WorldWideScience

Sample records for vitro structural elements

  1. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  2. In vitro and in silico characterization of open-cell structures of trabecular bone.

    Science.gov (United States)

    Ramos-Infante, S J; Pérez, M A

    2017-11-01

    This work aimed to perform a detailed in vitro and in silico characterization of open-cell structures, which resemble trabecular bone, to elucidate osteoporosis failure mechanisms. Experimental and image-based computational methods were used to estimate Young's modulus and porosities of different open-cell structures (Sawbones; Malmö, Sweden). Three different open-cell structures with different porosities were characterized. Additionally, some open-cell structures were scanned using a microcomputed tomography system (μCT) to non-destructively predict specimen Young's modulus of the structures by developing voxel-based and tetrahedral finite element (FE) models. A 3D reconstruction and FE analyses were used. The experimental and computational results with different element types (linear and quadratic tetrahedrons and voxel-based meshes) were compared with Sawbones data (Sawbones; Malmö, Sweden) revealing important differences in Young's modulus and porosities. The specimens with high and low volume fractions were best represented by linear and quadratic tetrahedrons, respectively. These results could be used to develop new osteoporosis-prevention strategies.

  3. Translation of LINE-1 DNA elements in vitro and in human cells

    International Nuclear Information System (INIS)

    Leibold, D.M.; Swergold, G.D.; Thayer, R.E.; Singer, M.F.; Fanning, T.G.; Dombroski, B.A.

    1990-01-01

    The LINE-1(L1) family of interspread DNA sequences found throughout the human genome (L1 Homo sapiens, L1Hs) includes active transposable elements. Current models for the mechanism of transposition involve reverse transcription of an RNA intermediate and utilization of element-encoded proteins. The authors report that an antiserum against the polypeptide encoded by the L1Hs 5' open reading frame (ORF1) detects, in human cells, an endogenous ORF1 protein as well as the ORG1 product of an appropriate transfecting recombinant vector. The endogenous polypeptide is most abundant in teratocarcinoma and choriocarcinoma cells, among those cell lines tested; it appears to be a single species of ∼38 kDa. In contrast, RNAs synthesized in vitro from cDNAs representing full-length, polyadenylylated cytoplasmic L1Hs RNA yield, upon in vitro translation, ORF1 products of slightly different sizes. This is consistent with the fact that the various cDNAs are different and represent transcription of different genomic L1Hs elements. In vitro studies additionally suggest that translation of ORF1 is initiated at the first AUG codon. Finally, in no case was an ORF1-ORF2 fusion protein detected

  4. Structural elements design manual

    CERN Document Server

    Draycott, Trevor

    2012-01-01

    Gives clear explanations of the logical design sequence for structural elements. The Structural Engineer says: `The book explains, in simple terms, and with many examples, Code of Practice methods for sizing structural sections in timber, concrete,masonry and steel. It is the combination into one book of section sizing methods in each of these materials that makes this text so useful....Students will find this an essential support text to the Codes of Practice in their study of element sizing'.

  5. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  6. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  7. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  8. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  9. Fluid-structure finite-element vibrational analysis

    Science.gov (United States)

    Feng, G. C.; Kiefling, L.

    1974-01-01

    A fluid finite element has been developed for a quasi-compressible fluid. Both kinetic and potential energy are expressed as functions of nodal displacements. Thus, the formulation is similar to that used for structural elements, with the only differences being that the fluid can possess gravitational potential, and the constitutive equations for fluid contain no shear coefficients. Using this approach, structural and fluid elements can be used interchangeably in existing efficient sparse-matrix structural computer programs such as SPAR. The theoretical development of the element formulations and the relationships of the local and global coordinates are shown. Solutions of fluid slosh, liquid compressibility, and coupled fluid-shell oscillation problems which were completed using a temporary digital computer program are shown. The frequency correlation of the solutions with classical theory is excellent.

  10. In vitro reconstitution of sortase-catalyzed pilus polymerization reveals structural elements involved in pilin cross-linking.

    Science.gov (United States)

    Chang, Chungyu; Amer, Brendan R; Osipiuk, Jerzy; McConnell, Scott A; Huang, I-Hsiu; Hsieh, Van; Fu, Janine; Nguyen, Hong H; Muroski, John; Flores, Erika; Ogorzalek Loo, Rachel R; Loo, Joseph A; Putkey, John A; Joachimiak, Andrzej; Das, Asis; Clubb, Robert T; Ton-That, Hung

    2018-06-12

    Covalently cross-linked pilus polymers displayed on the cell surface of Gram-positive bacteria are assembled by class C sortase enzymes. These pilus-specific transpeptidases located on the bacterial membrane catalyze a two-step protein ligation reaction, first cleaving the LPXTG motif of one pilin protomer to form an acyl-enzyme intermediate and then joining the terminal Thr to the nucleophilic Lys residue residing within the pilin motif of another pilin protomer. To date, the determinants of class C enzymes that uniquely enable them to construct pili remain unknown. Here, informed by high-resolution crystal structures of corynebacterial pilus-specific sortase (SrtA) and utilizing a structural variant of the enzyme (SrtA 2M ), whose catalytic pocket has been unmasked by activating mutations, we successfully reconstituted in vitro polymerization of the cognate major pilin (SpaA). Mass spectrometry, electron microscopy, and biochemical experiments authenticated that SrtA 2M synthesizes pilus fibers with correct Lys-Thr isopeptide bonds linking individual pilins via a thioacyl intermediate. Structural modeling of the SpaA-SrtA-SpaA polymerization intermediate depicts SrtA 2M sandwiched between the N- and C-terminal domains of SpaA harboring the reactive pilin and LPXTG motifs, respectively. Remarkably, the model uncovered a conserved TP(Y/L)XIN(S/T)H signature sequence following the catalytic Cys, in which the alanine substitutions abrogated cross-linking activity but not cleavage of LPXTG. These insights and our evidence that SrtA 2M can terminate pilus polymerization by joining the terminal pilin SpaB to SpaA and catalyze ligation of isolated SpaA domains in vitro provide a facile and versatile platform for protein engineering and bio-conjugation that has major implications for biotechnology.

  11. FINITE ELEMENT ANALYSIS OF STRUCTURES

    Directory of Open Access Journals (Sweden)

    PECINGINA OLIMPIA-MIOARA

    2015-05-01

    Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.

  12. Structural elements design manual working with Eurocodes

    CERN Document Server

    Draycott, Trevor

    2009-01-01

    Structural Elements Design Manual: Working With Eurocodes is the structural engineers 'companion volume' to the four Eurocodes on the structural use of timber, concrete, masonry and steelwork. For the student at higher technician or first degree level it provides a single source of information on the behaviour and practical design of the main elements of the building structure. With plenty of worked examples and diagrams, it is a useful textbook not only for students of structural and civil engineering, but also for those on courses in related subjects such as

  13. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    KAUST Repository

    Zenger, Katharina; Dutta, Subhajit; Wolff, Horst; Genton, Marc G.; Kraus, Birgit

    2015-01-01

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  14. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells

    KAUST Repository

    Zenger, Katharina

    2015-07-19

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones.

  15. Fuel element structure - design, production and operational behaviour

    International Nuclear Information System (INIS)

    Pott, G.; Dietz, W.

    1985-01-01

    The lectures held at the meeting of the fuel element section of the Kerntechnische Gesellschaft gives a survey of developments in fuel element structure design for PWR-type, BWR-type and fast breeder reactors. For better utilization of the fuel, concepts have been developed for re-usable, removable and thus repairable fuel elements. Furthermore, the manufacturing methods for fuel element structures were refined to achieve better quality and more efficient manufacturing methods. Statements on the dimensional behaviour and on the mechanical stability of fuel element structures in normal and accident operation could be made on the basis of post-irradiation inspections. Finally, the design, manufacture and irradiation behaviour of graphite reflectors in HTGR-type reactors are described. The 12 lectures have been recorded in the data base separately. (RF) [de

  16. Determination of element composition by means of neutron activation analysis in vitro

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Brovtsyn, V.K.; Spryshkova, R.A.; Porokhov, S.N.; Borisov, G.I.; Leonov, V.F.

    1979-01-01

    A method of neutron activation analysis of bones in vitro for calcium, phosphorus, sodium, chlorine and magnesium with the use of reactor neutrons was proposed. The normal osseous tissue was the object of studies. Samples obtained from diaphyses of the femur, tibia, fibula and also from distal epiphysis of the femur, proximal epiphysis of the tibia and fibula were analysed. Osseous tissue samples were taken from 17 male cadavers aged 20-52. The mean indices of the concentration of the elements in the diaphyses and epiphyses of bones in various age groups, averaged values of concentrations for the entire age range and also the weighted mean content of these elements according to age groups were determined

  17. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements

    Science.gov (United States)

    Watters, Kyle E; Choudhary, Krishna; Aviran, Sharon; Perry, Keith L

    2018-01-01

    Abstract In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3′ untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites. PMID:29294088

  18. On elastic structural elements for nuclear reactors

    International Nuclear Information System (INIS)

    Povolo, F.

    1978-03-01

    The in-pile stress-relaxation behaviour of materials usually employed for the elastic structural elements, in nuclear reactors, is critically reviewed and the results are compared with those obtained in commercial zirconium alloys irradiated under similar conditions. Finally, it is shown that, under certain conditions, some zirconium alloys may be used as an alternative material for these structural elements. (orig.) [de

  19. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    International Nuclear Information System (INIS)

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site

  20. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  1. Finite element analysis of structures through unified formulation

    CERN Document Server

    Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico

    2014-01-01

    The finite element method (FEM) is a computational tool widely used to design and analyse  complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...

  2. Infinte Periodic Structure of Lightweight Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2013-01-01

    Lightweight wooden structures have become more popular as a sustainable, environmental- friendly and cost-effective alternative to concrete, steel and masonry buildings. However, there are certain drawbacks regarding noise and vibration due to the smaller weight and stiffness of wooden buildings....... Furthermore, lightweight building elements are typically periodic structures that behave as filters for sound propagation within certain frequency ranges (stop bands), thus only allowing transmission within the pass bands. Hence, traditional methods based on statistical energy analysis cannot be used...... for proper dynamic assessment of lightweight buildings. Instead, this paper discusses and compares the use of finite element analysis and a wave approach based on Floquet theory. The present analysis has focus on the effect of periodicity on vibration transmission within semi-infinite beam structures. Two...

  3. Finite element model updating of natural fibre reinforced composite structure in structural dynamics

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.

  4. In vitro structure-toxicity relationship of chalcones in human hepatic stellate cells.

    Science.gov (United States)

    Zenger, Katharina; Dutta, Subhajit; Wolff, Horst; Genton, Marc G; Kraus, Birgit

    2015-10-02

    Xanthohumol (XN), the major prenylated chalcone from hops (Humulus lupulus L.), has received much attention within the last years, due to its multiple pharmacological activities including anti-proliferative, anti-inflammatory, antioxidant, pro-apoptotic, anti-bacterial and anti-adhesive effects. However, there exists a huge number of metabolites and structurally-related chalcones, which can be expected, or are already known, to exhibit various effects on cells. We have therefore analyzed the effects of XN and 18 other chalcones in a panel, consisting of multiple cell-based assays. Readouts of these assays addressed distinct aspects of cell-toxicity, like proliferation, mitochondrial health, cell cycle and other cellular features. Besides known active structural elements of chalcones, like the Michael system, we have identified several moieties that seem to have an impact on specific effects and toxicity in human liver cells in vitro. Based on these observations, we present a structure-toxicity model, which will be crucial to understand the molecular mechanisms of wanted effects and unwanted side-effects of chalcones. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  6. Statistical study on the strength of structural materials and elements

    International Nuclear Information System (INIS)

    Blume, J.A.; Dalal, J.S.; Honda, K.K.

    1975-07-01

    Strength data for structural materials and elements including concrete, reinforcing steel, structural steel, plywood elements, reinforced concrete beams, reinforced concrete columns, brick masonry elements, and concrete masonry walls were statistically analyzed. Sample statistics were computed for these data, and distribution parameters were derived for normal, lognormal, and Weibull distributions. Goodness-of-fit tests were performed on these distributions. Most data, except those for masonry elements, displayed fairly small dispersion. Dispersion in data for structural materials was generally found to be smaller than for structural elements. Lognormal and Weibull distributions displayed better overall fits to data than normal distribution, although either Weibull or lognormal distribution can be used to represent the data analyzed. (auth)

  7. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  8. Soil-Framed Structure Interaction Analysis - A New Interface Element

    Directory of Open Access Journals (Sweden)

    M. Dalili Shoaei

    Full Text Available AbstractInterfacial behavior between soil and shallow foundation has been found so influential to combined soil-footing performance and redistribution of forces in the superstructure. This study introduces a new thin-layer interface element formulated within the context of finite element method to idealize interfacial behavior of soil-framed structure interaction with new combination of degrees of freedom at top and bottom sides of the interface element, compatible with both isoparametric beam and quadrilateral element. This research also tends to conduct a parametric study on respective parameters of the new joint element. Presence of interface element showed considerable changes in the performance of the framed structure under quasi-static loading.

  9. Prefabricated elements and structures: Developments, tests and experiences

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    Danish concrete structures are often built with prefabricated elements, joined together on the site and this provides a large challenge to constantly improve and optimize the elements, the joints and the models. DTU Byg has been active in the development, testing and modelling of new elements...

  10. A computer program for structural analysis of fuel elements

    International Nuclear Information System (INIS)

    Hayashi, I.M.V.; Perrotta, J.A.

    1988-01-01

    It's presented the code ELCOM for the matrix analysis of tubular structures coupled by rigid spacers, typical of PWR's fuel elements. The code ELCOM makes a static structural analysis, where the displacements and internal forces are obtained for each structure at the joints with the spacers, and also, the natural frequencies and vibrational modes of an equivalent integrated structure are obtained. The ELCOM result is compared to a PWR fuel element structural analysis obtained in published paper. (author) [pt

  11. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  12. Hexahedral connection element based on hybrid-stress theory for solid structures

    International Nuclear Information System (INIS)

    Wu, D; Sze, K Y; Lo, S H

    2010-01-01

    For building structures, high-performance hybrid-stress hexahedral solid elements are excellent choices for modelling joints, beams/columns walls and thick slabs if the exact geometrical representation is required. While it is straight-forward to model beam-column structures of uniform member size with solid hexahedral elements, joining up beams and columns of various cross-sections at a common point proves to be a challenge for structural modelling using hexahedral elements with specified dimensions. In general, the joint has to be decomposed into 27 smaller solid elements to cater for the necessary connection requirements. This will inevitably increase the computational cost and introduce element distortions when elements of different sizes have to be used at the joint. Hexahedral connection elements with arbitrary specified connection interfaces will be an ideal setup to connect structural members of different sizes without increasing the number of elements or introducing highly distorted elements. In this paper, based on the hybrid-stress element theory, a general way to construct hexahedral connection element with various interfaces is introduced. Following this way, a 24-node connection element is presented and discussed in detail. Performance of the 24-node connection element equipped with different number of stress modes will be assessed with worked examples.

  13. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....

  14. Structural Elements Regulating AAA+ Protein Quality Control Machines.

    Science.gov (United States)

    Chang, Chiung-Wen; Lee, Sukyeong; Tsai, Francis T F

    2017-01-01

    Members of the ATPases Associated with various cellular Activities (AAA+) superfamily participate in essential and diverse cellular pathways in all kingdoms of life by harnessing the energy of ATP binding and hydrolysis to drive their biological functions. Although most AAA+ proteins share a ring-shaped architecture, AAA+ proteins have evolved distinct structural elements that are fine-tuned to their specific functions. A central question in the field is how ATP binding and hydrolysis are coupled to substrate translocation through the central channel of ring-forming AAA+ proteins. In this mini-review, we will discuss structural elements present in AAA+ proteins involved in protein quality control, drawing similarities to their known role in substrate interaction by AAA+ proteins involved in DNA translocation. Elements to be discussed include the pore loop-1, the Inter-Subunit Signaling (ISS) motif, and the Pre-Sensor I insert (PS-I) motif. Lastly, we will summarize our current understanding on the inter-relationship of those structural elements and propose a model how ATP binding and hydrolysis might be coupled to polypeptide translocation in protein quality control machines.

  15. Nonconforming axisymmetric elements for the analysis of containment structures

    International Nuclear Information System (INIS)

    Choi, C.K.; Kim, S.Y.

    1989-01-01

    In this study, the behaviors of the conforming isoparametric quadrilateral 4-node and triangular 3-nod axisymmetric solid elements are improved by adding nonconforming displacement modes. The convergence tests and the irregular mesh tests have been established through the analyses of a primary shield wall typed structure. For example study, a containment wall with internal pressure of 60 ksi has been analyzed. It shows that the nonconforming elements behave better than the conforming elements, especially, in the structurally discontinuous regions

  16. Application of global elements to a reinforced concrete structure

    International Nuclear Information System (INIS)

    Morand, O.

    1994-01-01

    The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)

  17. Street as Sustainable City Structural Element

    Science.gov (United States)

    Leyzerova, A. V.; Bagina, E. J.

    2017-11-01

    Sustainability in architecture is nowadays of particular significance in the course of globalization and information density. The technospehere spontaneous development poses a threat to the sustainability of traditional urban forms where a street is one of the essential forming elements in the urban structure. The article proposes to consider formally compositional street features in relation to one of the traditional streets in the historic center of Ekaterinburg. The study examines the street-planning structure, the development of its skeleton elements, silhouette and fabric elevation characteristics as well as the scale characteristics and visual complexity of objects. The study provided architectural and artistic aspects of street sustainability, and limits of the appropriate scale and composition consistency under which the compatibility of alternative compositional forms existing at different times is possible.

  18. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods : application to breads varying in phytic acid content

    NARCIS (Netherlands)

    Wolters, M.G.E.; Schreuder, H.A.W.; Heuvel, G. van den; Lonkhuijsen, H.J. van; Hermus, R.J.J.; Voragen, A.G.J.

    1993-01-01

    A continuous in vitro method for the estimation of the bioavailability of minerals and trace elements is presented. This in vitro method is believed to be more representative of in vivo physiological conditions than in vitro methods based on equilibrium dialysis, because dialysable components are

  19. Superheavy Element Synthesis and Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.

    2009-01-01

    The search for the next closed proton and neutron shells beyond 2 08P b has yielded a number of exciting results in terms of the synthesis of new elements [1,2,3]. The superheavy elements (SHE), however, are a nuclear structure phenomenon. They owe their existence to the quantum mechanical origin of shell correction energies without which they would not be bound. In recent years the development of efficient experimental set-ups including separators and advanced particle and photon detection arrangements allowed for more and more detailed nuclear structure studies for nuclei at and beyond Z=100. A review of those recent achievements is given in ref. [4]. Among the most interesting features is the observation of K-isomeric states. Experimentally about 14 cases have been identified in the region of Z>96 as shown in Fig. 1. K-isomers or indications of their existence have been found for almost all even-Z elements in the region Z=100 to 110. We could recently establish and/or confirm such states in the even-even isotopes 2 52,254N o [5]. The heaviest nucleus where such a state was found is 2 70D s with Z=110 as we reported in 2001 [6]. Those nuclear structure studies lay out the grounds for a detailed understanding of these heavy and high-Z nuclear systems, and contribute at the same time valuable information to preparation of strategies to successfully continue the hunt for the localisation of the next spherical proton and neutron shells after 2 08P b. The recent activities for both SHE synthesis and nuclear structure investigations at GSI will be reported.(author)

  20. Correct use of Membrane Elements in Structural Analysis

    Directory of Open Access Journals (Sweden)

    Rothman Timothy

    2016-01-01

    Full Text Available Structural analysis of consumer electronic devices such as phones and tablets involves Finite Element Analysis (FEA. Dynamic loading conditions such as device dropping and bending dictate accurate FEA models to reduce design risk in many areas. The solid elements typically used in structural analysis do not have integration points on the surface. The outer surface is of most interest because that is where the cracks start. Analysts employ a post processing trick through using membranes to bring accurate stress/strain results to the surface. This paper explains numerical issues with implementation of membranes and recommends a methodology for accurate structural analysis.

  1. Electronic structures of elements according to ionization energies.

    Science.gov (United States)

    Zadeh, Dariush H

    2017-11-28

    The electronic structures of elements in the periodic table were analyzed using available experimental ionization energies. Two new parameters were defined to carry out the study. The first parameter-apparent nuclear charge (ANC)-quantified the overall charge of the nucleus and inner electrons observed by an outer electron during the ionization process. This parameter was utilized to define a second parameter, which presented the shielding ability of an electron against the nuclear charge. This second parameter-electron shielding effect (ESE)-provided an insight into the electronic structure of atoms. This article avoids any sort of approximation, interpolation or extrapolation. First experimental ionization energies were used to obtain the two aforementioned parameters. The second parameter (ESE) was then graphed against the electron number of each element, and was used to read the corresponding electronic structure. The ESE showed spikes/peaks at the end of each electronic shell, providing insight into when an electronic shell closes and a new one starts. The electronic structures of elements in the periodic table were mapped using this methodology. These graphs did not show complete agreement with the previously known "Aufbau" filling rule. A new filling rule was suggested based on the present observations. Finally, a new way to organize elements in the periodic table is suggested. Two earlier topics of effective nuclear charge, and shielding factor were also briefly discussed and compared numerically to demonstrate the capability of the new approach.

  2. Origin of the complex crystal structures of elements at intermediate pressure

    International Nuclear Information System (INIS)

    Ackland, G J; Macleod, I R

    2004-01-01

    We present a unifying theory for the observed complex structures of sp-bonded elements under pressure on the basis of nearly free electron picture. In the intermediate pressure regime, the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone interactions-structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties and the evolution of internal and unit cell parameters with pressure and appears to hold for elements in groups I-VI. We illustrate it with experimental data for these elements and ab initio calculations for Li

  3. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  4. Finite element analysis of degraded concrete structures - Workshop proceedings

    International Nuclear Information System (INIS)

    1999-09-01

    This workshop is related to the finite element analysis of degraded concrete structures. It is composed of three sessions. The first session (which title is: the use of finite element analysis in safety assessments) comprises six papers which titles are: Historical Development of Concrete Finite Element Modeling for Safety Evaluation of Accident-Challenged and Aging Concrete Structures; Experience with Finite Element Methods for Safety Assessments in Switzerland; Stress State Analysis of the Ignalina NPP Confinement System; Prestressed Containment: Behaviour when Concrete Cracking is Modelled; Application of FEA for Design and Support of NPP Containment in Russia; Verification Problems of Nuclear Installations Safety Software of Strength Analysis (NISS SA). The second session (title: concrete containment structures under accident loads) comprises seven papers which titles are: Two Application Examples of Concrete Containment Structures under Accident Load Conditions Using Finite Element Analysis; What Kind of Prediction for Leak rates for Nuclear Power Plant Containments in Accidental Conditions; Influence of Different Hypotheses Used in Numerical Models for Concrete At Elevated Temperatures on the Predicted Behaviour of NPP Core Catchers Under Severe Accident Conditions; Observations on the Constitutive Modeling of Concrete Under Multi-Axial States at Elevated Temperatures; Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage; Program of Containment Concrete Control During Operation for the Temelin Nuclear Power Plant; Static Limit Load of a Deteriorated Hyperbolic Cooling Tower. The third session (concrete structures under extreme environmental load) comprised five papers which titles are: Shear Transfer Mechanism of RC Plates After Cracking; Seismic Back Calculation of an Auxiliary Building of the Nuclear Power Plant Muehleberg, Switzerland; Seismic Behaviour of Slightly Reinforced Shear Wall Structures; FE Analysis of Degraded Concrete

  5. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    Science.gov (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  6. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures.

    Science.gov (United States)

    Sun, Tao; Shi, Qing; Huang, Qiang; Wang, Huaping; Xiong, Xiaolu; Hu, Chengzhi; Fukuda, Toshio

    2018-01-15

    Traditional cell-encapsulating scaffolds may elicit adverse host responses and inhomogeneity in cellular distribution. Thus, fabrication techniques for cellular self-assembly with micro-scaffold incorporation have been used recently to generate toroidal cellular modules for the bottom-up construction of vascular-like structures. The micro-scaffolds show advantage in promoting tissue formation. However, owing to the lack of annular cell micro-scaffolds, it remains a challenge to engineer micro-scale toroidal cellular modules (micro-TCMs) to fabricate microvascular-like structures. Here, magnetic alginate microfibers (MAMs) are used as scaffolding elements, where a winding strategy enables them to be formed into micro-rings as annular cell micro-scaffolds. These micro-rings were investigated for NIH/3T3 fibroblast growth as a function of surface chemistry and MAM size. Afterwards, micro-TCMs were successfully fabricated with the formation of NIH/3T3 fibroblasts and extracellular matrix layers on the three-dimensional micro-ring surfaces. Simple non-contact magnetic assembly was used to stack the micro-TCMs along a micro-pillar, after which cell fusion rapidly connected the assembled micro-TCMs into a microvascular-like structure. Endothelial cells or drugs encapsulated in the MAMs could be included in the microvascular-like structures as in vitro cellular models for vascular tissue engineering, or as miniaturization platforms for pharmaceutical drug testing in the future. Magnetic alginate microfibers functioned as scaffolding elements for guiding cell growth in micro-scale toroidal cellular modules (micro-TCMs) and provided a magnetic functionality to the micro-TCMs for non-contact 3D assembly in external magnetic fields. By using the liquid/air interface, the non-contact spatial manipulation of the micro-TCMs in the liquid environment was performed with a cost-effective motorized electromagnetic needle. A new biofabrication paradigm of construct of microvascular

  7. Methodological Aspects of In Vitro Assessment of Bio-accessible Risk Element Pool in Urban Particulate Matter

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Száková, J.; Tremlová, J.; Kašparovská, Kateřina; Kotlík, B.; Tlustoš, P.; Svoboda, Petr

    2014-01-01

    Roč. 161, č. 2 (2014), s. 216-222 ISSN 0163-4984 Grant - others:GA ČR(CZ) GA521/09/1150; GA ČR(CZ) GAP503/12/0682 Program:GA; GA Institutional support: RVO:67985823 Keywords : risk elements * urban particulate matter * in vitro tests * bio-accessibility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.748, year: 2014

  8. Valence electron structure of cast iron and graphltization behaviour criterion of elements

    Institute of Scientific and Technical Information of China (English)

    刘志林; 李志林; 孙振国; 杨晓平; 陈敏

    1995-01-01

    The valence electron structure of common alloy elements in phases of cast iron is calculated- The relationship between the electron structure of alloy elements and equilibrium, non-equilibrium solidification and graphitization is revealed by defining the bond energy of the strongest bond in a phase as structure formation factor S. A criterion of graphitization behaviour of elements is advanced with the critical value of the structure formation factor of graphite and the n of the strongest covalent bond in cementite. It is found that this theory conforms to practice very well when the criterion is applied to the common alloy elements.

  9. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees-a multi-medicinal herb

    Energy Technology Data Exchange (ETDEWEB)

    Behera, P.R., E-mail: priyaranjan2004@gmail.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Nayak, P [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Barik, D.P., E-mail: barikdp@yahoo.co [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India); Rautray, T.R., E-mail: trrautray@gmail.co [Ion Beam Laboratory, Institute of Physics, Bhubaneswar 751013, Orissa (India); Thirunavoukkarasu, M [Plant Biotechnology Lab, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Orissa (India); Chand, P.K., E-mail: pkchanduubot@yahoo.co.i [Plant Cell and Tissue culture Facility, Post-Graduate Department of Botany, Utkal University, Vani Vihar, Bhubaneswar 751004, Orissa (India)

    2010-12-15

    The multi-elemental composition of in vitro-proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  10. ED-XRF spectrometric analysis of comparative elemental composition of in vivo and in vitro roots of Andrographis paniculata (Burm.f.) Wall. ex Nees-a multi-medicinal herb

    International Nuclear Information System (INIS)

    Behera, P.R.; Nayak, P.; Barik, D.P.; Rautray, T.R.; Thirunavoukkarasu, M.; Chand, P.K.

    2010-01-01

    The multi-elemental composition of in vitro-proliferated root tissues of Andrographis paniculata (Burm.f.) Wall. ex Nees was compared with that of the naturally grown in vivo plants. Trace elements namely Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb in addition to two macro-elements K and Ca were identified and quantified in root tissues of both sources using the energy dispersive X-ray fluorescence (ED-XRF) technique. ED-XRF analysis was performed using Mo K X-rays generated from a secondary molybdenum target. The elemental content of in vitro roots was found to be at par with that of naturally grown plants of the same species. This opens up a possibility of exploiting in vitro root cultures as a viable, alternative and renewable source of phytochemicals of relevance, besides providing a means for conservation of the valuable natural resources.

  11. Mitigation of Flanking Noise Transmission in Periodic Structures of Lightweight Elements

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal

    through structural junctions and radiates into neighbouring rooms. To diminish the flanking transmission of sound, frames are usually designed with single or double studs or constructed with layers of foam or another viscoelastic material. This thesis is investigating the behaviour of flanking noise...... transmission in periodic structures of lightweight elements by employing various numerical, analytical and experimental methods. At first, three dimensional finite-element (FE) models of a Z-shaped lightweight panel structure based on various frame designs, inclusion of air and structural coupling between...... elements are considered for describing flanking noise transmission through panels. It is assumed that the ribs are fully fixed to the plates in case of various frame designs, and a parametric study is carried out on the centre panel with regard to various spacing between the ribs. Solid finite elements...

  12. Three dimensional finite element linear analysis of reinforced concrete structures

    International Nuclear Information System (INIS)

    Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.

    1979-01-01

    A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)

  13. An efficient structural finite element for inextensible flexible risers

    Science.gov (United States)

    Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.

    2017-12-01

    A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.

  14. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  15. Computer simulation of radiation damage in HTGR elements and structural materials

    International Nuclear Information System (INIS)

    Gann, V.V.; Gurin, V.A.; Konotop, Yu.F.; Shilyaev, B.A.; Yamnitskij, V.A.

    1980-01-01

    The problem of mathematical simulation of radiation damages in material and items of HTGR is considered. A system-program complex IMITATOR, intended for imitation of neutron damages by means of charged particle beams, is used. Account of material composite structure and certain geometry of items permits to calculate fields of primary radiation damages and introductions of reaction products in composite fuel elements, microfuel elements, their shells, composite absorbing elements on the base of boron carbide, structural steels and alloys. A good correspondence of calculation and experimental burn-out of absorbing elements is obtained, application of absorbing element as medium for imitation experiments is grounded [ru

  16. Ageing evaluation model of nuclear reactors structural elements

    International Nuclear Information System (INIS)

    Ziliukas, A.; Jutas, A.; Leisis, V.

    2002-01-01

    In this article the estimation of non-failure probability by random faults on the structural elements of nuclear reactors is presented. Ageing is certainly a significant factor in determining the limits of nuclear plant lifetime or life extensions. Usually the non failure probability rates failure intensity, which is characteristic for structural elements ageing in nuclear reactors. In practice the reliability is increased incorrectly because not all failures are fixed and cumulated. Therefore, the methodology with using the fine parameter of the failures flow is described. The comparison of non failure probability and failures flow is carried out. The calculation of these parameters in the practical example is shown too. (author)

  17. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  18. Detection of secondary structure elements in proteins by hydrophobic cluster analysis.

    Science.gov (United States)

    Woodcock, S; Mornon, J P; Henrissat, B

    1992-10-01

    Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.

  19. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  20. The investigation about embodiment of vertical isolation structure. An embodiment of the structural plan of damper element

    International Nuclear Information System (INIS)

    Somaki, Takahiro; Miyamoto, Akinori; Nakatogawa, Tetsundo

    2003-01-01

    In order to realize the concept of a vertical isolation system (common deck system), research and development on the vertical isolation structure is now underway. In its first step, structure plans of each of the isolation element and the damper element will be drawn up, and in the next step, tests on these elements will be planed, executed, analyzed, and evaluated, to be reflected to the structure plan. In this report, the structure plan and test plan of damper element is reported. At first, it was concluded in the previous work that the steel-materials damper which can be evaluated by Ramberg-Osgood type is applicable to the vertical isolation system required performance. Then, based on this results, the form range of a damper which satisfies was surveyed from both cross section thickness and distribution of strain by analysis. Next, in order to check the performance (limit a damping capability, load carrying capacity, fatigue strength, and deformability) of an actual damper element based on this analysis result, the test plan for actual scale model was drawn up. (author)

  1. Electronic structure and chemical properties of superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Pershina, V [Gesellschaft fuer Schwerionenforschung (GSI), Helmholtzzentrum fuer Schwerionenforschung Gmbh (Germany)

    2009-12-31

    Relativistic electronic structure calculations of superheavy elements (Z>=104) are analyzed. Preference is given to those related to experimental research. The role of relativistic effects is discussed.

  2. Role of the Pepino mosaic virus 3'-untranslated region elements in negative-strand RNA synthesis in vitro.

    Science.gov (United States)

    Osman, Toba A M; Olsthoorn, René C L; Livieratos, Ioannis C

    2014-09-22

    Pepino mosaic virus (PepMV) is a mechanically-transmitted positive-strand RNA potexvirus, with a 6410 nt long single-stranded (ss) RNA genome flanked by a 5'-methylguanosine cap and a 3' poly-A tail. Computer-assisted folding of the 64 nt long PepMV 3'-untranslated region (UTR) resulted in the prediction of three stem-loop structures (hp1, hp2, and hp3 in the 3'-5' direction). The importance of these structures and/or sequences for promotion of negative-strand RNA synthesis and binding to the RNA dependent RNA polymerase (RdRp) was tested in vitro using a specific RdRp assay. Hp1, which is highly variable among different PepMV isolates, appeared dispensable for negative-strand synthesis. Hp2, which is characterized by a large U-rich loop, tolerated base-pair changes in its stem as long as they maintained the stem integrity but was very sensitive to changes in the U-rich loop. Hp3, which harbours the conserved potexvirus ACUUAA hexamer motif, was essential for template activity. Template-RNA polymerase binding competition experiments showed that the ACUUAA sequence represents a high-affinity RdRp binding element. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Structural elements of critical thinking of nurses in emergency care].

    Science.gov (United States)

    Crossetti, Maria da Graça Oliveira; Bittencourt, Greicy Kelly Gouveia Dias; Lima, Ana Amélia Antunes; de Góes, Marta Georgina Oliveira; Saurin, Gislaine

    2014-09-01

    The objective of this study was to analyze the structural elements of critical thinking (CT) of nurses in the clinical decision-making process. This exploratory, qualitative study was conducted with 20 emergency care nurses in three hospitals in southern Brazil. Data were collected from April to June 2009, and a validated clinical case was applied from which nurses listed health problems, prescribed care and listed the structural elements of CT. Content analysis resulted in categories used to determine priority structural elements of CT, namely theoretical foundations and practical relationship to clinical decision making; technical and scientific knowledge and clinical experience, thought processes and clinical decision making: clinical reasoning and basis for clinical judgments of nurses: patient assessment and ethics. It was concluded that thinking critically is a skill that enables implementation of a secure and effective nursing care process.

  4. Structural elements of critical thinking of nurses in emergency care

    Directory of Open Access Journals (Sweden)

    Maria da Graça Oliveira Crossetti

    Full Text Available The objective of this study was to analyze the structural elements of critical thinking (CT of nurses in the clinical decision-making process. This exploratory, qualitative study was conducted with 20 emergency care nurses in three hospitals in southern Brazil. Data were collected from April to June 2009, and a validated clinical case was applied from which nurses listed health problems, prescribed care and listed the structural elements of CT. Content analysis resulted in categories used to determine priority structural elements of CT, namely theoretical foundations and practical relationship to clinical decision making; technical and scientific knowledge and clinical experience, thought processes and clinical decision making: clinical reasoning and basis for clinical judgments of nurses: patient assessment and ethics. It was concluded that thinking critically is a skill that enables implementation of a secure and effective nursing care process.

  5. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  6. Experimental evaluation of the structural behaviour of adobe masonry structural elements

    OpenAIRE

    Varum, H.; Costa, A.; Pereira, H.; Almeida, J.; Rodrigues, H.; Silveira, D.

    2007-01-01

    Rehabilitation and strengthening of existing adobe masonry constructions have been neglected during the last decades. In Aveiro, Portugal, many adobe buildings present an important level of structural damage and, in many cases, are even near to ruin, having the majority a high vulnerability to seismic actions. To face the lack of information concerning the mechanical properties and structural behaviour of adobe elements, it was developed an experimental campaign. The composition and mechanica...

  7. Implementation of advanced finite element technology in structural analysis computer codes

    International Nuclear Information System (INIS)

    Kohli, T.D.; Wiley, J.W.; Koss, P.W.

    1975-01-01

    Advances in finite element technology over the last several years have been rapid and have largely outstripped the ability of general purpose programs in the public domain to assimilate them. As a result, it has become the burden of the structural analyst to incorporate these advances himself. This paper discusses the implementation and extension of specific technological advances in Bechtel structural analysis programs. In general these advances belong in two categories: (1) the finite elements themselves and (2) equation solution algorithms. Improvements in the finite elements involve increased accuracy of the elements and extension of their applicability to various specialized modelling situations. Improvements in solution algorithms have been almost exclusively aimed at expanding problem solving capacity. (Auth.)

  8. Adaptive contact elements for three-dimensional fluid-structure interfaces

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem

  9. Adaptive contact elements for three-dimensional fluid-structure interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.

    1985-01-01

    A finite element method is developed for treating the mechanics of contact between two deformable bodies which occurs, for example, at fluid-structure interfaces. The method uses a family of adaptive contact elements, which are based upon the penalty method, to handle all of the possible contact configurations that can occur between the discretized contacting bodies. The contact element's nodal connectivity is allowed to change during the computations in order to accommodate finite sliding. The infusion of these elements in the interface results in satisfying the force equilibrium condition during contact. The methodology has been implemented into the NEPTUNE code. Results are presented for an illustrative problem.

  10. Essentials of the finite element method for mechanical and structural engineers

    CERN Document Server

    Pavlou, Dimitrios G

    2015-01-01

    Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanic...

  11. Infinite elements for soil-structure interaction analysis in multi-layered halfspaces

    International Nuclear Information System (INIS)

    Yun, Chung Bang; Kim, Jae Min; Yang, Shin Chu

    1994-01-01

    This paper presents the theoretical aspects of a computer code (KIESSI) for soil-structure interaction analysis in a multi-layered halfspace using infinite elements. The shape functions of the infinite elements are derived from approximate expressions of the analytical solutions. Three different infinite elements are developed. They are the horizontal, the vertical and the comer infinite elements (HIE, VIE and CIE). Numerical example analyses are presented for demonstrating the effectiveness of the proposed infinite elements

  12. Nuclear structure notes on element 115 decay chains

    International Nuclear Information System (INIS)

    Rudolph, D.; Sarmiento, L. G.; Forsberg, U.

    2015-01-01

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory

  13. Nuclear structure notes on element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, D., E-mail: Dirk.Rudolph@nuclear.lu.se; Sarmiento, L. G.; Forsberg, U. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  14. Storage conditions of skin affect tissue structure and in vitro percutaneus penetration

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Bagatolli, Luis

    2016-01-01

    skin at -20oC causes structural changes in the upper Stratum Corneum observable with image techniques such as multiphoton excitation fluorescence microscopy. The presently available literature does, however, not support that the observed structural damage to the integrity is sufficient to cause...... structural changes in upper as well as deeper parts of Stratum Corneum. These more severe changes corresponds to significantly increased percutaneous penetration of chemicals applied to skin specimens stored at very low temperatures. Storage of human skin for later use in in vitro studies on percutaneous......For logistic and practical reasons it is difficult to perform in vitro studies on percutaneous penetration on fresh human skin obtained directly from surgery. Skin samples are therefore often kept frozen until use. The present chapter present the available literature on the topic. Storage of human...

  15. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  16. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    International Nuclear Information System (INIS)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel

  17. LIGHT-WEIGHT LOAD-BEARING STRUCTURES REINFORCED BY CORE ELEMENTS MADE OF SEGMENTS AND A METHOD OF CASTING SUCH STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a light-weight load-bearing structure, reinforced by core elements (2) of a strong material constituting one or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2......), where the core (2) is constructed from segments (1) of core elements (2) assembled by means of one or more prestressing elements (4). The invention further relates to a method of casting of light-weight load-bearing structures, reinforced by core elements (2) of a strong material constituting one...... or more compression or tension zones in the structure to be cast, which core (2) is surrounded by or adjacent to a material of less strength compared to the core (2), where the core (2) is constructed from segments (1) of core elements (2) assembled and hold together by means of one or more prestressing...

  18. Testing for change in structural elements of forest inventories

    Science.gov (United States)

    Melinda Vokoun; David Wear; Robert Abt

    2009-01-01

    In this article we develop a methodology to test for changes in the underlying relationships between measures of forest productivity (structural elements) and site characteristics, herein referred to as structural changes, using standard forest inventories. Changes in measures of forest growing stock volume and number of trees for both...

  19. Structural weights analysis of advanced aerospace vehicles using finite element analysis

    Science.gov (United States)

    Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.

    1989-01-01

    A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.

  20. Numerical investigation of soil and buried structures using finite element analysis

    Directory of Open Access Journals (Sweden)

    Meysam Shirzad Shahrivar

    2017-02-01

    Full Text Available Today the important of studying soil effect on behavior of soil  contacted structures such as foundations, piles,  retaining wall and other similar structures is so much that neglecting of soil-structure interaction effect can cause to untrue results. In this paper soil-structure interaction simulation was done by using Finite element method analysis with ABAQUS version 6.13-14.The results has been presented based on pile function in contact with soil, vertical stresses in soil and structures, pore pressure in drained and undrained condition and underground water level.Final conclusions revealed that pore pressure effect is not uniform on all parts of pile and amount of pore pressure increment in top elements is lower than down elements of  pile.Further it was proven that average amount of vertical stress on end of pile is    of this stress on top of the pile. thus it was concluded that 70% of pile bearing capacity is depend on friction of soil and pile contact surface.

  1. Molecules and Models The molecular structures of main group element compounds

    CERN Document Server

    Haaland, Arne

    2008-01-01

    This book provides a systematic description of the molecular structures and bonding in simple compounds of the main group elements with particular emphasis on bond distances, bond energies and coordination geometries. The description includes the structures of hydrogen, halogen and methyl derivatives of the elements in each group, some of these molecules are ionic, some polar covalent. The survey of molecules whose structures conform to well-established trends is followed byrepresentative examples of molecules that do not conform. We also describe electron donor-acceptor and hydrogen bonded co

  2. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  3. In vivo and in vitro study of the 99mTc-DMSA radiopharmaceutical connection to blood elements

    International Nuclear Information System (INIS)

    Freitas, Rosimeire de S.; Gomes, Maria L.; Mattos, Deise M.M.; Moreno, Silvana R.F.; Dire, Glaucio F.; Lima, Elaine A.; Lima-Filho, Guilherme L.; Aleixo, Luiz Claudio; Bernardo-Filho, Mario; Instituto Nacional do Cancer, Rio de Janeiro

    2002-01-01

    Radiopharmaceuticals are widely used in nuclear medicine. The comprehension of their uptake mechanism in target organs, as well as their clearance may depend on the elucidation of their biochemical characteristics, for instance, their binding to blood elements. The reported precipitating studies of blood with radiopharmaceuticals have shown that the results can not be easily compared. Then, we decide evaluate of the binding proteins on the blood elements using trichloroacetic acid (TCA) to determine the radioactivity of the dimercaptosuccinic acid with technetium-99m (99mTc-DMSA) present in precipitating plasma (P) and blood cells (BC). Depending on the TCA concentration we have determined different values in the insoluble fractions of the plasma when the in vivo and in vitro evaluations were carried out. (author)

  4. Electronic structure theory of the superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Eliav, Ephraim, E-mail: ephraim@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel); Fritzsche, Stephan, E-mail: s.fritzsche@gsi.de [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, D-07743 Jena (Germany); Kaldor, Uzi, E-mail: kaldor@tau.ac.il [School of Chemistry, Tel Aviv University, 6997801 Tel Aviv (Israel)

    2015-12-15

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac–Coulomb–Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental–computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  5. Finite element modeling of nanotube structures linear and non-linear models

    CERN Document Server

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  6. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    models may be created by assembling models of floor and wall structures into large models of complete buildings. When assembling the floor and wall models, the number of degrees of freedom quickly increases to exceed the limits of computer capacity, at least in a reasonable amount of computational time...... Hz. Three different methods of model reduction were investigated; Guyan reduction, component mode synthesis and a third approach where a new finite element model was created with structural elements. Eigenvalue and steady-state analyses were performed in order to compare the errors...

  7. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    Science.gov (United States)

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  8. Finite element analysis of adanced composite structures containing mechanically fastened joints

    International Nuclear Information System (INIS)

    Baumann, E.

    1982-01-01

    Although the usual engineering practice is to ignore joint effects in finite element models of overall structures, there are times when the inclusion of fastener effects in a model is necessary for accurate analysis. This paper describes some simple but accurate methods for accommodating this modeling requirement. The approach involves correlation of test results from a few composite mechanically fastened joints with finite element analyses of joints. It is assumed that if the fastener actions in the test articles can be properly predicted by simple finite element techniques, then these same techniques can be applied to large overall structure models. During the course of this test-analysis effort it was determined that it is possible to obtain correct results for overall structure-joint analyses by using simple modeling concepts provided special care is employed. Also, some emphasis is given in this paper to the importance of properly reducing test data in order to obtain meaningful correlations with finite element analysis. Finally, for those interested, the appendix contains brief descriptions of the test results and failure modes explored in the test program. (orig.)

  9. Efficient Analysis of Structures with Rotatable Elements Using Model Order Reduction

    Directory of Open Access Journals (Sweden)

    G. Fotyga

    2016-04-01

    Full Text Available This paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the 3D finite element method is supported by multilevel model-order reduction, orthogonal projection at the boundaries of macromodels and the operation called macromodels cloning. All the time-consuming steps are performed only once in the preparatory stage. In the tuning stage, only small parts of the domain are updated, by means of a special meshing technique. In effect, the tuning process is performed extremely rapidly. The results of the numerical experiments confirm the efficiency and validity of the proposed method.

  10. Ab initio random structure search for 13-atom clusters of fcc elements

    International Nuclear Information System (INIS)

    Chou, J P; Hsing, C R; Wei, C M; Cheng, C; Chang, C M

    2013-01-01

    The 13-atom metal clusters of fcc elements (Al, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) were studied by density functional theory calculations. The global minima were searched for by the ab initio random structure searching method. In addition to some new lowest-energy structures for Pd 13 and Au 13 , we found that the effective coordination numbers of the lowest-energy clusters would increase with the ratio of the dimer-to-bulk bond length. This correlation, together with the electronic structures of the lowest-energy clusters, divides the 13-atom clusters of these fcc elements into two groups (except for Au 13 , which prefers a two-dimensional structure due to the relativistic effect). Compact-like clusters that are composed exclusively of triangular motifs are preferred for elements without d-electrons (Al) or with (nearly) filled d-band electrons (Ni, Pd, Cu, Ag). Non-compact clusters composed mainly of square motifs connected by some triangular motifs (Rh, Ir, Pt) are favored for elements with unfilled d-band electrons. (paper)

  11. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer ...

    Indian Academy of Sciences (India)

    DOI 10.1007/s12039-015-0824-z. Synthesis, structure analysis, anti-bacterial and in vitro anti-cancer activity of new Schiff base and its copper complex derived from sulfamethoxazole. I RAMA∗ and R SELVAMEENA. PG and Research Department of Chemistry, Seethalakshmi Ramaswami College,. Tiruchirappalli 620 002 ...

  12. Finite elements for the thermomechanical calculation of massive structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1978-01-01

    The paper examines the fine element analysis of thermal stress and deformation problems in massive structures. To this end compatible idealizations are utilized for heat conduction and static analysis in order to minimize the data transfer. For transient behaviour due to unsteady heat flow and/or inelastics material processes the two computational parts are interwoven in form of an integrated software package for finite element analysis of thermomechanical problems in space and time. (orig.) [de

  13. Structural elements recognized by abacavir-induced T cells

    DEFF Research Database (Denmark)

    Yerly, Daniel; Pompeu, Yuri Andreiw; Schutte, Ryan J.

    2017-01-01

    of autoimmune destruction. The structural elements recognized by drug-specific T cell receptors (TCRs) in vivo are poorly defined. Drug-stimulated T cells express TCRs specific for peptide/HLA complexes, but the characteristics of peptides (sequence, or endogenous or exogenous origin) presented in the context...

  14. Using support vector machines to improve elemental ion identification in macromolecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Morshed, Nader [University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Echols, Nathaniel, E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Adams, Paul D., E-mail: nechols@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-05-01

    A method to automatically identify possible elemental ions in X-ray crystal structures has been extended to use support vector machine (SVM) classifiers trained on selected structures in the PDB, with significantly improved sensitivity over manually encoded heuristics. In the process of macromolecular model building, crystallographers must examine electron density for isolated atoms and differentiate sites containing structured solvent molecules from those containing elemental ions. This task requires specific knowledge of metal-binding chemistry and scattering properties and is prone to error. A method has previously been described to identify ions based on manually chosen criteria for a number of elements. Here, the use of support vector machines (SVMs) to automatically classify isolated atoms as either solvent or one of various ions is described. Two data sets of protein crystal structures, one containing manually curated structures deposited with anomalous diffraction data and another with automatically filtered, high-resolution structures, were constructed. On the manually curated data set, an SVM classifier was able to distinguish calcium from manganese, zinc, iron and nickel, as well as all five of these ions from water molecules, with a high degree of accuracy. Additionally, SVMs trained on the automatically curated set of high-resolution structures were able to successfully classify most common elemental ions in an independent validation test set. This method is readily extensible to other elemental ions and can also be used in conjunction with previous methods based on a priori expectations of the chemical environment and X-ray scattering.

  15. Validation of structural design of JHR fuel element

    International Nuclear Information System (INIS)

    Brisson, S.; Miras, G.; Le Bourdonnec, L.; Lemoine, P.; Anselmet, M.C.; Marelle, V.

    2010-01-01

    The validation of the structural design of the Jules Horowitz Reactor fuel element was made by the Finite Element Method, starting from the Computer Aided Design. The JHR fuel element is a cylindrical assembly of three sectors composed of eight rolled fuel plates. A roll-swaging process is used to join the fuel plates to three aluminium stiffeners. The hydraulic gap between each plate is 1.95 mm. The JHR fuel assembly is fastened at both ends to the upper and lower endfittings by riveting. The main stresses are essentially thermal loads, imposed on the fuel zone of the plates. These thermal loads result from the nuclear heat flux (W/cm 2 ). The mechanical loads are mainly hydraulic thrust forces. The average coolant velocity is 15 m/s. Seismic effects are also studied. The fuel assembly is entirely modelled by thin shells. The model takes into account asymmetric thermal loads which often appear in Research Reactors. The mechanics of the fuel plates vary in function of the burn up. These mechanical properties are derived from the data sets used in the MAIA code, and the validity of the structure is demonstrable at throughout the life of the fuel. Results concerning displacement are compared to functional criteria, while results concerning stress are compared to RCC-MX criteria. The results of this analysis show that the mechanical and geometrical integrity of the JHR fuel elements is respected for Operating Categories 1 and 2. This paper presents the methodology of this demonstration for the results obtained. (author)

  16. Examination of arrangement of alloy structural elements in models of metallographic structures

    International Nuclear Information System (INIS)

    Radwan, M.; Gibas, K.; Lybacka, K.; Narbantowicz, E.

    1986-01-01

    To verify the structure description method taking the probability of component concentration distributions in alloys into account, it is necessary to answer the following question: do the geometrical shapes of component arrangement which are visible on the autoradiographs as dark spots determine the type and parameters of the probability distribution. To solve the problem, 14 autoradiographic models representing different shapes of labelled compounds have been prepared and measured. The results show that different structures have a different distribution of the same element

  17. Finite element analysis of ARPS structures

    International Nuclear Information System (INIS)

    Ruhkamp, J.D.; McDougal, J.R.; Kramer, D.P.

    1998-01-01

    Algor finite element software was used to determine the stresses and deflections in the metallic walls of Advanced Radioisotope Power Systems (ARPS) designs. The preliminary design review of these systems often neglects the structural integrity of the design which can effect fabrication and the end use of the design. Before finite element analysis (FEA) was run on the canister walls of the thermophotovoltaic (TPV) generator, hand calculations were used to approximate the stresses and deflections in a flat plate. These results compared favorably to the FEA results of a similar size flat plate. The AMTEC (Alkali Metal Thermal-to-Electric Conversion) cells were analyzed by FEA and the results compared to two cells that were mechanically tested. The mechanically tested cells buckled in the thin sections, one at the top and one in the lower section. The FEA predicted similar stress and shape results but the critical buckling load was found to be very shape dependent

  18. Inverse boundary element calculations based on structural modes

    DEFF Research Database (Denmark)

    Juhl, Peter Møller

    2007-01-01

    The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods sol...

  19. Incommensurate host-guest structures in compressed elements: Hume—Rothery effects as origin

    International Nuclear Information System (INIS)

    Degtyareva, V F

    2015-01-01

    Discovery of the incommensurate structure in the element Ba under pressure 15 years ago was followed by findings of a series of similar structures in other compressed elements. Incommensurately modulated structures of the host-guest type consist of a tetragonal host structure and a guest structure. The guest structure forms chains of atoms embedded in the channels of host atoms so that the axial ratio of these subcells along the c axis is not rational. Two types of the host-guest structures have been found so far: with the host cells containing 8 atoms and 16 atoms; in these both types the guest cells contain 2 atoms. These crystal structures contain a non-integer number of atoms in their unit cell: tI11* in Bi, Sb, As, Ba, Sr, Sc and tI19* in Na, K, Rb. We consider here a close structural relationship of these host-guest structures with the binary alloy phase Au 3 Cd 5 -tI32. This phase is related to the family of the Hume-Rothery phases that is stabilized by the Fermi sphere-Brillouin zone interaction. From similar considerations for alkali and alkaline-earth elements a necessary condition for structural stability emerges in which the valence electrons band overlaps with the upper core electrons and the valence electron count increases under compression. (paper)

  20. The state-of-the-art and problems of fuel element structural analysis

    International Nuclear Information System (INIS)

    Lassmann, K.

    1980-02-01

    This study of fuel element structural analysis is arranged in two parts: In the first, self-contained, part the general basic principles of deterministic computer programs for structural analysis of fuel elements are reviewed critically and an approach is shown which can be used to expand the system with respect to statistical investigations. The second part contains technical details summarized in 11 publications, all of which appeared in periodicals with reviewer teams. The major aspects of this study are thought to be the following ones: Contributions to the 'philosophy' of fuel element structural analysis. Critical analysis of the basic structure of computer programs. Critical analysis of the mechanical concept of integral fuel rod computer programs. Establishment of a comprehensive computer program system (URANUS). Expansion from purely deterministic information by statistical analyses. Methodological and computer program developments for the analysis of fast accidents. (orig.) 891 HP/orig. 892 MKO [de

  1. Lower bound plane stress element for modelling 3D structures

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2017-01-01

    In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...

  2. Application of ADINA fluid element for transient response analysis of fluid-structure system

    International Nuclear Information System (INIS)

    Sakurai, Y.; Kodama, T.; Shiraishi, T.

    1985-01-01

    Pressure propagation and Fluid-Structure Interaction (FSI) in 3D space were simulated by general purpose finite element program ADINA using the displacement-based fluid element which presumes inviscid and compressible fluid with no net flow. Numerical transient solution was compared with the measured data of an FSI experiment and was found to fairly agree with the measured. In the next step, post analysis was conducted for a blowdown experiment performed with a 1/7 scaled reactor pressure vessel and a flexible core barrel and the code performance was found to be satisfactory. It is concluded that the transient response of the core internal structure of a PWR during the initial stage of LOCA can be analyzed by the displacement-based finite fluid element and the structural element. (orig.)

  3. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  4. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  5. Similitude and scaling of large structural elements: Case study

    Directory of Open Access Journals (Sweden)

    M. Shehadeh

    2015-06-01

    Full Text Available Scaled down models are widely used for experimental investigations of large structures due to the limitation in the capacities of testing facilities along with the expenses of the experimentation. The modeling accuracy depends upon the model material properties, fabrication accuracy and loading techniques. In the present work the Buckingham π theorem is used to develop the relations (i.e. geometry, loading and properties between the model and a large structural element as that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded and treated according to a set of similitude requirements that relate the model to the large structural element. Three independent scale factors which represent three fundamental dimensions, namely mass, length and time need to be selected for designing the scaled down model. Numerical prediction of the stress distribution within the model and its elastic deformation under steady loading is to be made. The results are compared with those obtained from the full scale structure numerical computations. The effect of scaled down model size and material on the accuracy of the modeling technique is thoroughly examined.

  6. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  7. SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.

    1967-01-01

    1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100

  8. Structure of nuclear transition matrix elements for neutrinoless ...

    Indian Academy of Sciences (India)

    Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...

  9. Superheavy Element Synthesis And Nuclear Structure

    International Nuclear Information System (INIS)

    Ackermann, D.; Block, M.; Burkhard, H.-G.; Heinz, S.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Mann, R.; Maurer, J.; Antalic, S.; Saro, S.; Venhart, M.; Hofmann, S.; Leino, M.; Uusitalo, J.; Nishio, K.; Popeko, A. G.; Yeremin, A. V.

    2009-01-01

    After the successful progress in experiments to synthesize superheavy elements (SHE) throughout the last decades, advanced nuclear structure studies in that region have become feasible in recent years thanks to improved accelerator, separation and detection technology. The means are evaporation residue(ER)-α-α and ER-α-γ coincidence techniques complemented by conversion electron (CE) studies, applied after a separator. Recent examples of interesting physics to be discovered in this region of the chart of nuclides are the studies of K-isomers observed in 252,254 No and in 270 Ds.

  10. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  11. Role of shell structure in the 2νββ nuclear matrix elements

    International Nuclear Information System (INIS)

    Nakada, H.

    1998-01-01

    Significance of the nuclear shell structure in the ββ nuclear matrix elements is pointed out. The 2νββ processes are mainly mediated by the low-lying 1 + states. The shell structure also gives rise to concentration or fragmentation of the 2νββ components over intermediate states, depending on nuclide. These roles of the shell structure are numerically confirmed by realistic shell model calculations. Some shell structure effects are suggested for 0νββ matrix elements; dominance of low-lying intermediate states and nucleus-dependence of their spin-parities. (orig.)

  12. Nonlinear finite element analysis of concrete structures

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1980-05-01

    This report deals with nonlinear finite element analysis of concrete structures loaded in the short-term up until failure. A profound discussion of constitutive modelling on concrete is performed; a model, applicable for general stress states, is described and its predictions are compared with experimental data. This model is implemented in the AXIPLANE-program applicable for axisymmetrick and plane structures. The theoretical basis for this program is given. Using the AXIPLANE-program various concrete structures are analysed up until failure and compared with experimental evidence. These analyses include panels pressure vessel, beams failing in shear and finally a specific pull-out test, the Lok-Test, is considered. In these analyses, the influence of different failure criteria, aggregate interlock, dowel action, secondary cracking, magnitude of compressive strenght, magnitude of tensile strenght and of different post-failure behaviours of the concrete are evaluated. Moreover, it is shown that a suitable analysis of the theoretical data results in a clear insight into the physical behaviour of the considered structures. Finally, it is demonstrated that the AXISPLANE-program for widely different structures exhibiting very delicate structural aspects gives predictions that are in close agreement with experimental evidence. (author)

  13. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  14. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  15. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.

  16. Free vibration of thin axisymmetric structures by a semi-analytical finite element scheme and isoparametric solid elements

    International Nuclear Information System (INIS)

    Akeju, T.A.I.; Kelly, D.W.; Zienkiewicz, O.C.; Kanaka Raju, K.

    1981-01-01

    The eigenvalue equations governing the free vibration of axisymmetric solids are derived by means of a semi-analytical finite element scheme. In particular we investigated the use of an 8-node solid element in structures which exhibit a 'shell-like' behaviour. Bathe-Wilson subspace iteration algorithm is employed for the solution of the equations. The element is shown to give good results for beam and shell vibration problems. It is also utilised to solve a complex solid in the form of an internal component of a modern jet engine. This particular application is of considerable practical importance as the dynamics of such components form a dominant design constraint. (orig./HP)

  17. Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility.

    Science.gov (United States)

    Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui

    2016-08-01

    The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (pdigestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.

  18. Finite element analysis of inelastic structural behavior

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1977-01-01

    The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model

  19. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility.

    Science.gov (United States)

    Wang, Shujun; Wang, Shaokang; Liu, Lu; Wang, Shuo; Copeland, Les

    2017-03-01

    In this study, we elucidated the underlying mechanisms that are responsible for the rate-limiting step for wheat starch digestion. Wheat starch samples with a degree of gelatinization (DG) ranging from 0 to 100% were prepared. As DG increased, the ordered structures of the starch were disrupted increasingly. In contrast, almost all of the increase in the rate and extent of in vitro enzymatic digestion coincided with a DG of only 6% and a minor loss of structural order. As DG increased beyond 6%, digestibility of the starch increased only slightly. We propose that the access and binding of enzymes to starch is greatly increased with only a small DG, which is followed by the simultaneous hydrolysis of crystalline and amorphous areas in gelatinized starch. In vitro enzymatic digestibility of starch was determined predominantly by enzyme binding to starch rather than the ordered structures of starch.

  20. Structural changes of bovine milk fat globules during in vitro digestion.

    Science.gov (United States)

    Gallier, S; Ye, A; Singh, H

    2012-07-01

    An in vitro digestion model that simulated gastric and intestinal fasting conditions was used to monitor the physical, chemical, and structural changes of fat globules from raw bovine milk. During in vitro gastric digestion, the fat globules were stable under low-acidic conditions. Some peptides and β-lactoglobulin were resistant to proteolysis by pepsin. Phospholipids, proteins, and peptides stabilized the globules in the stomach model. During in vitro intestinal digestion, most of the β-lactoglobulin and residual peptides were hydrolyzed by trypsin and chymotrypsin, and the lipolytic products, released from the hydrolysis of the triglyceride core of the globules, led to destabilization and coalescence of the globules. By accumulating at the surface of the fat globules, the lipolytic products formed a lamellar phase and their solubilization by bile salts resulted in the formation of disk-shaped micelles. This study brings new interesting insights on the digestion of bovine milk. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Isogeometric finite element data structures based on Bézier extraction of T-splines

    NARCIS (Netherlands)

    Scott, M.A.; Borden, M.J.; Verhoosel, C.V.; Sederberg, T.W.; Hughes, T.J.R.

    2011-01-01

    We develop finite element data structures for T-splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so-called Bernstein basis. The

  2. SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Jadhav, K.; Crowell, J.S.

    1969-01-01

    1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5

  3. Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    I. Iskhakov

    2016-01-01

    Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.

  4. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  5. The in vitro synthesis of {beta}-galactosidase induced in a subcellular structure of Escherichia coli (1961); Synthese in vitro de {beta}-galactosidase induite dans une structure subcellulaire d'Escherichia coli (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Nisman, B; Kayser, A; Demailly, J; Genin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P{sub 1}). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of {beta}-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [French] L'isopropylthiogalactoside (IPTG), inducteur de la 3-galactosidase, permet la synthese in vitro de cette enzyme dans la structure subcellulaire (P{sub 1}) isolee a partir des bacteries d'Escherichia coli K 12, inductibles mais non induites. L'incorporation d'acides amines radioactifs, stimulee par la presence d'inducteur, a ete etudiee au cours de la synthese de l'enzyme. Le saccharose supprime l'induction de la 3-galactosidase. La presence du represseur specifique dans la structure etudiee est consideree. (auteurs)

  6. Hypersensitive transition spectrum of f-element and coordination structure

    International Nuclear Information System (INIS)

    Cao Xuan; Song Chongli; Zhu Youngjun

    1992-10-01

    Some f-f transitions of Ln(An) metallic ions have particular super-sensitivity to the change of coordination environments. This is called super-sensitive transitions. Based on the irreducible tensor operator method, a computation model and corresponding computer program for calculating the hypersensitive transition spectrum of f-element were developed. By comparing the theoretical spectra of all possible coordination structures with experimental one, the possible coordination structures of complex can be determined. The coordination structures of Nd 3+ , Er 3 + hydrate and their extraction complex with H(DEHP) were successfully determined by this method, and the experimental spectra were also assigned

  7. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...

  8. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  9. PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual

    Science.gov (United States)

    Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.

    1977-01-01

    The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.

  10. On the way to unveiling the atomic structure of superheavy elements

    International Nuclear Information System (INIS)

    Laatiaoui, Mustapha

    2016-01-01

    Optical spectroscopy of the transfermium elements (atomic number Z > 100) is nowadays one of the most fascinating and simultaneously challenging tasks in atomic physics. On the one hand, key atomic and even nuclear ground-state properties may be obtained by studying the spectral lines of these heaviest elements. On the other hand, these elements have to be produced “online” by heavy-ion induced fusion-evaporation reactions yielding rates on the order of a few atoms per second at most, which renders their optical spectroscopy extremely difficult. Only recently, a first foray of laser spectroscopy into this heaviest element region was reported. Several atomic transitions in the element nobelium (Z = 102) were observed and characterized, using an ultra-sensitive and highly efficient resonance ionization technique. The findings confirm the predictions and additionally provide a benchmark for theoretical modelling. The work represents an important stepping stone towards experimental studies of the atomic structure of superheavy elements.

  11. Applications of a global nuclear-structure model to studies of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1993-01-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, α-decay properties, β-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements

  12. Influence of coolant motion on structure of hardened steel element

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2008-08-01

    Full Text Available Presented paper is focused on volumetric hardening process using liquid low melting point metal as a coolant. Effect of convective motion of the coolant on material structure after hardening is investigated. Comparison with results obtained for model neglecting motion of liquid is executed. Mathematical and numerical model based on Finite Element Metod is described. Characteristic Based Split (CBS method is used to uncouple velocities and pressure and finally to solve Navier-Stokes equation. Petrov-Galerkin formulation is employed to stabilize convective term in heat transport equation. Phase transformations model is created on the basis of Johnson-Mehl and Avrami laws. Continuous cooling diagram (CTPc for C45 steel is exploited in presented model of phase transformations. Temporary temperatures, phases participation, thermal and structural strains in hardening element and coolant velocities are shown and discussed.

  13. In vitro structure-activity relationship of Re-cyclized octreotide analogues

    Energy Technology Data Exchange (ETDEWEB)

    Dannoon, Shorouk F. [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Bigott-Hennkens, Heather M. [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Ma Lixin [Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Gallazzi, Fabio [Structural Biology Core, University of Missouri, Columbia, MO 65211 (United States); Lewis, Michael R., E-mail: lewismic@missouri.ed [Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States); Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201 (United States); Jurisson, Silvia S., E-mail: jurissons@missouri.ed [Department of Chemistry, University of Missouri, Columbia, MO 65211 (United States); Department of Radiology, University of Missouri, Columbia, MO 65211 (United States); Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO 65211 (United States)

    2010-07-15

    Introduction: Development of radiolabeled octreotide analogues is of interest for targeting somatostatin receptor (SSTR)-positive tumors for diagnostic and therapeutic purposes. We are investigating a direct labeling approach for incorporation of a Re ion into octreotide analogues, where the peptide sequences are cyclized via coordination to Re rather than through a disulfide bridge. Methods: Various octreotide analogue sequences and coordination systems (e.g., S{sub 2}N{sub 2} and S{sub 3}N) were synthesized and cyclized with nonradioactive Re. In vitro competitive binding assays with {sup 111}In-DOTA-Tyr{sup 3}-octreotide in AR42J rat pancreatic tumor cells yielded IC{sub 50} values as a measure of SSTR affinity of the Re-cyclized analogues. Three-dimensional structures of Re-cyclized Tyr{sup 3}-octreotate and its disulfide-bridged analogue were calculated from two-dimensional NMR experiments to visualize the effect of metal cyclization on the analogue's pharmacophore. Results: Only two of the 11 Re-cyclized analogues investigated showed moderate in vitro binding affinity toward somatostatin subtype 2 receptors. Three-dimensional molecular structures of Re- and disulfide-cyclized Tyr{sup 3}-octreotate were calculated, and both of their pharmacophore turns appear to be very similar with minor differences due to metal coordination to the amide nitrogen of one of the pharmacophore amino acids. Conclusions: Various Re-cyclized analogues were developed and analogue 4 had moderate affinity toward somatostatin subtype 2 receptors. In vitro stable studies that are in progress showed stable radiometal cyclization of octreotide analogues via NS{sub 3} and N{sub 2}S{sub 2} coordination forming five- and six-membered chelate rings. In vivo biodistribution studies are underway of {sup 99m}Tc-cyclized analogue 4.

  14. Spectral element method for band-structure calculations of 3D phononic crystals

    International Nuclear Information System (INIS)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Liu, Qing Huo

    2016-01-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss–Lobatto–Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals. (paper)

  15. Structural evaluation of the John A. Roebling Suspension Bridge : element level analysis.

    Science.gov (United States)

    2008-07-01

    The primary objective of the structural evaluation of the John A. Roebling Bridge is to determine the maximum allowable gross vehicle weight (GVW) that can be carried by the bridge deck structural elements such as the open steel grid deck, channels, ...

  16. On diversity performance of two-element coupling element based antenna structure for mobile terminal

    DEFF Research Database (Denmark)

    Al-Hadi, Azremi Abdullah; Toivanen, Juha; Laitinen, Tommi

    2010-01-01

    .1 and the diversity gain is equal to 10.2 dB at 99% reliability level using selection combining technique across simulation and both measurement methods. The measurement techniques are compared to show how accurately the diversity performance of a mobile terminal antenna can be estimated.......In wireless communication systems, multipath interference has a significant impact on system design and performance. Fast fading is caused by the coherent summation of one or more echoes from many reflection points reaching the receive antenna. Antenna diversity can be used to mitigate multipath...... fading. The main challenge of antenna diversity in practical application is the integration of multiple antennas on a small ground plane. Two-element antenna structure based on coupling element antenna concept for diversity application has been studied in previous work and it has shown to be feasible...

  17. Structure and representation of data elements on factual database - SIST activity in Japan

    International Nuclear Information System (INIS)

    Nakamoto, H.; Onodera, N.

    1990-05-01

    A factual database has a variety of forms and types of data structure that produces various kinds of records composed of a great number of data items, which differ from file to file. Second, a factual database needs higher speciality in preparation on content analysis, and users wish to process download-ed data successively for analysis, diagnosis, simulation, projecting, design, linguistic processing and so on. A meaningful quantitative datum can be divided into some consistent sub-elements. In addition to this fine structure of data elements, representation of data elements is also very important to integrate factual data on to public files. In this paper we shall discuss problems and thoughts about the structure and representation of data elements contained in numerical information on a practical basis. The guideline discussed here is under draft by sponsorship of the Government and is being implemented to build database of space experiments. The guideline involves expression, unification, notification and handling of data for numerical information in machine readable form, such as numerical value, numerical formula, graphics, semi-quantitative value, significant figures, ranged data, accuracy and precision, conversion of unit, semi-quantitative values, error information and so on. (author)

  18. Structure and representation of data elements on factual database - SIST activity in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, H [Integrated Researches for Information Science, Tokyo (Japan); Onodera, N [Japan Information Center of Science and Technology, Tokyo (Japan)

    1990-05-01

    A factual database has a variety of forms and types of data structure that produces various kinds of records composed of a great number of data items, which differ from file to file. Second, a factual database needs higher speciality in preparation on content analysis, and users wish to process download-ed data successively for analysis, diagnosis, simulation, projecting, design, linguistic processing and so on. A meaningful quantitative datum can be divided into some consistent sub-elements. In addition to this fine structure of data elements, representation of data elements is also very important to integrate factual data on to public files. In this paper we shall discuss problems and thoughts about the structure and representation of data elements contained in numerical information on a practical basis. The guideline discussed here is under draft by sponsorship of the Government and is being implemented to build database of space experiments. The guideline involves expression, unification, notification and handling of data for numerical information in machine readable form, such as numerical value, numerical formula, graphics, semi-quantitative value, significant figures, ranged data, accuracy and precision, conversion of unit, semi-quantitative values, error information and so on. (author).

  19. Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire

    Science.gov (United States)

    Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.

    2018-03-01

    Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.

  20. Biquartic Finite Volume Element Metho d Based on Lobatto-Guass Structure

    Institute of Scientific and Technical Information of China (English)

    Gao Yan-ni; Chen Yan-li

    2015-01-01

    In this paper, a biquartic finite volume element method based on Lobatto-Guass structure is presented for variable coefficient elliptic equation on rectangular partition. Not only the optimal H1 and L2 error estimates but also some super-convergent properties are available and could be proved for this method. The numer-ical results obtained by this finite volume element scheme confirm the validity of the theoretical analysis and the effectiveness of this method.

  1. Thermo-mechanical finite element analyses of bolted cask lid structures

    International Nuclear Information System (INIS)

    Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.

    2004-01-01

    The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on

  2. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  3. Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code

    Science.gov (United States)

    Bartels, Robert E.

    2005-01-01

    A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.

  4. Towards isotope shift and hyperfine structure measurements of the element nobelium

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, Premaditya; Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, D-64289 Darmstadt (Germany); Laatiaoui, Mustapha [Helmholtz Institut Mainz, D-55099 Mainz (Germany); Block, Michael; Hessberger, Fritz-Peter [Helmholtz Institut Mainz, D-55099 Mainz (Germany); GSI, D-64291 Darmstadt (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, D-55122 Mainz (Germany); Kunz, Peter [TRIUMF, D-V6T2A3 Vancouver (Canada)

    2014-07-01

    Laser spectroscopy on the heaviest elements is of great interest as it allows the study of the evolution of relativistic effects on their atomic structure. In our experiment we exploit the Radiation Detected Resonance Ionization Spectroscopy technique and use excimer-laser pumped dye lasers to search for the first time the {sup 1}P{sub 1} level in {sup 254}No. Etalons will be used in the forthcoming experiments at GSI, Darmstadt, to narrow down the bandwidth of the dye lasers to 0.04 cm{sup -1}, for the determination of the isotope shift and hyperfine splitting of {sup 253,} {sup 255}No. In this talk results from preparatory hyperfine structure studies in nat. ytterbium and the perspectives for future experiments of the heaviest elements are discussed.

  5. PARCS - A pre-stressed and reinforced concrete shell element for analysis of containment structures

    International Nuclear Information System (INIS)

    Buragohain, D.N.; Mukherjee, A.

    1993-01-01

    Containment structures are designed as pressure vessels against a huge internal pressure build up in the event of a postulated LOCA. In such situations the containment structures experience predominantly in-plane stress in tension. Therefore, pre-stressed concrete has been very frequently used for the construction of containment. For larger plants a dual containment with a pre-stressed concrete inner containment and a reinforced concrete outer containment has been adopted. These structures are required to perform within very stringent safety requirements under extremely severe loading. Naturally, their design has attracted a lot of investigators and a huge volume of literature has been published in previous SMiRT conferences. However, it seems that the structural modeling of the containment has not developed accordingly. It is a common practice to consider the concrete section only in the model and the effects of pre-stress and reinforcements are usually neglected. This is due to the difficulty in including these effects without generating an unduly large model. To include these effects using the existing software, the concrete can be modeled with 3D elements. The reinforcements can be included in the model as bar or cable elements. However, that would require a nodal line along every reinforcement. Therefore, this method would generate a huge model unmanageable even with modern computing facilities. Alternatively, the reinforcements can be assumed to be smeared uniformly within the structure and an average property can be included. This model is acceptable when the reinforcements are very closely spaced. However, for sparsely spaced reinforcements it would result in loss of accuracy, especially in important areas like the vicinity of large openings. In this paper a shell element for the analysis of pre-stressed and reinforced concrete structures has been proposed which alleviates this difficulty. This element can accommodate the reinforcing bars or cables anywhere

  6. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  7. Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  8. Usage of digital image correlation in assessment of behavior of block element pavement structure

    Science.gov (United States)

    Grygierek, M.; Grzesik, B.; Rokitowski, P.; Rusin, T.

    2018-05-01

    In diagnostics of existing road pavement structures deflection measurements have fundamental meaning, because of ability to assess present stiffness (bearing capacity) of whole layered construction. During test loading the reaction of pavement structure to applied load is measured in central point or in a few points located along a straight on a 1.5 ÷ 1.8 m distance (i.e. Falling Weight Deflectometer) in similar spacing equal to 20 ÷ 30 cm. Typical measuring techniques are productive and precise enough for most common pavement structures such as flexible, semi-rigid and rigid. It should be noted that in experimental research as well as in pavements in complex stress state, measurement techniques allowing observation of pavement deformation in 3D would have been very helpful. A great example of that type of pavements is a block element pavement structure consisting of i.e. paving blocks or stone slabs. Due to high stiffness and confined ability of cooperation of surrounding block elements, in that type of pavements fatigue life is strongly connected with displacement distribution. Unfortunately, typical deflection measurement methods forefend displacement observations and rotation of single block elements like paving blocks or slabs. Another difficult problem is to carry out unmistakable analysis of cooperation between neighboring elements. For more precise observations of displacements state of block element pavements under a wheel load a Digital Image Correlation (DIC) was used. Application of this method for assessment of behavior of stone slabs pavement under a traffic load enabled the monitoring of deformations distribution and encouraged to formulate conclusions about the initiation mechanism and development of damages in this type of pavement structures. Results shown in this article were obtained in field tests executed on an exploited pavement structure with a surface course made of granite slabs with dimensions 0.5x1.0x0.14 m.

  9. Handbook of the band structure of elemental solids from Z = 1 to Z = 112

    CERN Document Server

    Papaconstantopoulos, Dimitris A

    2015-01-01

    This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states, and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gas...

  10. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    International Nuclear Information System (INIS)

    Yang, Y; Heine, R; Xu, F; Helfen, L; Baumbach, T; Suhonen, H; Rosenhahn, A; Gorniak, T; Kirchen, S; Schwartz, T

    2013-01-01

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention

  11. Comparison of the bioavailability of elemental waste laden soils using ''in vivo'' and ''in vitro'' analytical methodology and refinement of exposure/dose models. 1998 annual progress report

    International Nuclear Information System (INIS)

    Buckley, B.; Gallo, M.; Georgopoulos, P.; Lioy, P.J.; Tate, R.

    1998-01-01

    'The authors hypotheses are: (1) the more closely the synthetic, in vitro, extractant mimics the extraction properties of the human digestive bio-fluids, the more accurate will be the estimate of an internal dose; (2) performance can be evaluated by in vivo studies with a rat model and quantitative examination of a mass balance, calculation and dose estimates from model simulations for the in vitro and in vivo system; and (3) the concentration of the elements Pb, Cd, Cr and selected Radionuclides present in the bioavailable fraction obtained with a synthetic extraction system will be a better indicator of contaminant ingestion from a contaminated soil because it represents the portion of the mass which can yield exposure, uptake and then the internal dose to an individual. As of April 15, 1998, they have made significant progress in the development of a unified approach to the examination of bioavailability and bioaccessibility of elemental contamination of soils for the ingestion route of exposure. This includes the initial characterization of the soil, in vitro measurements of bioaccessibility, and in vivo measurements of bioavailability. They have identified the basic chemical and microbiological characteristics of waste laden soils. These have been used to prioritize the soils for potential mobility of the trace elements present in the soil. Subsequently they have employed a mass balance technique, which for the first time tracked the movement and distribution of elements through an in vitro or in vivo experimental protocol to define the bioaccessible and the bioavailable fractions of digested soil. The basic mass balance equation for the in vitro system is: MT = MSGJ + MIJ + MR. where MT is the total mass extractable by a specific method, MSGJ, is the mass extracted by the saliva and the gastric juices, MIJ is the mass extracted by the intestinal fluid, and MR is the unextractable portion of the initial mass. The above is based upon the use of a synthetic

  12. Algorithms and data structures for massively parallel generic adaptive finite element codes

    KAUST Repository

    Bangerth, Wolfgang

    2011-12-01

    Today\\'s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differential equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and problem sizes has so far prevented the emergence of generic software libraries that support such computations, although these would lower the threshold of entry and enable many more applications to benefit from large-scale computing. We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume the existence of an "oracle" that implements the generation and modification of an adaptive mesh distributed across many processors, and that responds to queries about its structure. Based on querying the oracle, we develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing. Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses. We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implementation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under an open source license through the widely used deal.II finite element software library. © 2011 ACM 0098-3500/2011/12-ART10 $10.00.

  13. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    Science.gov (United States)

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P; Walles, Heike; Braspenning, Joris; Breitkopf-Heinlein, Katja

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  14. Free material stiffness design of laminated composite structures using commercial finite element analysis codes

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    In this work optimum stiffness design of laminated composite structures is performed using the commercially available programs ANSYS and MATLAB. Within these programs a Free Material Optimization algorithm is implemented based on an optimality condition and a heuristic update scheme. The heuristic...... update scheme is needed because commercially available finite element analysis software is used. When using a commercial finite element analysis code it is not straight forward to implement a computationally efficient gradient based optimization algorithm. Examples considered in this work are a clamped......, where full access to the finite element analysis core is granted. This comparison displays the possibility of using commercially available programs for stiffness design of laminated composite structures....

  15. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  16. GOMESH, Finite Elements Structure Plot with Triangular Mesh

    International Nuclear Information System (INIS)

    Draper, J.

    1977-01-01

    1 - Nature of the physical problem solved: Graphical representation of calculations on structures with finite subdivision. 2 - Method of solution: GOMESH treats meshes with triangular basic elements. The program uses the same punched cards as those required for the input to the 'STAG' series of stress analysis codes and can prepare three basic mesh diagrams which differ in their mode of numbering. One objective of using these diagrams is to show up errors in the card deck by making them visually recognisable. Furthermore, digital tests are made within the program to check that certain requirements have been observed in the production of the lattice. The program 'GOMESH', can provide, superimposed in the graphical representation, stress and temperature values in numerical form, can represent the displacement of the mesh before and after a specified irradiation time, and give the directions and sense of the principal stresses occurring in the individual elements, in the form of arrows of varying length

  17. Finite element model updating in structural dynamics using design sensitivity and optimisation

    OpenAIRE

    Calvi, Adriano

    1998-01-01

    Model updating is an important issue in engineering. In fact a well-correlated model provides for accurate evaluation of the structure loads and responses. The main objectives of the study were to exploit available optimisation programs to create an error localisation and updating procedure of nite element models that minimises the "error" between experimental and analytical modal data, addressing in particular the updating of large scale nite element models with se...

  18. 3-dimensional finite element modelling of reactor building internal structure for static analysis

    International Nuclear Information System (INIS)

    Joshi, M.H.; Reddy, V.J.; Kushwaha, H.S.; Reddy, G.R.; Karandikar, G.V.

    1991-01-01

    a) Thin shell element gives fairly accurate results when compared to 3-D Brick element for the type of structure and loading in Reactor Building. b) The maximum element size is fixed from model 3(c) i.e. 2.0 m. c) Openings with size smaller than 0.5 m can be neglected without affecting the results very much. d) For any such problem, the methodology described in this paper can be used to take rational decisions which will ensure reasonable accuracy. (author)

  19. On using moving windows in finite element time domain simulation for long accelerator structures

    International Nuclear Information System (INIS)

    Lee, L.-Q.; Candel, Arno; Ng, Cho; Ko, Kwok

    2010-01-01

    A finite element moving window technique is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the keys to implementing a moving window in a finite element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal finite element time domain (FETD) method and the advantages of using the moving window technique are discussed.

  20. Participation of Water in the Binding of Estrogen Receptor with Estrogen Responsive Element in vitro.

    Science.gov (United States)

    Zhu, Guo-Zhang; Tang, Guo-Qing; Ruan, Kang-Cheng; Gong, Yue-Ting; Zhang, Yong-Lian

    1998-01-01

    Many reports have showed that bound water was involved in the interaction between/among the macromolecules. However, it has not been reported whether bound water is also involved in the binding of trans-factors and cis-elements in the regulation of the eukaryotic gene trans-cription or not. Preliminary studies have been made on the effect of bound water on the binding of estrogen receptor with estrogen responsive element in vitro. In the gel retardation assay using the cytosol extract of rat uterus as the supplier of estrogen receptor and 32 bp oligonucleotide containing a concensus vitellogenin A(2) ERE as the probe, various cosolvents, such as glycerol, sucrose, N-dimethylformamide and dimethylsulfoxide, were added respectively to the reaction mixture in varying concentrations to regulate the osmotic pressure. The results indicated that the binding of ER-ERE was enhanced with the increase in the final concentration of these individual cosolvents. On the other hand, when the reaction was carried out under an increasing hydrostatic pressure, the ER-ERE binding was decreased sharply. After decompression the binding of ER-ERE was gradually restored to the normal level with the lapse of time. These results suggested that bound water was directly involved in the binding of ER-ERE and may play an important role in the regulation of the eukaryotic gene transcription.

  1. In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration.

    Science.gov (United States)

    Farè, Silvia; Torricelli, Paola; Giavaresi, Gianluca; Bertoldi, Serena; Alessandrino, Antonio; Villa, Tomaso; Fini, Milena; Tanzi, Maria Cristina; Freddi, Giuliano

    2013-10-01

    A novel hierarchical textile structure made of silk fibroin from Bombyx mori capable of matching the mechanical performance requirements of anterior cruciate ligament (ACL) and in vitro cell ingrowth is described. This sericin-free, Silk Fibroin Knitted Sheath with Braided Core (SF-KSBC) structure was fabricated using available textile technologies. Micro-CT analysis confirmed that the core was highly porous and had a higher degree of interconnectivity than that observed for the sheath. The in vivo cell colonization of the scaffolds is thus expected to penetrate even the internal parts of the structure. Tensile mechanical tests demonstrated a maximum load of 1212.4±56.4 N (under hydrated conditions), confirming the scaffold's suitability for ACL reconstruction. The absence of cytotoxic substances in the extracts of the SF-KSBC structure in culture medium was verified by in vitro tests with L929 fibroblasts. In terms of extracellular matrix production, Human Periodontal Ligament Fibroblasts (HPdLFs) cultured in direct contact with SF-KSBC, compared to control samples, demonstrated an increased secretion of aggrecan (PG) and fibronectin (FBN) at 3 and 7 days of culture, and no change in IL-6 and TNF-α secretion. Altogether, the outcomes of this investigation confirm the significant utility of this novel scaffold for ACL tissue regeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Reliability enhancement of portal frame structure by finite element synthesis

    International Nuclear Information System (INIS)

    Nakagiri, S.

    1989-01-01

    The stochastic finite element methods have been applied to the evaluation of structural response and reliability of uncertain structural systems. The structural reliability index of the advanced first-order second moment (AFOSM) method is a candidate of the measure of assessing structural safety and reliability. The reliability index can be evaluated when a baseline design of structures under interest is proposed and the covariance matrix of the probabilistic variables is acquired to represent uncertainties involved in the structure systems. The reliability index thus evaluated is not assured the largest one for the structure. There is left a possibility to enhance the structural reliability for the given covariance matrix by changing the baseline design. From such a viewpoint of structural optimization, some ideas have been proposed to maximize the reliability or to minimize the failure probability of uncertain structural systems. A method of changing the design is proposed to increase the reliability index from its baseline value to another desired value. The reliability index in this paper is calculated mainly by the method of Lagrange multiplier

  3. Finite element formulation for fluid-structure interaction in three-dimensional space

    International Nuclear Information System (INIS)

    Kulak, R.F.

    1979-01-01

    A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading

  4. Interpretive Structural Analysis of Interrelationships among the Elements of Characteristic Agriculture Development in Chinese Rural Poverty Alleviation

    Directory of Open Access Journals (Sweden)

    Yi Cai

    2018-03-01

    Full Text Available Eradicating poverty is a strategic priority in the pursuit of Sustainable Development Goals. This study intends to identify and quantify the elements affecting the Characteristic Agriculture Development (CAD project implemented in area of Chinese poverty and reveals the interrelationships between those elements. First-hand data for the structural modeling were collected through semi-structured interviews with a group of selected experts. As a result, this study has identified seventeen representative elements, and the interrelationships between them have been examined based on the Interpretive Structural Modeling (ISM method. Furthermore, these elements were further categorized into four categories depending on their driving power and dependence power by using the cross-impact matrix multiplication applied to classification (MICMAC analysis. The combination result of the elements identification, ISM modeling and MICMAC analysis provide a conceptual framework for designing, implementing, and managing CAD projects conducted in rural China. Finally, we suggest that an appropriate approach should be applied to empower the poor, promote target group participation, optimize the regional agriculture structure, and increase the agro value chain competiveness in CAD project implementation.

  5. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  6. Structural imprints in vivo decode RNA regulatory mechanisms.

    Science.gov (United States)

    Spitale, Robert C; Flynn, Ryan A; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y; Batista, Pedro J; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2015-03-26

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  7. Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.

  8. Finite element structural study of the VGOT wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Otero, A.D. [University of Buenos Aires (Argentina). College of Engineering; Ponta, F.L. [University of Illinois, Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    2004-07-01

    We analyse the implementation of the finite element method to simulate the structural behaviour of the blade-wagons of variable-geometry oval-trajectory (VGOT) Darrieus wind turbines. The key feature of a VGOT machine is that each blade, instead of rotating around a central vertical axis, slides over rails mounted on a wagon formed by a tubular reticulated structure supported by standard train bogies. The structure should be designed to absorb the efforts in the vertical and traverse directions of the railroad due to the aerodynamic loads, the weight of the components and the centrifugal acceleration along the curved tracks. We show some results for the tip deflection and the tip torsion of the blade, the frontal and lateral angle variations in the blade bottom and the Von Misses tensions of five sample beams, all of them in function of the trajectory-length parameter; and some examples of the deformed configuration of the reticulated structure. (author)

  9. Analysis of thin composite structures using an efficient hex-shell finite element

    Energy Technology Data Exchange (ETDEWEB)

    Shiri, Seddik [Universite Bordeaux, Pessac (France); Naceur, Hakim [Universite de valenciennes, Valenciennes (France)

    2013-12-15

    In this paper a general methodology for the modeling of material composite multilayered shell structures is proposed using a Hex-shell finite element modeling. The first part of the paper is devoted to the general FE formulation of the present composite 8-node Hex-shell element called SCH8, based only on displacement degrees of freedom. A particular attention is given to alleviate shear, trapezoidal and thickness locking, without resorting to the classical plane-stress assumption. The anisotropic material behavior of layered shells is modeled using a fully three dimensional elastic orthotropic material law in each layer, including the thickness stress component. Applications to laminate thick shell structures are studied to validate the methodology, and good results have been obtained in comparison with ABAQUS commercial code.

  10. Artificial intelligence and finite element modelling for monitoring flood defence structures

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.; Kusherbaeva, V.; Melnikova, N.B.; Krzhizhanovskaya, V.V.; Meijer, R.J.

    2011-01-01

    We present a hybrid approach to monitoring the stability of flood defence structures equipped with sensors. This approach combines the finite element modelling with the artificial intelligence for real-time signal processing and anomaly detection. This combined method has been developed for the

  11. Thermomechanical finite element analysis of hot water boiler structure

    Directory of Open Access Journals (Sweden)

    Živković Dragoljub S.

    2012-01-01

    Full Text Available The paper presents an application of the Finite Elements Method for stress and strain analysis of the hot water boiler structure. The aim of the research was to investigate the influence of the boiler scale on the thermal stresses and strains of the structure of hot water boilers. Results show that maximum thermal stresses appear in the zone of the pipe carrying wall of the first reversing chamber. This indicates that the most critical part of the boiler are weld spots of the smoke pipes and pipe carrying plate, which in the case of significant scale deposits can lead to cracks in the welds and water leakage from the boiler. The nonlinear effects were taken into account by defining the bilinear isotropic hardening model for all boiler elements. Temperature dependency was defined for all relevant material properties, i. e. isotropic coefficient of thermal expansion, Young’s modulus, and isotropic thermal conductivity. The verification of the FEA model was performed by comparing the measured deformations of the hot water boiler with the simulation results. As a reference object, a Viessmann - Vitomax 200 HW boiler was used, with the installed power of 18.2 MW. CAD modeling was done within the Autodesk Inventor, and stress and strain analysis was performed in the ANSYS Software.

  12. Modeling bistable behaviors in morphing structures through finite element simulations.

    Science.gov (United States)

    Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi

    2014-01-01

    Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.

  13. Electronic structure and properties of disordered alloys of d-elements

    International Nuclear Information System (INIS)

    Demidenko, V.S.; Kal'yanov, A.P.

    1983-01-01

    On the basis of coherent potential approximation the fundamental characteristics in which transition element alloys differ have been established. Connection of the characteristics with position of the elements alloyed in the Mendeleev table is considered. It is confirmed by calculations that electronic structure and, consequently, physical properties of the alloys of a certain value potential disturbing matrix, change qualitatively. Results of the calculation of electron energy state density, diagrams of partial and average magnetic momenta in binary and ternary alloys of the first transition period, are presented. Besides, calculation results of bond energy in d-metals and energy of segregation formation in their alloys are also given. Comparison with experiment confirms the efficiency of concepts given in the paper

  14. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    Science.gov (United States)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge

  15. Ufo-element presentation in metamodel structure of triune continuum paradigm

    OpenAIRE

    Ukrayinets, ?.

    2006-01-01

    This paper describes results of UFO-element formal description in metamodel structure of Triune Continuum Paradigm. This can promote the solution of a problem of development of methods of mutual system-object UFO- and UML-models transformation for providing of more effective information systems designing, in particular, for visual modelling CASE-tools Rational Rose and UFO-Toolkit integration.

  16. Experimental verifications of a structural damage identification technique using reduced order finite-element model

    Science.gov (United States)

    Li, Rui; Zhou, Li; Yang, Jann N.

    2010-04-01

    An objective of the structural health monitoring system is to identify the state of the structure and to detect the damage when it occurs. Analysis techniques for the damage identification of structures, based on vibration data measured from sensors, have received considerable attention. Recently, a new damage tracking technique, referred to as the adaptive quadratic sum-square error (AQSSE) technique, has been proposed, and simulation studies demonstrated that the AQSSE technique is quite effective in identifying structural damages. In this paper, the adaptive quadratic sumsquare error (AQSSE) along with the reduced-order finite-element method is proposed to identify the damages of complex structures. Experimental tests were conducted to verify the capability of the proposed damage detection approach. A series of experimental tests were performed using a scaled cantilever beam subject to the white noise and sinusoidal excitations. The capability of the proposed reduced-order finite-element based adaptive quadratic sum-square error (AQSSE) method in detecting the structural damage is demonstrated by the experimental results.

  17. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup.

    Science.gov (United States)

    Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus

    2016-04-01

    Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Finite-element method modeling of hyper-frequency structures

    International Nuclear Information System (INIS)

    Zhang, Min

    1990-01-01

    The modelization of microwave propagation problems, including Eigen-value problem and scattering problem, is accomplished by the finite element method with vector functional and scalar functional. For Eigen-value problem, propagation modes in waveguides and resonant modes in cavities can be calculated in a arbitrarily-shaped structure with inhomogeneous material. Several microwave structures are resolved in order to verify the program. One drawback associated with the vector functional is the appearance of spurious or non-physical solutions. A penalty function method has been introduced to reduce spurious' solutions. The adaptive charge method is originally proposed in this thesis to resolve waveguide scattering problem. This method, similar to VSWR measuring technique, is more efficient to obtain the reflection coefficient than the matrix method. Two waveguide discontinuity structures are calculated by the two methods and their results are compared. The adaptive charge method is also applied to a microwave plasma excitor. It allows us to understand the role of different physical parameters of excitor in the coupling of microwave energy to plasma mode and the mode without plasma. (author) [fr

  19. Escherichia coli Uropathogenesis In Vitro

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Khandige, Surabhi; Madelung, Michelle

    2012-01-01

    -stage infection events have not been replicated in vitro. We have established an in vitro model of human bladder cell infection by the use of a flow chamber (FC)-based culture system, which allows investigation of steps subsequent to initial invasion. Short-term bacterial colonization on the FC-BEC layer led...... to rods that could invade other BECs. Hence, under growth conditions established to resemble those present in vivo, the elements of the proposed uropathogenic cascade were inducible in a human BEC model system. Here, we describe the model and show how these characteristics are reproduced in vitro....

  20. Advanced damper with negative structural stiffness elements

    International Nuclear Information System (INIS)

    Dong, Liang; Lakes, Roderic S

    2012-01-01

    Negative stiffness is understood as the occurrence of a force in the same direction as the imposed deformation. Structures and composites with negative stiffness elements enable a large amplification in damping. It is shown in this work, using an experimental approach, that when a flexible flat-ends column is aligned in a post-buckled condition, a negative structural stiffness and large hysteresis (i.e., high damping) can be achieved provided the ends of the column undergo tilting from flat to edge contact. Stable axial dampers with initial modulus equivalent to that of the parent material and with enhanced damping were designed and built using constrained negative stiffness effects entailed by post-buckled press-fit flat-ends columns. Effective damping of approximately 1 and an effective stiffness–damping product of approximately 1.3 GPa were achieved in such stable axial dampers consisting of PMMA columns. This is a considerable improvement for this figure of merit (i.e., the stiffness–damping product), which generally cannot exceed 0.6 GPa for currently used damping layers. (paper)

  1. Considerations in the identification of functional RNA structural elements in genomic alignments

    Directory of Open Access Journals (Sweden)

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  2. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

    NARCIS (Netherlands)

    HUYEN, N. T.; FRYGANAS, C.; UITTENBOGAARD, G.; MUELLER-HARVEY, I.; VERSTEGEN, M. W. A.; HENDRIKS, W. H.|info:eu-repo/dai/nl/298620936; PELLIKAAN, W. F.

    2016-01-01

    An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH 4 ) production and fermentation

  3. A comparative study of pH modulation and trace elements of various fruit juices on enamel erosion: An in vitro study

    Directory of Open Access Journals (Sweden)

    S.V.S.G Nirmala

    2011-01-01

    Full Text Available Fruit juices are popular worldwide with children of all ages as they are sweet and perceived to be healthful. This in vitro study was sought to measure pH of 10 different fruit juices, to find out possible erosive effects on human dental enamel of 40 extracted sound premolars and also to measure fluoride and trace elements of these juices. The estimation of pH of fruit juices was done by using Systronic upH 362 pH meter. The erosive effects of fruit juices were tested by using polarized light microscope. Orion electrode was used to measure fluoride. The trace elements were estimated by using Atomic Absorption Spectrophotometer No. 6501F. The pH values in different juices were observed at different levels, and pH values of these juices were more acidic than baseline after 24 hours. As the time increased, the erosion effect became more in pineapple; grape and sugarcane juices, and they had more cariogenic trace elements like selenium, iron and manganese. So, these juices were found to be cariogenic. To conclude, orange, mousambi, mango, pomegranate, apple, chikku and watermelon juices had no erosive effect on the human enamel, with the presence of highest amount of trace elements like fluoride and phosphorous which are considered as strongly cariostatic.

  4. Ageing of significant to safety structure elements of nuclear power plants

    International Nuclear Information System (INIS)

    Maksimovas, G.; Ramanauskiene, A.; Ziliukas, A.

    1999-01-01

    The paper analyzes the ageing problems of structure elements in nuclear power plants. The standard documents and principal parts of the ageing evaluation program are presented. The ageing evaluation model is being worked out and degradation mechanisms of different atomic reactor materials are being compared. (author)

  5. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  6. Finite Element Reliability Analysis of Chloride Ingress into Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2007-01-01

    For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in maintenance and repair actions. Further, a reduction of the load-bearing capacity can occur. In the present paper the Finite Element Reliability Method (FERM) is employed for obta......For many reinforced concrete structures corrosion of the reinforcement is an important problem since it can result in maintenance and repair actions. Further, a reduction of the load-bearing capacity can occur. In the present paper the Finite Element Reliability Method (FERM) is employed...... concentration and reinforcement cover depth are modelled by stochastic fields, which are discretized using the Expansion Optimum Linear Estimation (EOLE) approach. The response gradients needed for FORM analysis are derived analytically using the Direct Differentiation Method (DDM). As an example, a bridge pier...... in a marine environment is considered and the results are given in terms of distributions of time for initiation of corrosion....

  7. ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE

    OpenAIRE

    Cuenca Asensio, Estefanía

    2013-01-01

    Cuenca Asensio, E. (2012). ON SHEAR BEHAVIOR OF STRUCTURAL ELEMENTS MADE OF STEEL FIBER REINFORCED CONCRETE [Tesis doctoral no publicada]. Universitat Politècnica de València. doi:10.4995/Thesis/10251/18326. Palancia

  8. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    Science.gov (United States)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms

  9. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  10. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics

    NARCIS (Netherlands)

    Huyen, N.T.; Fryganas, C.; Uittenbogaard, G.; Mueller-Harvey, I.; Verstegen, M.W.A.; Hendriks, W.H.; Pellikaan, W.F.

    2016-01-01

    An in vitro study was conducted to investigate the effects of condensed tannin (CT) structural properties, i.e. average polymer size (or mean degree of polymerization), percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane (CH4) production and

  11. Finite element analysis of a fluid-structure interaction in flexible pipe ...

    African Journals Online (AJOL)

    The obtained mathematical system is constituted of four non-linear hyperbolic partial differential equations describing the wave propagation in both pipe wall and liquid flow. The fluid-structure interaction is found to be governed by Poisson's ratio. In this steady finite element method based on Galerkin formulation is applied.

  12. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  13. Program package for calculating matrix elements of two-cluster structures in nuclei

    International Nuclear Information System (INIS)

    Krivec, R.; Mihailovic, M.V.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1982-01-01

    Matrix elements of operators between Slater determinants of two-cluster structures must be expanded into partial waves for the purpose of angular momentum projection. The expansion coefficients contain integrals over the spherical angles theta and phi. (orig.)

  14. Anatomia comparada das folhas e raízes de Cymbidium Hort. (Orchidaceae cultivadas ex vitro e in vitro Comparative leaf and root anatomy of ex vitro and in vitro cultured Cymbidium Hort. plants

    Directory of Open Access Journals (Sweden)

    Juliana Lischka Sampaio Mayer

    2008-06-01

    Full Text Available Na fase de cultivo in vitro, as plantas são mantidas em ambiente com alta umidade relativa do ar, baixa luminosidade e trocas gasosas restritas, o que resulta em taxa de transpiração reduzida. Portanto, quando essas mudas são expostas ao meio ex vitro, sofrem estresse que pode causar a morte. O objetivo desse trabalho foi comparar a estrutura anatômica das mudas de Cymbidium 'Joy Polis' cultivadas ex vitro (planta matriz e aclimatizada e in vitro e verificar se a estrutura anatômica das plantas in vitro influencia no processo de aclimatização. As plantas ex vitro foram mantidas em casa-de-vegetação, em vasos individuais com o substrato fibra de coco em pó combinada com fibra de coco, e as plantas in vitro foram mantidas em meio de cultura MS. Para a análise anatômica qualitativa foram coletadas amostras de folhas e raízes de plantas ex vitro e in vitro. As plantas aclimatizadas apresentaram estrutura morfoanatômica semelhante à da planta matriz. A estrutura anatômica das plantas in vitro não influenciou a sobrevivência das mudas durante a aclimatização devido à plasticidade fenotipica desse cultivar. As plantas de Cymbidium 'Joy Polis' possuem grande capacidade de aclimatização ao ambiente, sendo provavelmente este um dos fatores responsáveis pela sobrevivência de 100% das mudas.During in vitro culture plants are kept in an atmosphere with high relative humidity, low light intensity and reduced gas exchange, resulting in low transpiration rates. Therefore, when these plants are exposed to ex vitro conditions, they suffer stress, which can induce mortality. The purpose of this study was to compare the anatomical structure of Cymbidium 'Joy Polis' plants from ex vitro (mother plant and acclimatized plants and in vitro cultures and to verify if the anatomical structure of in vitro cultured plants affects acclimatization. The ex vitro plants were kept in a greenhouse in pots containing a mixture of coconut-fiber powder and

  15. Geometric effect of the hydrogel grid structure on in vitro formation of homogeneous MIN6 cell clusters.

    Science.gov (United States)

    Bae, Chae Yun; Min, Mun-kyeong; Kim, Hail; Park, Je-Kyun

    2014-07-07

    A microstructure-based hydrogel was employed to study the relationship between spatial specificity and cellular behavior, including cell fate, proliferation, morphology, and insulin secretion in pancreatic β-cells. To effectively form homogeneous cell clusters in vitro, we made cell-containing hydrogel membrane constructs with an adapted grid structure based on a hexagonal micropattern. Homogeneous cell clusters (average diameter: 83.6 ± 14.2 μm) of pancreatic insulinoma (MIN6) cells were spontaneously generated in the floating hydrogel membrane constructs, including a hexagonal grid structure (size of cavity: 100 μm, interval between cavities: 30 μm). Interestingly, 3D clustering of MIN6 cells mimicking the structure of pancreatic islets was coalesced into a merged aggregate attaching to each hexagonal cavity of the hydrogel grid structure. The fate and insulin secretion of homogeneous cell clusters in the hydrogel grid structure were also assessed. The results of these designable hydrogel-cell membrane constructs suggest that facultative in vitro β-cell proliferation and maintenance can be applied to biofunctional assessments.

  16. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    International Nuclear Information System (INIS)

    Kaltsoyannis, Nikolas; Hay, P.J.; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-01-01

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833, a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic structure of actinide systems have developed in concert with the experimental

  17. Text localization using standard deviation analysis of structure elements and support vector machines

    Directory of Open Access Journals (Sweden)

    Zagoris Konstantinos

    2011-01-01

    Full Text Available Abstract A text localization technique is required to successfully exploit document images such as technical articles and letters. The proposed method detects and extracts text areas from document images. Initially a connected components analysis technique detects blocks of foreground objects. Then, a descriptor that consists of a set of suitable document structure elements is extracted from the blocks. This is achieved by incorporating an algorithm called Standard Deviation Analysis of Structure Elements (SDASE which maximizes the separability between the blocks. Another feature of the SDASE is that its length adapts according to the requirements of the application. Finally, the descriptor of each block is used as input to a trained support vector machines that classify the block as text or not. The proposed technique is also capable of adjusting to the text structure of the documents. Experimental results on benchmarking databases demonstrate the effectiveness of the proposed method.

  18. Autokinase activity of alpha-crystallin inhibits its specific interaction with the DOTIS element in the murine gamma D/E/F-crystallin promoter in vitro.

    Science.gov (United States)

    Pietrowski, D; Graw, J

    1997-10-01

    In a previous report we demonstrated the in vitro interaction of alpha-crystallin with an element downstream of the transcriptional initiation site (DOTIS) of the murine gamma E-crystallin promoter (Pietrowski et al., 1994, Gene 144, 171-178). The aim of the present study was to investigate the influence of phosphorylation on this particular interaction. We could demonstrate that the autophosphorylation of alpha-crystallin leads to a complete loss of interaction with the DOTIS element, however, PKA-dependent phosphorylation of alpha-crystallin is without effect on the interaction. It is hypothesized that the autophosphorylation of alpha-crystallin might be involved in regulatory mechanisms of the murine gamma D/E/F-crystallin gene expression.

  19. High accuracy electromagnetic field solvers for cylindrical waveguides and axisymmetric structures using the finite element method

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1993-12-01

    Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required

  20. Structural Analysis of Technical-Tactical Elements in Table Tennis and their Role in Different Playing Zones.

    Science.gov (United States)

    Munivrana, Goran; Petrinović, Lidija Zekan; Kondrič, Miran

    2015-09-29

    For the purpose of determining the overall structure of technical-tactical elements in table tennis and evaluating their role in different playing zones around the table, a new measuring instrument (a questionnaire) was formulated that took advantage of the expert knowledge of top, world class table tennis coaches. The results of the hierarchical taxonomic (cluster) analysis showed that the overall structure of the technical-tactical elements forming the table tennis technique could be divided into three basic groups; a group of technical-tactical elements (A) used in the phase of preparing one's own and disabling the opponent's attack; a group of technical-tactical elements (B) used in the phase of attack and counterattack; and a group of technical-tactical elements (C) used in the phase of defense. The differences among the obtained groups of table tennis elements were determined by applying the Kruskal-Wallis test, while relations between the groups and their role in different playing zones around the table were analyzed by comparing the average values of the experts' scores.

  1. Structural Analysis of Technical-Tactical Elements in Table Tennis and their Role in Different Playing Zones

    Directory of Open Access Journals (Sweden)

    Munivrana Goran

    2015-09-01

    Full Text Available For the purpose of determining the overall structure of technical-tactical elements in table tennis and evaluating their role in different playing zones around the table, a new measuring instrument (a questionnaire was formulated that took advantage of the expert knowledge of top, world class table tennis coaches. The results of the hierarchical taxonomic (cluster analysis showed that the overall structure of the technical-tactical elements forming the table tennis technique could be divided into three basic groups; a group of technical-tactical elements (A used in the phase of preparing one’s own and disabling the opponent’s attack; a group of technical-tactical elements (B used in the phase of attack and counterattack; and a group of technical-tactical elements (C used in the phase of defense. The differences among the obtained groups of table tennis elements were determined by applying the Kruskal-Wallis test, while relations between the groups and their role in different playing zones around the table were analyzed by comparing the average values of the experts’ scores.

  2. Reassembly of adult human testicular cells: can testis cord-like structures be created in vitro?

    Science.gov (United States)

    Mincheva, M; Sandhowe-Klaverkamp, R; Wistuba, J; Redmann, K; Stukenborg, J-B; Kliesch, S; Schlatt, S

    2018-02-01

    Can enzymatically dispersed testicular cells from adult men reassemble into seminiferous cord-like structures in vitro? Adult human testicular somatic cells reassembled into testicular cord-like structures via dynamic interactions of Sertoli and peritubular cells. In vitro approaches using dispersed single cell suspensions of human testes to generate seminiferous tubule structures and to initiate their functionality have as yet shown only limited success. Testes from 15 adult gender dysphoria patients (mean ± standard deviation age 35 ± 9.3 years) showing spermatogonial arrest became available for this study after sex-reassignment surgery. In vitro primary testicular somatic cell cultures were generated to explore the self-organizing ability of testicular somatic cells to form testis cords over a 2-week period. Morphological phenotype, protein marker expression and temporal dynamics of cell reassembly were analyzed. Cell suspensions obtained by two-step enzymatic digestion were plated onto glass coverslips in 24-well plates. To obtain adherent somatic cells, the supernatant was discarded on Day 2. The culture of the attached cell population was continued. Reassembly into cord-like structures was analyzed daily by microscopic observations. Endpoints were qualitative changes in morphology. Cell types were characterized by phase-contrast microscopy and immunohistochemistry. Dynamics of cord formation were recorded by time-lapse microscopy. Primary adult human testicular cells underwent sequential morphological changes including compaction and reaggregation resulting in round or elongated cord-like structures. Time-lapse video recordings within the first 4 days of culture revealed highly dynamic processes of migration and coalescence of reaggregated cells. The cellular movements were mediated by peritubular cells. Immunohistochemical analysis showed that both SRY-related high mobility box 9-positive Sertoli and α-smooth muscle actin-positive peritubular myoid cells

  3. Incorporation of trace elements into hair structure

    International Nuclear Information System (INIS)

    Limic, N.; Valkovic, V.

    1985-01-01

    Examining blood and urine provides an immense insight into human diseases. It is natural to hope that the hair studies will be added routinely to the examinations. Human head hair is a recording filament which can reflect metabolic changes of many elements over a long period of time. The idea of hair analysis is very inviting, because hair is easily samples, shipped and analyzed. In this paper the authors propose a method for the determination of some diffusion parameters from experimental data on the distribution of trace element concentrations in hair and then a method for the determination of the radial diffusion constants of Se, Zn and Pb. The authors' model of hair structure with respect to diffusion is based on the supposition of cross-sectional homogeneity as well as the longitudinal homogeneity of hair. This supposition implies nonisotropic diffusion in hair which is described by two diffusion constants. Diffusion constants can be determined by experiment on wetting hair in solvents or by measurements of natural contamination of hair in air. The first type of experiments can be arranged in various ways to separate radial diffusion from the longitudinal one and, consequently, to determine two diffusion constants from various sets of experiments. The authors' aim is to consider only radial diffusion in hair and to determine the radial diffusion constants of Se, Zn and Pb

  4. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles of a set of elements: an analytical approach to cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Melo B, W.; Barboza F, M. [Universidad de Sonora, Departamento de Investigacion en Fisica, 83000 Hermosillo, Sonora (Mexico); Chernov, G., E-mail: g.chernovch@gmail.com [Universidad de Sonora, Departamento de Fisica, 83000 Hermosillo, Sonora (Mexico)

    2016-10-15

    The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)

  5. Nanoscale dose deposition in cell structures under X-ray irradiation treatment assisted with nanoparticles of a set of elements: an analytical approach to cell survival

    International Nuclear Information System (INIS)

    Melo B, W.; Barboza F, M.; Chernov, G.

    2016-10-01

    The goal of combining nanoparticles (Nps) with radiation therapy is to increase the differential effect between healthy and tumor tissues. Only some elements have been investigated to be used as radiosensitizers and no systematic experimental or theoretical comparisons between different materials have been developed. MacMahon, et al. (Nano scale, 2016, 8, 581) presents the first systematic computational study of the impact of elemental composition on nanoparticle radiation interaction for kilo voltage and megavoltage X-ray exposure, for a range of elements (Z = 14 - 80). In this study we present and analytical model to assess the cell survival modification responses of cell cultures under irradiation treatments with keV X-rays assisted with Nps of different materials as platinum, hafnium, gadolinium, gold, germanium, iodine and iron. This model starts from the data of radial dose deposition around a single 20 nm diameter Np irradiated with photons of an energy 20 keV higher than the element K-shell binding energy to the nano scale probability of dose distribution inside cell structures with embedded Nps (the assessment of the average dose and the average squared dose in cell structure). Also based on the Local Effect Model we estimate potential biological effects, as is the case of the Relative Biological Effectiveness (RBE). Nano scale dose deposition exhibits a complex dependence on atomic number, as a consequence of the variations in secondary Auger electron spectra, this is manifested in significant variations in RBE. Upon in vitro experiments RBE varies from 1 to 1.6. Values representative of a high radiosensitization were observed for lower energies, ones that are well reproduced by our analytical analysis for cell cultures with a homogeneous distribution of different material Nps. (Author)

  6. Finite element modeling of fluid/thermal/structural interaction for a gas-cooled fast reactor core

    International Nuclear Information System (INIS)

    Bennett, J.G.; Ju, F.D.

    1980-01-01

    Two nonlinear finite element formulations for application to a series of experiments in the Gas-Cooled Fast Reactor (GCFR) development program are described. An efficient beam column element for moderately large deformations is combined with a finite element developed for an engineering description of a convecting fluid. Typical results from both elements are illustrated. A combined application for a problem typical of the GCFR loss-of-coolant experiments is illustrated. These problems are not the usual fluid structural interaction problems in that the inertia coupling is negligible while the thermal coupling is very important

  7. Some experiences with absorption, phonon Raman, and luminescence spectroscopic probes of crystal structure of f-element compounds

    International Nuclear Information System (INIS)

    Peterson, J.R.

    1992-01-01

    Structural information is crucial to the study and understanding of the basic chemical properties of the f elements. X-ray diffraction (XRD) techniques are usually used to obtain crystal structure information. However, the transuranium (5f) elements, because of their radioactivity and limited availability, present problems for standard XRD analysis. For some time now we have been developing and using various spectroscopic probes of crystal structure; an overview of our research in this area is presented here

  8. Non-linear finite element analyses applicable for the design of large reinforced concrete structures

    NARCIS (Netherlands)

    Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik

    2017-01-01

    In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises

  9. Creating a Test Validated Structural Dynamic Finite Element Model of the Multi-Utility Technology Test Bed Aircraft

    Science.gov (United States)

    Pak, Chan-Gi; Truong, Samson S.

    2014-01-01

    Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.

  10. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Directory of Open Access Journals (Sweden)

    Ibragimov Alexander

    2018-01-01

    Full Text Available The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  11. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    Science.gov (United States)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  12. Electronic structure and chemistry of the heaviest elements

    International Nuclear Information System (INIS)

    Pershina, V.; Fricke, B.

    1998-04-01

    Progress in the development of relativistic molecular codes has allowed for an adequate description of the electronic structure of the very heavy element compounds, and for the interpretation and prediction of their molecular properties. Most of the theoretical investigations for compounds, interesting from the experimental point of view, have been carried out using the LDF methods. The studied species were group 4, 5 and 6 gas-phase compounds of the transactinides along with their lighter homologs, and their complexes in aqueous solutions. As a result of these calculations, trends within the transition-element groups and within the beginning of the transactinide series for molecular properties such as ionicity, covalence, stability towards oxidation or reduction, crystal-field and spin-orbit effects, bonding, and the influence of relativistic effects on them have been established. In combination with some other models, these calculations allowed for predicting properties measured experimentally: volatility of compounds, redox potentials in solutions and complex formation. Especially promising were predictions of equilibria of reaction using the DS-DV method. Agreement between results of the calculations and experiment confirmed the necessity of doing relativistic MO calculations and the unreliability of the straightforward extrapolations of properties within the chemical groups. (orig.)

  13. Offshore extension of the structural element of Udipi, confirmation from marine magneties

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, V.

    wavelength anomalies off Mangalore and relatively smooth zone further south Kasaragod. A prominent WNW-ESE structural element (fault) south off Coondapoor is observed in the three eastern profiles (A-A', B-B' and C-C') which was not reflected in the western...

  14. STRAP-2, Stress Analysis of Structure with Static Loading by Finite Elements Method. STRAP-D, Stress Analysis of Structure with Time-Dependent Loading by Finite Elements Method

    International Nuclear Information System (INIS)

    Dearien, J.A.; Uldrich, E.D.

    1975-01-01

    1 - Description of problem or function: The code STRAP (Structural Analysis Package) was developed to analyze the response of structural systems to static and dynamic loading conditions. STRAP-S solves for the displacements and member forces of structural systems under static loads and temperature gradients. STRAP-D will solve numerically a given structural dynamics problem. 2 - Method of solution: STRAP-S generates the stiffness matrix of a structure by the finite element method and solves the resulting equations for structural displacements and member forces. STRAP-D generates the stiffness matrix, solves for eigenvalues and eigenvectors, uncouples and solves the series of second-order ordinary differential equations, and then calculates and plots the requested member forces. 3 - Restrictions on the complexity of the problem: STRAP-S maxima: 250 degrees of freedom, 100 members; STRAP-D maxima: 100 degrees of freedom, 80 time-steps in the forcing function input

  15. Prediction of elastic-plastic response of structural elements subjected to cyclic loading

    International Nuclear Information System (INIS)

    El Haddad, M.H.; Samaan, S.

    1985-01-01

    A simplified elastic-plastic analysis is developed to predict stress strain and force deformation response of structural metallic elements subjected to irregular cyclic loadings. In this analysis a simple elastic-plastic method for predicting the skeleton force deformation curve is developed. In this method, elastic and fully plastic solutions are first obtained for unknown quantities, such as deflection or local strains. Elastic and fully plastic contributions are then combined to obtain an elastic-plastic solution. The skeleton curve is doubled to establish the shape of the hysteresis loop. The complete force deformation response can therefore be simulated through reversal by reversal in accordance with hysteresis looping and material memory. Several examples of structural elements with various cross sections made from various materials and subjected to irregular cyclic loadings, are analysed. A close agreement is obtained between experimental results found in the literature and present predictions. (orig.)

  16. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  17. Distortional Mechanics of Thin-Walled Structural Elements

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim

    In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely...... number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination...... by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional...

  18. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

    Science.gov (United States)

    Olami, Hilla; Zilberman, Meital

    2016-02-01

    Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. © The Author(s) 2015.

  20. Characteristic and analysis of structural elements of corporate social responsibility

    Directory of Open Access Journals (Sweden)

    J. S. Bilonog

    2015-04-01

    Full Text Available In this article attention is focused on social responsibility of business and on necessity to estimate its condition in Ukraine. Materials regarding elements and the principles of corporate social responsibility are structured. On this basis unification of quantitative elements of business social responsibility is offered according to which it is possible to carry out the analysis of the non­financial reporting. It is proposed to use not only quantitative techniques of data analysis but also refer to the qualitative ones. As a result of this, the analysis of social reports will be more productive and would minimize subjectivity of the researcher or representatives of the company which are responsible for presenting the information to the general public. The basic principles by which the companies can realize the strategy of corporate social responsibility are considered. Due to the empirical analysis of corporate reports expediency to use specified elements is proved. Reports of the companies in producing and non­productive sector are analyzed in more detail; features of displaying information on corporate social responsibility are defined. The attention to need of carrying out monitoring researches in the sphere of the corporate social reporting is updated.

  1. Concrete containment tests: Phase 2, Structural elements with liner plates: Interim report

    International Nuclear Information System (INIS)

    Hanson, N.W.; Roller, J.J.; Schultz, D.M.; Julien, J.T.; Weinmann, T.L.

    1987-08-01

    The tests described in this report are part of Phase 2 of the Electric Power Research Institute (EPRI) program. The overall objective of the EPRI program is to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents. The Phase 2 testing included seven large-scale specimens representing structural elements from reinforced and prestressed concrete reactor containment buildings. Six of the seven test specimens were square wall elements. Of these six specimens, four were used for biaxial tension tests to determine strength, deformation, and leak-rate characteristics of full-scale wall elements representing prestressed concrete containment design. The remaining two square wall elements were used for thermal buckling tests to determine whether buckling of the steel liner plate would occur between anchorages when subjected to a sudden extreme temperature differential. The last of the seven test specimens for Phase 2 represented the region where the wall and the basemat intersect in a prestressed concrete containment building. A multi-directional loading scheme was used to produce high bending moments and shear in the wall/basemat junction region. The objective of this test was to determine if there is potential for liner plate tearing in the junction region. Results presented include observed behavior and extensive measurements of deformations and strains as a function of applied load. The data are being used to confirm analytical models for predicting strength and deformation of containment structures in a separate parallel analytical investigation sponsored by EPRI

  2. A comparison study on the performance of lower order solid finite element for elastic analysis of plate and shell structures

    International Nuclear Information System (INIS)

    Lee, Young Jung; Lee, Sang Jin; Choun, Young Sun; Seo, Jeong Moon

    2003-05-01

    The objective of this research is to assess the performance of lower order solid finite elements which will be ultimately applied into the safety analysis of nuclear containment building. For the safety analysis of large structures such as nuclear containment building, efficient lower order finite element is necessarily required to calculate the structural response of containment building with low computational cost. In this study, the state of the art formulations of lower order solid finite element are throughly reviewed and the best possible solid finite element is adopted into the development of nuclear containment analysis system. Three 8-node solid finite elements based on standard strain-displacement relationship, B-bar method and EAS method are implemented as computer modules and completely tested with various plate and shell structures. The present results can be directly applied into the analysis code development for general reinforced concrete structures

  3. Comprehensive Wavelengths, Energy Levels, and Hyperfine Structure Parameters of Singly-Ionized Iron-Group Elements

    Science.gov (United States)

    Nave, Gillian

    We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy

  4. Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage

    International Nuclear Information System (INIS)

    Schulte, R T; Fritzen, C-P; Moll, J

    2010-01-01

    During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. However, the setup of wave based SHM systems for complex structures may be very difficult and time consuming. For that reason there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore in this contribution a flat shell spectral element approach is presented. By including electromechanical coupling a SHM system can be simulated entirely from actuator voltage to sensor voltage. Besides a comparison to measured data for anisotropic materials including delamination, a numerical example of a more complex, stiffened shell structure with debonding is presented.

  5. Chalcogenides formed by trivalent rare earth elements with d-elements

    International Nuclear Information System (INIS)

    Flao, Zh.; Laruehl', P.; Olitro, R.

    1981-01-01

    Data on ternary compounds formed by trivalent rare earth elements with 3d-, 4d- and 5d-elements of the Periodic system is presented. Compounds of 3d-elements both in bivalent and trivalent states are considered. The main attention is paid to the structure of the compounds. Description of a great number of new structural types of compounds is given. In certain cases the structure has not been deciphered and, besides, structural investigations with monocrystals are not numerous. Attention is drawn to the existence of nonstoichiometric compounds. References to the works on investigation of thermal (melting temperature), magnetic, optical and electric properties as well as Moessbauer effect are presented

  6. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    Science.gov (United States)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  7. Architecture and program structures for a special purpose finite element computer

    Energy Technology Data Exchange (ETDEWEB)

    Norrie, D.H.; Norrie, C.W.

    1983-01-01

    The development of very large scale integration (VLSI) has made special-purpose computers economically possible. With such a machine, the loss of flexibility compared with a general-purpose computer can be offset by the increased speed which can be obtained by tailoring the architecture to the particular problem or class of problem. The first kind of special-purpose machine has its architecture modelled on the physical structure of the problem and the second kind has its design tailored to the computational algorithm used. The parallel finite element machine (PARFEM) being designed at the University of Calgary for the solution of finite element problems is of the second kind. Its conceptual design is described and progress to date outlined. 14 references.

  8. Multiphase poroelastic finite element models for soft tissue structures

    International Nuclear Information System (INIS)

    Simon, B.R.

    1992-01-01

    During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs

  9. Political “genotype” as a structural element of political culture

    Directory of Open Access Journals (Sweden)

    N. V. Karpova

    2016-01-01

    Full Text Available The article is devoted to the issue of genetic foundations of political culture in the context of the socio-political system changes. The author elaborates the concept of “political genotype” as a sustainable structural element of political culture that determines its content and the possibility of permissible variation. In this paper the main forms of existence of political genotype and its functions are also investigated; and “genetic” mechanism of political culture succession is explored.

  10. Application limits of finite element models for simulation of shock transfer processes in concrete structures

    International Nuclear Information System (INIS)

    Krutzik, Norbert J.; Eibl, Josef

    2005-01-01

    Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models

  11. Trace Element Compositions and Defect Structures of High-Purity Quartz from the Southern Ural Region, Russia

    Directory of Open Access Journals (Sweden)

    Jens Götze

    2017-10-01

    Full Text Available Quartz samples of different origin from 10 localities in the Southern Ural region, Russia have been investigated to characterize their trace element compositions and defect structures. The analytical combination of cathodoluminescence (CL microscopy and spectroscopy, electron paramagnetic resonance (EPR spectroscopy, and trace-element analysis by inductively coupled plasma mass spectrometry (ICP-MS revealed that almost all investigated quartz samples showed very low concentrations of trace elements (cumulative concentrations of <50 ppm with <30 ppm Al and <10 ppm Ti and low abundances of paramagnetic defects, defining them economically as “high-purity” quartz (HPQ suitable for high-tech applications. EPR and CL data confirmed the low abundances of substitutional Ti and Fe, and showed Al to be the only significant trace element structurally bound in the investigated quartz samples. CL microscopy revealed a heterogeneous distribution of luminescence centres (i.e., luminescence active trace elements such as Al as well as features of deformation and recrystallization. It is suggested that healing of defects due to deformation-related recrystallization and reorganization processes of the quartz lattice during retrograde metamorphism resulted in low concentrations of CL activator and other trace elements or vacancies, and thus are the main driving processes for the formation of HPQ deposits in the investigated area.

  12. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    Science.gov (United States)

    Jin, Si

    In contrast to conventional non-destructive evaluation methods, dynamics-based damage detection methods are capable of rapid integrity evaluation of large structures and have received considerable attention from aerospace, mechanical, and civil engineering communities in recent years. However, the identifiable damage size using dynamics-based methods is determined by the number of sensors used, level of measurement noise, accuracy of structural models, and signal processing techniques. In this thesis we study dynamics of structures with damage and then derive and experimentally verify new model-independent structural damage detection methods that can locate small damage to structures. To find sensitive damage detection parameters we develop a higher-order beam element that enforces the continuity of displacements, slopes, bending moments, and shear forces at all nodes, and a higher-order rectangular plate element that enforces the continuity of displacements, slopes, and bending and twisting moments at all nodes. These two elements are used to study the dynamics of beams and plates. Results show that high-order spatial derivatives of high-frequency modes are important sensitive parameters that can locate small structural damage. Unfortunately the most powerful and popular structural modeling technique, the finite element method, is not accurate in predicting high-frequency responses. Hence, a model-independent method using dynamic responses obtained from high density measurements is concluded to be the best approach. To increase measurement density and reduce noise a Polytec PI PSV-200 scanning laser vibrometer is used to provide non-contact, dense, and accurate measurements of structural vibration velocities. To avoid the use of structural models and to extract sensitive detection parameters from experimental data, a brand-new structural damage detection method named BED (Boundary-Effect Detection) is developed for pinpointing damage locations using Operational

  13. Study on the fragility of structure with several elements in its story. Part 2: structure with ductile elements

    International Nuclear Information System (INIS)

    Kai, Y.; Fukushima, S.

    1995-01-01

    The relationship among the fragility of element, that of story and that of system, is examined using the Monte Carlo simulation. In this study, 2-story models whose stories consist of 2 ductile elements are employed. A method is proposed which includes a nonlinear effect into the evaluation of elements capacities. This method does not require the nonlinear MCS, therefore saving computational efforts. Also, a method to estimate the stories and the system fragilities is proposed. (author). 2 refs., 7 figs., 3 tabs

  14. 3D-finite element impact simulation on concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Heider, N.

    1989-12-15

    The analysis of impact processes is an interesting application of full 3D Finite Element calculations. This work presents a simulation of the penetration process of a Kinetic Energy projectile into a concrete target. Such a calculation requires an adequate FE model, especially a proper description of the crack opening process in front of the projectile. The aim is the prediction of the structural survival of the penetrator case with the help of an appropriate failure criterion. Also, the computer simulation allows a detailed analysis of the physical phenomena during impact. (orig.) With 4 refs., 14 figs.

  15. Boundary element inverse analysis for rebar corrosion detection: Study on the 2004 tsunami-affected structure in Aceh

    Directory of Open Access Journals (Sweden)

    S. Fonna

    2018-06-01

    Full Text Available Evaluation of rebar/reinforcing-steel corrosion for the 2004 tsunami-affected reinforced concrete (RC buildings in Aceh was conducted using half-cell potential mapping technique. However, the results only show qualitative meaning as corrosion risk rather than the corrosion itself, such as the size and location of corrosion. In this study, boundary element inverse analysis was proposed to be performed to detect rebar corrosion of the 2004 tsunami-affected structure in Aceh, using several electrical potential measurement data on the concrete surface. One RC structure in Peukan Bada, an area heavily damaged by the tsunami, was selected for the study. In 2004 the structure was submerged more than 5 m by the tsunami. Boundary element inverse analysis was developed by combining the boundary element method (BEM and particle swarm optimization (PSO. The corrosion was detected by evaluating measured and calculated electrical potential data. The measured and calculated electrical potential on the concrete surface was obtained by using a half-cell potential meter and by performing BEM, respectively. The solution candidates were evaluated by employing PSO. Simulation results show that boundary element inverse analysis successfully detected the size and location of corrosion for the case study. Compared with the actual corrosion, the error of simulation result was less than 5%. Hence, it shows that boundary element inverse analysis is very promising for further development to detect rebar corrosion. Keywords: Inverse analysis, Boundary element method, PSO, Corrosion, Reinforced concrete

  16. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  17. Three-dimensionality of space in the structure of the periodic table of chemical elements

    International Nuclear Information System (INIS)

    Veremeichik, T. F.

    2006-01-01

    The effect of the dimension of the 3D homogeneous and isotropic Euclidean space, and the electron spin on the self-organization of the electron systems of atoms of chemical elements is considered. It is shown that the finite dimension of space creates the possibility of periodicity in the structure of an electron cloud, while the value of the dimension determines the number of stable systems of electrons at different levels of the periodic table of chemical elements and some characteristics of the systems. The conditions for the stability of systems of electrons and the electron system of an atom as a whole are considered. On the basis of the results obtained, comparison with other hierarchical systems (nanostructures and biological structures) is performed

  18. Structural elements for fast-neutron reactors

    International Nuclear Information System (INIS)

    Blin, J.C.; Sainfort, Gerard; Silvent, Alain; Silvestres, Georges.

    1974-01-01

    These elements are characterized in that they are obtained from a nickel-alloy and at least a material M, selected from the group comprising iron and silicon, in proportions, by weight, such that irradiation by fast neutrons leads to the generation of Ni 3 -M with no noticeable swelling of said elements. This can be applied to fuel assembly cladding [fr

  19. Study of Finite Element Number Influence over the Obtained Results in Finite Element Analyses of a Mechanical Structure

    Directory of Open Access Journals (Sweden)

    Ana-Maria Budai

    2013-05-01

    Full Text Available This paper present the results of a study that was made to establish the influence of finite element number used to determined the real load of a structure. Actually, the study represent a linear static analyze for a link gear control mechanism of a Kaplan turbine. The all analyze was made for the normal condition of functioning having like final scope to determine de life time duration of mentioned mechanism.

  20. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    Science.gov (United States)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  1. Fuel element cellular grid structure and procedure to insert and withdraw fuel rods from that structure

    International Nuclear Information System (INIS)

    1975-01-01

    A typical embodiment of the invention provides a means for selectively inserting and withdrawing one or more fuel rods from a fuel element cellular grid structure. The transverse stubs on one side of a long, thin bar are turned through 90deg to extend across the gap between mutually perpendicular grid structure plates. The extreme ends of these stubs engage the adhacent portions of the associated plates that form part of the grid cells. Pressing the stubs against the plate portions through the application of appropriate force in a longitudinal direction relative to the bar deflects the engaged plates through a sufficient distance to enable fuel rods to be inserted into or withdrawn from respective cells. After rod insertion, the force applied to the bar is released to enable the plates to relax and engage the fuel rods. The bars are rotated once more through 90deg and withdrawn from the grid structure. A similar procedure is employed to withdraw fuel rods from the grid structure

  2. MAIN LAND USE PLANNING APPROACHES TO STRUCTURAL ELEMENTS LOCAL ECOLOGICAL NETWORK

    Directory of Open Access Journals (Sweden)

    TretiakV.M.

    2016-08-01

    Full Text Available In modern conditions of social development, changes in land eco-system of economic relations in Ukraine, the problem of providing conditions for the creation of sustainable land use and creation of protected areas get the status of special urgency. Ideology establishment of ecological networks became logical continuation of environmental thought in general. Considering the methodological approach to the establishment of ecological networks we can constitute, that it is an environmental frame of spatial infrastructure, land conservation and environmental areas, major part of land is the basis of the structural elements of ecological network. Designing an ecological network is made through developing regional schemes of Econet formation, regional and local schemes for establishing an ecological network areas, settlements and other areas. Land Management uses design of structural elements of the ecological network in the village council, as a rule, begins with ecological and landscape mikrozonationof the village council, held during the preparatory work for the land drafting and finishing the formation of environmentally homogeneous regions, which represents the tied system components of ecological network, environmental measures in the form of local environmental restrictions (encumbrances to use land and other natural resources. Additionally, there are some project organization and territorial measures that increase the sustainability area, such as: key, binders, buffer areas and renewable ecological network. Land management projects on the formation of structural elements of ecological network as territorial restrictions (encumbrances in land are used within the territories Councils determined the location and size of land: - Protection zones around especially valuable natural objects of cultural heritage, meteorological stations, etc. in order to protect them from adverse human impacts; - Protection zones along telecommunication lines, power

  3. Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D

    2014-05-01

    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.

  4. Optimal Layout Design using the Element Connectivity Parameterization Method: Application to Three Dimensional Geometrical Nonlinear Structures

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Joung, Young Soo; Kim, Yoon Young

    2005-01-01

    The topology design optimization of “three-dimensional geometrically-nonlinear” continuum structures is still a difficult problem not only because of its problem size but also the occurrence of unstable continuum finite elements during the design optimization. To overcome this difficulty, the ele......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....

  5. Finite Element Analysis and Die Design of Non-specific Engineering Structure of Aluminum Alloy during Extrusion

    International Nuclear Information System (INIS)

    Chen, D.-C.; Lu, Y.-Y.

    2010-01-01

    Aluminum extension applies to industrial structure, light load, framework rolls and conveyer system platform. Many factors must be controlled in processing the non-specific engineering structure (hollow shape) of the aluminum alloy during extrusion, to obtain the required plastic strain and desired tolerance values. The major factors include the forming angle of the die and temperature of billet and various materials. This paper employs rigid-plastic finite element (FE) DEFORM 3D software to investigate the plastic deformation behavior of an aluminum alloy (A6061, A5052, A3003) workpiece during extrusion for the engineering structure of the aluminum alloy. This work analyzes effective strain, effective stress, damage and die radius load distribution of the billet under various conditions. The analytical results confirm the suitability of the current finite element software for the non-specific engineering structure of aluminum alloy extrusion.

  6. Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies.

    Science.gov (United States)

    Diez-Sánchez, Elena; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2018-01-01

    This study assessed the effect of substituting 30% of fat by soluble, insoluble fiber, or a mix of both fibers in sponge cake quality, structure, acceptability, and starch digestibility. The apparent viscosity of the different formulations was measured and micro-baking was simulated. Texture profile tests were carried out and the crumb structure was examined. In vitro digestion was performed to study the digestibility of starch and a sensory test was carried out to know consumer acceptance. The soluble fiber (maltodextrin) affected the structure and quality of the cakes less than the insoluble fiber (potato fiber) and the use of soluble fiber in the formulation resulted in lower glucose release under in vitro conditions. Moreover, the consumer did not find differences among the control cake and the cakes prepared with soluble fiber. Considering the results as a whole, soluble fiber may be used for partial replacement of fat in sponge cake formulations and may constitute an appropriate strategy for obtaining healthy sponge cakes.

  7. Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaygili, Omer, E-mail: okaygili@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Keser, Serhat [Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig (Turkey); Kom, Mustafa [Department of Surgery, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Eroksuz, Yesari [Department of Pathology, Faculty of Veterinary Medicine, Firat University, 23119 Elazig (Turkey); Dorozhkin, Sergey V. [Kudrinskaja square 1-155, Moscow 123242 (Russian Federation); Ates, Tankut [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey); Ozercan, Ibrahim H. [Department of Pathology, School of Medicine, Firat University, 23119 Elazig (Turkey); Tatar, Cengiz; Yakuphanoglu, Fahrettin [Department of Physics, Faculty of Science, Firat University, 23119 Elazig (Turkey)

    2015-10-01

    The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol–gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca + Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content. - Highlights: • Sr content affects the structural properties of hydroxyapatite. • Bone formation and osseointegration are observed for all the samples. • In vitro conditions cause a significant change in the (Ca + Sr)/P ratio.

  8. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  9. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions

    NARCIS (Netherlands)

    Hatew, B.; Hayot Carbonero, C.; Stringano, E.; Sales, L. F.; Smith, L. M J; Mueller-Harvey, I.; Hendriks, W. H.; Pellikaan, W. F.

    2015-01-01

    Sainfoin is a non-bloating temperate forage legume with a moderate-to-high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation

  10. Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics

    Science.gov (United States)

    Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.

    1989-01-01

    The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.

  11. A 3D analysis of reinforced concrete structures by the finite element method

    International Nuclear Information System (INIS)

    Claure, J.D.; Campos Filho, A.

    1995-01-01

    Fundamental features of a computational model, based on the finite element methods, for the analysis of concrete structure are presented. The study comprehends short and long-term loading situations, where creep and shrinkage in concrete are considered. The reinforcement is inserted in the finite element model using an embedded model. A smeared crack model is used for the concrete cracking, which considers the contribution of concrete between cracks and allows the closing the cracks closing. The computational code MPGS (Multi-Purpose Graphic System) is used, to make easy the analysis and interpretation of the numeric results. (author). 8 refs., 4 figs

  12. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Science.gov (United States)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  13. Investigation of the Structure and Element Composition of C-Phycocyanin Extracted from the Microalgae Spirulina platensis

    CERN Document Server

    Mosulishvili, L M; Kirkesali, E I; Khizanishvili, A I; Frontasyeva, M V; Pavlov, S S; Gundorina, S F

    2002-01-01

    The structure and element composition of C-phycocyanin (C-PC) extracted from the blue-green alga Spirulina platensis were studied. The behavior of structural subunits forming phycobilisomes in the purification process was studied by capillary electrophoresis. Their proportion in high-purity C-PC was determined. The element composition of C-PC of different purity was studied by means of epithermal neutron activation analysis, and metals which may form macromolecular complexes with C-PC were determined (Zn, Cr, Ni, Co, As, Sr, Mo, Ag, Hg). It was shown that contents of toxic metals did not exceed accepted permissible levels for the human organism.

  14. Radiation-induced heterogeneity of chymotrypsin of mus musculus. On the characterization of structurally and functionally in vitro modified enzyme forms

    International Nuclear Information System (INIS)

    Amneus, H.

    1976-01-01

    The distribution of in vitro induced 60 Co-γ (structural heterogeneity of mouse chymotrypsin has been studied in terms of molecular weight, catalytic activity and net charge distribution. It was found that the enzyme stucture, with retained molecular weight, could partly accumulate structural changes subsequently not leading to modification of catalytic properties. Loss of petide fragments (0 < Mw (lt 6000) the enzyme showed native function but also modified as well as total loss of function. Further loss of peptide fragments results in modified function and total loss of function. These results indicate the capability of the enzyme to accumulate in vitro changes partly without a total loss of function. (author)

  15. The reliability of finite element analysis results of the low impact test in predicting the energy absorption performance of thin-walled structures

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, R.; Nejadx, Farokhi A.; Izman, S. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2015-05-15

    The application of dual phase steels (DPS) such as DP600 in the form of thin-walled structure in automotive components is being continuously increased as vehicle designers utilize modern steel grades and low weight structures to improve structural performance, make automotive light and reinforce crash performance. Preventing cost enhancement of broad investigations in this area can be gained by using computers in structural analysis in order to substitute lots of experiments with finite element analysis (FEA). Nevertheless, it necessitates to be certified that selected method including element type and solution methodology is capable of predicting real condition. In this paper, numerical and experimental studies are done to specify the effect of element type selection and solution methodology on the results of finite element analysis in order to investigate the energy absorption behavior of a DP600 thin-walled structure with three different geometries under a low impact loading. The outcomes indicated the combination of implicit method and solid elements is in better agreement with the experiments. In addition, using a combination of shell element types with implicit method reduces the time of simulation remarkably, although the error of results compared to the experiments increased to some extent.

  16. Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akkus, Harun [Technical Sciences Vocational School, Amasya University, Amasya (Turkmenistan); Duzcukoglu, Hayrettin; Sahin, Omer Sinan [Mechanical Engineering Department, Selcuk University, Selcuk (Turkmenistan)

    2017-01-15

    This study utilized experimental and finite element methods to investigate the mechanical behavior of aluminum honeycomb structures under compression. Aluminum honeycomb composite structures were subjected to pressing experiments according to the standard ASTM C365. Resistive forces in response to compression and maximum compressive force values were measured. Structural damage was observed. In the honeycomb structure, the cell width decreased as the compressive force increased. Results obtained with finite element models generated using ANSYS Workbench 15 were validated. Experimental results paralleled the finite element modeling results. The ANSYS results were approximately 85 % reliable.

  17. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  18. Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures

    International Nuclear Information System (INIS)

    Marinković, D; Köppe, H; Gabbert, U

    2008-01-01

    Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation

  19. Comparative research of finite element methods for perforated structures of nuclear power plant primary equipment

    International Nuclear Information System (INIS)

    Xiong Guangming; Deng Xiaoyun; Jin Ting

    2013-01-01

    Many perforated structures are used for nuclear power plant primary equipment, and they are complex, and have various forms. In order to explore the analysis and evaluation method, this paper used finite element method and equivalent analytic method to do the comparative analysis of perforated structures. The paper considered the main influence factors (including perforated forms, arrangements, and etc.), obtaining the systematic analysis methods of perforated structures. (authors)

  20. Finite element analysis of structural response of superconducting magnet for a fusion reactor

    International Nuclear Information System (INIS)

    Reich, M.; Powell, J.; Bezler, P.; Chang, T.Y.; Prachuktam, S.

    1975-01-01

    In the proposal Tokamak fusion reactor, the superconducting unit consists of an assembly of D-shaped magnets standing vertically and arranged in a toroidal configuration. Each magnet is a composite structure comprised of Nb-22%Ti and Nb-48%Ti, and stabilizing metals such as copper and aluminum or stainless steel held together by reinforced epoxies which also serve as insulators and spacers. The magnets are quite large, typically 15-20 meters in diameter with rectangular cross sections around 0.93x2m. Under static loading condition, the magnet is subjected to dead weight and large magnetic field forces, which may induce high stresses in the structure. Furthermore, additional stresses due to earthquake must also be considered for the design of the component. Both static and dynamic analyses of a typical field magnet have been performed by use of the finite element method. The magnet was assumed to be linearly elastic with equivalent homogeneous material properties. Various finite element models have been considered in order to better represent the structure for a particular loading case. For earthquake analysis, the magnet was assumed to be subjected to 50% of the El Centro 1940 earthquake and the dynamic response was obtained by the displacement spectrum analysis procedure. In the paper, numerical results are presented and the structure behavior of the magnet under static and dynamic loading conditions is discussed

  1. Structure of a conjugative element in Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.N.; Priebe, S.D.; Guild, W.R.

    1986-06-01

    The authors have cloned and mapped a 69-kilobase (kb) region of the chromosome of Streptococcus pneumoniae DP1322, which carries the conjugative Omega(cat-tet) insertion from S. pneumoniae BM6001. This element proved to be 65.5 kb in size. Location of the junctions was facilitated by cloning a preferred target region from the wild-type strain Rx1 recipient genome. This target site was preferred by both the BM6001 element and the cat-erm-tet element from Streptococcus agalactiae B109. Within the BM6001 element cat and tet were separated by 30 kb, and cat was flanked by two copies of a sequence that was also present in the recipient strain Rx1 DNA. Another sequence at least 2.4 kb in size was found inside the BM6001 element and at two places in the Rx1 genome. Its role is unknown. The ends of the BM6001 element appear to be the same as those of the B109 element, both as seen after transfer to S. pneumoniae and as mapped by others in pDP5 after transposition in Streptococcus faecalis. No homology is seen between the ends of the BM6001 element and no evidence found suggesting that it ever circularizes.

  2. Assessment of Structural Behavior of Non-corroded and Corroded RCC Beams Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Anand Parande

    2008-09-01

    Full Text Available A three dimensional finite element model is developed to examine the structural behaviour of corroded reinforced concrete beam and non corroded reinforced concrete beam. Non linear finite element analysis is performed using the ANSYS program. SOLID 65, LINK 8 element represent concrete and discrete reinforcing steel bars, based on each component actual characteristics, non linear material properties are defined for both elements. The effect of corrosion in reinforced concrete is studied by finite element analysis; an approach is developed to model the corrosion product expansion causing concrete cover cracking for this, beam has been modeled using ANSYS and using this data the beam has been casted with M20 concrete after 28 days the beam will be tested for flexural strength. The comparison between ANSYS prediction and field data are made in terms of deflection, stress, strain, bond strength and crack pattern of concrete beam.

  3. Semianalytic Design Sensitivity Analysis of Nonlinear Structures With a Commercial Finite Element Package

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Yoo, Jung Hun; Choi, Hyeong Cheol

    2002-01-01

    A finite element package is often used as a daily design tool for engineering designers in order to analyze and improve the design. The finite element analysis can provide the responses of a system for given design variables. Although finite element analysis can quite well provide the structural behaviors for given design variables, it cannot provide enough information to improve the design such as design sensitivity coefficients. Design sensitivity analysis is an essential step to predict the change in responses due to a change in design variables and to optimize a system with the aid of the gradient-based optimization techniques. To develop a numerical method of design sensitivity analysis, analytical derivatives that are based on analytical differentiation of the continuous or discrete finite element equations are effective but analytical derivatives are difficult because of the lack of internal information of the commercial finite element package such as shape functions. Therefore, design sensitivity analysis outside of the finite element package is necessary for practical application in an industrial setting. In this paper, the semi-analytic method for design sensitivity analysis is used for the development of the design sensitivity module outside of a commercial finite element package of ANSYS. The direct differentiation method is employed to compute the design derivatives of the response and the pseudo-load for design sensitivity analysis is effectively evaluated by using the design variation of the related internal nodal forces. Especially, we suggest an effective method for stress and nonlinear design sensitivity analyses that is independent of the commercial finite element package is also discussed. Numerical examples are illustrated to show the accuracy and efficiency of the developed method and to provide insights for implementation of the suggested method into other commercial finite element packages

  4. Soil-structure interaction analysis by finite element methods - state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods-either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motion in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For embedded structures, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other. (Auth.)

  5. Biomechanical evaluation of one-piece and two-piece small-diameter dental implants: In-vitro experimental and three-dimensional finite element analyses.

    Science.gov (United States)

    Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li

    2016-09-01

    Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.

  6. Concrete model for finite element analysis of structures subjected to severe damages

    International Nuclear Information System (INIS)

    Jamet, Ph.; Millard, A.; Hoffmann, A.; Nahas, G.; Barbe, B.

    1984-01-01

    A specific concrete model has been developed, in order to perform mechanical analysis of civil engineering structures, when subjected to accidental loadings, leading to severe damages. Its formulation is based on the physical mechanisms, which have been observed on laboratory specimens. The model has been implemented into the CASTEM finite element system, and the case of a concrete slab perforation by a rigid missile has been considered. The qualitative behaviour of the structure is well predicted by the model. Comparison between numerical and experimental results is also performed, using two main curves: missile velocity versus penetration depth; reaction forces versus time. (Author) [pt

  7. Structure and Expression Analyses of SVA Elements in Relation to Functional Genes

    Directory of Open Access Journals (Sweden)

    Yun-Jeong Kwon

    2013-09-01

    Full Text Available SINE-VNTR-Alu (SVA elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5' untranslated region (UTR of HGSNAT (SVA-B, MRGPRX3 (SVA-D, HYAL1 (SVA-F, TCHH (SVA-F, and ATXN2L (SVA-F genes, while some elements are observed in the 3'UTR of SPICE1 (SVA-B, TDRKH (SVA-C, GOSR1 (SVA-D, BBS5 (SVA-D, NEK5 (SVA-D, ABHD2 (SVA-F, C1QTNF7 (SVA-F, ORC6L (SVA-F, TMEM69 (SVA-F, and CCDC137 (SVA-F genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C, ALOX5 (SVA-D, PDS5B (SVA-D, and ABCA10 (SVA-F genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA of the TDRKH gene appeared to be ubiquitous. Taken together, these data suggest that SVA elements cause transcript isoforms that contribute to modulation of gene regulation in various human tissues.

  8. New functionalities in abundant element oxides: ubiquitous element strategy

    International Nuclear Information System (INIS)

    Hosono, Hideo; Hayashi, Katsuro; Kamiya, Toshio; Atou, Toshiyuki; Susaki, Tomofumi

    2011-01-01

    While most ceramics are composed of ubiquitous elements (the ten most abundant elements within the Earth's crust), many advanced materials are based on rare elements. A 'rare-element crisis' is approaching owing to the imbalance between the limited supply of rare elements and the increasing demand. Therefore, we propose a 'ubiquitous element strategy' for materials research, which aims to apply abundant elements in a variety of innovative applications. Creation of innovative oxide materials and devices based on conventional ceramics is one specific challenge. This review describes the concept of ubiquitous element strategy and gives some highlights of our recent research on the synthesis of electronic, thermionic and structural materials using ubiquitous elements. (topical review)

  9. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  10. The Auger-spectroscopic study of the elemental composition of the fracture surface of titanic alloy vt-22 with different structure

    International Nuclear Information System (INIS)

    Tkachenko, E.A.; Chokin, K.Sh.; Masyagin, V.E.; Chasnikov, A.I.

    2002-01-01

    High titanium alloys belong to a group of materials with high thermal stability and strength-to-weight ratio, which, for example, are widely used in aviation. The structure and properties of this materials strongly depends on variations of their elemental composition. In the dependence on the content of alloying elements the structure after the hardening from β-phase changes that, in its turn, leads to the alteration of the mechanical properties. So, the study of the redistribution of the impurity and alloying elements at straining the alloys with different structures that associated with premature destruction of construction components made of the titanic alloys is of great interest. The present work performs the results of the Auger spectroscopic investigation of the elemental composition of the alloy VT-22 fraction surface. This investigation was fulfilled for the alloy samples with different structure: laminated (L), globular (G), and laminated-globular ones with the plasticity level 1280-1350 MPa. The alterations of the elemental concentrations on the fracture surface have been estimated with the special Auger-spectrometer (OSIPR-1). The analysis of the fracture surface for samples with L- and G-structures right after the destruction at different velocities have shown the enrichment of the surface with aluminium, oxygen, and carbon in bound state as titan carbide (TiC). At this, the content of these elements decreases with the growth of the test velocity. The impurities in the samples with different structures behave as follows. In the sample with L-structure sulphur, phosphorus, and calcium on the fracture surface have been detected. At this, with the growth of the test velocity their concentration increases, but not significantly. In the samples with G-structure sulphur presents on the surface only at great straining velocities, and phosphorus is absent. At the analysis of the obtained results, one should note that the fracture surface is being enriched

  11. [Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela].

    Science.gov (United States)

    Li, Guiting; Jiang, Junqi; Chen, Jie; Zou, Yunding; Zhang, Xincai

    2006-01-01

    By the method of OECD filter paper contact, this paper studied the effects of applied rare earth elements on soil fauna community structure and their ecological toxicity to Holotrichia parallela in bean field. The results showed that there were no significant differences between the treatments and the control in soil fauna species, quantity of main species, and diversity index. Urgent and chronic toxic test showed that the differences between the treatments and the control were not significant. It was suggested that within the range of test dosages, rare earth elements had little ecological toxicity to Holotrichia parallela, and did not change the soil fauna community structure.

  12. The finite element structural analysis code SAP IV conversion from CDC to IBM

    International Nuclear Information System (INIS)

    Harrop, L.P.

    1977-02-01

    SAP IV is a general three dimensional, linear, static and dynamic finite element structural analysis program. The program which was obtained from the Earthquake Engineering Research Center, University of California, Berkeley, was written in FORTRAM for a CDC 6400. Its main use was anticipated to be the seismic analysis of reactor structures. SAP IV may also prove useful for fracture mechanics studies as well as the usual elastic stress analysis of structures. A brief description of SAP IV and a more detailed account of the FORTRAN conversion required to make SAP IV run successfully on the UKAEA Harwell IBM 370/168 are given. (author)

  13. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  14. Assessment of longitudinal modulus of elasticity in structural elements of Pinus Caribaea timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2012-05-01

    Full Text Available The current standard NBR 7190/1997 (Project of Timber Structures makes no reference to tests for determining the stiffness and strength in parts of structural lumber; restricting the analysis to bodies-of-tests with small dimensions and without defects. This paper presents an alternative method to determine the longitudinal modulus of elasticity in timber beams, based on the Finite Element Method, as well as the Inverse Analysis Method with an optimization technique. Results show that the methodology proposed by the Brazilian standard can also be applied to pieces of structural dimensions.

  15. The Integration of Geotechnologies in the Evaluation of a Wine Cellar Structure through the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Alberto Villarino

    2014-11-01

    Full Text Available This paper presents a multidisciplinary methodology to evaluate an underground wine cellar structure using non-invasive techniques. In particular, a historical subterranean wine cellar that presents a complex structure and whose physical properties are unknown is recorded and analyzed using geomatics and geophysics synergies. To this end, an approach that integrates terrestrial laser scanning and ground penetrating radar is used to properly define a finite element-based structural model, which is then used as a decision tool to plan architectural restoration actions. The combination of both techniques implies the registration of external and internal information that eases the construction of structural models. Structural simulation for both stresses and deformations through FEM allowed identifying critical structural elements under great stress or excessive deformations. In this investigation, the ultimate limit state of cracking was considered to determine allowable loads due to the brittle nature of the material. This allowed us to set limit values of loading on the cellar structure in order to minimize possible damage.

  16. Prion structure investigated in situ, ex vivo, and in vitro by FTIR spectroscopy

    Science.gov (United States)

    Kneipp, Janina; Miller, Lisa M.; Spassov, Sashko; Sokolowski, Fabian; Lasch, Peter; Beekes, Michael; Naumann, Dieter

    2004-07-01

    Syrian hamster nervous tissue was investigated by FTIR microspectroscopy with conventional and synchrotron infrared light sources. Various tissue structures from the cerebellum and medulla oblongata of scrapie-infected and control hamsters were investigated at a spatial resolution of 50 μm. Single neurons in dorsal root ganglia of scrapie-infected hamsters were analyzed by raster scan mapping at 6 μm spatial resolution. These measurements enabled us to (i) scrutinize structural differences between infected and non-infected tissue and (ii) analyze for the first time the distribution of different protein structures in situ within single nerve cells. Single nerve cells exhibited areas of increased β-sheet content, which co-localized consistently with accumulations of the pathological prion protein (PrPSc). Spectral data were also obtained from purified, partly proteinase K digested PrPSc isolated from scrapie-infected nervous tissue of hamsters to elucidate similarities/dissimilarities between prion structure in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP90-232, whose in vitro transition from the predominantly a-helical isoform to β-sheet rich oligomeric structures was also investigated by FTIR spectroscopy.

  17. Structural Organization of Muscular Elements of a Skin-Muscular Sac of Trematodes: Literature Survey

    OpenAIRE

    Kanat Kambarovich Akhmetov; Irina Yurievna Chidunchi

    2015-01-01

    The issue of structural organization of muscular elements of a trematodes’ skin-muscular sac is considered in the study. Special attention is paid to an analysis of materials of preceding researches, study of foreign authors and also to additional literature reflecting peculiarities of structure of a trematodes’ body muscular system. The stated issue is insufficiently studied and calls for further researches. A comparative analysis of places of trematodes’ localization, taking into considerat...

  18. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    OpenAIRE

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-01-01

    An oligonucleotide representing a regulatory element of human thymidylate synthase mRNA has been crystallized as a dimer. The structure of the asymmetric dimer has been determined at 1.97 Å resolution.

  19. Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds.

    Science.gov (United States)

    Westhauser, Fabian; Ciraldo, Francesca; Balasubramanian, Preethi; Senger, Anne-Sophie; Schmidmaier, Gerhard; Moghaddam, Arash; Boccaccini, Aldo R

    2017-11-23

    Three-dimensional 45S5 bioactive glass (BG)-based scaffolds are being investigated for bone regeneration. Besides structural properties, controlled time-dependent alteration of scaffold morphology is crucial to achieve optimal scaffold characteristics for successful bone repair. There is no in vitro evidence concerning the dependence between structural characteristics and dissolution behavior of 45S5 BG-based scaffolds of different morphology. In this study, the dissolution behavior of scaffolds fabricated by the foam replica method using polyurethane foam (Group A) and maritime sponge Spongia Agaricina (Group B) as sacrificial templates was analyzed by micro-computed-tomography (µCT). The scaffolds were immersed in Dulbecco's Modified Eagle Medium for 56 days under static cell culture conditions and underwent µCT-analysis initially, and after 7, 14, and 56 days. Group A showed high porosity (91%) and trabecular structure formed by macro-pores (average diameter 692 µm ± 72 µm). Group-B-scaffolds were less porous (51%), revealing an optimal pore size distribution within the window of 110-500 µm pore size diameter, combined with superior mechanical stability. Both groups showed similar structural alteration upon immersion. Surface area and scaffold volume increased whilst density decreased, reflecting initial dissolution followed by hydroxycarbonate-apatite-layer-formation on the scaffold surfaces. In vitro- and/or in vivo-testing of cell-seeded BG-scaffolds used in this study should be performed to evaluate the BG-scaffolds' time-dependent osteogenic properties in relation to the measured in vitro structural changes.

  20. SPECIFIC DEGRADATION STRUCTURE FEATURES AND MECHANICAL PROPERTIES OF FURNACE AND HEAT POWER EQUIPMENT ELEMENTS AFTER LONG-TERM OPERATION

    Directory of Open Access Journals (Sweden)

    F. I. Panteleenko

    2012-01-01

    Full Text Available The paper presents results of investigations on structure and mechanical properties of technological equipment elements made of heat-resistant steels. A scale of chrome and molybdenum steel microstructure degradation based on evaluation of  coagulated carbide size and material mechanical properties (a point from 0-operation without time limits, up to 4-operation prohibition has been proposed in the paper. It has been  established that an analysis of  steel microstructure directly on equipment elements by means of a portable microscope is an efficient express method for evaluation of equipment condition and structures due to control of material structure degradation rate of a diagnosed object.

  1. Structure and magnetism in novel group IV element-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Frank [Univ. of North Carolina, Chapel Hill, NC (United States)

    2013-08-14

    The project is to investigate structure, magnetism and spin dependent states of novel group IV element-based magnetic thin films and heterostructures as a function of composition and epitaxial constraints. The materials systems of interest are Si-compatible epitaxial films and heterostructures of Si/Ge-based magnetic ternary alloys grown by non-equilibrium molecular beam epitaxy (MBE) techniques, specifically doped magnetic semiconductors (DMS) and half-metallic Heusler alloys. Systematic structural, chemical, magnetic, and electrical measurements are carried out, using x-ray microbeam techniques, magnetotunneling spectroscopy and microscopy, and magnetotransport. The work is aimed at elucidating the nature and interplay between structure, chemical order, magnetism, and spin-dependent states in these novel materials, at developing materials and techniques to realize and control fully spin polarized states, and at exploring fundamental processes that stabilize the epitaxial magnetic nanostructures and control the electronic and magnetic states in these complex materials. Combinatorial approach provides the means for the systematic studies, and the complex nature of the work necessitates this approach.

  2. Evaluation of the kinematic structure of indicators key elements of sports equipment exercise by postural orientation movements

    Directory of Open Access Journals (Sweden)

    Y.V. Litvinenko

    2014-12-01

    Full Text Available Purpose : Examine the kinematic structure of indicators key elements of sports equipment exercise (difficult to coordinate. The method of postural orientation movements. Material : The study involved acrobats jumpers on the path of high qualification (n = 7. The method used video - computer recording the movements of the athlete. Results : Identified nodal elements of sports equipment double back somersault tuck. Exercise performed after rondat and double back flip and stretch after rondat - flick (coup ago. In the preparatory phase of motor actions acrobatic exercises isolated and studied central element of sports equipment - starting posture of the body; in the phase of the main motor action - animation poses of the body; in the final phase - the final body posture (stable landing. Conclusions : The method of video - computer registration allowed to perform a biomechanical analysis and evaluation of key elements of sports equipment double back somersault tuck and a double back flip and stretch. Also gain new knowledge about the mechanism of the phase structure of movements when performing double somersaults.

  3. A 'Swinging Cradle' model for in vitro classification of different types of response elements of a nuclear receptor

    International Nuclear Information System (INIS)

    Malo, Madhu S.; Pushpakaran, Premraj; Hodin, Richard A.

    2005-01-01

    Nuclear receptors are hormone-activated transcription factors that bind to specific target sequences termed hormone-response element (HRE). A HRE usually consists of two half-sites (5'-AGGTCA-3' consensus sequence) arranged as a direct, everted or inverted repeat with variable spacer region. Assignment of a HRE as a direct, everted or inverted repeat is based on its homology to the consensus half-site, but minor variations can make such an assignment confusing. We hypothesize a 'Swinging Cradle' model for HRE classification, whereby the core HRE functions as the 'sitting platform' for the NR, and the extra nucleotides at either end act as the 'sling' of the Cradle. We show that in vitro binding of the thyroid hormone receptor and 9-cis retinoic acid receptor heterodimer to an everted repeat TRE follows the 'Swinging Cradle' model, whereas the other TREs do not. We also show that among these TREs, the everted repeat mediates the highest biological activity

  4. Super-Light Prefabricated Deck Element Integrated in Traditional Concrete Prefabricated Element Construction

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl

    Super-light structures in form of deck elements have been used for the first time in a building to construct indoor pedestrian bridges. Examples of connections to external structures and other super-light deck elements are given along with other details. Other examples on the great versatility...

  5. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones

    Science.gov (United States)

    Subhashree, G. R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Anantha Krishnan, D.; Karvembu, R.; Gayathri, D.

    2017-10-01

    A series of 5-methoxysalicylaldehyde appended thiosemicarbazones (1-4) and 2-hydroxy-1-naphthaldehyde appended thiosemicarbazones (5-8) was obtained from the reactions between 5-methoxysalicylaldehyde/2-hydroxy-1-naphthaldehyde and (un)substituted thiosemicarbazides with the view to ascertain their biological properties brought about by the change in substitution at N-terminal position of the thiosemicarbazide derivatives. The compounds were fully characterized by elemental analyses, and various spectroscopic techniques (UV-Visible, FT-IR, NMR and mass). The solid-state structure of three compounds (1, 2 and 7) was determined by single crystal X-ray diffraction method. The compounds (1, 2 and 7) have adopted a monoclinic crystal system with P21/c (1 and 2) or C2/c (7) space group. Antioxidant and non-haemolysis activities of the compounds (1-8) were analyzed by in vitro DPPH and haemolysis assays, respectively. Antiinflammatory potential was verified by in vitro PLA2 inhibition assay and in silico molecular docking study. In vitro and in silico studies revealed promising antiinflammatory potential of the thiosemicarbazone derivatives. Compounds 2, 4, 6, 7 and 8 showed significant antiinflammatory activity.

  6. Stress analysis of disconnected structures in contact through finite element gaps

    International Nuclear Information System (INIS)

    Stadter, J.T.; Weiss, R.O.

    1976-07-01

    A numerical procedure is presented for analyzing thermal stress problems of disconnected structures in contact across separations or gaps. The new procedure is called SAASGAPS, an adaptation of the basic SAAS III computer program. The SAAS program uses the finite element method and allows analyses of plane and axisymmetric bodies with temperature dependent material properties, subject to thermal and mechanical loads. A secant modulus approach with a bilinear stress-strain curve is used for elastic-plastic problems. The SAASGAPS version contains all of the features of the original SAAS program. A special gap element is used together with a stress invariance principle to model the contact process. The iterative procedure implemented in SAASGAPS is described. Results are discussed for five problems involving frictionless contact. Two of these problems are associated with the thermal stress analysis of the heat shield for the Multi-Hundred Watt Radioisotope Thermoelectric Generator. Input instructions for the program are described in an appendix

  7. A structurally detailed finite element human head model for simulation of transcranial magnetic stimulation.

    Science.gov (United States)

    Chen, Ming; Mogul, David Jeffery

    2009-04-30

    Computational studies of the head utilizing finite element models (FEMs) have been used to investigate a wide variety of brain-electromagnetic (EM) field interaction phenomena including magnetic stimulation of the head using transcranial magnetic stimulation (TMS), direct electric stimulation of the brain for electroconvulsive therapy, and electroencephalography source localization. However, no human head model of sufficient complexity for studying the biophysics under these circumstances has been developed which utilizes structures at both the regional and cellular levels and provides well-defined smooth boundaries between tissues of different conductivities and orientations. The main barrier for building such accurate head models is the complex modeling procedures that include 3D object reconstruction and optimized meshing. In this study, a structurally detailed finite element model of the human head was generated that includes details to the level of cerebral gyri and sulci by combining computed tomography and magnetic resonance images. Furthermore, cortical columns that contain conductive processes of pyramidal neurons traversing the neocortical layers were included in the head model thus providing structure at or near the cellular level. These refinements provide a much more realistic model to investigate the effects of TMS on brain electrophysiology in the neocortex.

  8. In vitro fatigue tests and in silico finite element analysis of dental implants with different fixture/abutment joint types using computer-aided design models.

    Science.gov (United States)

    Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi

    2018-01-01

    The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (pimplant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Identification and detection of a novel human endogenous retrovirus-related gene, and structural characterization of its related elements

    Directory of Open Access Journals (Sweden)

    Qiaoyi Liang

    2009-01-01

    Full Text Available Up-regulation of human endogenous retroviruses (HERVs is associated with many diseases, including cancer. In this study, an H family HERV (HERV-H-related gene was identified and characterized. Its spliced transcript lacks protein-coding capacity and may belong to the emerging class of noncoding RNAs (ncRNAs. The 1.3-kb RNA consisting of four exons is transcribed from an Alu element upstream of a 5.0-kb structurally incomplete HERV-H element. RT-PCR and quantitative RT-PCR results indicated that expression of this HERV-related transcript was negatively associated with colon, stomach, and kidney cancers. Its expression was induced upon treatment with DNA methylation and histone deacetylation inhibitors. A BLAT search using long terminal repeats (LTRs identified 50 other LTR homogenous HERV-H elements. Further analysis of these elements revealed that all are structurally incomplete and only five exert transcriptional activity. The results presented here recommend further investigation into a potentially functional HERV-H-related ncRNA.

  10. Calculation of the Cholesky factor directly from the stiffness matrix of the structural element

    International Nuclear Information System (INIS)

    Prates, C.L.M.; Soriano, H.L.

    1978-01-01

    The analysis of the structures of nuclear power plants requires the evaluation of the internal forces. This is attained by the solution of a system of equations. This solution takes most of the computing time and memory. One of the ways it can be achieved is based on the Cholesky factor. The structural matrix of the coeficients is transformed into an upper triangular matrix by the Cholesky decomposition. Cholesky factor can be obtained directly from the stiffness matrix of the structural element. The result can thus be obtained in a more precise and quick way. (Author)

  11. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    Science.gov (United States)

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  12. INVESTIGATION OF DYNAMIC CHARACTERISTICS OF ELEMENTS OF AUTOMATICS OF A SMART HOUSE IN PARAMETRICAL STRUCTURAL SCHEMES

    Directory of Open Access Journals (Sweden)

    Petrova Irina Yur’evna

    2018-01-01

    Full Text Available Subject: automation of calculation of dynamic characteristics of the device being designed in the system of conceptual design of sensor equipment, structurally-parametric models of dynamic processes and algorithms for the automated calculation of the qualitative characteristics of elements of the information-measuring and control systems (IMCS. The stage of conceptual design most fully determines the operational characteristics of technical systems. However, none of the information support systems of this stage provides an opportunity to evaluate the performance characteristics of the element being designed taking into account its dynamic characteristics. Research objectives: increasing the effectiveness of the evaluation of dynamic characteristics of sensitive elements of the information-measuring and control systems of a smart house. Materials and methods: when solving the problems posed, the mathematical apparatus of system modeling was used (in particular, the energy-information method of modeling processes of various physical nature that occur in the sensor equipment; the main provisions of the theory of automatic control, the theory of constructing computer-aided design systems, the theory of operational calculus; basics of conceptual design of elements of the information-measuring and control systems. Results: we compared the known automated systems for conceptual design of sensors, highlighted their advantages and disadvantages and we showed that none of these systems allows us to investigate dynamic characteristics of the element being designed in a simple and understandable for engineer form. The authors proposed using energy-information method of modeling for the synthesis of operation principles of sensors and analysis of their dynamic characteristics. We considered elementary dynamic chains and issues of synthesis of parametrical structural schemes that reflect the dynamics of the process with the use of mathematical apparatus of

  13. Lateral strength force of URM structures based on a constitutive model for interface element

    Directory of Open Access Journals (Sweden)

    A.H. Akhaveissy

    Full Text Available This paper presents the numerical implementation of a new proposed interface model for modeling the behavior of mortar joints in masonry walls. Its theoretical framework is fully based on the plasticity theory. The Von Mises criterion is used to simulate the behavior of brick and stone units. The interface laws for contact elements are formulated to simulate the softening behavior of mortar joints under tensile stress; a normal linear cap model is also used to limit compressive stress. The numerical predictions based on the proposed model for the behavior of interface elements correlate very highly with test data. A new explicit formula based on results of proposed interface model is also presented to estimate the strength of unreinforced masonry structures. The closed form solution predicts the ultimate lateral load of unreinforced masonry walls less error percentage than ATC and FEMA-307. Consequently, the proposed closed form solution can be used satisfactorily to analyze unreinforced masonry structures.

  14. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    Science.gov (United States)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  15. Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Alshemary, Ammar Z.; Akram, Muhammed; Goh, Yi-Fan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Abdolahi, Ahmad [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta’zim (Malaysia)

    2015-10-05

    Highlights: • Phase pure nano-sized Er doped hydroxyapatite has been prepared. • TEM micrograph confirmed formation of mesoporous material. • Increased Er doping resulted in blue shift with slight increase in energy band gab. • Er-HA showed better dissolution behavior in SBF comparing with pure HA. • Er doping of HA resulted in formation of apatite layer in SBF with Ca/P ratio of 1.72. - Abstract: We report the successful synthesis of mesoporous erbium doped hydroxyapatite (Er-HA, Ca{sub 10−x}Er{sub 2x/3}□{sub x/3}(PO{sub 4}){sub 6}(OH){sub 2}) by using a rapid and efficient microwave assisted wet precipitation method. Characterization techniques like X-ray diffraction (XRD), Fourier transform infra-red (FTIR), X-ray fluorescence spectrometer (XRF), Brunauer, Emmett and Teller (BET) and transmission electron microscopy (TEM) were used to determine lattice parameters, particle size, degree of crystallinity, elemental composition, surface area and morphology of Er-HA. Results confirmed the formation of crystalline Er-HA having crystallite size of 25 nm with spherical and rod like morphology, while the TEM analysis confirmed the mesoporous nature of the particles. Optical spectra of Er-HA contained seven electron transitions, whereas blue shift in the energy band gap (E{sub g}) was observed upon increase in Er{sup 3+} content. The photoluminescence (PL) spectra contained green and red emissions. In vitro bioactivity study conducted in SBF revealed that the incorporation of Er{sup 3+} ions into HA structure lead to the faster discharge of Er{sup 3+} ions resulting in intense growth of apatite grains on the surface of the Er-HA pellets with Ca/P ratio of 1.72.

  16. Scaffold with a natural mesh-like architecture: isolation, structural, and in vitro characterization.

    LENUS (Irish Health Repository)

    Burugapalli, Krishna

    2007-03-01

    An intact extracellular matrix (ECM) with a mesh-like architecture has been identified in the peri-muscular sub-serosal connective tissue (PSCT) of cholecyst (gallbladder). The PSCT layer of cholecyst wall is isolated by mechanical delamination of other layers and decellularized with a treatment with peracetic acid and ethanol solution (PES) in water to obtain the final matrix, which is referred to as cholecyst-derived ECM (CEM). CEM is cross-linked with different concentrations of glutaraldehyde (GA) to demonstrate that the susceptibility of CEM to degradation can be controlled. Quantitative and qualitative macromolecular composition assessments revealed that collagen is the primary structural component of CEM. Elastin is also present. In addition, the ultra-structural studies on CEM reveal the presence of a three-dimensional fibrous mesh-like network structure with similar nanoscale architecture on both mucosal and serosal surfaces. In vitro cell culture studies show that CEM provides a supporting structure for the attachment and proliferation of murine fibroblasts (3T3) and human umbilical vein endothelial cells (HUVEC). CEM is also shown to support the attachment and differentiation of rat adrenal pheochromocytoma cells (PC12).

  17. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui

    2009-08-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  18. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui; Suh, Kahp Y.

    2009-01-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  19. A finite element method for a time dependence soil-structure interactions calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr

  20. Micro-Computed-Tomography-Guided Analysis of In Vitro Structural Modifications in Two Types of 45S5 Bioactive Glass Based Scaffolds

    Directory of Open Access Journals (Sweden)

    Fabian Westhauser

    2017-11-01

    Full Text Available Three-dimensional 45S5 bioactive glass (BG-based scaffolds are being investigated for bone regeneration. Besides structural properties, controlled time-dependent alteration of scaffold morphology is crucial to achieve optimal scaffold characteristics for successful bone repair. There is no in vitro evidence concerning the dependence between structural characteristics and dissolution behavior of 45S5 BG-based scaffolds of different morphology. In this study, the dissolution behavior of scaffolds fabricated by the foam replica method using polyurethane foam (Group A and maritime sponge Spongia Agaricina (Group B as sacrificial templates was analyzed by micro-computed-tomography (µCT. The scaffolds were immersed in Dulbecco’s Modified Eagle Medium for 56 days under static cell culture conditions and underwent µCT-analysis initially, and after 7, 14, and 56 days. Group A showed high porosity (91% and trabecular structure formed by macro-pores (average diameter 692 µm ± 72 µm. Group-B-scaffolds were less porous (51%, revealing an optimal pore size distribution within the window of 110–500 µm pore size diameter, combined with superior mechanical stability. Both groups showed similar structural alteration upon immersion. Surface area and scaffold volume increased whilst density decreased, reflecting initial dissolution followed by hydroxycarbonate-apatite-layer-formation on the scaffold surfaces. In vitro- and/or in vivo-testing of cell-seeded BG-scaffolds used in this study should be performed to evaluate the BG-scaffolds’ time-dependent osteogenic properties in relation to the measured in vitro structural changes.

  1. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  2. In vitro biological characterization of macroporous 3D Bonelike structures prepared through a 3D machining technique

    International Nuclear Information System (INIS)

    Laranjeira, M.S.; Dias, A.G.; Santos, J.D.; Fernandes, M.H.

    2009-01-01

    3D bioactive macroporous structures were prepared using a 3D machining technique. A virtual 3D structure model was created and a computer numerically controlled (CNC) milling device machined Bonelike samples. The resulting structures showed a reproducible macroporosity and interconnective structure. Macropores size after sintering was approximately 2000 μm. In vitro testing using human bone marrow stroma showed that cells were able to adhere and proliferate on 3D structures surface and migrate into all macropore channels. In addition, these cells were able to differentiate, since mineralized globular structures associated with cell layer were identified. Results obtained showed that 3D structures of Bonelike successfully allow cell migration into all macropores, and allow human bone marrow stromal cells to proliferate and differentiate. This innovative technique may be considered as a step-forward preparation for 3D interconnective macroporous structures that allow bone ingrowth while maintaining mechanical integrity.

  3. Grab structure of a lifting structure in particular for use in a nuclear reactor for lifting and lowering of fuel elements and fuel rods

    International Nuclear Information System (INIS)

    Dose, G.

    1979-01-01

    A guide tower projects perpendicularly downward from the carriage of the charging machine. It can be rotated about its perpendicular axis. The tower is used to displace a hollow grab structure with two grabs. They can be opened and closed, the closed position being retained as long as they carry the fuel elements or rods. The power and interlocking equipment is installed one unit above the other in the joint grab housing. The tower with the integrated fuel element grab and the rod grab is rotated about its perpendicular axis for inspection of the fuel elements or rods. (DG) [de

  4. Soil-structure interaction analysis by finite element methods state-of-the-art

    International Nuclear Information System (INIS)

    Seed, H.B.; Lysmer, J.

    1977-01-01

    Analyses of soil-structure interaction effects during earthquakes for nuclear power plant structures are usually made by one of two methods - either by means of an idealized complete interaction analysis involving consideration of a compatible variation of motions in the structure and the adjacent soil, or by means of an inertial interaction analysis in which the motions in the adjacent soil are assumed to be the same at all points above the foundation depth. For surface structures, the distribution of free-field motions with depth in the underlying soils has no influence on the structural response and thus, provided the analyses are made in accordance with good practice, good results may be obtained by either method of approach. For embedded structures, however, consideration of the variation of motions with depth is essential if adequate evaluations of soil and structural response are to be obtained without undue conservatism. The finite element analysis procedure is particularly well suited for evaluating the response of embedded structures since it can readily provide consideration of the variation of soil characteristics with depth, the different non-linear deformation and energy absorbing capacities of the various soil strata, the variation of motions with depth in accordance with the general principles of engineering mechanics, the three-dimensional nature of the problem and the effects of adjacent structures on each other

  5. Storage Conditions of Skin Affect Tissue Structure and Subsequent in vitro Percutaneous Penetration

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Plasencia Gil, Maria Inés; Sørensen, Jens Ahm

    2011-01-01

    fluorescence microscopy) and in vitro percutaneous penetration of caffeine under four different storage conditions using skin samples from the same donors: fresh skin, skin kept at -20°C for 3 weeks (with or without the use of polyethylene glycol) and at -80°C. Our results show a correlation between increasing...... permeation of caffeine and tissue structural damage caused by the storage conditions, most so after skin storage at -80°C. The presented approach, which combines imaging techniques with studies on percutaneous penetration, enables the link between tissue damage at selected depths and penetration...

  6. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  7. [In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].

    Science.gov (United States)

    Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T

    2015-12-01

    Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), pmatrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed.

  8. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Directory of Open Access Journals (Sweden)

    Jesús Carmona

    2015-05-01

    Full Text Available This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  9. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Science.gov (United States)

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  10. Generic structure and promotional elements in best-selling online book blurbs: a cross-cultural study

    Directory of Open Access Journals (Sweden)

    Neslihan Önder

    2013-04-01

    Full Text Available This study investigates the generic structure and promotional elements of the online fiction blurbs accompanying the 95 best-selling books from Amazon United Kingdom and Okuoku Turkey (1999-2011, a company that sells books online that are written in Turkish or translated into Turkish, and adds to the growing number of investigations into this genre (Kathpalia, 1997; Bhatia, 2004; Cacchiani, 2007; Gea-Valor, 2007; Gesuato, 2007; Basturkmen, 2009. Based on the findings, a two-level schematic structure (moves and steps is proposed for the blurbs following Swales (1990. The findings suggest that Amazon UK book blurbs have a six-move schematic structure: complimenting the author, book description, justifying the book by establishing a niche, book promotion, author’s background and author’s website/blog being the second, fourth and fifth obligatory moves. However, Okuoku book blurbs feature a five-move schematic structure with complimenting the author, book description, involving the reader in the text, book promotion and author’s background, the second and fourth being obligatory. Analysis of promotional elements in the corpora reveals that online fiction book blurbs employ the art of advertising through the use of favorable expressions (Bhatia, 2005 and innovative uses of rhetorical strategies to persuade the reader to read the book.

  11. In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax.

    Science.gov (United States)

    Paca-Uccaralertkun, S; Zhao, L J; Adya, N; Cross, J V; Cullen, B R; Boros, I M; Giam, C Z

    1994-01-01

    The human T-cell lymphotropic virus type I (HTLV-I) transactivator, Tax, the ubiquitous transcriptional factor cyclic AMP (cAMP) response element-binding protein (CREB protein), and the 21-bp repeats in the HTLV-I transcriptional enhancer form a ternary nucleoprotein complex (L. J. Zhao and C. Z. Giam, Proc. Natl. Acad. Sci. USA 89:7070-7074, 1992). Using an antibody directed against the COOH-terminal region of Tax along with purified Tax and CREB proteins, we selected DNA elements bound specifically by the Tax-CREB complex in vitro. Two distinct but related groups of sequences containing the cAMP response element (CRE) flanked by long runs of G and C residues in the 5' and 3' regions, respectively, were preferentially recognized by Tax-CREB. In contrast, CREB alone binds only to CRE motifs (GNTGACG[T/C]) without neighboring G- or C-rich sequences. The Tax-CREB-selected sequences bear a striking resemblance to the 5' or 3' two-thirds of the HTLV-I 21-bp repeats and are highly inducible by Tax. Gel electrophoretic mobility shift assays, DNA transfection, and DNase I footprinting analyses indicated that the G- and C-rich sequences flanking the CRE motif are crucial for Tax-CREB-DNA ternary complex assembly and Tax transactivation but are not in direct contact with the Tax-CREB complex. These data show that Tax recruits CREB to form a multiprotein complex that specifically recognizes the viral 21-bp repeats. The expanded DNA binding specificity of Tax-CREB and the obligatory role the ternary Tax-CREB-DNA complex plays in transactivation reveal a novel mechanism for regulating the transcriptional activity of leucine zipper proteins like CREB.

  12. Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability

    Directory of Open Access Journals (Sweden)

    Francesco Tornabene

    2017-07-01

    Full Text Available The authors are presenting a novel formulation based on the Differential Quadrature (DQ method which is used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form finite elements (SFEM or WFEM, according to the numerical scheme employed in the computation. Such numerical methods are applied to solve some structural problems related to the mechanical behavior of plates and shells, made of isotropic or composite materials. The main differences between these two approaches rely on the initial formulation – which is strong or weak (variational – and the implementation of the boundary conditions, that for the former include the continuity of stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. The two methodologies consider also a mapping technique to transform an element of general shape described in Cartesian coordinates into the same element in the computational space. Such technique can be implemented by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or blending functions which allow an “exact mapping” of the element. In particular, the authors are employing NURBS (Not-Uniform Rational B-Splines for such nonlinear mapping in order to use the “exact” shape of CAD designs.

  13. 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland.

    Science.gov (United States)

    Liu, Nanbo; Huang, Sha; Yao, Bin; Xie, Jiangfan; Wu, Xu; Fu, Xiaobing

    2016-10-03

    3D bioprinting matrices are novel platforms for tissue regeneration. Tissue self-organization is a critical process during regeneration that implies the features of organogenesis. However, it is not clear from the current evidences whether 3D printed construct plays a role in guiding tissue self-organization in vitro. Based on our previous study, we bioprinted a 3D matrix as the restrictive niche for direct sweat gland differentiation of epidermal progenitors by different pore structure (300-μm or 400-μm nozzle diameters printed) and reported a long-term gradual transition of differentiated cells into glandular morphogenesis occurs within the 3D construct in vitro. At the initial 14-day culture, an accelerated cell differentiation was achieved with inductive cues released along with gelatin reduction. After protein release completed, the 3D construct guide the self-organized formation of sweat gland tissues, which is similar to that of the natural developmental process. However, glandular morphogenesis was only observed in 300-μm-printed constructs. In the absence of 3D architectural support, glandular morphogenesis was not occurred. This striking finding made us to identify a previously unknown role of the 3D-printed structure in glandular tissue regeneration, and this self-organizing strategy can be applied to forming other tissues in vitro.

  14. Validity of M-3Y force equivalent G-matrix elements for calculations of the nuclear structure in heavy mass region

    International Nuclear Information System (INIS)

    Cheng Lan; Huang Weizhi; Zhou Baosen

    1996-01-01

    Using the matrix elements of M-3Y force as the equivalent G-matrix elements, the spectra of 210 Pb, 206 Pb, 206 Hg and 210 Po are calculated in the framework of the Folded Diagram Method. The results show that such equivalent matrix elements are suitable for microscopic calculations of the nuclear structure in heavy mass region

  15. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin ractor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature dependent yield surface. The temperature dependency of the yield surface is based upon a temperature-dependent, material-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal uniaxial stress-strain data. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. The temperature field is described through time-dependent values at mesh node points; the temperature fields in each element are then obtained by interpolation formulas. Hence, problems with both spatial and temporal dependent temperature fields can easily be treated. The above developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analysis Code. STRAW is a two-dimensional code with a plane stress/plane strain beam element. The 3D Implicit code has a triangular flat plate element which is capable of sustaining both membrane and bending loads. To insure numerical stability both codes are based on an iterative-incremental solution procedure with equilibrium checks based on an error in energy

  16. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  17. Institutional and structural barriers to HIV testing: elements for a theoretical framework.

    Science.gov (United States)

    Meyerson, Beth; Barnes, Priscilla; Emetu, Roberta; Bailey, Marlon; Ohmit, Anita; Gillespie, Anthony

    2014-01-01

    Stigma is a barrier to HIV health seeking, but little is known about institutional and structural expressions of stigma in HIV testing. This study examines evidence of institutional and structural stigma in the HIV testing process. A qualitative, grounded theory study was conducted using secondary data from a 2011 HIV test site evaluation data in a Midwestern, moderate HIV incidence state. Expressions of structural and institutional stigma were found with over half of the testing sites and at three stages of the HIV testing visit. Examples of structural stigma included social geography, organization, and staff behavior at first encounter and reception, and staff behavior when experiencing the actual HIV test. Institutional stigma was socially expressed through staff behavior at entry/reception and when experiencing the HIV test. The emerging elements demonstrate the potential compounding of stigma experiences with deleterious effect. Study findings may inform future development of a theoretical framework. In practice, findings can guide organizations seeking to reduce HIV testing barriers, as they provide a window into how test seekers experience HIV test sites at first encounter, entry/reception, and at testing stages; and can identify how stigma might be intensified by structural and institutional expressions.

  18. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    Science.gov (United States)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  19. SAFETY CRITERION IN ASSESSING THE IMPORTANCE OF AN ELEMENT IN THE COMPLEX TECHNOLOGICAL SYSTEM RELIABILITY STRUCTURE

    Directory of Open Access Journals (Sweden)

    Leszek CHYBOWSKI

    2012-01-01

    Full Text Available The paper presents the need to develop a description of the importance of the technological systems reliability structure elements in terms of security of the system. Basic issues related to the exploration of weak links and important elements in the system as well as a proposal to develop the current approach to assessing the importance of the system components have been presented. Moreover, the differences between the unreliability of suitability and unreliability of safety have been pointed out.

  20. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  1. Structural assessment of aerospace components using image processing algorithms and Finite Element models

    DEFF Research Database (Denmark)

    Stamatelos, Dimtrios; Kappatos, Vassilios

    2017-01-01

    Purpose – This paper presents the development of an advanced structural assessment approach for aerospace components (metallic and composites). This work focuses on developing an automatic image processing methodology based on Non Destructive Testing (NDT) data and numerical models, for predicting...... the residual strength of these components. Design/methodology/approach – An image processing algorithm, based on the threshold method, has been developed to process and quantify the geometric characteristics of damages. Then, a parametric Finite Element (FE) model of the damaged component is developed based...... on the inputs acquired from the image processing algorithm. The analysis of the metallic structures is employing the Extended FE Method (XFEM), while for the composite structures the Cohesive Zone Model (CZM) technique with Progressive Damage Modelling (PDM) is used. Findings – The numerical analyses...

  2. Lagrangian finite element formulation for fluid-structure interaction and application

    International Nuclear Information System (INIS)

    Hautfenne, M.H.

    1983-01-01

    The aim of this communication is to present a new finite element software (FLUSTRU) for fluid-structure interaction in a lagrangian formulation. The stiffness and damping matrices of the fluid are computed from the governing laws of the medium: the fluid is supposed to be viscous and compressible (Stokes' equations). The main problem stated by the lagrangian formulation of the fluid is the presence of spurious free-vibration modes (zero energy modes) in the fluid. Those modes are generated by the particular form of the matrix. These spurious modes have been examined and two particular methods to eliminate them have been developed: industrial applications prove the efficiency of the proposed methods. (orig./GL)

  3. Structural plasticity of Barley yellow dwarf virus-like cap-independent translation elements in four genera of plant viral RNAs.

    Science.gov (United States)

    Wang, Zhaohui; Kraft, Jelena J; Hui, Alice Y; Miller, W Allen

    2010-06-20

    The 3' untranslated regions (UTRs) of many plant viral RNAs contain cap-independent translation elements (3' CITEs). Among the 3' CITEs, the Barley yellow dwarf virus (BYDV)-like translation elements (BTEs) form a structurally variable and widely distributed group. Viruses in three genera were known to harbor 3' BTEs, defined by the presence of a 17-nt consensus sequence. To understand BTE function, knowledge of phylogenetically conserved structure is essential, yet the secondary structure has been determined only for the BYDV BTE. Here we show that Rose spring dwarf-associated luteovirus, and two viruses in a fourth genus, Umbravirus, contain functional BTEs, despite deviating in the 17nt consensus sequence. Structure probing by selective 2'-hydroxyl acylation and primer extension (SHAPE) revealed conserved and highly variable structures in BTEs in all four genera. We conclude that BTEs tolerate striking evolutionary plasticity in structure, while retaining the ability to stimulate cap-independent translation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Broadband Acoustic Transmission Enhancement through a Structured Stiff Plate with Locally Resonant Elements

    International Nuclear Information System (INIS)

    Li Yong; Liang Bin; Zou Xin-Ye; Cheng Jian-Chun

    2012-01-01

    Broadband acoustic transmission enhancement (ATE) is realized for a periodically structured stiff plate without any opening that is conventionally thought to be only capable of supporting narrowband ATE, by introducing locally resonant (LR) elements. This exotic phenomenon is interpreted by analyzing the vibration pattern of the structure-induced LR modes, and is well modeled by a simple 'spring-mass' system which reveals the contribution of the LR effect to the important broadband performance. Our findings should help to better understand the physical mechanism of ATE and may have potential impact on ultrasonic applications such as broadband acoustic filters or compact acoustic devices in subwavelength scale

  5. Numerical study of viscoelastic polymer flow in simplified pore structures using stabilised finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, M.; Wegner, J.; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Polymer flooding, as an EOR method, has become one of the most important driving forces after water flooding. The conventional believe is that polymer flooding can only improve sweep efficiency, but it has no contribution to residual oil saturation reduction. However, experimental studies indicated that polymer solution can also improve displacement efficiency and decrease residual oil saturation. To get a better understanding of the mechanism to increase the microscopic sweep efficiency and the displacement efficiency, theoretical studies are required. In this paper, we studied the viscoelasticity effect of polymer by using a numerical simulator, which is based on Finite Element Analysis. Since it is showed experimentally that the first normal stress difference of viscoelastic polymer solution is higher than the second stress difference, the Oldroyd-B model was selected as the constitutive equation in the simulation. Numerical modelling of Oldroyd-B viscoelastic fluids is notoriously difficult. Standard Galerkin finite element methods are prone to numerical oscillations, and there is no convergence as the elasticity of fluid increases. Therefore, we use a stabilised finite element model. In order to verify our model, we first built up a model with the same geometry and fluid properties as presented in literature and compared the results. Then, with the tested model we simulated the effect of viscoelastic polymer fluid on dead pores in three simplified pore structures, which are contraction structure, expansion structure and expansion-contraction structure. Correspondingly, the streamlines and velocity contours of polymer solution, with different Reynolds numbers (Re) and Weissenberg numbers (We), flowing in these three structures are showed. The simulation results indicate that the viscoelasticity of polymer solution is the main contribution to increase the micro-scale sweep efficiency. With higher elasticity, the velocity of polymer solution is getting bigger at

  6. Nuclear Structure of the Heaviest Elements – Investigated at SHIP-GSI

    Directory of Open Access Journals (Sweden)

    Heßberger Fritz Peter

    2014-03-01

    Full Text Available The quest for the heaviest nuclei that can exist is a basic topic in natural science as their stability is characterized by a delicate interplay of short range nuclear forces acting between the nucleons (protons and neutrons and long-range Coulomb forces acting solely between charged particles, i.e. the protons. As the stability of a nucleus is strongly correlated to its structure, understanding the nuclear structure of heaviest nuclei is presently a main challenge of experimental and theoretical investigations concerning the field of Superheavy Elements. At the velocity filter SHIP at GSI Darmstadt an extensive program on nuclear structure investigations has been started about a decade ago. The project covered both as well systematic investigations of single particle levels in odd-mass isotopes populated by α-decay as investigation of two- or fourquasi-particle states forming K isomers and was supplemented by direct mass measurements at SHIPTRAP and investigation of spontaneous fission properties. Recent experimental studies allowed to extend the systematics of low lying levels in N = 151 and N = 153 up to 255Rf and 259Sg, investigation of possible relations between nuclear structure and fission properties of odd-mass nuclei and investigation of shell strengths at N = 152 and towards N = 162.

  7. New advances in the forced response computation of periodic structures using the wave finite element (WFE) method

    OpenAIRE

    Mencik , Jean-Mathieu

    2014-01-01

    International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...

  8. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    International Nuclear Information System (INIS)

    Sharifi, Hamid; Larouche, Daniel

    2015-01-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)

  9. Symmetry structure of the periodic system of elements

    International Nuclear Information System (INIS)

    Kitagawara, Y.

    1983-01-01

    Two different, exactly soluble, quantum mechanical many-body problems are presented and their symmetry properties are analyzed. One is based on the Demkov-Ostrovskii problem which models the (n + 1)-filling rule of the atomic Aufbau principle. The invariance properties of the model differential equation are studied in detail. Contrary to commonly known quantum problems, the degeneracy structure within the quantum number (n + 1) is not described by the representation of a Lie algebra. However, it is described by a symmetry algebra which does not quite close under the commutation relations. The properties of this new algebra are closely examined. It is shown that the characteristic 'period doubling' in Aufbau chart is due to the structure of this algebra. To attain a better physical understanding of the symmetry of the periodic system of elements, the Demkov-Ostrovskii equation is transformed into a new equation, without changing some of its symmetry properites. It is found that the quantum states of the transformed equation provide reasonable approximations to the correspinding Hartree-Fock-Slater atomic orbitals. Thus the symmetry of the periodic system is approximately described by the degeneracy algebra which is obtained in this thesis. In the second part of this work, a group theoretical investigation is developed for a class of Coulomb-type N-body quantum systems in three dimensions. The dynamical algebra for these systems is found to be SO(3N + 1,2)

  10. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  11. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    Science.gov (United States)

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  12. Polymorphism in Elemental Silicon: Probabilistic Interpretation of the Realizability of Metastable Structures

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, Vladan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    With few systems of technological interest having been studied as extensively as elemental silicon, there currently exists a wide disparity between the number of predicted low-energy silicon polymorphs and those that have been experimentally realized as metastable at ambient conditions. We put forward an explanation for this disparity wherein the likelihood of formation of a given polymorph under near-equilibrium conditions can be estimated on the basis of mean-field isothermal-isobaric (N,p,T) ensemble statistics. The probability that a polymorph will be experimentally realized is shown to depend upon both the hypervolume of that structure's potential energy basin of attraction and a Boltzmann factor weight containing the polymorph's potential enthalpy per particle. Both attributes are calculated using density functional theory relaxations of randomly generated initial structures. We find that the metastable polymorphism displayed by silicon can be accounted for using this framework to the exclusion of a very large number of other low-energy structures.

  13. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element–boundary element approach

    International Nuclear Information System (INIS)

    Ringwelski, S; Gabbert, U

    2010-01-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element–boundary element model is derived by introducing coupling conditions at the fluid–fluid and fluid–structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural–acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element–boundary element model shows a good agreement

  14. Finite element simulation of the welding process and structural behaviour of welded components

    International Nuclear Information System (INIS)

    Locci, J.M.; Rouvray, A. de; Barbe, B.; Poirier, J.

    1977-01-01

    In the field of inelastic analysis of nuclear metal structures, the computation of residual stresses in welds, and their effects on the strength of welded components is of major importance. This paper presents an experimentally checked finite element simulation with the general nonlinear program PAM NEP-D, of the electron beam welding of two thick hemispherical shells, and the behaviour of the welded sphere under various additional thermomechanical sollicitations. (Auth.)

  15. Cross-Sectional Information on Pore Structure and Element Distribution of Sediment Particles by SEM and EDS

    Directory of Open Access Journals (Sweden)

    Minghong Chen

    2017-01-01

    Full Text Available The interaction between pollutants and sediment particles often occurs on the particle surface, so surface properties directly affect surface reaction. The physical and chemical processes occurring on sediment particle surfaces are microscopic processes and as such need to be studied from a microscopic perspective. In this study, field emission scanning electron microscopy (SEM and energy dispersive X-ray spectrometer (EDS were adopted to observe and analyze the pore structure and element distribution of sediment particles. In particular, a special method of sample preparation was used to achieve the corresponding cross-sectional information of sediment particles. Clear images of a particle profile and pore microstructure were obtained by high-resolution SEM, while element distribution maps of sediment particles were obtained by EDS. The results provide an intuitive understanding of the internal microenvironment and external behavior of sediment particles, in addition to revealing a significant role of pore microstructure in the adsorption and desorption of pollutants. Thus, a combination of different experimental instruments and observation methods can provide real images and information on microscopic pore structure and element distribution of sediment particles. These results should help to improve our understanding of sediment dynamics and its environmental effects.

  16. Electronic structure and properties of superheavy elements

    International Nuclear Information System (INIS)

    Pershina, V.

    2015-01-01

    Spectacular developments in the relativistic quantum theory and computational algorithms in the last few decades allowed for accurate calculations of properties of the superheavy elements (SHE) and their compounds. Often conducted in a close link to the experimental research, these investigations helped predict and interpret an outcome of sophisticated and expensive experiments with single atoms. Most of the works, particularly those related to the experimental studies, are overviewed in this publication. The role of relativistic effects being of paramount importance for the heaviest elements is elucidated.

  17. Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community

    Science.gov (United States)

    Weigel, T.; Toussaiant, F.; Stockhause, M.; Höck, H.; Kindermann, S.; Lautenschlager, M.; Ludwig, T.

    2012-12-01

    We propose a wide adoption of structural elements (typed links, collections, trees) in the Handle System to improve identification and access of scientific data, metadata and software as well as traceability of data provenance. Typed links target the issue of data provenance as a means to assess the quality of scientific data. Data provenance is seen here as a directed acyclic graph with nodes representing data and vertices representing derivative operations (Moreau 2010). Landing pages can allow a human user to explore the provenance graph back to the primary unprocessed data, thereby also giving credit to the original data producer. As in Earth System Modeling no single infrastructure with complete data lifecycle coverage exists, we propose to split the problem domain in two parts. Project-specific infrastructures such as the German project C3-Grid or the Earth System Grid Federation (ESGF) for CMIP5 data are aware of data and data operations (Toussaint et al. 2012) and can thus detect and accumulate single nodes and vertices in the provenance graph, assigning Handles to data, metadata and software. With a common schema for typed links, the provenance graph is established as downstream infrastructures refer incoming Handles. Data in this context is for example hierarchically structured Earth System model output data, which receives DataCite DOIs only for the most coarse-granular elements. Using Handle tree structures, the lower levels of the hierarchy can also receive Handles, allowing authors to more precisely identify the data they used (Lawrence et al. 2011). We can e.g. define a DOI for just the 2m-temperature variable of CMIP5 data across many CMIP5 experiments or a DOI for model and observational data coming from different sources. The structural elements should be implemented through Handle values at the Handle infrastructure level for two reasons. Handle values are more durable than downstream websites or databases, and thus the provenance chain does not

  18. The Lys-Asp-Tyr Triad within the Mite Allergen Der p 1 Propeptide Is a Critical Structural Element for the pH-Dependent Initiation of the Protease Maturation.

    Science.gov (United States)

    Chevigné, Andy; Campizi, Vincenzo; Szpakowska, Martyna; Bourry, David; Dumez, Marie-Eve; Martins, José C; Matagne, André; Galleni, Moreno; Jacquet, Alain

    2017-05-20

    The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.

  19. The Lys-Asp-Tyr Triad within the Mite Allergen Der p 1 Propeptide Is a Critical Structural Element for the pH-Dependent Initiation of the Protease Maturation

    Directory of Open Access Journals (Sweden)

    Andy Chevigné

    2017-05-01

    Full Text Available The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.

  20. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    Science.gov (United States)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  1. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures

    International Nuclear Information System (INIS)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential and a temperature dependent surface. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. These developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analaysis code. A set of problems is presented to validate both the 3D and 2D programs and to illustrate their applicability to a variety of problems. (Auth.)

  2. The sustained-release behavior and in vitro and in vivo transfection of pEGFP-loaded core-shell-structured chitosan-based composite particles

    Science.gov (United States)

    Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang

    2014-01-01

    Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253

  3. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    International Nuclear Information System (INIS)

    Jin, C.; Li, Y.; Li, Y.L.; Zou, Y.; Zhang, G.L.; Normura, M.; Zhu, G.Y.

    2008-01-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 A and the Fe-Np bond length slightly increases, but the Fe-N ε bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases

  4. Trace element structure of the most widespread plants of genus PulmonariaFNx01

    Directory of Open Access Journals (Sweden)

    Dmitriy Kruglov

    2012-01-01

    Full Text Available Aim: The aim of this work was a comparative research of trace element structure of various organs of three Pulmonaria species. Materials and Methods: The aerial parts of the most widespread plants of genus Pulmonaria such as Pulmonaria officinalis L., Pulmonaria obscura Dumort. and Pulmonaria mollis Wulf. ex Hornem., which were collected in ending of flowering and were used as the research objects. The amount of trace elements (B, K, P, V, Ca, Co, Cu, Fe, Mg, Mn, Mo, Na, Si, Zn, Ag, Al, Ba, Br, Cr, I, Ni, Se, Sr, and Ti was determined by means of mass spectroscopy with inductively coupled plasma. Results: The data clustering has shown that floral shoots and rosellate leaves possess essentially various trace element status. At the same time, the trace elements′ status of organs of researched plants poorly depends on a taxonomic position of the plant. Thereupon, it is obvious that pharmacological activity is defined by organs of plants from which medicines were made, but not by a species of the used plant. Conclusions: The significant distinction in pharmacological activity of preparations depends on the trace elements′ status of used medicinal vegetative raw materials.

  5. Future Launch Vehicle Structures - Expendable and Reusable Elements

    Science.gov (United States)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  6. Numerical modeling assistance system in finite element analysis for the structure of an assembly

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Nishida, Akemi; Kawakami, Yoshiaki; Suzuki, Yoshio; Sawa, Kazuhiro; Iigaki, Kazuhiko

    2015-01-01

    The objective of structural analysis and seismic response analysis are well recognized and utilized as one of sophisticated analysis tools for design objects in the nuclear engineering. The way to design nuclear facilities is always in compromising with many index, such as costs, performance, robustness and so on, but the most important issues is the safety. It is true the structural analysis and seismic response analysis plays an important role to insure the safety, since it is well known that Japan is always facing to the earthquake. In this paper, a numerical analysis's controlling and managing system is implemented on a supercomputer, which controls the modelling process and data treating for structural robustness, although a numerical analysis's manager only controls a structural analysis by finite element method. The modeling process is described by the list of function ID and its procedures in a data base. The analytical modeling manager executes the process by order of the lists for simulation procedures. The manager controls the intention of an analysis by changing the analytical process one to another. Modeling process was experimentally found that may subject to the intention of designing index. The numerical experiments were carried out with static analyses and dynamic analyses. The results of its experiment introduce reasonable discussion to understand the accuracy of simulation. In the numerical experiments, K, supercomputer is utilized by using parallel computing resource with the controlling and managing system. The structural analysis and seismic response analysis are done by the FIEST, finite element analysis for the structure of an assembly, which carries out the simulation by gathering components. As components are attached to one another to build an assembly, and, therefore, the interactions between the components due to differences in material properties and their connection conditions considerably affect the behavior of an assembly. FIESTA is

  7. A combined multibody and finite element approach for dynamic interaction analysis of high-speed train and railway structure including post-derailment behavior during an earthquake

    International Nuclear Information System (INIS)

    Tanabe, M; Wakui, H; Sogabe, M; Matsumoto, N; Tanabe, Y

    2010-01-01

    A combined multibody and finite element approach is given to solve the dynamic interaction of a Shinkansen train (high-speed train in Japan) and the railway structure including post-derailment during an earthquake effectively. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express interactions between wheel and track structure including post-derailment are given. Rail and track elements expressed in multibody dynamics and FEM are given to solve contact problems between wheel and long railway components effectively. The motion of a railway structure is modeled with various finite elements and rail and track elements. The computer program has been developed for the dynamic interaction analysis of a Shinkansen train and railway structure including post derailment during an earthquake. Numerical examples are demonstrated.

  8. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    Science.gov (United States)

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  9. Comparative leaf anatomy of long pepper (Piper hispidinervum C. DC. and spiked pepper (Piper aduncum L. cultured in vitro, ex vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Simone de Alencar Maciel

    2014-12-01

    Full Text Available Piper hispidinervum and Piper aduncum contain the secondary metabolites safrole and dilapiol, and there is commercial interest in their essential oils. The study aimed to compare anatomical aspects related to physiological responses of leaves from P. hispidinervum and P. aduncum propagated in vitro, in vivo and during acclimatization. Paradermal sections and cross-sections of leaves from in vitro, ex vitro and in vivo culture, were obtained for the measurement of anatomical structures using a light microscope. The thickness of the epidermis and hypodermis of P. hispidinervum and P. aduncum underwent changes in the transition from in vitro to ex vitro. Mesophyll tissues and stomatal pore opening of both species were inluenced by the environment in vitro. Different cultivation environments promote the plasticity of the cellular structures of the leaf blade and underlie the success of micropropagation of both species.

  10. 3D micro-crack propagation simulation at enamel/adhesive interface using FE submodeling and element death techniques.

    Science.gov (United States)

    Liu, Heng-Liang; Lin, Chun-Li; Sun, Ming-Tsung; Chang, Yen-Hsiang

    2010-06-01

    This study investigates micro-crack propagation at the enamel/adhesive interface using finite element (FE) submodeling and element death techniques. A three-dimensional (3D) FE macro-model of the enamel/adhesive/ceramic subjected to shear bond testing was generated and analyzed. A 3D micro-model with interfacial bonding structure was constructed at the upper enamel/adhesive interface where the stress concentration was found from the macro-model results. The morphology of this interfacial bonding structure (i.e., resin tag) was assigned based on resin tag geometry and enamel rod arrangement from a scanning electron microscopy micrograph. The boundary conditions for the micro-model were determined from the macro-model results. A custom iterative code combined with the element death technique was used to calculate the micro-crack propagation. Parallel experiments were performed to validate this FE simulation. The stress concentration within the adhesive occurred mainly at the upper corner near the enamel/adhesive interface and the resin tag base. A simulated fracture path was found at the resin tag base along the enamel/adhesive interface. A morphological observation of the fracture patterns obtained from in vitro testing corresponded with the simulation results. This study shows that the FE submodeling and element death techniques could be used to simulate the 3D micro-stress pattern and the crack propagation noted at the enamel/adhesive interface.

  11. Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures

    CERN Document Server

    Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad

    2008-01-01

    The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.

  12. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    Luciano Mendes Bezerra; Jarbas de Carvalho Santos Junior; Arlindo Pires Lopes; Andre Luiz; Souza, A.C.

    2005-01-01

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  13. Transient dynamic finite element analysis of hydrogen distribution test chamber structure for hydrogen combustion loads

    International Nuclear Information System (INIS)

    Singh, R.K.; Redlinger, R.; Breitung, W.

    2005-09-01

    Design and analysis of blast resistant structures is an important area of safety research in nuclear, aerospace, chemical process and vehicle industries. Institute for Nuclear and Energy Technologies (IKET) of Research Centre- Karlsruhe (Forschungszentrum Karlsruhe or FZK) in Germany is pursuing active research on the entire spectrum of safety evaluation for efficient hydrogen management in case of the postulated design basis and beyond the design basis severe accidents for nuclear and non-nuclear applications. This report concentrates on the consequence analysis of hydrogen combustion accidents with emphasis on the structural safety assessment. The transient finite element simulation results obtained for 2gm, 4gm, 8gm and 16gm hydrogen combustion experiments concluded recently on the test-cell structure are described. The frequencies and damping of the test-cell observed during the hammer tests and the combustion experiments are used for the present three dimensional finite element model qualification. For the numerical transient dynamic evaluation of the test-cell structure, the pressure time history data computed with CFD code COM-3D is used for the four combustion experiments. Detail comparisons of the present numerical results for the four combustion experiments with the observed time signals are carried out to evaluate the structural connection behavior. For all the combustion experiments excellent agreement is noted for the computed accelerations and displacements at the standard transducer locations, where the measurements were made during the different combustion tests. In addition inelastic analysis is also presented for the test-cell structure to evaluate the limiting impulsive and quasi-static pressure loads. These results are used to evaluate the response of the test cell structure for the postulated over pressurization of the test-cell due to the blast load generated in case of 64 gm hydrogen ignition for which additional sets of computations were

  14. Fatigue assessment for selected connections of structural steel bridge components using the finite elements method

    Science.gov (United States)

    Śledziewski, Krzysztof

    2018-01-01

    Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.

  15. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  16. The identification and functional annotation of RNA structures conserved in vertebrates

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Mirza, Aashiq Hussain; Hansen, Claus

    2017-01-01

    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure...... (RBPs) or (ii) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared...... expression and shared structure despite low abundance and low sequence identity. About 30k CRS regions are located near coding or long non-coding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their non-structured...

  17. Coupled electromagnetic and structural finite element analysis of a superconducting dipole model

    International Nuclear Information System (INIS)

    Hirtenfelder, F.

    1996-01-01

    Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance

  18. Planing of land use of structural elements of ecological network at local level

    OpenAIRE

    Tretiak V.; Hun'ko L.

    2016-01-01

    and Management projecting of structural elements of land use of the ecological network on the territory of the village council begins with ecological and landscape micro zoning of the territory of village council, held during the preparatory work for the drafting of land and are finished by the formation of environmentally homogeneous regions, to which the system components of ecological network are tied, as well as environmental measures in the form of local environmental restrictions (encum...

  19. Testing the Big Bang: Light elements, neutrinos, dark matter and large-scale structure

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Several experimental and observational tests of the standard cosmological model are examined. In particular, a detailed discussion is presented regarding: (1) nucleosynthesis, the light element abundances, and neutrino counting; (2) the dark matter problems; and (3) the formation of galaxies and large-scale structure. Comments are made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing and the cosmological and astrophysical constraints on it.

  20. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro.

    Directory of Open Access Journals (Sweden)

    Hiroki Saito

    Full Text Available Islets of Langerhans are a pancreatic endocrine compartment consisting of insulin-producing β cells together with several other hormone-producing cells. While some insulin-producing cells or immature pancreatic cells have been generated in vitro from ES and iPS cells, islets with proper functions and a three-dimensional (3D structure have never been successfully produced. To test whether islets can be formed in vitro, we first examined the potential of mouse fetal pancreatic cells. We found that E16.5 pancreatic cells, just before forming islets, were able to develop cell aggregates consisting of β cells surrounded by glucagon-producing α cells, a structure similar to murine adult islets. Moreover, the transplantation of these cells improved blood glucose levels in hyperglycemic mice. These results indicate that functional islets are formed in vitro from fetal pancreatic cells at a specific developmental stage. By adopting these culture conditions to the differentiation of mouse iPS cells, we developed a two-step system to generate islets, i.e. immature pancreatic cells were first produced from iPS cells, and then transferred to culture conditions that allowed the formation of islets from fetal pancreatic cells. The islets exhibited distinct 3D structural features similar to adult pancreatic islets and secreted insulin in response to glucose concentrations. Transplantation of the islets improved blood glucose levels in hyperglycemic mice. In conclusion, the two-step culture system allows the generation of functional islets with a 3D structure from iPS cells.

  1. Alphavirus replicon approach to promoterless analysis of IRES elements.

    Science.gov (United States)

    Kamrud, K I; Custer, M; Dudek, J M; Owens, G; Alterson, K D; Lee, J S; Groebner, J L; Smith, J F

    2007-04-10

    Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.

  2. A conserved RNA structural element within the hepatitis B virus post-transcriptional regulatory element enhance nuclear export of intronless transcripts and repress the splicing mechanism.

    Science.gov (United States)

    Visootsat, Akasit; Payungporn, Sunchai; T-Thienprasert, Nattanan P

    2015-12-01

    Hepatitis B virus (HBV) infection is a primary cause of hepatocellular carcinoma and liver cirrhosis worldwide. To develop novel antiviral drugs, a better understanding of HBV gene expression regulation is vital. One important aspect is to understand how HBV hijacks the cellular machinery to export unspliced RNA from the nucleus. The HBV post-transcriptional regulatory element (HBV PRE) has been proposed to be the HBV RNA nuclear export element. However, the function remains controversial, and the core element is unclear. This study, therefore, aimed to identify functional regulatory elements within the HBV PRE and investigate their functions. Using bioinformatics programs based on sequence conservation and conserved RNA secondary structures, three regulatory elements were predicted, namely PRE 1151-1410, PRE 1520-1620 and PRE 1650-1684. PRE 1151-1410 significantly increased intronless and unspliced luciferase activity in both HepG2 and COS-7 cells. Likewise, PRE 1151-1410 significantly elevated intronless and unspliced HBV surface transcripts in liver cancer cells. Moreover, motif analysis predicted that PRE 1151-1410 contains several regulatory motifs. This study reported the roles of PRE 1151-1410 in intronless transcript nuclear export and the splicing mechanism. Additionally, these results provide knowledge in the field of HBV RNA regulation. Moreover, PRE 1151-1410 may be used to enhance the expression of other mRNAs in intronless reporter plasmids.

  3. Location and orientation of panel on the screen as a structural visual element to highlight text displayed

    Science.gov (United States)

    Léger, Laure; Chevalier, Aline

    2017-07-01

    Searching for information on the internet has become a daily activity. It is considered to be a complex cognitive activity that involves visual attention. Many studies have demonstrated that users' information search are affected both by the spatial configuration of words and the elements displayed on the screen: elements that are used to structure web pages. One of these elements, the web panel, contains information. Web panel is a rectangular area with a colored background that was used to highlighting content presented in this specific rectangular area. Our general hypothesis was that the presence of a panel on a web page would affect the structure of a word display, as a result, information search accuracy. We carried out an experiment in which we manipulated the presence vs. the absence of a panel, as well as its orientation on the screen (vertical vs. horizontal). Twenty participants were asked to answer questions while their eye movements were recorded. Results showed that the presence of a panel resulted in reduced accuracy and shorter response times. Panel orientation affected scanpaths, especially when they were orientated vertically. We discuss these findings and suggest ways in which this research could be developed further in future.

  4. Use of stem sliced from in vitro plants of papaya (hybrid IBP 42-99 by obtained callus with embryogenic structure

    Directory of Open Access Journals (Sweden)

    Jorge Gallardo Colina

    2004-10-01

    Full Text Available Inside in vitro propagation via, the somatic embriogenesis offers possibilities of obtaining top volumes of production in a minor period of time and a lower cost, which are a method potentially more efficient than the regeneration via organogenesis. In papaya the somatic embryogenesis could have developed from zigotic embryos and axis hipocotilos, nevertheless in case of the hybrids these methods cannot be used and it becomes necessary to develop it from a somatic fabric, without link with the sexual reproduction. This work chased as main objective Evaluated the use of in vitro plants stem sections of the Carica papaya IBP 42-99 hybrid for the formation of callus with embryogenic structures. As plant material were use in vitro plants of the papaya hybrid IBP 42-99. For it there took sections of different parts of the stem from the meristem up to the base of the in vitro plants, was use the culture medium Nitsh and Nitsh supplemented with 1.5 mg.l-1 of 6-BAP and 1.5 mg.l-1 of AIA. It was achieved to obtain callus from the stem sections with the culture medium used, nevertheless, in the treatments where used cylinders inside 1.0 cm from the apex down, the best results were achieved. The use of in vitro plants stem sections as explant for the formation of callus in this vegetable species it opens new possibilities for his in vitro propagation, specially in case of resultant hybrids of genetic improvement programs. Key words: apexes, Carica papaya, callogenesis, somatic embryogenesis

  5. Design and operational behaviour of the SNR-reactor fuel element structure

    International Nuclear Information System (INIS)

    Dietz, W.; Toebbe, H.

    1985-01-01

    The fuel element and core concept of a fast breeder reactor is described by the example of the SNR 300 (1st core), and the requirements made on the fuel elements with respect to burnup and neutron dose are listed for existing and projected plants. Irradiation experiments carried out and operational experience gained with fuel elements show that the residence time of the fuel elements is influenced mainly by the stability of shape of the fuel element components. The requirements made with reference to neutron loading for future advanced high-performance fuel elements can not be anticipated from the present state of experience. Besides optimization of fuel element design and checking-out of the limits of operation by PFADFINDERELEMENTE elements, R and D work for the improvement of fuel element materials is also necessary. (orig.) [de

  6. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  7. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  8. Study of trace elements distribution in various tissues structures

    International Nuclear Information System (INIS)

    Kwiatek, W.M.; Marczewska, E.

    1994-01-01

    Many papers have been written during the past ten years about TE study in cancer and normal tissues describing the use of different methods for detection of trace elements. Concentration of TE depends strongly on the sample measured. However, according to our knowledge, the role of TE in cancerous tissue is still known. Therefore, we propose to perform an experiment which will hopefully given us more information about the relationship between the concentration of elements in different tissues. The developing industry localised near Cracow becomes a serious danger for health of it's inhabitants. The negative influence of the air pollution to the living organisms is seen not only in the nature but also in humans. Therefore we want to analyse the trace element contents in the air. Such investigation will give the information about the pollution level in the City. The pollution has its obvious negative influence to health and toxic element concentration level in blood. It is interesting to check if placenta plays an effective role in foetus protection against toxic metals. In order to study this problem, the trace element analysis of placenta tissues will be done by means of synchrotron microbeam. (author). 1 ref

  9. Structural elements of collapses in shallow water flows with horizontally nonuniform density

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P., E-mail: v.goncharov@rambler.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation); Pavlov, V. I., E-mail: Vadim.Pavlov@univ-lille1.fr [Universite de Lille 1, UFR de Mathematiques Pures et Appliquees-LML UMR 8107 (France)

    2013-10-15

    The mechanisms and structural elements of instability whose evolution results in the occurrence of the collapse are studied in the scope of the rotating shallow water model with a horizontally nonuniform density. The diagram stability based on the integral collapse criterion is suggested to explain system behavior in the space of constants of motion. Analysis of the instability shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing drop-like fragment with the bottom contracts into a rotating segment. The other implies isotropic contraction of the area into a point.

  10. Asynchronous Communication: Investigating the Influences of Relational Elements and Background on the Framing Structure of Emails

    Science.gov (United States)

    AlAfnan, Mohammad Awad

    2015-01-01

    This study explored the influences of relational elements and the background of communicators on the framing structure of email messages that were exchanged in an educational Institute in Malaysia. The investigation revealed that social distance played a more significant role than power relations as Malaysian respondents are, generally, more…

  11. Application of the Recursive Finite Element Approach on 2D Periodic Structures under Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Reem Yassine

    2016-12-01

    Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.

  12. In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites.

    Directory of Open Access Journals (Sweden)

    Hugo Aguilar-Díaz

    Full Text Available Inhibition of encystment can be conceived as a potentially useful mechanism to block the transmission of Entamoeba histolytica under natural conditions. Unfortunately, amoeba encystment has not been achieved in vitro and drugs inhibiting the formation of cysts are not available. Luminal conditions inducing encystment in vivo are also unknown, but cellular stress such as exposure to reactive oxygen species from immune cells or intestinal microbiota could be involved. A role for certain divalent cations as cofactors of enzymes involved in excystment has also been described. In this study, we show that trophozoite cultures, treated with hydrogen peroxide in the presence of trace amounts of several cations, transform into small-sized spherical and refringent structures that exhibit resistance to different detergents. Ultrastructural analysis under scanning and transmission electron microscopy revealed multinucleated structures (some with four nuclei with smooth, thick membranes and multiple vacuoles. Staining with calcofluor white, as well as an ELISA binding assay using wheat germ agglutinin, demonstrated the presence of polymers of N-acetylglucosamine (chitin, which is the primary component of the natural cyst walls. Over-expression of glucosamine 6-phosphate isomerase, likely to be the rate-limiting enzyme in the chitin synthesis pathway, was also confirmed by RT-PCR. These results suggest that E. histolytica trophozoites activated encystment pathways when exposed to our treatment.

  13. Effects of Chain Length and Degree of Unsaturation of Fatty Acids on Structure and in Vitro Digestibility of Starch-Protein-Fatty Acid Complexes.

    Science.gov (United States)

    Zheng, Mengge; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-02-28

    The effects of chain length and degree of unsaturation of fatty acids (FAs) on structure and in vitro digestibility of starch-protein-FA complexes were investigated in model systems. Studies with the rapid visco analyzer (RVA) showed that the formation of ternary complex resulted in higher viscosities than those of binary complex during the cooling and holding stages. The results of differential scanning calorimetry (DSC), Raman, and X-ray diffraction (XRD) showed that the structural differences for ternary complexes were much less than those for binary complexes. Starch-protein-FA complexes presented lower in vitro enzymatic digestibility compared with starch-FAs complexes. We conclude that shorter chain and lower unsaturation FAs favor the formation of ternary complexes but decrease the thermal stability of these complexes. FAs had a smaller effect on the ordered structures of ternary complexes than on those of binary complexes and little effect on enzymatic digestibility of both binary and ternary complexes.

  14. Photoelectron spectra and electronic structure of β-diketonates of p- and d-elements

    International Nuclear Information System (INIS)

    Vovna, V.I.; Andreev, V.A.; Cherednichenko, A.I.

    1990-01-01

    Consideration is given to results of studying electronic structure of β-diketonates of metals and β-diketones by the method of gas-phase photoelectron spectroscopy. Manifestation of covalence of metal-ligand bonds in PE spectra and change of covalence in series and groups of d-elements of the periodic table are analysed. It is shown that ionization energy of outer valence electrons doesn't reflect in all cases effective charges of ligands, due to the influence of molecular potential. 35 refs.; 7 figs.; 12 tabs

  15. Random lock-in intervals for tubular structural elements subject to simulated natural wind

    DEFF Research Database (Denmark)

    Christensen, Claus F.; Ditlevsen, Ove Dalager

    1999-01-01

    The paper reports on wind tunnel experiments with an elastically suspended circular cylinder vibrating under the excitation of natural wind of high turbulence degree. The natural wind turbulence was simulated bysuperposing the low frequency part of the natural wind turbulence on the background high...... structural elements subject to thenatural wind. The engineering relevance of the investigation is supported by comparing with the unrealistic highlyconservative rules of wind induced fatique commonly given in codes of practice. The stochastic lock-in model aswell as the related fatigue calculation procedure...

  16. cis-acting elements involved in replication of alfalfa mosaic virus RNAs in vitro

    NARCIS (Netherlands)

    van der Kuyl, A. C.; Langereis, K.; Houwing, C. J.; Jaspars, E. M.; Bol, J. F.

    1990-01-01

    A DNA copy of alfalfa mosaic virus (AIMV) RNA3 was transcribed in vitro in two different orientations with T7 RNA polymerase and the transcripts were used as templates for a virus-specific RNA-dependent RNA polymerase (RdRp) purified from AIMV-infected bean plants. Minus-stranded templates were

  17. The Associative Structure of Memory for Multi-Element Events

    Science.gov (United States)

    2013-01-01

    The hippocampus is thought to be an associative memory “convergence zone,” binding together the multimodal elements of an experienced event into a single engram. This predicts a degree of dependency between the retrieval of the different elements comprising an event. We present data from a series of studies designed to address this prediction. Participants vividly imagined a series of person–location–object events, and memory for these events was assessed across multiple trials of cued retrieval. Consistent with the prediction, a significant level of dependency was found between the retrieval of different elements from the same event. Furthermore, the level of dependency was sensitive both to retrieval task, with higher dependency during cued recall than cued recognition, and to subjective confidence. We propose a simple model, in which events are stored as multiple pairwise associations between individual event elements, and dependency is captured by a common factor that varies across events. This factor may relate to between-events modulation of the strength of encoding, or to a process of within-event “pattern completion” at retrieval. The model predicts the quantitative pattern of dependency in the data when changes in the level of guessing with retrieval task and confidence are taken into account. Thus, we find direct behavioral support for the idea that memory for complex multimodal events depends on the pairwise associations of their constituent elements and that retrieval of the various elements corresponding to the same event reflects a common factor that varies from event to event. PMID:23915127

  18. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  19. The Effect of the Nanoscale Structure of Nanobioceramics on Their In Vitro Bioactivity and Cell Differentiation Properties

    Directory of Open Access Journals (Sweden)

    Cristian Covarrubias

    2015-01-01

    Full Text Available The effect of the nanoscale structure of bioceramics on their in vitro bioactivity and capacity to osteogenically differentiate stem cell is studied. Nanoparticles of hydroxyapatite (nHA, bioactive glass (nBG, nanoporous bioactive glass (MBG, and nanoporous bioactive glass nanospheres (nMBG are investigated. The nanometric particle size of bioceramics seems to be more determining in controlling the ability to induce bone-like apatite as compared to the nanoporous structure. At short incubation time, nBG also produces a bioactive extracellular medium capable of upregulating key osteogenic markers involved in the development of a mineralizing phenotype in DPSCs. The bioactive properties of nBG are promissory for accelerating the bone regeneration process in tissue engineering applications.

  20. Investigation of the two-element airfoil with flap structure for the vertical axis wind turbine

    International Nuclear Information System (INIS)

    Wei, Y; Li, C

    2013-01-01

    The aerodynamic performance of Vertical axis wind turbine (VAWT) is not as simple as its structure because of the large changing range of angle of attack. We have designed a new kind of two-element airfoil for VAWT on the basis of NACA0012. CFD calculation has been confirmed to have high accuracy by comparison with the experiment data and Xfoil result. The aerodynamic parameter of two-element airfoil has been acquired by CFD calculation in using the Spalart-Allmaras (S-A) turbulence model and the Simple scheme. The relationship between changings of angle of attack and flap's tilt angle has been found and quantified. The analysis will lay the foundation for further research on the control method for VAWT

  1. Use of molybdenum as a structural material of fuel elements for improving nuclear reactors safety

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kozhahmet, Bauyrzhan K.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ., Moscow (Russian Federation). Moscow Engineering Physics Institute (MEPhI)

    2016-12-15

    Main purpose of the study is justifying the use of molybdenum as a structural material of fuel elements for improving the safety of nuclear reactors. Particularity of the used molybdenum is that its isotopic composition corresponds to molybdenum, which is obtained as tailing during operation of the separation cascade for producing a material for medical diagnostics of cancer. The following results were obtained: A method for reducing the thermal constant of fuel elements for light water and fast reactors by using dispersion fuel in cylindrical fuel rods containing, for example, granules of metallic U-Mo-alloy into Mo-matrix was proposed; the necessity of molybdenum enrichment by weakly absorbing isotopes was shown; total use of isotopic molybdenum will be more than 50 %.

  2. Nonlinear dynamics of solitary and optically injected two-element laser arrays with four different waveguide structures: a numerical study.

    Science.gov (United States)

    Li, Nianqiang; Susanto, H; Cemlyn, B R; Henning, I D; Adams, M J

    2018-02-19

    We study the nonlinear dynamics of solitary and optically injected two-element laser arrays with a range of waveguide structures. The analysis is performed with a detailed direct numerical simulation, where high-resolution dynamic maps are generated to identify regions of dynamic instability in the parameter space of interest. Our combined one- and two-parameter bifurcation analysis uncovers globally diverse dynamical regimes (steady-state, oscillation, and chaos) in the solitary laser arrays, which are greatly influenced by static design waveguiding structures, the amplitude-phase coupling factor of the electric field, i.e. the linewidth-enhancement factor, as well as the control parameter, e.g. the pump rate. When external optical injection is introduced to one element of the arrays, we show that the whole system can be either injection-locked simultaneously or display rich, different dynamics outside the locking region. The effect of optical injection is to significantly modify the nature and the regions of nonlinear dynamics from those found in the solitary case. We also show similarities and differences (asymmetry) between the oscillation amplitude of the two elements of the array in specific well-defined regions, which hold for all the waveguiding structures considered. Our findings pave the way to a better understanding of dynamic instability in large arrays of lasers.

  3. The frequency-dependent elements in the code SASSI: A bridge between civil engineers and the soil-structure interaction specialists

    International Nuclear Information System (INIS)

    Tyapin, Alexander

    2007-01-01

    After four decades of the intensive studies of the soil-structure interaction (SSI) effects in the field of the NPP seismic analysis there is a certain gap between the SSI specialists and civil engineers. The results obtained using the advanced SSI codes like SASSI are often rather far from the results obtained using general codes (though match the experimental and field data). The reasons for the discrepancies are not clear because none of the parties can recall the results of the 'other party' and investigate the influence of various factors causing the difference step by step. As a result, civil engineers neither feel the SSI effects, nor control them. The author believes that the SSI specialists should do the first step forward (a) recalling 'viscous' damping in the structures versus the 'material' one and (b) convoluting all the SSI wave effects into the format of 'soil springs and dashpots', more or less clear for civil engineers. The tool for both tasks could be a special finite element with frequency-dependent stiffness developed by the author for the code SASSI. This element can represent both soil and structure in the SSI model and help to split various factors influencing seismic response. In the paper the theory and some practical issues concerning the new element are presented

  4. Structural response analysis of very large floating structures in waves using one-dimensional finite element model; Ichijigen yugen yoso model ni yoru choogata futai no harochu kozo oto kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fujikubo, M.; Yao, T.; Oida, H. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-12-31

    Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.

  5. Structural response analysis of very large floating structures in waves using one-dimensional finite element model; Ichijigen yugen yoso model ni yoru choogata futai no harochu kozo oto kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fujikubo, M; Yao, T; Oida, H [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1997-12-31

    Formulation was made on a one-dimensional beam finite element which is effective in analyzing structural response of very large floating structures by modeling them on beams on an elastic foundation. This element allows strict solution of vibration response in the beams on the elastic foundation to be calculated efficiently for a case where mass and rigidity change in the longitudinal direction. This analysis method was used to analyze structural response of a large pontoon-type floating structure to investigate mass in the end part for the structural response and the effect of decay while passing the structure. With a pontoon-type floating structure, reduction in bends and bending stress in the end part of the floating structure is important in designing the structure. Reducing the mass in the end part is effective as a means to avoid resonance in these responses and reduce the responses. Increase in rigidity of a floating structure shifts the peak in quasi-static response to lower frequency side, and reduces response in resonance, hence it is advantageous for improving the response. Since incident waves decay while passing through the floating structure, response in the lower wave side decreases. The peak frequency in the quasi-static response also decreases at the end part of the structure in the upper wave side due to decay in wave force. 7 refs., 11 figs., 1 tab.

  6. In vitro propagation and elemental analysis of phyllanthus nirui L.: an anti-plasmodial plant

    International Nuclear Information System (INIS)

    Adusei-Fosu, K.

    2010-12-01

    Three accessions of Phyllanthus niruri from three different localities were assessed for their fruit or seed germination in vivo and in vitro as well as embryogenic calli and subsequent embryo induction. Accessions collected from Kwabenya, Kasoa or Aburi did not germinate when nursed. However, seeds from 3, 5 or 7 days dehisced fruits germinated with 7 days having the highest percentage (68.8%) of germination when nursed in the same substrate suggesting that there was fruit wall imposed dormancy. To improve percentage germination, seeds were cultured on MS medium supplemented with 0-1.2 mg/l BAP or kinetin. At this treatment, seed cultured on MS medium supplemented with 1.2 mg/l had the highest percentage (61.1% ) of germination. Alternate regeneration via nodal cuttings cultured on MS basal medium supplemented with BAP with NAA or IBA resulted in multiple shoot induction which augurs well for rapid clonal multiplication. Additionally, regeneration via somatic embryogenesis using leaf lobe explants cultured on MS, OK W, Schenk basal medium with vitamins supplemented with 2,4-0 or Picloram resulted in only callus induction. Callus induction was high when concentrations of (0.2-1.0 mg/l) 2,4-0 were used with concentrations of (2.0-3.0 mg/l) Picloram was able to induce calli. The transfer of calli to MS medium supplemented with BAP resulted in multiple shoot regeneration. Calli also grew in size and were weighed after three series of subcultures indicating that they could be used for extraction of antiplasmodial active ingredients. Instrumental Neutron Activation Analysis (lNAA) revealed the presence of five macro and four micro nutrients but no toxic element making P. niruri useful as a medicinal plant. (au)

  7. Monoacyl phosphatidylcholine inhibits the formation of lipid multilamellar structures during in vitro lipolysis of self-emulsifying drug delivery systems.

    Science.gov (United States)

    Tran, Thuy; Siqueira, Scheyla D V S; Amenitsch, Heinz; Rades, Thomas; Müllertz, Anette

    2017-10-15

    The colloidal structures formed during lipolysis of self-emulsifying drug delivery systems (SEDDS) might affect the solubilisation and possibly the absorption of drugs. The aim of the current study is to elucidate the structures formed during the in vitro lipolysis of four SEDDS containing medium-chain glycerides and caprylocaproyl polyoxyl-8 glycerides (Labrasol), with or without monoacyl phosphatidylcholine (MAPC). In situ synchrotron small-angle X-ray scattering (SAXS) was combined with ex situ cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) to elucidate the generated structures. The SAXS scattering curves obtained during the lipolysis of MAPC-free SEDDS containing 43-60% w/w Labrasol displayed a lamellar phase peak at q=2.13nm -1 that increased with Labrasol concentration, suggesting the presence of multilamellar structures (MLS) with a d-spacing of 2.95nm. However, SEDDS containing 20-30% w/w MAPC did not form MLS during the lipolysis. The cryo-TEM and DLS studies showed that MAPC-free SEDDS formed coarse emulsions while MAPC-containing SEDDS formed nanoemulsions during the dispersion in digestion medium. From the first minute and during the entire lipolysis process, SEDDS both with and without MAPC generated uni-, bi-, and oligo-lamellar vesicles. The lipolysis kinetics in the first minutes of the four SEDDS correlated with an increased intensity of the SAXS curves and the rapid transformation from lipid droplets to vesicles observed by cryo-TEM. In conclusion, the study elucidates the structures formed during in vitro lipolysis of SEDDS and the inhibitory effect of MAPC on the formation of MLS. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Advancements in the behavioral modeling of fuel elements and related structures

    International Nuclear Information System (INIS)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs

  9. Multilayer photosensitive structures based on porous silicon and rare-earth-element compounds: Study of spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, N. Yu.; Latukhina, N. V., E-mail: natalat@yandex.ru; Lizunkova, D. A.; Rogozhina, G. A. [Samara National Research University (Russian Federation); Stepikhova, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2017-03-15

    The spectral characteristics of the specular reflectance, photosensitivity, and photoluminescence (PL) of multilayer structures based on porous silicon with rare-earth-element (REE) ions are investigated. It is shown that the photosensitivity of these structures in the wavelength range of 0.4–1.0 μm is higher than in structures free of REEs. The structures with Er{sup 3+} ions exhibit a luminescence response at room temperature in the spectral range from 1.1 to 1.7 μm. The PL spectrum of the erbium impurity is characterized by a fine line structure, which is determined by the splitting of the {sup 4}I{sub 15/2} multiplet of the Er{sup 3+} ion. It is shown that the structures with a porous layer on the working surface have a much lower reflectance in the entire spectral range under study (0.2–1.0 μm).

  10. Design, synthesis, and in vitro transfection biology of novel tocopherol based monocationic lipids: a structure-activity investigation.

    Science.gov (United States)

    Kedika, Bhavani; Patri, Srilakshmi V

    2011-01-27

    Herein, we report on the design, synthesis, and in vitro gene delivery efficacies of five novel tocopherol based cationic lipids (1-5) in transfecting CHO, B16F10, A-549, and HepG2 cells. The in vitro gene transfer efficiencies of lipids (1-5) were evaluated by both β-galactosidase reporter gene expression and inverted fluorescent microscopic experiments. The results of the present structure-activity investigation convincingly demonstrate that the tocopherol based lipid with three hydroxyl groups in its headgroup region showed 4-fold better transfection efficiency than the commercial formulation. The results also demonstrate that these tocopherol based lipids may be targeted to liver. Transfection efficiency of all the relevant lipids was maintained even when the serum was present during the transfection conditions. The results indicated that the designed systems are quite capable of transferring the DNA into all four types of cells studied with low or no toxicity.

  11. Testing the big bang: Light elements, neutrinos, dark matter and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

    1991-06-01

    In this series of lectures, several experimental and observational tests of the standard cosmological model are examined. In particular, detailed discussion is presented regarding nucleosynthesis, the light element abundances and neutrino counting; the dark matter problems; and the formation of galaxies and large-scale structure. Comments will also be made on the possible implications of the recent solar neutrino experimental results for cosmology. An appendix briefly discusses the 17 keV thing'' and the cosmological and astrophysical constraints on it. 126 refs., 8 figs., 2 tabs.

  12. In vitro corrosion and biocompatibility of binary magnesium alloys.

    Science.gov (United States)

    Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei

    2009-02-01

    As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.

  13. [Assessing the conformity of medical devices for in vitro diagnosis: international and domestic experience].

    Science.gov (United States)

    Manzeniuk, I N; Shipulin, G A; Men'shikov, V V

    2009-10-01

    The conformity of medical articles was assessed for in vitro diagnosis is the most importance procedure for their entering the market. This paper describes the basic elements of assessment of the conformity of these articles, analyzes worldwide experience, shows differences in the Russian regulatory system in the circulation of medical articles for in vitro diagnosis, and gives recommendations for its improvement.

  14. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    International Nuclear Information System (INIS)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  15. Effect of elemental composition of ion beam on the phase formation and surface strengthening of structural materials

    International Nuclear Information System (INIS)

    Avdienko, K.I.; Avdienko, A.A.; Kovalenko, I.A.

    2001-01-01

    The investigation results are reported on the influence of ion beam element composition on phase formation, wear resistance and microhardness of surface layers of titanium alloys VT-4 and VT-16 as well as stainless steel 12Kh18N10T implanted with nitrogen, oxygen and boron. It is stated that ion implantation into structural materials results in surface hardening and is directly dependent on element composition of implanted ion beam. The presence of oxygen in boron or nitrogen ion beams prevents the formation of boride and nitride phases thus decreasing a hardening effect [ru

  16. Electrical engineering design using characterized elements; Conception en genie electrique a l'aide d'elements caracterises

    Energy Technology Data Exchange (ETDEWEB)

    Demni, H.E.

    2004-10-15

    This work treats systematic design of energy transformation structures used in Electrical Engineering. We propose an approach dedicated to design by association of characterized elements. Starting from a set of specifications, the designer has to define a coherent structure by assembling predefined elements. Within this framework, we adopt a characterization approach that takes into account various criteria necessary for design. Then, this approach allowed us to develop methodologies for designing electric energy transformation structures. These methodologies were used to implement a software application based on three tools: a data base as an elements library, a graphic tool allowing the construction of energy transformation structures, an expert module which helps the designer in his work. (author)

  17. NIH Common Data Elements Repository

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NIH Common Data Elements (CDE) Repository has been designed to provide access to structured human and machine-readable definitions of data elements that have...

  18. Elements of Motivational Structure for Studying Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Nikša Dubreta

    2017-12-01

    Full Text Available The article presents the findings on students' reasons for studying mechanical engineering. These reasons were covered in terms of extrinsic and intrinsic motivation additionally related to selected independent variables of the sample – students' secondary school Grade Point Average, their gender and the socio-economic status. The research was conducted with the first year students of the Faculty of Mechanical Engineering at the University of Zagreb, Croatia. The sample consisted of 282 students (228 males and 54 females and comprised students of all majors. According to descriptive character of the questionnaire type survey characteristics of the sample are presented. Composite variables of extrinsic and intrinsic motivation were dichotomized to present different levels of the students' overall motivational structure. Results indicate a students' interest in the field of science and technology as the most important element of intrinsic motivation, with no significant relation to any of independent variables. By contrast, extrinsic motivation has manifested as significantly related to the variables of Grade Point Average and to parents' education as one component of the socio-economic status. However, a significant level of indecisive respondents regarding the both intrinsic and extrinsic motivation suggests that the choice of the study programme is not always a consistent and an unambiguous process.

  19. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses.

    Science.gov (United States)

    Evgen'ev, M B; Corces, V G; Lankenau, D H

    1992-06-05

    We have determined the DNA structure of the Ulysses transposable element of Drosophila virilis and found that this transposon is 10,653 bp and is flanked by two unusually large direct repeats 2136 bp long. Ulysses shows the characteristic organization of LTR-containing retrotransposons, with matrix and capsid protein domains encoded in the first open reading frame. In addition, Ulysses contains protease, reverse transcriptase, RNase H and integrase domains encoded in the second open reading frame. Ulysses lacks a third open reading frame present in some retrotransposons that could encode an env-like protein. A dendrogram analysis based on multiple alignments of the protease, reverse transcriptase, RNase H, integrase and tRNA primer binding site of all known Drosophila LTR-containing retrotransposon sequences establishes a phylogenetic relationship of Ulysses to other retrotransposons and suggests that Ulysses belongs to a new family of this type of elements.

  20. The analytical solution to the problem on the temperature field in a structural element of rectangular profile for third kind boundary conditions

    International Nuclear Information System (INIS)

    Kulich, N.V.; Nemtsev, V.A.

    1986-01-01

    The analytical solution to the problem on the stationary temperature field in an infinite structural element of rectangular profile characteristic of the conjugation points of a vessel and a tube sheet of a heat exchanger (or of a finned surface) at the third-kind boundary conditions has been obtained by the methods of the complex variable function theory. With the help of the obtained analytical dependences the calculations of the given element of the design and the comparison with the known data have been conducted. The proposed analytical solution can be effectively used in calculations of temperature fields in finned surfaces and structural elements of the power equipment of the considered profile and the method is applied for solution of the like problems

  1. Elemental and structural studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W., E-mail: w.kaabar@surrey.ac.uk [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Daar, E. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Farquharson, M.J. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 (Canada); Laklouk, A. [Al-Fateh University, Tripoli (Libya); Bailey, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380 Kocaeli (Turkey); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2011-10-01

    Micro-Proton Induced X-ray Emission ({mu}-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z<15 such as Na and F whereas elements with z>15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  2. Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4-D and BAP.

    Science.gov (United States)

    Omar, Genesia F; Mohamed, Fouad H; Haensch, Klaus-Thomas; Sarg, Sawsan H; Morsey, Mohamed M

    2013-09-01

    Somatic embryo-like structures (SELS) were produced in vitro from leaf disk and petiole explants of two cultivars of strawberry (Fragaria x ananassa Duch) on Murashige and Skoog medium with different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and sucrose to check the embryonic nature of these structures histologically. A large number of SELS could be regenerated in both cultivars on media with 2-4 mg L(-1) 2,4-D in combination with 0.5 -1 mg L(-1) BAP and 50 g x L(-1) sucrose. Histological examination of SELS revealed the absence of a root pole. Therefore these structures cannot be strictly classified as somatic embryos. The SELS formed under the tested culture conditions represent malformed shoot-like and leaf-like structures. The importance of these results for the propagation of strawberries via somatic embryogenesis is discussed.

  3. Improving Stiffness-to-weight Ratio of Spot-welded Structures based upon Nonlinear Finite Element Modelling

    Science.gov (United States)

    Zhang, Shengyong

    2017-07-01

    Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.

  4. In situ assessment of structural timber elements of a historic building by infrared thermography and ultrasonic velocity

    Science.gov (United States)

    Kandemir-Yucel, A.; Tavukcuoglu, A.; Caner-Saltik, E. N.

    2007-01-01

    The infrared thermography (IRT) and the ultrasonic velocity measurements (UVM) promise to be particularly important to assess the state of deterioration and the adequacy of the boundary and microclimatic conditions for timber elements. These non-destructive methods supported by laboratory analyses of timber samples were conducted on a 13th century monument, Aslanhane Mosque in Ankara, Turkey. The combined interpretation of the results was done to assess the condition of structural timber elements in terms of their state of preservation, the dampness problems and the recent incompatible repairs affecting them. Results indicated that moist areas in the structure were associated with roof drainage problems and the repairs undertaken with cement-based mortars and plasters and oil-based paints. Juxtaposition of the IRT and UVM together with laboratory analyses was found to be useful to assess the soundness of timber, enhanced the accuracy and effectiveness of the survey and facilitated to build up the urgent and long-term conservation programs.

  5. Full scale seismic simulation of a nuclear reactor with parallel finite element analysis code for assembled structure

    International Nuclear Information System (INIS)

    Yamada, Tomonori

    2010-01-01

    The safety requirement of nuclear power plant attracts much attention nowadays. With the growing computing power, numerical simulation is one of key technologies to meet this safety requirement. Center for Computational Science and e-Systems of Japan Atomic Energy Agency has been developing a finite element analysis code for assembled structure to accurately evaluate the structural integrity of nuclear power plant in its entirety under seismic events. Because nuclear power plant is very huge assembled structure with tens of millions of mechanical components, the finite element model of each component is assembled into one structure and non-conforming meshes of mechanical components are bonded together inside the code. The main technique to bond these mechanical components is triple sparse matrix multiplication with multiple point constrains and global stiffness matrix. In our code, this procedure is conducted in a component by component manner, so that the working memory size and computing time for this multiplication are available on the current computing environment. As an illustrative example, seismic simulation of a real nuclear reactor of High Temperature engineering Test Reactor, which is located at the O-arai research and development center of JAEA, with 80 major mechanical components was conducted. Consequently, our code successfully simulated detailed elasto-plastic deformation of nuclear reactor and its computational performance was investigated. (author)

  6. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    Science.gov (United States)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  7. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Science.gov (United States)

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  8. Assessment of Slope Stability and Interference of Structures Considering Seismity in Complex Engineering-Geological Conditions Using the Method of Finite Elements

    International Nuclear Information System (INIS)

    Menabdishvili, Papuna; Eremadze, Nelly

    2008-01-01

    There is elaborated the calculation model of slope deformation mode stability and the methodic of calculation considering the interference of structures to be built on it using the method of finite elements. There is examined the task of slope stability using the soil physically nonlinear finite element considering the seismicity 8. The deformation mode and field of coefficients of stability are obtained and slope supposed sliding curve is determined. The elaborated calculation methodic allows to determine the slope deformation mode, stability and select the optimum version of structure foundation at any slant and composition of slope layers

  9. Study of structural attachments of a pool type LMFBR vessel through seismic analysis of a simplified three dimensional finite element model

    International Nuclear Information System (INIS)

    Ahmed, H.; Ma, D.

    1979-01-01

    A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR

  10. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  11. Water structure versus radical scavenger theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A.R.; Symons, M.C.

    1987-05-01

    We report here that dimethylsulfoxide (DMSO): suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation (when cells are in the confluent, stationary phase of growth); inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and may be affecting radiation-induced transformation through its solvent properties (i.e. the Water Structure theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro (at concentrations in the cellular media down to 0.01%). As DMSO is known to be an extremely effective OH. free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. It is known that low concentrations of such basic aprotic solvents modify water structure so as to suppress the protic (H-bond donor) reactivity of water and enhance its basic (H-bond receptor) reactivity. These reactivity changes may well be responsible for the effects noted above. DMSO, DMF and DMA are also capable of suppressing the TPA enhancement of radiation transformation (at concentrations of the compounds of 0.1% or higher). For this effect, the ability of these compounds to scavenge OH. shows a general correlation with their ability to suppress the TPA enhancement of transformation, suggesting that the Radical Scavenger theory may explain the ability of DMSO to suppress promotion in vitro.

  12. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production

    Science.gov (United States)

    Na, Hong; Huisman, Willem; Ellestad, Kristofor K.; Phillips, Tom R.; Power, Christopher

    2010-01-01

    Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection. PMID:20570310

  13. Finite element random vibration method for soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Romo-Organista, M.P.; Lysmer, J.; Seed, H.B.

    1977-01-01

    The authors present a method in which the seismic environment is defined directly in terms of the given design response spectrum. Response spectra cannot be used directly for random analysis, thus using extreme value theory a new procedure has been developed for converting the design response spectrum into a design power spectrum. This procedure is reversible and can also be used to compute response spectra the distribution of which can be expressed in terms of Confidence limits. Knowing the design power spctrum the resulting output power spectra and their statistical distribution can be computed by a response analysis of the soil-structure system in the frequency domain. Due to the complexity of soil structure systems, this is most conveniently done by the finite element method. Having obtained the power spectra for all motions in the system, these spectra can be used to determine other statistical information about the response such as maximum accelerations, stresses, bending moments, etc, all with appropriate confidence limits. This type of information is actually more useful for design than corresponding deterministic values. The authors have developed a computer program, PLUSH, which can perform the above procedures. Results obtained by the new method are in excellent agreement with the results of corresponding deterministic analysis. Furthermore, the probabilistic results can be obtained at a fraction of the cost of deterministic results

  14. Integrated non-destructive assessment of relevant structural elements of an Italian heritage site: the Carthusian monastery of Trisulti

    International Nuclear Information System (INIS)

    Rainieri, C; Marra, A; Gargaro, D; Fabbrocino, G; Rainieri, G M; Pepe, M

    2015-01-01

    The analysis of historical structures in need of preservation and restoration interventions is a very complex task due to the large uncertainties in the characterization of structural properties and detailing in view of the structural response. Moreover, the predictive performance of numerical analyses and simulations depend on the availability of information about the constructional properties of the architectural complex, crack patterns and active degradation phenomena. In particular, local changes in material properties or damage due to past events (such as earthquakes) can affect individual structural elements. They can be hardly detected as a result of the maintenance interventions carried out over the centuries and the possibility to carry out limited or even no destructive investigations due to the historical relevance of the structure. Thus, non-destructive investigations play a fundamental role in the assessment of historical structures minimizing, at the same time, the invasiveness of interventions. The present paper deals with an explanatory case study concerning the structural investigations carried out in view of the seismic assessment of an Italian historical monument, the Carthusian monastery of Trisulti in Collepardo, erected in 1204 under Pope Innocenzo HI. The relevance of the case study is due to the application, in combination, of different NDT methods, such as sonic tests, and active and passive infrared thermography, in order to characterize relevant masonry elements. Moreover, an advanced system for the in-situ nondestructive vibration-based estimation of the tensile loads in ancient tie-rods is described and the main results obtained from its application for the characterization of the tie-rods of the cloister are presented. (paper)

  15. Nonlinear soil-structure interaction analysis based on the boundary-element method in time domain with application to embedded foundation

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1985-01-01

    The computational procedure of the so-called truncated indirect boundary-element method is derived. The latter, which is non-local in space and time, represents a rigorous generally applicable procedure for taking into account a layered halfspace in a non-linear soil-structure interaction analysis. As an example, the non-linear soil-structure interaction analysis of a structure embedded in a halfspace with partial uplift of the basement and separation of the side wall is investigated. (orig.)

  16. Capturing structured, pulmonary disease-specific data elements in electronic health records.

    Science.gov (United States)

    Gronkiewicz, Cynthia; Diamond, Edward J; French, Kim D; Christodouleas, John; Gabriel, Peter E

    2015-04-01

    Electronic health records (EHRs) have the potential to improve health-care quality by allowing providers to make better decisions at the point of care based on electronically aggregated data and by facilitating clinical research. These goals are easier to achieve when key, disease-specific clinical information is documented as structured data elements (SDEs) that computers can understand and process, rather than as free-text/natural-language narrative. This article reviews the benefits of capturing disease-specific SDEs. It highlights several design and implementation considerations, including the impact on efficiency and expressivity of clinical documentation and the importance of adhering to data standards when available. Pulmonary disease-specific examples of collection instruments are provided from two commonly used commercial EHRs. Future developments that can leverage SDEs to improve clinical quality and research are discussed.

  17. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails.

    Science.gov (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek

    2015-02-01

    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity. Copyright © 2015. Published by Elsevier Ltd.

  18. The use of magnetic Barkhausen noise analysis for nondestructive determination of stresses in structural elements

    International Nuclear Information System (INIS)

    Silva Junior, Silverio Ferreira da; Mansur, Tanius Rodrigues; Cruz, Julio Ricardo Barreto

    2007-01-01

    The knowledge about the stress state acting in structural elements has significant importance in the structural integrity evaluation of a specific component. The magnetic Barkhausen noise analysis can be used for this purpose. As a nondestructive testing method, it presents the advantage of not promote any changes in the tested component. In this paper, a study about the use of this new nondestructive test method for stress measurements is presented. The test system configuration and the reference standards used for this purpose, as well as the optimum test parameters determination are discussed. The experiments were carried out in ASTM A-36 steel, used for structural components manufacturing. A structure of this material was loaded and the resulting stresses were determined from strain gage measurements and Barkhausen noise analysis. The results obtained have showed a good sensitivity of the magnetic Barkhausen noise to stress changes occurred in the material. The main advantages and limitations of this test method for stress measurements are presented. (author)

  19. Estimations of impact strength on reinforced concrete structures by the discrete element method

    International Nuclear Information System (INIS)

    Morikawa, H.; Kusano, N.; Koshika, N.; Aoyagi, T.; Hagiwara, Y.; Sawamoto, Y.

    1993-01-01

    There has been a rising interest in the response of reinforced concrete structures to impact loading, from the point of view in particular of disaster prevention at nuclear power facilities, and there is an urgent requirement for establishment of design methods against such type of loads. Structural damage on reinforced concrete structures under impact load includes local damage and global damage. The behavior of local damage, such as penetration into the structures, rear face scabbing, perforation, or spalling, has been difficult to estimate by numerical analysis, but over recent years research has advantaged and various analytical methods have been tried. The authors proposed a new approach for assessing local damage characteristics by applying the discrete element method (DEM), and verified that the behavior of a concrete slab suffering local damage may be qualitatively expressed. This was followed by the discussion of the quantitative evaluation of various constants used in the DEM analysis in reference. The authors apply the DEM to the simulation analysis of impact tests on reinforced concrete panels and analytical investigations are made on the local damage characteristics and response values that are difficult to assess through tests, in an attempt to evaluate the mechanism of local damage according to the hardness of the missiles

  20. Approach to Operational Experimental Estimation of Static Stresses of Elements of Mechanical Structures

    Science.gov (United States)

    Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.

    2018-01-01

    The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.

  1. Impact of data base structure in a successful in vitro-in vivo correlation for pharmaceutical products.

    Science.gov (United States)

    Roudier, B; Davit, B; Schütz, H; Cardot, J-M

    2015-01-01

    The in vitro-in vivo correlation (IVIVC) (Food and Drug Administration 1997) aims to predict performances in vivo of a pharmaceutical formulation based on its in vitro characteristics. It is a complex process that (i) incorporates in a gradual and incremental way a large amount of information and (ii) requires information from different properties (formulation, analytical, clinical) and associated dedicated treatments (statistics, modeling, simulation). These results in many studies that are initiated and integrated into the specifications (quality target product profile, QTPP). This latter defines the appropriate experimental designs (quality by design, QbD) (Food and Drug Administration 2011, 2012) whose main objectives are determination (i) of key factors of development and manufacturing (critical process parameters, CPPs) and (ii) of critical points of physicochemical nature relating to active ingredients (API) and critical quality attribute (CQA) which may have implications in terms of efficiency, safety, and inoffensiveness for the patient, due to their non-inclusion. These processes generate a very large amount of data that is necessary to structure. In this context, the storage of information in a database (DB) and the management of this database (database management system, DBMS) become an important issue for the management of projects and IVIVC and more generally for development of new pharmaceutical forms. This article describes the implementation of a prototype object-oriented database (OODB) considered as a tool, which is helpful for decision taking, responding in a structured and consistent way to the issues of project management of IVIVC (including bioequivalence and bioavailability) (Food and Drug Administration 2003) necessary for the implementation of QTPP.

  2. In vitro assembly of a prohead-like structure of the Rhodobacter capsulatus gene transfer agent

    International Nuclear Information System (INIS)

    Spano, Anthony J.; Chen, Frank S.; Goodman, Benjamin E.; Sabat, Agnes E.; Simon, Martha N.; Wall, Joseph S.; Correia, John J.; McIvor, Wilson; Newcomb, William W.; Brown, Jay C.; Schnur, Joel M.; Lebedev, Nikolai

    2007-01-01

    The gene transfer agent (GTA) is a phage-like particle capable of exchanging double-stranded DNA fragments between cells of the photosynthetic bacterium Rhodobacter capsulatus. Here we show that the major capsid protein of GTA, expressed in E. coli, can be assembled into prohead-like structures in the presence of calcium ions in vitro. Transmission electron microscopy (TEM) of uranyl acetate staining material and thin sections of glutaraldehyde-fixed material demonstrates that these associates have spherical structures with diameters in the range of 27-35 nm. The analysis of scanning TEM images revealed particles of mass ∼ 4.3 MDa, representing 101 ± 11 copies of the monomeric subunit. The establishment of this simple and rapid method to form prohead-like particles permits the GTA system to be used for genome manipulation within the photosynthetic bacterium, for specific targeted drug delivery, and for the construction of biologically based distributed autonomous sensors for environmental monitoring

  3. Anisotropic damping of Timoshenko beam elements

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, M.H.

    2001-05-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risoe for modeling wind turbines. The model has been developed to enable modeling of turbine blades which often have different damping characteristics for flapwise, edgewise and torsional vibrations. The structural damping forces acting on the beam element are modeled by viscous damping described by an element damping matrix. The composition of this matrix is based on the element mass and stiffness matrices. It is shown how the coefficients for the mass and stiffness contributions can be calibrated to give the desired modal damping in the complete model of a blade. (au)

  4. Finite element modeling of Balsa wood structures under severe loadings

    International Nuclear Information System (INIS)

    Toson, B.; Pesque, J.J.; Viot, P.

    2014-01-01

    In order to compute, in various situations, the requirements for transporting packages using Balsa wood as an energy absorber, a constitutive model is needed that takes into account all of the specific characteristics of the wood, such as its anisotropy, compressibility, softening, densification, and strain rate dependence. Such a model must also include the treatment of rupture of the wood when it is in traction. The complete description of wood behavior is not sufficient: robustness is also necessary because this model has to work in presence of large deformations and of many other external nonlinear phenomena in the surrounding structures. We propose such a constitutive model that we have developed using the commercial finite element package ABAQUS. The necessary data were acquired through an extensive compilation of the existing literature with the augmentation of personal measurements. Numerous validation tests are presented that represent different impact situations that a transportation cask might endure. (authors)

  5. Integration of QSAR and in vitro toxicology.

    Science.gov (United States)

    Barratt, M D

    1998-01-01

    The principles of quantitative structure-activity relationships (QSAR) are based on the premise that the properties of a chemical are implicit in its molecular structure. Therefore, if a mechanistic hypothesis can be proposed linking a group of related chemicals with a particular toxic end point, the hypothesis can be used to define relevant parameters to establish a QSAR. Ways in which QSAR and in vitro toxicology can complement each other in development of alternatives to live animal experiments are described and illustrated by examples from acute toxicological end points. Integration of QSAR and in vitro methods is examined in the context of assessing mechanistic competence and improving the design of in vitro assays and the development of prediction models. The nature of biological variability is explored together with its implications for the selection of sets of chemicals for test development, optimization, and validation. Methods are described to support the use of data from in vivo tests that do not meet today's stringent requirements of acceptability. Integration of QSAR and in vitro methods into strategic approaches for the replacement, reduction, and refinement of the use of animals is described with examples. PMID:9599692

  6. Memory effects in MIS structures based on silicon and polymethylmethacrylate with nanoparticle charge-storage elements

    Energy Technology Data Exchange (ETDEWEB)

    Mabrook, M.F. [School of Engineering and Centre for Molecular and Nanoscale Electronics, Durham University, South Road, Durham DH1 3LE (United Kingdom)], E-mail: m.f.mabrook@durham.ac.uk; Jombert, A.S. [School of Engineering and Centre for Molecular and Nanoscale Electronics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Machin, S.E.; Pearson, C.; Kolb, D. [School of Engineering and Centre for Molecular and Nanoscale Electronics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Coleman, K.S. [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Zeze, D.A.; Petty, M.C. [School of Engineering and Centre for Molecular and Nanoscale Electronics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2009-03-15

    We report on the electrical behaviour of metal-insulator-semiconductor (MIS) structures fabricated on p-type silicon substrates and using polymethylmethacrylate (PMMA) as the dielectric. Gold nanoparticles, single-wall carbon nanotubes and C{sub 60}, deposited at room temperature, were used as charge-storage elements. In all cases, the MIS devices containing the nanoparticles exhibited hysteresis in their capacitance versus voltage characteristics, with a memory window depending on the range of the voltage sweep. This hysteresis was attributed to the charging and discharging of the nanoparticles from the gate electrode. A relatively large memory window of about 2.2 V was achieved by scanning the applied voltage of an Al/PMMA/C{sub 60}/SiO{sub 2}/Si structure between 4 and -4 V. Gold nanoparticle-based memory devices produced the best charge retention behaviour compared to the other MIS structures investigated.

  7. 'Water Structure' versus 'Radical Scavenger' theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Symons, M.C.R.

    1987-01-01

    We report here that dimethylsulfoxide (DMSO): (i) suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation; (ii) inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; (iii) does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and (iv) may be affecting radiation-induced transformation through its solvent properties (i.e. the 'Water Structure' theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro. As DMSO is known to be an extremely effective OH free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. (author)

  8. A New Approach to Identify Optimal Properties of Shunting Elements for Maximum Damping of Structural Vibration Using Piezoelectric Patches

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    The use of shunted piezoelectric patches in reducing vibration and sound radiation of structures has several advantages over passive viscoelastic elements, e.g., lower weight with increased controllability. The performance of the piezoelectric patches depends on the shunting electronics that are designed to dissipate vibration energy through a resistive element. In past efforts most of the proposed tuning methods were based on modal properties of the structure. In these cases, the tuning applies only to one mode of interest and maximum tuning is limited to invariant points when based on den Hartog's invariant points concept. In this study, a design method based on the wave propagation approach is proposed. Optimal tuning is investigated depending on the dynamic and geometric properties that include effects from boundary conditions and position of the shunted piezoelectric patch relative to the structure. Active filters are proposed as shunting electronics to implement the tuning criteria. The developed tuning methods resulted in superior capabilities in minimizing structural vibration and noise radiation compared to other tuning methods. The tuned circuits are relatively insensitive to changes in modal properties and boundary conditions, and can applied to frequency ranges in which multiple modes have effects.

  9. Binding energy, phonon spectra and thermodynamic properties of elements with type structures A1 (Al, Cu), A2 (V, Ti2), A3 (Mg, Tiβ), A4 (Si, Sn)

    International Nuclear Information System (INIS)

    Sirota, N.N.; Soshnina, T.M.; Sirota, I.M.; Sokolovskij, T.D.

    2001-01-01

    One calculated dependences of binding energy on spacing between the nearest atoms of Al and Cu elements with A 1 type structure, of V and Ti α elements with A 2 type structure, of Mg and Ti β elements with A 3 type structure, Si and Sn elements with A 4 type structure. To calculate one applied the methods based on the Thomas-Fermi statistic theory of atom. The derived dependences were approximated using the expression in the form of the Mie-Grueneisen potential. On the basis of the Born-von-Karman model of solid body one calculated the phonon spectra using which one determined temperature dependences of specific heat, free and internal energy of the investigated elements. The calculated values of energy of atomization, equilibrium closest interatomic spacing and temperature dependences of specific heat are in compliance with the experimental data [ru

  10. RNA secondary structures of the bacteriophage phi6 packaging regions.

    Science.gov (United States)

    Pirttimaa, M J; Bamford, D H

    2000-06-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements.

  11. Modeling and Analysis of Size-Dependent Structural Problems by Using Low- Order Finite Elements with Strain Gradient Plasticity

    International Nuclear Information System (INIS)

    Park, Moon Shik; Suh, Yeong Sung; Song, Seung

    2011-01-01

    An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers

  12. Sensitivity analysis of bridge health index to element failure and element conditions.

    Science.gov (United States)

    2009-11-01

    Bridge Health Index (BHI) is a bridge performance measure based on the condition of the bridge elements. It : is computed as the ratio of remaining value of the bridge structure to the initial value of the structure. Since it : is expressed as a perc...

  13. Production of Curved Precast Concrete Elements for Shell Structures and Free-form Architecture using the Flexible Mould Method

    NARCIS (Netherlands)

    Schipper, H.R.; Grünewald, S.; Eigenraam, P.; Raghunath, P.; Kok, M.A.D.

    2014-01-01

    Free-form buildings tend to be expensive. By optimizing the production process, economical and well-performing precast concrete structures can be manufactured. In this paper, a method is presented that allows producing highly accurate double curved-elements without the need for milling two expensive

  14. Characterization of Aircraft Structural Damage Using Guided Wave Based Finite Element Analysis for In-Flight Structural Health Management

    Science.gov (United States)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.

    2016-01-01

    The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.

  15. A finite element model of rigid body structures actuated by dielectric elastomer actuators

    Science.gov (United States)

    Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.

    2018-06-01

    This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.

  16. In Vitro Corrosion Assessment of Additively Manufactured Porous NiTi Structures for Bone Fixation Applications

    Directory of Open Access Journals (Sweden)

    Hamdy Ibrahim

    2018-03-01

    Full Text Available NiTi alloys possess distinct functional properties (i.e., shape memory effect and superelasticity and biocompatibility, making them appealing for bone fixation applications. Additive manufacturing offers an alternative method for fabricating NiTi parts, which are known to be very difficult to machine using conventional manufacturing methods. However, poor surface quality, and the presence of impurities and defects, are some of the major concerns associated with NiTi structures manufactured using additive manufacturing. The aim of this study is to assess the in vitro corrosion properties of additively manufactured NiTi structures. NiTi samples (bulk and porous were produced using selective laser melting (SLM, and their electrochemical corrosion characteristics and Ni ion release levels were measured and compared with conventionally fabricated NiTi parts. The additively manufactured NiTi structures were found to have electrochemical corrosion characteristics similar to those found for the conventionally fabricated NiTi alloy samples. The highest Ni ion release level was found in the case of 50% porous structures, which can be attributed to their significantly higher exposed surface area. However, the Ni ion release levels reported in this work for all the fabricated structures remain within the range of most of values for conventionally fabricated NiTi alloys reported in the literature. The results of this study suggest that the proposed SLM fabrication process does not result in a significant deterioration in the corrosion resistance of NiTi parts, making them suitable for bone fixation applications.

  17. Effects of finite element formulation on optimal plate and shell structural topologies

    CSIR Research Space (South Africa)

    Long, CS

    2009-09-01

    Full Text Available , and the other is a 4-node element accounting for in-plane (drilling) rotations. Plate elements selected for evaluation include the discrete Kirchhoff quadrilateral (DKQ) element and two Mindlin–Reissner-based elements, one employing selective reduced integration...

  18. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  19. Group theoretical classification of chemical elements

    International Nuclear Information System (INIS)

    Byakov, V.M.; Kulakov, V.I.; Rumer, Y.B.; Fet, A.L.

    1977-01-01

    The method of classification of chemical elements, based on group symmetry principles, is compared with element properties. Elements are considered to be states of a single quantum system, the atomic structure being ignored. Elements treated as states of the system, break down into successively diminishing subsystems, big and small multiplets. The theory, being a group classification, does not describe in detail any of element properties, but leads to a unified qualitative description of all of them simultaneously

  20. Structural analysis of a fibrocement anaerobic bioreactor for finite elements method

    International Nuclear Information System (INIS)

    Guardia-Puebla, Yans; Pacheco-GamboaI, Raúl; Ramos-Botello, Yoan; Palma-Ramírez, Leonardo; Rodríguez-Pérez, Suyén

    2015-01-01

    The paper consist on asses the mechanical resistant of the fibrocement tanks as a proposal of an anaerobic system of low cost for biogas production. For the design was used the finite elements method (FEM), which it is fundamental tool to carried out the structural analysis of the resistant to the traction of the anaerobic bioreactor. With this new system, a suitable option to spread, of sustainable and economic means, the biogas production on rural zones. For the design was used fibrocement tanks of 1900 L, and pipes and accessories plastics, achieving a maximum volume of cumulative biogas of 1,12 m"3.The fibrocement tank was not accomplished with the necessary specifications to achieve the design aim; for that reason, a new dimensional design was developed to guarantee the traction resistant as anaerobic bioreactors. (author)

  1. A C-terminal truncated hepatitis C virus core protein variant assembles in vitro into virus-like particles in the absence of structured nucleic acids

    International Nuclear Information System (INIS)

    Acosta-Rivero, Nelson; Rodriguez, Armando; Mussachio, Alexis; Poutu, Johana; Falcon, Viviana; Torres, Dinorah; Aguilar, Julio C.; Linares, Marbelis; Alonso, Mabel; Perez, Angel; Menendez, Ivon; Morales-Grillo, Juan; Marquez, Gabriel; Duenas-Carrera, Santiago

    2005-01-01

    Little is known about the assembly pathway or structure of the hepatitis C virus (HCV). In this work a truncated HCcAg variant covering the first 120 aa (HCcAg.120) with a 32 aa N-terminal fusion peptide (6x Histag-Xpress epitope) was purified as a monomer under strong denaturing conditions. In addition, minor HCcAg.120 peaks exhibiting little different molecular mass by SDS-PAGE which possibly represents alternative forms harboring the N-termini of HCcAg.120 were detected. Analysis using gel filtration chromatography showed that HCcAg.120 assembled into high molecular weight structures in vitro in the absence of structured nucleic acids. The negative-stain electron microscopy analysis revealed that these structures correspond with spherical VLPs of uniform morphology and size distribution. The diameters of these particles ranged from 20 to 43 nm with an average diameter of approximately 30 nm and were specifically immunolabelled with a mouse monoclonal antibody against the residues 5-35 of HCcAg. Results presented in this work showed that HCcAg.120 assembled in vitro into VLPs in the absence of structured nucleic acids with similar morphology and size distribution to those found in sera and hepatocytes from HCV-infected patients. Therefore, these VLPs would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure

  2. Evaluation on the structural soundness of the package for subsurface disposal by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of the disposal package for low-level radioactive wastes with relatively high activities (called L1 waste in Japan) were performed against normal and hypothetical conditions. As a normal condition the external load due to lifting, stacking of the package and filling the space of disposal pit with mortar or something were considered. On the other hand, drop incident during handling and pressure due to some external force were taken up as hypothetical conditions. Using finite element code ABAQUS and three dimensional finite element model, structural analyses were carried out for the normal conditions. The results show that the maximum stresses occurred at the package due to the loads above mentioned were far less than the yield strength for all conditions. Therefore, it is confirmed that the disposal package keeps its integrity under the normal conditions. Analyses for load cases of 9 m drop onto the reinforced concrete slab and 5.9 m drop onto the embedded disposal package were performed by using finite element code LS-DYNA. Both results show that the strains at the impact zone of the package exceeded the fracture strain of the material but the damaged area was limited in the vicinity of impact zone. As a maximum external pressure, 4MPa was applied to the surface of the packages which were piled up in four layered in the disposal tunnel. According to the results of analyses by ABAQUS code the maximum strain occurred at the contact surfaces close to the welding zone between lid and body of the top package. However, the package stays in sound because the value of the maximum strain was less than the fracture strain of the materials. (author)

  3. The value of structured data elements from electronic health records for identifying subjects for primary care clinical trials.

    Science.gov (United States)

    Ateya, Mohammad B; Delaney, Brendan C; Speedie, Stuart M

    2016-01-11

    An increasing number of clinical trials are conducted in primary care settings. Making better use of existing data in the electronic health records to identify eligible subjects can improve efficiency of such studies. Our study aims to quantify the proportion of eligibility criteria that can be addressed with data in electronic health records and to compare the content of eligibility criteria in primary care with previous work. Eligibility criteria were extracted from primary care studies downloaded from the UK Clinical Research Network Study Portfolio. Criteria were broken into elemental statements. Two expert independent raters classified each statement based on whether or not structured data items in the electronic health record can be used to determine if the statement was true for a specific patient. Disagreements in classification were discussed until 100 % agreement was reached. Statements were also classified based on content and the percentages of each category were compared to two similar studies reported in the literature. Eligibility criteria were retrieved from 228 studies and decomposed into 2619 criteria elemental statements. 74 % of the criteria elemental statements were considered likely associated with structured data in an electronic health record. 79 % of the studies had at least 60 % of their criteria statements addressable with structured data likely to be present in an electronic health record. Based on clinical content, most frequent categories were: "disease, symptom, and sign", "therapy or surgery", and "medication" (36 %, 13 %, and 10 % of total criteria statements respectively). We also identified new criteria categories related to provider and caregiver attributes (2.6 % and 1 % of total criteria statements respectively). Electronic health records readily contain much of the data needed to assess patients' eligibility for clinical trials enrollment. Eligibility criteria content categories identified by our study can be

  4. Transactinide elements

    International Nuclear Information System (INIS)

    Hemingway, J.D.

    1975-01-01

    The review is covered in sections, entitled: predicted nuclear properties - including closed shells, decay characteristics; predicted chemical properties - including electronic structure and calculated properties, X-radiation, extrapolated chemical properties, separation chemistry; methods of synthesis; the natural occurrence of superheavy elements. (U.K.)

  5. Finite element analysis for structural modification and control resonance of a vertical pump

    Directory of Open Access Journals (Sweden)

    Dalia M. El-Gazzar

    2017-12-01

    Full Text Available The main objective of this research was to evaluate and enhance dynamic performance for a vertical pumping unit. The original electric motor of the pump unit had been replaced by another one different in design and weights. Vibration has been increased greatly after installing the new motor. Consequently, it is necessary to estimate the change in the vibration characteristics owing to the difference in the boundary conditions of the new motor. Measured vibration levels and frequency analysis were dangerous at 1× due to resonance problem. Finite Element Analysis was used to model the motor structure in order to find its natural frequencies and mode shapes. The results confirm that the third natural frequency is very close to 1× operating speed with deviation about 1%. To solve the resonance problem, it was recommended to increase the structure stiffness. The results after modifications confirmed that the overall vibration level decreases by 89%. Keywords: Vibration, Vertical pump, Modal analysis

  6. Finite element elasto-plastic analysis of thin walled structures of reinforced concrete as applied to reactor facilities

    International Nuclear Information System (INIS)

    Fujita, F.; Tsuboi, Y.

    1981-01-01

    The authors developed a new program of elasto-plastic analysis of reinforced concrete shells, in which the simplest model of shell element and an orthotropic constitutive relation are adopted, and verified its validity with reference to the results of model experiments of containers and box-wall structures with various loading conditions. For the two-dimensional stress-strain relationship of concrete, an orthotropic nonlinear formula proposed by one of the authors was adopted. For concrete, the octahedral shear failure and tension cut-off criteria were also imposed. The Kirchhoff-Love's assumptions were assumed to be valid for the whole range of the analysis and the layered approach of elasto-plastic stiffness evaluation. Derivation of the shell element is outlined with examination of its accuracy in elastic range and the assumption of elasto-plastic material property and the procedure of nonlinear analysis are described. As examples, the method is applied to the analysis of a cylindrical container and a box-wall structure. Comparison of the computed results with the corresponding experimental data indicates the applicability of the proposed method. (orig./HP)

  7. Validation of the CQUAD4 element for vibration and shock analysis of thin laminated composite plate structure

    Science.gov (United States)

    Lesar, Douglas E.

    1992-01-01

    The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship

  8. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  9. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  10. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  11. In Vitro-Assembled Alphavirus Core-Like Particles Maintain a Structure Similar to That of Nucleocapsid Cores in Mature Virus

    OpenAIRE

    Mukhopadhyay, Suchetana; Chipman, Paul R.; Hong, Eunmee M.; Kuhn, Richard J.; Rossmann, Michael G.

    2002-01-01

    In vitro-assembled core-like particles produced from alphavirus capsid protein and nucleic acid were studied by cryoelectron microscopy. These particles were found to have a diameter of 420 Å with 240 copies of the capsid protein arranged in a T=4 icosahedral surface lattice, similar to the nucleocapsid core in mature virions. However, when the particles were subjected to gentle purification procedures, they were damaged, preventing generation of reliable structural information. Similarly, pu...

  12. Developing a new library of materials and structural elements for the simulative evaluation of buildings' energy performance

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Agis M.; Oxizidis, Simos; Papathanasiou, Luciano [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University Thessaloniki, P.O. Box 483, Thessaloniki 54124 (Greece)

    2008-05-15

    Contemporary building energy simulation programs are not only used by researchers but also are common tools in the hands of engineers and architects. Most of them are using databases of materials and structural elements, with characteristics originating from the country or the broader region where the specific program was developed. Thus, often the particularities met in other countries are not considered. Such a database of materials and constructions systematically used in the Greek building sector was developed for use with the simulation program EnergyPlus, which has become quite popular over the last years. In order to determine the applicability of the database, the energy behaviour of a typical multistory, multifamily building was simulated, having the exact materials and structural elements and patterns used in Greece. Furthermore, different thicknesses of insulation were simulated, corresponding to local climatic conditions and, even more important, to different dates of the building's construction. The results are presented and discussed in this paper. (author)

  13. Seismic assessment of reinforced concrete frame structures with a new flexibility based element

    Science.gov (United States)

    Arede, Antonio Jose Coelho Dias

    As piroxenas sao um vasto grupo de silicatos minerais encontrados em muitas rochas igneas e metamorficas. Na sua forma mais simples, estes silicatos sao constituidas por cadeias de SiO3 ligando grupos tetrahedricos de SiO4. A formula quimica geral das piroxenas e M2M1T2O6, onde M2 se refere a catioes geralmente em uma coordenacao octaedrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catioes numa coordenacao octaedrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catioes em coordenacao tetrahedrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclinica sao designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composicoes quimicas amplo, em conjugacao com a possibilidade de ajustar as suas propriedades fisicas e quimicas e a durabilidade quimica, tem gerado um interesse mundial devido a suas aplicacoes em ciencia e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicacoes funcionais. O estudo teve objectivos cientificos e tecnologicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formacao de fases cristalinas e solucoes solidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicacao dos novos materiais em diferentes areas tecnologicas, com especial enfase sobre a selagem em celulas de combustivel de oxido solido (SOFC). Com este intuito, prepararam-se varios vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsidio (CaMgSi2O6) e diopsidio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados atraves de um vasto leque de tecnicas. Todos os vidros foram preparados por fusao-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterizacao e cristalizacao de fritas, quer por nucleacao e cristalizacao de vidros monoliticos. Estudaram-se ainda os efeitos de varias substituicoes ionicas em composicoes de

  14. Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Nilsson Anders

    2010-03-01

    Full Text Available Abstract Background The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared. Results This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia. Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements. Conclusions The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.

  15. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements

    KAUST Repository

    Guturu, H.

    2013-11-11

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and \\'through-DNA\\' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex.

  16. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements

    KAUST Repository

    Guturu, H.; Doxey, A. C.; Wenger, A. M.; Bejerano, G.

    2013-01-01

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and 'through-DNA' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex.

  17. Moving beyond the comprehensive in vitro proarrhythmia assay: Use of human-induced pluripotent stem cell-derived cardiomyocytes to assess contractile effects associated with drug-induced structural cardiotoxicity.

    Science.gov (United States)

    Yang, Xi; Papoian, Thomas

    2018-02-27

    Drug-induced cardiotoxicity is a potentially severe side effect that can adversely affect myocardial contractility through structural or electrophysiological changes in cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising human cardiac in vitro model system to assess both proarrhythmic and non-proarrhythmic cardiotoxicity of new drug candidates. The scalable differentiation of hiPSCs into cardiomyocytes provides a renewable cell source that overcomes species differences present in current animal models of drug toxicity testing. The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative represents a paradigm shift for proarrhythmic risk assessment, and hiPSC-CMs are an integral component of that paradigm. The recent advancements in hiPSC-CMs will not only impact safety decisions for possible drug-induced proarrhythmia, but should also facilitate risk assessment for non-proarrhythmic cardiotoxicity, where current non-clinical approaches are limited in detecting this risk before initiation of clinical trials. Importantly, emerging evidence strongly suggests that the use of hiPSC-CMs with cardiac physiological relevant measurements in vitro improves the detection of structural cardiotoxicity. Here we review high-throughput drug screening using the hiPSC-CM model as an experimentally feasible approach to assess potential contractile and structural cardiotoxicity in early phase drug development. We also suggest that the assessment of structural cardiotoxicity can be added to electrophysiological tests in the same platform to complement the Comprehensive in vitro Proarrhythmia Assay for regulatory use. Ideally, application of these novel tools in early drug development will allow for more reliable risk assessment and lead to more informed regulatory decisions in making safe and effective drugs available to the public. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  18. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  19. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  20. Strain-Based Damage Determination Using Finite Element Analysis for Structural Health Management

    Science.gov (United States)

    Hochhalter, Jacob D.; Krishnamurthy, Thiagaraja; Aguilo, Miguel A.

    2016-01-01

    A damage determination method is presented that relies on in-service strain sensor measurements. The method employs a gradient-based optimization procedure combined with the finite element method for solution to the forward problem. It is demonstrated that strains, measured at a limited number of sensors, can be used to accurately determine the location, size, and orientation of damage. Numerical examples are presented to demonstrate the general procedure. This work is motivated by the need to provide structural health management systems with a real-time damage characterization. The damage cases investigated herein are characteristic of point-source damage, which can attain critical size during flight. The procedure described can be used to provide prognosis tools with the current damage configuration.

  1. Hierarchical Structures and Shaped Particles of Bioactive Glass and Its In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    U. Boonyang

    2013-01-01

    Full Text Available In this study, bioactive glass particles with controllable structure and porosity were prepared using dual-templating methods. Block copolymers used as one template component produced mesopores in the calcined samples. Polymer colloidal crystals as the other template component yielded either three-dimensionally ordered macroporous (3DOM products or shaped bioactive glass nanoparticles. The in vitro bioactivity of these bioactive glasses was studied by soaking the samples in simulated body fluid (SBF at body temperature (37°C for varying lengths of time and monitoring the formation of bone-like apatite on the surface of the bioactive glass. A considerable bioactivity was found that all of bioactive glass samples have the ability to induce the formation of an apatite layer on its surface when in contact with SBF. The development of bone-like apatite is faster for 3DOM bioactive glasses than for nanoparticles.

  2. Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jens Stissing; Sigmund, Ole

    2007-01-01

    given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation...... for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several...... two-dimensional acoustic-structure problems are optimized in order to verify the proposed method....

  3. Synthesis, Spectral Analysis and Preliminary in Vitro Evaluation of Some Tetrapyrrolic Complexes with 3d Metal Ions

    Directory of Open Access Journals (Sweden)

    Radu Socoteanu

    2015-08-01

    Full Text Available In this paper, two tetrapyrrolic complexes, Zn(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin and Cu(II-5-(3-hydroxyphenyl-10,15,20-tris-(4-acetoxy-3-methoxyphenylporphyrin were synthesized, and characterized from a spectral and biological point of view. The study provided data concerning the behavior of identical external substituents vs. two different core insertions. Some of the properties of the proposed tetrapyrrolic structures were highlighted, having photodynamic therapy of cancer as a targeted biomedical application. Elemental analysis, NMR, FTIR and UV-Vis data in various solvents were provided. A preliminary in vitro study on normal and cancer cultured cells was carried out for biocompatibility assessment in dark conditions. The preliminary in vitro study performed on human peripheral mononuclear cells exposed to tetrapyrrolic compounds (2 µM showed that the proposed compounds had a convenient cytotoxic profile on human normal peripheral blood mononuclear cells under dark conditions. Meanwhile, the investigated compounds reduced the number of metabolically active breast tumor MCF-7 cells, with the exception of Zn(II complex-containing a symmetrical ligand. Accordingly, preliminary in vitro data suggest that the proposed tetrapyrrolic compounds are good candidates for PDT, as they limit tumor expansion even under dark conditions, whilst sparing normal cells.

  4. Elemental and structural studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Kaabar, W.; Daar, E.; Bunk, O.; Farquharson, M.J.; Laklouk, A.; Bailey, M.; Jeynes, C.; Gundogdu, O.; Bradley, D.A.

    2011-01-01

    Micro-Proton Induced X-ray Emission (μ-PIXE) and Proton Induced Gamma-ray Emission (PIGE) techniques were employed in the investigation of trace and essential elements distribution in normal and diseased human femoral head sections affected by osteoarthritis (OA). PIGE was exploited in the determination of elements of low atomic number z 15 viz Ca, Z, P and S were determined by PIXE. Accumulations of key elements in the bone and cartilage sections were observed, significant S and Na concentrations being found in the cartilage region particularly in normal tissues. Zn showed enhanced concentrations at the bone-cartilage interface. At a synchrotron facility, small angle X-ray scattering (SAXS) was utilized on a decalcified human femoral head section affected by OA, direct measurements being made of spatial alterations of collagen fibres. The SAXS results showed a slight decrease in the axial periodicity between normal collagen type I and that in diseased tissue in various sites, in contrast with the findings of others.

  5. Finite Element Analysis and Lightweight Optimization Design on Main Frame Structure of Large Electrostatic Precipitator

    Directory of Open Access Journals (Sweden)

    Xuewen Wang

    2018-01-01

    Full Text Available The geometric modeling and finite element modeling of the whole structure of an electrostatic precipitator and its main components consisting of top beam, column, bottom beam, and bracket were finished. The strength calculation was completed. As a result, the design of the whole structure of the electrostatic precipitator and the main components were reasonable, the structure was in a balance state, its working condition was safe and reliable, its stress variation was even, and the stress distribution was regular. The maximum von Mises stress of the whole structure is 20.14 MPa. The safety factor was large, resulting in a waste of material. An optimization mathematical model is established. Using the ANSYS first-order method, the dimension parameters of the main frame structure of the electrostatic precipitator were optimized. After optimization, more reasonable structural design parameters were obtained. The model weight is 72,344.11 kg, the optimal weight is 49,239.35 kg, and the revised weight is 53,645.68 kg. Compared with the model weight, the optimal weight decreased by 23,104.76 kg and the objective function decreased by 31.94%, while the revised weight decreased by 18,698.43 kg and the objective function decreased by 25.84%.

  6. Effects of TT8 and HB12 Silencing on the Relations between the Molecular Structures of Alfalfa ( Medicago sativa) Plants and Their Nutritional Profiles and In Vitro Gas Production.

    Science.gov (United States)

    Lei, Yaogeng; Hannoufa, Abdelali; Prates, Luciana Louzada; Shi, Haitao; Wang, Yuxi; Biligetu, Bill; Christensen, David; Yu, Peiqiang

    2018-06-06

    The objective of this study was to investigate the effects of silencing the TT8 and HB12 genes on the nutritive profiles and in vitro gas production of alfalfa in relation to the spectral molecular structures of alfalfa. TT8-silenced (TT8i, n = 5) and HB12-silenced (HB12i, n = 11) alfalfa were generated by RNA interference (RNAi) and grown with nontransgenic wild type controls (WT, n = 4) in a greenhouse. Alfalfa plants were harvested at early-to-mid vegetative stage. Samples were analyzed for their chemical compositions, CNCPS fractions, and in vitro gas production. Correlations and regressions of the nutritional profiles and in vitro gas production with the molecular spectral structures were also determined. The results showed that the transformed alfalfa had higher digestible fiber and lower crude protein with higher proportions of indigestible protein than WT. HB12 RNAi had lower gas production compared with those of the others. Some chemical, CNCPS, and gas-production profiles were closely correlated with spectral structures and could be well predicted from spectral parameters. In conclusion, the RNAi silencing of TT8 and HB12 in alfalfa altered the chemical, CNCPS and gas-production profiles of alfalfa, and such alterations were closely correlated with the inherent spectral structures of alfalfa.

  7. Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes

    Directory of Open Access Journals (Sweden)

    Takehiro Nishikawa

    2012-01-01

    Full Text Available Directed evolution of proteins is a technique used to modify protein functions through “Darwinian selection.” In vitro compartmentalization (IVC is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype and the protein translated from the information (phenotype, which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE system and a fluorescence-activated cell sorter (FACS used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.

  8. Analysis of concrete beams using applied element method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.

  9. On the use of spectroscopic techniques to determine the crystal structure of compounds of the artificial f elements

    International Nuclear Information System (INIS)

    Peterson, J.R.

    1989-01-01

    For some time the author has been using solid state absorption spectrophotometry to identify the crystal structure of selected transuranium (5f) and promethium (4f) compounds, based on spectral-structural correlations in his data base. More recently he has shown that Raman phonon spectroscopy is also very useful in this regard. These spectral probes of structure have their specific advantages and disadvantages; however, both are applicable to the structural characterization of radioactive compounds and can provide data for interpretation faster and more reliably than the commonly used X-ray powder diffraction method. The experimental methods, examples from the growing data bases, successes and limitations of these spectral probes of crystal structure, and some useful applications to the study of f-element compounds under varying conditions of temperature and pressure are presented

  10. Reinforced flexural elements for TEMP-STRESS Program

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Kennedy, J.M.; Pfeiffer, P.A.

    1987-06-01

    The implementation of reinforced flexural elements into the thermal-mechanical finite element program TEMP-STRESS is described. With explicit temporal integration and dynamic relaxation capabilities in the program, the flexural elements provide an efficient method for the treatment of reinforced structures subjected to transient and static loads. The capability of the computer program is illustrated by the solution of several examples: the simulation of a reinforced concrete beam; simulations of a reinforced concrete containment shell which is subjected to internal pressurization, thermal gradients through the walls, and transient pressure loads. The results of this analysis are relevant in the structural design/safety evaluations of typical reactor containment structures. 22 refs., 13 figs

  11. Inhibition of acetylcholine synthesis in vitro

    International Nuclear Information System (INIS)

    O-Neill, J.J.; Capacio, B.; Doukas, P.H.; Leech, R.; Ricciardi, F.; Sterling, G.H.

    1986-01-01

    In order to better understand diseases that stem from deficiencies in cholinergic activity, reproducible in vitro and in vivo models displaying cholinergic hypofunction are desirable. This necessitates the availability of specific inhibitors. This paper examines the design, synthesis and evaluation of quinuclidinyl compounds with structural features previously reported, but with certain key differences. Structure activity studies with in vitro assay systems are presented. In a few studies, choline was held constant and acetyl-CoA concentration was varied, but with a constant amount of ( 14 C) - acetyl CoA. Acetylcholine synthesis and CO 2 production from labelled glucose were measured in cerebral cortex slices from male rats after decapitation. The nanomoles of ACh and CO 2 produced from ( 14 C) -glucose were calculated from glucose specific activity. Results are presented

  12. Finite element modeling of multilayered structures of fish scales.

    Science.gov (United States)

    Chandler, Mei Qiang; Allison, Paul G; Rodriguez, Rogie I; Moser, Robert D; Kennedy, Alan J

    2014-12-01

    The interlinked fish scales of Atractosteus spatula (alligator gar) and Polypterus senegalus (gray and albino bichir) are effective multilayered armor systems for protecting fish from threats such as aggressive conspecific interactions or predation. Both types of fish scales have multi-layered structures with a harder and stiffer outer layer, and softer and more compliant inner layers. However, there are differences in relative layer thickness, property mismatch between layers, the property gradations and nanostructures in each layer. The fracture paths and patterns of both scales under microindentation loads were different. In this work, finite element models of fish scales of A. spatula and P. senegalus were built to investigate the mechanics of their multi-layered structures under penetration loads. The models simulate a rigid microindenter penetrating the fish scales quasi-statically to understand the observed experimental results. Study results indicate that the different fracture patterns and crack paths observed in the experiments were related to the different stress fields caused by the differences in layer thickness, and spatial distribution of the elastic and plastic properties in the layers, and the differences in interface properties. The parametric studies and experimental results suggest that smaller fish such as P. senegalus may have adopted a thinner outer layer for light-weighting and improved mobility, and meanwhile adopted higher strength and higher modulus at the outer layer, and stronger interface properties to prevent ring cracking and interface cracking, and larger fish such as A. spatula and Arapaima gigas have lower strength and lower modulus at the outer layers and weaker interface properties, but have adopted thicker outer layers to provide adequate protection against ring cracking and interface cracking, possibly because weight is less of a concern relative to the smaller fish such as P. senegalus. Published by Elsevier Ltd.

  13. Identification of minute damage in composite bridge structures equipped with fiber optic sensors using the location of neutral axis and finite element analysis

    Science.gov (United States)

    Li, Xi; Glisic, Branko

    2016-04-01

    By definition, the neutral axis of a loaded composite beam structure is the curve along which the section experiences zero bending strain. When no axial loading is present, the location of the neutral axis passes through the centroid of stiffness of the beam cross-section. In the presence of damage, the centroid of stiffness, as well as the neutral axis, shift from the healthy position. The concept of neutral axis can be widely applied to all beam-like structures. According to literature, a change in location of the neutral axis can be associated with damage in the corresponding cross-section. In this paper, the movement of neutral axis near locations of minute damage in a composite bridge structure was studied using finite element analysis and experimental results. The finite element model was developed based on a physical scale model of a composite simply-supported structure with controlled minute damage in the reinforced concrete deck. The structure was equipped with long-gauge fiber optic strain and temperature sensors at a healthy reference location as well as two locations of damage. A total of 12 strain sensors were installed during construction and used to monitor the structure during various loading events. This paper aims to explain previous experimental results which showed that the observed positions of neutral axis near damage locations were higher than the predicted healthy locations in some loading events. Analysis has shown that finite element analysis has potential to simulate and explain the physical behavior of the test structure.

  14. Design of High Altitude Long Endurance UAV: Structural Analysis of Composite Wing using Finite Element Method

    Science.gov (United States)

    Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.

    2018-04-01

    Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.

  15. In vitro testing of curcumin based composites coatings as antitumoral systems against osteosarcoma cells

    Science.gov (United States)

    Tirca, I.; Mitran, V.; Marascu, V.; Brajnicov, S.; Ion, V.; Stokker-Cheregi, F.; Popovici, I. A.; Cimpean, A.; Dinca, V.; Dinescu, M.

    2017-12-01

    In this work, we propose a new design for biodegradable composite coatings obtained by laser methods, which are aimed at evaluating the effects of active antitumoral elements on osteosarcoma cells. Our approach relies on embedding curcumin, which is a natural polyphenol having antitumoral properties, within biodegradable copolymer coatings (i.e. polyvinyl alcohol-polyethylene glycol - PVA-PEG) by using matrix assisted pulsed laser evaporation (MAPLE). The structural and morphological characteristics of the coatings were tailored by using different solvents (water, ethanol, benzene, dimethylsufoxide) as deposition matrix. The morphological characteristics of the resulting films were investigated by atomic force microscopy (AFM), whereas their chemical composition was characterized by Fourier transform infrared spectroscopy (FTIR). These characteristics were correlated with the degradation behavior by using ellipsometry (SE) and AFM measurements data. The in vitro study of the MG-63 osteosarcoma cell behavior indicates that the developed hybrid coatings significantly decreased osteosarcoma cell viability and proliferation potential. The physico-chemical characteristics of the thin films, along with the preliminary in vitro analyses, suggest that our developed polymeric hybrid coatings represent an efficient way to tackle the design of antitumoral surfaces, with applications in biomedicine.

  16. Types of structural chromosome aberrations and their incidences in human spermatozoa X-irradiated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kamiguchi, Yujiroh; Tateno, Hiroyuki; Mikamo, Kazuya (Asahikawa Medical College (Japan). Department of Biological Sciences)

    1990-02-01

    The authors studied the effects of in vitro X-irradiation on human sperm chromosomes, using our interspecific in vitro fertilization system between human spermatozoa and zona-free hamster oocytes. 28 semen samples from 5 healthy men were exposed to 0.23, 0.45, 0.91 and 1.82 Gy of X-rays. Totals of 2098 and 2862 spermatozoa were karyotyped in the control and the irradiated groups, respectively. The indicence of spermatozoa with X-ray-induced structural chromosome aberrations (Y) increased linearly with increasing dosage (D), being best expressed by the equation, Y = 0.08 + 34.52 D. The incidence of breakage-type aberrations was moe than 9 times higher than that of exchange-type aberrations. Both of them showed linear dose-dependent increases, which were expressed by the regression lines, Y = -0.014 + 0.478 D and Y -0.010 + 0.057 D, respectively. The incidence of chromosome-ltype aberrations was about 6 times higher than that of chromatid-type aberrations. Their dose-dependent increases were expressed by the regression lines, Y = -0.015 + 0.462 D and Y = -0.006 + 0.079 D, respectively. These results are discussed in relation to the previous data obtained with {gamma}-rays. The repair mechanism of X-ray-induced sperm DNA lesions is also discussed. (author). 21 refs.; 4 figs.; 4 tabs.

  17. Morphing Wing Structural Optimization Using Opposite-Based Population-Based Incremental Learning and Multigrid Ground Elements

    Directory of Open Access Journals (Sweden)

    S. Sleesongsom

    2015-01-01

    Full Text Available This paper has twin aims. Firstly, a multigrid design approach for optimization of an unconventional morphing wing is proposed. The structural design problem is assigned to optimize wing mass, lift effectiveness, and buckling factor subject to structural safety requirements. Design variables consist of partial topology, nodal positions, and component sizes of a wing internal structure. Such a design process can be accomplished by using multiple resolutions of ground elements, which is called a multigrid approach. Secondly, an opposite-based multiobjective population-based incremental learning (OMPBIL is proposed for comparison with the original multiobjective population-based incremental learning (MPBIL. Multiobjective design problems with single-grid and multigrid design variables are then posed and tackled by OMPBIL and MPBIL. The results show that using OMPBIL in combination with a multigrid design approach is the best design strategy. OMPBIL is superior to MPBIL since the former provides better population diversity. Aeroelastic trim for an elastic morphing wing is also presented.

  18. A cut-cell finite volume - finite element coupling approach for fluid-structure interaction in compressible flow

    Science.gov (United States)

    Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.

    2016-02-01

    We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.

  19. Effects of alloying elements on defect structures in the incubation period for void swelling in austenitic stainless steels

    International Nuclear Information System (INIS)

    Horiki, M.; Yoshiie, T.; Huang, S.S.; Sato, K.; Cao, X.Z.; Xu, Q.; Troev, T.D.

    2013-01-01

    Positron lifetime measurements were used to study the effects of alloying elements on the defect structure during the incubation period for void swelling in several fcc model alloys. Pure Ni, four model alloys (Fe–Cr–Ni, Fe–Cr–Ni–Mo–Mn, Fe–Cr–Ni–Mo–Mn–Si and Fe–Cr–Ni–Mo–Mn–Si–Ti), and four commercial alloys (SUS316LSS, SUS316SS, SUS304SS and Ti added modified SUS316SS) were irradiated with electrons and neutrons. Even at 363 and 573 K to a dose of 0.2 dpa, an effect of alloying elements was observed. At 363 K irradiation, voids were formed only in Ni and Fe–Cr–Ni. At 573 K irradiation, voids were formed in Ni and all model alloys, though the concentration depended on the alloying elements. In commercial alloys, precipitates were formed instead of vacancy clusters, which prevented void growth

  20. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. & Thonn.--a hepatoprotective herb.

    Science.gov (United States)

    Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K

    2011-03-01

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Requirements for materials of dispersion fuel elements

    International Nuclear Information System (INIS)

    Samojlov, A.G.; Kashtanov, A.I.; Volkov, V.S.

    1982-01-01

    Requirements for materials of dispersion fuel elements are considered. The necessity of structural and fissile materials compatibility at maximum permissible operation temperatures and temperatures arising in a fuel element during manufacture is pointed out. The fuel element structural material must be ductile, possess high mechanical strength minimum neutron absorption cross section, sufficient heat conductivity, good corrosion resistance in a coolant and radiation resistance. The fissile material must have high fissile isotope concentration, radiation resistance, high thermal conductivity, certain porosity high melting temperature must not change the composition under irradiation

  2. Support structure for reactor core constituent element

    International Nuclear Information System (INIS)

    Aida, Yasuhiko.

    1993-01-01

    A connection pipe having an entrance nozzle inserted therein as a reactor core constituent element is protruded above the upper surface of a reactor core support plate. A through hole is disposed to the protruding portion of the connection pipe. The through hole and a through hole disposed to the reactor core support plate are connected by a communication pipe. A shear rod is disposed in a horizontal portion at the inside of the communication pipe and is supported by a spring horizontally movably. Further, a groove is disposed at a position of the entrance nozzle opposing to the shear rod. The shear rod is urged out of the communication pipe by the pressure of the high pressure plenum and the top end portion of the shear rod is inserted to the groove of the entrance nozzle during operation. Accordingly, the shear rod is positioned in a state where it is extended from the through hole of the communication pipe to the groove of the entrance nozzle. This can mechanically constrain the rising of the reactor core constituent elements by the shear rod upon occurrence of earthquakes. (I.N.)

  3. CoCrMo cellular structures made by Electron Beam Melting studied by local tomography and finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Clémence [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Maire, Eric, E-mail: eric.maire@insa-lyon.fr [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Meille, Sylvain; Adrien, Jérôme [INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne (France); Kurosu, Shingo; Chiba, Akihiko [Institute for Materials Research, Tohoku University, Sendai 980-0812 (Japan)

    2016-06-15

    The work focuses on the structural and mechanical characterization of Co-Cr-Mo cellular samples with cubic pore structure made by Electron Beam Melting (EBM). X-ray tomography was used to characterize the architecture of the sample. High resolution images were also obtained thanks to local tomography in which the specimen is placed close to the X-ray source. These images enabled to observe some defects due to the fabrication process: small pores in the solid phase, partially melted particles attached to the surface. Then, in situ compression tests were performed in the tomograph. The images of the deformed sample show a progressive buckling of the vertical struts leading to final fracture. The deformation initiated where the defects were present in the strut i.e. in regions with reduced local thickness. The finite element modelling confirmed the high stress concentrations of these weak points leading to the fracture of the sample. - Highlights: • CoCrMo samples fabricated by Electron Beam Melting (EBM) process are considered. • X-ray Computed Tomography is used to observe the structure of the sample. • The mechanical properties are tested thanks to an in situ test in the tomograph. • A finite element model is developed to model the mechanical behaviour.

  4. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems.

    Science.gov (United States)

    Palmero, Paola; Lemmens, Lien; Ribas-Agustí, Albert; Sosa, Carola; Met, Kristof; de Dieu Umutoni, Jean; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin.

    Science.gov (United States)

    Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong

    2017-09-01

    The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Creativity Management Key Elements

    Directory of Open Access Journals (Sweden)

    Rosa María Fuchs Ángeles

    2015-09-01

    Full Text Available Organizations are constantly looking towards innovation. In order to reach it they must foment creativity. This paper analyzes a series of elements considered in the organizational creativity management and proposes a model with the indispensable factors that organizations should consider to reach it. These elements are: culture and organizational environment, strategy, structure, communication, relation with customers, human resources (recruiting, training, job design, compensation, promotion, and performance evaluation, long term orientation and the organizational life cycle. Having the analysis of those elements as a basis, the indispensable pillars on management creativity are identified. The proposed model is based on 5 pillars: the alignment between strategic, culture and organizational structure, called by the authors 'Holy Trinity'; intern publicity; customer’s voice; recognition and a look towards future. Finally, the case of an innovative Peruvian enterprise is presented from the model’s perspective and the study conclusions.

  7. Contribution of Italy to the activities on intercomparison of analysis methods for seismically isolated nuclear structures: Finite element analysis of lead rubber bearings

    International Nuclear Information System (INIS)

    Dusi, A.; Forni, M.; Martelli, A.

    1998-01-01

    This paper presents a summary of the results of nonlinear Finite Element (FE) analyses carried out by ENEL-Ricerca, Hydraulic and Structural Centre and ENEA-ERG-SIEC-SISM, on Lead Rubber Bearings (LRBs). Activities were carried out in the framework of the four years' Coordinated Research Programme (CRP) of the International Atomic Energy Agency (IAEA) on I ntercomparison of Analysis Methods for Seismically Isolated Nuclear Structures . The bearing Finite Element Models (FEMs) are validated through comparisons of the numerical results with experimental test data. The reliability of FEMs for simulating the behaviour of rubber bearings is presented and discussed. (author)

  8. Bounded elements in Locally C*-algebras

    International Nuclear Information System (INIS)

    El Harti, Rachid

    2001-09-01

    In order to get more useful information about Locally C*-algebras, we introduce in this paper the notion of bounded elements. First, we study the connection between bounded elements and spectrally bounded elements. Some structural results of Locally C*-algebras are established in Theorems 1 , 2 and 3. As an immediate consequence of Theorem 3, we give a characterization of the connected component of the identity in the group of unitary elements for a Locally C*-algebra. (author)

  9. Bipartite structure and functional independence of adenovirus type 5 packaging elements.

    OpenAIRE

    Schmid, S I; Hearing, P

    1997-01-01

    Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements ...

  10. Advanced Electronic Structure Calculations For Nanoelectronics Using Finite Element Bases and Effective Mass Theory.

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, John King [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baczewski, Andrew David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moussa, Jonathan Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Xujiao [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinger, Andrew G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.

  11. Mechanism of story elements in the Forud story of Shahname

    Directory of Open Access Journals (Sweden)

    hojjatollah Hemmati

    2016-06-01

    Full Text Available Abstract Which by their nature narrative structure elements , motifs and narrative action takes place . Author In light of these characteristics and structural elements such as plot , point of view , conflict, crisis , climax and relief , follow the narrative structure down. In this study is to investigate the structure of the story landed in Shahnameh . For this purpose, the definition of story and structure delivers And a review of such issues to investigate this story. And to provide this evidence to conclude that the text of traditions and story And a coherent and systematic plan and that it regulates the relations of cause and effect . And shows the text with the help of fictional elements From a stable position starts And stable position and different ends.     Abstract Which by their nature narrative structure elements , motifs and narrative action takes place . Author In light of these characteristics and structural elements such as plot , point of view , conflict, crisis , climax and relief , follow the narrative structure down. In this study is to investigate the structure of the story landed in Shahnameh . For this purpose, the definition of story and structure delivers And a review of such issues to investigate this story. And to provide this evidence to conclude that the text of traditions and story And a coherent and systematic plan and that it regulates the relations of cause and effect . And shows the text with the help of fictional elements From a stable position starts And stable position and different ends.

  12. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    Science.gov (United States)

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The formation of structures and properties of carburized elements and hardened in different quenching medium

    International Nuclear Information System (INIS)

    Przylecka, M.; Gestwa, W.

    2003-01-01

    In work structure and selected properties of hardened carburized layers were introduced produced on chromium-manganese steel (16HG - 16CrMn5), after processes of gas carburizing (850 o C/1-10 h) and vacuum carburizing (950 o C/2 h) as well as direct hardening (center cooling: distillated water, Water polymer solution - polyglycol oxyalkylen, oil and gas-nitrogen) and tempering. Results of investigations permitted to affirm, that layer with structure martensite - retained austenite, as carbides - martensite - retained austenite produced in process of hardening applying cooling centre water polymer solution, the impact strength of element (at define thickness of carburized layer) give profitable, suitable hardness and microhardness as well as changes of microhardness on section in comparison to produced layers during cooling in water or oil and gas. (author)

  14. Wave steering effects in anisotropic composite structures: Direct calculation of the energy skew angle through a finite element scheme.

    Science.gov (United States)

    Chronopoulos, D

    2017-01-01

    A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 7 CFR 29.6081 - Elements of quality and degrees of each element.

    Science.gov (United States)

    2010-01-01

    ..., but the actual value of each degree varies with type and group. Elements Degrees Body Heavy Medium Thin. Maturity Immature Mature Ripe. Leaf structure Close Firm Open. Elasticity Inelastic Semielastic...

  16. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  17. Structural Characterization and In Vitro Antioxidant Activity of Kojic Dipalmitate Loaded W/O/W Multiple Emulsions Intended for Skin Disorders

    Directory of Open Access Journals (Sweden)

    Maíra Lima Gonçalez

    2015-01-01

    Full Text Available Multiple emulsions (MEs are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP. The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm and zeta potential (ZP, performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of −13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ‘‘shear thinning’’ flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.

  18. Structural characterization and in vitro antioxidant activity of kojic dipalmitate loaded w/o/w multiple emulsions intended for skin disorders.

    Science.gov (United States)

    Gonçalez, Maíra Lima; Marcussi, Diana Gleide; Calixto, Giovana Maria Fioramonti; Corrêa, Marcos Antonio; Chorilli, Marlus

    2015-01-01

    Multiple emulsions (MEs) are intensively being studied for drug delivery due to their ability to load and increase the bioavailability of active lipophilic antioxidant, such as kojic dipalmitate (KDP). The aim of this study was to structurally characterize developed MEs by determining the average droplet size (Dnm) and zeta potential (ZP), performing macroscopic and microscopic analysis and analyzing their rheological behavior and in vitro bioadhesion. Furthermore, the in vitro safety profile and antioxidant activity of KDP-loaded MEs were evaluated. The developed MEs showed a Dnm of approximately 1 micrometer and a ZP of -13 mV, and no change was observed in Dnm or ZP of the system with the addition of KDP. KDP-unloaded MEs exhibited ''shear thinning" flow behavior whereas KDP-loaded MEs exhibited Newtonian behavior, which are both characteristic of antithixotropic materials. MEs have bioadhesion properties that were not influenced by the incorporation of KDP. The results showed that the incorporation of KDP into MEs improved the safety profile of the drug. The in vitro antioxidant activity assay suggested that MEs presented a higher capacity for maintaining the antioxidant activity of KDP. ME-based systems may be a promising platform for the topical application of KDP in the treatment of skin disorders.

  19. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. and Thonn.-a hepatoprotective herb

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, P., E-mail: pranati_nayak_23@yahoo.co.i [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Behera, P.R., E-mail: priyaranjan2004@gmail.co [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India); Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Thirunavoukkarasu, M., E-mail: mtarasu@yahoo.co [Plant Biotechnology Laboratory, Institute of Minerals and Materials Technology, (C.S.I.R., Govt. of India), Bhubaneswar 751013, Orissa (India); Chand, P.K., E-mail: pkchanduubot@rediffmail.co [Plant Tissue and Cell Culture Facility, Post-Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Orissa (India)

    2011-03-15

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-a-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals.

  20. Mechanical characterization of bioprinted in vitro soft tissue models

    International Nuclear Information System (INIS)

    Zhang, Ting; Ouyang, Liliang; Sun, Wei; Yan, Karen Chang

    2013-01-01

    Recent development in bioprinting technology enables the fabrication of complex, precisely controlled cell-encapsulated tissue constructs. Bioprinted tissue constructs have potential in both therapeutic applications and nontherapeutic applications such as drug discovery and screening, disease modelling and basic biological studies such as in vitro tissue modelling. The mechanical properties of bioprinted in vitro tissue models play an important role in mimicking in vivo the mechanochemical microenvironment. In this study, we have constructed three-dimensional in vitro soft tissue models with varying structure and porosity based on the 3D cell-assembly technique. Gelatin/alginate hybrid materials were used as the matrix material and cells were embedded. The mechanical properties of these models were assessed via compression tests at various culture times, and applicability of three material constitutive models was examined for fitting the experimental data. An assessment of cell bioactivity in these models was also carried out. The results show that the mechanical properties can be improved through structure design, and the compression modulus and strength decrease with respect to time during the first week of culture. In addition, the experimental data fit well with the Ogden model and experiential function. These results provide a foundation to further study the mechanical properties, structural and combined effects in the design and the fabrication of in vitro soft tissue models. (paper)