remains a challenge. A highly efficient

  8. Photodynamic Therapy in Treatment of Oral Lichen Planus

    Science.gov (United States)

    Mostafa, Diana; Tarakji, Bassel

    2015-01-01

    Oral lichen planus (OLP) is a relatively common chronic immunologic mucocutaneous disorder. Although there are many presenting treatments, some of them proved its failure. Recently, the use of photodynamic therapy (PDT) has been expanding due to its numerous advantages, as it is safe, convenient, and non-invasive and has toxic effect towards selective tissues. This article provides comprehensive review on OLP, its etiology, clinical features and recent non-pharmacological treatments. We also describe the topical PDT and its mechanisms. Our purpose was to evaluate the efficacy of PDT in treatment of OLP through collecting the data of the related clinical studies. We searched in PubMed website for the clinical studies that were reported from 2000 to 2014 using specific keywords: “photodynamic therapy” and “treatment of oral lichen planus”. Inclusion criteria were English publications only were concerned. In the selected studies of photodynamic treatment, adult patients (more than 20 years) were conducted and the OLP lesions were clinically and histologically confirmed. Exclusion criteria were classical and pharmacological treatments of OLP were excluded and also the using of PDT on skin lesions of lichen planus. We established five clinical studies in this review where all of them reported improvement and effectiveness of PDT in treatment of OLP lesions. The main outcome of comparing the related clinical studies is that the photodynamic is considered as a safe, effective and promising treatment modality for OLP. PMID:25883701

  9. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Swami, Rajan; Singh, Indu [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India); Kulhari, Hitesh [CSIR-Indian Institute of Chemical Technology, Medicinal Chemistry & Pharmacology Division (India); Jeengar, Manish Kumar [National Institute of Pharmaceutical Education & Research (NIPER), Departmentof Pharmacology (India); Khan, Wahid, E-mail: wahid@niperhyd.ac.in; Sistla, Ramakrishna, E-mail: sistla@iict.res.in, E-mail: rksistla@yahoo.com [National Institute of Pharmaceutical Education & Research (NIPER), Department of Pharmaceutics (India)

    2015-06-15

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by {sup 1}HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere{sup ®}). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  10. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    International Nuclear Information System (INIS)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-01-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1 HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere ® ). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors

  11. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo.

    Science.gov (United States)

    Deng, Wentao; Qiu, Juhui; Wang, Shaoting; Yuan, Zhi; Jia, Yuefeng; Tan, Hailin; Lu, Jiru; Zheng, Ruqiang

    2018-01-01

    In this study, we performed the characterization and synthesis of biocompatible and targeted albumin and graphene oxide (GO) dual-carrier paclitaxel (PTX) nanoparticles for photothermal-triggered tumor therapy. PTX absorbed on GO nanosheets as cores were coated with human serum albumin (HSA), following surface conjugation with monoclonal antibodies (mAb) against vascular endothelial growth factor (VEGF; denoted as mAbVEGF) via polyethylene glycol linker to form targeted nanoparticles (PTX-GHP-VEGF). The spherical nanoparticles were 191±5 nm in size with good stability and biocompatibility. GO functioned as the first carrier and a near infrared absorber that can generate photothermal effects under 5-minute 808-nm laser irradiation to thermal trigger the release of PTX from the second carrier HSA nanoparticles. The mechanism of thermal-triggered drug release was also investigated preliminarily, in which the heat generated by GO induced swelling of PTX-GHP-VEGF nanoparticles which released the drugs. In vitro studies found that PTX-GHP-VEGF can efficiently target human SW-13 adrenocortical carcinoma cells as evaluated by confocal fluorescence microscopy as well as transmission electron microscopy, and showed an obvious thermal-triggered antitumor effect, mediated by apoptosis. Moreover, PTX-GHP-VEGF combined with near infrared irradiation showed specific tumor suppression effects with high survival rate after 100 days of treatment. PTX-GHP-VEGF also demonstrated high biosafety with no adverse effects on normal tissues and organs. These results highlight the remarkable potential of PTX-GHP-VEGF in photothermal controllable tumor treatment.

  12. p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation

    Science.gov (United States)

    Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna

    2015-06-01

    Dendrimers which are discrete nanostructures/nanoparticles are emerging as promising candidates for many nanomedicine applications. Ligand-conjugated dendrimer facilitate the delivery of therapeutics in a targeted manner. Small molecules such as p-hydroxyl benzoic acid (pHBA) were found to have high affinity for sigma receptors which are prominent in most parts of central nervous system and tumors. The aim of this study was to synthesize pHBA-dendrimer conjugates as colloidal carrier for site-specific delivery of practically water insoluble drug, docetaxel (DTX) to brain tumors and to determine its targeting efficiency. pHBA, a small molecule ligand was coupled to the surface amine groups of generation 4-PAMAM dendrimer via a carbodiimide reaction and loaded with DTX. The conjugation was confirmed by 1HNMR and FT-IR spectroscopy. In vitro release of drug from DTX-loaded pHBA-conjugated dendrimer was found to be less as compared to unconjugated dendrimers. The prepared drug delivery system exhibited good physico-chemical stability and decrease in hemolytic toxicity. Cell viability and cell uptake studies were performed against U87MG human glioblastoma cells and formulations exerted considerable anticancer effect than plain drug. Conjugation of dendrimer with pHBA significantly enhanced the brain uptake of DTX which was shown by the recovery of a higher percentage of the dose from the brain following administration of pHBA-conjugated dendrimers compared with unconjugated dendrimer or formulation in clinical use (Taxotere®). Therefore, pHBA conjugated dendrimers could be an efficient delivery vehicle for the targeting of anticancer drugs to brain tumors.

  13. Photodynamic Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  14. Salvage photodynamic therapy for recurrent nasopharyngeal carcinoma.

    Science.gov (United States)

    Succo, Giovanni; Rosso, S; Fadda, G L; Fantini, M; Crosetti, Erika

    2014-06-01

    To evaluate the feasibility of photodynamic therapy (NP-PDT) in the palliative management of recurrent/persistent nasopharyngeal cancer (NFC). Six patients with persistent/recurrent NPC underwent PDT with palliative intent. NP-PDT was delivered by three different methods depending on the localization, size and depth of the lesion: type I NP-PDT: transnasal direct illumination of postero-superior recurrence; type II NP-PDT: transnasal direct illumination of the whole nasopharynx; type III NP-PDT: transoral direct or interstitial illumination of lateral recurrence. In this case, the ENT-magnetic navigation system (MNS) was extremely useful in identifying the tumor and its distance from the ICA. Both patients treated with NP-PDT type I are free from disease at 38 and 71 months after treatment; both patients treated with NP-PDT type II experienced further local and loco-regional recurrence of disease within 16 months; one died of the disease while the second underwent a second palliative treatment, NP-PDT type I, and is currently living with the disease; of the two patients who underwent NP-PDT type III, one died as a result of regional and systemic recurrence without local recurrence while the second experienced a superficial recurrence. He underwent a second NP-PDT type III treatment and is currently free from disease at 21 months. NP-PDT is a non-invasive and simple treatment modality that may have an important role in the treatment of selected cases of persistent/recurrent NPC in its early stage, not suitable for a conventional therapeutic protocol. Coupling NP-PDT with the ENT-MNS can be an effective strategy to obtain more precise light delivery within the tumor, particularly in lateral and parapharyngeal localization. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002.

    Science.gov (United States)

    Goltsov, Alexey; Tashkandi, Ghassan; Langdon, Simon P; Harrison, David J; Bown, James L

    2017-01-15

    The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC 50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC 50 on ATP concentration that allows prediction of the IC 50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K

  16. Daylight photodynamic therapy with methyl aminolevulinate cream as a convenient, similarly effective, nearly painless alternative to conventional photodynamic therapy in actinic keratosis treatment

    DEFF Research Database (Denmark)

    Rubel, D M; Spelman, L; Murrell, D F

    2014-01-01

    BACKGROUND: Daylight photodynamic therapy (DL-PDT) of actinic keratosis (AK) has shown preliminary efficacy and safety results comparable to conventional photodynamic therapy (c-PDT), using methyl aminolevulinate (MAL) cream. OBJECTIVES: To demonstrate the efficacy and safety of DL-PDT vs. c...

  17. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Science.gov (United States)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  18. Evaluation of the in vitro differential protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (NLCs) for potential targeting to the brain.

    Science.gov (United States)

    Kasongo, Kasongo Wa; Jansch, Mirko; Müller, Rainer H; Walker, Roderick B

    2011-09-01

    The preferential in vitro adsorption of apolipoprotein E (Apo E) onto the surface of colloidal drug carriers may be used as a strategy to evaluate the in vivo potential for such systems to transport drugs to the brain. The aim of this research was to investigate the in vitro protein adsorption patterns of didanosine-loaded nanostructured lipid carriers (DDI-NLCs), using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), in order to establish the potential for NLCs to deliver DDI to the brain. NLC formulations were manufactured using high-pressure homogenization using a lipid matrix consisting of a mixture of Precirol(®) ATO 5 and Transcutol(®) HP. The 2-D PAGE analysis revealed that NLCs in formulations stabilized using Solutol(®) HS 15 alone or with a ternary surfactant system consisting of Solutol(®) HS 15, Tween(®) 80, and Lutrol(®) F68, preferentially adsorbed proteins, such as Apo E. Particles stabilized with Tween(®) 80 and Lutrol(®) F68 did not adsorb Apo E in these studies, which could be related to the relatively large particle size and hence small surface area observed for these NLCs. These findings have revealed that DDI-loaded NLCs may have the potential to deliver DDI to the brain in vivo and, in addition, to Tween(®) 80, which has already been shown to have the ability to facilitate the targeting of colloidal drug delivery systems to the brain. Solutol(®) HS 15-stabilized nanoparticles may also achieve a similar purpose.

  19. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-05-15

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC{sub 50}: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  20. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro.

    Science.gov (United States)

    Lee, Ka-Heng; Abas, Faridah; Mohamed Alitheen, Noorjahan Banu; Shaari, Khozirah; Lajis, Nordin Haji; Israf, Daud Ahmad; Syahida, Ahmad

    2015-07-01

    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. MicroRNA-223 Enhances Radiation Sensitivity of U87MG Cells In Vitro and In Vivo by Targeting Ataxia Telangiectasia Mutated

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Liping; Zhu, Ji [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zaorsky, Nicholas G. [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Deng, Yun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Wu, Xingzhong [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Yong [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Liu, Fangqi; Cai, Guoxiang; Gu, Weilie [Department of Colorectal Cancer, Fudan University, Shanghai Cancer Center, Shanghai (China); Shen, Lijun [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Zhen, E-mail: zhenzhang6@hotmail.com [Departments of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2014-03-15

    Purpose: Ataxia telangiectasia mutated (ATM) protein is important in the DNA damage response because it repairs radiation-induced damage in cancers. We examined the effect of microRNA-223 (miR-223), a regulator of ATM expression, on radiation sensitivity of cancer cells. Methods and Materials: Human embryonic kidney 293 T (293T) cells were infected with pLL3.7-miR-223 plasmid to generate the pLL3.7-miR-223 and -empty virus (EV) lentivirus (miR-223 and EV). A dual luciferase assay in which the reporter contained wild-type 3′ untranslated region (UTR) of ATM was performed. U87MG cells were infected with miR-223 or EV to establish the overexpressed stable cell lines (U87-223 or U87-EV, respectively). Cells were irradiated in vitro, and dose enhancement ratios at 2 Gy (DER{sub 2}) were calculated. Hind legs of BALB/c athymic mice were injected with U87-223 or U87-EV cells; after 2 weeks, half of the tumors were irradiated. Tumor volumes were tracked for a total of 5 weeks. Results: The dual luciferase reporter assay showed a significant reduction in luciferase activity of 293T cells cotransfected with miR-223 and the ATM 3′UTR compared to that in EV control. Overexpression of miR-223 in U87MG cells showed that ATM expression was significantly downregulated in the U87-223 cells compared to that in U87-EV (ATM/β-actin mRNA 1.0 vs 1.5, P<.05). U87-223 cells were hypersensitive to radiation compared to U87-EV cells in vitro (DER{sub 2} = 1.32, P<.01). Mice injected with miR-223-expressing tumors had almost the same tumors after 3 weeks (1.5 cm{sup 3} vs 1.7 cm{sup 3}). However, irradiation significantly decreased tumor size in miR-223-expressing tumors compared to those in controls (0.033 cm{sup 3} vs 0.829 cm{sup 3}). Conclusions: miR-223 overexpression downregulates ATM expression and sensitizes U87 cells to radiation in vitro and in vivo. MicroRNA-223 may be a novel cancer-targeting therapy, although its cancer- and patient-specific roles are

  2. Wavelength-dependent photoresponse of biological and aqueous model systems using the photodynamic plant pigment hypericin.

    Science.gov (United States)

    Kubin, A; Alth, G; Jindra, R; Jessner, G; Ebermann, R

    1996-11-01

    Photodynamic eradication of tumour cells in vivo depends on the presence of a photosensitizer, light delivery to the cells, and an oxygen supply. Hypericin, a polycyclic quinone with absorption maxima in the ultraviolet and visible ranges, was prepared for clinical use as a photosensitizer. Due to antitumoral and antineoplastic activities as well as the generation of singlet oxygen after photoexcitation, hypericin was applied in clinical oncology and photodynamic therapy. Hypericin was administered subcutaneously (20 micrograms hypericin in 200 microliters Nacl/pyridine solution) into the ante brachium (forearm) of two volunteers. After the diffusion and equilibration of 120 min phototesting was carried out using outdoor light exposure, halogen lamp, laser 514 nm (argon), laser 632 nm (argon dye) and laser 670 nm (diode laser), from 60 to 120 J cm-2. Positive phototests to outdoor light exposure, halogen lamp and laser 514 nm were characterized by rubescence, oozing, vesiculation and darting pain. Phototests with laser 632 nm and 670 nm showed no effects after irradiation. When hypericin was administered topically on skin, erythema and flaring could not be induced by any irradiation. These results suggest that hypericin is a potent photosensitizer only within the UV and green light ranges. This characteristic photoresponse could also be obtained in guinea pig papillary muscle (GPPM) bioassay, which may be established as a model for photosensitizer testing. Irradiation of hypericin-incubated GPPM with 514 nm (20 J cm-2) led to a decrease of the contractile force of about 31%. However, excitation with 632 nm and 670 nm did not cause inotropic effects on GPPM. In addition, hypericin and Photosan 3 were shown to be capable of sensitizing the photo-oxidation of sodium linoleate. This assay should be established for testing interactions between photosensitizers and light sources in vitro.

  3. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    International Nuclear Information System (INIS)

    Paula, Leonardo B. de; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.

    2015-01-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10 13 or 1.50×10 13 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10 13 or 1.50×10 13 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression

  4. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Leonardo B. de [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900 (Brazil); Primo, Fernando L. [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Nanophoton Company, SUPERA Innovation and Technology Park, Av. Doutora Nadir de Aguiar, 1805, Universidade de São Paulo, Ribeirão Preto, P 14056-680 (Brazil); Pinto, Marcelo R. [Departamento de Química, Laboratório de Enzimologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Morais, Paulo C. [Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); and others

    2015-04-15

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10{sup 13} or 1.50×10{sup 13} particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10{sup 13} or 1.50×10{sup 13} magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression.

  5. Pharmacological targeting of the ephrin receptor kinase signalling by GLPG1790 in vitro and in vivo reverts oncophenotype, induces myogenic differentiation and radiosensitizes embryonal rhabdomyosarcoma cells

    Directory of Open Access Journals (Sweden)

    Francesca Megiorni

    2017-10-01

    Full Text Available Abstract Background EPH (erythropoietin-producing hepatocellular receptors are clinically relevant targets in several malignancies. This report describes the effects of GLPG1790, a new potent pan-EPH inhibitor, in human embryonal rhabdomyosarcoma (ERMS cell lines. Methods EPH-A2 and Ephrin-A1 mRNA expression was quantified by real-time PCR in 14 ERMS tumour samples and in normal skeletal muscle (NSM. GLPG1790 effects were tested in RD and TE671 cell lines, two in vitro models of ERMS, by performing flow cytometry analysis, Western blotting and immunofluorescence experiments. RNA interfering experiments were performed to assess the role of specific EPH receptors. Radiations were delivered using an x-6 MV photon linear accelerator. GLPG1790 (30 mg/kg in vivo activity alone or in combination with irradiation (2 Gy was determined in murine xenografts. Results Our study showed, for the first time, a significant upregulation of EPH-A2 receptor and Ephrin-A1 ligand in ERMS primary biopsies in comparison to NSM. GLPG1790 in vitro induced G1-growth arrest as demonstrated by Rb, Cyclin A and Cyclin B1 decrease, as well as by p21 and p27 increment. GLPG1790 reduced migratory capacity and clonogenic potential of ERMS cells, prevented rhabdosphere formation and downregulated CD133, CXCR4 and Nanog stem cell markers. Drug treatment committed ERMS cells towards skeletal muscle differentiation by inducing a myogenic-like phenotype and increasing MYOD1, Myogenin and MyHC levels. Furthermore, GLPG1790 significantly radiosensitized ERMS cells by impairing the DNA double-strand break repair pathway. Silencing of both EPH-A2 and EPH-B2, two receptors preferentially targeted by GLPG1790, closely matched the effects of the EPH pharmacological inhibition. GLPG1790 and radiation combined treatments reduced tumour mass by 83% in mouse TE671 xenografts. Conclusions Taken together, our data suggest that altered EPH signalling plays a key role in ERMS development and that

  6. Targeted Phototherapy (newer phototherapy

    Directory of Open Access Journals (Sweden)

    Zonunsanga

    2015-04-01

    Full Text Available Conventional phototherapy uses a whole body cabinet or body part machine such as hand, foot or scalp machines. They have many disadvantages due to which new phototherapy technique was then developed to overcome this situation. This new technique is called targeted phototherapy which includes excimer laser, intense pulse light system (IPL, photodynamic therapy and ultraviolet (UV light source with a sophisticated delivery system which is easy to be operated by hands. The mechanisms of action of targeted phototherapy systems are similar to those in conventional UVB/UVA therapy. They have many advantages like less chances of side effects, avoidance of exposure of unnecessary sites, faster response, shortening of the duration of treatments. But they have disadvantages like high costs and inability to use for extensive areas. This review article discusses targeted phototherapy in considerable to the mechanism of actions and advantages and disadvantages in comparison to the conventional phototherapy.

  7. Design, synthesis and in vitro evaluation of heterobivalent peptidic radioligands targeting both GRP- and VPAC1-Receptors concomitantly overexpressed on various malignancies - Is the concept feasible?

    Science.gov (United States)

    Lindner, Simon; Fiedler, Luise; Wängler, Björn; Bartenstein, Peter; Schirrmacher, Ralf; Wängler, Carmen

    2018-05-29

    Radiolabeled heterobivalent peptidic ligands (HBPLs), being able to address different receptors, are highly interesting tumor imaging agents as they can offer multiple advantages over monovalent peptide receptor ligands. However, few examples of radiolabeled HBPLs have been described so far. One promising approach is the combination of gastrin-releasing peptide receptor (GRPR)- and vasoactive intestinal peptide receptor subtype 1 (VPAC 1 R)-targeting peptides into one single radioligand since gastrinomas, prostate and breast cancer have been shown to concomitantly or complementarily overexpress both receptors. Here we report the design and synthesis of different HBPLs, comprising a GRPR-binding (BBN 7-14 ) and a VPAC 1 R-targeting (PACAP-27) peptide. The heterodimers were varied with regard to the distance between the peptide binders and the steric rigidity of the systems. We radiolabeled the HBPLs 19-23 as well as their monomeric reference standards 26 and 27 with 68 Ga, achieving radiochemical yields and purities of 95-99% and non-optimized molar activities of 25-61 GBq/μmol. We tested the stability of the radioligands and further evaluated them in vitro regarding their uptake in different prostate carcinoma cell lines (PC-3, DU-145 and VCaP cells). We found that the heterobivalent substances [ 68 Ga]19 - [ 68 Ga]23 showed comparable uptakes into the tumor cells to those of the respective monomers [ 68 Ga]26 and [ 68 Ga]27, indicating that both peptides are still able to address their target receptors. Furthermore, the obtained results indicate that in case of overall low receptor densities, heterobivalent peptides surpass peptide monomers in tumor cell uptake. Most importantly, it could be shown by blocking studies that both peptide parts of the HBPL [ 68 Ga]19 contributed to tumor cell uptake in VCaP cells, expressing both receptor types. Thus, we describe here the first examples of HBPLs being able to address the GRPR as well as the VPAC 1 R and have the

  8. The combi-targeting concept: in vitro and in vivo fragmentation of a stable combi-nitrosourea engineered to interact with the epidermal growth factor receptor while remaining DNA reactive.

    Science.gov (United States)

    Qiu, Qiyu; Domarkas, Juozas; Banerjee, Ranjita; Merayo, Nuria; Brahimi, Fouad; McNamee, James P; Gibbs, Bernard F; Jean-Claude, Bertrand J

    2007-01-01

    JDA58 (NSC 741282), a "combi-molecule" optimized in the context of the "combi-targeting concept," is a nitrosourea moiety tethered to an anilinoquinazoline. Here, we sought to show its binary epidermal growth factor receptor (EGFR)/DNA targeting property and to study its fragmentation in vitro and in vivo. The fragmentation of JDA58 was detected in cells in vitro and in vivo by fluorescence microscopy and tandem mass spectrometry. EGFR phosphorylation and DNA damage were determined by Western blotting and comet assay, respectively. Tumor data were examined for statistical significance using the Student's t test. JDA58 inhibited EGFR tyrosine kinase (IC(50), 0.2 micromol/L) and blocked EGFR phosphorylation in human DU145 prostate cancer cells. It induced significant levels of DNA damage in DU145 cells in vitro or in vivo and showed potent antiproliferative activity both in vitro and in a DU145 xenograft model. In cell-free medium, JDA58 was hydrolyzed to JDA35, a fluorescent amine that could be observed in tumor cells both in vitro and in vivo. In tumor cells in vitro or in vivo, or in plasma collected from mice, the denitrosated species JDA41 was the predominant metabolite. However, mass spectrometric analysis revealed detectable levels of the hydrolytic product JDA35 in tumor cells both in vitro and in vivo. The results in toto suggest that growth inhibition in vitro and in vivo may be sustained by the intact combi-molecule plus JDA35 plus JDA41, three inhibitors of EGFR, and the concomitantly released DNA-damaging species. This leads to a model wherein a single molecule carries a complex multitargeted-multidrug combination.

  9. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Sean R H; Gertner, Mark R; Bogaards, Arjen; Sherar, Michael D; Wilson, Brian C [Division of Biophysics and Bioimaging, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Weersink, Robert A; Giewercer, David [Laboratory for Applied Biophysics, Ontario Cancer Institute, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Haider, Masoom A [Joint Department of Medical Imaging, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada); Scherz, Avigdor [Department of Plant Science, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Elhilali, Mostafa [Department of Surgery, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6 (Canada); Chin, Joseph L [Department of Oncology, University of Western Ontario, 800 Commissioners Road East, PO Box 5010, London, Ontario N6A 5W9 (Canada); Trachtenberg, John [Department of Urology, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2M9 (Canada)], E-mail: wilson@uhnres.utoronto.ca

    2009-04-21

    With the development of new photosensitizers that are activated by light at longer wavelengths, interstitial photodynamic therapy (PDT) is emerging as a feasible alternative for the treatment of larger volumes of tissue. Described here is the application of PDT treatment planning software developed by our group to ensure complete coverage of larger, geometrically complex target volumes such as the prostate. In a phase II clinical trial of TOOKAD vascular targeted photodynamic therapy (VTP) for prostate cancer in patients who failed prior radiotherapy, the software was used to generate patient-specific treatment prescriptions for the number of treatment fibres, their lengths, their positions and the energy each delivered. The core of the software is a finite element solution to the light diffusion equation. Validation against in vivo light measurements indicated that the software could predict the location of an iso-fluence contour to within approximately {+-}2 mm. The same software was used to reconstruct the treatments that were actually delivered, thereby providing an analysis of the threshold light dose required for TOOKAD-VTP of the post-irradiated prostate. The threshold light dose for VTP-induced prostate damage, as measured one week post-treatment using contrast-enhanced MRI, was found to be highly heterogeneous, both within and between patients. The minimum light dose received by 90% of the prostate, D{sub 90}, was determined from each patient's dose-volume histogram and compared to six-month sextant biopsy results. No patient with a D{sub 90} less than 23 J cm{sup -2} had complete biopsy response, while 8/13 (62%) of patients with a D{sub 90} greater than 23 J cm{sup -2} had negative biopsies at six months. The doses received by the urethra and the rectal wall were also investigated.

  10. Glycodendrimeric phenylporphyrins as new candidates for retinoblastoma PDT: blood carriers and photodynamic activity in cells.

    Science.gov (United States)

    Wang, Ze-Jian; Chauvin, Benoît; Maillard, Philippe; Hammerer, Fabien; Carez, Danièle; Croisy, Alain; Sandré, Catherine; Chollet-Martin, Sylvie; Prognon, Patrice; Paul, Jean-Louis; Blais, Jocelyne; Kasselouri, Athena

    2012-10-03

    Photodynamic therapy (PDT) has recently been proposed as a possible indication in the conservative treatment of hereditary retinoblastoma. In order to create photosensitizers with enhanced targeting ability toward retinoblastoma cells, meso-tetraphenylporphyrins bearing one glycodendrimeric moiety have been synthesized. The binding properties to plasma proteins and photodynamic activity of two monodendrimeric porphyrins bearing three mannose units via monoethylene glycol (1) or diethylene glycol (2) linkers have been compared to that of the non-dendrimeric tri-substituted derivative [TPP(p-Deg-O-α-ManOH)(3)]. The dendrimeric structure was found to highly increase the binding affinity to plasma proteins and to modify to some extent plasma distribution. HDL and to a lesser extent LDL have been shown to be the main carriers of dendrimeric and non-dendrimeric compounds. The phototoxicity observed for the two glycodendrimers (1) and (2) (LD(50)=0.5 μM) in Y79 cells is of the same order of magnitude that for TPP(p-Deg-O-α-ManOH)(3) (LD(50)=0.7 μM), with a similar cellular uptake level for (1) and a lower for (2). A serum content increase from 2% to 20% (v/v) in the incubation medium was found to inhibit both cellular uptake and photoactivity of dendrimeric derivatives, whereas those of TPP(p-Deg-O-α-ManOH)(3) remained little affected. Specificities of glycodendrimeric porphyrins, combining a lower cellular uptake together with a higher affinity toward plasma proteins, make these derivatives possible candidates for a vascular targeting PDT. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children.

    Science.gov (United States)

    Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria

    2016-03-15

    Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.

  12. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  13. Dual HER2\\PIK3CA targeting overcomes single-agent acquired resistance in HER2 amplified uterine serous carcinoma cell lines in vitro and in vivo

    Science.gov (United States)

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L.; English, Diana P.; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D.

    2015-01-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC), and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA mutated and PIK3CA-wild type HER2/neu amplified USC cell lines. Cell viability and cell cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC-xenografts. We found both single agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long lasting growth inhibition in both USC xenografts when compared to single agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA or pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild type PIK3CA resistant to chemotherapy. PMID:26333383

  14. Dual HER2/PIK3CA Targeting Overcomes Single-Agent Acquired Resistance in HER2-Amplified Uterine Serous Carcinoma Cell Lines In Vitro and In Vivo.

    Science.gov (United States)

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D

    2015-11-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC) and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib, and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA-mutated and PIK3CA wild-type HER2/neu-amplified USC cell lines. Cell viability and cell-cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC xenografts. We found both single-agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long-lasting growth inhibition in both USC xenografts when compared with single-agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0-G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single-agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA and pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild-type PIK3CA resistant to chemotherapy. ©2015 American Association for Cancer Research.

  15. Effective inhibition of foot-and-mouth disease virus (FMDV replication in vitro by vector-delivered microRNAs targeting the 3D gene

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2011-06-01

    Full Text Available Abstract Background Foot-and-mouth disease virus (FMDV causes an economically important and highly contagious disease of cloven-hoofed animals. RNAi triggered by small RNA molecules, including siRNAs and miRNAs, offers a new approach for controlling viral infections. There is no report available for FMDV inhibition by vector-delivered miRNA, although miRNA is believed to have more potential than siRNA. In this study, the inhibitory effects of vector-delivered miRNAs targeting the 3D gene on FMDV replication were examined. Results Four pairs of oligonucleotides encoding 3D-specific miRNA of FMDV were designed and selected for construction of miRNA expression plasmids. In the reporter assays, two of four miRNA expression plasmids were able to significantly silence the expression of 3D-GFP fusion proteins from the reporter plasmid, p3D-GFP, which was cotransfected with each miRNA expression plasmid. After detecting the silencing effects of the reporter genes, the inhibitory effects of FMDV replication were determined in the miRNA expression plasmid-transfected and FMDV-infected cells. Virus titration and real-time RT-PCR assays showed that the p3D715-miR and p3D983-miR plasmids were able to potently inhibit the replication of FMDV when BHK-21 cells were infected with FMDV. Conclusion Our results indicated that vector-delivered miRNAs targeting the 3D gene efficiently inhibits FMDV replication in vitro. This finding provides evidence that miRNAs could be used as a potential tool against FMDV infection.

  16. Direct in vitro and in vivo comparison of {sup 161}Tb and {sup 177}Lu using a tumour-targeting folate conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Cristina; Reber, Josefine; Haller, Stephanie [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Dorrer, Holger; Tuerler, Andreas [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); University of Bern, Laboratory of Radiochemistry and Environmental Chemistry, Department of Chemistry and Biochemistry, Bern (Switzerland); Bernhardt, Peter [The Sahlgrenska Academy, University of Gothenburg, Department of Radiation Physics, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengeneering, Gothenburg (Sweden); Zhernosekov, Konstantin [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); Schibli, Roger [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2014-03-15

    The radiolanthanide {sup 161}Tb (T{sub 1/2} = 6.90 days, Eβ{sup -}{sub av} = 154 keV) was recently proposed as a potential alternative to {sup 177}Lu (T{sub 1/2} = 6.71 days, Eβ{sup -}{sub av} = 134 keV) due to similar physical decay characteristics but additional conversion and Auger electrons that may enhance the therapeutic efficacy. The goal of this study was to compare {sup 161}Tb and {sup 177}Lu in vitro and in vivo using a tumour-targeted DOTA-folate conjugate (cm09). {sup 161}Tb-cm09 and {sup 177}Lu-cm09 were tested in vitro on folate receptor (FR)-positive KB and IGROV-1 cancer cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. In vivo {sup 161}Tb-cm09 and {sup 177}Lu-cm09 (10 MBq, 0.5 nmol) were investigated in two different tumour mouse models with regard to the biodistribution, the possibility for single photon emission computed tomography (SPECT) imaging and the antitumour efficacy. Potentially undesired side effects were monitored over 6 months by determination of plasma parameters and examination of kidney function with quantitative SPECT using {sup 99m}Tc-dimercaptosuccinic acid (DMSA). To obtain half-maximal inhibition of tumour cell viability a 4.5-fold (KB) and 1.7-fold (IGROV-1) lower radioactivity concentration was required for {sup 161}Tb-cm09 (IC{sub 50} ∝0.014 MBq/ml and ∝2.53 MBq/ml) compared to {sup 177}Lu-cm09 (IC{sub 50} ∝0.063 MBq/ml and ∝4.52 MBq/ml). SPECT imaging visualized tumours of mice with both radioconjugates. However, in therapy studies {sup 161}Tb-cm09 reduced tumour growth more efficiently than {sup 177}Lu-cm09. These findings were in line with the higher absorbed tumour dose for {sup 161}Tb-cm09 (3.3 Gy/MBq) compared to {sup 177}Lu-cm09 (2.4 Gy/MBq). None of the monitored parameters indicated signs of impaired kidney function over the whole time period of investigation after injection of the radiofolates. Compared to {sup 177}Lu-cm09 we demonstrated equal imaging

  17. Screening In Vitro Targets Related to Diabetes in Herbal Extracts from Peru: Identification of Active Compounds in Hypericum laricifolium Juss. by Offline High-Performance Liquid Chromatography.

    Science.gov (United States)

    Quispe, Yanymee N. Guillen; Hwang, Seung Hwan; Wang, Zhiqiang; Zuo, Guanglei; Lim, Soon Sung

    2017-11-24

    This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss. (HL) was the herb which showed more than 50% inhibition in all assays, presenting 97.2 ± 2.0%, 56.9 ± 5.6%, 81.9 ± 2.5%, and 58.8 ± 4.6% inhibition for the α-glucosidase, AR, DPPH, and ABTS assays, respectively. Finally, six bioactive compounds, namely, protocatechuic acid, chlorogenic acid, caffeic acid, kaempferol 3- O -glucuronide, quercetin, and kaempferol were identified in HL by offline high-performance liquid chromatography (HPLC). Quercetin exhibited the strongest inhibition in all enzyme assays and the strongest antioxidant activity. The results suggest that HL shows great potential for the complementary treatment of diabetes and its complications.

  18. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Screening In Vitro Targets Related to Diabetes in Herbal Extracts from Peru: Identification of Active Compounds in Hypericum laricifolium Juss. by Offline High-Performance Liquid Chromatography

    Science.gov (United States)

    Guillen Quispe, Yanymee N.; Hwang, Seung Hwan; Wang, Zhiqiang

    2017-01-01

    This study investigates in vitro targets related to diabetes in 30 herbal extracts from Peru, for the first time, using α-glucosidase, aldose reductase (AR) inhibitory assays and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) scavenging assays. Among the 30 herbal extracts, Hypericum laricifolium Juss. (HL) was the herb which showed more than 50% inhibition in all assays, presenting 97.2 ± 2.0%, 56.9 ± 5.6%, 81.9 ± 2.5%, and 58.8 ± 4.6% inhibition for the α-glucosidase, AR, DPPH, and ABTS assays, respectively. Finally, six bioactive compounds, namely, protocatechuic acid, chlorogenic acid, caffeic acid, kaempferol 3-O-glucuronide, quercetin, and kaempferol were identified in HL by offline high-performance liquid chromatography (HPLC). Quercetin exhibited the strongest inhibition in all enzyme assays and the strongest antioxidant activity. The results suggest that HL shows great potential for the complementary treatment of diabetes and its complications. PMID:29186785

  20. Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies

    Directory of Open Access Journals (Sweden)

    Spadavecchia J

    2016-02-01

    Full Text Available Jolanda Spadavecchia,1,2,* Dania Movia,3,* Caroline Moore,3,4 Ciaran Manus Maguire,3,4 Hanane Moustaoui,2 Sandra Casale,1 Yuri Volkov,3,4 Adriele Prina-Mello3,4 1Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris VI, Paris, 2Centre National de la recherche française, UMR 7244, CSPBAT, Laboratory of Chemistry, Structures, and Properties of Biomaterials and Therapeutic Agents, Université Paris 13, Sorbonne Paris Cité, Bobigny, France; 3AMBER Centre, CRANN Institute, 4Department of Clinical Medicine, School of Medicine, Trinity College, Dublin, Ireland *These authors contributed equally to this work Abstract: The main objective of this study was to optimize and characterize a drug delivery carrier for doxorubicin, intended to be intravenously administered, capable of improving the therapeutic index of the chemotherapeutic agent itself, and aimed at the treatment of pancreatic cancer. In light of this goal, we report a robust one-step method for the synthesis of dicarboxylic acid-terminated polyethylene glycol (PEG-gold nanoparticles (AuNPs and doxorubicin-loaded PEG-AuNPs, and their further antibody targeting (anti-Kv11.1 polyclonal antibody [pAb]. In in vitro proof-of-concept studies, we evaluated the influence of the nanocarrier and of the active targeting functionality on the anti-tumor efficacy of doxorubicin, with respect to its half-maximal effective concentration (EC50 and drug-triggered changes in the cell cycle. Our results demonstrated that the therapeutic efficacy of doxorubicin was positively influenced not only by the active targeting exploited through anti-Kv11.1-pAb but also by the drug coupling with a nanometer-sized delivery system, which indeed resulted in a 30-fold decrease of doxorubicin EC50, cell cycle blockage, and drug localization in the cell nuclei. The cell internalization pathway was strongly influenced by the active targeting of the Kv11.1 subunit of the human Ether-à-go-go related gene

  1. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer.

    Science.gov (United States)

    Zeisser-Labouèbe, Magali; Lange, Norbert; Gurny, Robert; Delie, Florence

    2006-12-01

    A photodynamic approach has been suggested to improve diagnosis and therapy of ovarian cancer. As Hypericin (Hy), a natural photosensitizer (PS) extracted from Hypericum perforatum, has been shown to be efficient in vitro and in vivo for the detection or treatment of other cancers, Hy could also be a potent tool for the treatment and detection of ovarian cancer. Due to its hydrophobicity, systemic administration of Hy is problematic. Thus, polymeric nanoparticles (NPs) of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA) were used as a drug delivery system. Hy-loaded NPs were produced with the following characteristics: (i) size in the 200-300 nm range, (ii) negative zeta potential, (iii) low residual PVAL and (iv) drug loading from 0.03 to 0.15% (w/w). Their in vitro photoactivity was investigated on the NuTu-19 ovarian cancer cell model derived from Fischer 344 rats and compared to free drug. Hy-loaded PLA NPs exhibited a higher photoactivity than free drug. Increasing light dose or incubation time with cells induced an enhanced activity of Hy-loaded PLA NPs. Increased NP drug loading had a negative effect on their photoactivity on NuTu-19 cells: at the same Hy concentration, the higher was the drug loading, the lower was the phototoxic effect. The influence of NP drug loading on the Hy release from NPs was also investigated.

  2. Mechanism and in vivo evaluation :photodynamic antibacterial chemotherapy of lysine-porphyrin conjugate

    Directory of Open Access Journals (Sweden)

    Zengping eXu

    2016-03-01

    Full Text Available We previously reported lysine-porphyrin conjugate 4i, which had potent photosensitive antibacterial effect on clinical isolated Methicillin-resistant Staphylococcus aureus (MRSA, Escherichia coli (E. coli and Pseudomonas aeruginosa (P. aeruginosa bacterial strains. The aim of this paper is to evaluate the mechanism of photodynamic antibacterial chemotherapy of 4i (4i-PACT in vitro and the treatment effect in vivo. Atomic force microscopy (AFM revealed 4i-PACT could effectively destroy bacterial membrane and wall, making the bacterial content leakage, which was confirmed by dual fluorescent staining with acridine orange/ethidium bromide (AO/EB and absorbance at 260 nm, agarose gel electrophoresis indicated 4i-PACT could damage genomic DNA. The results combined AFM and DNA electrophoresis revealed why the bacterial strains had no resistance to 4i-PACT. Wound healing in rat model with mixed bacteria infected wounds showed the efficiency of 4i-PACT was light-dose dependent. These results showed 4i-PACT had promising bactericidal effect both in vitro and in vivo.

  3. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo.

    Science.gov (United States)

    de Freitas, Laura Marise; Calixto, Giovana Maria Fioramonti; Chorilli, Marlus; Giusti, Juçaíra Stella M; Bagnato, Vanderlei Salvador; Soukos, Nikolaos S; Amiji, Mansoor M; Fontana, Carla Raquel

    2016-05-20

    Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT-in planktonic and biofilm phases-with MB or MB-NP (25 µg/mL) at 20 J/cm² in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm²) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  4. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo

    Directory of Open Access Journals (Sweden)

    Laura Marise de Freitas

    2016-05-01

    Full Text Available Antimicrobial photodynamic therapy (aPDT is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB-loaded poly(lactic-co-glycolic (PLGA nanoparticles (MB-NP and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL at 20 J/cm2 in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2 in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82% on gingival bleeding index (GBI compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.

  5. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    Science.gov (United States)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  6. An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants.

    Science.gov (United States)

    Jesus, Vânia; Martins, Diana; Branco, Tatiana; Valério, Nádia; Neves, Maria G P M S; Faustino, Maria A F; Reis, Luís; Barreal, Esther; Gallego, Pedro P; Almeida, Adelaide

    2018-02-14

    In the last decade, the worldwide production of kiwi fruit has been highly affected by Pseudomonas syringae pv. actinidiae (Psa), a phytopathogenic bacterium; this has led to severe economic losses that are seriously affecting the kiwi fruit trade. The available treatments for this disease are still scarce, with the most common involving frequently spraying the orchards with copper derivatives, in particular cuprous oxide (Cu 2 O). However, these copper formulations should be avoided due to their high toxicity; therefore, it is essential to search for new approaches for controlling Psa. Antimicrobial photodynamic therapy (aPDT) may be an alternative approach to inactivate Psa. aPDT consists in the use of a photosensitizer molecule (PS) that absorbs light and by transference of the excess of energy or electrons to molecular oxygen forms highly reactive oxygen species (ROS) that can affect different molecular targets, thus being very unlikely to lead to the development of microbe resistance. The aim of the present study was to evaluate the effectiveness of aPDT to photoinactivate Psa, using the porphyrin Tetra-Py + -Me and different light intensities. The degree of inactivation of Psa was assessed using the PS at 5.0 μM under low irradiance (4.0 mW cm -2 ). Afterward, ex vivo experiments, using artificially contaminated kiwi leaves, were conducted with a PS at 50 μM under 150 mW cm -2 and sunlight irradiation. A reduction of 6 log in the in vitro assays after 90 min of irradiation was observed. In the ex vivo tests, the decrease was lower, approximately 1.8 log reduction at an irradiance of 150 mW cm -2 , 1.2 log at 4.0 mW cm -2 , and 1.5 log under solar radiation. However, after three successive cycles of treatment under 150 mW cm -2 , a 4 log inactivation was achieved. No negative effects were observed on leaves after treatment. Assays using Cu 2 O were also performed at the recommended concentration by law (50 g h L -1 ) and at concentrations 10 times

  7. Quantitative approach to skin field cancerization using a nanoencapsulated photodynamic therapy agent: a pilot study

    Directory of Open Access Journals (Sweden)

    Passos SK

    2013-02-01

    Full Text Available Simone K Passos,1,2 Paulo EN de Souza,3 Priscila KP Soares,1,3 Danglades RM Eid,1,2 Fernando L Primo,4 Antonio Cláudio Tedesco,4 Zulmira GM Lacava,1 Paulo C Morais3,51University of Brasília, Institute of Biological Sciences, DF, Brazil; 2Foundation for Teaching and Research on Health Sciences, Brasília, DF, Brazil; 3University of Brasília, Institute of Physics, Brasília, DF, Brazil; 4Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Laboratory of Photobiology and Photomedicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; 5Department of Control Science and Engineering, Hua-Zhong University of Science and Technology, Wuham, People's Republic of ChinaBackground: This paper introduces a new nanoformulation of 5-aminolevulinic acid (nano-ALA as well as a novel quantitative approach towards evaluating field cancerization for actinic keratosis and/or skin photodamage. In this pilot study, we evaluated field cancerization using nano-ALA and methyl aminolevulinate (MAL, the latter being commercialized as Metvix®.Methods and results: Photodynamic therapy was used for the treatment of patients with selected skin lesions, whereas the fluorescence of the corresponding photosensitizer was used to evaluate the time evolution of field cancerization in a quantitative way. Field cancerization was quantified using newly developed color image segmentation software. Using photodynamic therapy as the precancer skin treatment and the approach introduced herein for evaluation of fluorescent area, we found that the half-life of field cancerization reduction was 43.3 days and 34.3 days for nano-ALA and MAL, respectively. We also found that nano-ALA targeted about 45% more skin lesion areas than MAL. Further, we found the mean reduction in area of skin field cancerization was about 10% greater for nano-ALA than for MAL.Conclusion: Although preliminary, our findings indicate that the efficacy of nano-ALA in

  8. Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism.

    Science.gov (United States)

    Li, Wusun; Yuan, Shuzhi; Sun, Jing; Li, Qianqian; Jiang, Weibo; Cao, Jiankang

    2018-08-02

    The fungus Alternaria alternata can cause food contamination by black spot rot and food safety issues due to the production of mycotoxins. In particular, A. alternata can infect many fresh fruits and vegetables and lead to considerable postharvest decay during storage and processing. The use of plant-derived products in postharvest disease management may be an acceptable alternative to traditional chemical fungicides. The aim of this study was to assess the antifungal activity of ethyl p-coumarate (EpCA) against Alternaria alternata in vitro and in vivo, and to determine the underlying mechanism. Results indicated that EpCA exhibited pronounced antifungal activity against in vitro mycelial growth of A. alternata, with half-inhibition concentration of 176.8 μg/mL. Spore germination of the pathogen was inhibited by EpCA in a dose-dependent manner. Moreover, in vivo test confirmed that both 100 and 800 μg/mL EpCA significantly reduced disease development of black spot rot in jujube fruit caused by A. alternata. The EpCA treatments increased plasma membrane permeability as great leakage of intercellular electrolytes, soluble proteins and sugars of A. alternata occurred during incubation. The EpCA treatments also caused increase of the influx of propidium iodide, a fluorescence dye binding nucleus DNA, into the affected spores, indicating the disrupted plasma membrane integrity. Observations of ultrastructure further evidenced the damage to plasma membrane and morphology of A. alternata caused by EpCA, which resulted in distortion, sunken and shrivelled of spores and mycelia of the pathogen. In addition, fluorometric assay by confocal laser scanning microscopy confirmed that the EpCA treatments induced endogenous reactive oxygen species (ROS) formation in the spores of A. alternata, with stronger and more stable accumulation of ROS at higher concentration of EpCA. Therefore, heavy oxidative damage to cellular membranes and organelles might happen as demonstrated

  9. Apolipoprotein A-II Plus Lipid Emulsion Enhance Cell Growth via SR-B1 and Target Pancreatic Cancer In Vitro and In Vivo

    Science.gov (United States)

    Thanh LE, Thao N.; Gill, Anthony J.; Bulanadi, Jerikho C.; Patel, Mili; Waddington, Lynne J.; Rye, Kerry-Anne; Moghaddam, Minoo J.; Smith, Ross C.

    2016-01-01

    Background Apolipoprotein A-II (ApoA-II) is down regulated in the sera of pancreatic ductal adenocarcinoma (PDAC) patients, which may be due to increase utilization of high density lipoprotein (HDL) lipid by pancreatic cancer tissue. This study examined the influence of exogenous ApoA-II on lipid uptake and cell growth in pancreatic cancer (PC) both in vitro and in vivo. Methods Cryo transmission electron microscopy (TEM) examined ApoA-II’s influence on morphology of SMOFLipid emulsion. The influence of ApoA-II on proliferation of cancer cell lines was determined by incubating them with lipid+/-ApoA-II and anti-SR-B1 antibody. Lipid was labeled with the fluorophore, DiD, to trace lipid uptake by cancer cells in vitro by confocal microscopy and in vivo in PDAC patient derived xenograft tumours (PDXT) by fluorescence imaging. Scavenger receptor class B type-1(SR-B1) expression in PDAC cell lines and in PDAC PDXT was measured by western blotting and immunohistochemistry, respectively. Results ApoA-II spontaneously converted lipid emulsion into very small unilamellar rHDL like vesicles (rHDL/A-II) and enhanced lipid uptake in PANC-1, CFPAC-1 and primary tumour cells as shown by confocal microscopy. SR-B1 expression was 13.2, 10.6, 3.1 and 2.3 fold higher in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cell lines than the normal pancreatic cell line (HPDE6) and 3.7 fold greater in PDAC tissue than in normal pancreas. ApoA-II plus lipid significantly increased the uptake of labeled lipid and promoted cell growth in PANC-1, MIAPaCa-2, CFPAC-1 and BxPC3 cells which was inhibited by anti SR-B1 antibody. Further, ApoA-II increased the uptake of lipid in xenografts by 3.4 fold. Conclusion Our data suggest that ApoA-II enhance targeting potential of lipid in pancreatic cancer which may have imaging and drug delivery potentialities. PMID:27002321

  10. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    Science.gov (United States)

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  11. Experience of treating late cerebral lungcancer metastasis using photodynamic therapy

    Directory of Open Access Journals (Sweden)

    A. I. Ryabova

    2013-01-01

    Full Text Available Treatment outcomes for a patient with solitary brain metastasis after long-term relapse-free follow-up of invasive lung carcinoma were presented. Brain metastasis without other signs of disease progression was diagnosed 10 years after combined modality treatment for stage II lung cancer. Removal of intracerebral metastasis with intraoperative photodynamic therapy was performed. Histology microspecimens of the primary tumor and metastasis were similar. No signs of disease progression in the brain 9 months after surgery were found. This case demonstrates that it is important to increase cancer suspicion for patients with long-term relapse-free follow-up. The use of intraoperative photodynamic therapy with photoditazine as a sensitizer in the treatment of cerebral metastases results in a favorable anti-tumor effect, thus improving life quality of patients

  12. Photodynamic Processes in Fluoride Crystals Doped with Ce3+

    Directory of Open Access Journals (Sweden)

    Pavlov V.V.

    2015-01-01

    Full Text Available Integrated studies of photoelectric phenomena and their associated photodynamic processes in LiCaAlF6, LiLuF4, LiYF4, LiY0,5Lu0,5F4, SrAlF5 crystals doped with Ce3+ ions have been carried out using the combination of the methods of optical and dielectric spectroscopy. The numerical values of the basic parameters of photodynamic processes and their spectral dependence in 240 – 310 nm spectral range are evaluated. It has been shown that the most probable process, which leads to the photoionization of Ce3+ ions in LiYxLu1-xF4:Ce3+ (x=0; 0,5; 1 and LiCaAlF6:Ce3+ crystals, is excited-state absorption to the states of mixed configurations of Ce3+ ions localized near/in the conduction band of crystal.

  13. Direct detection of RNA in vitro and in situ by target-primed RCA: The impact of E. coli RNase III on the detection efficiency of RNA sequences distanced far from the 3'-end.

    Science.gov (United States)

    Merkiene, Egle; Gaidamaviciute, Edita; Riauba, Laurynas; Janulaitis, Arvydas; Lagunavicius, Arunas

    2010-08-01

    We improved the target RNA-primed RCA technique for direct detection and analysis of RNA in vitro and in situ. Previously we showed that the 3' --> 5' single-stranded RNA exonucleolytic activity of Phi29 DNA polymerase converts the target RNA into a primer and uses it for RCA initiation. However, in some cases, the single-stranded RNA exoribonucleolytic activity of the polymerase is hindered by strong double-stranded structures at the 3'-end of target RNAs. We demonstrate that in such hampered cases, the double-stranded RNA-specific Escherichia coli RNase III efficiently assists Phi29 DNA polymerase in converting the target RNA into a primer. These observations extend the target RNA-primed RCA possibilities to test RNA sequences distanced far from the 3'-end and customize this technique for the inner RNA sequence analysis.

  14. Photodynamic dye adsorption and release performance of natural zeolite

    OpenAIRE

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-01-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and ...

  15. Photodynamic action on some pathogenic microorganisms of oral cavity

    Science.gov (United States)

    Ovchinnikov, Ilya S.; Tuchin, Valery V.

    2001-10-01

    The work is devoted to an analysis of pre-clinical and clinical experiments on photodynamic action of HeNe laser radiation in aggregate with a cation thiazinium dye Methylene Blue (MB) on a mix of pathogenic and conditionally pathogenic aerobic bacteria being activators of pyoinflammatory diseases of oral cavity. Concentration of photosensitizes at which there is no own bactericidal influence on dying microflora, and parameters of influence at which the efficiency of irradiated microflora defeat reaches 99 % are determined.

  16. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2015-08-01

    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  17. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Directory of Open Access Journals (Sweden)

    Mladen eKorbelik

    2015-02-01

    Full Text Available Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT. The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure-rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor responses elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

  18. Photodynamic Therapy Plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma.

    Science.gov (United States)

    Wentrup, Robert; Winkelmann, Nicola; Mitroshkin, Andrey; Prager, Matthias; Voderholzer, Winfried; Schachschal, Guido; Jürgensen, Christian; Büning, Carsten

    2016-05-23

    Standard treatments are not available for hilar nonresectable cholangiocarcinoma (NCC). It is unknown whether combination therapy of photodynamic therapy (PDT) plus systemic chemotherapy is superior to PDT alone. We retrospectively reviewed 68 patients with hilar NCC treated with either PDT plus chemotherapy (PTD-C) or PDT monotherapy (PDT-M). The primary endpoint was the mean overall survival rate. Secondary endpoints included the 1-year survival rate, risk of cholangitic complications, and outcomes, which were evaluated according to the chemotherapy protocol. More than 90% of the study population had advanced hilar NCC Bismuth type III or IV. In the PDT-M group (n=35), the mean survival time was 374 days compared with 520 days in the PDT-C group (n=33, p=0.021). The 1-year survival rate was significantly higher in the PDT-C group compared with the PDT-M group (88% vs 58%, p=0.001) with a significant reduction of mortality (hazard ratio, 0.20; 95% confidence interval, 0.07 to 0.58; p=0.003). Gemcitabine monotherapy resulted in a shorter survival time compared with the gemcitabine combination therapy (mean, 395 days vs 566 days; p=0.09). Cholangitic complications were observed at a similar frequency in the PDT-C and PDT-M groups. Combining repeated PDT with a gemcitabine-based combination therapy might offer a significant survival benefit in patients with hilar NCC.

  19. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.

    Science.gov (United States)

    Lima, Adriel M; Pizzol, Carine Dal; Monteiro, Fabíola B F; Creczynski-Pasa, Tânia B; Andrade, Gislaine P; Ribeiro, Anderson O; Perussi, Janice R

    2013-08-05

    The hydrophobicity of some photosensitizers can induce aggregation in biological systems, which consequently reduces photodynamic activity. The conjugation of photosensitizers with nanocarrier systems can potentially be used to overcome this problem. The objective of this study was to prepare and characterise hypericin-loaded solid lipid nanoparticles (Hy-SLN) for use in photodynamic therapy (PDT). SLN were prepared using the ultrasonication technique, and their physicochemical properties were characterised. The mean particle size was found to be 153 nm, with a low polydispersity index of 0.28. One of the major advantages of the SLN formulation is its high entrapment efficiency (EE%). Hy-SLN showed greater than 80% EE and a drug loading capacity of 5.22% (w/w). To determine the photodynamic efficiency of Hy before and after encapsulation in SLN, the rate constants for the photodecomposition of two (1)O2 trapping reagents, DPBF and AU, were determined. These rate constants exhibited an increase of 60% and 50% for each method, respectively, which is most likely due to an increase in the lifetime of the triplet state caused by the increase in solubility. Hy-SLN presented a 30% increase in cell uptake and a correlated improvement of 26% in cytotoxicity. Thus, all these advantages suggest that Hy-loaded SLN has potential for use in PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Photodynamic inactivation of foodborne bacteria by eosin Y.

    Science.gov (United States)

    Bonin, E; Dos Santos, A R; Fiori da Silva, A; Ribeiro, L H; Favero, M E; Campanerut-Sá, P A Z; de Freitas, C F; Caetano, W; Hioka, N; Mikcha, J M G

    2018-03-25

    The aim of this study was evaluate the effect of photodynamic inactivation mediated by eosin Y in Salmonella enterica serotype Typhimurium ATCC 14028, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 11778. Bacteria (10 7 CFU per ml) were incubated with eosin Y at concentrations ranging from 0·1 to 10 μmol l -1 , irradiated by green LED (λ max 490-570 nm) for 5, 10 and 15 min and the cellular viability was determined. Pseudomonas aeruginosa was completely inactivated when treated with 10 μmol l -1 eosin Y for 10 min. Treatments reduced B. cereus and Salm. Typhimurium counts to 2·7 log CFU per ml and 1·7 log CFU per ml, respectively. Escherichia coli counts were slightly reduced. Staphylococcus aureus presented the highest sensitivity, being completely inactivated by eosin Y at 5 μmol l -1 and 5 min of illumination. The reduction of cellular viability of photoinactivated Staph. aureus was also demonstrated by flow cytometry and morphological changes were observed by scanning electron microscopy. Eosin Y in combination with LED produced bacterial inactivation, being a potential candidate for photodynamic inactivation. This study evidenced the efficacy of photodynamic inactivation as a novel and promising alternative to bacterial control. © 2018 The Society for Applied Microbiology.

  1. mTHPC-mediated photodynamic diagnosis of malignant brain tumors

    International Nuclear Information System (INIS)

    Zimmermann, A.

    2001-03-01

    Radical tumor resection is the basis for prolonged survival of patients suffering from malignant brain tumors such as glioblastoma multiform. We have carried out a phase II study involving 22 patients with malignant brain tumors to assess the feasibility and the effectiveness of the combination of intraoperative photodynamic diagnosis (PDD) and fluorescence-guided resection (FGR) mediated by the second generation photosensitizer meta-tetrahydroxyphenylchlorin (mTHPC). In addition, intraoperative photodynamic therapy (PDT) was performed. Several commercially available fluorescence diagnostic systems were investigated for their applicability for clinical practice. We have adapted and optimized a diagnostic system which includes a surgical microscope, an excitation light source (filtered to 370-440 nm), a video camera detection system, and a spectrometer for clear identification of the mTHPC fluorescence emission at 652 nm. Especially in regions of faint fluorescence it turned out to be essential to maximize the spectral information by optimizing and matching the spectral properties of all components, such as excitation source, camera and color filters. In summary, based on 138 tissue samples derived from 22 tumor specimens we have been able to achieve a sensitivity of 87.9 % and a specificity of 95.7 %. This study demonstrates that mTHPC-mediated intraoperative fluorescence-guided resection followed by photodynamic therapy is a feasible concept. (author)

  2. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine.

    Science.gov (United States)

    Arrue, Lily; Ratjen, Lars

    2017-12-07

    The photochemical control of structure and reactivity bears great potential for chemistry, biology, and life sciences. A key feature of photochemistry is the spatiotemporal control over secondary events. Well-established applications of photochemistry in medicine are photodynamic therapy (PDT) and photopharmacology (PP). However, although both are highly localizable through the application of light, they lack cell- and tissue-specificity. The combination of nanomaterial-based drug delivery and targeting has the potential to overcome limitations for many established therapy concepts. Even more privileged seems the merger of nanomedicine and cell-specific targeting (internal targeting) controlled by light (external control), as it can potentially be applied to many different areas of medicine and pharmaceutical research, including the aforementioned PDT and PP. In this review a survey of the interface of photochemistry, medicine and targeted drug delivery is given, especially focusing on phototriggered targeting in nanomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In vitro and in vivo comparative study of the phototherapy anticancer activity of hyaluronic acid-modified single-walled carbon nanotubes, graphene oxide, and fullerene

    Science.gov (United States)

    Hou, Lin; Yuan, Yujie; Ren, Junxiao; Zhang, Yinling; Wang, Yongchao; Shan, Xiaoning; Liu, Qi; Zhang, Zhenzhong

    2017-08-01

    In this work, carbon nanomaterials, single-walled carbon nanotubes (SWNT), graphene oxide (GO), and fullerene (C60) were modified by hyaluronic acid (HA) to obtain water-soluble and biocompatible nanomaterials with high tumor-targeting capacity and then the comparative study of these hyaluronic acid-modified carbon nanomaterials was made in vitro and in vivo. The conjugates of hyaluronic acid and carbon nanomaterials, namely, HA-SWNT, HA-GO, HA-C60, were confirmed by UV/Vis spectrum, Fourier transform infrared spectroscopy (FTIR), and a transmission electron microscope (TEM). After HA modification, the sizes of HA-SWNT, HA-GO, and HA-C60 were in a range of 70 to 300 nm, and all the three HA-modified materials were at negative potential, demonstrating that HA modification was in favor of extravasation of carbon materials into a tumor site due to enhanced permeability and retention effect of tumor. Photothermal conversion in vitro test demonstrated excellent photothermal sensitivity of HA-SWNT and HA-GO. But the reactive oxygen yield of HA-C60 was the highest compared with the others under visible light irradiation, which proved the good photodynamic therapy effect of HA-C60. In addition, cytotoxicity experiments exhibited that the inhibitory efficacy of HA-SWNT was the lowest, the second was HA-C60, and the highest was HA-GO, which was consistent with the uptake degree of them. While under the laser irradiation, the cell inhibition of the HA-SWNT was the highest, the second was HA-GO, and the last was HA-C60. In vivo evaluation of the three targeting carbon nanomaterials was consistent with the cytotoxicity assay results. Taken together, the results demonstrated that HA-SWNT and HA-GO were suited for photothermal therapy (PTT) agents for their good photothermal property, while HA-C60 was used as a kind of photodynamic therapy (PDT) agent for its photodynamic effect.

  4. Brain Targeted Intranasal Zaleplon Nano-emulsion: In-Vitro Characterization and Assessment of Gamma Aminobutyric Acid Levels in rabbits' Brain and Plasma at low and high Doses.

    Science.gov (United States)

    Abd-Elrasheed, Eman; El-Helaly, Sara Nageeb; El-Ashmoony, Manal M; Salah, Salwa

    2017-11-30

    Zaleplon is a pyrazolopyrimidin derivative hypnotic drug indicated for the short-term management of insomnia. Zaleplon belongs to Class II drugs, according to the biopharmaceutical classification system (BCS), showing poor solubility and high permeability. It undergoes extensive first-pass hepatic metabolism after oral absorption, with only 30% of Zaleplon being systemically available. It is available in tablet form which is unable to overcome the previous problems. The aim of this study is to enhance solubility and bioavailability via utilizing nanotechnology in the formulation of intranasal Zaleplon nano-emulsion (ZP-NE) to bypass the barriers and deliver an effective therapy to the brain. Screening studies were carried out wherein the solubility of zaleplon in various oils, surfactants(S) and co-surfactants(CoS) were estimated. Pseudo-ternary phase diagrams were constructed and various nano-emulsion formulations were prepared. These formulations were subjected to thermodynamic stability, in-vitro characterization, histopathological studies and assessment of the gamma aminobutyric acid (GABA) level in plasma and brain in rabbits compared to the market product (Sleep aid®). Stable NEs were successfully developed with a particle size range of 44.57±3.351 to 136.90±1.62 nm. A NE composed of 10% Miglyol® 812, 40%Cremophor® RH40 40%Transcutol® HP and 10% water successfully enhanced the bioavailability and brain targeting in the rabbits, showing a three to four folds increase than the marketed product. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. In Vitro and In Vivo Activity of IMGN853, an Antibody-Drug Conjugate Targeting Folate Receptor Alpha Linked to DM4, in Biologically Aggressive Endometrial Cancers.

    Science.gov (United States)

    Altwerger, Gary; Bonazzoli, Elena; Bellone, Stefania; Egawa-Takata, Tomomi; Menderes, Gulden; Pettinella, Francesca; Bianchi, Anna; Riccio, Francesco; Feinberg, Jacqueline; Zammataro, Luca; Han, Chanhee; Yadav, Ghanshyam; Dugan, Katherine; Morneault, Ashley; Ponte, Jose F; Buza, Natalia; Hui, Pei; Wong, Serena; Litkouhi, Babak; Ratner, Elena; Silasi, Dan-Arin; Huang, Gloria S; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2018-05-01

    Grade 3 endometrioid and uterine serous carcinomas (USC) account for the vast majority of endometrial cancer deaths. The purpose of this study was to determine folic acid receptor alpha (FRα) expression in these biologically aggressive (type II) endometrial cancers and evaluate FRα as a targetable receptor for IMGN853 (mirvetuximab soravtansine). The expression of FRα was evaluated by immunohistochemistry (IHC) and flow cytometry in 90 endometrioid and USC samples. The in vitro cytotoxic activity and bystander effect were studied in primary uterine cancer cell lines expressing differential levels of FRα. In vivo antitumor efficacy of IMGN853 was evaluated in xenograft/patient-derived xenograft (PDX) models. Semiquantitative IHC analysis indicated that 41% of the USC patients overexpress FRα. Further, overexpression of FRα (i.e., 2+) was detected via flow cytometry in 22% (2/9) of primary endometrioid and in 27% (3/11) of primary USC cell lines. Increased cytotoxicity was seen with IMGN853 treatment compared with control in 2+ expressing uterine tumor cell lines. In contrast, tumor cell lines with low FRα showed no difference when exposed to IMGN853 versus control. IMGN853 induced bystander killing of FRα = 0 tumor cells. In an endometrioid xenograft model (END(K)265), harboring 2+ FRα, IMGN853 treatment showed complete resolution of tumors ( P USC PDX model (BIO(K)1), expressing 2+ FRα, induced twofold increase in median survival ( P < 0.001). IMGN853 shows impressive antitumor activity in biologically aggressive FRα 2+ uterine cancers. These preclinical data suggest that patients with chemotherapy resistant/recurrent endometrial cancer overexpressing FRα may benefit from this treatment. Mol Cancer Ther; 17(5); 1003-11. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    Science.gov (United States)

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American

  7. Photodynamic effect of light-emitting diode light on cell growth ...

    Indian Academy of Sciences (India)

    Madhu urs

    Photodynamic effect of LED light on cell growth inhibition induced by methylene blue. 231. J. Biosci. ... high costs make PDT inaccessible for many institutions .... After 48 h at room temperature, 20 mature ... decrease in turbidity of the medium and the increase in %T ..... Mechanistic study of the photodynamic inactivation of.

  8. Rose Bengal- and Riboflavin-Mediated Photodynamic Therapy to Inhibit Methicillin-Resistant Staphylococcus aureus Keratitis Isolates.

    Science.gov (United States)

    Halili, Francisco; Arboleda, Alejandro; Durkee, Heather; Taneja, Mukesh; Miller, Darlene; Alawa, Karam A; Aguilar, Mariela C; Amescua, Guillermo; Flynn, Harry W; Parel, Jean-Marie

    2016-06-01

    To evaluate the in vitro efficacy of rose bengal- and riboflavin-mediated photodynamic therapy for inhibition of methicillin-resistant Staphylococcus aureus (MRSA) isolates. Experimental study. Two different multidrug-resistant, clinical MRSA isolates were grown on nutrient agar, prepared in suspension, and adjusted to concentrations of 1.5 × 10(4) colony-forming units per milliliter. Bacterial suspensions were mixed with rose bengal, riboflavin, or water according to experimental group. Tested in triplicate, groups included: Group I, MRSA control; Group II, MRSA with 0.1% rose bengal; Group III, MRSA with 0.03% rose bengal; and Group IV, MRSA with 0.1% riboflavin. All experimental groups were exposed to 3 lighting conditions: dark, ambient room light for 30 minutes, and 5.4 J/cm(2) with either green light-emitting diode (LED) or ultraviolet-A (UV-A) irradiation. Plates were photographed at 72 hours and custom software measured bacterial growth inhibition. Complete growth inhibition of both MRSA strains was demonstrated (1) for both rose bengal concentrations under ambient and green LED irradiation, and (2) for the 0.1% rose bengal in the dark. The 0.03% rose bengal in dark conditions showed complete inhibition of strain 2 but incomplete inhibition of strain 1. Riboflavin showed almost complete inhibition with UV-A irradiation but demonstrated minimal inhibition for both strains in dark and ambient light conditions. Rose bengal- and riboflavin-mediated photodynamic therapy demonstrated complete growth inhibition in vitro of 2 multidrug-resistant MRSA strains. Rose bengal was also effective in dark and ambient conditions. These results may have implications for in vivo therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. In vitro and in vivo evaluation of a (18F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging.

    Directory of Open Access Journals (Sweden)

    Zohreh Varasteh

    Full Text Available Expression of the gastrin-releasing peptide receptor (GRPR in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26 conjugated to 1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA via a diethylene glycol (PEG2 spacer (NOTA-P2-RM26 labeled with (68Ga and (111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a (18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with (18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50 of the [(natF]AlF-NOTA-P2-RM26 was compared to that of the (natGa-loaded peptide using (125I-Tyr(4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with (18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol. The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [(natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM. The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [(18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p

  10. DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets

    Directory of Open Access Journals (Sweden)

    Tropé Claes G

    2007-07-01

    Full Text Available Abstract Background The epigenetics of ovarian carcinogenesis remains poorly described. We have in the present study investigated the promoter methylation status of 13 genes in primary ovarian carcinomas (n = 52 and their in vitro models (n = 4; ES-2, OV-90, OVCAR-3, and SKOV-3 by methylation-specific polymerase chain reaction (MSP. Direct bisulphite sequencing analysis was used to confirm the methylation status of individual genes. The MSP results were compared with clinico- pathological features. Results Eight out of the 13 genes were hypermethylated among the ovarian carcinomas, and altogether 40 of 52 tumours were methylated in one or more genes. Promoter hypermethylation of HOXA9, RASSF1A, APC, CDH13, HOXB5, SCGB3A1 (HIN-1, CRABP1, and MLH1 was found in 51% (26/51, 49% (23/47, 24% (12/51, 20% (10/51, 12% (6/52, 10% (5/52, 4% (2/48, and 2% (1/51 of the carcinomas, respectively, whereas ADAMTS1, MGMT, NR3C1, p14ARF, and p16INK4a were unmethylated in all samples. The methylation frequencies of HOXA9 and SCGB3A1 were higher among relatively early-stage carcinomas (FIGO I-II than among carcinomas of later stages (FIGO III-IV; P = 0.002, P = 0.020, respectively. The majority of the early-stage carcinomas were of the endometrioid histotype. Additionally, HOXA9 hypermethylation was more common in tumours from patients older than 60 years of age (15/21 than among those of younger age (11/30; P = 0.023. Finally, there was a significant difference in HOXA9 methylation frequency among the histological types (P = 0.007. Conclusion DNA hypermethylation of tumour suppressor genes seems to play an important role in ovarian carcinogenesis and HOXA9, HOXB5, SCGB3A1, and CRABP1 are identified as novel hypermethylated target genes in this tumour type.

  11. The in Vitro Antimicrobial Efficacy of PDT against Periodontopathogenic Bacteri