WorldWideScience

Sample records for vitro stability pharmacokinetics

  1. Effect of morin on pharmacokinetics of piracetam in rats, in vitro enzyme kinetics and metabolic stability assay using rapid UPLC method.

    Science.gov (United States)

    Sahu, Kapendra; Shaharyar, Mohammad; Siddiqui, Anees A

    2013-07-01

    The aim of this study was to investigate the effect of Morin on the pharmacokinetics of Piracetam in rats, in vitro enzyme kinetics and metabolic stability (high throughput) studies using human liver microsomes in UPLC. For pharmacokinetics studies, male Wistar rats were pretreated with Morin (10 mg/kg) for one week and on the last day, a single dose of Piracetam (50 mg/kg) was given orally. In another group, both Morin and Piracetam were co-administered to evaluate the acute effect of Morin on Piracetam. The control group received oral distilled water for one week and administered with Piracetam on the last day. As Morin is an inhibitor of P- Glycoprotein (P-gp) and CYP 3A, it was anticipated to improve the bioavailability of Piracetam. Amazingly, relative to control, the areas under the concentration time curve and peak plasma concentration of Piracetam were 1.50- and 1.45-fold, respectively, greater in the Morin-pretreated group. However, co-administration of Morin had no significant effect on these parameters. Apart from the aforementioned merits, the results of this study are further confirmed by clinical trials; Piracetam dosages should be adjusted to avoid potential drug interaction when Piracetam is used clinically in combination with Morin and Morin-containing dietary supplements. The in vitro enzyme kinetics were performed to determined km, Vmax & CLins . The in vitro metabolic stability executed for the estimation of metabolic rate constant and half-life of Piracetam. These studies also extrapolate to in vivo intrinsic hepatic clearance (Clint, in vivo ) from in vitro intrinsic hepatic clearance (CLint, in vitro ). Copyright © 2012 John Wiley & Sons, Ltd.

  2. In vitro metabolism and pharmacokinetic studies on methylone

    DEFF Research Database (Denmark)

    Pedersen, Anders Just; Petersen, Trine Hedebrink; Linnet, Kristian

    2013-01-01

    Abuse of the stimulant designer drug methylone (methylenedioxymethcathinone) has been documented in most parts of the world. As with many of the new designer drugs that continuously appear in the illicit drug market, little is known about the pharmacokinetics of methylone. Using in vitro studies...

  3. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model.

    Science.gov (United States)

    Chang, Robert; Nam, Jae; Sun, Wei

    2008-06-01

    A novel targeted application of tissue engineering is the development of an in vitro pharmacokinetic model for drug screening and toxicology. An in vitro pharmacokinetic model is needed to realistically and reliably predict in vivo human response to drug administrations and potential toxic exposures. This paper details the fabrication process development and adaptation of microfluidic devices for the creation of such a physiologically relevant pharmacokinetic model. First, an automated syringe-based, layered direct cell writing (DCW) bioprinting process creates a 3D microorgan that biomimics the cell's natural microenvironment with enhanced functionality. Next, soft lithographic micropatterning techniques are used to fabricate a microscale in vitro device to house the 3D microorgan. This paper demonstrates the feasibility of the DCW process for freeform biofabrication of 3D cell-encapsulated hydrogel-based tissue constructs with defined reproducible patterns, direct integration of 3D constructs onto a microfluidic device for continuous perfusion drug flow, and characterization of 3D tissue constructs with predictable cell viability/proliferation outcomes and enhanced functionality over traditional culture methods.

  4. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    Science.gov (United States)

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  5. Pharmacokinetics of trefoil peptides and their stability in gastrointestinal contents

    DEFF Research Database (Denmark)

    Kjellev, Stine; Vestergaard, Else Marie; Nexø, Ebba

    2007-01-01

    Trefoil factor family (TFF) peptides are considered promising for therapeutic use in gastrointestinal diseases, and there is a need to explore the fate of injected TFF and the stability of the peptides in the gastrointestinal tract. We studied the pharmacokinetics of intravenously (i.v.) administ......Trefoil factor family (TFF) peptides are considered promising for therapeutic use in gastrointestinal diseases, and there is a need to explore the fate of injected TFF and the stability of the peptides in the gastrointestinal tract. We studied the pharmacokinetics of intravenously (i.......v.) administered hTFF2 in mice and rats and of hTFF3 administered i.v., intramuscularly, intraperitoneally, and subcutaneously in mice, and estimated by ELISA the decay of the peptides added to rat and human gastrointestinal contents. We found that i.v. injected hTFF2 and hTFF3 were cleared from the circulation...

  6. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation

    Directory of Open Access Journals (Sweden)

    Ahmed TA

    2016-02-01

    technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability. Keywords: finasteride, nanoparticles, solvent evaporation, optimization, crystal growth, pharmacokinetic

  7. Distribution and pharmacokinetic analysis of angiostatin radioiodine labeled with high stability

    International Nuclear Information System (INIS)

    Song, Sung Hee; Jung, Kyung-Ho; Paik, Jin-Young; Koh, Bong-Ho; Bae, Joon-Sang; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2005-01-01

    Objective: Radiotracers of anticancer agents provide important information on its in vivo handling. Angiostatin (AST) is a promising anticancer drug with potent antiangiogenic effects, but reported AST radiotracers suffer from poor in vivo stability. In this study, we synthesized an AST probe radioiodinated via the Bolton-Hunter reagent ( 125 I-BH-AST) and investigated its stability and biokinetics in mice. Methods: 125 I-BH-AST and conventional direct radioiodinated 125 I-AST were evaluated for human endothelial cell binding characteristics. In vivo stability of the radiotracers was compared by biodistribution studies in normal ICR mice. Angiostatin pharmacokinetics was analyzed by serial blood sampling after intravenous injection of 125 I-BH-AST with varying AST concentrations in mice. Results: Both 125 I-AST and 125 I-BH-AST retained selective endothelial binding as demonstrated by dose-dependent inhibition by nonradiolabeled AST. 125 I-BH-AST was substantially more stable in mice than 125 I-AST, with 28- and 7-fold lower 24-h thyroid and blood activities, respectively (15.5±1.5 vs. 430.9±32.2 and 0.1±0.0 vs. 0.8±0.0 %ID/g; both P 125 I-BH-AST, we found that 24-h AST accumulation was highest in the kidneys, followed by the liver and lungs. Kinetic analysis of 125 I-BH-AST revealed AST to have linear pharmacokinetics with a T 1/2 of 5.8±2.6 h, volume of distribution (V d ) of 6.8±1.3 ml and clearance of 0.8±0.1 ml/h. Conclusion: Radioiodine-labeled AST prepared by the BH method provides a radioprobe with superior stability and improved in vivo biokinetics that is useful for distribution and pharmacokinetic studies

  8. Atorvastatin calcium loaded chitosan nanoparticles: in vitro evaluation and in vivo pharmacokinetic studies in rabbits

    Directory of Open Access Journals (Sweden)

    Abdul Baquee Ahmed

    2015-06-01

    Full Text Available In this study, we prepared atorvastatin calcium (AVST loaded chitosan nanoparticles to improve the oral bioavailability of the drug. Nanoparticles were prepared by solvent evaporation technique and evaluated for its particle size, entrapment efficiency, zeta potential, in vitro release and surface morphology by scanning electron microscopy (SEM. In addition, the pharmacokinetics of AVST from the optimized formulation (FT5 was compared with marketed immediate release formulation (Atorva(r in rabbits. Particle size of prepared nanoparticles was ranged between 179.3 ± 7.12 to 256.8 ± 8.24 nm with a low polydispersity index (PI value. Zeta potential study showed that the particles are stable with positive values between 13.03 ± 0.32 to 46.90 ± 0.49 mV. FT-IR studies confirmed the absence of incompatibility of AVST with excipient used in the formulations. In vitro release study showed that the drug release was sustained for 48 h. Results of pharmacokinetics study showed significant changes in the pharmacokinetic parameter (2.2 fold increase in AUC of the optimized formulation as compared to marketed formulation (Atorva(r. Thus, the developed nanoparticles evidenced the improvement of oral bioavailability of AVST in rabbit model.

  9. In vitro and in vivo experimental data for pyrethroid pharmacokinetic models: the case of bifenthrin

    Science.gov (United States)

    Pyrethroids are a class of neurotoxic synthetic pesticides. Exposure to pyrethroids has increased due to declining use of other classes of pesticides. Our studies are focused on generating in vitro and in vivo data for the development of pharmacokinetic models for pyrethroids. Us...

  10. In vitro and in vivo studies of pharmacokinetics and antitumor efficacy of D07001-F4, an oral gemcitabine formulation.

    Science.gov (United States)

    Hao, Wei-Hua; Wang, Jong-Jing; Hsueh, Shu-Ping; Hsu, Pei-Jing; Chang, Li-Chien; Hsu, Chang-Shan; Hsu, Kuang-Yang

    2013-02-01

    The chemotherapy agent gemcitabine is currently administered intravenously because the drug has poor oral bioavailability. In order to assess the pharmacokinetics and antitumor activity of D07001-F4, a new self-microemulsifying oral drug delivery system preparation of gemcitabine, this study was performed to compare the effect of D07001-F4 with administered gemcitabine in vitro and in vivo. D07001-F4 pharmacokinetics was examined by evaluation of in vitro deamination of D07001-F4 and gemcitabine hydrochloride by recombinant human cytidine deaminase (rhCDA) and in vivo evaluation of D07001-F4 pharmacokinetics in mice. Antitumor activity was evaluated by comparing the effect of D07001-F4 and gemcitabine hydrochloride in inhibiting growth in nine cancer cell lines and by examining the effect of D07001-F4 and gemcitabine in two xenograft tumor models in mice. In vitro deamination of D07001-F4 by rhCDA was 3.3-fold slower than deamination of gemcitabine hydrochloride. Growth inhibition by D07001-F4 of 7 of the 8 cancer cell lines was increased compared with that seen with gemcitabine hydrochloride, and D07001-F4 inhibited the growth of pancreatic and colon cancer xenografts. In vivo pharmacokinetics showed the oral bioavailability of D07001-F4 to be 34%. D07001-F4 was effective against several cancer types, was metabolized more slowly than gemcitabine hydrochloride, and exhibited enhanced oral bioavailability.

  11. 1,3-disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties.

    Science.gov (United States)

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D

    2007-10-18

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokinetic properties. The structure-activity relationship studies showed that a hydrophobic linker between the urea group and the ether function is necessary to keep their potency. In addition, urea-ether inhibitors having a polar group such as diethylene glycol or morpholine significantly improved their physical properties and metabolic stability without any loss of inhibitory potency. Furthermore, improved pharmacokinetic properties in murine and canine models were obtained with the resulting inhibitors. These findings will facilitate the usage of sEH inhibitors in animal models of hypertension and inflammation.

  12. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation.

    Science.gov (United States)

    Kambayashi, Atsushi; Dressman, Jennifer B

    2017-10-01

    The aim of the current research was to determine the precipitation kinetics of dantrolene sodium using canine biorelevant in vitro testing and to model the precipitation kinetics by appropriately coupling the data with an in silico tool adapted for dogs. The precipitation profiles of dantrolene sodium solutions were obtained with the in vitro paddle apparatus at a revolution rate of 50rpm. The in silico prediction tool was designed using STELLA software and the predicted plasma concentration profiles of dantrolene using the in vitro precipitation data were compared with the observed in vivo pharmacokinetics in beagle dogs. The plasma profiles of dantrolene, which served as a model weakly acidic drug which precipitates in the upper gastrointestinal tract, was successfully predicted using the in vitro precipitation testing coupled with the in silico modeling and simulation approach. The approach was subsequently used to forecast the effect of pharmaceutical excipients (HPMC/PG) on the ability of the drug to supersaturate in the gut and the resulting pharmacokinetics. The agreement of the simulated pharmacokinetics with the observed values confirms the ability of canine biorelevant media to predict oral performance of enhanced dosage forms in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  14. Elucidation of Arctigenin Pharmacokinetics and Tissue Distribution after Intravenous, Oral, Hypodermic and Sublingual Administration in Rats and Beagle Dogs: Integration of In Vitro and In Vivo Findings.

    Science.gov (United States)

    Li, Jie; Li, Xin; Ren, Yu-Shan; Lv, Yuan-Yuan; Zhang, Jun-Sheng; Xu, Xiao-Li; Wang, Xian-Zhen; Yao, Jing-Chun; Zhang, Gui-Min; Liu, Zhong

    2017-01-01

    Although arctigenin ( AG ) has diverse bioactivities, such as anti-oxidant, anti-inflammatory, anti-cancer, immunoregulatory and neuroprotective activities, its pharmacokinetics have not been systematically evaluated. The purpose of this work was to identify the pharmacokinetic properties of AG via various experiments in vivo and in vitro . In this research, rats and beagle dogs were used to investigate the PK (pharmacokinetics, PK) profiles of AG with different drug-delivery manners, including intravenous (i.v), hypodermic injection (i.h), and sublingual (s.l) administration. The data shows that AG exhibited a strong absorption capacity in both rats and beagle dogs (absorption rate 100%), and a strong elimination ability ( t 1/2 beagle dog (25.9 ± 3.24%) > rat (15.7 ± 9%) > monkey (3.69 ± 0.12%). This systematic investigation of pharmacokinetic profiles of arctigenin (AG) in vivo and in vitro is worthy of further exploration.

  15. 1,3-Disubstituted Ureas Functionalized with Ether Groups are Potent Inhibitors of the Soluble Epoxide Hydrolase with Improved Pharmacokinetic Properties

    OpenAIRE

    Kim, In-Hae; Tsai, Hsing-Ju; Nishi, Kosuke; Kasagami, Takeo; Morisseau, Christophe; Hammock, Bruce D.

    2007-01-01

    Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokineti...

  16. Elucidation of Arctigenin Pharmacokinetics and Tissue Distribution after Intravenous, Oral, Hypodermic and Sublingual Administration in Rats and Beagle Dogs: Integration of In Vitro and In Vivo Findings

    OpenAIRE

    Jie Li; Jie Li; Jie Li; Xin Li; Xin Li; Xin Li; Yu-Shan Ren; Yu-Shan Ren; Yuan-Yuan Lv; Yuan-Yuan Lv; Yuan-Yuan Lv; Jun-Sheng Zhang; Jun-Sheng Zhang; Jun-Sheng Zhang; Xiao-Li Xu

    2017-01-01

    Although arctigenin (AG) has diverse bioactivities, such as anti-oxidant, anti-inflammatory, anti-cancer, immunoregulatory and neuroprotective activities, its pharmacokinetics have not been systematically evaluated. The purpose of this work was to identify the pharmacokinetic properties of AG via various experiments in vivo and in vitro. In this research, rats and beagle dogs were used to investigate the PK (pharmacokinetics, PK) profiles of AG with different drug-delivery manners, including ...

  17. The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene

    NARCIS (Netherlands)

    Hissink, E.M.; Bogaards, J.J.P.; Freidig, A.P.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Bladeren, P.J. van

    2002-01-01

    A physiologically based pharmacokinetic (PBPK) model has been developed for trichloroethylene (1,1,2-trichloroethene, TRI) for rat and humans, based on in vitro metabolic parameters. These were obtained using individual cytochrome P450 and glutathione S-transferase enzymes. The main enzymes involved

  18. Pharmacokinetics and In Vitro Blood-Brain Barrier Screening of the Plant-Derived Alkaloid Tryptanthrin.

    Science.gov (United States)

    Jähne, Evelyn A; Eigenmann, Daniela E; Sampath, Chethan; Butterweck, Veronika; Culot, Maxime; Cecchelli, Roméo; Gosselet, Fabien; Walter, Fruzsina R; Deli, Mária A; Smieško, Martin; Hamburger, Matthias; Oufir, Mouhssin

    2016-07-01

    The indolo[2,1-b]quinazoline alkaloid tryptanthrin was previously identified as a potent anti-inflammatory compound with a unique pharmacological profile. It is a potent inhibitor of cyclooxygenase-2, 5-lipooxygenase-catalyzed leukotriene synthesis, and nitric oxide production catalyzed by the inducible nitric oxide synthase. To characterize the pharmacokinetic properties of tryptanthrin, we performed a pilot in vivo study in male Sprague-Dawley rats (2 mg/kg bw i. v.). Moreover, the ability of tryptanthrin to cross the blood-brain barrier was evaluated in three in vitro human and animal blood-brain barrier models. Bioanalytical UPLC-MS/MS methods used were validated according to current international guidelines. A half-life of 40.63 ± 6.66 min and a clearance of 1.00 ± 0.36 L/h/kg were found in the in vivo pharmacokinetic study. In vitro data obtained with the two primary animal blood-brain barrier models showed a good correlation with an immortalized human monoculture blood-brain barrier model (hBMEC cell line), and were indicative of a high blood-brain barrier permeation potential of tryptanthrin. These findings were corroborated by the in silico prediction of blood-brain barrier penetration. P-glycoprotein interaction of tryptanthrin was assessed by calculation of the efflux ratio in bidirectional permeability assays. An efflux ratio below 2 indicated that tryptanthrin is not subjected to active efflux. Georg Thieme Verlag KG Stuttgart · New York.

  19. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  20. A propofol microemulsion with low free propofol in the aqueous phase: formulation, physicochemical characterization, stability and pharmacokinetics.

    Science.gov (United States)

    Cai, WeiHui; Deng, WanDing; Yang, HuiHui; Chen, XiaoPing; Jin, Fang

    2012-10-15

    The purpose of this study was to develop a propofol microemulsion with a low concentration of free propofol in the aqueous phase. Propofol microemulsions were prepared based on single-factor experiments and orthogonal design. The optimal microemulsion was evaluated for pH, osmolarity, particle size, zeta potential, morphology, free propofol in the aqueous phase, stability, and pharmacokinetics in beagle dogs, and comparisons made with the commercial emulsion, Diprivan(®). The pH and osmolarity of the microemulsion were similar to those of Diprivan(®). The average particle size was 22.6±0.2 nm, and TEM imaging indicated that the microemulsion particles were spherical in appearance. The concentration of free propofol in the microemulsion was 21.3% lower than that of Diprivan(®). Storage stability tests suggested that the microemulsion was stable long-term under room temperature conditions. The pharmacokinetic profile for the microemulsion showed rapid distribution and elimination compared to Diprivan(®). We conclude that the prepared microemulsion may be clinically useful as a potential carrier for propofol delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. In vitro enantioselective human liver microsomal metabolism and prediction of in vivo pharmacokinetic parameters of tetrabenazine by DLLME-CE.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; de Lima Moreira, Fernanda; de Albuquerque, Nayara Cristina Perez; de Gaitani, Cristiane Masetto; de Oliveira, Anderson Rodrigo Moraes

    2016-09-05

    A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-β-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75μL) and acetone as disperser solvent (150μL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57μmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Prediction of pharmacokinetic and toxicological parameters of a 4-phenylcoumarin isolated from geopropolis: In silico and in vitro approaches.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franco, Gilson César Nobre; Franchin, Marcelo; Beutler, John A; de Alencar, Severino Matias; Ikegaki, Masaharu; Rosalen, Pedro Luiz

    2016-11-30

    In silico and in vitro methodologies have been used as important tools in the drug discovery process, including from natural sources. The aim of this study was to predict pharmacokinetic and toxicity (ADME/Tox) properties of a coumarin isolated from geopropolis using in silico and in vitro approaches. Cinnamoyloxy-mammeisin (CNM) isolated from Brazilian M. scutellaris geopropolis was evaluated for its pharmacokinetic parameters by in silico models (ACD/Percepta™ and MetaDrug™ software). Genotoxicity was assessed by in vitro DNA damage signaling PCR array. CNM did not pass all parameters of Lipinski's rule of five, with a predicted low oral bioavailability and high plasma protein binding, but with good predicted blood brain barrier penetration. CNM was predicted to show low affinity to cytochrome P450 family members. Furthermore, the predicted Ames test indicated potential mutagenicity of CNM. Also, the probability of toxicity for organs and tissues was classified as moderate and high for liver and kidney, and moderate and low for skin and eye irritation, respectively. The PCR array analysis showed that CNM significantly upregulated about 7% of all DNA damage-related genes. By exploring the biological function of these genes, it was found that the predicted CNM genotoxicity is likely to be mediated by apoptosis. The predicted ADME/Tox profile suggests that external use of CNM may be preferable to systemic exposure, while its genotoxicity was characterized by the upregulation of apoptosis-related genes after treatment. The combined use of in silico and in vitro approaches to evaluate these parameters generated useful hypotheses to guide further preclinical studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: How chemical modifications affect pharmacokinetics and metabolic stability

    International Nuclear Information System (INIS)

    Hugenberg, Verena; Hermann, Sven; Galla, Fabian; Schäfers, Michael

    2016-01-01

    Introduction: Dysregulated MMP expression or activation is associated with several diseases. To study MMP activity in vivo by means of PET a radiolabeled MMP inhibitor (MMPI) functioning as radiotracer has been developed by our group based on the lead structure CGS 25966. Materials and methods: Aiming at the modification of the pharmacokinetics of this lipophilic model tracer a new class of MMPIs has been discovered, consisting of additional fluorinated hydrophilic substructures, such as mini-PEG and/or 1,2,3-triazole units. To identify the best candidate for further clinical applications, radiofluorinated compounds of each subgroup have been (radio) synthesized and evaluated regarding their biodistribution behavior and their metabolic stability. Results: Radiosyntheses of different triazole based MMPIs could be realized using two step “click chemistry” procedures. Compared to lead structure [ 18 F]FEtO-CGS 25966 ([ 18 F]1e, log D(exp) = 2.02, IC 50 = 2–50 nM) all selected candidates showed increased hydrophilicities and inhibition potencies (log D(exp) = 0.23–1.25, IC 50 = 0.006–6 nM). Interestingly, despite different hydrophilicities most triazole based MMPIs showed no significant differences in their in vivo biodistribution behavior and were cleared predominantly via the hepatobiliary excretion route. Biostability and metabolism studies in vitro and in vivo revealed significant higher metabolic stability for the triazole moiety compared to the benzyl ring in the lead structure. Cleavage of ethylene glycol subunits of the mini-PEG chain led to a faster metabolism of mini-PEG containing MMPIs. Conclusion: The introduction of hydrophilic groups such as mini-PEG and 1,2,3-triazole units did not lead to a significant shift of the hepatobiliary elimination towards renal clearance. Particularly the introduction of mini-PEG chains led to an intense metabolic decomposition. Substitution of the benzyl moiety in lead structure 1e by a 1,2,3-trizole ring resulted

  4. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling

    Science.gov (United States)

    Leonard, Jeremy A.; Tan, Yu-Mei; Gilbert, Mary; Isaacs, Kristin; El-Masri, Hisham

    2016-01-01

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses. PMID:26865668

  5. Elucidation of Arctigenin Pharmacokinetics and Tissue Distribution after Intravenous, Oral, Hypodermic and Sublingual Administration in Rats and Beagle Dogs: Integration of In Vitro and In Vivo Findings

    Directory of Open Access Journals (Sweden)

    Jie Li

    2017-06-01

    Full Text Available Although arctigenin (AG has diverse bioactivities, such as anti-oxidant, anti-inflammatory, anti-cancer, immunoregulatory and neuroprotective activities, its pharmacokinetics have not been systematically evaluated. The purpose of this work was to identify the pharmacokinetic properties of AG via various experiments in vivo and in vitro. In this research, rats and beagle dogs were used to investigate the PK (pharmacokinetics, PK profiles of AG with different drug-delivery manners, including intravenous (i.v, hypodermic injection (i.h, and sublingual (s.l administration. The data shows that AG exhibited a strong absorption capacity in both rats and beagle dogs (absorption rate < 1 h, a high absorption degree (absolute bioavailability > 100%, and a strong elimination ability (t1/2 < 2 h. The tissue distributions of AG at different time points after i.h showed that the distribution of AG in rat tissues is rapid (2.5 h to reach the peak and wide (detectable in almost all tissues and organs. The AG concentration in the intestine was the highest, followed by that in the heart, liver, pancreas, and kidney. In vitro, AG were incubated with human, monkey, beagle dog and rat liver microsomes. The concentrations of AG were detected by UPLC-MS/MS at different time points (from 0 min to 90 min. The percentages of AG remaining in four species’ liver microsomes were human (62 ± 6.36% > beagle dog (25.9 ± 3.24% > rat (15.7 ± 9% > monkey (3.69 ± 0.12%. This systematic investigation of pharmacokinetic profiles of arctigenin (AG in vivo and in vitro is worthy of further exploration.

  6. Validation and use of microdialysis for determination of pharmacokinetic properties of the chemotherapeutic agent mitomycin C - an experimental study

    International Nuclear Information System (INIS)

    Sørensen, Olaf; Andersen, Anders; Olsen, Harald; Alexandr, Kristian; Ekstrøm, Per Olaf; Giercksky, Karl-Erik; Flatmark, Kjersti

    2010-01-01

    Mitomycin C is a chemotherapeutic agent used in the treatment of peritoneal surface malignancies, administered as hyperthermic intraperitoneal chemotherapy after cytoreductive surgery. Pharmacokinetic studies have been based on analyses of blood, urine and abdominal perfusate, but actual tissue concentrations of the drug have never been determined. Microdialysis is an established method for continuous monitoring of low-molecular substances in tissues, and in the present study microdialysis of mitomycin C was studied in vitro and in vivo. Using in vitro microdialysis, relative recovery was determined when varying drug concentration, temperature and perfusion flow rate. In vivo microdialysis was performed in rats to verify long-term stability of relative recovery in four compartments (vein, peritoneum, extraperitoneal space and hind leg muscle). Subsequently, intravenous and intraperitoneal bolus infusion experiments were performed and pharmacokinetic parameters were calculated. In vitro, compatibility of mitomycin C and microdialysis equipment was demonstrated, and relative recovery was stable over an adequate concentration range, moderately increased by raising medium temperature and increased when flow rate was reduced, all according to theory. In vivo, stable relative recovery was observed over seven hours. Mitomycin C exhibited fast and even distribution in rat tissues, and equal bioavailability was achieved by intravenous and intraperitoneal infusion. The half-life of mitomycin C calculated after intravenous infusion was 40 minutes. Mitomycin C concentration can be reliable monitored in vivo using microdialysis, suggesting that this technique can be used in pharmacokinetic studies of this drug during hyperthermic intraperitoneal chemotherapy

  7. Reversal of P-glycoprotein-medicated multidrug resistance by LBM-A5 in vitro and a study of its pharmacokinetics in vivo.

    Science.gov (United States)

    Zhao, Tianxiao; Song, Yun; Liu, Baomin; Qiu, Qianqian; Jiao, Lei; Li, Yunman; Huang, Wenlong; Qian, Hai

    2015-01-01

    The overexpression of P-glycoprotein (P-gp) in tumors leads to multidrug resistance (MDR), which is a significant obstacle in clinical cancer chemotherapy. The co-administration of anticancer drugs and MDR modulators is a promising strategy for overcoming this problem. Our study aimed to explore the reversal mechanism and safety of the MDR modulator LBM-A5 in vitro, and evaluate its pharmacokinetics and effects on doxorubicin metabolism in vivo. We evaluated an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay of anticancer agents mediated by LBM-A5, the effect of LBM-A5 on rhodamine123 intracellular accumulation, and the efflux in K562/DOX cells to investigate the reversal mechanisms of LBM-A5. The results showed that LBM-A5 inhibits rhodamine123 efflux and increases intracellular accumulation by inhibiting the efflux pump function of P-gp. Furthermore, the therapeutic index and CYP3A4 activity analysis in vitro suggested that LBM-A5 is reasonably safe to use. Also, LBM-A5 (10 mg/kg body mass) achieved the required plasma concentration in sufficient time to reverse MDR in vivo. Importantly, the LBM-A5 treatment group shared similar doxorubicin (DOX) pharmacokinetics with the free DOX group. Our results suggest that LBM-A5 effectively reverses MDR (EC50 = 483.6 ± 81.7 nmol·L(-1)) by inhibiting the function of P-gp, with relatively ideal pharmacokinetics and in a safe manner, and so may be a promising candidate for cancer chemotherapy research.

  8. Addressing Early Life Sensitivity Using Physiologically Based Pharmacokinetic Modeling and In Vitro to In Vivo Extrapolation.

    Science.gov (United States)

    Yoon, Miyoung; Clewell, Harvey J

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling can provide an effective way to utilize in vitro and in silico based information in modern risk assessment for children and other potentially sensitive populations. In this review, we describe the process of in vitro to in vivo extrapolation (IVIVE) to develop PBPK models for a chemical in different ages in order to predict the target tissue exposure at the age of concern in humans. We present our on-going studies on pyrethroids as a proof of concept to guide the readers through the IVIVE steps using the metabolism data collected either from age-specific liver donors or expressed enzymes in conjunction with enzyme ontogeny information to provide age-appropriate metabolism parameters in the PBPK model in the rat and human, respectively. The approach we present here is readily applicable to not just to other pyrethroids, but also to other environmental chemicals and drugs. Establishment of an in vitro and in silico-based evaluation strategy in conjunction with relevant exposure information in humans is of great importance in risk assessment for potentially vulnerable populations like early ages where the necessary information for decision making is limited.

  9. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces.

    Science.gov (United States)

    Xing, Jian-feng; You, Hai-sheng; Dong, Ya-lin; Lu, Jun; Chen, Si-ying; Zhu, Hui-fang; Dong, Qian; Wang, Mao-yi; Dong, Wei-hua

    2011-05-01

    To study the metabolic and pharmacokinetic profile of scutellarin, an active component from the medical plant Erigeron breviscapus (Vant) Hand-Mazz, and to investigate the mechanisms underlying the low bioavailability of scutellarin though oral or intravenous administration in rats. HPLC method was developed for simultaneous detection of scutellarin and scutellarein (the aglycone of scutellarin) in rat plasma, urine and feces. The in vitro metabolic stability study was carried out in rat liver microsomes from different genders. After a single oral dose of scutellarin (400 mg/kg), the plasma concentrations of scutellarin and scutellarein in female rats were significantly higher than in male ones. Between the female and male rats, significant differences in AUC, t(max2) and C(max2) for scutellarin were found. The pharmacokinetic parameters of scutellarin in the urine also showed significant gender differences. After a single oral dose of scutellarin (400 mg/kg), the total percentage excretion of scutellarein in male and female rats was 16.5% and 8.61%, respectively. The total percentage excretion of scutellarin and scutellarein in the feces was higher with oral administration than with intravenous administration. The in vitro t(1/2) and CL(int) value for scutellarin in male rats was significantly higher than that in female rats. The results suggest that a large amount of ingested scutellarin was metabolized into scutellarein in the gastrointestinal tract and then excreted with the feces, leading to the extremely low oral bioavailability of scutellarin. The gender differences of pharmacokinetic parameters of scutellarin and scutellarein are due to the higher CL(int) and lower absorption in male rats.

  10. Coffee inhibition of CYP3A4 in vitro was not translated to a grapefruit-like pharmacokinetic interaction clinically.

    Science.gov (United States)

    Dresser, George K; Urquhart, Brad L; Proniuk, Julianne; Tieu, Alvin; Freeman, David J; Arnold, John Malcolm; Bailey, David G

    2017-10-01

    Grapefruit can augment oral medication bioavailability through irreversible (mechanism-based) inhibition of intestinal CYP3A4. Supplementary data from our recent coffee-drug interaction clinical study showed some subjects had higher area under the plasma drug concentration - time curve (AUC) and plasma peak drug concentration (Cmax) of the CYP3A4 probe felodipine compared to aqueous control. It was hypothesized that coffee might interact like grapefruit in responsive individuals. Beans from six geographical locations were consistently brewed into coffee that was separated chromatographically to a methanolic fraction for in vitro inhibition testing of CYP3A4 metabolism of felodipine at 1% coffee strength. The effect of simultaneous incubation and 10-min preincubation with coffee fractions determined whether coffee had direct and mechanism-based inhibitory activity. A subsequent five-way randomized balanced controlled crossover clinical study evaluated the clinical pharmacokinetic interaction with single-dose felodipine. Grapefruit juice, water, or three of the in vitro tested coffees were ingested at 300 mL alone 1 h before and then with felodipine. In vitro, all six coffees decreased felodipine metabolism for both simultaneous and preincubation exposure compared to corresponding control. Five coffees demonstrated mechanism-based inhibition. Grapefruit increased felodipine AUC 0-8 (25 vs. 13 ng.h/mL, P coffees caused no change in these parameters compared to water. Despite high in vitro potency of CYP3A4 inhibition, the coffees did not cause a clinical pharmacokinetic interaction possibly from insufficient amount of inhibitor(s) in coffee reaching intestinal CYP3A4 during the absorption phase of felodipine. The results of this study highlight the need for follow-up clinical testing when in vitro results indicate the possibility of an interaction. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British

  11. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (IVIVE)

    Science.gov (United States)

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds us...

  12. Poly(n-butylcyanoacrylate nanoparticles for oral delivery of quercetin: preparation, characterization, and pharmacokinetics and biodistribution studies in Wistar rats

    Directory of Open Access Journals (Sweden)

    Bagad M

    2015-06-01

    Full Text Available Mayur Bagad, Zaved Ahmed KhanMedical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore Tamil Nadu, IndiaBackground: Quercetin (QT is a potential bioflavonol and antioxidant with poor bioavailability and very low distribution in the brain. A new oral delivery system comprising of poly(n-butylcyanoacrylate nanoparticles (PBCA NPs was introduced to improve the oral bioavailability of QT and to increase its distribution in the brain. Physicochemical characteristics, in vitro release, stability in simulated gastric fluid and intestinal fluids, and pharmacokinetics and biodistribution studies of QT-PBCA NPs coated with polysorbate-80 (P-80 were investigated.Objective: This study aimed to investigate the physicochemical characteristics, in vitro release, stability in simulated gastric fluid and intestinal fluids, and pharmacokinetics and biodistribution studies of QT-PBCA NPs coated with polysorbate-80 (P-80.Results: The results showed that QT-PBCA NPs and QT-PBCA NPs coated with P-80 (QT-PBCA+P-80 had mean particle sizes of 161.1±0.44 nm and 166.6±0.33 nm respectively, and appeared spherical in shape under transmission electron microscopy. The mean entrapment efficiency was 79.86%±0.45% for QT-PBCA NPs and 74.58%±1.44% for QT-PBCA+P-80. The in vitro release of QT-PBCA NPs and QT-PBCA+P-80 showed an initial burst release followed by a sustained release when compared to free QT. The relative bioavailability of QT-PBCA NPs and QT-PBCA+P-80 enhanced QT bioavailability by 2.38- and 4.93-fold respectively, when compared to free QT. The biodistribution study in rats showed that a higher concentration of QT was detected in the brain after the NPs were coated with P-80.Conclusion: This study indicates that PBCA NPs coated with P-80 can be potential drug carriers for poorly water-soluble drugs. These NPs were observed to improve the drugs’ oral bioavailability and enhance their transport to the brain

  13. PEGylation of {sup 99m}Tc-labeled bombesin analogues improves their pharmacokinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Daepp, Simone; Garayoa, Elisa Garcia [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Maes, Veronique; Brans, Luc; Tourwe, Dirk A. [Department of Organic Chemistry, Vrije Universiteit Brussel, 1050 Brussels (Belgium); Mueller, Cristina [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Schibli, Roger, E-mail: roger.schibli@psi.ch [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, CH-5232 Villigen-PSI (Switzerland); Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland)

    2011-10-15

    Introduction: Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN{sub 2}/gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with {sup 99m}Tc(CO){sub 3} and evaluated them in vitro and in vivo. Methods: Derivatization of a stabilized (N{sup {alpha}H}is)Ac-BN(7-14)[Cha{sup 13},Nle{sup 14}] analogue with linear PEG molecules of various sizes [5 kDa (PEG{sub 5}), 10 kDa (PEG{sub 10}) and 20 kDa (PEG{sub 20})] was performed by PEGylation of the {epsilon}-amino group of a {beta}{sup 3}hLys-{beta}Ala-{beta}Ala spacer between the stabilized BN sequence and the (N{sup {alpha}H}is)Ac chelator. The analogues were then radiolabeled by employing the {sup 99m}Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. Results: PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN{sub 2}/GRP receptors remained high (K{sub d}<0.9 nM). However, in vitro binding kinetics of the PEGylated analogues were slower. Steady-state condition was reached after 4 h, and the total cell binding was 10 times lower than that for the non-PEGylated counterpart. Besides, PEGylation improved the stability of BN conjugates in vitro and in vivo. The BN derivative conjugated with a PEG{sub 5} molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and

  14. In Vitro Adsorption and in Vivo Pharmacokinetic Interaction between Doxycycline and Frequently Used Mycotoxin Binders in Broiler Chickens.

    Science.gov (United States)

    De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska

    2015-05-06

    Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.

  15. Evaluation of Pharmacokinetic Assumptions Using a 443 Chemical Library (SOT)

    Science.gov (United States)

    With the increasing availability of high-throughput and in vitro data for untested chemicals, there is a need for pharmacokinetic (PK) models for in vitro to in vivo extrapolation (IVIVE). Though some PBPK models have been created for individual compounds using in vivo data, we ...

  16. Preparation of goreisan suppository and pharmacokinetics of trans-cinnamic acid after administration to rabbits.

    Science.gov (United States)

    Katagiri, Yukiko; Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2014-01-01

    Goreisan suppository is prepared as a hospital preparation, and successfully used for the treatment of diarrhea and vomiting in young children with common cold. While clinical efficacy of the suppository has been reported, few studies have been carried out to clarify the preparation procedure and pharmacokinetics of the suppository. In this study, trans-cinnamic acid (CA) was used as a representative substance of goreisan constituents, and assayed by HPLC-UV. We investigated the properties of goreisan suppositories prepared using various sizes of pulverized goreisan extract granules, in vitro dissolution profiles using the reciprocating dialysis tube method, and pharmacokinetics in rabbits compared with those for goreisan enema. Mass and content uniformity tests on the suppositories of three size fractions, 0-75, 75-150, and 150-300 µm, showed good acceptance for all kinds of suppository. Storage stability at 4°C was maintained until 4 months. In vitro dissolution of CA from the suppository was proportional to time until 45 min, and slower than that from the enema. Finally, 80% of CA had dissolved at 60 min. Pharmacokinetic study in rabbits revealed that the area under the plasma concentration-time curve from 0 to 120 min (AUC0-120 min) of the suppository was twice that of the enema. Moreover, from a study in rabbits using CA injection and CA suppository, we revealed that CA was rapidly and well absorbed from the rectum, showing 84% absolute bioavailability. Thus, we illustrated the defined preparation procedure of the suppository and the superiority of the suppository over the enema. This study will support evidence that the suppository is fast-acting and efficacious in clinical use.

  17. Radiolabeling of HTE1PA: A new monopicolinate cyclam derivative for Cu-64 phenotypic imaging. In vitro and in vivo stability studies in mice

    International Nuclear Information System (INIS)

    Frindel, Mathieu; Camus, Nathalie; Rauscher, Aurore; Bourgeois, Mickaël; Alliot, Cyrille; Barré, Louisa; Gestin, Jean-François; Tripier, Raphaël; Faivre-Chauvet, Alain

    2014-01-01

    Introduction: HTE1PA, a monopicolinate-N-alkylated cyclam-based ligand has previously demonstrated fast complexation process, high kinetic inertness and important thermodynamic and electrochemical stability with respect to natural copper. In this work we first developed a new synthetic route to obtain HTE1PA in good yields. Then, we investigated HTE1PA chelation properties towards copper-64 and assessed in vitro and in vivo stability of the resulting compound. Methods: Radiolabeling of HTE1PA with copper-64 was tested at different ligand concentrations in ammonium acetate medium. In vitro stability study was carried out by incubating [ 64 Cu]TE1PA complex in human serum at both 37 °C and 4 °C; chromatographic controls were performed over 24 h. Biodistribution, pharmacokinetic and hepatic metabolism of [ 64 Cu]TE1PA were conducted in BALC/c mice in comparison with [ 64 Cu]acetate and [ 64 Cu]DOTA, used as a reference ligand. Results: The promising results obtained for natural copper complexation were confirmed. HTE1PA was quantitatively radiolabeled in 15 min at room temperature. The resulting complex showed high serum stability. [ 64 Cu]TE1PA induced a significant uptake in the liver and kidneys at early biodistribution time point. Nevertheless, a high speed wash out was observed at 24 h leading to significantly lower uptake into the liver compared to [ 64 Cu]DOTA. The metabolism study was consistent with a high resistance to transchelation as the initial uptake into liver matches with the intact form of [ 64 Cu]TE1PA. Conclusion: Despite the partial elimination of HTE1PA – as copper-64 complex – through the hepatic route, its high selectivity for copper and its resistance to transchelation make it a promising ligand for antibody radiolabeling with either copper-64 or copper-67

  18. PEGylation of 99mTc-labeled bombesin analogues improves their pharmacokinetic properties

    International Nuclear Information System (INIS)

    Daepp, Simone; Garayoa, Elisa Garcia; Maes, Veronique; Brans, Luc; Tourwe, Dirk A.; Mueller, Cristina; Schibli, Roger

    2011-01-01

    Introduction: Radiolabeled bombesin (BN) conjugates are promising radiotracers for imaging and therapy of breast and prostate tumors in which BN 2 /gastrin-releasing peptide (GRP) receptors are overexpressed. However, the low in vivo stability of BN conjugates may limit their clinical application. In an attempt to improve their pharmacokinetics and counteract their rapid enzymatic degradation, we prepared a series of polyethylene glycol (PEG)-ylated BN(7-14) analogues for radiolabeling with 99m Tc(CO) 3 and evaluated them in vitro and in vivo. Methods: Derivatization of a stabilized (N α His)Ac-BN(7-14)[Cha 13 ,Nle 14 ] analogue with linear PEG molecules of various sizes [5 kDa (PEG 5 ), 10 kDa (PEG 10 ) and 20 kDa (PEG 20 )] was performed by PEGylation of the ε-amino group of a β 3 hLys-βAla-βAla spacer between the stabilized BN sequence and the (N α His)Ac chelator. The analogues were then radiolabeled by employing the 99m Tc-tricarbonyl technique. Binding affinity and internalization/externalization studies were performed in vitro in human prostate carcinoma PC-3 cells. Stability was investigated in vitro in human plasma and in vivo in Balb/c mice. Finally, single photon emission computed tomography (SPECT)/X-ray computed tomography studies were performed in nude mice bearing PC-3 tumor xenografts. Results: PEGylation did not affect the binding affinity of BN analogues, as the binding affinity for BN 2 /GRP receptors remained high (K d 5 molecule showed the best pharmacokinetics in vivo, i.e., faster blood clearance and preferential renal excretion. The tumor uptake of the 99m Tc-PEG 5 -Lys-BN conjugate was slightly higher compared to that of the non-PEGylated analogue (3.91%±0.44% vs. 2.80%±0.28% injected dose per gram 1 h postinjection, p.i.). Tumor retention was also increased, resulting in a threefold higher amount of radioactivity in the tumor at 24 h p.i. Furthermore, decreased hepatobiliary excretion and increased tumor-to-nontarget ratios (tumor

  19. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    A coating layer was then applied with a mixture of HPMC, ethylcellulose, shellac, and HPMC phthalate. The effect of several formulation variables on in vitro drug release was studied; furthermore, the drug release kinetics of the optimized formulation was evaluated. The in vivo pharmacokinetics of the optimized formulation ...

  20. Controlled iontophoretic transport of huperzine A across skin in vitro and in vivo: effect of delivery conditions and comparison of pharmacokinetic models.

    Science.gov (United States)

    Kalaria, Dhaval R; Patel, Pratikkumar; Merino, Virginia; Patravale, Vandana B; Kalia, Yogeshvar N

    2013-11-04

    The aim of this study was to investigate constant current anodal iontophoresis of Huperzine A (HupA) in vitro and in vivo and hence to evaluate the feasibility of using electrically assisted delivery to administer therapeutic amounts of the drug across the skin for the treatment of Alzheimer's disease. Preliminary experiments were performed using porcine and human skin in vitro. Stability studies demonstrated that HupA was not degraded upon exposure to epidermis or dermis for 12 h and that it was also stable in the presence of an electric current (0.5 mA · cm(-2)). Passive permeation of HupA (2 mM) was minimal (1.1 ± 0.1 μg · cm(-2)); iontophoresis at 0.15, 0.3, and 0.5 mA · cm(-2) produced 106-, 134-, and 184-fold increases in its transport across the skin. Surprisingly, despite the use of a salt bridge to isolate the formulation compartment from the anodal chamber, which contained 133 mM NaCl, iontophoresis of HupA was shown to increase linearly with its concentration (1, 2, and 4 mM in 25 mM MES, pH 5.0) (r(2) = 0.99). This was attributed to the low ratio of drug to Cl¯ (in the skin and in the receiver compartment) which competed strongly to carry current, its depletion, and to possible competition from the zwitterionic MES. Co-iontophoresis of acetaminophen confirmed that electromigration was the dominant electrotransport mechanism. Total delivery across human and porcine skin was found to be statistically equivalent (243.2 ± 33.1 and 235.6 ± 13.7 μg · cm(-2), respectively). Although the transport efficiency was ∼ 1%, the iontophoretic delivery efficiency (i.e., the fraction of the drug load delivered) was extremely high, in the range of 46-81% depending on the current density. Cumulative permeation of HupA from a Carbopol gel formulation after iontophoresis for 6 h at 0.5 mA · cm(-2) was less than that from solution (135.3 ± 25.2 and 202.9 ± 5.2 μg · cm(-2), respectively) but sufficient for therapeutic delivery. Pharmacokinetic parameters were

  1. Stability and assembly in vitro of bacteriophage PP7 virus-like particles

    Directory of Open Access Journals (Sweden)

    Peabody David S

    2007-11-01

    Full Text Available Abstract Background The stability of a virus-like particle (VLP is an important consideration for its use in nanobiotechnology. The icosahedral capsid of the RNA bacteriophage PP7 is cross-linked by disulfide bonds between coat protein dimers at its 5-fold and quasi-6-fold symmetry axes. This work determined the effects of these disulfides on the VLP's thermal stability. Results Measurements of the thermal denaturation behavior of PP7 VLPs in the presence and absence of a reducing agent show that disulfide cross-links substantially stabilize them against thermal denaturation. Although dimers in the capsid are linked to one another by disulfides, the two subunits of dimers themselves are held together only by non-covalent interactions. In an effort to confer even greater stability a new cross-link was introduced by genetically fusing two coat protein monomers, thus producing a "single-chain dimer" that assembles normally into a completely cross-linked VLP. However, subunit fusion failed to increase the thermal stability of the particles, even though it stabilized the isolated dimer. As a step toward gaining control of the internal composition of the capsid, conditions that promote the assembly of PP7 coat protein dimers into virus-like particles in vitro were established. Conclusion The presence of inter-dimer disulfide bonds greatly stabilizes the PP7 virus-like particle against thermal denaturation. Covalently cross-linking the subunits of the dimers themselves by genetically fusing them through a dipeptide linker sequence, offers no further stabilization of the VLP, although it does stabilize the dimer. PP7 capsids readily assemble in vitro in a reaction that requires RNA.

  2. Identify super quality markers from prototype-based pharmacokinetic markers of Tangzhiqing tablet (TZQ) based on in vitro dissolution/ permeation and in vivo absorption correlations.

    Science.gov (United States)

    Li, Ziqiang; Liu, Jia; Li, Yazhuo; Du, Xi; Li, Yanfen; Wang, Ruihua; Lv, Chunxiao; He, Xin; Wang, Baohe; Huang, Yuhong; Zhang, Deqin

    2018-06-01

    A quality marker (Q-marker) is defined as an inherent chemical compound that is used for the quality control of a drug. Its biological activities are closely related to safety and therapeutic effects. Generally, a multiple-component herbal medicine may have many Q-markers. We therefore proposed a concept of "super Q-marker" satisfying both the criterion of Q-markers and PK-markers to be used in more effective quality control of herbal medicine. The first aim was to find suitable prototype-based PK-markers from Tangzhiqing tablets (TZQ), a Chinese patent medicine. Then super Q-markers were expected to be identified from the prototype-based PK-markers based on an in vitro-in vivo correlation study. Potentially eligible prototype-based PK-markers were identified in a single- and multiple-dose pharmacokinetic study on TZQ in 30 healthy volunteers. The in vitro dissolution and permeation profiles of the prototype-based PK-markers of TZQ were evaluated by the physiologically-based drug dissolution/absorption simulating system (DDASS). An in vitro-in vivo correlation analysis was conducted between the dissolution/permeation behaviors in DDASS and the actual absorption profiles in human to test the transferability and traceability of the promising super Q-markers for TZQ. In human, plasma paeoniflorin and nuciferine as prototype-based PK-markers exhibited the appropriate pharmacokinetic properties, including dose-dependent systemic exposure (AUC, C max ) and a proper elimination half-life (1∼3h). In DDASS, it was predicted that paeoniflorin and nuciferine are highly permeable but the absorption rates are primarily limited by the dissolution rates. Moreover, the established in vitro-in vivo correlations of paeoniflorin and nuciferine were in support of the super Q-markers features. Paeoniflorin and nuciferine are identified as the super Q-markers from the prototype-based PK-markers of TZQ based on findings from a combination of in vitro, in vivo, and in vitro-in vivo

  3. Stability and in vitro toxicity of an infliximab eye drop formulation.

    Science.gov (United States)

    Robert, Marie-Claude; Spurr-Michaud, Sandra; Frenette, Mathieu; Young, David; Gipson, Ilene K; Dohlman, Claes H

    2014-01-01

    The purpose of this study was to develop a novel 10-mg/mL infliximab eye drop, to characterize its physical and biological stability under recommended storage conditions, and to assess the formulation's toxicity to ocular surface epithelium in vitro. Infliximab (10 mg/mL) was reconstituted using equal volumes of sterile water and 1% carboxymethylcellulose artificial tears. Aliquots were stored in either a 4 degrees C refrigerator or -20 degrees C freezer for up to 45 days. Physical stability was assessed through monitoring the solution's appearance, pH, ultraviolet-visible-near infrared absorbance and scattering, as well as protein gel electrophoresis. Biological stability was assayed through binding to tumor necrosis factor-alpha using an enzyme-linked immunosorbent assay. In vitro cytotoxicity to human corneal-limbal epithelial cells was examined following a 4-hour exposure to the study drug. Refrigerated and frozen infliximab eye drops remained clear and colorless for the duration of study. The formulation's pH (7.0) was comparable to that of the artificial tear vehicle alone. Low levels of ultraviolet-visible-near infrared light absorbance and scattering established the lack of protein precipitate after refrigeration or freezing. Protein gel electrophoresis performed under reducing conditions revealed the presence of two main protein bands of approximately 50 kDa and 25 kDa, representing immunoglobulin G heavy and light chains. The migration pattern of the proteins did not change under the different storage conditions and between day 10 and 45 after formulation. Infliximab binding to tumor necrosis factor-alpha remained stable for up to 45 days, with conservation of 101% and 102% of its initial binding activity when refrigerated or frozen, respectively. In vitro human corneal-limbal epithelial cultures showed no increase in cytotoxicity with infliximab treatment when compared to vehicle and culture media controls (P > 0.05). Infliximab can be formulated as an

  4. Stability 'in vivo' and 'in vitro' of the diisopropyl-IDA sup(99m)Tc

    International Nuclear Information System (INIS)

    Verdera, E.S.; Leon, A.S.; Robles, A.M.; Correa, Angela; Oliver, Guillermo; Gamma, Santos; Lanzzeri, Stella; Mitta, A.E.A.

    1982-01-01

    The 'in vitro' and 'in vivo' stability of the diisopropyl (IDA-3) kit in solution and of the molecule labelled with sup(99m)Tc was studied. The following items were studied a) shelf life of the kit in solution b) 'in vitro' stability of the labelled molecule c) distribution and elimination kinetics d) identification and behaviour of the excretion products. Chromatographic control shows 95% yield of labelled product after 20 days storage at 4 deg C and 92% yield after 30 days in the same conditions; biological distribution was good in both cases. Regarding the 'in vitro' stability, no alteration was observed within the 4 hours after its preparation. The stability of the complex was determined by the reaction between sup(99m)TcIDA-3 and DTPA. Analysis by electrophoresis shows the complex to be stable even with DTPA concentrations 5 times higher. Kinetics of distribution and elimination of the labelled molecule, in animals, were afterwards confirmed by sequential scintigraphic images in humans. The excretion of unaltered sup(99m)Tc-IDA by biliary and urinary ways was confirmed by cromatographic and electrophoretic analysis of bladder and gall bladder content and by determination of its biological distribution. (author) [es

  5. Development of ionic-complex-based nanostructured lipid carriers to improve the pharmacokinetic profiles of breviscapine.

    Science.gov (United States)

    Li, Mei; Zheng, Yong; Shan, Feng-ying; Zhou, Jing; Gong, Tao; Zhang, Zhi-rong

    2013-08-01

    Breviscapine isolated from the Chinese herb Erigeron breviscapus (Vant) Hand-Mazz is widely used to treat cardiovascular and cerebrovascular diseases. The aim of this study was to improve the pharmacokinetic profiles of breviscapine using nanostructured lipid carrier based on an ionic complex formation. Breviscapine nanostructured lipid carrier (Bre-NLC) was prepared using the thin film homogenization method. The morphology of Bre-NLCs was determined using transmission electron microscopy. The mean particle size, polydispersity index, zeta-potential analysis and entrapment efficiency were analized. In vitro release was studied using the dialysis method. In vitro stability was studied in fresh plasma and liver slurry of rats. In vivo pharmacokinetics was analyzed in rats after intravenous injection of a dose equivalent to breviscapine (10 mg/kg). The Bre-NLCs were spherical with a mean particle size of ~170 nm, a zeta potential of ∼20 mV and a high entrapment efficiency of ~89%. Compared with a commercially available solution, a substantial decrease in the cumulative release of breviscapine was found for the Bre-NLCs. The NLC has a significantly protective effect against the liver enzyme degradation of breviscapine. After intravenous administration in rats, the Bre-NLCs exhibited a 32 times increase in the AUC0-t and a 12 times increase in T1/2 as compared to the commercially available breviscapine solution. The results demonstrate that the NLC has great potential to use as a novel sustained release system for breviscapine.

  6. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches.

    Science.gov (United States)

    Jones, Hannah M; Mayawala, Kapil; Poulin, Patrick

    2013-04-01

    Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.

  7. Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study.

    Science.gov (United States)

    Mok, Il-Kyoon; Lee, Jae Kwon; Kim, Jeong Hwa; Pan, Cheol-Ho; Kim, Sang Min

    2018-08-30

    Our previous study reported the improved stability of fucoxanthin (FX) fortified in whole milk (WM) and skimmed milk (SM). In this study, in vivo and in vitro FX bioavailability were investigated using FX-fortified milk (FX-SM and FX-WM) and microalga Phaeodactylum tricornutum biomass (Pt-powder). Organ tissue accumulation of FX and its metabolites (FXOH: fucoxanthinol, AXA: amarouciaxanthin A) after repeated oral administration was in the following order: FX-SM > FX-WM > Pt-powder. In vivo pharmacokinetic study with a single oral administration also demonstrated that the absorption of FXOH and AXA was the highest for FX-SM. To reinforce the in vivo results, in vitro-simulated digestion and Caco-2 cell uptake assays were performed, which revealed that FX-SM showed the highest FX bioaccessibility (release from food matrices) and cellular uptake efficiency of FX and FXOH. In conclusion, skimmed milk was validated as an excellent food matrix for FX application in terms of stability and bioavailability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    International Nuclear Information System (INIS)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N.; Hari prasad, R.; Rajkumar, M.; Siva selvakumar, M.; Vamshikrishna, K.; Gregory, Marslin; Vijayaraghavan, Chellan

    2015-01-01

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model

  9. Design, formulation, in vitro, in vivo, and pharmacokinetic evaluation of nisoldipine-loaded self-nanoemulsifying drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Balakumar; Habibur Rahman, S. M.; Tamil selvan, N. [PSG College of Pharmacy, Department of Pharmaceutics (India); Hari prasad, R. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Rajkumar, M. [PSG College of Pharmacy, Department of Pharmaceutics (India); Siva selvakumar, M. [PSG College of Pharmacy, Department of Pharmaceutical Analysis (India); Vamshikrishna, K. [PSG College of Pharmacy, Department of Pharmaceutics (India); Gregory, Marslin [University of Minho, Department of Biology (Portugal); Vijayaraghavan, Chellan, E-mail: balakumar-27@yahoo.co.uk, E-mail: drvijayaragha@gmail.com [PSG College of Pharmacy, Department of Pharmaceutics (India)

    2015-01-15

    The aim of the present work was to prepare and optimize the self-nanoemulsifying drug delivery system (SNEDDS) of poor aqueous soluble and less bioavailable nisoldipine to improve its solubility and bioavailability. The solubility of nisoldipine was assessed in various vehicles and ternary phase diagram was constructed to identify the efficient self-emulsifying region. The selected formulations were evaluated for self-emulsification time, droplet size analysis, and in vitro drug release profile. The optimized formulation ACP 19 had reduced particle size (118.3 ± 1.53 nm), when compared to PCT 08 (740 ± 1.16 nm). In vitro drug release study revealed that 98.05 ± 0.95 and 93.71 ± 1.05 % of drug was, respectively, released from ACP 19 and PCT 08 formulations at 24 h, whereas only 47.42 ± 0.65 % was released from drug in suspension. ACT 19 and PCT 08, respectively, showed 2.5- and 2.22-folds greater bioavailability than drug in suspension. PK Solver 2.0 was used for analysis of data obtained from in vivo study and the results revealed that both ACP 19 SNEDDS and drug in suspension fit into one-compartment pharmacokinetic model.

  10. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    Directory of Open Access Journals (Sweden)

    Yuka Miyake

    2015-12-01

    Full Text Available Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs, which showed longitudinal relaxivity (r1 values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer. In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T. In this study, the association constants (Ka of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA, measured and calculated with a quartz crystal microbalance (QCM in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  11. Pharmacokinetics, brain distribution, release and blood-brain barrier transport of Shunaoxin pills.

    Science.gov (United States)

    Wu, Kai; Wang, Zhan-Zhang; Liu, Dan; Qi, Xian-Rong

    2014-02-12

    Shunaoxin pills, a traditional Chinese medicine (TCM) product, have been used to treat cerebrovascular diseases in China since 2005. The main active components of Shunaoxin pills are ferulic acid and ligustilide from Chuanxiong (Ligusticum chuanxiong Hort, Umbelliferae) and Danggui (Angelica sinensis radix, Umbelliferae). As Shunaoxin shows excellent activity in the central nervous system (CNS), the extent to which the major constituents of Shunaoxin reach the CNS should be investigated. Moreover, the in vivo-in vitro correlations (IVIVC) of the formulation should be studied to elucidate the mechanisms of action of TCM in the CNS. However, these data have not previously been available. Thus we intended to investigate what the extent when these constituents of Shunaoxin pills reach the CNS, and evaluate the IVIVC of release and pharmacokinetics. In this study, we evaluated the release of ferulic acid and ligustilide from Shunaoxin pills, and their transport across an in vitro model of the BBB. We also evaluated their pharmacokinetics and brain distribution in vivo. High-performance liquid chromatography (HPLC) was used to quantify both compounds simultaneously. Based on the release in vitro and absorption of ferulic acid and ligustilide in vivo, IVIVC permitted prediction of the pharmacokinetics of these compounds. The release of ferulic acid and ligustilide reached a platform phase within 1h. Ferulic acid and ligustilide rapidly crossed the BBB in different patterns; the transport ratio increased over time. After intragastric (i.g.) administration of Shunaoxin pills, ferulic acid and ligustilide were rapidly absorbed and distributed into brain, which may result in a rapid onset of action. Ferulic acid and ligustilide were transported across a model BBB. After i.g. administration of Shunaoxin pills, ferulic acid and ligustilide were rapidly absorbed and distributed in brain; this may lead to rapid pharmacological onset. The IVIVC can be used to predict in vivo

  12. Drugs in space: Pharmacokinetics and pharmacodynamics in astronauts.

    Science.gov (United States)

    Kast, Johannes; Yu, Yichao; Seubert, Christoph N; Wotring, Virginia E; Derendorf, Hartmut

    2017-11-15

    Space agencies are working intensely to push the current boundaries of human spaceflight by sending astronauts deeper into space than ever before, including missions to Mars and asteroids. Spaceflight alters human physiology due to fluid shifts, muscle and bone loss, immune system dysregulation, and changes in the gastrointestinal tract and metabolic enzymes. These alterations may change the pharmacokinetics and/or pharmacodynamics of medications used by astronauts and subsequently might impact drug efficacy and safety. Most commonly, medications are administered during space missions to treat sleep disturbances, allergies, space motion sickness, pain, and sinus congestion. These medications are administered under the assumption that they act in a similar way as on Earth, an assumption that has not been investigated systematically yet. Few inflight pharmacokinetic data have been published, and pharmacodynamic and pharmacokinetic/pharmacodynamic studies during spaceflight are also lacking. Therefore, bed-rest models are often used to simulate physiological changes observed during microgravity. In addition to pharmacokinetic/pharmacodynamic changes, decreased drug and formulation stability in space could also influence efficacy and safety of medications. These alterations along with physiological changes and their resulting pharmacokinetic and pharmacodynamic effects must to be considered to determine their ultimate impact on medication efficacy and safety during spaceflight. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    Science.gov (United States)

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  14. Luteolin-loaded solid lipid nanoparticles synthesis, characterization, & improvement of bioavailability, pharmacokinetics in vitro and vivo studies

    Science.gov (United States)

    Dang, Hao; Meng, Murtaza Hasan Weiwei; Zhao, Haiwei; Iqbal, Javed; Dai, Rongji; Deng, Yulin; Lv, Fang

    2014-04-01

    Luteolin (LU, 5,7,3',4'-tetrahydroxyflavone) most active compound in Chinese herbal flavones has been acting as a antimicrobial, anti-inflammatory, anti-cancer, and antimutagen. However, its poor bioavailability, hydrophobicity, and pharmacokinetics restrict clinical application. Here in this study, LU-loaded solid lipid nanoparticles have been prepared by hot-microemulsion ultrasonic technique to improve the bioavailability & pharmacokinetics of compound. LU-loaded solid lipid nanoparticle size was confirmed by particle size analyzer with range from 47 to 118 nm, having zepta potential -9.2 mV and polydisperse index 0.247, respectively. Round-shaped SLNPs were obtained by using transmission electron microscope, and encapsulation efficiency 74.80 % was calculated by using HPLC. Both in vitro and vivo studies, LC-MS/MS technique was used for quantification of Luteolin in rat. The T max value of drug with LU-SLNs after the administration was Ten times shorter than pure Luteolin suspension administration. C max value of drug after the administration of LU-SLNs was five times higher than obtained with native drug suspension. Luteolin with SLNs has increased the half-life approximately up to 2 h. Distribution and clearance of drug with SLNs were significantly decreased by 2.16-10.57 fold, respectively. In the end, the relative bioavailability of SLNs has improved about 4.89 compared to Luteolin with SLNs. From this study, it can be concluded that LU-SLNs have not only great potential for improving solubility but also increased the drug concentration in plasma. Furthermore, use of LC-MS/MS for quantification of LU-SLNs in rat plasma is reliable and of therapeutic usefulness, especially for neurodegenerative and cancerous disorders in humans.

  15. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.

    Science.gov (United States)

    Li, Jin; Chai, Hongyu; Li, Yang; Chai, Xuyu; Zhao, Yan; Zhao, Yunfan; Tao, Tao; Xiang, Xiaoqiang

    2016-01-01

    Amoxicillin is a commonly used antibiotic which has a short half-life in human. The frequent administration of amoxicillin is often required to keep the plasma drug level in an effective range. The short dosing interval of amoxicillin could also cause some side effects and drug resistance, and impair its therapeutic efficacy and patients' compliance. Therefore, a three-pulse release tablet of amoxicillin is desired to generate sustained release in vivo, and thus to avoid the above mentioned disadvantages. The pulsatile release tablet consists of three pulsatile components: one immediate-release granule and two delayed release pellets, all containing amoxicillin. The preparation of a pulsatile release tablet of amoxicillin mainly includes wet granulation craft, extrusion/spheronization craft, pellet coating craft, mixing craft, tablet compression craft and film coating craft. Box-Behnken design, Scanning Electron Microscope and in vitro drug release test were used to help the optimization of formulations. A crossover pharmacokinetic study was performed to compare the pharmacokinetic profile of our in-house pulsatile tablet with that of commercial immediate release tablet. The pharmacokinetic profile of this pulse formulation was simulated by physiologically based pharmacokinetic (PBPK) model with the help of Simcyp®. Single factor experiments identify four important factors of the formulation, namely, coating weight of Eudragit L30 D-55 (X1), coating weight of AQOAT AS-HF (X2), the extrusion screen aperture (X3) and compression forces (X4). The interrelations of the four factors were uncovered by a Box-Behnken design to help to determine the optimal formulation. The immediate-release granule, two delayed release pellets, together with other excipients, namely, Avicel PH 102, colloidal silicon dioxide, polyplasdone and magnesium stearate were mixed, and compressed into tablets, which was subsequently coated with Opadry® film to produce pulsatile tablet of

  16. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies

    Directory of Open Access Journals (Sweden)

    Gundogdu E

    2011-08-01

    Full Text Available E Gundogdu1,2, I Gonzalez Alvarez3, E Karasulu1,21Faculty of Pharmacy, Department of Biopharmaceutics and Pharmacokinetics, 2Center For Drug Research and Development and Pharmacokinetic Applications, Ege University, Izmir, Turkey; 3Faculty of Pharmacy, Department of Engineering, Pharmaceutical Technical Section, Research Group on Drug Absorption, Universidad Miguel Hernández, Alicante, SpainAbstract: Fexofenadine (FEX has high solubility and low permeability (BCS, Class III. In this work, novel FEX loaded water in oil microemulsion (w/o was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w, oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53 formed nanometer sized droplets (33.29 ± 1.76 and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral

  17. Formulation of enrofloxacin SLNs and its pharmacokinetics in emu ( Dromaius novaehollandiae) birds

    Science.gov (United States)

    Senthil Kumar, P.; Arivuchelvan, A.; Jagadeeswaran, A.; Punniamurthy, N.; Selvaraj, P.; Richard Jagatheesan, P. N.; Mekala, P.

    2015-08-01

    The study was conducted to formulate the enrofloxacin solid lipid nanoparticles (SLNs) with sustained release profile and improved pharmacological activity and evaluate the pharmacokinetic behaviour of enrofloxacin SLNs after oral routes of administration in emus. The SLNs were prepared using tripalmitin as lipid carrier, Tween 80 and Span 80 as surfactants and polyvinyl alcohol (PVA) as a stabilizer by a hot homogenization coupled with ultrasonication method. The prepared enrofloxacin SLNs formulations were characterized for further investigation in emu birds. The pharmacokinetics of native enrofloxacin was studied after i.v. and oral bolus administration at 10 mg/kg in emu birds and compared with the disposition kinetics of enrofloxacin SLNs. Enrofloxacin and its metabolite ciprofloxacin in plasma were estimated using HPLC and the pharmacokinetic parameters were calculated by a non-compartmental analysis. The results demonstrated that the particle size, polydispersity index, zeta potential, encapsulation efficiency and loading capacity of the SLNs were 154.72 ± 6.11 nm, 0.42 ± 0.11, -28.83 ± 0.60 mV, 59.66 ± 3.22 and 6.13 ± 0.32 %, respectively. AFM and TEM images showed spherical to circular particles with well-defined periphery. In vitro drug release exhibited biphasic pattern with an initial burst release of 18 % within 2 h followed by sustained release over 96 h. Pharmacokinetic results showed that the t 1/2 β , AUC0-∞, V darea/ F, MRT and bioavailability were 3.107, 1.894, 1.594, 2.993 and 1.895 times enhanced ( p enrofloxacin administered orally. The ratio of AUC0- t cipro/AUC0- t enro after administration of native enrofloxacin and enrofloxacin SLNs was less than 10 %. The t 1/2 β and MRT of the metabolite were longer than those of the parent substance. The PK/PD results confirmed that the SLNs extended the enrofloxacin concentration upto 48 h against pathogens susceptible to 0.125 μg/mL in emus. The results indicated that SLNs might be a

  18. Pharmacokinetic-pharmacodynamic modeling of activity of ceftazidime during continuous and intermittent infusion

    NARCIS (Netherlands)

    J.W. Mouton (Johan); A.A. Vinks; N.C. Punt

    1997-01-01

    textabstractWe developed and applied pharmacokinetic-pharmacodynamic (PK-PD) models to characterize in vitro bacterial rate of killing as a function of ceftazidime concentrations over time. For PK-PD modeling, data obtained during continuous and intermittent infusion of

  19. Formulation and pharmacokinetics of diclofenac lipid nanoemulsions for parenteral application.

    Science.gov (United States)

    Ramreddy, Srividya; Kandadi, Prabhakar; Veerabrahma, Kishan

    2012-01-01

    The objective of the present study was to formulate and determine the pharmacokinetics of stable o/w parenteral lipid nanoemulsions (LNEs) of diclofenac acid used to treat arthritic conditions. The LNEs of diclofenac acid with a mean size ranging from 200 to 240 nm and a zeta potential of -29.4 ± 1.04 mV (negatively charged LNEs) and 62.1 ± 3.5 (positively charged LNEs) emulsions were prepared by hot homogenization and ultrasonication process. The influence of formulation variables, such as the change in proportion of cholesterol, was studied, and optimized formulations were developed. The optimized formulations were relatively stable during centrifugal stress, dilution stress, and storage. The drug content and entrapment efficiency were determined using high-performance liquid chromatography. The in vitro drug release was carried out in phosphate-buffered saline pH 7.4 and cumulative amount of drug released was estimated using a UV-visible spectro-photometer. During in vivo pharmacokinetic studies in male Wistar rats, diclofenac serum concentration from LNEs was higher than that of Voveran injection and was detectable up to 12 h. Diclofenac in LNEs showed improved pharmacokinetic profile with increase in area under the curve, elimination half-life and mean residence time in comparison to Voveran. Our aim was to prepare and determine the pharmacokinetics of injectable lipid nanoemulsions of diclofenac acid for treating arthritic conditions by reducing the frequency of dosing and pain at site of injection. The nanoemulsions of diclofenac acid were prepared by homogenization and ultrasonication process. The sizes and charges of oil globules were determined. The effect of cholesterol on stability of emulsion was studied, and an optimized preparation was developed. The optimized formulations were stable during centrifugation, dilution, and storage. The total amount of drug in emulsion and percentage amount of drug present in emulsion globules were determined using

  20. Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake

    DEFF Research Database (Denmark)

    Dalbøge, Louise S.; Pedersen, Søren L.; van Witteloostuijn, Søren Blok

    2015-01-01

    Neuromedin U (NMU) is a 25 amino acid peptide expressed and secreted in the brain and gastrointestinal tract. Data have shown that peripheral administration of human NMU decreases food intake and body weight and improves glucose tolerance in mice, suggesting that NMU receptors constitute a possible...... anti-diabetic and anti-obesity drug target. However, the clinical use of native NMU is hampered by a poor pharmacokinetic profile. In the current study, we report in vitro and in vivo data from a series of novel lipidated NMU analogs. In vitro plasma stability studies of native NMU were performed...... was investigated using a human embryonic kidney 293-based inositol phosphate accumulation assay. All lipidated analogs had preserved in vitro activity on both NMU receptors with potency improving as the lipidation site was moved away from the receptor-interacting C-terminal octapeptide segment. In vivo efficacy...

  1. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation.

    Science.gov (United States)

    Hong, Jingyi; Liu, Yingying; Xiao, Yao; Yang, Xiaofeng; Su, Wenjing; Zhang, Mingzhu; Liao, Yonghong; Kuang, Haixue; Wang, Xiangtao

    2017-11-01

    Curcumin (CUR) is a promising drug candidate based on its broad bioactivities and good antitumor effect, but the application of CUR is potentially restricted because of its poor solubility and bioavailability. This study aims at developing a simple and effective drug delivery system for CUR to enhance its solubility and bioavailability thus to improve its antitumor efficacy. Curcumin nanosuspensions (CUR-NSps) were prepared by precipitation-ultrasonication method using mPEG2000-DSPE and soybean lecithin as a combined stabilizer. CUR-NSps with a high drug payload of 67.07% were successfully prepared. The resultant CUR-NSps had a mean particle size of 186.33 ± 2.73 nm with a zeta potential of -19.00 ± 1.31 mV. In vitro cytotoxicity assay showed that CUR-NSps exhibited enhanced cytotoxicity compared to CUR solution. The pharmacokinetics results demonstrated that CUR-NSps exhibited a significantly greater AUC 0-24 and prolonged MRT compared to CUR injections after intravenous administration. In the biodistribution study, CUR-NSps demonstrated enhanced biodistribution compared with CUR injections in liver, spleen, kidney, brain, and tumor. The CUR-NSps also showed improved antitumor therapeutic efficacy over the injections (70.34% versus 40.03%, p < 0.01). These results suggest that CUR-NSps might represent a promising drug formulation for intravenous administration of CUR for the treatment of cancer.

  2. In vitro and in vivo mechanical stability of orthodontic mini-implants.

    Science.gov (United States)

    Cho, Il-Sik; Kim, Sung-Kyun; Chang, Young-Il; Baek, Seung-Hak

    2012-07-01

    To compare in vivo and in vitro mechanical stability of orthodontic mini-implants (OMIs) treated with a sandblasted, large-grit, and anodic-oxidation (SLAO) method vs those treated with a sandblasted, large-grit, and acid-etching (SLA) method. Fifty-four titanium OMIs (cylindrical shape, drill-free type; diameter  =  1.45 mm, length  =  8 mm, Biomaterials Korea Inc, Seoul, Korea) were allocated into control, SLA, and SLAO groups (N  =  12 for in vivo and N  =  6 for in vitro studies per group). In vitro study was carried out on a polyurethane foam bone block (Sawbones, Pacific Research Laboratories Inc, Vashon, Wash). In vivo study was performed in the tibias of Beagles (6 males, age  =  1 year, weight  =  10 to 13 kg; OMIs were removed at 8 weeks after installation). For insertion and removal of OMIs, the speed and maximum torque of the surgical engine were set to 30 rpm and 40 Ncm, respectively. Maximum torque (MT), total energy (TE), and near peak energy (NPE) during the insertion and removal procedures were statistically analyzed. In the in vitro study, although the control group had a higher insertion MT value than the SLA and SLAO groups (P < .01), no differences in insertion TE and NPE or in any of the removal variables were noted among the three groups. In the in vivo study, the control group exhibited higher values for all insertion variables compared with the SLA and SLAO groups (MT, P < .001; TE, P < .01; NPE, P < .001). Although no difference in removal TE and removal NPE was noted among the three groups, the SLAO group presented with a higher removal MT than the SLA and control groups (P < .001). SLAO treatment may be an effective tool in reducing insertion damage to surrounding tissue and improving the mechanical stability of OMIs.

  3. Evaluation of Isolated Fractions of Aloe vera Gel Materials on Indinavir Pharmacokinetics: In vitro and in vivo Studies.

    Science.gov (United States)

    Wallis, Lonette; Malan, Maides; Gouws, Chrisna; Steyn, Dewald; Ellis, Suria; Abay, Efrem; Wiesner, Lubbe; Otto, Daniel P; Hamman, Josias

    2016-01-01

    Aloe vera is a plant with a long history of traditional medicinal use and is consumed in different products, sometimes in conjunction with prescribed medicines. A. vera gel has shown the ability to modulate drug absorption in vitro. The aim of this study was to fractionate the precipitated polysaccharide component of A. vera gel based on molecular weight and to compare their interactions with indinavir pharmacokinetics. Crude polysaccharides were precipitated from a solution of A. vera gel and was fractionated by means of centrifugal filtration through membranes with different molecular weight cut-off values (i.e. 300 KDa, 100 KDa and 30 KDa). Marker molecules were quantified in the aloe leaf materials by means of nuclear magnetic resonance spectroscopy and the average molecular weight was determined by means of gel filtration chromatography linked to multi-angle-laser-light scattering and refractive index detection. The effect of the aloe leaf materials on the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers as well as indinavir metabolism in LS180 cells was measured. The bioavailability of indinavir in the presence and absence of the aloe leaf materials was determined in Sprague-Dawley rats. All the aloe leaf materials investigated in this study reduced the TEER of Caco-2 cell monolayers, inhibited indinavir metabolism in LS 180 cells to different extents and changed the bioavailability parameters of indinavir in rats compared to that of indinavir alone. These indinavir pharmacokinetic modulation effects were not dependent on the presence of aloverose and also not on the average molecular weight of the isolated fractions.

  4. Application of in Vitro Biotransformation Data and Pharmacokinetic Modeling to Risk Assessment

    Science.gov (United States)

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the ...

  5. Pharmacokinetic and Toxicological Evaluation of a Zinc Gluconate-Based Chemical Sterilant Using In Vitro and In Silico Approaches

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2017-01-01

    Full Text Available Sclerosing agents as zinc gluconate-based chemical sterilants (Infertile® are used for chemical castration. This solution is injected into the animal testis, but there are not enough evidences of its safety profiles for the receivers. The present work aimed to establish the pharmacokinetics and toxicological activity of Infertile, using in vitro and in silico approaches. The evaluation at the endpoint showed effects in a dose-dependent manner. Since necrosis is potentially carcinogenic, the possible cell death mechanism could be apoptosis. Our data suggested that Infertile at 60 mM presented risk for animal health. Even though Infertile is a licensed product by the Brazilian Ministry of Agriculture, Livestock and Supply, it presented a high mutagenic potential. We suggest that the optimal dose must be less than 6 mM, once, at this concentration, no mutagenicity or genotoxicity was observed.

  6. Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies

    Directory of Open Access Journals (Sweden)

    Wempe MF

    2012-11-01

    Full Text Available Michael F Wempe,1 Janet W Lightner,2 Bettina Miller,1 Timothy J Iwen,1 Peter J Rice,1 Shin Wakui,3 Naohiko Anzai,4 Promsuk Jutabha,4 Hitoshi Endou51Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; 2Department of Pharmacology, East Tennessee State University, Johnson City, TN, USA; 3Department of Toxicology, Azabu University School of Veterinary Medicine, Chuo Sagamihara, Kanagawa, Japan; 4Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Mibu, Shimotsuga, Tochigi, Japan; 5Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, JapanAbstract: Human uric acid transporter 1 (hURAT1; SLC22A12 is a very important urate anion exchanger. Elevated urate levels are known to play a pivotal role in cardiovascular diseases, chronic renal disease, diabetes, and hypertension. Therefore, the development of potent uric acid transport inhibitors may lead to novel therapeutic agents to combat these human diseases. The current study investigates small molecular weight compounds and their ability to inhibit 14C-urate uptake in oocytes expressing hURAT1. Using the most promising drug candidates generated from our structure–activity relationship findings, we subsequently conducted in vitro hepatic metabolism and pharmacokinetic (PK studies in male Sprague-Dawley rats. Compounds were incubated with rat liver microsomes containing cofactors nicotinamide adenine dinucleotide phosphate and uridine 5'-diphosphoglucuronic acid. In vitro metabolism and PK samples were analyzed using liquid chromatography/mass spectrometry-mass spectrometry methods. Independently, six different inhibitors were orally (capsule dosing or intravenously (orbital sinus administered to fasting male Sprague-Dawley rats. Blood samples were collected and analyzed; these data were used to compare in vitro and in vivo metabolism and to

  7. Improved oral bioavailability of valsartan using proliposomes: design, characterization and in vivo pharmacokinetics.

    Science.gov (United States)

    Nekkanti, Vijaykumar; Venkatesan, Natarajan; Wang, Zhijun; Betageri, Guru V

    2015-01-01

    The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6 ± 2.9% with a vesicle size of 364.1 ± 14.9 nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12 h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.

  8. Preparation and ocular pharmacokinetics of ganciclovir liposomes

    OpenAIRE

    Shen, Yan; Tu, Jiasheng

    2007-01-01

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor con...

  9. Pharmacokinetic-pharmacodynamic modeling of diclofenac in normal and Freund's complete adjuvant-induced arthritic rats

    Science.gov (United States)

    Zhang, Jing; Li, Pei; Guo, Hai-fang; Liu, Li; Liu, Xiao-dong

    2012-01-01

    Aim: To characterize pharmacokinetic-pharmacodynamic modeling of diclofenac in Freund's complete adjuvant (FCA)-induced arthritic rats using prostaglandin E2 (PGE2) as a biomarker. Methods: The pharmacokinetics of diclofenac was investigated using 20-day-old arthritic rats. PGE2 level in the rats was measured using an enzyme immunoassay. A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to illustrate the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production. The inhibition of diclofenac on lipopolysaccharide (LPS)-induced PGE2 production in blood cells was investigated in vitro. Results: Similar pharmacokinetic behavior of diclofenac was found both in normal and FCA-induced arthritic rats. Diclofenac significantly decreased the plasma levels of PGE2 in both normal and arthritic rats. The inhibitory effect on PGE2 levels in the plasma was in proportion to the plasma concentration of diclofenac. No delay in the onset of inhibition was observed, suggesting that the effect compartment was located in the central compartment. An inhibitory effect sigmoid Imax model was selected to characterize the relationship between the plasma concentration of diclofenac and the inhibition of PGE2 production in vivo. The Imax model was also used to illustrate the inhibition of diclofenac on LPS-induced PGE2 production in blood cells in vitro. Conclusion: Arthritis induced by FCA does not alter the pharmacokinetic behaviors of diclofenac in rats, but the pharmacodynamics of diclofenac is slightly affected. A PK-PD model characterizing an inhibitory effect sigmoid Imax can be used to fit the relationship between the plasma PGE2 and diclofenac levels in both normal rats and FCA-induced arthritic rats. PMID:22842736

  10. Preparation and in-vitro/in-vivo evaluation of curcumin nanosuspension with solubility enhancement.

    Science.gov (United States)

    Li, Xin; Yuan, Huiling; Zhang, Caiyun; Chen, Weidong; Cheng, Weiye; Chen, Xin; Ye, Xi

    2016-08-01

    We developed Cur nanosuspension (Cur-NS) with PVPK30 and SDS as stabilizers to improve poor water solubility and short biological half-time of Cur. Physicochemical characterization of Cur-NS was characterized systematically. The in-vitro dissolution, cytotoxicity and in-vivo pharmacokinetic experiments of Cur-NS were also evaluated. Scanning electron microscope indicated that the morphologies of Cur-NS were spherical or ellipsoidal in shape. X-ray diffraction verified that Cur was successfully developed as nanoparticles with an amorphous phase in Cur-NS. Fourier transform infrared spectroscopy suggested there was no degradation about Cur in the Cur-NS. Furthermore, the in-vitro study showed that the cumulative release of the Cur-NS was 82.16 ± 2.62% within 34 h and the cytotoxicity of the Cur-NS against HepG2 cells was much better than raw Cur. Besides, in-vivo pharmacokinetics in rats by intravenous injection displayed that the in-vivo process of Cur-NS pertained to two-compartment model. Meanwhile, the t1/2 and AUC0-t of Cur-NS were enhanced by 11.0-fold and 4.2-fold comparing to Cur solution. The Cur-NS significantly increased the water solubility and half-time of Cur, suggesting its potential as a nanocarrier in the delivery of Cur for future clinical application. © 2016 Royal Pharmaceutical Society.

  11. Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling.

    Science.gov (United States)

    Seto, Yoshiki; Suzuki, Gen; Leung, Sharon Shui Yee; Chan, Hak-Kim; Onoue, Satomi

    2016-06-01

    Previously, a respirable powder (RP) formulation of pirfenidone (PFD) was developed for reducing phototoxic risk; however, PFD-RP demonstrated unacceptable in vitro inhalation performance. The present study aimed to develop a new RP system of PFD with favorable inhalation properties by spray-drying method. Spray-dried PFD (SD/PFD) was prepared by spray-drying with L-leucine, and the physicochemical properties and efficacy in an antigen-sensitized airway inflammation model were assessed. A pharmacokinetic study was also conducted after intratracheal and oral administration of PFD formulations. Regarding powder characterization, SD/PFD had dimpled surface with the mean diameter of 1.793 μm. In next generation impactor analysis, SD/PFD demonstrated high in vitro inhalation performance without the need of carrier particles, and the fine particle fraction of SD/PFD was calculated to be 62.4%. Insufflated SD/PFD (0.3 mg-PFD/rat) attenuated antigen-evoked inflammatory events in the lung, including infiltration of inflammatory cells and myeloperoxidase activity. Systemic exposure level of PFD after insufflation of SD/PFD at the pharmacologically effective dose was 600-fold lower than that after oral administration of PFD at the phototoxic dose. SD/PFD would be suitable for inhalation, and the utilization of an RP system with SD/PFD would provide a safer medication compared with oral administration of PFD.

  12. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer

    International Nuclear Information System (INIS)

    Zerp, Shuraila F.; Stoter, T. Rianne; Hoebers, Frank J. P.; Brekel, Michiel W. M. van den; Dubbelman, Ria; Kuipers, Gitta K.; Lafleur, M. Vincent M.; Slotman, Ben J.; Verheij, Marcel

    2015-01-01

    Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI’s below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF 37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis

  13. Biotransformation of a novel antimitotic agent, I-387, by mouse, rat, dog, monkey, and human liver microsomes and in vivo pharmacokinetics in mice.

    Science.gov (United States)

    Ahn, Sunjoo; Kearbey, Jeffrey D; Li, Chien-Ming; Duke, Charles B; Miller, Duane D; Dalton, James T

    2011-04-01

    3-(1H-Indol-2-yl)phenyl)(3,4,5-trimethoxyphenyl)methanone (I-387) is a novel indole compound with antitubulin action and potent antitumor activity in various preclinical models. I-387 avoids drug resistance mediated by P-glycoprotein and showed less neurotoxicity than vinca alkaloids during in vivo studies. We examined the pharmacokinetics and metabolism of I-387 in mice as a component of our preclinical development of this compound and continued interest in structure-activity relationships for antitubulin agents. After a 1 mg/kg intravenous dose, noncompartmental pharmacokinetic analysis in plasma showed that clearance (CL), volume of distribution at steady state (Vd(ss)), and terminal half-life (t(1/2)) of I-387 were 27 ml per min/kg, 5.3 l/kg, and 7 h, respectively. In the in vitro metabolic stability study, half-lives of I-387 were between 10 and 54 min by mouse, rat, dog, monkey, and human liver microsomes in the presence of NADPH, demonstrating interspecies variability. I-387 was most stable in rat liver microsomes and degraded quickly in monkey liver microsomes. Liquid chromatography-tandem mass spectrometry was used to identify phase I metabolites. Hydroxylation, reduction of a ketone group, and O-demethylation were the major metabolites formed by the liver microsomes of the five species. The carbonyl group of I-387 was reduced and identified as the most labile site in human liver microsomes. The results of these drug metabolism and pharmacokinetic studies provide the foundation for future structural modification of this pharmacophore to improve stability of drugs with potent anticancer effects in cancer patients.

  14. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  15. Development of a novel nano-sized anti-VEGFA nanobody with enhanced physicochemical and pharmacokinetic properties.

    Science.gov (United States)

    Khodabakhsh, Farnaz; Norouzian, Dariush; Vaziri, Behrouz; Ahangari Cohan, Reza; Sardari, Soroush; Mahboudi, Fereidoun; Behdani, Mahdi; Mansouri, Kamran; Mehdizadeh, Ardavan

    2017-08-25

    Since physiological and pathological processes occur at nano-environments, nanotechnology has considered as an efficient tool for designing of next generation specific biomolecules with enhanced pharmacodynamic and pharmacodynamic properties. In the current investigation, by control of the size and hydrodynamic volume at the nanoscale, for the first time, physicochemical and pharmacokinetic properties of an anti-VEGFA nanobody was remarkably improved by attachment of a Proline-Alanine-Serine (PAS) rich sequence. The results elucidated unexpected impressive effects of PAS sequence on physicochemical properties especially on size, hydrodynamics radius, and even solubility of nanobody. CD analysis revealed an increment in random coil structure of the PASylated protein in comparison to native one without any change in charge state or binding kinetic parameters of nanobody assessed by isoelectric focusing and surface plasmon resonance measurements, respectively. In vitro biological activities of nanobody were not affected by coupling of the PAS sequence. In contrast, the terminal half-life was significantly increased by a factor of 14 for the nanobody-PAS after single dose IV injection to the mice. Our study demonstrated that the control of size in the design of small therapeutic proteins has a promising effect on the stability and solubility, in addition to their physiochemical and pharmacokinetic properties. The designed new anti-VEGFA nanobody could promise a better therapeutic agent with a long administration intervals and lower dose, which in turn leads to a better patient compliance. Size adjustment of an anti-VEGF nanobody at the nanoscale by the attachment of a natural PAS polymer remarkably improves physicochemical properties, as well as a pharmacokinetic profile without any change in biological activity of the miniaturized antibody.

  16. Preparation and ocular pharmacokinetics of ganciclovir liposomes.

    Science.gov (United States)

    Shen, Yan; Tu, Jiasheng

    2007-12-07

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor concentration-time profiles of both liposomes and solution were well described by 2-compartmental pharmacokinetics with first-order absorption. The area under the curve of the aqueous humor concentration-time profiles of GCV liposomes was found to be 1.7-fold higher than that of GCV solution. Ocular tissue distribution of GCV from liposomes was 2 to 10 times higher in the sclera, cornea, iris, lens, and vitreous humor when compared with those observed after solution dosing. These results suggested that liposomes may hold some promise in ocular GCV delivery.

  17. Evaluation of the in vitro stability of gadolinium (III) polyoxometalates

    International Nuclear Information System (INIS)

    Crooks, William J.; Choppin, Gregory R.; Rogers, Buck E.; Welch, Michael

    1997-01-01

    The gadolinium chelates of lacunary polyoxometalates were evaluated for in vitro stability against rat serum, diethylenetriaminepentaacetic acid (DTPA), endogenous metal cations, and DTPA-doped rat serum. The chelates dissociated rapidly in rat serum. Challenges by DTPA gave relatively slower dissociation rates, whereas challenges by endogenous metal cations (Fe(III), Zn(II), and Cu(II)) occurred at a rate comparable to the serum challenge, suggesting the instability in serum is due to a transmetalation mechanism. Challenges by DTPA-doped serum gave slower rates of dissociation than in native serum, verifying the transmetalation mechanism

  18. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    International Nuclear Information System (INIS)

    Tan, Donna; Zhao Bin; Moochhala, Shabbir; Yang Yiyan

    2006-01-01

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved

  19. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  20. Prescreening of Nicotine Hapten Linkers in Vitro To Select Hapten-Conjugate Vaccine Candidates for Pharmacokinetic Evaluation in Vivo.

    Science.gov (United States)

    Arutla, Viswanath; Leal, Joseph; Liu, Xiaowei; Sokalingam, Sriram; Raleigh, Michael; Adaralegbe, Adejimi; Liu, Li; Pentel, Paul R; Hecht, Sidney M; Chang, Yung

    2017-05-08

    Since the demonstration of nicotine vaccines as a possible therapeutic intervention for the effects of tobacco smoke, extensive effort has been made to enhance nicotine specific immunity. Linker modifications of nicotine haptens have been a focal point for improving the immunogenicity of nicotine, in which the evaluation of these modifications usually relies on in vivo animal models, such as mice, rats or nonhuman primates. Here, we present two in vitro screening strategies to estimate and predict the immunogenic potential of our newly designed nicotine haptens. One utilizes a competition enzyme-linked immunoabsorbent assay (ELISA) to profile the interactions of nicotine haptens or hapten-protein conjugates with nicotine specific antibodies, both polyclonal and monoclonal. Another relies on computational modeling of the interactions between haptens and amino acid residues near the conjugation site of the carrier protein to infer linker-carrier protein conjugation effect on antinicotine antibody response. Using these two in vitro methods, we ranked the haptens with different linkers for their potential as viable vaccine candidates. The ELISA-based hapten ranking was in an agreement with the results obtained by in vivo nicotine pharmacokinetic analysis. A correlation was found between the average binding affinity (IC 50 ) of the haptens to an anti-Nic monoclonal antibody and the average brain nicotine concentration in the immunized mice. The computational modeling of hapten and carrier protein interactions helps exclude conjugates with strong linker-carrier conjugation effects and low in vivo efficacy. The simplicity of these in vitro screening strategies should facilitate the selection and development of more effective nicotine conjugate vaccines. In addition, these data highlight a previously under-appreciated contribution of linkers and hapten-protein conjugations to conjugate vaccine immunogenicity by virtue of their inclusion in the epitope that binds and

  1. Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin.

    Science.gov (United States)

    Yamamoto, Syunsuke; Karashima, Masatoshi; Arai, Yuta; Tohyama, Kimio; Amano, Nobuyuki

    2017-09-01

    Although several mathematical models have been reported for the estimation of human plasma concentration profiles of drug substances after dermal application, the successful cases that can predict human pharmacokinetic profiles are limited. Therefore, the aim of this study is to investigate the prediction of human plasma concentrations after dermal application using in vitro permeation parameters obtained from excised human skin. The in vitro skin permeability of 7 marketed drug products was evaluated. The plasma concentration-time profiles of the drug substances in humans after their dermal application were simulated using compartment models and the clinical pharmacokinetic parameters. The transdermal process was simulated using the in vitro skin permeation rate and lag time assuming a zero-order absorption. These simulated plasma concentration profiles were compared with the clinical data. The result revealed that the steady-state plasma concentration of diclofenac and the maximum concentrations of nicotine, bisoprolol, rivastigmine, and lidocaine after topical application were within 2-fold of the clinical data. Furthermore, the simulated concentration profiles of bisoprolol, nicotine, and rivastigmine reproduced the decrease in absorption due to drug depletion from the formulation. In conclusion, this simple compartment model using in vitro human skin permeation parameters as zero-order absorption predicted the human plasma concentrations accurately. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Høiby, Niels; Ciofu, Oana

    2014-01-01

    Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish an effici......Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish...

  3. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    OpenAIRE

    Walker, Aisha L.; Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assess...

  4. In Silico Ocular Pharmacokinetic Modeling: Delivery of Topical FK962 to Retina.

    Science.gov (United States)

    Mori, Ayumi; Yabuta, Chiho; Kishimoto, Yayoi; Kozai, Seiko; Ohtori, Akira; Shearer, Thomas R; Azuma, Mitsuyoshi

    2017-09-01

    To establish the in silico ocular pharmacokinetic modeling for eye drops, and to simulate the dose regimen for FK962 in human choroid/retinal diseases. Pharmacokinetics for FK962 in vivo was performed by a single instillation of drops containing 0.1% 14 C-FK962 in rabbit eyes. Permeation of FK962 across the cornea, sclera, and choroid/retina was measured in vitro. Neurite elongation by FK962 was measured in cultured rat retinal ganglion cells. Parameters from the experimental data were used in an improved in silico model of ocular pharmacokinetics of FK962 in man. The mean concentration of FK962 in ocular tissues predicted by in silico modeling was consistent with in vivo results, validating the in silico model. FK962 rapidly penetrated into the anterior and posterior segments of the eye and then diffused into the vitreous body. The in silico pharmacokinetic modeling also predicted that a dose regimen of 0.0054% FK962 twice per day would produce biologically effective concentrations of FK962 in the choroid/retina, where FK962 facilitates rat neurite elongation. Our in silico model for ocular pharmacokinetics is useful (1) for predicting drug concentrations in specific ocular tissues after topical instillation, and (2) for suggesting the optimal dose regimens for eye drops. The pharmacodynamics for FK962 produced by this model may be useful for clinical trials against retinal neuropathy.

  5. Probabilistic risk assessment of gold nanoparticles after intravenous administration by integrating in vitro and in vivo toxicity with physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Cheng, Yi-Hsien; Riviere, Jim E; Monteiro-Riviere, Nancy A; Lin, Zhoumeng

    2018-04-14

    This study aimed to conduct an integrated and probabilistic risk assessment of gold nanoparticles (AuNPs) based on recently published in vitro and in vivo toxicity studies coupled to a physiologically based pharmacokinetic (PBPK) model. Dose-response relationships were characterized based on cell viability assays in various human cell types. A previously well-validated human PBPK model for AuNPs was applied to quantify internal concentrations in liver, kidney, skin, and venous plasma. By applying a Bayesian-based probabilistic risk assessment approach incorporating Monte Carlo simulation, probable human cell death fractions were characterized. Additionally, we implemented in vitro to in vivo and animal-to-human extrapolation approaches to independently estimate external exposure levels of AuNPs that cause minimal toxicity. Our results suggest that under the highest dosing level employed in existing animal studies (worst-case scenario), AuNPs coated with branched polyethylenimine (BPEI) would likely induce ∼90-100% cellular death, implying high cytotoxicity compared to risk prediction, and point of departure estimation of AuNP exposure for humans and illustrate an approach that could be applied to other NPs when sufficient data are available.

  6. Preparation of 0.05% FK506 suspension eyedrops and its pharmacokinetics after topical ocular administration.

    Science.gov (United States)

    Yuan, Jin; Zhai, Jia-jie; Chen, Jia-qi; Ye, Cheng-tian; Zhou, Shi-you

    2009-08-01

    To investigate the stability of FK506 eye suspension and its pharmacokinetics in rabbit aqueous humor, as well as its distribution in eye tissues. Sedimentation rate, flocculation value, redispersion time, rheological study, and accelerated experiment were determined for evaluating the stability of FK506 suspension. In a single-dose pharmacokinetic study, six rabbits were instilled a 25-microL drop of 0.05% FK506 suspension and aqueous humor samples were collected at different intervals after administration. In a multiple-dose pharmacokinetic study, a 25-microL drop of FK506 suspension was instilled into the right eye of six rabbits four times a day for 7 days. On the eighth day, aqueous humor samples were collected before the administration of the first, second, third dose, and at different checkpoints after the third dose. For tissue distribution study, six eyes per time points (18 rabbits in total) were treated with single dose of FK506 suspension, and the eyes were enucleated at 60, 100, and 240 min after treatment, then eye tissues were collected. The concentrations of FK506 in all samples were determined by LC-MS/MS. The preliminary results indicated that the stability of FK506 suspension was in accord with the standards of Chinese pharmacopoeia. The maximum concentrations of aqueous humor after single dose and multiple dose administrations were 31.40 +/- 9.32 ng/mL and 37.73 +/- 11.25 ng/mL, respectively. The concentration of FK506 in cornea at 60, 100, and 240 min after a single dose were 402.0 +/- 96.8 ng/g, 363.8 +/- 84.5 ng/g, and 220 +/- 62.3 ng/g, respectively. Determination of pharmacokinetic parameters of single-dose and multiple-dose administration, as well as the FK506 concentrations in eye tissues, showed that the FK506 formulation and the dosing regimen ensured the therapeutic concentration of FK506 for treating corneal allograft rejection. Based on the stability, single-dose and multiple-dose pharmacokinetics, and tissue distribution, FK506

  7. Physicochemical, pharmacokinetic, efficacy and toxicity profiling of a potential nitrofuranyl methyl piperazine derivative IIIM-MCD-211 for oral tuberculosis therapy via in-silico-in-vitro-in-vivo approach.

    Science.gov (United States)

    Magotra, Asmita; Sharma, Anjna; Singh, Samsher; Ojha, Probir Kumar; Kumar, Sunil; Bokolia, Naveen; Wazir, Priya; Sharma, Shweta; Khan, Inshad Ali; Singh, Parvinder Pal; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal

    2018-02-01

    Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 μM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal

  8. Rapid in vitro propagation, conservation and analysis of genetic stability of Viola pilosa.

    Science.gov (United States)

    Soni, Madhvi; Kaur, Rajinder

    2014-01-01

    A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation-vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.

  9. Pharmacokinetic and pharmacodynamic variability as possible causes for different drug responses in migraine. A comment

    DEFF Research Database (Denmark)

    Tfelt-Hansen, P; Edvinsson, L

    2007-01-01

    The pharmacokinetics of antimigraine drugs zolmitriptan and sumatriptan varied considerably with a fourfold to 10-fold variation in plasma levels. In addition, the pharmacodynamics of triptans as investigated in vitro also varied considerably. In theory, there should probably be a 10-fold variation...

  10. Radiochemical purity and in vitro stability of Tc-99m radiopharmaceuticals

    International Nuclear Information System (INIS)

    Vucina, J.

    2001-01-01

    The increased contents of long lived 99 Tc, oxygen and cupric ions could affect the labeling yield of eight radiopharmaceuticals. Oxygen and in leaser extend copper were found to affect the radiochemical purity of the preparations. In vitro stability of radiopharmaceuticals, examined on 99m Tc(Sn)-pyrosphoshate solutions, was extended when ascorbic acid was added as the chemical stabilizer. The quantity of 5x10 -7 mol/dm 3 of ascorbic acid was found to be sufficient to keep the content of 99m Tc-pertechnetate below 1 % six hours after labeling even in the cases when 99m Tc was present in high radioactive concentrations (740-814 GBq/dm 3 ). The results led to the development of the kits in which ascorbic or gentisic acid are the standards component in the kit composition (author)

  11. Effect of N-methyl deuteration on metabolism and pharmacokinetics of enzalutamide

    Directory of Open Access Journals (Sweden)

    Jiang J

    2016-07-01

    Full Text Available Jinfang Jiang,1,2,* Xuehai Pang,2,3,* Liang Li,1,2 Xiaojian Dai,1,2 Xingxing Diao,1 Xiaoyan Chen,1,2 Dafang Zhong,1,2 Yingwei Wang,2,3 Yuanwei Chen2–4 1State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 2University of Chinese Academy of Sciences, Beijing, 3Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, 4Hinova Pharmaceuticals Inc, Chengdu, People’s Republic of China *These authors contributed equally to this work Background: The replacement of hydrogen with deuterium invokes a kinetic isotope effect. Thus, this method is an attractive way to slow down the metabolic rate and modulate pharmacokinetics.Purpose: Enzalutamide (ENT acts as a competitive inhibitor of the androgen receptor and has been approved for the treatment of metastatic castration-resistant prostate cancer by the US Food and Drug Administration in 2012. To attenuate the N-demethylation pathway, hydrogen atoms of the N–CH3 moiety were replaced by the relatively stable isotope deuterium, which showed similar pharmacological activities but exhibited favorable pharmacokinetic properties.Methods: We estimated in vitro and in vivo pharmacokinetic parameters for ENT and its deuterated analog (d3-ENT. For in vitro studies, intrinsic primary isotope effects (KH/KD were determined by the ratio of intrinsic clearance (CLint obtained for ENT and d3-ENT. The CLint values were obtained by the substrate depletion method. For in vivo studies, ENT and d3-ENT were orally given to male Sprague Dawley rats separately and simultaneously to assess the disposition and metabolism of them. We also investigated the main metabolic pathway of ENT by comparing the rate of oxidation and hydrolysis in vitro. Results: The in vitro CLint (maximum velocity/Michaelis constant [Vmax/Km] of d3-ENT in rat and human liver microsomes were 49.7% and 72.9% lower than those of the non-deuterated compound, corresponding to the KH

  12. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier.

    Science.gov (United States)

    Seo, Sang-Wan; Han, Hyo-Kyung; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2012-03-15

    Solubility of curcumin at physiological pH was significantly increased by forming solid dispersion (SD) with Solutol® HS15. Since curcumin undergoes hydrolytic degradation, chemical stability study was conducted in pH 1.2, 6.8 and 7.4 buffer media. Solutol® HS15 exhibited superior stabilizing effect to Cremophor® RH40 and Kollidon® 30. The physical state of the dispersed curcumin in the polymer matrix was characterized by differential scanning calorimetry and X-ray diffraction studies. SD preparation transformed curcumin into amorphous form and facilitated micellar incorporation, thereby preventing hydrolysis in aqueous medium. In vitro drug release in pH 6.8 buffer revealed that SD (1:10) improved the dissolution of curcumin with approximately 90% release of the drug within 1h. Pharmacokinetic study of the solid dispersion formulation in rat showed that bioavailability of the drug was significantly improved as compared to pure curcumin. SD containing 1:10 ratio of drug and Solutol® HS15 resulted in approximately 5 fold higher AUC(0-12h). SD formulation was physically stable over the study period of 3 months. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. In vitro Evaluation of Trimethoprim and Sulfamethoxazole from Fixed ...

    African Journals Online (AJOL)

    spectrophotometry, Fixed-dose combination generic drugs. Tropical Journal ... without testing their in-vivo performance [4]. In ..... pharmacokinetic parameter such as AUC, Cmax or Tmax. .... granules: factors affecting drug release in vitro. Int J.

  14. A physiologically-based pharmacokinetic(PB-PK) model for ethylene dibromide : relevance of extrahepatic metabolism

    NARCIS (Netherlands)

    Hissink, A M; Wormhoudt, L.W.; Sherratt, P.J.; Hayes, D.J.; Commandeur, J N; Vermeulen, N P; van Bladeren, P.J.

    A physiologically-based pharmacokinetic (PB-PK) model was developed for ethylene dibromide (1,2-dibromoethane, EDB) for rats and humans, partly based on previously published in vitro data (Ploemen et al., 1997). In the present study, this PB-PK model has been validated for the rat. In addition, new

  15. A physiologically-based pharmacokinetic (PB-PK) model for ethylene dibromide : relevance of extrahepatic metabolism

    NARCIS (Netherlands)

    Hissink, A.M.; Wormhoudt, L.W.; Sherratt, P.J.; Hayes, J.D.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Bladeren, P.J. van

    2000-01-01

    A physiologically-based pharmacokinetic (PB-PK) model was developed for ethylene dibromide (1,2-dibromoethane, EDB) for rats and humans, partly based on previously published in vitro data (Ploemen et al., 1997). In the present study, this PB-PK model has been validated for the rat. In addition, new

  16. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets

    OpenAIRE

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini J?nior, Luiz Gonzaga

    2014-01-01

    OBJECTIVE: The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. METHODS: Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a...

  17. In vitro Cytotoxicity, Pharmacokinetics, Tissue Distribution, and Metabolism of Small-Molecule Protein Kinase D Inhibitors, kb-NB142-70 and kb-NB165-09, in Mice bearing Human Cancer Xenografts

    Science.gov (United States)

    Guo, Jianxia; Clausen, Dana M.; Beumer, Jan H.; Parise, Robert A.; Egorin, Merrill J.; Bravo-Altamirano, Karla; Wipf, Peter; Sharlow, Elizabeth R.; Wang, Qiming Jane; Eiseman, Julie L.

    2012-01-01

    Purpose Protein kinase D (PKD) mediates diverse biological responses including cell growth and survival. Therefore, PKD inhibitors may have therapeutic potential. We evaluated the in vitro cytotoxicity of two PKD inhibitors, kb-NB142-70 and its methoxy analog, kb-NB165-09, and examined their in vivo efficacy and pharmacokinetics. Methods The in vitro cytotoxicities of kb-NB142-70 and kb-NB165-09 were evaluated by MTT assay against PC-3, androgen independent prostate cancer cells, and CFPAC-1 and PANC-1, pancreatic cancer cells. Efficacy studies were conducted in mice bearing either PC-3 or CPFAC-1 xenografts. Tumor-bearing mice were euthanized between 5 and 1440 min after iv dosing, and plasma and tissue concentrations were measured by HPLC-UV. Metabolites were characterized by LC-MS/MS. Results kb-NB142-70 and kb-NB165-09 inhibited cellular growth in the low-mid μM range. The compounds were inactive when administered to tumor-bearing mice. In mice treated with kb-NB142-70, the plasma Cmax was 36.9 nmol/mL and the PC-3 tumor Cmax was 11.8 nmol/g. In mice dosed with kb-NB165-09, the plasma Cmax was 61.9 nmol/mL while the PANC-1 tumor Cmax was 8.0 nmol/g. The plasma half-lives of kb-NB142-70 and kb-NB165-09 were 6 and 14 min, respectively. Both compounds underwent oxidation and glucuronidation. Conclusions kb-NB142-70 and kb-NB165-09 were rapidly metabolized, and concentrations in tumor were lower than those required for in vitro cytotoxicity. Replacement of the phenolic hydroxyl group with a methoxy group increased the plasma half-life of kb-NB165-09 2.3-fold over that of kb-NB142-70. Rapid metabolism in mice suggests that next-generation compounds will require further structural modifications to increase potency and/or metabolic stability. PMID:23108699

  18. Temperature- and pH-dependent effect of lactate on in vitro redox stability of red meat myoglobins.

    Science.gov (United States)

    Nair, M N; Suman, S P; Li, S; Ramanathan, R; Mancini, R A

    2014-01-01

    Our objective was to evaluate the influence of lactate on in vitro redox stability and thermostability of beef, horse, pork, and sheep myoglobins. Lactate (200 mM) had no effect (P>0.05) on redox stability at physiological (pH7.4, 37°C) and meat (pH 5.6, 4°C) conditions. However, lactate increased (Pmeat conditions was species-specific (Pmeat condition suggests that the color stability of lactate-enhanced fresh meat is not due to direct interactions between the ingredient and the heme protein. © 2013.

  19. Pharmacokinetics: curiosity or cure

    International Nuclear Information System (INIS)

    Notari, R.E.

    1979-01-01

    What is the fate of a drug from the time of its introduction into the body to the end of its duration. Pharmacokinetic studies are often designed to provide an answer to this question. But this question may be asked of any drug and research that is limited to answering it will remain empirical. Pharmacokinetic studies can provide answers to many other drug-related questions. In doing so pharmacokinetic research has the potential of improving drug therapy as well as the design and evaluation of drugs. While significant contributions can be cited, the future of pharmacokinetics depends upon its increased impact on clinical practice and drug design. How can a molecule be tailored for site specificity. Can chemical modification selectively alter absorption, distribution, metabolism, binding or excretion. In what new ways can pharmacokinetic information increase the predictability of drug therapy. Such questions, to which pharmacokinetics should provide answers, are numerous and easily identified. But the definitive studies are difficult both to create and conduct. Whether or not pharmacokinetics can achieve its full potential will depend upon the extent to which it can provide answers to these currently unanswered questions

  20. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges

    Science.gov (United States)

    Vugmeyster, Yulia; Xu, Xin; Theil, Frank-Peter; Khawli, Leslie A; Leach, Michael W

    2012-01-01

    Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins. PMID:22558487

  1. A Workflow to Investigate Exposure and Pharmacokinetic Influences on High-Throughput in Vitro Chemical Screening Based on Adverse Outcome Pathways

    Science.gov (United States)

    Phillips, Martin B.; Leonard, Jeremy A.; Grulke, Christopher M.; Chang, Daniel T.; Edwards, Stephen W.; Brooks, Raina; Goldsmith, Michael-Rock; El-Masri, Hisham; Tan, Yu-Mei

    2015-01-01

    Background Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals. Objectives We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition. Methods Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites. Results Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation. Conclusions The incorporation of exposure and ADME properties into the conceptual workflow eliminated 10 “low-priority” chemicals that may otherwise have undergone additional, resource-consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by identifying possible “false negatives.” Citation Phillips MB, Leonard JA, Grulke CM, Chang DT, Edwards SW, Brooks R, Goldsmith MR, El-Masri H, Tan YM. 2016. A workflow to investigate exposure and pharmacokinetic influences on high-throughput in vitro chemical screening based on adverse outcome pathways. Environ

  2. Oral and intravenous pharmacokinetics of taurine in sprague-dawley rats

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Bjerg, Maria; Ulaganathan, Nithiya

    2017-01-01

    Taurine is involved in various physiological processes, and one of the most abundant amino acids in human. The aim was to investigate the mechanism for intestinal absorption of taurine in vivo using also in vitro mechanistic studies. Taurine absorption was measured in male Sprague-Dawley rats at 10...... (BCH) (200 mg/kg). BCH is not an inhibitor of PAT1 or the taurine transporter, TauT, hence it was included as a negative control. In vitro studies investigating the transport mechanism of taurine were conducted in human intestinal Caco-2 cells. The pharmacokinetic investigations showed that intestinal...... taurine absorption was not saturable at the investigated doses, but that the time (tmax) to reach the maximal plasma concentration (Cmax) increased with dose. Furthermore, Sar and Pro, but not BCH, decreased taurine Cmax. In vitro it was clearly shown that PAT1 mediated the cellular uptake of taurine...

  3. Effects of resveratrol on P-glycoprotein and cytochrome P450 3A in vitro and on pharmacokinetics of oral saquinavir in rats

    Directory of Open Access Journals (Sweden)

    Li JP

    2016-11-01

    Full Text Available Jiapeng Li,1,2 Yang Liu,2 Jingru Zhang,1,2 Xiaotong Yu,1,2 Xiaoling Wang,1 Libo Zhao11Department of Pharmacy, Beijing Children’s Hospital, Capital Medical University, 2Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China Background: The intestinal cytochrome P450 3A (CYP 3A and P-glycoprotein (P-gp present a barrier to the oral absorption of saquinavir (SQV. Resveratrol (RESV has been indicated to have modulatory effects on P-gp and CYP 3A. Therefore, this study was to investigate the effects of RESV on P-gp and CYP 3A activities in vitro and in vivo on oral SQV pharmacokinetics in rats.Methods: In vitro, intestinal microsomes were used to evaluate RESV effect on CYP 3A-mediated metabolism of SQV; MDR1-expressing Madin–Darby canine kidney (MDCKII-MDR1 cells were employed to assess the impact of RESV on P-gp-mediated efflux of SQV. In vivo effects were studied using 10 rats randomly assigned to receive oral SQV (30 mg/kg with or without RESV (20 mg/kg. Serial blood samples were obtained over the following 24 h. Concentrations of SQV in samples were ascertained using high-performance liquid chromatography-tandem mass spectrometry analysis.Results: RESV (1–100 µM enhanced residual SQV (% of control in a dose-dependent manner after incubation with intestinal microsomes. RESV (1–100 µM reduced the accumulation of SQV in MDCKII-MDR1 cells in a concentration-dependent manner. A double peaking phenomenon was observed in the plasma SQV profiles in rats. The first peak of plasma SQV concentration was increased, but the second peak was reduced by coadministration with RESV. The mean AUC0–∞ of SQV was slightly decreased, with no statistical significance probably due to the high individual variation.Conclusion: RESV can alter the plasma SQV concentration profiles, shorten the Tmax of SQV. RESV might also cause a slight decrease tendency in the

  4. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment.

    Science.gov (United States)

    Kamran, Mohd; Ahad, Abdul; Aqil, Mohd; Imam, Syed Sarim; Sultana, Yasmin; Ali, Asgar

    2016-05-30

    Olmesartan is a hydrophobic antihypertensive drug with a short biological half-life, and low bioavailability, presents a challenge with respect to its oral administration. The objective of the work was to formulate, optimize and evaluate the transdermal potential of novel vesicular nano-invasomes, containing above anti-hypertensive agent. To achieve the above purpose, soft carriers (viz. nano-invasomes) of olmesartan with β-citronellene as potential permeation enhancer were developed and optimized using Box-Behnken design. The physicochemical characteristics e.g., vesicle size, shape, entrapment efficiency and skin permeability of the nano-invasomes formulations were evaluated. The optimized formulation was further evaluated for in vitro drug release, confocal microscopy and in vivo pharmacokinetic study. The optimum nano-invasomes formulation showed vesicles size of 83.35±3.25nm, entrapment efficiency of 65.21±2.25% and transdermal flux of 32.78±0.703 (μg/cm(2)/h) which were found in agreement with the predicted value generated by Box-Behnken design. Confocal laser microscopy of rat skin showed that optimized formulation was eventually distributed and permeated deep into the skin. The pharmacokinetic study presented that transdermal nano-invasomes formulation showed 1.15 times improvement in bioavailability of olmesartan with respect to the control formulation in Wistar rats. It was concluded that the response surfaces estimated by Design Expert(®) illustrated obvious relationship between formulation factors and response variables and nano-invasomes were found to be a proficient carrier system for transdermal delivery of olmesartan. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative Analysis of Complex Drug-Drug Interactions Between Repaglinide and Cyclosporin A/Gemfibrozil Using Physiologically Based Pharmacokinetic Models With In Vitro Transporter/Enzyme Inhibition Data.

    Science.gov (United States)

    Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi

    2017-09-01

    Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Lisdexamfetamine: A pharmacokinetic review.

    Science.gov (United States)

    Comiran, Eloisa; Kessler, Félix Henrique; Fröehlich, Pedro Eduardo; Limberger, Renata Pereira

    2016-06-30

    Lisdexamfetamine (LDX) is a d-amphetamine (d-AMPH) pro-drug used to treat Attention Deficit and Hyperactivity Disorder (ADHD) and Binge Eating Disorder (BED) symptoms. The in vivo pharmacodynamics of LDX is the same as that of its active product d-AMPH, although there are a few qualitative and quantitative differences due to pharmacokinetics. Due to the specific pharmacokinetics of the long-acting stimulants, this article revises the pharmacokinetic studies on LDX, the newest amphetamine pro-drug. The Medline/Pubmed, Science Direct and Biblioteca Virtual em Saúde (Lilacs and Ibecs) (2007-2016) databases were searched for articles and their list of references. As for basic pharmacokinetics studies, since LDX is a newly developed medication, there are few results concerning biotransformation, distribution and the use of different biological matrices for analysis. This is the first robust review on this topic, gathering data from all clinical pharmacokinetics studies available in the literature. The particular pharmacokinetics of LDX plays a major role in studying this pro-drug, since this knowledge was essential to understand some reports on clinical effects in literature, e.g. the small likelihood of reducing the effect by interactions, the effect of long duration use and the still questionable reduction of the potential for abuse. In general the already well-known pharmacokinetic properties of amphetamine make LDX relatively predictable, simplifying the use of LDX in clinical practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Improvement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies

    Science.gov (United States)

    Gundogdu, E; Alvarez, I Gonzalez; Karasulu, E

    2011-01-01

    Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w), oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53) formed nanometer sized droplets (33.29 ± 1.76) and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral bioavailability of low permeability drugs. PMID:21904453

  8. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, Huixin; van Erp, Nielka; Bins, Sander; Mathijssen, Ron H J; Schellens, Jan H M; Beijnen, Jos H.; Steeghs, Neeltje; Huitema, Alwin D R

    Background and Objective: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. Methods: Pharmacokinetic data were available from 96

  9. Development of a Pharmacokinetic Model to Describe the Complex Pharmacokinetics of Pazopanib in Cancer Patients

    NARCIS (Netherlands)

    Yu, H.; Erp, N. van; Bins, S.; Mathijssen, R.H.; Schellens, J.H.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.

    2017-01-01

    BACKGROUND AND OBJECTIVE: Pazopanib is a multi-targeted anticancer tyrosine kinase inhibitor. This study was conducted to develop a population pharmacokinetic (popPK) model describing the complex pharmacokinetics of pazopanib in cancer patients. METHODS: Pharmacokinetic data were available from 96

  10. Formulation and pharmacokinetics of multi-layered matrix tablets: Biphasic delivery of diclofenac

    Directory of Open Access Journals (Sweden)

    Ehab Mostafa Elzayat

    2017-07-01

    Full Text Available The rapid availability of the drug at the site of action followed by maintaining its effect for a long period of time is of great clinical importance. Thus, the purpose of the present study was to prepare and evaluate multi-layered matrix tablets of diclofenac using Eudragit RL/RS blend to achieve both immediate and sustained therapeutic effects. Diclofenac potassium (25 mg was incorporated in an outer immediate release layer to provide immediate pain relief whereas diclofenac sodium (75 mg was incorporated in the inner core to provide extended drug release. Wet granulation was employed to prepare the inner core of the tablets that were further layered with an immediate release drug layer in the perforated pan coater. The in-vitro and in-vivo performance of the developed formulation was compared with the marketed products Voltaren® SR 75 mg and Cataflam® 25 mg. The in-vitro drug release of the prepared formulation showed similarity (f2 = 66.19 to the marketed product. The pharmacokinetic study showed no significant difference (p > 0.05 in AUC0-24 and Cmax between the test and reference formulations. The AUC0-24 values were 105.36 ± 83.3 and 92.87 ± 55.53 μg h/ml whereas the Cmax values were 11.25 ± 6.87 and 12.97 ± 8.45 μg/ml, for the test and reference, respectively. The multi-layered tablets were proved to be bioequivalent with the commercially available tablets and were in agreement with the observed in-vitro drug release results. Stable physical characteristics and drug release profiles were observed in both long term and accelerated conditions stability studies.

  11. Torsemide Fast Dissolving Tablets: Development, Optimization Using Box-Bhenken Design and Response Surface Methodology, In Vitro Characterization, and Pharmacokinetic Assessment.

    Science.gov (United States)

    El-Shenawy, Ahmed A; Ahmed, Mahmoud M; Mansour, Heba F; Abd El Rasoul, Saleh

    2017-08-01

    The present study planed to develop new fast dissolving tablets (FDTs) of torsemide. Solid dispersions (SDs) of torsemide and sorbitol (3:1) or polyvinylpyrrolidone (PVP) k25 were prepared. The prepared SDs were evaluated for in-vitro dissolution. Fourier transform infrared spectroscopy and differential scanning calorimetry for SDs revealed no drug/excipient interactions and transformation of torsemide to the amorphous form. Torsemide/sorbitol SD was selected for formulation of torsemide FDTs by direct compression method. Box-Bhenken factorial design was employed to design 15 formulations using croscarmellose sodium and crospovidone at different concentrations. The response surface methodology was used to analyze the effect of changing these concentrations (independent variables) on disintegration time (Y 1 ), percentage friability (Y 2 ), and amount torsemide released at 10 min. The physical mixtures of torsemide and the used excipients were evaluated for angle of repose, Hausner's ratio, and Carr's index. The prepared FDTs tablets were evaluated for wetting and disintegration time, weight variation, drug content, percentage friability, thickness, hardness, and in vitro release. Based on the in-vitro results and factorial design characterization, F10 and F7 were selected for bioavailability studies following administration to Albino New Zealand rabbits. They showed significantly higher C max and (AUC 0-12 ) and shorter T max than those obtained after administration of the corresponding ordinary commercial Torseretic ® tablets. Stability study was conducted for F10 that showed good stability upon storage at 30°C/75% RH and 40°C/75% RH for 3 months.

  12. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models.

    Science.gov (United States)

    Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan

    2018-03-21

    Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.

  13. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    Science.gov (United States)

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  14. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment

    International Nuclear Information System (INIS)

    Wetmore, Barbara A.

    2015-01-01

    High-throughput in vitro toxicity screening provides an efficient way to identify potential biological targets for environmental and industrial chemicals while conserving limited testing resources. However, reliance on the nominal chemical concentrations in these in vitro assays as an indicator of bioactivity may misrepresent potential in vivo effects of these chemicals due to differences in clearance, protein binding, bioavailability, and other pharmacokinetic factors. Development of high-throughput in vitro hepatic clearance and protein binding assays and refinement of quantitative in vitro-to-in vivo extrapolation (QIVIVE) methods have provided key tools to predict xenobiotic steady state pharmacokinetics. Using a process known as reverse dosimetry, knowledge of the chemical steady state behavior can be incorporated with HTS data to determine the external in vivo oral exposure needed to achieve internal blood concentrations equivalent to those eliciting bioactivity in the assays. These daily oral doses, known as oral equivalents, can be compared to chronic human exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. This review will describe the use of QIVIVE methods in a high-throughput environment and the promise they hold in shaping chemical testing priorities and, potentially, high-throughput risk assessment strategies

  15. Release, partitioning and stability of isoflavones from enriched custards during mouth, stomach and intestine in vitro simulations

    NARCIS (Netherlands)

    Sanz, T.; Luyten, J.M.J.G.

    2006-01-01

    Custard desserts were enriched with a soy germ extract as source of isoflavones and the influence of the thickening agent (starch or carboxymethylcellulose (CMC)) and the presence of fat on the release, partitioning and stability of the isoflavones after mouth, stomach and small intestine in vitro

  16. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation.

    Science.gov (United States)

    Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G

    2018-05-19

    Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.

  17. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis.

    Science.gov (United States)

    Wring, Stephen A; Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-04-01

    SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC 0-∞ ) and C max SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices C max /MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC 0-24 , was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. Copyright © 2017 Wring et al.

  18. Preclinical Pharmacokinetics and Pharmacodynamic Target of SCY-078, a First-in-Class Orally Active Antifungal Glucan Synthesis Inhibitor, in Murine Models of Disseminated Candidiasis

    Science.gov (United States)

    Randolph, Ryan; Park, SeongHee; Abruzzo, George; Chen, Qing; Flattery, Amy; Garrett, Graig; Peel, Michael; Outcalt, Russell; Powell, Kendall; Trucksis, Michelle; Angulo, David; Borroto-Esoda, Katyna

    2017-01-01

    ABSTRACT SCY-078 (MK-3118) is a novel, semisynthetic derivative of enfumafungin and represents the first compound of the triterpene class of antifungals. SCY-078 exhibits potent inhibition of β-(1,3)-d-glucan synthesis, an essential cell wall component of many pathogenic fungi, including Candida spp. and Aspergillus spp. SCY-078 is currently in phase 2 clinical development for the treatment of invasive fungal diseases. In vitro disposition studies to assess solubility, intestinal permeability, and metabolic stability were predictive of good oral bioavailability. Preclinical pharmacokinetic studies were consistent with once-daily administration to humans. After intravenous delivery, plasma clearance in rodents and dogs was low, representing candidiasis, exceeded plasma by 20- to 25-fold for the area under the concentration-time curve from 0 h to infinity (AUC0–∞) and Cmax. SCY-078 achieved efficacy endpoints following oral delivery across multiple murine models of disseminated candidiasis. The pharmacokinetic/pharmacodynamic indices Cmax/MIC and AUC/MIC correlated with outcome. Target therapeutic exposure, expressed as the plasma AUC0–24, was comparable across models, with an upper value of 11.2 μg·h/ml (15.4 μM·h); the corresponding mean value for free drug AUC/MIC was ∼0.75. Overall, these results demonstrate that SCY-078 has the oral and intravenous (i.v.) pharmacokinetic properties and potency in murine infection models of disseminated candidiasis to support further investigation as a novel i.v. and oral treatment for invasive fungal diseases. PMID:28137806

  19. Biodegradable nanoparticles for improved kidney bioavailability of rhein: preparation, characterization, plasma, and kidney pharmacokinetics.

    Science.gov (United States)

    Wei, Yinghui; Luo, Xiaoting; Guan, Jiani; Ma, Jianping; Zhong, Yicong; Luo, Jingwen; Li, Fanzhu

    2017-11-01

    The aim of this work is to develop biodegradable nanoparticles for improved kidney bioavailability of rhein (RH). RH-loaded nanoparticles were prepared using an emulsification solvent evaporation method and fully characterized by several techniques. Kidney pharmacokinetics was assessed by implanting a microdialysis probe in rat's kidney cortex. Blood samples were simultaneously collected (via femoral artery) for assessing plasma pharmacokinetics. Optimized nanoparticles were small, with a mean particle size of 132.6 ± 5.95 nm, and homogeneously dispersed. The charge on the particles was nearly zero, the encapsulation efficiency was 62.71 ± 3.02%, and the drug loading was 1.56 ± 0.15%. In vitro release of RH from the nanoparticles showed an initial burst release followed by a sustained release. Plasma and kidney pharmacokinetics showed that encapsulation of RH into nanoparticles significantly increased its kidney bioavailability (AUC kidney /AUC plasma  = 0.586 ± 0.072), clearly indicating that nanoparticles are a promising strategy for kidney drug delivery.

  20. Pharmacokinetic profile of a sustained-delivery system for physostigmine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 04-01, Singapore 138669 (Singapore)

    2006-07-25

    Physostigmine (PHY) is involved in clinical treatments of glaucoma, Alzheimer's disease and has been suggested as an alternative prophylactic treatment against organophosphate poisoning. However, one of the therapeutic uses of physostigmine is limited by short elimination half-life. In this study, PHY-loaded microparticles, prepared by a spray-drying method with biodegradable poly(D,L-lactide-co-glycolide) (PLGA) with a size ranging from 1 to 5 {mu}M was developed on a sustained release preparation to prevent multiple dosing and yet maintaining constant plasma level. The release of PHY-loaded microparticles was characterized in vitro and in vivo after oral administration in Sprague-Dawley rats. After oral administration of physostigmine-loaded microparticles in rats, the time course of physostigmine in blood plasma was followed over 48 h and samples were analysed using a validated high-performance liquid chromatography (HPLC) assay. In the pharmacokinetics profile of physostigmine for the elimination half-life and area-under-curve, PHY release was sustained in vitro for over 1 week with a low initial burst release. The pharmacokinetics results show a 15-fold increase in the elimination half-life of physostigmine microparticle formulation, coupled with a larger area under the concentration-time curve (AUC), without affecting the peak concentration and the latency to peak concentration, when compared to the standard formulation.

  1. Iron complexation to histone deacetylase inhibitors SAHA and LAQ824 in PEGylated liposomes can considerably improve pharmacokinetics in rats.

    Science.gov (United States)

    Wang, Yan; Tu, Sheng; Steffen, Dana; Xiong, May

    2014-01-01

    The formulation of histone deacetylase inhibitors (HDACi) is challenging due to poor water solubility and rapid elimination of drugs in vivo. This study investigated the effects of complexing iron (Fe3+) to the HDACi suberoylanilide hydroxamic acid (SAHA) and LAQ824 (LAQ) prior to their encapsulation into PEGylated liposomes, and investigated whether this technique could improve drug solubility, in vitro release and in vivo pharmacokinetic (PK) properties. METHODS. The reaction stoichiometry, binding constants and solubility were measured for Fe complexes of SAHA and LAQ. The complexes were passively encapsulated into PEGylated liposomes and characterized by size distribution, zeta-potential, encapsulation efficiency (EE), and in vitro drug release studies. PC-3 cells were used to verify the in vitro anticancer activity of the formulations. In vivo pharmacokinetic properties of liposomal LAQ-Fe (L-LAQ-Fe) was evaluated in rats. RESULTS. SAHA and LAQ form complexes with Fe at 1:1 stoichiometric ratio, with a binding constant on the order of 104 M-1. Fe complexation improved the aqueous solubility and the liposomal encapsulation efficiency of SAHA and LAQ (29-35% EE, final drug concentration > 1 mM). Liposomal encapsulated complexes (L-HDACi-Fe) exhibited sustained in vitro release properties compared to L-HDACi but cytotoxicity on PC-3 cells was comparable to free drugs. The PK of L-LAQ-Fe revealed 15-fold improvement in the plasma t1/2 (12.11 h)and 211-fold improvement in the AUC∞ (105.7 µg·h/ml) compared to free LAQ (0.79 h, 0.5 µg·h/ml). Similarly, the plasma t1/2 of Fe was determined to be 11.83 h in a separate experiment using radioactive Fe-59. The majority of Fe-59 activity was found in liver and spleen of rats and correlates with liposomal uptake by the mononuclear phagocyte system. CONCLUSIONS. We have demonstrated that encapsulation of Fe complexes of HDACi into PEGylated liposomes can improve overall drug aqueous solubility, in vitro release and in

  2. Development and validation of UPLC/ESI-Q-TOF-MS for carteolol in aqueous humour: Stability, stress degradation and application in pharmacokinetics of nanoformulation

    Directory of Open Access Journals (Sweden)

    Ameeduzzafar

    2017-05-01

    Full Text Available Carteolol (CRT is currently under development as a potential therapeutic agent for the treatment of open angle glaucoma. The purpose of the present work is to develop and validate a stability indicating assay method and its application to estimate CRT in aqueous humour and study the pharmacokinetic parameters. An ultra performance liquid chromatographic tandem mass spectroscopy (UPLC–MS/MS method was developed and validated for the quantitative determination of CRT in rabbit aqueous humour, using propranolol as the internal standard (I.S.. Aqueous humour samples were prepared by a simple liquid–liquid extraction technique (LLE. The analyte and internal standard were separated by an Acquity UPLC BEH C18 (100.0 × 2.1 mm; 1.7 μm column with a mobile phase of acetonitrile – 2 mM (milli mole ammonium acetate (90/10, v/v over 3 min of retention time. Detection was based on the multiple reactions monitoring with the precursor-to-product ion transitions m/z 293.2 → 237.12 for CRT and m/z 260.09 → 183.04 for I.S. The method was validated according to FDA guidelines on the bio-analytical method validation. The method developed was linear (r2 = 0.999 over the concentration range of 1–1000 ng/mL. The selectivity, sensitivity, linearity, accuracy, precision, extraction recovery, and stability were within the acceptable ranges. Forced degradation studies were performed on bulk sample of CRT as per ICH prescribed stress conditions, such as acid, base, oxidative and photolytic to show the forced of the method. Significant degradation was observed during basic stress condition. The pharmacokinetic study of CRT solution and nanoparticles in aqueous humour of rabbit eye was performed and results showed that CRT nanoparticles enhance the ocular bioavailability by 5.61-fold as compared to CRT-solution.

  3. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction.

    Science.gov (United States)

    Zhang, TianHong; Zhang, KeRong; Ma, Li; Li, Zheng; Wang, Juan; Zhang, YunXia; Lu, Chuang; Zhu, Mingshe; Zhuang, XiaoMei

    2018-04-01

    Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy

    Science.gov (United States)

    2012-01-01

    Background Nanoparticle based delivery of anticancer drugs have been widely investigated. However, a very important process for Research & Development in any pharmaceutical industry is scaling nanoparticle formulation techniques so as to produce large batches for preclinical and clinical trials. This process is not only critical but also difficult as it involves various formulation parameters to be modulated all in the same process. Methods In our present study, we formulated curcumin loaded poly (lactic acid-co-glycolic acid) nanoparticles (PLGA-CURC). This improved the bioavailability of curcumin, a potent natural anticancer drug, making it suitable for cancer therapy. Post formulation, we optimized our process by Reponse Surface Methodology (RSM) using Central Composite Design (CCD) and scaled up the formulation process in four stages with final scale-up process yielding 5 g of curcumin loaded nanoparticles within the laboratory setup. The nanoparticles formed after scale-up process were characterized for particle size, drug loading and encapsulation efficiency, surface morphology, in vitro release kinetics and pharmacokinetics. Stability analysis and gamma sterilization were also carried out. Results Results revealed that that process scale-up is being mastered for elaboration to 5 g level. The mean nanoparticle size of the scaled up batch was found to be 158.5 ± 9.8 nm and the drug loading was determined to be 10.32 ± 1.4%. The in vitro release study illustrated a slow sustained release corresponding to 75% drug over a period of 10 days. The pharmacokinetic profile of PLGA-CURC in rats following i.v. administration showed two compartmental model with the area under the curve (AUC0-∞) being 6.139 mg/L h. Gamma sterilization showed no significant change in the particle size or drug loading of the nanoparticles. Stability analysis revealed long term physiochemical stability of the PLGA-CURC formulation. Conclusions A successful effort towards

  5. Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method.

    Science.gov (United States)

    Solymosi, Tamás; Angi, Réka; Basa-Dénes, Orsolya; Ránky, Soma; Ötvös, Zsolt; Glavinas, Hristos; Filipcsei, Genovéva; Heltovics, Gábor

    2015-08-01

    The oral bioavailability of Sirolimus is limited by poor dissolution of the compound in the gastrointestinal tract resulting in a low bioavailability and large inter-individual differences in blood levels. Several different formulation approaches were applied to overcome these disadvantageous pharmacokinetic properties including the marketed oral solution and a tablet form containing wet milled nanocrystals. These approaches deliver improved pharmacokinetics, yet, they share the characteristics of complex production method and composition. We have developed a nanostructured Sirolimus formulation prepared by the controlled continuous flow precipitation of the compound from its solution in the presence of stabilizers. We have shown that contrary to the batch production the process could be easily intensified and scaled up; apparently the uniformity of the precipitation is heavily dependent on the production parameters, most likely the mixing of the solvent and antisolvent. We compared the physicochemical and pharmacokinetic properties of the nanostructured formula with the marketed nanoformula. We found that our method produces particles in the size range of less than 100nm. The solid form redispersed instantaneously in water and in biorelevant media. Both the solid form and the redispersed colloid solution showed excellent stability even in accelerated test conditions. The oral administration of the nanostructured formula resulted in faster absorption, higher exposure and higher trough concentrations when compared to the marked form. These advantageous properties could allow the development of solid oral Sirolimus formulae with lower strength and gel based topical delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pharmacokinetic characterization of three novel 4-mg nicotine lozenges
.

    Science.gov (United States)

    Sukhija, Manpreet; Srivastava, Reena; Kaushik, Aditya

    2018-03-01

    Nicotine replacement therapy (NRT) increases the probability of smoking cessation. This study was conducted to determine if three prototype 4-mg nicotine lozenges produced locally in India were bioequivalent to a globally marketed reference product, Nicorette® 4-mg nicotine lozenge. Healthy adult smokers (N = 39) were treated with three prototype 4-mg nicotine lozenges in comparison with a reference 4-mg lozenge in this single-center, randomized, open-label, single-dose, 4-way crossover study. Pharmacokinetic sampling was obtained to test for bioequivalence using maximal plasma concentration (Cmax) and extent of absorption (AUC0-t). Secondarily, AUC;0-∞, time to maximal plasma concentration (tmax), half-life (T1/2), elimination rate constant (Kel), and safety of the prototype lozenges versus the reference lozenge were compared. Each prototype 4-mg nicotine lozenge was found to be bioequivalent to the reference 4-mg nicotine lozenge based on the ratio of geometric means and 90% confidence intervals for Cmax, AUC0-t, and AUC;0-∞. Although tmax; was significantly longer for prototype III, all four lozenges achieved maximum plasma nicotine concentrations at a median of 1.5 hours. The safety profiles of the three prototype 4-mg lozenges did not differ from that of the 4-mg reference product. Each prototype 4-mg nicotine lozenge was bioequivalent to the reference 4-mg nicotine lozenge and was well tolerated. Furthermore, as these bioequivalent prototypes differed in in-vitro dissolution profiles, these data suggest that performance from the in -vitro method deployed is not a firm predictor of pharmacokinetic behavior.
.

  7. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile.

    Science.gov (United States)

    Rafiei, Pedram; Haddadi, Azita

    2017-01-01

    Docetaxel is a highly potent anticancer agent being used in a wide spectrum of cancer types. There are important matters of concern regarding the drug's pharmacokinetics related to the conventional formulation. Poly(lactide- co -glycolide) (PLGA) is a biocompatible/biodegradable polymer with variable physicochemical characteristics, and its application in human has been approved by the United States Food and Drug Administration. PLGA gives polymeric nanoparticles with unique drug delivery characteristics. The application of PLGA nanoparticles (NPs) as intravenous (IV) sustained-release delivery vehicles for docetaxel can favorably modify pharmacokinetics, biofate, and pharmacotherapy of the drug in cancer patients. Surface modification of PLGA NPs with poly(ethylene glycol) (PEG) can further enhance NPs' long-circulating properties. Herein, an optimized fabrication approach has been used for the preparation of PLGA and PLGA-PEG NPs loaded with docetaxel for IV application. Both types of NP formulations demonstrated in vitro characteristics that were considered suitable for IV administration (with long-circulating sustained-release purposes). NP formulations were IV administered to an animal model, and docetaxel's pharmacokinetic and biodistribution profiles were determined and compared between study groups. PLGA and PEGylated PLGA NPs were able to modify the pharmacokinetics and biodistribution of docetaxel. Accordingly, the mode of changes made to pharmacokinetics and biodistribution of docetaxel is attributed to the size and surface properties of NPs. NPs contributed to increased blood residence time of docetaxel fulfilling their role as long-circulating sustained-release drug delivery systems. Surface modification of NPs contributed to more pronounced docetaxel blood concentration, which confirms the role of PEG in conferring long-circulation properties to NPs.

  8. Availability, Pharmaceutics, Security, Pharmacokinetics, and Pharmacological Activities of Patchouli Alcohol

    Directory of Open Access Journals (Sweden)

    Guanying Hu

    2017-01-01

    Full Text Available Patchouli alcohol (PA, a tricyclic sesquiterpene, is one of the critical bioactive ingredients and is mainly isolated from aerial part of Pogostemon cablin (known as guanghuoxiang in China belonging to Labiatae. So far, PA has been widely applied in perfume industries. This review was written with the use of reliable information published between 1974 and 2016 from libraries and electronic researches including NCKI, PubMed, Reaxys, ACS, ScienceDirect, Springer, and Wiley-Blackwell, aiming at presenting comprehensive outline of security, pharmacokinetics, and bioactivities of PA and at further providing a potential guide in exploring the PA and its use in various medical fields. We found that PA maybe was a low toxic drug that was acquired numerously through vegetable oil isolation and chemical synthesis and its stability and low water dissolution were improved in pharmaceutics. It also possessed specific pharmacokinetic characteristics, such as two-compartment open model, first-order kinetic elimination, and certain biometabolism and biotransformation process, and was shown to have multiple biological activities, that is, immunomodulatory, anti-inflammatory, antioxidative, antitumor, antimicrobial, insecticidal, antiatherogenic, antiemetic, whitening, and sedative activity. However, the systematic evaluations of preparation, pharmaceutics, toxicology, pharmacokinetics, and bioactivities underlying molecular mechanisms of action also required further investigation prior to practices of PA in clinic.

  9. Availability, Pharmaceutics, Security, Pharmacokinetics, and Pharmacological Activities of Patchouli Alcohol.

    Science.gov (United States)

    Hu, Guanying; Peng, Cheng; Xie, Xiaofang; Zhang, Sanyin; Cao, Xiaoyu

    2017-01-01

    Patchouli alcohol (PA), a tricyclic sesquiterpene, is one of the critical bioactive ingredients and is mainly isolated from aerial part of Pogostemon cablin (known as guanghuoxiang in China) belonging to Labiatae. So far, PA has been widely applied in perfume industries. This review was written with the use of reliable information published between 1974 and 2016 from libraries and electronic researches including NCKI, PubMed, Reaxys, ACS, ScienceDirect, Springer, and Wiley-Blackwell, aiming at presenting comprehensive outline of security, pharmacokinetics, and bioactivities of PA and at further providing a potential guide in exploring the PA and its use in various medical fields. We found that PA maybe was a low toxic drug that was acquired numerously through vegetable oil isolation and chemical synthesis and its stability and low water dissolution were improved in pharmaceutics. It also possessed specific pharmacokinetic characteristics, such as two-compartment open model, first-order kinetic elimination, and certain biometabolism and biotransformation process, and was shown to have multiple biological activities, that is, immunomodulatory, anti-inflammatory, antioxidative, antitumor, antimicrobial, insecticidal, antiatherogenic, antiemetic, whitening, and sedative activity. However, the systematic evaluations of preparation, pharmaceutics, toxicology, pharmacokinetics, and bioactivities underlying molecular mechanisms of action also required further investigation prior to practices of PA in clinic.

  10. Antibacterial effect evaluation of moxalactam against extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae with in vitro pharmacokinetics/pharmacodynamics simulation

    Directory of Open Access Journals (Sweden)

    Huang C

    2018-01-01

    Full Text Available Chen Huang,1,* Beiwen Zheng,1,* Wei Yu,2 Tianshui Niu,1 Tingting Xiao,1 Jing Zhang,1 Yonghong Xiao1 1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; 2Department of Infectious Diseases, Zhejiang Provincial People’s Hospital, Hangzhou, China *These authors contributed equally to this work Objectives: The aim of this study was to evaluate the bactericidal effects of moxalactam (MOX, cefotaxime (CTX, and cefoperazone/sulbactam (CFZ/SBT against extended-spectrum β-lactamase (ESBL producing Escherichia coli and Klebsiella pneumoniae, using an in vitro pharmacokinetics (PK/pharmacodynamics model.Methods: Two clinical ESBL-producing strains (blaCTX-M-15 positive E. coli 3376 and blaCTX-M-14 positive K. pneumoniae 2689 and E. coli American Type Culture Collection (ATCC25922 were used in the study. The PK Auto Simulation System 400 was used to simulate the human PK procedures after intravenous administration of different doses of MOX, CTX, and CFZ/SBT. Bacterial growth recovery time (RT and the area between the control growth curve and bactericidal curves (IE were employed to assess the antibacterial efficacies of all the agents.Results: The minimum inhibitory concentrations of MOX, CTX, and CFZ/SBT against E. coli ATCC25922, 3376, and 2689 strains were 0.5, 0.5, 0.25; 0.06, >256, 256; and 0.5/0.5, 16/16, 32/32 mg/L. All the agents demonstrated outstanding bactericidal effects against E. coli ATCC25922 (RT >24 h and IE >120 log10 CFU/mL·h−1 with simulating PK procedures, especially in the multiple dose administration models. Against ESBL producers, CTX and CFZ/SBT displayed only weak bactericidal effects, and subsequent regrowth was evident. MOX exhibited potent antibacterial activity against all the strains tested. The values of effective parameters of

  11. Stability and drug dissolution evaluation of Qingkailing soft/hard ...

    African Journals Online (AJOL)

    HPLC-DAD) method was developed ... stability and drug dissolution, which may affect the biopharmaceutics and the clinical effects of the drug. ... behavior may also affect the pharmacokinetic ..... of enzymes and intrinsic factors in stomach and.

  12. Direct 99mTc labeling of monoclonal antibodies: radiolabeling and in vitro stability

    International Nuclear Information System (INIS)

    Garron, J.Y.; Moinereau, M.; Pasqualini, R.; Saccavini, J.C.

    1991-01-01

    Direct labeling involves 99m Tc binding to different donor groups on the protein, giving multiple binding sites of various affinities resulting in an in vivo instability. The stability has been considerably improved by activating the antibody using a controlled reduction reaction (using 2-aminoethanethiol). This reaction generates sulfhydryl groups, which are known to strongly bind 99m Tc. The direct 99m Tc antibody labeling method was explored using whole antibodies and fragments. Analytical methods were developed for routine evaluation of radiolabeling yield and in vitro stability. Stable direct antibody labeling with 99m Tc requires the generation of sulfhydryl groups, which show high affinity binding sites for 99m Tc. Such groups are obtained with 2-aminoethanethiol (AET), which induces the reduction of the intrachain or interchain disulfide bond, with no structural deterioration or any loss of immunobiological activity of the antibody. The development of fast, reliable analytical methods has made possible the qualitative and quantitative assessment of technetium species generated by the radiolabeling process. Labeling stability is determined by competition of the 99m Tc-antibody bond with three ligands, Chelex 100 (a metal chelate-type resin), free DTPA solution and 1% HSA solution. Very good 99m Tc-antibody stability is obtained with activated IgG (IgGa) and Fab' fragment, which makes these substances possible candidates for immunoscintigraphy use. (author)

  13. Improved stability and oral bioavailability of Ganneng dropping pills following transforming lignans of herpetospermum caudigerum into nanosuspensions.

    Science.gov (United States)

    Li, Juan-Juan; Cheng, Ling; Shen, Gang; Qiu, Ling; Shen, Cheng-Ying; Zheng, Juan; Xu, Rong; Yuan, Hai-Long

    2018-01-01

    The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC 0-t , C max and decrease in T max when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability. Copyright © 2018 China Pharmaceutical

  14. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  15. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  16. Prediction of interindividual variation in drug plasma levels in vivo from individual enzyme kinetic data and physiologically based pharmacokinetic modeling

    NARCIS (Netherlands)

    Bogaards, J.J.P.; Hissink, E.M.; Briggs, M.; Weaver, R.; Jochemsen, R.; Jackson, P.; Bertrand, M.; Bladeren, P. van

    2000-01-01

    A strategy is presented to predict interindividual variation in drug plasma levels in vivo by the use of physiologically based pharmacokinetic modeling and human in vitro metabolic parameters, obtained through the combined use of microsomes containing single cytochrome P450 enzymes and a human liver

  17. Pharmacokinetics of chlorhexidine gluconate 0.02% in the rabbit cornea.

    Science.gov (United States)

    Xuguang, Sun; Yanchuang, Liang; Feng, Zhang; Shiyun, Luo; Xiaotang, Yin

    2006-08-01

    The aim of this study was to determine the pharmacokinetic parameters of chlorhexidine gluconate (CHG) in the rabbit cornea. Each eye of 16 New Zealand white rabbits were topically instilled with 50 microL of CHG 0.02% eye drops twice with a 5-min interval. Four (4) corneas of 2 rabbits were harvested at each time point. The concentration of CHG in the cornea was determined with high-performance liquid chromatography (HPLC) and 387 software to simulate the pharmacokinetic parameters. The concentration of CHG in the cornea displayed an open two-compartment model. Tmax was 13.75 min, Cmax 0.713 microg.g1, clearance rate 1.64 microg.g-1.min-1, and t1/2alpha, t1/2beta, and t1/2ka was 2.65, 48.72, and 2.67 min, respectively. The concentration of CHG in the rabbit cornea could be determined by means of HPLC. The maximum concentration of CHG in the corneal tissue was much higher than the trophozoite minimum amoebicidal concentration (TMAC) in vitro.

  18. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system.

    Science.gov (United States)

    Blanquet-Diot, Stéphanie; Soufi, Maha; Rambeau, Mathieu; Rock, Edmond; Alric, Monique

    2009-05-01

    Epidemiological studies have suggested that high consumption of tomato products is associated with a lower risk for chronic diseases. To exert their health effect, the phytochemicals of tomatoes have to be bioavailable and therefore it implies their stability through the digestion process. Here, we assessed the digestive stability of the red-pigmented lycopene and other carotenoids brought in nutritional quantity within different food matrixes, using the TNO gastrointestinal tract model (TIM). This multicompartmental dynamic system accurately reproduces the main parameters of gastric and small intestinal digestion in human. In vitro digestions of a standard meal containing red tomato (RT), yellow tomato (devoid of lycopene), or lycopene beadlets were performed. Zeaxanthin and lutein were stable throughout artificial digestions, whereas beta-carotene and all-trans lycopene were degraded (approximately 30 and 20% loss at the end of digestion, respectively) in the jejunal and ileal compartments. The recovery of beta-carotene in the digesta of the RT meal was significantly lower than that in the yellow one, showing a food matrix effect. In the same way, until 180 min of digestion, the recovery percentages of all-trans lycopene from RT were significantly lower than those issued from the supplement. Isomeric conformation also influenced the stability of carotenoids, 5-cis lycopene being the most stable isomer followed by all-trans and 9-cis. No trans-cis isomerization of lycopene occurred in the TIM. By using a relevant dynamic in vitro system, this study allowed us to gain further insight into the parameters influencing the digestive stability of carotenoids, and therefore their bioavailability, in humans.

  19. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats.

    Science.gov (United States)

    Chen, Xinmeng; Jin, Jing; Chen, Yaobin; Peng, Lingling; Zhong, Guoping; Li, Jiali; Bi, Huichang; Cai, Yefeng; Huang, Min

    2015-01-01

    Erigeron breviscapus (Vant.) Hand-Mazz, a traditional Chinese medicine, is often co-prescribed with clopidogrel for the treatment of ischemic vascular diseases. Scutellarin is the representative bioactive flavonoid isolated from this herb. The aim of this study was to explore the effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel. The in vitro studies using rat liver microsomes showed that scutellarin significantly inhibited the metabolism of clopidogrel. The IC50 value was 2.1 µM. Ten male rats were employed to investigate the effect of scutellarin on the pharmacokinetics of clopidogrel in vivo. After pretreatment with scutellarin, there were significant increases in the AUC0-∞ (from 0.9 ± 0.4 to 1.7 ± 0.6 ng/ml h; p <0.05) and Cmax (from 0.4 ± 0.1 to 0.9 ± 0.1 ng/ml; p <0.05) of clopidogrel. The pharmacokinetic data for clopidogrel active metabolite showed significant decreases in AUC0-∞ (18.2 ± 5.6 to 11.4 ± 3.7 ng/ml h; p <0.05) and Cmax (from 8.2 ± 1.2 to 4.3 ± 0.3 ng/ml; p <0.05) after pretreatment with scutellarin. Collectively, the metabolism and pharmacokinetics of clopidogrel were significantly affected by scutellarin. This study indicated that potential herb-drug interaction between scutellarin and clopidogrel should be taken into consideration in clinical use. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards

    Science.gov (United States)

    A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...

  1. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies.

    Science.gov (United States)

    Nageeb El-Helaly, Sara; Abd Elbary, Ahmed; Kassem, Mohamed A; El-Nabarawi, Mohamed A

    2017-11-01

    Being one of the highly effective drugs in treatment of Alzheimer's disease, Rivastigmine brain targeting is highly demandable, therefore liposomal dispersion of Rivastigmine was prepared containing 2 mol% PEG-DSPE added to Lecithin, Didecyldimethyl ammonium bromide (DDAB), Tween 80 in 1:0.02:0.25 molar ratio. A major challenge during the preparation of liposomes is maintaining a stable formulation, therefore the aim of our study was to increase liposomal stability by addition of DDAB to give an electrostatic stability and PEG-DSPE to increase stability by steric hindrance, yielding what we called an electrosteric stealth (ESS) liposomes. A medium nano-sized liposome (478 ± 4.94 nm) with a nearly neutral zeta potential (ZP, -8 ± 0.2 mV) and an entrapment efficiency percentage of 48 ± 6.22 was prepared. Stability studies showed no major alteration after three months storage period concerning particle size, polydispersity index, ZP, entrapment efficiency and in vitro release study confirming the successful formation of a stable liposomes. No histopathological alteration was recorded for ESS liposomes of the sheep nasal mucosa. While ESS liposomes showed higher % of drug permeating through the sheep nasal mucosa (48.6%) than the drug solution (28.7%). On completing the in vivo pharmacokinetic studies of 36 rabbits showed 424.2% relative bioavailability of the mean plasma levels of the formula ESS compared to that of RHT intranasal solution and 486% relative bioavailability of the mean brain levels.

  2. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation.

    Science.gov (United States)

    McDonald, Tom O; Giardiello, Marco; Martin, Philip; Siccardi, Marco; Liptrott, Neill J; Smith, Darren; Roberts, Phill; Curley, Paul; Schipani, Alessandro; Khoo, Saye H; Long, James; Foster, Alison J; Rannard, Steven P; Owen, Andrew

    2014-03-01

    Nanomedicine strategies have produced many commercial products. However, no orally dosed HIV nanomedicines are available clinically to patients. Although nanosuspensions of drug particles have demonstrated many benefits, experimentally achieving >25 wt% of drug relative to stabilizers is highly challenging. In this study, the emulsion-templated freeze-drying technique for nanoparticles formation is applied for the first time to optimize a nanodispersion of the leading non-nucleoside reverse transcriptase inhibitor efavirenz, using clinically acceptable polymers and surfactants. Dry monoliths containing solid drug nanoparticles with extremely high drug loading (70 wt% relative to polymer and surfactant stabilizers) are stable for several months and reconstitute in aqueous media to provide nanodispersions with z-average diameters of 300 nm. The solid drug nanoparticles exhibit reduced cytoxicity and increased in vitro transport through model gut epithelium. In vivo studies confirm bioavailability benefits with an approximately four-fold higher pharmacokinetic exposure after oral administration to rodents, and predictive modeling suggests dose reduction with the new formulation may be possible. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    Science.gov (United States)

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  4. Pre-formulation characterization and pharmacokinetic evaluation of resveratrol

    Science.gov (United States)

    Robinson-Barnes, Keila Delores

    Resveratrol, a natural compound found in grapes has potential chemotherapy effects but very low oral bioavailability in humans. The objectives of this study are to quantitatively characterized and understand the physiochemical properties and the pharmacokinetic evaluation of resveratrol. Solubility of resveratrol was measured in 10 common solvents at 25°C using HPLC. The solution state pH stability of resveratrol was assessed in various USP buffers ranging from pH 2-10 for 24 hours at 37 °C. Human plasma protein binding was determined using ultracentrifugation technique. Stability of resveratrol in human and rat plasma was also assessed at 37°C. Aliquots of blank plasma were spiked with a standard drug concentration to yield final plasma concentration of 50 mug/mL. Samples were analyzed for resveratrol concentration up to 96 hours. A group (n=8) of jugular vein-cannulated adult male Sprague-Dawley rats were evaluated and received intravenous dose of 20 mg/kg resveratrol. Serial blood samples were collected up to 8 hours after the dose. Plasma concentrations of resveratrol were measured by an established LC-MS/MS method. Pharmacokinetic parameters were assessed using noncompartmental methods. Resveratrol is more soluble in alcohol and PEG-400, and stable in acidic pH. It binds highly to plasma proteins, and degrades slower in human then rat plasma. Resveratrol exhibits bioexponential disposition after intravenous administration and has a short elimination half-life. Resveratrol displays bioexponential disposition following intravenous administration. The estimated mean maximum concentration was 1045.5 ng/mL and rapidly dropped below 100 ng/mL within 30 minutes. The area under the concentration time curve (AUC) for resveratrol was 13888.7 min*ng/mL The mean terminal elimination half-life was 50.9 minutes. The mean total body clearance (Cl) and volume of distribution of trans-resveratrol were 1711.9mL/min/kg and 91087.8 mL/kg, respectively. Pre

  5. A high throughput capillary electrophoresis method to obtain pharmacokinetics and quality attributes of a therapeutic molecule in circulation

    Science.gov (United States)

    Piparia, Reema; Ouellette, David; Stine, W. Blaine; Grinnell, Christine; Tarcsa, Edit; Radziejewski, Czeslaw; Correia, Ivan

    2012-01-01

    Therapeutic proteins circulating in blood are in a highly crowded, redox environment at high temperatures of ~37°C. These molecules circulate in the presence of enzymes and other serum proteins making it difficult to predict from in vitro studies the stability, aggregation or pharmacokinetics of a therapeutic protein in vivo. Here, we describe use of a high throughput capillary electrophoresis based microfluidic device (LabChip GXII) to obtain pharmacokinetics (PK) of a fluorescently labeled human mAb directly from serum. The non-labeled and labeled mAbs were evaluated in single dose rat PK studies using a traditional ELISA method or LabChip GXII, respectively. The fluorescent dye did not significantly alter clearance of this particular mAb, and PK parameters were comparable for labeled and unlabeled molecules. Further, from the CE profile we concluded that the mAb was resistant to fragmentation or aggregation during circulation. In a follow-up experiment, dimers were generated from the mAb using photo-induced cross-linking of unmodified proteins (PICUP) and labeled with the same fluorophore. The extent of dimerization was incomplete and some monomer and higher molecular weight species were found in the preparation. In rat PK studies, the serum concentration-time profile of the three entities present in the dimer preparation could be followed simultaneously with the GXII technology. While further studies are warranted, we believe this method could be adapted to obtain PK of different forms of antibodies (oxidized, deamidated or various glycosylated species) and other proteins. PMID:22647389

  6. Excipient-drug pharmacokinetic interactions: Effect of disintegrants on efflux across excised pig intestinal tissues

    Directory of Open Access Journals (Sweden)

    Werner Gerber

    2018-04-01

    Full Text Available Pharmaceutical excipients were designed originally to be pharmacologically inert. However, certain excipients were found to have altering effects on drug pharmacodynamics and/or pharmacokinetics. Pharmacokinetic interactions may be caused by modulation of efflux transporter proteins, intercellular tight junctions and/or metabolic enzyme amongst others. In this study, five disintegrants from different chemical classes were evaluated for P-glycoprotein (P-gp related inhibition and tight junction modulation effects. Bi-directional transport studies of the model compound, Rhodamine 123 (R123 were conducted in the absence (control group and presence (experimental groups of four concentrations of each selected disintegrant across excised pig jejunum tissue. The results showed that some of the selected disintegrants (e.g. Ac-di-sol® and Kollidon® CL-M increased R123 absorptive transport due to inhibition of P-gp related efflux, while another disintegrant (e.g. sodium alginate changed R123 transport due to inhibition of P-gp in conjunction with a transient opening of the tight junctions in a concentration dependent way. It may be concluded that the co-application of some disintegrants to the intestinal epithelium may lead to pharmacokinetic interactions with drugs that are susceptible to P-gp related efflux. However, the clinical significance of these in vitro permeation findings should be confirmed by means of in vivo studies. Keywords: Disintegrants, Excipient, Ex vivo, P-glycoprotein, Pharmacokinetic interactions, Rhodamine 123

  7. KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The purpose of the present study was to determine the in vitro and in vivo anti-cancer activity and pharmacological properties of 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-ylmethyl]-N-phenylbenzenesulfonamide, KCN1. In the present study, we investigated the in vitro activity of KCN1 on cell proliferation and cell cycle distribution of pancreatic cancer cells, using the MTT and BrdUrd assays, and flow cytometry. The in vivo anti-cancer effects of KCN1 were evaluated in two distinct xenograft models of pancreatic cancer. We also developed an HPLC method for the quantitation of the compound, and examined its stability in mouse plasma, plasma protein binding, and degradation by mouse S9 microsomal enzymes. Furthermore, we examined the pharmacokinetics of KCN1 following intravenous or intraperitoneal injection in mice. Results showed that, in a dose-dependent manner, KCN1 inhibited cell growth and induced cell cycle arrest in human pancreatic cancer cells in vitro, and showed in vivo anticancer efficacy in mice bearing Panc-1 or Mia Paca-2 tumor xenografts. The HPLC method provided linear detection of KCN1 in all of the matrices in the range from 0.1 to 100 µM, and had a lower limit of detection of 0.085 µM in mouse plasma. KCN1 was very stable in mouse plasma, extensively plasma bound, and metabolized by S9 microsomal enzymes. The pharmacokinetic studies indicated that KCN1 could be detected in all of the tissues examined, most for at least 24 h. In conclusion, our preclinical data indicate that KCN1 is a potential therapeutic agent for pancreatic cancer, providing a basis for its future development.

  8. A Physiologically Based Pharmacokinetic Model for the Oxime TMB-4: Simulation of Rodent and Human Data

    Science.gov (United States)

    2013-01-13

    later, Garrigue and other colleagues (Maurizis et al. 1992) pub- lished an in vitro binding study of TMB-4 with rabbit cartilaginous tissue cultures...as well as fat, kidney, liver, rapidly perfused tissues and slowly perfused tissues . All tissue compartments are diffusion limited. Model...pharmacokinetic data from the literature. The model was parameterized using rat plasma, tissue and urine time course data from intramuscular administration, as

  9. Prediction of phospholipidosis-inducing potential of drugs by in vitro biochemical and physicochemical assays followed by multivariate analysis.

    Science.gov (United States)

    Kuroda, Yukihiro; Saito, Madoka

    2010-03-01

    An in vitro method to predict phospholipidosis-inducing potential of cationic amphiphilic drugs (CADs) was developed using biochemical and physicochemical assays. The following parameters were applied to principal component analysis, as well as physicochemical parameters: pK(a) and clogP; dissociation constant of CADs from phospholipid, inhibition of enzymatic phospholipid degradation, and metabolic stability of CADs. In the score plot, phospholipidosis-inducing drugs (amiodarone, propranolol, imipramine, chloroquine) were plotted locally forming the subspace for positive CADs; while non-inducing drugs (chlorpromazine, chloramphenicol, disopyramide, lidocaine) were placed scattering out of the subspace, allowing a clear discrimination between both classes of CADs. CADs that often produce false results by conventional physicochemical or cell-based assay methods were accurately determined by our method. Basic and lipophilic disopyramide could be accurately predicted as a nonphospholipidogenic drug. Moreover, chlorpromazine, which is often falsely predicted as a phospholipidosis-inducing drug by in vitro methods, could be accurately determined. Because this method uses the pharmacokinetic parameters pK(a), clogP, and metabolic stability, which are usually obtained in the early stages of drug development, the method newly requires only the two parameters, binding to phospholipid, and inhibition of lipid degradation enzyme. Therefore, this method provides a cost-effective approach to predict phospholipidosis-inducing potential of a drug. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Formulation and in vitro and in vivo evaluation of film-coated montelukast sodium tablets using Opadry® yellow 20A82938 on an industrial scale

    Directory of Open Access Journals (Sweden)

    Zaid AN

    2013-02-01

    Full Text Available Abdel Naser Zaid,1 Salam Natur,2 Aiman Qaddumi,2 Abeer Abu Ghoush11Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine; 2Pharmacare PLC, Ramallah, PalestinePurpose: The aim of this study was to formulate stable film-coated montelukast sodium (MS tablets using Opadry® yellow 20A82938 (Montikast® tablets and to evaluate their in vitro and in vivo release profile.Methods: MS core tablets were manufactured using a direct compression method. Opadry yellow 20A82938 aqueous coating dispersion was used as the film-coating material. Dissolution of the film-coated tablets was tested in 900 mL of 0.5% sodium lauryl sulfate solution and the bioequivalence of the tablets was tested by comparing them with a reference formulation – Singulair® tablets. In vitro–in vivo correlation was evaluated. The stability of the obtained film-coated tablets was evaluated according to International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines.Results: The efficiency of the film coating was determined by subjecting the coated tablets to gastric pH and drug release was analyzed using high-performance liquid chromatography. The coated tablets had no obvious defects. MS release met the study criterion of not less than 80% dissolved after 30 minutes in 0.5% sodium lauryl sulfate solution. Statistical comparison of the main pharmacokinetic parameters clearly indicated no significant difference between test and reference in any of the calculated pharmacokinetic parameters. Level A correlation between in vitro drug release and in vivo absorption was found to be satisfactory.Conclusion: These findings suggest that aqueous film coating with Opadry yellow 20A82938 is an easy, reproducible, and economical approach for preparing stable MS film-coated tablets without affecting the drug-release characteristics.Keywords: coating, stability, aqueous

  11. Use of Physiologically Based Pharmacokinetic (PBPK) Models ...

    Science.gov (United States)

    EPA announced the availability of the final report, Use of Physiologically Based Pharmacokinetic (PBPK) Models to Quantify the Impact of Human Age and Interindividual Differences in Physiology and Biochemistry Pertinent to Risk Final Report for Cooperative Agreement. This report describes and demonstrates techniques necessary to extrapolate and incorporate in vitro derived metabolic rate constants in PBPK models. It also includes two case study examples designed to demonstrate the applicability of such data for health risk assessment and addresses the quantification, extrapolation and interpretation of advanced biochemical information on human interindividual variability of chemical metabolism for risk assessment application. It comprises five chapters; topics and results covered in the first four chapters have been published in the peer reviewed scientific literature. Topics covered include: Data Quality ObjectivesExperimental FrameworkRequired DataTwo example case studies that develop and incorporate in vitro metabolic rate constants in PBPK models designed to quantify human interindividual variability to better direct the choice of uncertainty factors for health risk assessment. This report is intended to serve as a reference document for risk assors to use when quantifying, extrapolating, and interpretating advanced biochemical information about human interindividual variability of chemical metabolism.

  12. UNCERTAINTIES IN TRICHLOROETHYLENE PHARMACOKINETIC MODELS

    Science.gov (United States)

    Understanding the pharmacokinetics of a chemical¯its absorption, distribution, metabolism, and excretion in humans and laboratory animals ¯ is critical to the assessment of its human health risks. For trichloroethylene (TCE), numerous physiologically-based pharmacokinetic (PBPK)...

  13. [Pharmacokinetic of four alkaloids of Yanshu injection in Beagel dogs].

    Science.gov (United States)

    Liu, Jiping; Xue, Mei; Huang, Xin; Wang, Shu; Jiang, Zhenzhou; Zhang, Luyong

    2012-06-01

    For studying the pharmacokinetic of Yanshu injections in Beagel dogs, a sensitive and reproducible LC-MS method for quantitative determination of matrine, oxymatrine, sophocarpine and oxysophocarpine in dog's plasma were developed and validated using monocrotaline as an internal standard after iv of Yanshu injections (Sophorae Flavescentis Radix and Heterosmilacis Japonicae Rhizoma). The separation of plasma samples was performed on a CN column by isocratic elution with methanol-10 mmol x L(-1) NH4Ac-0.02% HCOOH-H2O 90:10 as the mobile phase. The plasma concentration of four kinds of alkaloids were calculated in dog plasta by detection of healthy dogs given Yanshu injection fluid after in twelve hours of plasma samples, All data of concentration-time of four kinds of alkaloids were treated with pharmacokinetics program DAS 2. 0. MT, OMT, SP and OSP have a good linear relationship in 0.01-16.0, 0.02-60.0, 0.01-4.0, 0.02-16.0 mg x L(-1), respectively. The average recoveries were more than 90% and the RSD of precision and stability of the test were less than 6.4% iv 1.2 g x kg(-1) Yanshu injection, four kinds of alkaloids in rats meet the two-compartment open pharmacokinetic model, Cmax and the concentration of the original liquid in the proportion of the basic line, the AUC(0-infinity) of matrine and oxymatrine, sophocarpine and oxysophocarpine compared to the original both in the proportion of liquid increases, the MRT(0-infinity) and t(1/2z) of matrine and sophocarpine were less than oxymatrine and oxysophocarpine; four kinds of alkaloids apparent volume of distribution matrine > oxymatrine, sophocarpine > oxysophocarpine. A method with high recovery rate and good stabilitywas established to determine the blood concentration of MT, OMT, SP, OSP in Yanshu injection and applied in its pharmacokinetics successfully.

  14. Computational Analysis of Pharmacokinetic Behavior of Ampicillin

    Directory of Open Access Journals (Sweden)

    Mária Ďurišová

    2016-07-01

    Full Text Available orrespondence: Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic. Phone + 42-1254775928; Fax +421254775928; E-mail: maria.durisova@savba.sk 84 RESEARCH ARTICLE The objective of this study was to perform a computational analysis of the pharmacokinetic behavior of ampicillin, using data from the literature. A method based on the theory of dynamic systems was used for modeling purposes. The method used has been introduced to pharmacokinetics with the aim to contribute to the knowledge base in pharmacokinetics by including the modeling method which enables researchers to develop mathematical models of various pharmacokinetic processes in an identical way, using identical model structures. A few examples of a successful use of the modeling method considered here in pharmacokinetics can be found in full texts articles available free of charge at the website of the author, and in the example given in the this study. The modeling method employed in this study can be used to develop a mathematical model of the pharmacokinetic behavior of any drug, under the condition that the pharmacokinetic behavior of the drug under study can be at least partially approximated using linear models.

  15. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    Science.gov (United States)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  17. Population pharmacokinetics of caffeine and its metabolites theobromine, paraxanthine and theophylline after inhalation in combination with diacetylmorphine.

    Science.gov (United States)

    Zandvliet, Anthe S; Huitema, Alwin D R; de Jonge, Milly E; den Hoed, Rob; Sparidans, Rolf W; Hendriks, Vincent M; van den Brink, Wim; van Ree, Jan M; Beijnen, Jos H

    2005-01-01

    The stimulant effect of caffeine, as an additive in diacetylmorphine preparations for study purposes, may interfere with the pharmacodynamic effects of diacetylmorphine. In order to obtain insight into the pharmacology of caffeine after inhalation in heroin users, the pharmacokinetics of caffeine and its dimethylxanthine metabolites were studied. The objectives were to establish the population pharmacokinetics under these exceptional circumstances and to compare the results to published data regarding intravenous and oral administration in healthy volunteers. Diacetylmorphine preparations containing 100 mg of caffeine were used by 10 persons by inhalation. Plasma concentrations of caffeine, theobromine, paraxanthine and theophylline were measured by high performance liquid chromatography. Non-linear mixed effects modelling was used to estimate population pharmacokinetic parameters. The model was evaluated by the jack-knife procedure. Caffeine was rapidly and effectively absorbed after inhalation. Population pharmacokinetics of caffeine and its dimethylxanthine metabolites could adequately and simultaneously be described by a linear multi-compartment model. The volume of distribution for the central compartment was estimated to be 45.7 l and the apparent elimination rate constant of caffeine at 8 hr after inhalation was 0.150 hr(-1) for a typical individual. The bioavailability was approximately 60%. The presented model adequately describes the population pharmacokinetics of caffeine and its dimethylxanthine metabolites after inhalation of the caffeine sublimate of a 100 mg tablet. Validation proved the stability of the model. Pharmacokinetics of caffeine after inhalation and intravenous administration are to a large extent similar. The bioavailability of inhaled caffeine is approximately 60% in experienced smokers.

  18. Radiosynthesis and pharmacokinetics of [18F]fluoroethyl bufalin in hepatocellular carcinoma-bearing mice

    Directory of Open Access Journals (Sweden)

    Yang Z

    2017-01-01

    Full Text Available Zhaoshuo Yang,1 Jianhua Liu,2 Qingqing Huang,3 Zhouji Zhang,1 Jiawei Zhang,1 Yanjia Pan,1 Yunke Yang,1 Dengfeng Cheng4 1Department of Chinese Traditional Medicine, Zhongshan Hospital, Fudan University, 2School of Medicine, Shanghai Jiao Tong University, 3Department of Nuclear Medicine, Shanghai 10th People’s Hospital, Tongji University School of Medicine, 4Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China Purpose: Bufalin, the main component of a Chinese traditional medicine chansu, shows convincing anticancer effects in a lot of tumor cell lines. However, its in vivo behavior is still unclear. This research aimed to evaluate how bufalin was dynamically absorbed after intravenous injection in animal models. We developed a radiosynthesis method of [18F]fluoroethyl bufalin to noninvasively evaluate the tissue biodistribution and pharmacokinetics in hepatocellular carcinoma-bearing mice. Methods: [18F]fluoroethyl bufalin was synthesized with conjugation of 18F-CH2CH2OTs and bufalin. The radiochemical purity was proved by the radio-high-performance liquid chromatography (HPLC. The pharmacokinetic studies of [18F]fluoroethyl bufalin were then performed in Institute of Cancer Research (ICR mice. Furthermore, the biodistribution and metabolism of [18F]fluoroethyl bufalin in HepG2 and SMMC-7721 tumor-bearing nude mice were studied in vivo by micro-positron emission tomography (micro-PET. Results: The radiochemical purity (RCP of [18F]fluoroethyl bufalin confirmed by radio-HPLC was 99%±0.18%, and [18F]fluoroethyl bufalin showed good in vitro and in vivo stabilities. Blood dynamics of [18F]fluoroethyl bufalin conformed to the two compartments in the ICR mice model. The pharmacokinetic parameters of [18F]fluoroethyl bufalin were calculated by DAS 2.0 software. The area under concentration–time curve (AUC0–t and the values of clearance (CL were 540.137 µg/L·min and 0.001

  19. Clinical Pharmacokinetics of Paclitaxel Monotherapy

    DEFF Research Database (Denmark)

    Stage, Tore B; Bergmann, Troels K; Kroetz, Deanna L

    2018-01-01

    Paclitaxel is an anticancer agent efficacious in the treatment of ovarian, breast, and lung cancer. Due to a strong link between the pharmacokinetics and therapeutic efficacy of paclitaxel, we reviewed the literature on paclitaxel pharmacokinetics. Systematic data mining was performed to extract ...

  20. Pharmacokinetics and atherosclerotic lesions targeting effects of tanshinone IIA discoidal and spherical biomimetic high density lipoproteins.

    Science.gov (United States)

    Zhang, Wenli; He, Hongliang; Liu, Jianping; Wang, Ji; Zhang, Suyang; Zhang, Shuangshuang; Wu, Zimei

    2013-01-01

    High density lipoproteins (HDL) have been successfully reconstructed to deliver a large number of lipophilic drugs. Here, discoidal and spherical recombinant HDL loaded with cardiovascular drug tanshinone IIA (TA) were constructed (TA-d-rHDL and TA-s-rHDL), respectively. And next their in vitro physiochemical and biomimetic properties were characterized. Furthermore, pharmacokinetics, atherosclerotic lesions targeting effects and antiatherogenic efficacies were elaborately performed and compared in atherosclerotic New Zealand White (NZW) rabbits. In vitro characterizations results showed that both TA-d-rHDL and TA-s-rHDL had nano-size diameter, high entrapment efficiency (EE) and drug-loading capacity (DL). Additionally, similar to their native counterparts, TA-d-rHDL maintained remodeling behaviors induced by lecithin cholesterol acyltransferase (LCAT), and TA leaked during remodeling behaviors. Pharmacokinetic studies manifested that both TA-d-rHDL and TA-s-rHDL markedly improved pharmacokinetic behaviors of TA in vivo. Ex vivo imaging demonstrated that both d-rHDL and s-rHDL bound more avidly to atherosclerotic lesions than to normal vessel walls, and s-rHDL had better targeting effect than d-rHDL. Pharmacodynamic tests illustrated that both TA-d-rHDL and TA-s-rHDL had much stronger antiatherogenic efficacies than conventional TA nanostructured lipid carriers (TA-NLC), TA liposomes (TA-L) and commercially available preparation Sulfotanshinone Sodium Injection (SSI). Moreover, TA-s-rHDL had more potent antiatherogenic efficacies than TA-d-rHDL. Collectively our studies indicated that rHDL could be exploited as potential delivery vehicles of TA targeting atherosclerotic lesions as well as synergistically improving efficacies, especially for s-rHDL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Pharmacokinetics, efficacy prediction indexes and residue depletion of antibacterial drugs.

    Directory of Open Access Journals (Sweden)

    Arturo Anadón

    2016-06-01

    Full Text Available Pharmacokinetics behaviour of the antibacterial in food producing animals, provides information on the rates of absorption and elimination, half-life in plasma and tissue, elimination pathways and metabolism. The dose and the dosing interval of the antimicrobial can be justified by considering the pharmacokinetic/pharmacodynamic (PK/PD relationship, if established, as well as the severity of the disease, whereas the number of administrations should be in line with the nature of the disease. The target population for therapy should be well defined and possible to identify under field conditions. Based on in vitro susceptibility data, and target animal PK data, an analysis for the PK/PD relationship may be used to support dose regimen selection and interpretation criteria for a clinical breakpoint. Therefore, for all antibacterials with systemic activity, the MIC data collected should be compared with the concentration of the compound at the relevant biophase following administration at the assumed therapeutic dose as recorded in the pharmacokinetic studies. Currently, the most frequently used parameters to express the PK/PD relationship are Cmax/MIC (maximum serum concentration/MIC, %T > MIC (fraction of time in which concentration exceeds MIC and AUC/MIC (area under the inhibitory concentration– time curve/MIC. Furthermore, the pharmacokinetic parameters provide the first indication of the potential for persistent residues and the tissues in which they may occur. The information on residue depletion in food-producing animals, provides the data on which MRL recommendations will be based. A critical factor in the antibacterial medication of all food-producing animals is the mandatory withdrawal period, defined as the time during which drug must not be administered prior to the slaughter of the animal for consumption. The withdrawal period is an integral part of the regulatory authorities’ approval process and is designed to ensure that no

  2. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP)

    DEFF Research Database (Denmark)

    Viby-Mogensen, J.; Østergaard, D.; Donati, F.

    2000-01-01

    Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design......Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design...

  3. Biological Characterization of a Stable Effector Functionless (SEFL) Monoclonal Antibody Scaffold in Vitro*

    Science.gov (United States)

    Liu, Ling; Jacobsen, Frederick W.; Everds, Nancy; Zhuang, Yao; Yu, Yan Bin; Li, Nianyu; Clark, Darcey; Nguyen, Mai Phuong; Fort, Madeline; Narayanan, Padma; Kim, Kei; Stevenson, Riki; Narhi, Linda; Gunasekaran, Kannan; Bussiere, Jeanine L.

    2017-01-01

    The stable effector functionLess (SEFL) antibody was designed as an IgG1 antibody with a constant region that lacks the ability to interact with Fcγ receptors. The engineering and stability and pharmacokinetic assessments of the SEFL scaffold is described in the accompanying article (Jacobsen, F. W., Stevenson, R., Li, C., Salimi-Moosavi, H., Liu, L., Wen, J., Luo, Q., Daris, K., Buck, L., Miller, S., Ho, S-Y., Wang, W., Chen, Q., Walker, K., Wypych, J., Narhi, L., and Gunasekaran, K. (2017) J. Biol. Chem. 292). The biological properties of these SEFL antibodies were assessed in a variety of human and cynomolgus monkey in vitro assays. Binding of parent molecules and their SEFL variants to human and cynomolgus monkey FcγRs were evaluated using flow cytometry-based binding assays. The SEFL variants tested showed decreased binding affinity to human and cynomolgus FcγRs compared with the wild-type IgG1 antibody. In addition, SEFL variants demonstrated no antibody-dependent cell-mediated cytotoxicity in vitro against Daudi cells with cynomolgus monkey peripheral blood mononuclear cells, and had minimal complement-dependent cytotoxicity activity similar to that of the negative control IgG2 in a CD20+ human Raji lymphoma cell line. SEFL mutations eliminated off-target antibody-dependent monocyte phagocytosis of cynomolgus monkey platelets, and cynomolgus platelet activation in vitro. These experiments demonstrate that the SEFL modifications successfully eliminated Fc-associated effector binding and functions. PMID:27994063

  4. In Vitro and In Vivo Evaluations of the Anticalculus Effect of a Novel Stabilized Stannous Fluoride Dentifrice.

    Science.gov (United States)

    He, Tao; Anastasia, Mary Kay; Zsiska, Marianne; Farmer, Teresa; Schneiderman, Eva; Milleman, Jeffery L

    2017-12-01

    To evaluate the effect of a novel stannous fluoride dentifrice with zinc citrate on calculus inhibition using both in vitro and clinical models. Each investigation tested a novel stabilized 0.454% stannous fluoride dentifrice with zinc citrate as an anticalculus agent (Crest® Pro-Health™ smooth formula) compared to a negative control fluoride dentifrice. The in vitro study used the modified Plaque Growth and Mineralization Model (mPGM). Plaque biofilms were prepared and mineralized by alternate immersion of glass rods in human saliva and artificial mineralization solution. Treatments of 25% w/w dentifrice/water slurries were carried out for 60 seconds daily for 6 days, between saliva and mineralization solution immersions. Plaque calcium levels were determined by digestion and inductively coupled plasma optical emission spectroscopy. Student's t-test (p < 0.05) was used for statistical analysis. The clinical study was a parallel group, double-blind, randomized, and controlled trial. Following a dental prophylaxis, subjects entered a two-month run-in phase. At the end, they received a Volpe-Manhold Index (V-MI) calculus examination. Eighty (80) qualified subjects who had formed at least 9 mm of calculus on the linguals of the mandibular anterior teeth were re-prophied and randomly assigned to either the stannous fluoride dentifrice or the negative control. Subjects brushed twice daily, unsupervised, during the three-month test period, returning at Weeks 6 and 12 for safety and V-MI examinations. Statistical analyses were via ANCOVA. In vitro mPGM: The stabilized stannous fluoride dentifrice showed 20% less in vitro tartar formation, measured as calcium accumulation normalized by biofilm mass, versus the negative control (106.95 versus 133.04 µg Ca/mg biofilm, respectively, p < 0.05). Clinical Trial: Seventy-eight (78) subjects completed with fully evaluable data. The stannous fluoride dentifrice group had 15.1% less adjusted mean calculus at Week 6 compared to

  5. Effects of andrographolide on the pharmacokinetics of aminophylline and doxofylline in rats.

    Science.gov (United States)

    Li, X P; Zhang, C L; Gao, P; Gao, J; Liu, D

    2013-05-01

    Andrographolide, which is one of the main pharmaceutical ingredients in traditional Chinese medicine Andrographis paniculata, can clear heat, detoxify human body, cool blood and reduce swelling, etc. Respiratory tract infectious diseases have been treated with the combination of andrographolide and theophyllines clinically. As andrographolide inhibits the CYP1A2 activity in vitro, it potentially interacts with theophyllines that are mainly metabolized by CYP1A2. Therefore, we herein studied the effects of andrographolide on the pharmacokinetics of aminophylline and doxofylline in rats. The blood drug concentrations of aminophylline, doxofylline and its metabolite theophylline were determined by HPLC. The theophylline AUC(0-t) was significantly elevated confronting the combination of andrographolide and aminophylline compared to that of the control group (Pandrographolide. The results suggest that andrographolide and aminophylline should not be simultaneously administered because the former may raise the risks of side effects by inhibiting the clearance of the latter. In contrast, it is more secure to combine doxofylline with andrographolide owing to the almost intact pharmacokinetics. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Ji P

    2016-03-01

    Full Text Available Peng Ji, Tong Yu, Ying Liu, Jie Jiang, Jie Xu, Ying Zhao, Yanna Hao, Yang Qiu, Wenming Zhao, Chao WuCollege of Pharmacy, Liaoning Medical University, Jinzhou, Liaoning Province, People’s Republic of ChinaAbstract: Naringenin (NRG, a flavonoid compound, had been reported to exhibit extensive pharmacological effects, but its water solubility and oral bioavailability are only ~46±6 µg/mL and 5.8%, respectively. The purpose of this study is to design and develop NRG-loaded solid lipid nanoparticles (NRG-SLNs to provide prolonged and sustained drug release, with improved stability, involving nontoxic nanocarriers, and increase the bioavailability by means of pulmonary administration. Initially, a group contribution method was used to screen the best solid lipid matrix for the preparation of SLNs. NRG-SLNs were prepared by an emulsification and low-temperature solidification method and optimized using an orthogonal experiment approach. The morphology was examined by transmission electron microscopy, and the particle size and zeta potential were determined by photon correlation spectroscopy. The total drug content of NRG-SLNs was measured by high-performance liquid chromatography, and the encapsulation efficiency (EE was determined by Sephadex gel-50 chromatography and high-performance liquid chromatography. The in vitro NRG release studies were carried out using a dialysis bag. The best cryoprotectant to prepare NRG-SLN lyophilized powder for future structural characterization was selected using differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The short-term stability, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay, cellular uptake, and pharmacokinetics in rats were studied after pulmonary administration of NRG-SLN lyophilized powder. Glycerol monostearate was selected to prepare SLNs, and the optimal formulation of NRG-SLNs was spherical in shape, with a particle

  7. Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents.

    Science.gov (United States)

    Bosanquet, A G

    1985-01-01

    In vitro drug sensitivity of tumour biopsies is currently being determined using a variety of methods. For these chemosensitivity assays many drugs are required at short notice, and this in turn means that the drugs must generally be stored in solution. There are, however, a number of potential problems associated with dissolving and storing drugs for in vitro use, which include (a) drug adsorption; (b) effects of freezing; (c) drug stability under the normal conditions of dilution and setting up of an in vitro assay; and (d) insolubility of drugs in normal saline (NS) or phosphate-buffered saline (PBS). These problems are considered in general, and some recommendations for use of solutions of drugs in in vitro assays are suggested. The nitrosoureas and alkylating agents are also investigated in greater detail in this respect. The nitrosoureas are found to be very labile in PBS at pH 7, with 5% degradation (t0.95) occurring in 10-50 min at room temperature. These values are increased about 10-fold on refrigeration and about 5- to 10-fold on reduction of the pH of the medium to pH 4-5. At pH 7 and room temperature, t0.95 is observed in under 1 h with the alkylating agents nitrogen mustard, chlorambucil, melphalan, 2,5-diaziridinyl-3,6-bis(2-hydroxyethylamino)-1,4-benzoquinone (BZQ), dibromodulcitol, dibromomannitol, treosulphan, and procarbazine. Of the other alkylating agents, 4-hydroperoxycylophosphamide (sometimes used in vitro in place of cyclophosphamide), busulphan, dianhydrogalactitol, aziridinylbenzoquinone (AZQ), and dacarbazine have a t0.95 of between 2 and 24 h, while ifosfamide and pentamethylmelamine are both stable in aqueous solution for greater than 7 days. About half the drugs studied in detail have been stored frozen in solution for in vitro use, although very little is known about their stability under these conditions.

  8. Heritability of metoprolol and torsemide pharmacokinetics

    DEFF Research Database (Denmark)

    Matthaei, Johannes; Brockmöller, Jürgen; Tzvetkov, Mladen

    2015-01-01

    Genetic variation in the pharmacokinetics of metoprolol and torsemide due to polymorphisms in CYP2D6, CYP2C9 and OATP1B1 has been extensively studied. However, it is still unknown how much of variation in pharmacokinetics of these two clinically important drugs in total is due to genetic factors....... of the heritable variability in the pharmacokinetics of metoprolol and torsemide remains to be elucidated. This article is protected by copyright. All rights reserved....

  9. Genotypic and serotypic stability of Campylobacter jejuni strains during in vitro and in vivo passage

    DEFF Research Database (Denmark)

    Nielsen, Eva M.; Engberg, J.; Fussing, V.

    2001-01-01

    The stability of four typing methods and the sero- and genotypic stability of three Campylobacter jejuni strains were evaluated after subculturing 50 times in triplicate and after colonising mice for up to 26 days. The employed methods were Penner heat-stable serotyping; automated ribotyping (Ribo......Printing) using HaeIII restriction enzyme; pulsed-field gel electrophoresis (PFGE) using SmaI, SalI and KpnI; and random amplified polymorphic DNA analysis (RAPD) using primers 1254, 1281 and HLWL85. No changes in any of the DNA profiles or in the reactions to heat-stable antigens were identified among...... these strains after the in vitro and in vivo passages. However, one isolate became untypeable with RAPD after passage in one of the mice. In addition, eleven other C. jejuni strains of four different serotypes were subcultured ten times to screen for instability. Neither of these showed instability using PFGE...

  10. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor

    NARCIS (Netherlands)

    A.P. Hamberg (Paul); M.M. Woo (Margaret M.); L.C. Chen (Lin-Chi); J. Verweij (Jaap); M.G. Porro; L. Zhao (Ling); W. Li (Weili); D.A.J. van der Biessen (Diane); H.S. Sharma (Hari); T. Hengelage (Thomas); M.J.A. de Jonge (Maja)

    2011-01-01

    textabstractPurpose: Panobinostat is partly metabolized by CYP3A4 in vitro. This study evaluated the effect of a potent CYP3A inhibitor, ketoconazole, on the pharmacokinetics and safety of panobinostat. Methods: Patients received a single panobinostat oral dose on day 1, followed by 4 days wash-out

  11. Pharmacokinetics of posaconazole in koalas (Phascolarctos cinereus) after intravenous and oral administration.

    Science.gov (United States)

    Gharibi, S; Kimble, B; Vogelnest, L; Barnes, J; Stadler, C K; Govendir, M

    2017-12-01

    The pharmacokinetic profile of posaconazole in clinically normal koalas (n = 8) was investigated. Single doses of posaconazole were administered intravenously (i.v.; 3 mg/kg; n = 2) or orally (p.o.; 6 mg/kg; n = 6) with serial plasma samples collected over 24 and 36 hr, respectively. Plasma concentrations of posaconazole were quantified by validated high-performance liquid chromatography. A noncompartmental pharmacokinetic analysis of data was performed. Following i.v. administration, estimates of the median (range) of plasma clearance (CL) and steady-state volume of distribution (V ss ) were 0.15 (0.13-0.18) L hr -1  kg -1 and 1.23 (0.93-1.53) L/kg, respectively. The median (range) elimination half-life (t 1/2 ) after i.v. and p.o. administration was 7.90 (7.62-8.18) and 12.79 (11.22-16.24) hr, respectively. Oral bioavailability varied from 0.43 to 0.99 (median: 0.66). Following oral administration, maximum plasma concentration (C max ; median: 0.72, range: 0.55-0.93 μg/ml) was achieved in 8 (range 6-12) hr. The in vitro plasma protein binding of posaconazole incubated at 37°C was 99.25 ± 0.29%. Consideration of posaconazole pharmacokinetic/pharmacodynamic (PK/PD) targets for some yeasts such as disseminated candidiasis suggests that posaconazole could be an efficacious treatment for cryptococcosis in koalas. © 2017 John Wiley & Sons Ltd.

  12. Evaluation of two different HEDP content kits: Stability study against dilution both in vivo and in vitro

    International Nuclear Information System (INIS)

    Inoue, O.; Ikeda, I.; Kurata, K.

    1982-01-01

    Two different HEDP content kits (Kit A, HEDP: 1 mg, SnCl 2 x 2H 2 O: 0.5 mg; and Kit B, HEDP: 10 mg, SnCl 2 x 2H 2 O: 0.5 mg) were evaluated for their stability against dillution. Sup(99m)Tc-HEDP solutions prepared from these two kits were diluted from 10 to 6000 fold with 0.9% NaCl solution just before evaluation both in vivo and in vitro. In the case of Kit A, significant soft tissue uptake in vivo and released free pertechnetate in vitro were observed by diluting the sup(99m)Tc-HEDP solution. On the other hand, sup(99m)Tc-HEDP prepared from Kit B was found to be sufficiently stable against dilution. The stability after preparation of each diluted sup(99m)-HEDP was also greatly affected by its HEDP concentration. Preliminary analysis of absorption spectra for each 99 Tc-HEDP indicated the possibility of two different sup(99m)Tc-HEDP complex formation by varied HEDP concentration. These results indicated that a cold reagent like Kit A might cause a higher soft tissue uptake due to its dilution in vivo during a clinical study for bone scanning. (orig.) [de

  13. Radiolabelled of c-DOTA-RGD and c-DOTA-RGDf with 177Lu and evaluation in vitro and in vivo stability

    International Nuclear Information System (INIS)

    Vilchis J, A.

    2010-01-01

    Integrin αvβ3 has a critical role in tumor angio genesis and metastasis. Radiolabelled peptides based on the Arg-Gly-Asp (RGD) sequence have been reported as radiopharmaceuticals with high affinity and selectivity for the αvβ3 integrin. The aim of this study was to label c-DOTA-RGD and c-DOTA-RGDf peptides with 177 Lu and to evaluate their in vitro and in vivo stability as potential specific therapeutic radiopharmaceuticals. Labelled was carried out by direct reaction of 177 LuCl 3 with c-DOTA-RGD peptides in 1 M acetate buffer ph 5.5 at 90 o C for 30 min. Radiochemical purity and stability studies were realized by reversed phase HPLC and I TLC-Sg analyses in human serum and saline solution. Biological recognition was performed using MCF7 tumor cells (positive αvβ3) and in athymic mice with induced MCF7 tumors. Molecular mechanics and quantum mechanics calculations were performed to explain experimental results associated with the molecular recognition. 177 Lu-DOTA-RGD and 177 Lu-DOTA-RGDf were obtained with radiochemical purities > 95%, showing adequate in vitro and in vivo stability and specific binding to □ v □ 3 receptors. (Author)

  14. The pharmacokinetics of morphine and lidocaine in nine severe trauma patients.

    Science.gov (United States)

    Berkenstadt, H; Mayan, H; Segal, E; Rotenberg, M; Almog, S; Perel, A; Ezra, D

    1999-12-01

    To study the pharmacokinetic parameters of morphine and lidocaine after a single intravenous (i.v.) bolus in severe trauma patients. Clinical case study. Department of Anesthesiology and Intensive Care of a university hospital. Nine patients, ages 24 to 91 years (mean 54.4 yrs), admitted to the hospital with severe trauma (Injury Severity Score > 20) were included in the study. After initial evaluation and stabilization, a single i.v. dose of morphine 0.025 mg/kg and lidocaine 1.5 mg/kg was given separately, and blood samples were drawn for each drug serum concentration. Morphine pharmacokinetics was studied in eight patients, lidocaine pharmacokinetics in seven patients, and both drugs were studied in six patients. Morphine clearance 2.5 to 10 ml/kg/min (6 +/- 2.6, mean +/- SD) and volume of distribution 0.28 to 3.30 L/kg (1.4 +/- 1.0) were found to be lower than values described previously for healthy volunteers (33.5 +/- 9 ml/kg/min and 5.16 +/- 1.40 L/kg, respectively), and are similar to those described in trauma patients (5 +/- 2.9 ml/kg/min and 0.9 +/- 0.2 L/kg, respectively). In contrast, lidocaine clearance 4.5 to 9.4 ml/kg/min (6.7 +/- 1.7) and volume of distribution 0.39 to 1.20 L/kg (0.72 +/- 0.28) were similar to the value described in healthy volunteers (10 ml/kg/min and 1.32 L/kg, respectively). Changes in pharmacokinetics of drugs eliminated by the liver may occur in patients with severe trauma. The preserved lidocaine clearance indicates an almost normal hepatic blood flow and suggests that other mechanisms may be involved in the lower morphine clearance. The findings may have applications for the treatment of severe trauma patients and suggest that drug monitoring might be needed in some instances so as to avoid toxicity.

  15. The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zhenbao Li

    2017-05-01

    Full Text Available A biodegradable poly(lactic-co-glycolic acid loading atorvastatin calcium (AC nanoparticles (AC-PLGA-NPs were prepared by probe ultrasonication and evaporation method aiming at improving the oral bioavailability of AC. The effects of experimental parameters, including stabilizer species, stabilizer concentration and pH of aqueous phase, on particle size were also evaluated. The resultant nanoparticles were in spherical shape with an average diameter of 174.7 nm and a narrow particle size distribution. And the drug loading and encapsulation efficiency were about 8% and 71%, respectively. The particle size and polydispersion were almost unchanged in 10 days. The release curves of AC-PLGA-NPs in vitro displaying sustained release characteristics indicated that its release mechanisms were matrix erosion and diffusion. The pharmacokinetic study in vivo revealed that the Cmax and AUC0-∞ of AC-PLGA-NPs in rats were nearly 3.7-fold and 4.7-fold higher than that of pure atorvastatin calcium suspension. Our results demonstrated that the delivery of AC-PLGA-NPs could be a promising approach for the oral delivery of AC for enhanced bioavailability.

  16. Pharmacokinetics of mitragynine in man

    Directory of Open Access Journals (Sweden)

    Trakulsrichai S

    2015-04-01

    Full Text Available Satariya Trakulsrichai,1,2 Korbtham Sathirakul,3,4 Saranya Auparakkitanon,5 Jatupon Krongvorakul,5 Jetjamnong Sueajai,5 Nantida Noumjad,5 Chonlaphat Sukasem,5 Winai Wananukul2,6 1Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, 2Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, 3Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand; 4Center for Drug Research Discovery and Development, Thammasat Univerisity, Prathumthani, Thailand; 5Department of Pathology, Faculty of Medicine Ramathibodi Hospital, 6Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Background: Kratom, known botanically as Mitragyna speciosa (Korth., is an indigenous tree in Southeast Asia. Kratom is currently easily available worldwide via special shops and the Internet to use as a drug of abuse, opioid alternative, or pain killer. So far, the pharmacokinetics of this plant has been studied only in animals, and there is no such study in humans. The major abundant active alkaloid in Kratom, mitragynine, is one of the promising new chemical substances to be developed as a new drug. The aim of this study was to examine the pharmacokinetics of mitragynine and assess the linearity in pharmacokinetics in chronic users.Methods: Since Kratom is illegal in Thailand, studies in healthy subjects would be unethical. We therefore conducted a prospective study by enrolling ten chronic, regular, healthy users. We adjusted the steady state in each subject by giving a known amount of Kratom tea for 7 days before commencement of the experiment. We admitted and gave different oral doses to subjects to confirm linearity in pharmacokinetics. The mitragynine blood concentrations at 17 times points and the urine concentrations during the 24-hour period were collected and measured by liquid chromatography-tandem mass spectrometry method. Results: Ten male subjects completed

  17. In Vitro Metabolism and Stability of the Actinide Chelating Agent 3,4,3-LI(1,2-HOPO)

    OpenAIRE

    Choi, Taylor A.; Furimsky, Anna M.; Swezey, Robert; Bunin, Deborah I.; Byrge, Patricia; Iyer, Lalitha V.; Chang, Polly Y.; Abergel, Rebecca J.

    2015-01-01

    The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed a...

  18. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  19. Ultra rapidly dissolving repaglinide nanosized crystals prepared via bottom-up and top-down approach: influence of food on pharmacokinetics behavior.

    Science.gov (United States)

    Gadadare, Rahul; Mandpe, Leenata; Pokharkar, Varsha

    2015-08-01

    The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).

  20. Development of a Physiologically Based Pharmacokinetic and Pharmacodynamic Model to Determine Dosimetry and Cholinesterase Inhibition for a Binary Mixture of Chlorpyrifos and Diazinon in the Rat

    Energy Technology Data Exchange (ETDEWEB)

    Timchalk, Chuck; Poet, Torka S.

    2008-05-01

    Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed and validated for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). Based on similar pharmacokinetic and mode of action properties it is anticipated that these OPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, and blood/tissue cholinesterase (ChE) binding/inhibition. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than is DZN. These data are consistent with their observed in vivo relative potency (CPF>DZN). Each insecticide inhibited the other’s in vitro metabolism in a concentration-dependent manner. The PBPK model code used to described the metabolism of CPF and DZN was modified to reflect the type of inhibition kinetics (i.e. competitive vs. non-competitive). The binary model was then evaluated against previously published rodent dosimetry and ChE inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single- (15 mg/kg) vs. binary-mixtures (15+15 mg/kg) of CFP and DZN at this lower dose resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites; whereas, a binary oral dose of CPF+DZN at 60+60 mg/kg did result in observable changes in the DZN pharmacokinetics. Cmax was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive.

  1. Comparative pharmacokinetics of ceftiofur hydrochloride and ceftiofur sodium after administration to water buffalo (Bubalus bubalis).

    Science.gov (United States)

    Nie, Haiying; Feng, Xin; Peng, Jianbo; Liang, Liu; Lu, Chunyan; Tiwari, Roshan V; Tang, Shusheng; He, Jiakang

    2016-06-01

    OBJECTIVE To evaluate pharmacokinetics and bioavailability after administration of ceftiofur hydrochloride and ceftiofur sodium to water buffalo (Bubalus bubalis). ANIMALS 5 healthy adult water buffalo (3 males and 2 nonlactating females). PROCEDURES All animals received a dose (2.2 mg/kg) of 3 ceftiofur products (2 commercially available suspensions of ceftiofur hydrochloride [CEF1 and CEF2, IM] and ceftiofur sodium [CEF3, IV]). Blood samples were collected for up to 196 hours. Concentrations of ceftiofur in plasma were determined by use of high-performance liquid chromatography, and pharmacokinetic parameters were calculated on the basis of noncompartmental methods. RESULTS Most of the pharmacokinetic parameters, except for bioavailability and the area under the concentration-time curve extrapolated to infinity, were significantly different between the 2 products administered IM. Mean ± SD bioavailability of CEF1 and CEF2 was 89.57 ± 32.84% and 86.28 ± 11.49%, respectively, which indicated good absorption of both products. In addition, there was a longer drug residence time for CEF1 than for CEF2. Data analysis for CEF1 revealed a flip-flop phenomenon. CONCLUSIONS AND CLINICAL RELEVANCE In this study, there was good absorption of CEF1, and CEF1 had a longer drug residence time in vivo than did CEF2. On the basis of pharmacokinetic parameters and the in vitro antimicrobial susceptibility, a dosage regimen of 2.2 mg/kg administered at 48- and 36-hour intervals for CEF1 and CEF2, respectively, could be an appropriate choice for the treatment of buffalo with infectious diseases.

  2. [Pharmacokinetics of digoxin in hyperthyroidism. Effect of methimazole].

    Science.gov (United States)

    Izbicka, Maria; Gasińska, Teresa; Dec, Renata

    2010-01-01

    Cardiovascular abnormalities may be the only manifestations of overt hyperthyroidism. In patients with heart failure and atrial fibrillation digoxin can be beneficial in controlling the symptoms and signs, but hyperthyroid patients show an impaired response or even resistance to digoxin treatment. The aim of the study is to establish: 1. Are there any differences in the pharmacokinetics of a single oral dose of digoxin between hypertyroid and euthyroid patients? 2. Does simultaneous administration of digoxin and methimazole affect the pharmacokinetics of a single oral dose of dogoxin? 3. Does methimazole-induced euthyroidism change the pharmacokinetics of a single oral dose of digoxin? The subject of the study were 28 patients with hyperthyroidism and 15 healthy persons. We evaluated the pharmacokinetics of a single oral dose of digoxin. Moreover we evaluated pharmacokinetics of a single dose of digoxin after simultaneous administration of digoxin and methimazole in 12 patients and 12 methimazole treated patients werere-assessed once they had become euthyroid. Hyperthyroid patients showed significantly lower serum digoxin concentrations, shorter T1/2 beta and a significantly smaller area under the concentration curve (AUC) that the control group. Administration of methimazole did not affect digoxin pharmacokinetics. In hyperthyroid patients: 1. the pharmacokinetics of a single oral dose of digoxin does differ from that observed in healthy subjects. 2.methimazole do not alter digoxin pharmacokinetics.

  3. Investigation of the cytotoxicity, apoptosis and pharmacokinetics of Raddeanin A.

    Science.gov (United States)

    Gu, Guiying; Qi, Huanhuan; Jiang, Tianyue; Ma, Bo; Fang, Zheng; Xu, Hong; Zhang, Qi

    2017-03-01

    Raddeanin A, one of the triterpenoid saponins extracted from Anemone raddeana rhizome of the Ranunculaceae family, has demonstrated the ability to inhibit the growth of human hepatic and gastric cancer cells. However, the effects of Raddeanin A on human colon cancer cells have not been investigated extensively. The present study aimed to examine the antiproliferative and apoptosis-inducing effects of Raddeanin A on the HCT-116 human colon cancer cell line in vitro , and evaluate the pharmacokinetic and biodistribution properties of Raddeanin A in mice following a single oral administration. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to assess the in vitro cytotoxicity of Raddeanin A against HCT-116 cells. 4',6-Diamidino-2-phenylindole, dihydrochloride staining and flow cytometry were performed to further examine the apoptosis-inducing capability of Raddeanin A. The concentrations of Raddeanin A in the plasma and tissues were analyzed using liquid chromatography-tandem mass spectrometry. Raddeanin A showed a dose-dependent antiproliferative effect towards the HCT-116 cells, with a half maximal inhibitory concentration of ~1.4 µM. Treatment with Raddeanin A resulted in a significant induction of apoptosis, observed as apparent morphological changes of the nuclei, with a total apoptotic ratio of 41.8% at a concentration of 3 µM. Low concentrations of Raddeanin A were detected in the heart, liver, spleen, lung, kidney and plasma of the mice following oral administration, however, the majority of the Raddeanin A was distributed in the intestinal tract, particularly in the colon and caecum. These present study confirmed the growth-inhibitory and apoptosis-inducing effects of Raddeanin A on HCT-116 cells and performed preliminary examinations of its pharmacokinetic properties, which provide a foundation for further investigating the inhibitory mechanism on the colon cancer cells in vivo .

  4. Alterations in pentobarbital pharmacokinetics in response to parenteral and enteral alimentation in the rat.

    Science.gov (United States)

    Knodell, R G; Spector, M H; Brooks, D A; Keller, F X; Kyner, W T

    1980-12-01

    Recent in vitro observations suggest that the intestine, in addition to the liver, may be an important organ of first-pass drug metabolism. While a variety of changes in intestinal morphology and function in response to continuous parenteral and enteral nutrition have been documented, the effect of different routes of alimentation on intestinal drug metabolism has not been previously investigated. Objectives of this study were to assess the contribution of intestinal pentobarbital metabolism to overall in vivo pentobarbital pharmacokinetics in the rat and to determine if differences in pentobarbital pharmacokinetics were seen between parenterally and enterally nourished animals. After 7 days of continuous infusion of amino acid-glucose mixture via a gastric or jugular vein catheter, pharmacokinetic parameters were determined after 40 mg/kg of pentobarbital was given orally or into the portal or femoral vein. Reduced systemic availability of pentobarbital after oral administration as compared to portal vein injection was seen in both alimentation groups indicating that significant intestinal metabolism of pentobarbital occurred in vivo. Total area under the pentobarbital plasma concentration-time curve was significantly greater in parenterally nourished animals as compared with enterally alimented animals after oral, portal vein and systemic vein drug administration. Differences in pentobarbital, pharmacokinetics between the two alimentation groups appeared to be primarly due to effects on hepatic pentobarbital metabolism. While the mechanism producing these changes has not been defined, differences in gut hormones release and/or pancreatic secretion in response to the two routes of alimentation may be contributory. The widespread use of enteral and parenteral alimentation in clinical medicine suggests that studies to determine if nutrition route of administration similarly influences drug metabolism in humans may be indicated.

  5. Clinical pharmacokinetics of phenobarbital in neonates

    NARCIS (Netherlands)

    Touw, D J; Graafland, O; Cranendonk, A; Vermeulen, R J; van Weissenbruch, M M

    2000-01-01

    Demographic and clinical pharmacokinetic data collected from term and preterm neonates who were treated with intravenous phenobarbital have been analysed to evaluate the role of patient characteristics in pharmacokinetic parameters. Significant relationships between total body weight (TBW) or body

  6. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms.

    Science.gov (United States)

    Dosler, Sibel; Mataraci, Emel

    2013-11-01

    Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Application of Pharmacokinetics Modelling to Predict Human Exposure of a Cationic Liposomal Subunit Antigen Vaccine System

    Directory of Open Access Journals (Sweden)

    Raj K. S. Badhan

    2017-12-01

    Full Text Available The pharmacokinetics of a liposomal subunit antigen vaccine system composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA and the immunostimulatory agent trehalose 6,6-dibehenate (TDB (8:1 molar ratio combined with the Ag85B-ESAT-6 (H1 antigen were modelled using mouse in-vivo data. Compartment modelling and physiologically based pharmacokinetics (PBPK were used to predict the administration site (muscle and target site (lymph temporal concentration profiles and factors governing these. Initial estimates using compartmental modelling established that quadriceps pharmacokinetics for the liposome demonstrated a long half-life (22.6 days compared to the associated antigen (2.62 days. A mouse minimal-PBPK model was developed and successfully predicted quadriceps liposome and antigen pharmacokinetics. Predictions for the popliteal lymph node (PLN aligned well at earlier time-points. A local sensitivity analysis highlighted that the predicted AUCmuscle was sensitive to the antigen degradation constant kdeg (resulting in a 3-log change more so than the fraction escaping the quadriceps (fe (resulting in a 10-fold change, and the predicted AUCPLN was highly sensitive to fe. A global sensitivity analysis of the antigen in the muscle demonstrated that model predictions were within the 50th percentile for predictions and showed acceptable fits. To further translate in-vitro data previously generated by our group, the mouse minimal-PBPK model was extrapolated to humans and predictions made for antigen pharmacokinetics in muscle and PLN. Global analysis demonstrated that both kdeg and fe had a minimal impact on the resulting simulations in the muscle but a greater impact in the PLN. In summary, this study has predicted the in-vivo fate of DDA:TDB:H1 in humans and demonstrated the roles that formulation degradation and fraction escaping the depot site can play upon the overall depot effect within the site of administration.

  8. A Novel Approach to Flurbiprofen Pulsatile Colonic Release: Formulation and Pharmacokinetics of Double-Compression-Coated Mini-Tablets.

    Science.gov (United States)

    Vemula, Sateesh Kumar

    2015-12-01

    A significant plan is executed in the present study to study the effect of double-compression coating on flurbiprofen core mini-tablets to achieve the pulsatile colonic delivery to deliver the drug at a specific time as per the patho-physiological need of the disease that results in improved therapeutic efficacy. In this study, pulsatile double-compression-coated tablets were prepared based on time-controlled hydroxypropyl methylcellulose K100M inner compression coat and pH-sensitive Eudragit S100 outer compression coat. Then, the tablets were evaluated for both physical evaluation and drug-release studies, and to prove these results, in vivo pharmacokinetic studies in human volunteers were conducted. From the in vitro drug-release studies, F6 tablets were considered as the best formulation, which retarded the drug release in the stomach and small intestine (3.42 ± 0.12% in 5 h) and progressively released to the colon (99.78 ± 0.74% in 24 h). The release process followed zero-order release kinetics, and from the stability studies, similarity factor between dissolution data before and after storage was found to be 88.86. From the pharmacokinetic evaluation, core mini-tablets producing peak plasma concentration (C max) was 14,677.51 ± 12.16 ng/ml at 3 h T max and pulsatile colonic tablets showed C max = 12,374.67 ± 16.72 ng/ml at 12 h T max. The area under the curve for the mini and pulsatile tablets was 41,238.52 and 72,369.24 ng-h/ml, and the mean resident time was 3.43 and 10.61 h, respectively. In conclusion, development of double-compression-coated tablets is a promising way to achieve the pulsatile colonic release of flurbiprofen.

  9. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    Science.gov (United States)

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Clinical pharmacokinetics of melatonin

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Holst; Gögenur, Ismail

    2015-01-01

    was performed in PubMed and Embase databases. The pharmacokinetic variables included maximal plasma/serum concentration (Cmax), time to maximal plasma/serum concentration (Tmax), elimination half-life (T1/2), area-under-the-curve plasma/serum concentrations (AUC), clearance (Cl), volume of distribution (VD......) and 1602 L (4 mg, oral). Bioavailability of oral melatonin ranged from 9 to 33%. Pharmacokinetics was affected by age, caffeine, smoking, oral contraceptives, feeding status, and fluvoxamine. Critically ill patients displayed accelerated absorption and compromised elimination. CONCLUSIONS: Despite...

  11. Does a kampo medicine containing schisandra fruit affect pharmacokinetics of nifedipine like grapefruit juice?

    Science.gov (United States)

    Makino, Toshiaki; Mizuno, Fumika; Mizukami, Hajime

    2006-10-01

    Herb-drug interaction has attracted attention as medicinal topics recently. However, the drug information is sometimes confusing. Previous in vitro studies revealed that schisandra fruit had strong inhibitory effect on CYP3A4 and claimed the possibilities of its herb-drug interaction. In the present study, we evaluated the inhibitory effects of schisandra fruit and shoseiryuto, an herbal formula in Japanese traditional kampo medicine containing eight herbal medicines including schisandra fruit, on rat CYP3A activity in vitro, and the effect of shoseiryuto on pharmacokinetics of nifedipine in rats, in comparison with those of grapefruit juice, a well-characterized natural CYP3A inhibitor. Shoseiryuto and its herbal constituents, schisandra fruit, ephedra herb and cinnamon bark exhibited in vitro inhibitory effect of CYP3A. Although shoseiryuto inhibited rat CYP3A activity in vitro with a degree comparable to grapefruit juice, shoseiryuto did not significantly affect a plasma concentration profile of nifedipine in rats as grapefruit juice did. These results indicate that in vivo experiments using the extract of herbal medicine prepared with the same dosage form as patients take are necessary to provide proper information about herb-drug interaction.

  12. The research of preparing methodology and pharmacokinetics for a novel myocardial perfusion imaging agent 99Tcm-Q3

    International Nuclear Information System (INIS)

    Li Yunchun; Tan Tianzhi; Fan Chengzhong; Kuang Anren; Liang Zhenglu

    1999-01-01

    The preparing methodology and pharmacokinetics of myocardial perfusion imaging agent 99 Tc m -Q 3 are studied. The optimum scheme of 99 Tc m labelling on the basis of exploring the effects of varied labelled condition on radiochemical purity is established by multivariate orthogonal experimental design. The pharmacokinetics is investigated in rabbits, and the plasma protein binding rate is also measured. '30 μL of 1 mol/L KOH in 50% ethanol, 20 μL of 2 g/L SnCl 2 ·2H 2 O in degassed ethanol, 20 mg of N,N'-ethylene-bis (acetylacetone imine) and 5 mg of tris (3-methoxy-1-propyl) phosphine' are chosen as the optimum scheme of this labelled complex. Each of the factors exists significant effect on the radiochemical purity and there is no one-class cross effect on the radiochemical purity between them. The pharmacokinetics of 99 Tc m -Q 3 conform to two-compartment model with 0.23 +- 0.09 mL/min of excellent blood clearance, an initial half-time of 1.6 +- 0.4 min and a late half-time of 203.0 +- 25.8 min. In vitro protein binding rate is lower

  13. [Impact of ECMO on drugs pharmacokinetics].

    Science.gov (United States)

    Hasni, Nesrine; Lemaitre, Florian; Fernandez, Christine; Combes, Alain; Farinotti, Robert

    2011-01-01

    Extracorporeal membrane oxygenation (ECMO) is a life support system used in the treatment of patients of all ages with severe respiratory or cardiorespiratory failure. Despite the intensive use of drugs in the treatment of patients on ECMO, few studies have been conducted to determine the impact of this device on the pharmacokinetics of drugs. Publications in this field have shown pharmacokinetics changes resulting in an increase in volume of distribution of drugs and/or decreased clearance with consequent increase of their half-life. Reduced plasma concentrations of some drugs due to their adsorption on the different components of the circuit further complicates the determination of pharmacokinetic parameters of patients treated by ECMO. The literature published up to now on the pharmacokinetic changes associated with ECMO provide preliminary support for dosage adjustment. However, more research is needed to identify dosage strategies for this patient population. © 2011 Société Française de Pharmacologie et de Thérapeutique.

  14. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A Helix-Stabilizing Linker Improves Subcutaneous Bioavailability of a Helical Peptide Independent of Linker Lipophilicity

    Science.gov (United States)

    Zhang, Liang; Navaratna, Tejas; Thurber, Greg M.

    2016-01-01

    Stabilized peptides address several limitations to peptide-based imaging agents and therapeutics such as poor stability and low affinity due to conformational flexibility. There is also active research in developing these compounds for intracellular drug targeting, and significant efforts have been invested to determine the effects of helix stabilization on intracellular delivery. However, much less is known about the impact on other pharmacokinetic parameters such as plasma clearance and bioavailability. We investigated the effect of different fluorescent helix-stabilizing linkers with varying lipophilicity on subcutaneous (SC) bioavailability using the glucagon-like peptide-1 (GLP-1) receptor ligand exendin as a model system. The stabilized peptides showed significantly higher protease resistance and increased bioavailability independent of linker hydrophilicity, and all subcutaneously delivered conjugates were able to successfully target the islets of Langerhans with high specificity. The lipophilic peptide variants had slower absorption and plasma clearance than their respective hydrophilic conjugates, and the absolute bioavailability was also lower likely due to the longer residence times in the skin. The ease and efficiency of double-click helix stabilization chemistries is a useful tool for increasing the bioavailability of peptide therapeutics, many of which suffer from rapid in vivo protease degradation. Helix stabilization using linkers of varying lipophilicity can further control SC absorption and clearance rates to customize plasma pharmacokinetics. PMID:27327034

  16. PHARMACOKINETIC RESEARCHES AND PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    V. G. Belolipetskaya

    2015-12-01

    Full Text Available An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very  persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime.

  17. PHARMACOKINETIC RESEARCHES AND PRACTICAL MEDICINE

    Directory of Open Access Journals (Sweden)

    V. G. Belolipetskaya

    2005-01-01

    Full Text Available An article gives in a comprehensive manner the main idea of pharmacokinetics, as the science about rules of substances behavior in the internal environment of the organism, as well as of main parameters of pharmacokinetic researches. The article provides vivid and very  persuasive examples of high practical importance of this science both for creating new medical forms of drugs and for choosing the optimal of therapy regime.

  18. Pharmacokinetic aspects of the anti-epileptic drug substance vigabatrin

    DEFF Research Database (Denmark)

    Nøhr, Martha Kampp; Frølund, Sidsel; Holm, René

    2014-01-01

    are discussed in detail. Special focus is on the contribution of the proton-coupled amino acid transporter 1 (PAT1) for intestinal vigabatrin absorption. Furthermore, the review gives an overview of the pharmacokinetic parameters of vigabatrin across different species and drug-food and drug-drug interactions......Drug transporters in various tissues, such as intestine, kidney, liver and brain, are recognized as important mediators of absorption, distribution, metabolism and excretion of drug substances. This review gives a current status on the transporter(s) mediating the absorption, distribution......, metabolism and excretion properties of the anti-epileptic drug substance vigabatrin. For orally administered drugs, like vigabatrin, the absorption from the intestine is a prerequisite for the bioavailability. Therefore, transporter(s) involved in the intestinal absorption of vigabatrin in vitro and in vivo...

  19. Preparation, in-vitro and in-vivo evaluation of spray-dried ternary solid dispersion of biopharmaceutics classification system class II model drug.

    Science.gov (United States)

    Paidi, Sharan K; Jena, Sunil K; Ahuja, Bhupesh K; Devasari, Naresh; Suresh, Sarasija

    2015-05-01

    The objective of this study was to investigate the impact of a novel spray-dried ternary solid dispersion (TSD) on the dissolution rate and bioavailability of a biopharmaceutics classification system (BCS) class II model drug, atorvastatin calcium trihydrate (ATC), and evaluate its in-vitro and in-vivo performance. TSD of ATC was prepared by spray-drying method employing ethanol/water solvent systems. The TSD formulations, composed of hydroxypropyl methylcellulose (HPMC E5) and nicotinamide, were optimized by rotatable central composite design. Physicochemical characterization along with dissolution, stability and pharmacokinetic study of optimized TSD was evaluated. The optimized TSD was found to be amorphous with spherical shape morphology. It exhibited a fourfold increase in dissolution rate in comparison to ATC, with a considerable enhancement in oral bioavailability (relative bioavailability of 134.11%). Physicochemical characterization and dissolution study of optimized TSD at the end of stability studies clearly indicated that the stability of optimized TSD was due to hydrogen bonding between drug and HPMC E5 and nicotinamide. This bonding remained unaffected even under stressful conditions of high temperature and humidity. The TSD exhibits a significant increase in dissolution rate, and for this reason should be useful as an efficacious tool to enhance the bioavailability of BCS class II drug molecule, ATC. © 2015 Royal Pharmaceutical Society.

  20. Nanohydroxyapatite Silicate-Based Cement Improves the Primary Stability of Dental Implants: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2017-01-01

    Full Text Available Objectives. Insufficient cortical bone volume when placing implants can lead to lack of primary stability. The use of cement as a bone fill material in bone defects around dental implant could result in better clinical outcome. HA has shown excellent biological properties in implant dentistry. The purpose of this study was to evaluate the effect of nanohydroxyapatite powder (Nano-HA in combination with accelerated Portland cement (APC on implant primary stability in surgically created circumferential bone defects in a bovine rib in vitro model. Materials and Methods. Sixteen bovine rib bones and thirty-six implants of same type and size (4 mm × 10 mm were used. Implants were divided into six groups: no circumferential bone defect, defect and no grafting, bone chips grafting, Nano-HA grafting, APC grafting, and Nano-HA mixed to APC grafting (Nano-HA-APC. Circumferential defects around the implants were prepared. The implant stability quotient (ISQ values were measured before and after the grafting. Results. APC exhibited the highest ISQ values. A significant increase of ISQ values following the grafting of Nano-HA-APC (18.08±5.82 and APC alone (9.50±4.12 was achieved. Increase of ISQ values after 72 hours was 24.16±5.01 and 17.58±4.89, respectively. Nano-HA grafting alone exhibited the least rise in ISQ values. Conclusions. Nanohydroxyapatite silicate-based cement could improve the primary stability of dental implants in circumferential bone defect around implants.

  1. Physiologically Based Pharmacokinetic and Absorption Modeling for Osmotic Pump Products.

    Science.gov (United States)

    Ni, Zhanglin; Talattof, Arjang; Fan, Jianghong; Tsakalozou, Eleftheria; Sharan, Satish; Sun, Dajun; Wen, Hong; Zhao, Liang; Zhang, Xinyuan

    2017-07-01

    Physiologically based pharmacokinetic (PBPK) and absorption modeling approaches were employed for oral extended-release (ER) drug products based on an osmotic drug delivery system (osmotic pumps). The purpose was to systemically evaluate the in vivo relevance of in vitro dissolution for this type of formulation. As expected, in vitro dissolution appeared to be generally predictive of in vivo PK profiles, because of the unique feature of this delivery system that the in vitro and in vivo release of osmotic pump drug products is less susceptible to surrounding environment in the gastrointestinal (GI) tract such as pH, hydrodynamic, and food effects. The present study considered BCS (Biopharmaceutics Classification System) class 1, 2, and 3 drug products with half-lives ranging from 2 to greater than 24 h. In some cases, the colonic absorption models needed to be adjusted to account for absorption in the colon. C max (maximum plasma concentration) and AUCt (area under the concentration curve) of the studied drug products were sensitive to changes in colon permeability and segmental GI transit times in a drug product-dependent manner. While improvement of the methodology is still warranted for more precise prediction (e.g., colonic absorption and dynamic movement in the GI tract), the results from the present study further emphasized the advantage of using PBPK modeling in addressing product-specific questions arising from regulatory review and drug development.

  2. Pharmacokinetics of Botanical Drugs and Plant Extracts.

    Science.gov (United States)

    Dominguez More, Gina Paola; Cardenas, Paola Andrea; Costa, Geison M; Simoes, Claudia M O; Aragon, Diana Marcela

    2017-01-01

    Botanical drugs contain plant extracts, which are complex mixtures of compounds. As with conventional drugs, it is necessary to validate their efficacy and safety through preclinical and clinical studies. However, pharmacokinetic studies for active constituents or characteristic markers in botanical drugs are rare. The objective of this review was to investigate the global state of the art in pharmacokinetic studies of active ingredients present in plant extracts and botanical drugs. A review of pharmacokinetics studies of chemical constituents of plant extracts and botanical drugs was performed, with a total of 135 studies published between January 2004 and February 2015 available in recognized scientific databases. Botanical preparations were mainly found in the form of aqueous extracts of roots and rhizomes. The most widely studied species was Salvia miltiorrhiza Bunge, and the compound most frequently used as a pharmacokinetic marker was berberine. Most studies were performed using the Sprague Dawley rat model, and the preparations were mainly administered orally in a single dose. Quantification of plasma concentrations of pharmacokinetic markers was performed mainly by liquid-liquid extraction, followed by high performance liquid chromatography coupled to mass spectrometry detector. In conclusion, in recent years there has been an increasing interest among researchers worldwide in the study of pharmacokinetics of bioactive compounds in botanical drugs and plant extracts, especially those from the Traditional Chinese Medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Da-Chaihu-Tang alters the pharmacokinetics of nifedipine in rats and a treatment regimen to avoid this.

    Science.gov (United States)

    He, Ju-Xiu; Ohno, Kenji; Tang, Jun; Hattori, Masao; Tani, Tadato; Akao, Teruaki

    2014-11-01

    To investigate the influence of co-administrated Da-Chaihu-Tang (DCT; a traditional Chinese formulation) on the pharmacokinetics of nifedipine, as well as the safe optimal dosing interval to avoid the adverse interactions. A single dose of DCT was administered with nifedipine simultaneously, 2 h before, 30 min before or 30 min after nifedipine administration. Pharmacokinetics of nifedipine with or without DCT were compared. The influences of DCT on nifedipine intestinal mucosal and hepatic metabolism were studied by using rat in-vitro everted jejunal sac model and hepatic microsomes. A simultaneous co-administration of DCT significantly increased the area under concentration-time curve from time zero to infinity (AUC0-inf ) of nifedipine. In-vitro mechanism investigations revealed that DCT inhibited both the intestinal and the hepatic metabolism of nifedipine. Further study on the optimal dosing interval for nifedipine and DCT revealed that administration of DCT 30 min before or after nifedipine did not significantly change the AUC of nifedipine. The bioavailability of nifedipine is significantly increased by a simultaneous oral co-administration of DCT. This increase is caused by the inhibitory effect of DCT on both the intestinal mucosal and the hepatic metabolism of nifedipine. The dose interval between DCT and nifedipine needs to be set for over 30 min to avoid such drug-drug interactions. © 2014 Royal Pharmaceutical Society.

  4. The pharmacokinetics of the interstitial space in humans

    OpenAIRE

    Levitt, David G

    2003-01-01

    Background The pharmacokinetics of extracellular solutes is determined by the blood-tissue exchange kinetics and the volume of distribution in the interstitial space in the different organs. This information can be used to develop a general physiologically based pharmacokinetic (PBPK) model applicable to most extracellular solutes. Methods The human pharmacokinetic literature was surveyed to tabulate the steady state and equilibrium volume of distribution of the solutes mannitol, EDTA, morphi...

  5. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus‐like particle

    Science.gov (United States)

    Tekewe, Alemu; Connors, Natalie K.; Middelberg, Anton P. J.

    2016-01-01

    Abstract Virus‐like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co‐expression of unmodified VP1 and modular VP1‐RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs. PMID:27222486

  6. Effects of different combinations of nanocrystallization technologies on avanafil nanoparticles: in vitro, in vivo and stability evaluation.

    Science.gov (United States)

    Soliman, Kareem AbuBakr; Ibrahim, Howida Kamal; Ghorab, Mahmoud Mohammed

    2017-01-30

    The study investigated the effects of different combined top-down and bottom-up nanocrystallization technologies on particle size and solid state of avanafil nanoparticles. Combined antisolvent precipitation-ultrasonication (sonoprecipitation) technique was adopted to prepare 18 formulas according to 3 2 .2 1 factorial design using 3 stabilizers; Tween 80, polyvinyl alcohol (PVA) and Pluronic F68 at different concentrations with different cryoprotectants. Particle size analysis of the lyophilized formulas showed that Tween 80 was an effective nanoparticles stabilizer in contrast to Pluronic F68 and PVA which failed to prevent nanoparticles flocculation when they were used at high concentration. The combined effects of nanonization and amorphism contributed to the improvement in solubility. Further processing of the sonoprecipitated formulas by high pressure homogenization (HPH) (modified NANOEDGE™ technology) resulted in further size reduction of PVA-stabilized particles, while it stimulated flocculation of Tween-stabilized nanoparticles. Nevertheless, all of the homogenized formulas partially retrieved their crystallinity which reduced their solubility. Non-homogenized formula 2E composed of 1:2 (avanafil: Tween) with glucose as cryoprotectant, exhibited 13.68- and 2.59-fold improvement in solubility and in vitro dissolution, respectively. This formula had oral bioavailability of 137.02% relative to Spedra ® tablets and it maintained its nanosize, amorphism and dissolution behavior over 6 months of storage under stress conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  8. [Diagnostic value of quantitative pharmacokinetic parameters and relative quantitative pharmacokinetic parameters in breast lesions with dynamic contrast-enhanced MRI].

    Science.gov (United States)

    Sun, T T; Liu, W H; Zhang, Y Q; Li, L H; Wang, R; Ye, Y Y

    2017-08-01

    Objective: To explore the differential between the value of dynamic contrast-enhanced MRI quantitative pharmacokinetic parameters and relative pharmacokinetic quantitative parameters in breast lesions. Methods: Retrospective analysis of 255 patients(262 breast lesions) who was obtained by clinical palpation , ultrasound or full-field digital mammography , and then all lessions were pathologically confirmed in Zhongda Hospital, Southeast University from May 2012 to May 2016. A 3.0 T MRI scanner was used to obtain the quantitative MR pharmacokinetic parameters: volume transfer constant (K(trans)), exchange rate constant (k(ep))and extravascular extracellular volume fraction (V(e)). And measured the quantitative pharmacokinetic parameters of normal glands tissues which on the same side of the same level of the lesions; and then calculated the value of relative pharmacokinetic parameters: rK(rans)、rk(ep) and rV(e).To explore the diagnostic value of two pharmacokinetic parameters in differential diagnosis of benign and malignant breast lesions using receiver operating curves and model of logistic regression. Results: (1)There were significant differences between benign lesions and malignant lesions in K(trans) and k(ep) ( t =15.489, 15.022, respectively, P 0.05). The areas under the ROC curve(AUC)of K(trans), k(ep) and V(e) between malignant and benign lesions were 0.933, 0.948 and 0.387, the sensitivity of K(trans), k(ep) and V(e) were 77.1%, 85.0%, 51.0% , and the specificity of K(trans), k(ep) and V(e) were 96.3%, 93.6%, 60.8% for the differential diagnosis of breast lesions if taken the maximum Youden's index as cut-off. (2)There were significant differences between benign lesions and malignant lesions in rK(trans), rk(ep) and rV(e) ( t =14.177, 11.726, 2.477, respectively, P quantitative pharmacokinetic parameters and the prediction probability of relative quantitative pharmacokinetic parameters( Z =0.867, P =0.195). Conclusion: There was no significant

  9. Comparative Pharmacokinetics of Cefquinome (Cobactan 2.5% following Repeated Intramuscular Administrations in Sheep and Goats

    Directory of Open Access Journals (Sweden)

    Mohamed El-Hewaity

    2014-01-01

    Full Text Available The comparative pharmacokinetic profile of cefquinome was studied in sheep and goats following repeated intramuscular (IM administrations of 2 mg/kg body weight. Cefquinome concentrations in serum were determined by microbiological assay technique using Micrococcus luteus (ATCC 9341 as test organism. Following intramuscular injection of cefquinome in sheep and goats, the disposition curves were best described by two-compartment open model in both sheep and goats. The pharmacokinetics of cefquinome did not differ significantly between sheep and goats; similar intramuscular dose rate of cefquinome should therefore be applicable to both species. On comparing the data of serum levels of repeated intramuscular injections with first intramuscular injection, it was revealed that repeated intramuscular injections of cefquinome have cumulative effect in both species sheep and goats. The in vitro serum protein-binding tendency was 15.65% in sheep and 14.42% in goats. The serum concentrations of cefquinome along 24 h after injection in this study were exceeding the MICs of different susceptible microorganisms responsible for serious disease problems. These findings indicate successful use of cefquinome in sheep and goats.

  10. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform.

    Science.gov (United States)

    Choudhury, Hira; Gorain, Bapi; Karmakar, Sanmoy; Biswas, Easha; Dey, Goutam; Barik, Rajib; Mandal, Mahitosh; Pal, Tapan Kumar

    2014-01-02

    Paclitaxel, a potential anticancer agent against solid tumors has been restricted from its oral use due to poor water solubility as well as Pgp efflux property. The present study was aimed to improve the oral bioavailability of paclitaxel through development of (o/w) nanoemulsion consisting of Capryol 90 as internal phase with Tween 20 as emulsifier with water as an external phase. Formulations were selected from the nanoemulsion region of pseudo-ternary phase diagrams, formulated by aqueous titration method. The developed nanoemulsion has been characterized by its thermodynamic stability, morphology, droplet size, zeta potential, viscosity where in vitro release was evaluated through dialysis. Paclitaxel nanoemulsion exhibited thermodynamical stability with low viscosity, nano-sized oil droplets in water with low poly-dispersity index. The shelf life of the paclitaxel nanoemulsion was found to be approximately 2.38 years. Increased permeability through the Caco-2 cell monolayer and decreased efflux is great advantageous for nanoemulsion formulation. The effects of paclitaxel nanoemulsion on breast cancer cell proliferation, morphology and DNA fragmentation were analyzed in vitro which showed significant anti-proliferation and decreased IC50 values in nanoemulsion group which may be due to enhanced uptake of paclitaxel through the oil core. Moreover, the absolute oral bioavailability and sustained release profile of the paclitaxel nanoemulsion evaluated in mouse model was found to improve up to 55.9%. The concentration of paclitaxel in mice plasma was determined by our validated LC-MS/MS method. By reviewing the significant outcome of the present investigation based on stability study, Caco-2 permeability, cell proliferative assay and pharmacokinetic profile it may be concluded that the oral nanoemulsion has got encouraging advantages over the presently available formulations of this injectable chemotherapeutic drug. Copyright © 2013 Elsevier B.V. All rights

  11. Formulation, characterization, in vitro and in vivo evaluation of castor oil based self-nano emulsifying levosulpiride delivery systems.

    Science.gov (United States)

    Poorani, G; Uppuluri, Spandana; Uppuluri, Kiran Babu

    2016-09-01

    Levosulpiride (LSP) is a hydrophobic benzamide derivative used in the treatment of schizophrenia. SNEDDS were extensively practiced for systemic delivery of poorly aqueous soluble drugs to achieve maximum bioavailability. The present study was focussed on the formulation, optimisation and evaluation of LSP SNEDDS using castor oil, for enhancement of drug absorption and bioavailability. Pseudo-ternary phase diagram was plotted to identify the range of SNEDDS components. Twenty formulations were designed, prepared and characterised by its particle size, zeta potential, viscosity, and stability. In vitro dissolution data modelling was performed. Microscopy, FTIR and in vivo bioavailability studies were conducted for optimum formulation. Results, discussion and conclusion: F18 containing castor oil, 0.9 mL; PEG 600, 1.36 mL and Tween 80, 2.74 mL was found to be optimum. The optimised formulation had shown uniform globule size, no interactions of LSP with SNEDDS components and higher pharmacokinetic parameters than that of commercial preparation.

  12. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    Science.gov (United States)

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  13. Pharmacokinetics and absolute bioavailability of phenobarbital in neonates and young infants, a population pharmacokinetic modelling approach.

    Science.gov (United States)

    Marsot, Amélie; Brevaut-Malaty, Véronique; Vialet, Renaud; Boulamery, Audrey; Bruguerolle, Bernard; Simon, Nicolas

    2014-08-01

    Phenobarbital is widely used for treatment of neonatal seizures. Its optimal use in neonates and young infants requires information regarding pharmacokinetics. The objective of this study is to characterize the absolute bioavailability of phenobarbital in neonates and young infants, a pharmacokinetic parameter which has not yet been investigated. Routine clinical pharmacokinetic data were retrospectively collected from 48 neonates and infants (weight: 0.7-10 kg; patient's postnatal age: 0-206 days; GA: 27-42 weeks) treated with phenobarbital, who were administered as intravenous or suspension by oral routes and hospitalized in a paediatric intensive care unit. Total mean dose of 4.6 mg/kg (3.1-10.6 mg/kg) per day was administered by 30-min infusion or by oral route. Pharmacokinetic analysis was performed using a nonlinear mixed-effect population model software). Data were modelled with an allometric pharmacokinetic model, using three-fourths scaling exponent for clearance (CL). The population typical mean [per cent relative standard error (%RSE)] values for CL, apparent volume of distribution (Vd ) and bioavailability (F) were 0.0054 L/H/kg (7%), 0.64 L/kg (15%) and 48.9% (22%), respectively. The interindividual variability of CL, Vd , F (%RSE) and residual variability (%RSE) was 17% (31%), 50% (27%), 39% (27%) and 7.2 mg/L (29%), respectively. The absolute bioavailability of phenobarbital in neonates and infants was estimated. The dose should be increased when switching from intravenous to oral administration. © 2013 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.

  14. The pharmacokinetic behaviour of hypoxoside taken orally by ...

    African Journals Online (AJOL)

    measured with a high-performance liquid chromatography . method. For the ... the South African Medicines Control Council to conduct a phase I pharmacokinetic and ... The significance of various factors that influence the pharmacokinetic ...

  15. [Research progress on current pharmacokinetic evaluation of Chinese herbal medicines].

    Science.gov (United States)

    Li, Guofu; Zhao, Haoru; Yang, Jin

    2011-03-01

    In order to prove safety and efficacy, herbal medicines must undergo the rigorous scientific researches such as pharmacokinetic and bioavailability, before they are put on the market in the foreign countries. Botanical Drug Products promulgated by the US FDA could guide industry sponsors to develop herbal drugs, which was also an important reference for investigating Chinese herbal medicines. This paper reviews and discusses novel approaches for how to assess systemic exposure and pharmacokinetic of Chinese herbal medicines, which were in line with FDA guidance. This mainly focus on identifying pharmacokinetic markers of botanical products, integral pharmacokinetic study of multiple components, Biopharmaceutics drug disposition classification system, and population pharmacokinetic-pharmacodynamic study in herb-drug interaction.

  16. Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D

    2014-05-01

    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available. Copyright © 2013. Published by Elsevier Ireland Ltd.

  17. Population pharmacokinetics of a three-day chloroquine treatment in patients with Plasmodium vivax infection on the Thai-Myanmar border.

    Science.gov (United States)

    Höglund, Richard; Moussavi, Younis; Ruengweerayut, Ronnatrai; Cheomung, Anurak; Äbelö, Angela; Na-Bangchang, Kesara

    2016-02-29

    A three-day course of chloroquine remains a standard treatment of Plasmodium vivax infection in Thailand with satisfactory clinical efficacy and tolerability although a continuous decline in in vitro parasite sensitivity has been reported. Information on the pharmacokinetics of chloroquine and its active metabolite desethylchloroquine are required for optimization of treatment to attain therapeutic exposure and thus prevent drug resistance development. The study was conducted at Mae Tao Clinic for migrant worker, Tak province, Thailand. Blood samples were collected from a total of 75 (8 Thais and 67 Burmeses; 36 males and 39 females; aged 17-52 years) patients with mono-infection with P. vivax malaria [median (95 % CI) admission parasitaemia 4898 (1206-29,480)/µL] following treatment with a three-day course of chloroquine (25 mg/kg body weight chloroquine phosphate over 3 days). Whole blood concentrations of chloroquine and desethylchloroquine were measured using high performance liquid chromatography with UV detection. Concentration-time profiles of both compounds were analysed using a population-based pharmacokinetic approach. All patients showed satisfactory response to standard treatment with a three-day course of chloroquine with 100 % cure rate within the follow-up period of 42 days. Neither recurrence of P. vivax parasitaemia nor appearance of P. falciparum occurred. A total of 1045 observations from 75 participants were included in the pharmacokinetic analysis. Chloroquine disposition was most adequately described by the two-compartment model with one transit compartment absorption model into the central compartment and a first-order transformation of chloroquine into desethylchloroquine with an additional peripheral compartment added to desethylchloroquine. First-order elimination from the central compartment of chloroquine and desethylchloroquine was assumed. The model exhibited a strong predictive ability and the pharmacokinetic parameters were

  18. Drug Transport and Pharmacokinetics for Chemical Engineers

    Science.gov (United States)

    Simon, Laurent; Kanneganti, Kumud; Kim, Kwang Seok

    2010-01-01

    Experiments in continuous-stirred vessels were proposed to introduce methods in pharmacokinetics and drug transport to chemical engineering students. The activities can be incorporated into the curriculum to illustrate fundamentals learned in the classroom. An appreciation for the role of pharmacokinetics in drug discovery will also be gained…

  19. PHARMACOKINETICS AND PHARMACOKINETIC DYNAMIC RELATIONSHIP OF ROCURONIUM BROMIDE IN HUMANS

    NARCIS (Netherlands)

    WIERDA, JMKH; PROOST, JH; SCHIERE, S; HOMMES, FDM

    The existing human pharmacokinetic studies have been reviewed and compared with data derived from animals. The earliest study confirms the similarity of rocuronium to vecuronium with respect to the variables derived from the plasma concentration decay curves and the proportion excreted renally.

  20. Ofloxacin pharmacokinetics in renal failure.

    OpenAIRE

    Fillastre, J P; Leroy, A; Humbert, G

    1987-01-01

    The pharmacokinetics of ofloxacin were investigated in 12 normal subjects and 21 uremic patients after the administration of a single oral 200-mg dose. An open three-compartment body model was used to calculate ofloxacin pharmacokinetic parameters. In healthy subjects, the peak plasma level averaged 2.24 +/- 0.90 micrograms/ml and was obtained at 0.83 +/- 0.31 h. The absorption rate constant was 4.22 +/- 1.64 h-1. The terminal half-life was 7.86 +/- 1.81 h. The apparent volume of distribution...

  1. Differences Between Human and Rat Intestinal and Hepatic Bisphenol-A Glucuronidation and the Influence of Alamethicin on In vitro Kinetic Measurements

    Science.gov (United States)

    The extent to which membrane disrupting agents, such as alamethicin, may alter cofactor transport and influence in vitro kinetic measurements of glucurondiation is a major concern regarding the characterization and extrapolation of inter-and intra-species pharmacokinetics of bisp...

  2. An interactive program for pharmacokinetic modeling.

    Science.gov (United States)

    Lu, D R; Mao, F

    1993-05-01

    A computer program, PharmK, was developed for pharmacokinetic modeling of experimental data. The program was written in C computer language based on the high-level user-interface Macintosh operating system. The intention was to provide a user-friendly tool for users of Macintosh computers. An interactive algorithm based on the exponential stripping method is used for the initial parameter estimation. Nonlinear pharmacokinetic model fitting is based on the maximum likelihood estimation method and is performed by the Levenberg-Marquardt method based on chi 2 criterion. Several methods are available to aid the evaluation of the fitting results. Pharmacokinetic data sets have been examined with the PharmK program, and the results are comparable with those obtained with other programs that are currently available for IBM PC-compatible and other types of computers.

  3. The effect of liposome encapsulation on the pharmacokinetics of recombinant secretory leukocyte protease inhibitor (rSLPI) therapy after local delivery to a guinea pig asthma model.

    LENUS (Irish Health Repository)

    Gibbons, Aileen

    2011-09-01

    Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo.

  4. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model.

    Science.gov (United States)

    Nimalaratne, Chamila; Savard, Patricia; Gauthier, Sylvie F; Schieber, Andreas; Wu, Jianping

    2015-03-25

    Among dietary carotenoids, lutein and zeaxanthin are known to protect against age-related macular degeneration, a leading cause of irreversible vision loss in the elderly. Egg yolk is rich in lutein and zeaxanthin, however, the effect of cooking and gastrointestinal digestion on yolk carotenoids is poorly understood. An in vitro dynamic gastrointestinal model (TIM-1) was used to investigate the digestive stability and bioaccessibility of carotenoids from boiled, fried, and scrambled eggs. Bioaccessibility but not digestive stability was significantly affected by the method of cooking. The main egg carotenoids, all-E-lutein and all-E-zeaxanthin, were stable during the digestion with average recoveries of 90 and 88%, respectively. No trans-cis isomerization of carotenoids was observed during digestion. Both all-E-lutein and all-E-zeaxanthin from scrambled eggs showed significantly lower bioaccessibility compared to boiled eggs. The results indicate that the bioaccessibility of egg carotenoids can be affected by different food preparation methods.

  5. Pharmacokinetic of 3 H-deacetylasperulosidic acid in mice

    Directory of Open Access Journals (Sweden)

    Simla Basar-Maurer

    2016-08-01

    Full Text Available Background: An investigation was conducted to determine the fate of the iridoid derivative deacetylasperulosidic acid (DAA after oral application to mice. Methods: DAA was extracted from Morinda citrifolia leaf and purified by preparative HPLC. The identity was verified by MS and NMR spectroscopy. A sample of DAA was radioactively labelled with tritium and applied to mice by gavage. The pharmacokinetic of the radioactivity was investigated in blood, organs, urine and feces. Metabolites were isolated in blood and urine by HPLC and identified by LC-MS. In vitro incubation of DAA with mouse duodenum and liver homogenate and human fecal bacteria was performed and possible metabolites were separated by HPLC. Results: DAA was rapidly absorbed and excreted mainly via the kidneys with a half-life of 30 minutes. Radioactivity was present in all organs with highest concentrations in kidney and liver. Almost 100% of the radioactivity isolated from urine and organs could be identified as unchanged DAA. Additionally, no metabolism could be observed after in vitro incubation of DAA with mouse small intestine or liver homogenate. However, a total breakdown of the molecule was observed after incubation of DAA with human intestinal bacteria. Conclusion: The absorption and excretion of glycosides such as DAA in mammals without hydrolysis is a potential defense mechanism of animals against the toxicity of these compounds.

  6. In vivo and In vitro Evaluations of Intestinal Gabapentin Absorption

    DEFF Research Database (Denmark)

    Larsen, Malte Selch; Frølund, Sidsel; Nøhr, Martha Kampp

    2015-01-01

    of gabapentin by both in vivo and in vitro investigations METHODS: Pharmacokinetic parameters were determined following a range of intravenous (5-100 mg/kg) and oral doses (10-200 mg/kg) in rats. Transepithelial transport (50 μM-50 mM) and apical uptake of gabapentin (0.01-50 mM) were investigated in Caco-2...... cells. The effect of co-application of the LAT-inhibitor, BCH, and the b(0,+)-substrate, L-lysine, on intestinal transport of gabapentin was evaluated in vivo and in vitro. RESULTS: Gabapentin showed dose-dependent oral absorption kinetics and dose-independent disposition kinetics. Co-application of BCH...... inhibited intestinal absorption in vivo and apical uptake in vitro, whereas no effect was observed following co-application of L-lysine. CONCLUSIONS: The present study shows for the first time that BCH was capable of inhibiting intestinal absorption of gabapentin in vivo. Furthermore, in Caco-2 cell...

  7. In Vivo and In Vitro Activities and ADME-Tox Profile of a Quinolizidine-Modified 4-Aminoquinoline: A Potent Anti-P. falciparum and Anti-P. vivax Blood-Stage Antimalarial

    Directory of Open Access Journals (Sweden)

    Nicoletta Basilico

    2017-12-01

    Full Text Available Natural products are a prolific source for the identification of new biologically active compounds. In the present work, we studied the in vitro and in vivo antimalarial efficacy and ADME-Tox profile of a molecular hybrid (AM1 between 4-aminoquinoline and a quinolizidine moiety derived from lupinine (Lupinus luteus. The aim was to find a compound endowed with the target product profile-1 (TCP-1: molecules that clear asexual blood-stage parasitaemia, proposed by the Medicine for Malaria Venture to accomplish the goal of malaria elimination/eradication. AM1 displayed a very attractive profile in terms of both in vitro and in vivo activity. By using standard in vitro antimalarial assays, AM1 showed low nanomolar inhibitory activity against chloroquine-sensitive and resistant P. falciparum strains (range IC50 16–53 nM, matched with a high potency against P. vivax field isolates (Mean IC50 29 nM. Low toxicity and additivity with artemisinin derivatives were also demonstrated in vitro. High in vivo oral efficacy was observed in both P. berghei and P. yoelii mouse models with IC50 values comparable or better than those of chloroquine. The metabolic stability in different species and the pharmacokinetic profile in the mouse model makes AM1 a compound worth further investigation as a potential novel schizonticidal agent.

  8. Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmacokinetic studies.

    Science.gov (United States)

    Jaipal, A; Pandey, M M; Charde, S Y; Raut, P P; Prasanth, K V; Prasad, R G

    2015-07-01

    Delivery of orally compromised therapeutic drug molecules to the systemic circulation via buccal route has gained a significant interest in recent past. Bioadhesive polymers play a major role in designing such buccal dosage forms, as they help in adhesion of designed delivery system to mucosal membrane and also prolong release of drug from delivery system. In the present study, HPMC (release retarding polymer) and mannitol (diluent and pore former) were used to prepare bioadhesive and controlled release buccal discs of buspirone hydrochloride (BS) by direct compression method. Compatibility of BS with various excipients used during the study was assessed using DSC and FTIR techniques. Effect of mannitol and HPMC on drug release and bioadhesive strength was studied using a 3(2) factorial design. The drug release rate from delivery system decreased with increasing levels of HPMC in formulations. However, bioadhesive strength of formulations increased with increasing proportion of HPMC in buccal discs. Increased levels of mannitol resulted in faster rate of drug release and rapid in vitro uptake of water due to the formation of channels in the matrix. Pharmacokinetic studies of designed bioadhesive buccal discs in rabbits demonstrated a 10-fold increase in bioavailability in comparison with oral bioavailability of buspirone reported.

  9. Population pharmacokinetics of olprinone in healthy male volunteers

    Directory of Open Access Journals (Sweden)

    Kunisawa T

    2014-03-01

    Full Text Available Takayuki Kunisawa,1 Hidefumi Kasai,2 Makoto Suda,2 Manabu Yoshimura,3 Ami Sugawara,3 Yuki Izumi,3 Takafumi Iida,3 Atsushi Kurosawa,3 Hiroshi Iwasaki3 1Surgical Operation Department, Asahikawa Medical University Hospital, Hokkaido, Japan; 2Clinical Study Management Division, Bell Medical Solutions Inc, Tokyo, Japan; 3Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Hokkaido, Japan Background: Olprinone decreases the cardiac preload and/or afterload because of its vasodilatory effect and increases myocardial contractility by inhibiting phosphodiesterase III. Purpose: The objective of this study was to characterize the population pharmacokinetics of olprinone after a single continuous infusion in healthy male volunteers. Methods: We used 500 plasma concentration data points collected from nine healthy male volunteers for the study. The population pharmacokinetic analysis was performed using the nonlinear mixed effect model (NONMEM® software. Results: The time course of plasma concentration of olprinone was best described using a two-compartment model. The final pharmacokinetic parameters were total clearance (7.37 mL/minute/kg, distribution volume of the central compartment (134 mL/kg, intercompartmental clearance (7.75 mL/minute/kg, and distribution volume of the peripheral compartment (275 mL/kg. The interindividual variability in the total clearance was 12.4%, and the residual error variability (exponential and additive were 22.2% and 0.129 (standard deviation. The final pharmacokinetic model was assessed using a bootstrap method and visual predictive check. Conclusion: We developed a population pharmacokinetic model of olprinone in healthy male adults. The bootstrap method and visual predictive check showed that this model was appropriate. Our results might be used to develop the population pharmacokinetic model in patients. Keywords: phosphodiesterase III inhibitor, men, pharmacokinetic model

  10. Investigating pulmonary and systemic pharmacokinetics of inhaled olodaterol in healthy volunteers using a population pharmacokinetic approach.

    Science.gov (United States)

    Borghardt, Jens Markus; Weber, Benjamin; Staab, Alexander; Kunz, Christina; Formella, Stephan; Kloft, Charlotte

    2016-03-01

    Olodaterol, a novel β2-adrenergic receptor agonist, is a long-acting, once-daily inhaled bronchodilator approved for the treatment of chronic obstructive pulmonary disease. The aim of the present study was to describe the plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers by population pharmacokinetic modelling and thereby to infer its pulmonary fate. Plasma and urine data after intravenous administration (0.5-25 μg) and oral inhalation (2.5-70 μg via the Respimat® inhaler) were available from a total of 148 healthy volunteers (single and multiple dosing). A stepwise model building approach was applied, using population pharmacokinetic modelling. Systemic disposition parameters were fixed to estimates obtained from intravenous data when modelling data after inhalation. A pharmacokinetic model, including three depot compartments with associated parallel first-order absorption processes (pulmonary model) on top of a four-compartment body model (systemic disposition model), was found to describe the data the best. The dose reaching the lung (pulmonary bioavailable fraction) was estimated to be 49.4% [95% confidence interval (CI) 46.1, 52.7%] of the dose released from the device. A large proportion of the pulmonary bioavailable fraction [70.1% (95% CI 66.8, 73.3%)] was absorbed with a half-life of 21.8 h (95% CI 19.7, 24.4 h). The plasma and urine pharmacokinetics of olodaterol after intravenous administration and oral inhalation in healthy volunteers were adequately described. The key finding was that a high proportion of the pulmonary bioavailable fraction had an extended pulmonary residence time. This finding was not expected based on the physicochemical properties of olodaterol. © 2015 The British Pharmacological Society.

  11. An Allometric Model of Remifentanil Pharmacokinetics and Pharmacodynamics

    NARCIS (Netherlands)

    Eleveld, Douglas J.; Proost, Johannes H.; Vereecke, Hugo; Absalom, Anthony R.; Olofsen, Erik; Vuyk, Jaap; Struys, Michel M. R. F.

    Background: Pharmacokinetic and pharmacodynamic models are used to predict and explore drug infusion schemes and their resulting concentration profiles for clinical application. Our aim was to develop a pharmacokinetic-pharmacodynamic model for remifentanil that is accurate in patients with a wide

  12. [Blood plasma protein adsorption capacity of perfluorocarbon emulsion stabilized by proxanol 268 (in vitro and in vivo studies)].

    Science.gov (United States)

    Sklifas, A N; Zhalimov, V K; Temnov, A A; Kukushkin, N I

    2012-01-01

    The adsorption abilities of the perfluorocarbon emulsion stabilized by Proxanol 268 were investigated in vitro and in vivo. In vitro, the saturation point for the blood plasma proteins was nearly reached after five minutes of incubation of the emulsion with human/rabbit blood plasma and was stable for all incubation periods studied. The decrease in volume ratio (emulsion/plasma) was accompanied by the increase in the adsorptive capacity of the emulsion with maximal values at 1/10 (3.2 and 1.5 mg of proteins per 1 ml of the emulsion, for human and rabbit blood plasma, respectively) that was unchanged at lower ratios. In vivo, in rabbits, intravenously injected with the emulsion, the proteins with molecular masses of 12, 25, 32, 44, 55, 70, and 200 kDa were adsorbed by the emulsion (as in vitro) if it was used 6 hours or less before testing. More delayed testing (6 h) revealed elimination of proteins with molecular masses of 25 and 44 kDa and an additional pool of adsorpted new ones of 27, 50, and 150 kDa. Specific adsorptive capacity of the emulsion enhanced gradually after emulsion injection and reached its maximum (3.5-5 mg of proteins per 1 ml of the emulsion) after 24 hours.

  13. Pharmacokinetics of drugs in pregnancy.

    Science.gov (United States)

    Feghali, Maisa; Venkataramanan, Raman; Caritis, Steve

    2015-11-01

    Pregnancy is a complex state where changes in maternal physiology have evolved to favor the development and growth of the placenta and the fetus. These adaptations may affect preexisting disease or result in pregnancy-specific disorders. Similarly, variations in physiology may alter the pharmacokinetics or pharmacodynamics that determines drug dosing and effect. It follows that detailed pharmacologic information is required to adjust therapeutic treatment strategies during pregnancy. Understanding both pregnancy physiology and the gestation-specific pharmacology of different agents is necessary to achieve effective treatment and limit maternal and fetal risk. Unfortunately, most drug studies have excluded pregnant women based on often-mistaken concerns regarding fetal risk. Furthermore, over two-thirds of women receive prescription drugs while pregnant, with treatment and dosing strategies based on data from healthy male volunteers and non-pregnant women, and with little adjustment for the complex physiology of pregnancy and its unique disease states. This review will describe basic concepts in pharmacokinetics and their clinical relevance and highlight the variations in pregnancy that may impact the pharmacokinetic properties of medications. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Pharmacokinetics of taurolidine following repeated intravenous infusions measured by HPLC-ESI-MS/MS of the derivatives taurultame and taurinamide in glioblastoma patients.

    Science.gov (United States)

    Stendel, Ruediger; Scheurer, Louis; Schlatterer, Kathrin; Stalder, Urs; Pfirrmann, Rolf W; Fiss, Ingo; Möhler, Hanns; Bigler, Laurent

    2007-01-01

    Taurolidine is known to have antimicrobial activity. Furthermore, at lower concentrations, it has been found to exert a selective antineoplastic effect in vitro and in vivo. The aim of this study was to investigate the pharmacokinetics of taurolidine in vivo following repeated intravenous infusion in a schedule used for the treatment of glioblastoma. As a prerequisite, the pharmacokinetics of taurolidine in human blood plasma and whole blood in vitro was investigated. The pharmacokinetics of taurolidine and its derivatives taurultame and taurinamide were investigated in human blood plasma and in whole blood in vitro using blood from a healthy male volunteer. During repeated intravenous infusion therapy with taurolidine, plasma samples were taken every hour for a period of 13 hours per day in seven patients (three male, four female; mean age 48.4 +/- 12.8 years, range 27-66 years) with a glioblastoma. Following dansyl derivatisation, the concentrations of taurultame and taurinamide were determined using a new method based on high-performance liquid chromatography (HPLC) online coupled to electrospray ionisation tandem mass spectrometry (ESI-MS/MS) in the multiple reaction monitoring mode. Under the experimental conditions used, taurolidine could not be determined directly and was back-calculated from the taurultame and taurinamide values. The new HPLC-ESI-MS/MS method demonstrated high accuracy and reproducibility. In vitro plasma concentrations of taurultame and taurinamide remained constant over the incubation period. In whole blood in vitro, a time-dependent formation of taurinamide was observed. At the start of the incubation, the taurultame-taurinamide ratio (TTR) was 0.95 at an initial taurolidine concentration of 50 microg/mL, and 1.69 at 100 microg/mL. The concentration of taurultame decreased at the same rate as the taurinamide concentration increased, showing logarithmic kinetics. The calculated taurolidine concentration remained largely constant over the

  15. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya

    2011-11-01

    A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway.

    Science.gov (United States)

    Tomasello, Marianna F; Nardon, Chiara; Lanza, Valeria; Di Natale, Giuseppe; Pettenuzzo, Nicolò; Salmaso, Stefano; Milardi, Danilo; Caliceti, Paolo; Pappalardo, Giuseppe; Fregona, Dolores

    2017-09-29

    The gold(III)-dithiocarbamate complex AuL12 (dibromo [ethyl-N-(dithiocarboxy-kS,kS')-N-methylglycinate] gold(III)), is endowed with promising in vitro/in vivo antitumor activity and toxicological profile. Here, we report our recent strategies to improve its water solubility and stability under physiological conditions along with our efforts for unravelling its tangled mechanism of action. We used three types of α-cyclodextrins (CDs), namely β-CD, Me-β-CD and HP-β-CD to prepare aqueous solutions of AuL12. The ability of these natural oligosaccharide carriers to enhance water solubility of hydrophobic compounds, allowed drug stability of AuL12 to be investigated. Moreover, pharmacokinetic experiments were first carried out for a gold(III) coordination compound, after i.v. injection of the nanoformulation AuL12/HP-β-CD to female mice. The gold content in the blood samples was detected at scheduled times by AAS (atomic absorption spectrometry) analysis, highlighting a fast biodistribution with a t β1/2 of few minutes and a slow escretion (t α1/2 of 14.3 h). The in vitro cytotoxic activity of AuL12 was compared with the AuL12/HP-β-CD mixture against a panel of three human tumor cell lines (i.e., HeLa, KB and MCF7). Concerning the mechanism of action, we previously reported the proteasome-inhibitory activity of some our gold(III)-based compounds. In this work, we moved from the proteasome target to upstream of the important ubiquitin-proteasome pathway, testing the effects of AuL12 on the polyubiquitination reactions involving the Ub-activating (E1) and -conjugating (E2) enzymes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Novel Validated RP-HPLC Method for Bendamustine Hydrochloride Based on Ion-pair Chromatography: Application in Determining Infusion Stability and Pharmacokinetics.

    Science.gov (United States)

    Singh, Yuvraj; Chandrashekar, Anumandla; Pawar, Vivek K; Saravanakumar, Veeramuthu; Meher, Jayagopal; Raval, Kavit; Singh, Pankaj; Kumar, R Dinesh; Chourasia, Manish K

    2017-01-01

    Ion pair chromatography was used for quantifying bendamustine hydrochloride (BH) in its marketed vial. The permissive objective was to investigate time duration for which highly susceptible drug content of the marketed vial remained stable after reconstitution. However, the method could also be used to measure extremely low levels of drug in rat plasma and a pharmacokinetic study was accordingly conducted to further showcase method's applicability. Optimized separation was achieved on C-18 Purospher ® STAR (250 mm × 4.6 mm, 5 μm particle size) column. Mobile phase flowing at 1.5 mL/min consisted of 5 mM sodium salt of octane sulfonic acid dissolved in methanol, water and glacial acetic acid (55:45:0.075) maintained at pH 6. Detection was carried out at 233 nm with BH eluting after 7.8 min. Validation parameters were determined as per ICH guidelines. Limit of detection and limit of quantification were found to be 0.1 µg/mL and 0.33 µg/mL, respectively. The recoveries were 98-102% in bulk and 85-91% in plasma. The developed method was specific for BH, and utilized for assessing its short-term stability in physiologic solvents and forced degradation products in acid, base, oxidative, light and temperature induced stress environments. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. [Study on differences between pharmacokinetics and chromatopharmacodynamics for Chinese materia medica formulae].

    Science.gov (United States)

    He, Fuyuan; Deng, Kaiwen; Zou, Huan; Qiu, Yun; Chen, Feng; Zhou, Honghao

    2011-01-01

    To study on the differences between chromatopharmacokinetics (pharmacokinetics with fingerprint chromatography) and chromatopharmacodynamics (pharmacodynamics with fingerprint chromatography) of Chinese materia medica formulae to answer the question whether the pharmacokinetic parameters of multiple composites can be utilized to guide the medication of multiple composites. On the base of established four chromatopharmacology (pharmacology with chromatographic fingerprint), the pharmacokinetics, and pharmacodynamics were analyzed comparably on their mathematical model and parameter definition. On the basis of quantitative pharmacology, the function expressions and total statistical parameters, such as total zero moment, total first moment, total second moment of the pharmacokinetics, and pharmacodynamics were analyzed to the common expressions and elucidated results for single and multiple components in Chinese materia medica formulae. Total quantitative pharmacokinetic, i.e., chromatopharmacokinetic parameter were decided by each component pharmacokinetic parameters, whereas the total quantitative pharmacodynamic, i.e., chromatopharmacodynamic parameter were decided by both of pharmacokinetic and pharmacodynamic parameters of each components. The pharmacokinetic parameters were corresponded to pharmacodynamic parameters with an existing stable effective coefficient when the constitutive ratio of each composite was a constant. The effects of Chinese materia medica were all controlled by pharmacokinetic and pharmacodynamic coefficient. It is a special case that the pharmacokinetic parameter could independently guide the clinical medication for single component whereas the chromatopharmacokinetic parameters are not applied to the multiple drug combination system, and not be used to solve problems of chromatopharmacokinetic of Chinese materia medica formulae.

  19. Prediction of overall in vitro microsomal stability of drug candidates based on molecular modeling and support vector machines. Case study of novel arylpiperazines derivatives.

    Directory of Open Access Journals (Sweden)

    Szymon Ulenberg

    Full Text Available Other than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model and predict metabolic stability quantitatively is still lacking. This study proposes a workflow for developing quantitative metabolic stability-structure relationships, taking a set of 30 arylpiperazine derivatives as an example. The metabolic stability of the compounds was assessed in in vitro incubations in the presence of human liver microsomes and NADPH and subsequently quantified by liquid chromatography-mass spectrometry (LC-MS. Density functional theory (DFT calculations were used to obtain 30 models of the molecules, and Dragon software served as a source of structure-based molecular descriptors. For modeling structure-metabolic stability relationships, Support Vector Machines (SVM, a non-linear machine learning technique, were found to be more effective than a regression technique, based on the validation parameters obtained. Moreover, for the first time, general sites of metabolism for arylpiperazines bearing the 4-aryl-2H-pyrido[1,2-c]pyrimidine-1,3-dione system were defined by analysis of Q-TOF-MS/MS spectra. The results indicated that the application of one of the most advanced chemometric techniques combined with a simple and quick in vitro procedure and LC-MS analysis provides a novel and valuable tool for predicting metabolic half-life values. Given the reduced time and simplicity of analysis, together with the accuracy of the predictions obtained, this is a valid approach for predicting metabolic stability using structural data. The approach presented provides a novel, comprehensive and reliable tool

  20. Acetaminophen developmental pharmacokinetics in premature neonates and infants

    DEFF Research Database (Denmark)

    Anderson, Brian J; van Lingen, Richard A; Hansen, Tom G

    2002-01-01

    The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens.......The aim of this study was to describe acetaminophen developmental pharmacokinetics in premature neonates through infancy to suggest age-appropriate dosing regimens....

  1. Prediction of Deoxypodophyllotoxin Disposition in Mouse, Rat, Monkey and Dog by Physiologically-based Pharmacokinetic Model and the Extrapolation to Human

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-12-01

    Full Text Available Deoxypodophyllotoxin (DPT is a potential anti-tumor candidate prior to its clinical phase. The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK model consisting of 13 tissue compartments to predict DPT disposition in mouse, rat, monkey and dog based on in vitro and in silico inputs. Since large interspecies difference was found in unbound fraction of DPT in plasma, we assumed that Kt:pl,u (unbound tissue-to-plasma concentration ratio was identical across species. The predictions of our model were then validated by in vivo data of corresponding preclinical species, along with visual predictive checks. Reasonable matches were found between observed and predicted plasma concentrations and pharmacokinetic parameters in all four animal species. The prediction in the related seven tissues of mouse was also desirable. We also attempted to predict human pharmacokinetic profile by both the developed PBPK model and interspecies allometric scaling across mouse, rat and monkey, while dog was excluded from the scaling. The two approaches reached similar results. We hope the study will help in the efficacy and safety assessment of DPT in future clinical studies and provide a reference to the preclinical screening of similar compounds by PBPK model.

  2. Pharmacokinetics of BMEDA after Intravenous Administration in Beagle Dogs

    Directory of Open Access Journals (Sweden)

    Chih-Hsien Chang

    2014-01-01

    Full Text Available The pharmacokinetics of N,N-bis(2-mercapatoethly-N',N'-diethylenediamine (BMEDA, a molecule that can form a chelate with rhenium-188 (188Re to produce the 188Re-BMEDA-liposomes, was studied. In this work, beagles received a single injection of BMEDA, at doses of 1, 2, or 5 mg/kg; the concentration of BMEDA in the beagles’ plasma was then analyzed and determined by liquid chromatography-mass spectrometry/mass spectrometry. Based on the pharmacokinetic parameters of BMEDA, we found that male and female animals shared similar patterns indicating that the pharmacokinetics of BMEDA is independent of gender differences. In addition, the pharmacokinetics of BMEDA was seen to be non-linear because the increase of mean AUC0–t and AUC0–∞ values tend to be greater than dose proportional while the mean Vss and CL values of BMEDA appeared to be dose dependent. The information on the pharmacokinetics of BMEDA generated from this study will serve as a basis to design appropriate pharmacology and toxicology studies for future human use.

  3. Modeling the in vivo case with in vitro nanotoxicity data.

    Science.gov (United States)

    Shelley, Michael L; Wagner, Andrew J; Hussain, Saber M; Bleckmann, Charles

    2008-01-01

    As more in vitro nanotoxicity data appear in the literature, these findings must be translated to in vivo effects to define nanoparticle exposure risk. Physiologically based pharmacokinetic (PBPK) modeling has played a significant role in guiding and validating in vivo studies for molecular chemical exposure and can develop as a significant tool in guiding similar nanotoxicity studies. This study models the population dynamics of a single cell type within a specific tissue. It is the first attempt to model the in vitro effects of a nanoparticle exposure, in this case aluminum (80 nm) and its impact on a population of rat alveolar macrophages (Wagner et al. 2007, J. Phys. Chem. B 111:7353-7359). The model demonstrates how in vitro data can be used within a simulation setting of in vivo cell dynamics and suggests that PBPK models should be developed quickly to interpret nanotoxicity data, guide in vivo study design, and accelerate nanoparticle risk assessment.

  4. [18F]FMeNER-D2: A systematic in vitro analysis of radio-metabolism

    International Nuclear Information System (INIS)

    Rami-Mark, Christina; Eberherr, Nadine; Berroterán-Infante, Neydher; Vanicek, Thomas; Nics, Lukas; Lanzenberger, Rupert; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus

    2016-01-01

    Introduction: The norepinephrine transporter (NET) presents an important target for therapy and diagnosis of ADHD and other neurodegenerative and psychiatric diseases. Thus, PET is the diagnostic method of choice, using radiolabeled NET-ligands derived from reboxetine. So far, [ 18 F]FMeNER-D2 showed best pharmacokinetic and -dynamic properties. However, the disadvantage of reboxetine derived PET tracers is their high metabolic cleavage—resulting in impeding signals in the PET scans, which hamper a proper quantification of the NET in cortical areas. Methods: Metabolic stability testing was performed in vitro using a plethora of human and murine enzymes. Results: No metabolism was observed using monoamine oxidase A and B or catechol-O-methyl transferase. Incubation of [ 18 F]FMeNER-D2 with CYP450-enzymes, predominantly located in the liver, led to a significant and fast metabolism of the tracer. Moreover, the arising three radiometabolites were found to be more polar than [ 18 F]FMeNER-D2. Surprisingly, definitely no formation of free [ 18 F]fluoride was observed. Conclusion: According to our in vitro data, the interfering uptake in cortical regions might be attributed to these emerging radiometabolites but does not reflect bonding in bone due to defluorination. Further research on these radiometabolites is necessary to elucidate the in vivo situation. This might include an analysis of human blood samples after injection of [ 18 F]FMeNER-D2, to enable a better correction of the PET-input function.

  5. Pharmacokinetics of timolol in aqueous humor sampled by microdialysis after topical administration of thermosetting gels.

    Science.gov (United States)

    Wei, Gang; Ding, Ping-Tian; Zheng, Jun-Min; Lu, Wei-Yue

    2006-01-01

    In order to develop a thermosetting gel-based formulation, the ocular pharmacokinetics of timolol was studied utilizing microdialysis sampling technique after topical administration. A linear microdialysis probe was characterized and implanted in the anterior chamber of a rabbit. Dialysate samples collected from the aqueous humor (AH) were directly injected into the HPLC system without any pre-treatment and no interference was observed in the blank sample. The measured in vitro recovery of the probe was 57.67%; however, the in vivo recovery significantly decreased to 16.78% when assessed by the retrodialysis method, which was used to calculate the timolol concentration in AH. Although in the initial 15 min the drug concentrations in AH were comparable to that of the timolol solution, increased Cmax and significantly improved ocular bioavailability were obtained for the gel. When sodium deoxycholate (DC) was incorporated in the gel as a penetration enhancer, a 2-fold increment in the ocular bioavailability was achieved with an increased Cmax and significantly suspended Tmax. The results demonstrated that microdialysis coupled to HPLC is a powerful tool to investigate the ocular pharmacokinetic, and hence facilitates the design of ophthalmic formulations. Copyright 2005 John Wiley & Sons, Ltd.

  6. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin.

    Science.gov (United States)

    Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong

    2017-09-01

    The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pharmacokinetics of Melatonin

    DEFF Research Database (Denmark)

    Andersen, Lars Peter Holst; Gögenur, Ismail; Rosenberg, Jacob

    2016-01-01

    Despite widespread clinical application of melatonin, several unanswered questions remain regarding the pharmacokinetics of this drug. This lack of knowledge may contribute to the inconsistency of results in previous clinical studies. Currently, a t max value of 30-45 min and a t ½elimination of ...

  8. Pharmacokinetic-Pharmacodynamic (PKPD) Analysis with Drug Discrimination.

    Science.gov (United States)

    Negus, S Stevens; Banks, Matthew L

    2016-08-30

    Discriminative stimulus and other drug effects are determined by the concentration of drug at its target receptor and by the pharmacodynamic consequences of drug-receptor interaction. For in vivo procedures such as drug discrimination, drug concentration at receptors in a given anatomical location (e.g., the brain) is determined both by the dose of drug administered and by pharmacokinetic processes of absorption, distribution, metabolism, and excretion that deliver drug to and from that anatomical location. Drug discrimination data are often analyzed by strategies of dose-effect analysis to determine parameters such as potency and efficacy. Pharmacokinetic-Pharmacodynamic (PKPD) analysis is an alternative to conventional dose-effect analysis, and it relates drug effects to a measure of drug concentration in a body compartment (e.g., venous blood) rather than to drug dose. PKPD analysis can yield insights on pharmacokinetic and pharmacodynamic determinants of drug action. PKPD analysis can also facilitate translational research by identifying species differences in pharmacokinetics and providing a basis for integrating these differences into interpretation of drug effects. Examples are discussed here to illustrate the application of PKPD analysis to the evaluation of drug effects in rhesus monkeys trained to discriminate cocaine from saline.

  9. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill.

    Science.gov (United States)

    Mohamed, Ami F; Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E

    2012-08-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg.

  10. Florfenicol - pharmacodynamic, pharmacokinetics and clinical efficacy of oral formulations in domestic animals: A systematic review

    Directory of Open Access Journals (Sweden)

    Ščuka Leon

    2005-01-01

    Full Text Available Porcine respiratory disease complex (PRDC is a major economic problem for swine producers world-wide. Pharmacodynamic, pharmacokinetics and clinical efficacy of florfenicol oral formulations in domestic animals were evaluated. For this purpose the systematic review and meta-analysis were done. In vitro efficacy of florfenicol showed that this drug is highly effective against most important respiratory pathogens. All these facts are shown in our survey. Three studies in pigs were relevant to include in the meta-analysis, which showed that results in the florfenicol group were better than in comparative control groups in all observed parameters: clinical signs, lung lesions and resolution of Actinobacillus pleuropneumoniae (P<0,001. A second meta-analysis with 7 studies showed that the usage of florfenicol reduces mortality in pig herds with PRDC (P<0.05. Other field trials in pigs using florfenicol oral forms where reviewed. After treatment with florfenicol oral solution there was a significant drop of mortality in both groups of pigs (P<0.01; eg. one using florfenicol oral solution in treating PRDC (n=85 and another mixed pneumoenteric infection (n=54. Analysis of data when using premix in pigs (n=118 also suggests that a medicated premix has a favorable anti-infectious effect on pigs, irrespective of the group of animals or the evolution stage of the disease. Finally, favorable effect of florfenicol in treating swine ileitis was also presented. Regarding their pharmacokinetics, in vitro and clinical efficacy of florfenicol oral forms, they should be considered as a powerful tool for combating complex infections that are frequently met in intensive animal production.

  11. Immunochemical faecal occult blood tests have superior stability and analytical performance characteristics over guaiac-based tests in a controlled in vitro study.

    LENUS (Irish Health Repository)

    Lee, Chun Seng

    2011-06-01

    The aims of this study were (1) to determine the measurement accuracy of a widely used guaiac faecal occult blood test (gFOBT) compared with an immunochemical faecal occult blood test (iFOBT) during in vitro studies, including their analytical stability over time at ambient temperature and at 4°C; and (2) to compare analytical imprecision and other characteristics between two commercially available iFOBT methods.

  12. Enantioselective pharmacokinetics of sibutramine in rat.

    Science.gov (United States)

    Noh, Keumhan; Bae, Kyoungjin; Min, Bokyoung; Kim, Eunyoung; Kwon, Kwang-il; Jeong, Taecheon; Kang, Wonku

    2010-02-01

    Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C ( max ) and the AUC ( inf ) were 28 and 30 times higher than those of the R-isomer, respectively (psibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.

  13. Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy.

    Science.gov (United States)

    Janicka, Martyna; Gubernator, Jerzy

    2017-09-01

    Immunogenic cell death inducers (ICD inducers) are a diverse group of therapeutic molecules capable of eliciting an adaptive immune response against the antigens present on the surface of dying cancer cells. Most of these molecules suffer from low bioavailability, high toxicity and poor pharmacokinetics which limit their application. It is believed that nanotechnology, in particular nano-sized nanocarriers, can address most of the issues that limit the use of ICD inducers. Area covered: The mechanism of action of ICD inducers and their limitations is discussed. In addition, we cover the novel possibilities arising from the use of nanotechnology to improve delivery of ICD inducers to the target tissue as well as the restrictions of modern nanotechnology. Expert opinion: At present, nanocarrier formulations suffer from low bioavailability, poor pharmacokinetics and stability issues. Nonetheless, there is a tremendous future for combinatorial immune-pharmacological treatments of human tumors based on nanocarrier delivery of ICD inducers.

  14. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  15. Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc), and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.

  16. Highly Stabilized Curcumin Nanoparticles Tested in an In Vitro Blood–Brain Barrier Model and in Alzheimer’s Disease Tg2576 Mice

    OpenAIRE

    Cheng, Kwok Kin; Yeung, Chin Fung; Ho, Shuk Wai; Chow, Shing Fung; Chow, Albert H. L.; Baum, Larry

    2012-01-01

    The therapeutic effects of curcumin in treating Alzheimer’s disease (AD) depend on the ability to penetrate the blood–brain barrier. The latest nanoparticle technology can help to improve the bioavailability of curcumin, which is affected by the final particle size and stability. We developed a stable curcumin nanoparticle formulation to test in vitro and in AD model Tg2576 mice. Flash nanoprecipitation of curcumin, polyethylene glycol-polylactic acid co-block polymer, and polyvinylpyrrolidon...

  17. [Advances on pharmacokinetics of traditional Chinese medicine under disease states].

    Science.gov (United States)

    Gong, Zi-peng; Chen, Ying; Zhang, Rui-jie; Yang, Qing; Zhu, Xiao-xin

    2015-01-01

    In recent years, more and more research shows that the pharmacokinetic parameter of traditional Chinese medicine can be affected by the disease states. It's possible that drug metabolic enzymes, transporters, cell membrane permeability and the change of microbes group could be interfered with physiological and pathological changes, which enables the pharmacokinetics of traditional Chinese medicine in the body to be altered, including the process of absorption, distribution, metabolism and excretion, and then the pharmacokinetic parameters of traditional chinese medicine are altered. It's found that investigating the pharmacokinetic of traditional Chinese medicine in the pathological state is more useful than that of in normal state because the great part of traditional Chinese medicine is mainly used to treat disease. This article reflects the latest research on the pharmacokinetic of traditional Chinese medicine in the disease state such as diabete, cerebral ischemia, liver injury, inflammatory disease, nervous system disorders and fever in order to provide certain reference for clinicians designing reasonable administration dose.

  18. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau.

    Science.gov (United States)

    Chen, L; Guo, G; Yuan, X J; Zhang, J; Wen, A Y; Sun, X H; Shao, T

    2017-10-01

    The objective of this study was to determine the effect of ensiling different ratios of whole crop oat to lucerne on fermentation quality, aerobic stability and in vitro digestibility of silage on the Tibetan plateau. Four experimental treatments were produced varying in the ratio of forages on a fresh matter (FM) basis: 1) 100% oat (control, dry matter (DM) content: 317 g/kg), 2) 90% oat + 10% lucerne (OL10, DM content: 316 g/kg), 3) 80% oat+ 20% lucerne (OL20, DM content: 317 g/kg) and 4) 70% oat+ 30% lucerne (OL30, DM content: 318 g/kg). All treatments were packed into laboratory-scale silos and ensiled for 60 days and then subjected to an aerobic stability test for 15 days. Further, the four experimental treatments were incubated in vitro with buffered rumen fluid to study the nutrient digestibility. All silages were well preserved with low pH and NH 3 -N contents, and high lactic acid contents and V-scores (evaluation of silage quality). Increasing the lucerne proportion increased (p aerobic conditions, the control silage showed higher (p 10 5  cfu/g FM) followed by OL10 silage, and OL10 silage improved aerobic stability for 74 h. OL20 and OL30 silages showed fewer (p aerobic stability (>360 h). After 48-h incubation, OL30 silage increased (p aerobic stability IVDMD and IVNDFD. OL30 silage was the best among the three mixed silages. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  19. Identification of absolute conversion to geraldol from fisetin and pharmacokinetics in mouse.

    Science.gov (United States)

    Jo, Jun Hyeon; Jo, Jung Jae; Lee, Jae-Mok; Lee, Sangkyu

    2016-12-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a flavonoid found in several fruits, vegetables, nuts, and wine and has anti-oxidant, anti-inflammatory, and anti-angiogenic properties. Geraldol is the 3'-methoxylated metabolite of fisetin (3,4',7-trihydroxy-3'-methoxyflavone). The concentration of fisetin and geraldol in mouse plasma was determined by LC-MS/MS, following direct protein precipitation. These concentrations were determined after administration of fisetin at doses of 2mg/kg (i.v.) and 100 and 200mg/kg (p.o.). The method was validated in terms of linearity, accuracy, precision, matrix effect, and stability. The pharmacokinetics parameters of fisetin and geraldol were successfully determined using a validated method in mice. Results indicated that fisetin was very rapidly methylated to geraldol in vivo. Following administration of fisetin, it was observed that the C max and AUC values for geraldol were higher than those of fisetin. The absolute bioavailability of fisetin was calculated as 7.8% and 31.7% after oral administration of 100 and 200mg/kg fisetin, respectively. This method was successfully applied to determine the pharmacokinetic parameters of fisetin and its main metabolite geraldol in mouse plasma. Geraldol was the dominant circulating metabolite after fisetin administration in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics.

    Science.gov (United States)

    Shan, Ning; Perry, Miranda L; Weyna, David R; Zaworotko, Michael J

    2014-09-01

    Pharmaceutical cocrystallization has emerged in the past decade as a new strategy to enhance the clinical performance of orally administered drugs. A pharmaceutical cocrystal is a multi-component crystalline material in which the active pharmaceutical ingredient is in a stoichiometric ratio with a second compound that is generally a solid under ambient conditions. The resulting cocrystal exhibits different solid-state thermodynamics, leading to changes in physicochemical properties that offer the potential to significantly modify drug pharmacokinetics. The impact of cocrystallization upon drug pharmacokinetics has not yet been well delineated. Herein, we compile previously published data to address two salient questions: what effect does cocrystallization impart upon physicochemical properties of a drug substance and to what degree can those effects impact its pharmacokinetics. Cocrystals can impact various aspects of drug pharmacokinetics, including, but not limited to, drug absorption. The diversity of solid forms offered through cocrystallization can facilitate drastic changes in solubility and pharmacokinetics. Therefore, it is unsurprising that cocrystal screening is now a routine step in early-stage drug development. With the increasing recognition of pharmaceutical cocrystals from clinical, regulatory and legal perspectives, the systematic commercialization of cocrystal containing drug products is just a matter of time.

  1. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323.

    Science.gov (United States)

    Bullard, Kristen M; Gullberg, Rebekah C; Soltani, Elnaz; Steel, J Jordan; Geiss, Brian J; Keenan, Susan M

    2015-01-01

    Arthropod-borne flavivirus infection continues to cause significant morbidity and mortality worldwide. Identification of drug targets and novel antiflaviviral compounds to treat these diseases has become a global health imperative. A previous screen of 235,456 commercially available small molecules identified the 2-thioxothiazolidin-4-one family of compounds as inhibitors of the flaviviral NS5 capping enzyme, a promising target for antiviral drug development. Rational drug design methodologies enabled identification of lead compound BG-323 from this series. We have shown previously that BG-323 potently inhibits NS5 capping enzyme activity, displays antiviral effects in dengue virus replicon assays and inhibits growth of West Nile and yellow fever viruses with low cytotoxicity in vitro. In this study we further characterized BG-323's antiviral activity in vitro and in vivo. We found that BG-323 was able to reduce replication of WNV (NY99) and Powassan viruses in culture, and we were unable to force resistance into WNV (Kunjin) in long-term culture experiments. We then evaluated the antiviral activity of BG-323 in a murine model. Mice were challenged with WNV NY99 and administered BG-323 or mock by IP inoculation immediately post challenge and twice daily thereafter. Mice were bled and viremia was quantified on day three. No significant differences in viremia were observed between BG-323-treated and control groups and clinical scores indicated both BG-323-treated and control mice developed signs of illness on approximately the same day post challenge. To determine whether differences in in vitro and in vivo efficacy were due to unfavorable pharmacokinetic properties of BG-323, we conducted a pharmacokinetic evaluation of this small molecule. Insights from pharmacokinetic studies indicate that BG-323 is cell permeable, has a low efflux ratio and does not significantly inhibit two common cytochrome P450 (CYP P450) isoforms thus suggesting this molecule may be less

  2. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323.

    Directory of Open Access Journals (Sweden)

    Kristen M Bullard

    Full Text Available Arthropod-borne flavivirus infection continues to cause significant morbidity and mortality worldwide. Identification of drug targets and novel antiflaviviral compounds to treat these diseases has become a global health imperative. A previous screen of 235,456 commercially available small molecules identified the 2-thioxothiazolidin-4-one family of compounds as inhibitors of the flaviviral NS5 capping enzyme, a promising target for antiviral drug development. Rational drug design methodologies enabled identification of lead compound BG-323 from this series. We have shown previously that BG-323 potently inhibits NS5 capping enzyme activity, displays antiviral effects in dengue virus replicon assays and inhibits growth of West Nile and yellow fever viruses with low cytotoxicity in vitro. In this study we further characterized BG-323's antiviral activity in vitro and in vivo. We found that BG-323 was able to reduce replication of WNV (NY99 and Powassan viruses in culture, and we were unable to force resistance into WNV (Kunjin in long-term culture experiments. We then evaluated the antiviral activity of BG-323 in a murine model. Mice were challenged with WNV NY99 and administered BG-323 or mock by IP inoculation immediately post challenge and twice daily thereafter. Mice were bled and viremia was quantified on day three. No significant differences in viremia were observed between BG-323-treated and control groups and clinical scores indicated both BG-323-treated and control mice developed signs of illness on approximately the same day post challenge. To determine whether differences in in vitro and in vivo efficacy were due to unfavorable pharmacokinetic properties of BG-323, we conducted a pharmacokinetic evaluation of this small molecule. Insights from pharmacokinetic studies indicate that BG-323 is cell permeable, has a low efflux ratio and does not significantly inhibit two common cytochrome P450 (CYP P450 isoforms thus suggesting this molecule

  3. Pharmacokinetics of bisphenol A in neonatal and adult rhesus monkeys

    International Nuclear Information System (INIS)

    Doerge, Daniel R.; Twaddle, Nathan C.; Woodling, Kellie A.; Fisher, Jeffrey W.

    2010-01-01

    Bisphenol A (BPA) is a high-production volume industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 is controversial because of the potential for endocrine disruption, particularly during perinatal development, as suggested by in vitro, experimental animal, and epidemiological studies. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal rhesus monkeys by oral (PND 5, 35, 70) and intravenous injection (PND 77) routes using d6-BPA to avoid sample contamination. The concentration-time profiles observed in adult monkeys following oral administration of 100 μg/kg bw were remarkably similar to those previously reported in human volunteers given a similar dose; moreover, minimal pharmacokinetic differences were observed between neonatal and adult monkeys for the receptor-active aglycone form of BPA. Circulating concentrations of BPA aglycone were quite low following oral administration (< 1% of total), which reflects the redundancy of active UDP-glucuronosyl transferase isoforms in both gut and liver. No age-related changes were seen in internal exposure metrics for aglycone BPA in monkeys, a result clearly different from developing rats where significant inverse age-related changes, based on immaturity of Phase II metabolism and renal excretion, were recently reported. These observations imply that any toxicological effect observed in rats from early postnatal exposures to BPA could over-predict those possible in primates of the same age, based on significantly higher internal exposures and overall immaturity at birth.

  4. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast.

    Science.gov (United States)

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2011-02-01

    Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. Ten healthy subjects in a randomized cross-over study took gemfibrozil 600 mg or placebo twice daily for 5 days, and on day 3, a single oral dose of 20 mg zafirlukast. The plasma concentrations of zafirlukast were measured for 72 h postdose. The mean total area under the plasma concentration-time curve of zafirlukast during the gemfibrozil phase was 102% (geometric mean ratio; 95% confidence interval 89-116%) of that during the placebo phase. Furthermore, there were no statistically significant differences in the peak plasma concentration, time of peak concentration, or elimination half-life of zafirlukast between the phases. Gemfibrozil has no effect on the pharmacokinetics of zafirlukast, indicating that CYP2C8 does not play a significant role in the elimination of zafirlukast.

  5. Investigation of clinical pharmacokinetic variability of an opioid antagonist through physiologically based absorption modeling.

    Science.gov (United States)

    Ding, Xuan; He, Minxia; Kulkarni, Rajesh; Patel, Nita; Zhang, Xiaoyu

    2013-08-01

    Identifying the source of inter- and/or intrasubject variability in pharmacokinetics (PK) provides fundamental information in understanding the pharmacokinetics-pharmacodynamics relationship of a drug and project its efficacy and safety in clinical populations. This identification process can be challenging given that a large number of potential causes could lead to PK variability. Here we present an integrated approach of physiologically based absorption modeling to investigate the root cause of unexpectedly high PK variability of a Phase I clinical trial drug. LY2196044 exhibited high intersubject variability in the absorption phase of plasma concentration-time profiles in humans. This could not be explained by in vitro measurements of drug properties and excellent bioavailability with low variability observed in preclinical species. GastroPlus™ modeling suggested that the compound's optimal solubility and permeability characteristics would enable rapid and complete absorption in preclinical species and in humans. However, simulations of human plasma concentration-time profiles indicated that despite sufficient solubility and rapid dissolution of LY2196044 in humans, permeability and/or transit in the gastrointestinal (GI) tract may have been negatively affected. It was concluded that clinical PK variability was potentially due to the drug's antagonism on opioid receptors that affected its transit and absorption in the GI tract. Copyright © 2013 Wiley Periodicals, Inc.

  6. Pharmacokinetics of gene recombined angiogenesis inhibitor Kringle 5 in vivo using 131I specific markers and SPECT/CT

    Directory of Open Access Journals (Sweden)

    Ge Yan

    2016-10-01

    Full Text Available The previous pharmacokinetic methods can be only limited to drug analysis in vitro, which provide less information on the distribution and metabolismof drugs, and limit the interpretation and assessment of pharmacokinetics, the determination of metabolic principles, and evaluation of treatment effect. The objective of the study was to investigate the pharmacokinetic characteristics of gene recombination angiogenesis inhibitor Kringle 5 in vivo. The SPECT/CT and specific 131I-Kringle 5 marked by Iodogen method were both applied to explore the pharmacokinetic characteristics of 131I-Kringle 5 in vivo, and to investigate the dynamic distributions of 131I-Kringle 5 in target organs. Labeling recombinant angiogenesis inhibitor Kringle 5 using 131I with longer half-life and imaging in vivo using SPECT instead of PET, could overcome the limitations of previous methods. When the doses of 131I-Kringle 5 were 10.0, 7.5 and 5.0 g/kg, respectively, the two-compartment open models can be determined within all the metabolic process in vivo. There were no significant differences in t1/2α, t1/2β, apparent volume of distribution and CL between those three levels. The ratio of AUC(0~∞ among three different groups of 10.0, 7.5 and 5.0 g/kg was 2.56:1.44:1.0, which was close to the ratio (2:1.5:1.0. It could be clear that in the range of 5.0–10.0 g/kg, Kringle 5 was characterized by the first-order pharmacokinetics. Approximately 30 min after 131I-Kringle 5 was injected, 131I-Kringle 5 could be observed to concentrate in the heart, kidneys, liver and other organs by means of planar imaging and tomography. After 1 h of being injected, more radionuclide retained in the bladder, but not in intestinal. It could be concluded that 131I-Kringle 5 is mainly excreted through the kidneys. About 2 h after the injection of 131I-Kringle 5, the radionuclide in the heart, kidneys, liver and other organs was gradually reduced, while more radionuclide was concentrated

  7. Radiosensitizing activity and pharmacokinetics of multiple dose administered KU-2285 in peripheral nerve tissue in mice

    International Nuclear Information System (INIS)

    Iwai, Hiroyuki; Matsuno, Etsuko; Sasai, Keisuke; Abe, Mitsuyuki; Shibamoto, Yuta

    1994-01-01

    In a clinical trial in which a 2-nitroimidazole radiosensitizer was administered repeatedly, the dose-limiting toxicity was found to be peripheral neuropathy. In the present study, the in vivo radiosensitizing activity of KU-2285 in combination with radiation dose fractionation, and the pharmacokinetics of cumulative dosing of KU-2285 in the peripheral nerves were examined. The ability of three nitroimidazoles, misonidazole (MISO), etanidazole (SR-2508) and KU-2285, to sensitize SCCVII tumors to radiation treatment has been compared for drug doses in the range 0-200 mg/kg. Single radiation doses or two different fractionation schedules (6 Gy/fractions x three fractions/48 h or 5 Gy/fractions x five fractions/48 h) were used; the tumor cell survival was determined using an in vivo/in vitro colony assay. The pharmacokinetics in the sciatic nerves were undertaken, when KU-2285 or etanidazole were injected at a dose of 200 mg/kg intravenously one, two, three, or four times at 2-h intervals. At less than 100 mg/kg, KU-2285 sensitized SCCVII tumors more than MISO and SR-2508 by fractionated irradiation. Evaluation of pharmacokinetics in the peripheral nerves showed that the apparent biological half-life of SR-2508 increased with the increases in the number of administrations, whereas that of KU-2285 became shorter. Since most clinical radiotherapy is given in small multiple fractions, KU-2285 appears to be a hypoxic cell radiosensitizer that could be useful in such regimens, and that poses no risk of chronic peripheral neurotoxicity. 12 refs., 5 figs., 1 tab

  8. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  9. Colour improvement and stability of white spot lesions following infiltration, micro-abrasion, or fluoride treatments in vitro.

    Science.gov (United States)

    Yetkiner, Enver; Wegehaupt, Florian; Wiegand, Annette; Attin, Rengin; Attin, Thomas

    2014-10-01

    White spot lesions (WSLs) are unwelcome side effects of fixed appliances that compromise the treatment outcome. Recently, infiltration of WSLs has been introduced as a viable treatment alternative. The objective was to evaluate the colour improvement of WSLs and their stability against discolouration following infiltration, fluoride, or micro-abrasion treatments in vitro. Artificial WSLs were created in bovine enamel (N = 96) using acidic buffer solution (pH 5, 10 days) and were randomly allocated to four groups. Specimens were treated with infiltration (Icon, DMG), fluoride (Elmex Caries Protection, GABA), and micro-abrasion (Opalustre, Ultradent) or remained untreated (control). Groups were discoloured for 24 hours in tea or tea + citric acid. Colour components and visible colour change (L*, a*, b*, ΔE) were measured spectrophotometrically on following time points: baseline, after WSL formation, after treatment, and during discolouration (8, 16, and 24 hours). Data were analysed using Kruskal-Wallis and Mann-Whitney tests. WSL formation increased (L*) in all groups. Only infiltration reduced this effect to baseline. Highest ΔE improvement was obtained by infiltration and micro-abrasion followed by fluoride. This improvement was stable only for infiltration during discolouration. L*, a*, and b* changed significantly during discolouration in all groups except infiltration. Within the same treatment group, discolouration solutions did not differ significantly. In vitro testing cannot replicate the actual mode of colour improvement or stability but can be used for ranking materials and techniques. Infiltration and micro-abrasion treatments were capable of diminishing the whitish appearance of WSLs. Only infiltrated WSLs were stable following discolouration challenge. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Effect of antiaggregants on the in vitro viability, cell count and stability of abalone (Haliotis iris) haemocytes.

    Science.gov (United States)

    Grandiosa, Roffi; Bouwman, Mai-Louise; Young, Tim; Mérien, Fabrice; Alfaro, Andrea C

    2018-07-01

    The ability to successfully prepare and preserve haemocyte cells for microscopy and flow cytometry is critical for the investigation of animal immune systems. In this study, we observed the total cell count, in vitro viability and stability of New Zealand black-footed abalone (Haliotis iris) haemocytes with different antiaggregants and handling protocols. Haemocyte stability was evaluated by direct observation of haemocytes under the microscope and calculating the aggregation index. Haemocyte counts and viability were measured via flow cytometry and tested for the effect of different antiaggregants (Alsever's solution at three concentrations, and specialised blood collection tubes containing lithium heparin and K 2 EDTA) at different temperatures and storage times. Results showed that Alsever's solution is an effective antiaggregant at haemolymph:antiaggregant dilution ratios of 1:1, 1:2 and 1:3. Lithium heparin was ineffective as an antiaggregant, whereas K 2 EDTA was similarly as effective as Alsever's solution. The influence of different mixing techniques (vortex, pipetting and flipping) were subsequently tested using the K 2 EDTA Microtainer ® tubes, revealing that proper mixing should be performed immediately. High cell viability can be achieved by mixing samples by either 10 s of vortexing (1000 rpm), 10 times pipetting or 20 times flipping. The in vitro storage of abalone haemocytes in AS and K 2 EDTA as antiaggregants at ambient room temperature was highly effective for up to 24 h (75-85% viability; 0.05-0.15 aggregation index) and is recommended for haemocyte studies in H. iris. Utilization of K 2 EDTA Microtainer ® tubes were advantageous since they are more cost effective compared to Alsever's solution, and samples can be prepared more efficiently. Copyright © 2018. Published by Elsevier Ltd.

  11. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    Science.gov (United States)

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  12. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles

    Science.gov (United States)

    Kang, Homan; Mintri, Shrutika; Menon, Archita Venugopal; Lee, Hea Yeon; Choi, Hak Soo; Kim, Jonghan

    2015-11-01

    Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.

  13. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  14. Population Pharmacokinetics of Intranasal Scopolamine

    Science.gov (United States)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  15. Quantitative determination of sirolimus in dog blood using liquid chromatography-tandem mass spectrometry, and its applications to pharmacokinetic studies.

    Science.gov (United States)

    Lee, Jong-Hwa; Cha, Kwang-Ho; Cho, Wonkyung; Park, Junsung; Park, Hee Jun; Cho, Youngseok; Hwang, Sung-Joo

    2010-12-01

    A rapid, sensitive method of detecting sirolimus in blood was developed and applied in pharmacokinetic studies employing deionized water for hemolysis and a weakly basic mobile phase to enhance chromatographic peak intensity. Dog blood samples were processed via liquid-liquid extraction and the amounts of sirolimus and tacrolimus, an internal standard, were quantified by LC-MS/MS. Specificity, the lower limit of quantification, linearity, accuracy, precision, dilution, recovery, matrix effects, robustness and stability were within the acceptable range for assay validation. The concentration of sirolimus was quantifiable in blood samples for up to 36 h after the dog had received a 3 mg/kg dose of sirolimus. These observations suggest that sirolimus can be detected at low levels in dog blood using a basic mobile phase and metal-free hemolysis. This method is therefore applicable to pharmacokinetic studies in dogs. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Pharmacokinetics and pharmacodynamics of the proton pump inhibitors.

    Science.gov (United States)

    Shin, Jai Moo; Kim, Nayoung

    2013-01-01

    Proton pump inhibitor (PPI) is a prodrug which is activated by acid. Activated PPI binds covalently to the gastric H(+), K(+)-ATPase via disulfide bond. Cys813 is the primary site responsible for the inhibition of acid pump enzyme, where PPIs bind. Omeprazole was the first PPI introduced in market, followed by pantoprazole, lansoprazole and rabeprazole. Though these PPIs share the core structures benzimidazole and pyridine, their pharmacokinetics and pharmacodynamics are a little different. Several factors must be considered in understanding the pharmacodynamics of PPIs, including: accumulation of PPI in the parietal cell, the proportion of the pump enzyme located at the canaliculus, de novo synthesis of new pump enzyme, metabolism of PPI, amounts of covalent binding of PPI in the parietal cell, and the stability of PPI binding. PPIs have about 1hour of elimination half-life. Area under the plasmic concentration curve and the intragastric pH profile are very good indicators for evaluating PPI efficacy. Though CYP2C19 and CYP3A4 polymorphism are major components of PPI metabolism, the pharmacokinetics and pharmacodynamics of racemic mixture of PPIs depend on the CYP2C19 genotype status. S-omeprazole is relatively insensitive to CYP2C19, so better control of the intragastric pH is achieved. Similarly, R-lansoprazole was developed in order to increase the drug activity. Delayed-release formulation resulted in a longer duration of effective concentration of R-lansoprazole in blood, in addition to metabolic advantage. Thus, dexlansoprazole showed best control of the intragastric pH among the present PPIs. Overall, PPIs made significant progress in the management of acid-related diseases and improved health-related quality of life.

  17. Preclinical evaluation of 99mTc(CO)3-aspartic-N-monoacetic acid, 99mTc(CO)3(ASMA), a new renal radiotracer with pharmacokinetic properties comparable to 131I-OIH

    Science.gov (United States)

    Lipowska, Malgorzata; Klenc, Jeffrey; Marzilli, Luigi G.; Taylor, Andrew T.

    2014-01-01

    In an ongoing effort to develop a renal tracer with pharmacokinetic properties comparable to PAH and superior to those of both 99mTc-MAG3 and 131I-OIH, we evaluated a new renal tricarbonyl radiotracer based on the aspartic-N-monoacetic acid ligand, 99mTc(CO)3(ASMA). The ASMA ligand features two carboxyl groups and an amine function for the coordination of the {99mTc(CO)3}+ core as well as a dangling carboxylate to facilitate rapid renal clearance. Methods rac-ASMA and L-ASMA were labeled with a 99mTc-tricarbonyl precursor and radiochemical purity of the labeled products was determined by HPLC. Using 131I-OIH as an internal control, we evaluated biodistribution in normal rats with 99mTc(CO)3(ASMA) isomers and in rats with renal pedicle ligation with 99mTc(CO)3(rac-ASMA). Clearance studies were conducted in 4 additional rats. In vitro radiotracer stability was determined in PBS buffer pH 7.4 and in challenge studies with cysteine and histidine. 99mTc(CO)3(ASMA) metabolites in urine were analyzed by HPLC. Results Both 99mTc(CO)3(ASMA) preparations had > 99% radiochemical purity and were stable in PBS buffer pH 7.4 for 24 h. Challenge studies on both revealed no significant displacement of the ligand. In normal rats, % injected dose in urine at 10 and 60 min for both preparations averaged 103% and 106% that of 131I-OIH, respectively. The renal clearances of 99mTc(CO)3(rac-ASMA) and 131I-OIH were comparable (P = 0.48). The tracer was excreted unchanged in the urine, proving its in vivo stability. In pedicle-ligated rats, 99mTc(CO)3(rac-ASMA) had less excretion into the bowel (P ASMA) complexes have pharmacokinetic properties in rats comparable to or superior to those of 131I-OIH, and human studies are warranted for their further evaluation. PMID:22717977

  18. Pharmacokinetic and pharmacodynamic evaluations of a 10 mg/kg enrofloxacin intramuscular administration in bearded dragons (Pogona vitticeps): a preliminary assessment.

    Science.gov (United States)

    Salvadori, M; Vercelli, C; De Vito, V; Dezzutto, D; Bergagna, S; Re, G; Giorgi, M

    2017-01-01

    Enrofloxacin (E) is commonly used in veterinary medicine. It is necessary to perform pharmacokinetic/dynamic studies to minimize the selection of resistant mutants of bacteria and extend the efficacy of antimicrobial agents. Eight healthy adult Pogona vitticeps were assigned into two groups of equal size and treated with a single intramuscular injection of E at 10 mg/kg. Blood samples were withdrawn at different scheduled times for each group, and rectal swabs were collected. E and ciprofloxacin (active metabolite) blood concentrations were quantified by an HPLC validated method, while the in vitro antimicrobial susceptibility was evaluated by the Kirby-Bauer disc diffusion susceptibility test. The pharmacokinetic profiles of E gave similar pharmacokinetic parameters irrespective of the collection time schedule. Bacteria isolation showed the presence of both E. coli, Salmonella enterica subspecies enterica and subspecies 3a, Proteus spp., and Pseudomonas spp. The majority of isolated colonies were sensitive to E, but the treatment did not reduce the number of bacteria in faeces. Results suggest that E is able to reach blood concentrations high enough to kill susceptible bacteria (MIC < 0.9 μg/mL), but at the same time does not significantly affect intestinal bacteria. © 2016 John Wiley & Sons Ltd.

  19. Pharmacokinetics of first-line tuberculosis drugs in tanzanian patients

    NARCIS (Netherlands)

    Tostmann, A.; Mtabho, C.M.; Semvua, H.H.; Boogaard, J. van den; Kibiki, G.S.; Boeree, M.J.; Aarnoutse, R.E.

    2013-01-01

    East Africa has a high tuberculosis (TB) incidence and mortality, yet there are very limited data on exposure to TB drugs in patients from this region. We therefore determined the pharmacokinetic characteristics of first-line TB drugs in Tanzanian patients using intensive pharmacokinetic sampling.

  20. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang Wenqi

    2008-04-01

    Full Text Available Abstract Background It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU loaded block copolymers, with poly(γ-benzyl-L-glutamate (PBLG as the hydrophobic block and poly(ethylene glycol (PEG as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. Methods 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC. To study in vivo effects, LoVo cells (human colon cancer cell line or Tca8113 cells (human oral squamous cell carcinoma cell line were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. Results 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t1/2, 33.3 h vs. 5 min, lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L, and greater distribution volume (VD, 0.114 L vs. 0.069 L. Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p 0.05. Conclusion In our model system, 5-FU/PEG-PBLG nanoparticles

  1. Colon Targeted Guar Gum Compression Coated Tablets of Flurbiprofen: Formulation, Development, and Pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Sateesh Kumar Vemula

    2013-01-01

    Full Text Available The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support of in vitro dissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4 showed almost complete drug release in the colon (99.86% within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period. The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. The Cmax of colon targeted tablets was 11956.15 ng/mL at Tmax of 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen.

  2. Preparation and characterization of simvastatin/DMβCD complex and its pharmacokinetics in rats

    Directory of Open Access Journals (Sweden)

    Gu Fugen

    2018-06-01

    Full Text Available Simvastatin is poorly bioavailable because it is practically insoluble in water and shows dissolution rate-limited absorption. Solubilizing effects of several β-cyclodextrin (βCD derivatives such as HPβCD, SBEβCD and DMβCD on simvastatin in aqueous solution were investigated using the phase solubility technique. The solubility diagram of simvastatin with each βCD derivative could be classified as AL-type, indicating soluble complex formation of 1:1 stoichiometry. Among the above βCD derivatives DMβCD was found to be the ideal complexing agent for improving drug solubility. The simvastatin complex with DMβCD was prepared using the co-evaporation method and was then characterized by differential scanning calorimetry (DSC, Fourier-transform infrared spectroscopy (FT-IR and in vitro dissolution. Dissolution and pharmacokinetic studies indicated that the simvastatin/DMβCD complex exhibited an increased dissolution rate, rapid absorption, and improved bioavailability in rats compared to free drug. Maximum plasma concentration (cmax and the time to reach it (tmax were 21.86 μg mL−1 and 1.4 h for the drug complex, 8.25 μg mL−1 and 3.0 h for free drug, respectively. Main pharmacokinetic parameters such as tmax, cmax were significantly different (p < 0.01 between the simvastatin complex and free drug. Bioavailability of the simvastatin complex relative to free drug was up to 167.0 %.

  3. Berberine as a chemical and pharmacokinetic marker of the butanol-extracted Food Allergy Herbal Formula-2.

    Science.gov (United States)

    Yang, Nan; Srivastava, Kamal; Song, Ying; Liu, Changda; Cho, Sool; Chen, Yujuan; Li, Xiu-Min

    2017-04-01

    Food Allergy Herbal Formula-2 (FAHF-2) provided protection against peanut anaphylaxis in a murine model and induced beneficial immune-modulation in humans. Butanol-refined FAHF-2, B-FAHF-2, retained safety and efficacy in the peanut allergic murine model at only 1/5 of FAHF-2 dosage. One compound, berberine, was isolated and identified in vitro as a bioactive component present in FAHF-2 and B-FAHF-2. The aim of this study was to investigate berberine as a chemical and pharmacokinetic marker of B-FAHF-2. The consistency of constituents between B-FAHF-2 and FAHF-2 was tested. Peanut allergic C3H/HeJ mice were orally administered with 1mg of berberine or B-FAHF-2 containing an equivalent amount of berberine, and the ability to protect against peanut anaphylaxis and pharmacokinetic parameters were determined. Human intestinal epithelial cells (Caco-2) were cultured with berberine with or without the nine individual herbal constituents in B-FAHF-2, and the absorbed berberine levels were determined. Berberine is one of the major components in B-FAHF-2 and FAHF-2 formula. In a peanut allergic mouse model, B-FAHF-2, but not berberine, protected mice from anaphylaxis reactions. Pharmacokinetic profiles showed that the C max of B-FAHF-2 fed mice was 289.30±185.40ng/mL; whereas berberine alone showed very low bioavailability with C max value of 35.13±47.90ng/mL. Caco-2 cells influx assay showed that 7 of 9 herbal constituents in B-FAHF-2 increased berberine absorption at rates ranging from 18 to 205%. B-FAHF-2 remarkably increased the bioavailability of berberine. Berberine can be used as chemical and pharmacokinetic marker of B-FAHF-2. Other herbal components in B-FAHF-2 may facilitate the absorption of berberine. Copyright © 2017. Published by Elsevier B.V.

  4. Polyelectrolyte complex of vancomycin as a nanoantibiotic: Preparation, in vitro and in silico studies

    Energy Technology Data Exchange (ETDEWEB)

    Sikwal, Dhiraj R.; Kalhapure, Rahul S.; Rambharose, Sanjeev; Vepuri, Suresh; Soliman, Mahmoud; Mocktar, Chunderika; Govender, Thirumala, E-mail: govenderth@ukzn.ac.za

    2016-06-01

    Delivery of antibiotics by various nanosized carriers is proving to be a promising strategy to combat limitations associated with conventional dosage forms and the ever-increasing drug resistance problem. This method entails improving the pharmacokinetic parameters for accumulation at the target infection site and reducing their adverse effects. It has been proposed that antibiotic nanoparticles themselves are more effective delivery system than encapsulating the antibiotic in a nanosystem. In this study, we report on nanoparticles of vancomycin (VCM) by self-assembled amphiphilic–polyelectrolyte complexation between VCM hydrochloride and polyacrylic acid sodium (PAA). The size, polydispersity index and zeta potential of the developed nanoplexes were 229.7 ± 47.76 nm, 0.442 ± 0.075, − 30.4 ± 5.3 mV respectively, whereas complexation efficiency, drug loading and percentage yield were 75.22 ± 1.02%, 58.40 ± 1.03% and 60.60 ± 2.62% respectively. An in vitro cytotoxicity study on three mammalian cell lines using MTT assays confirmed the biosafety of the newly formulated nanoplexes. Morphological investigations using scanning electron microscope showed cube shaped hexagonal-like particles. In vitro drug release studies revealed that the drug was completely released from the nanoplexes within 12 h. In silico studies revealed that the nano-aggregation was facilitated by means of self-association of VCM in the presence of the polymer. The supramolecular pattern of the drug self-association was found to be similar to that of the VCM dimer observed in the crystal structure of the VCM available in Protein Data Bank. In vitro antibacterial activity against susceptible and resistant Staphylococcus aureus proved that the potency of VCM was retained after being formulated as the nanoplex. In conclusion, VCM nanoplexes could be a promising nanodrug delivery system to treat infections of S. aureus origin. - Highlights: • Self-assembly of vancomycin to form cube

  5. Polyelectrolyte complex of vancomycin as a nanoantibiotic: Preparation, in vitro and in silico studies

    International Nuclear Information System (INIS)

    Sikwal, Dhiraj R.; Kalhapure, Rahul S.; Rambharose, Sanjeev; Vepuri, Suresh; Soliman, Mahmoud; Mocktar, Chunderika; Govender, Thirumala

    2016-01-01

    Delivery of antibiotics by various nanosized carriers is proving to be a promising strategy to combat limitations associated with conventional dosage forms and the ever-increasing drug resistance problem. This method entails improving the pharmacokinetic parameters for accumulation at the target infection site and reducing their adverse effects. It has been proposed that antibiotic nanoparticles themselves are more effective delivery system than encapsulating the antibiotic in a nanosystem. In this study, we report on nanoparticles of vancomycin (VCM) by self-assembled amphiphilic–polyelectrolyte complexation between VCM hydrochloride and polyacrylic acid sodium (PAA). The size, polydispersity index and zeta potential of the developed nanoplexes were 229.7 ± 47.76 nm, 0.442 ± 0.075, − 30.4 ± 5.3 mV respectively, whereas complexation efficiency, drug loading and percentage yield were 75.22 ± 1.02%, 58.40 ± 1.03% and 60.60 ± 2.62% respectively. An in vitro cytotoxicity study on three mammalian cell lines using MTT assays confirmed the biosafety of the newly formulated nanoplexes. Morphological investigations using scanning electron microscope showed cube shaped hexagonal-like particles. In vitro drug release studies revealed that the drug was completely released from the nanoplexes within 12 h. In silico studies revealed that the nano-aggregation was facilitated by means of self-association of VCM in the presence of the polymer. The supramolecular pattern of the drug self-association was found to be similar to that of the VCM dimer observed in the crystal structure of the VCM available in Protein Data Bank. In vitro antibacterial activity against susceptible and resistant Staphylococcus aureus proved that the potency of VCM was retained after being formulated as the nanoplex. In conclusion, VCM nanoplexes could be a promising nanodrug delivery system to treat infections of S. aureus origin. - Highlights: • Self-assembly of vancomycin to form cube

  6. Antigenic stability of pecan [Carya illinoinensis (Wangenh.) K. Koch] proteins: effects of thermal treatments and in vitro digestion.

    Science.gov (United States)

    Venkatachalam, Mahesh; Teuber, Suzanne S; Peterson, W Rich; Roux, Kenneth H; Sathe, Shridhar K

    2006-02-22

    Rabbit polyclonal antibody-based inhibition ELISA as well as immunoblotting analyses of proteins extracted from variously processed pecans (cv. Desirable) indicate that pecan proteins are antigenically stable. Pecan antigens were more sensitive to moist heat than dry heat processing treatments. SDS-PAGE and immunoblotting analysis of the native and heat-denatured proteins that were previously subjected to in vitro simulated gastric fluid digestions indicate that stable antigenic peptides were produced. Both enzyme-to-substrate ratio and digestion time were influential in determining the stability of pecan polypeptides. The stable antigenic polypeptides may serve as useful markers in developing assays suitable for the detection of trace amounts of pecans in foods.

  7. Differential effects of liver steatosis on pharmacokinetic profile of two closely related hepatoselective NO-donors; V-PYRRO/NO and V-PROLI/NO.

    Science.gov (United States)

    Kus, Kamil; Kus, Edyta; Zakrzewska, Agnieszka; Jawien, Wojciech; Sitek, Barbara; Walczak, Maria; Chlopicki, Stefan

    2017-06-01

    To analyze the effect of liver steatosis and obesity on pharmacokinetic profile of two structurally-related liver-selective NO-donors - V-PYRRO/NO and V-PROLI/NO. C57BL/6 mice were fed control or high-fat diet for 15 weeks to induced liver steatosis and obesity (HFD mice). Pharmacokinetics and renal elimination studies were conducted in vivo following iv dosing of V-PYRRO/NO and V-PROLI/NO (0.03mmol/kg). Hepatic clearance was evaluated ex vivo in the isolated perfused mice liver and in vitro with the use of liver microsomes. V-PYRRO/NO and V-PROLI/NO, despite similar structure, displayed different pharmacokinetic properties. V-PYRRO/NO was uptaken and metabolized by the liver, while V-PROLI/NO was eliminated unchanged with urine. In HFD mice, despite increased CYP450 metabolism of V-PYRRO/NO the elimination rate was slower most likely due to the impairment of hepatic microcirculation caused by liver fat accumulation. In turn, in HFD mice renal clearence of V-PROLI/NO was accelerated and volume of distribution was increased most likely due to additional intracellular water in HFD mice. The pharmacokinetics of V-PROLI/NO, the novel proline-based analog of V-PYRRO/NO with additional single carboxylic acid moiety, attached to the molecule of V-PYRRO/NO to improve the water solubility, was differently affected by liver steatosis and obesity as compared with the parent compound V-PYRRO/NO. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Perioperative pharmacokinetics of methadone in adolescents.

    Science.gov (United States)

    Sharma, Anshuman; Tallchief, Danielle; Blood, Jane; Kim, Thomas; London, Amy; Kharasch, Evan D

    2011-12-01

    Methadone is frequently administered to adults experiencing anesthesia and receiving pain treatment. Methadone pharmacokinetics in adults are well characterized, including the perioperative period. Methadone is also used in children. There is, however, no information on methadone pharmacokinetics in children of any age. The purpose of this investigation was to determine the pharmacokinetics of intravenous methadone in children undergoing surgery. Perioperative opioid-sparing effects were also assessed. Eligible subjects were children 5-18 yr undergoing general anesthesia and surgery, with an anticipated postoperative inpatient stay exceeding 3 days. Three groups of 10 to 11 patients each received intravenous methadone hydrochloride after anesthetic induction in ascending dose groups of 0.1, 0.2, and 0.3 mg/kg (up to 20 mg). Anesthetic care was not otherwise changed. Venous blood was obtained for 4 days, for stereoselective determination of methadone and metabolites. Pain assessments were made each morning. Daily and total opioid consumption was determined. Perioperative opioid consumption and pain was determined in a second cohort, which was matched to age, sex, race, ethnicity, surgical procedure, and length of stay, but not receiving methadone. The final methadone study cohort was 31 adolescents (14 ± 2 yr, range 10-18) undergoing major spine surgery for a diagnosis of scoliosis. Methadone pharmacokinetics were linear over the dose range 0.1-0.3 mg/kg. Disposition was stereoselective. Methadone administration did not dose-dependently affect postoperative pain scores, and did not dose-dependently decrease daily or total postoperative opioid consumption in spinal fusion patients. Methadone enantiomer disposition in adolescents undergoing surgery was similar to that in healthy adults.

  9. Pharmacokinetics and pharmacokinetic variability of heroin and its metabolites: review of the literature

    NARCIS (Netherlands)

    Rook, Elisabeth J.; Huitema, Alwin D. R.; van den Brink, Wim; van Ree, Jan M.; Beijnen, Jos H.

    2006-01-01

    This article reviews the pharmacokinetics of heroin after intravenous, oral, intranasal, intramuscular and rectal application and after inhalation in humans, with a special focus on heroin maintenance therapy in heroin dependent patients. In heroin maintenance therapy high doses pharmaceutically

  10. In vitro-in vivo correlation study for the dermatopharmacokinetics of terbinafine hydrochloride topical cream.

    Science.gov (United States)

    Saeheng, Suwadee; Nosoongnoen, Wichit; Varothai, Supenya; Sathirakul, Korbtham

    2013-09-01

    To investigate the relationship between dermatopharmacokinetic (DPK) tape stripping from in vitro and in vivo using 1% terbinafine hydrochloride topical cream as the model formulation. In vitro and in vivo tape strippings were conducted on separated pig ear skin used as a biological membrane for franz diffusion cell testing and the non-hairy skin area at the ventral forearms of healthy volunteers, respectively. Terbinafine (1%) topical cream was applied to the skin for 0.5, 2, and 4 h. The drug profiles of terbinafine across the stratum corneum were determined immediately (time 0 h), and at 0.5, 1, 2, and 4 h after removing the formulation. The amounts of terbinafine were analyzed by a validated high-performance liquid chromatography-ultraviolet method. The area under the curve (AUC) and the maximum amounts of terbinafine absorption (Q(max)) were obtained from pharmacokinetic software. Partition coefficient (K(SC/veh)) and diffusion parameter (D/L²) were derived from the Fick's second law equation. During the schedule time of 8 h, the deviations of in vitro and in vivo data were 6.61 and 30.46% for AUC and Q(max), respectively. There was insignificant difference of the K(SC/veh) and the D/L² between excised pig ear and human skin. In addition, K(SC/veh) and D/L² at T(max) of 2 h were used to predict the AUC presented the value of 4.7481 %h whereas the true value calculated from pharmacokinetic software provided the value of 5.9311 %h differing from each other in approximate of 20%. In vitro tape stripping using the separated pig ear skin as a viable membrane of the franz diffusion cell testing demonstrates the potential to represent in vivo tape stripping in human for topical bioavailability/bioequivalence study of terbinafine hydrochloride 1% topical cream.

  11. Albendazole nanocrystals with improved pharmacokinetic performance in mice.

    Science.gov (United States)

    Paredes, Alejandro J; Bruni, Sergio Sánchez; Allemandi, Daniel; Lanusse, Carlos; Palma, Santiago D

    2018-02-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic agent with poor aqueous solubility, which leads to poor/erratic bioavailability and therapeutic failures. Here, we aimed to produce a novel formulation of ABZ nanocrystals (ABZNC) and assess its pharmacokinetic performance in mice. Results/methodology: ABZNC were prepared by high-pressure homogenization and spray-drying processes. Redispersion capacity and solid yield were measured in order to obtain an optimized product. The final particle size was 415.69±7.40 nm and the solid yield was 72.32%. The pharmacokinetic parameters obtained in a mice model for ABZNC were enhanced (p < 0.05) with respect to the control formulation. ABZNC with improved pharmacokinetic behavior were produced by a simple, inexpensive and potentially scalable methodology.

  12. In vitro metabolism and stability of the actinide chelating agent 3,4,3-LI(1,2-HOPO).

    Science.gov (United States)

    Choi, Taylor A; Furimsky, Anna M; Swezey, Robert; Bunin, Deborah I; Byrge, Patricia; Iyer, Lalitha V; Chang, Polly Y; Abergel, Rebecca J

    2015-05-01

    The hydroxypyridinonate ligand 3,4,3-LI(1,2-HOPO) is currently under development for radionuclide chelation therapy. The preclinical characterization of this highly promising ligand comprised the evaluation of its in vitro properties, including microsomal, plasma, and gastrointestinal fluid stability, cytochrome P450 inhibition, plasma protein binding, and intestinal absorption using the Caco-2 cell line. When mixed with active human liver microsomes, no loss of parent compound was observed after 60 min, indicating compound stability in the presence of liver microsomal P450. At the tested concentrations, 3,4,3-LI(1,2-HOPO) did not significantly influence the activities of any of the cytochromal isoforms screened. Thus, 3,4,3-LI(1,2-HOPO) is unlikely to cause drug-drug interactions by inhibiting the metabolic clearance of coadministered drugs metabolized by these enzymes. Plasma protein-binding assays revealed that the compound is protein-bound in dogs and less extensively in rats and humans. In the plasma stability study, the compound was stable after 1 h at 37°C in mouse, rat, dog, and human plasma samples. Finally, a bidirectional permeability assay demonstrated that 3,4,3-LI(1,2-HOPO) is not permeable across the Caco-2 monolayer, highlighting the need to further evaluate the effects of various compounds with known permeability enhancement properties on the permeability of the ligand in future studies. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Pharmacokinetic properties and antitumor efficacy of the 5-fluorouracil loaded PEG-hydrogel

    Directory of Open Access Journals (Sweden)

    Kim Bokyung

    2010-05-01

    Full Text Available Abstract Background We have studied the in vitro and in vivo utility of polyethylene glycol (PEG-hydrogels for the development of an anticancer drug 5-fluorouracil (5-FU delivery system. Methods A 5-FU-loaded PEG-hydrogel was implanted subcutaneously to evaluate the drug retention time and the anticancer effect. For the pharmacokinetic study, two groups of male rats were administered either an aqueous solution of 5-FU (control group/or a 5-FU-loaded PEG-hydrogel (treated group at a dose of 100 mg/kg. For the pharmacodynamic study, a human non-small-cell lung adenocarcinoma (NSCLC cell line, A549 was inoculated to male nude mice with a cell density of 3 × 106. Once tumors start growing, the mice were injected with 5-FU/or 5-FU-loaded PEG-hydrogel once a week for 4 weeks. The growth of the tumors was monitored by measuring the tumor volume and calculating the tumor inhibition rate (IR over the duration of the study. Results In the pharmacokinetic study, the 5-FU-loaded PEG-hydrogel gave a mean residence time (MRT of 8.0 h and the elimination half-life of 0.9 h; these values were 14- and 6-fold, respectively, longer than those for the free solution of 5-FU (p Conclusion We suggest that 5-FU-loaded PEG-hydrogels could provide a useful tool for the development of an anticancer drug delivery system.

  14. Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.

    Science.gov (United States)

    Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun

    2017-07-08

    Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.

  15. Pharmacokinetics of bevacizumab after topical and intravitreal administration in human eyes

    OpenAIRE

    Moisseiev, Elad; Waisbourd, Michael; Ben-Artsi, Elad; Levinger, Eliya; Barak, Adiel; Daniels, Tad; Csaky, Karl; Loewenstein, Anat; Barequet, Irina S.

    2013-01-01

    Background Topical bevacizumab is a potential treatment modality for corneal neovascularization, and several recent studies have demonstrated its efficacy. No previous study of the pharmacokinetics of topical bevacizumab has been performed in human eyes. The purpose of this study is to investigate the pharmacokinetics of topical administration of bevacizumab in human eyes, and also to compare the pharmacokinetics of intravitreal bevacizumab injections with previously reported data. Methods Tw...

  16. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  17. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    International Nuclear Information System (INIS)

    Tan Qunyou; Wu Jianyong; Li Yi; Zhang Jingqing; Mei Hu; Zhao Chunjing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca 2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM. (paper)

  18. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    Science.gov (United States)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  19. [Discussion about traditional Chinese medicine pharmacokinetics study based on first botanical drug approved by FDA].

    Science.gov (United States)

    Huang, Fanghua

    2010-04-01

    Pharmacokinetics study is one of main components of pharmaceuticals development. Food and Drug Administration (FDA) approved Veregen as the first botanical drug in 2006. This article introduced FDA's requirement on pharmacokinetics study of botanical drug and pharmacokinetics studies of Veregen, summarized current requirement and status quo of pharmacokinetics study on traditional Chinese medicine (TCM) and natural medicine in China, and discussed about pharmacokinetics study strategy for TCM and natural medicine.

  20. Mass balance, metabolic disposition, and pharmacokinetics of a single oral dose of regorafenib in healthy human subjects.

    Science.gov (United States)

    Gerisch, Michael; Hafner, Frank-Thorsten; Lang, Dieter; Radtke, Martin; Diefenbach, Konstanze; Cleton, Adriaan; Lettieri, John

    2018-01-01

    To evaluate the mass balance, metabolic disposition, and pharmacokinetics of a single dose of regorafenib in healthy volunteers. In addition, in vitro metabolism of regorafenib in human hepatocytes was investigated. Four healthy male subjects received one 120 mg oral dose of regorafenib containing approximately 100 µCi (3.7 MBq) [ 14 C]regorafenib. Plasma concentrations of parent drug were derived from HPLC-MS/MS analysis and total radioactivity from liquid scintillation counting (LSC). Radiocarbon analyses used HPLC with fraction collection followed by LSC for all urine samples, plasma, and fecal homogenate extracts. For the in vitro study, [ 14 C]regorafenib was incubated with human hepatocytes and analyzed using HPLC-LSC and HPLC-HRMS/MS. Regorafenib was the major component in plasma, while metabolite M-2 (pyridine N-oxide) was the most prominent metabolite. Metabolites M-5 (demethylated pyridine N-oxide) and M-7 (N-glucuronide) were identified as minor plasma components. The mean concentration of total radioactivity in plasma/whole blood appeared to plateau at 1-4 h and again at 6-24 h post-dose. In total, 90.5% of administered radioactivity was recovered in the excreta within a collection interval of 12 days, most of which (71.2%) was eliminated in feces, while excretion via urine accounted for 19.3%. Regorafenib (47.2%) was the most prominent component in feces and was not excreted into urine. Excreted metabolites resulted from oxidative metabolism and glucuronidation. Regorafenib was eliminated predominantly in feces as well as by hepatic biotransformation. The multiple biotransformation pathways of regorafenib decrease the risk of pharmacokinetic drug-drug interactions.

  1. Pharmacokinetics of Rhodamine 110 and Its Organ Distribution in Rats.

    Science.gov (United States)

    Jiang, Shiau-Han; Cheng, Yung-Yi; Huo, Teh-Ia; Tsai, Tung-Hu

    2017-09-06

    Rhodamine dyes have been banned as food additives due to their potential tumorigenicity. Rhodamine 110 is illegal as a food additive, although its pharmacokinetics have not been characterized, and no accurate bioanalytical methods are available to quantify rhodamine 110. The aim of this study was to develop and validate a fast, stable, and sensitive method to quantify rhodamine 110 using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) to assess its pharmacokinetics and organ distribution in awake rats. Rhodamine 110 exhibited linear pharmacokinetics and slow elimination after oral administration. Furthermore, its oral bioavailability was approximately 34-35%. The distribution in the liver and kidney suggests that these organs are primarily responsible for rhodamine 110 metabolism and elimination. Our investigation describes the pharmacokinetics and a quantification method for rhodamine 110, improving our understanding of the food safety of rhodamine dyes.

  2. Pharmacokinetics of high-dose intravenous melatonin in humans

    DEFF Research Database (Denmark)

    Andersen, Lars P H; Werner, Mads U; Rosenkilde, Mette Marie

    2016-01-01

    This crossover study investigated the pharmacokinetics and adverse effects of high-dose intravenous melatonin. Volunteers participated in 3 identical study sessions, receiving an intravenous bolus of 10 mg melatonin, 100 mg melatonin, and placebo. Blood samples were collected at baseline and 0, 60......, 120, 180, 240, 300, 360, and 420 minutes after the bolus. Quantitative determination of plasma melatonin concentrations was performed using a radioimmunoassay technique. Pharmacokinetic parameters were estimated by a compartmental pharmacokinetic analysis. Adverse effects included assessments...... of sedation and registration of other symptoms. Sedation, evaluated as simple reaction times, was measured at baseline and 120, 180, 300, and 420 minutes after the bolus. Twelve male volunteers completed the study. Median (IQR) Cmax after the bolus injections of 10 mg and 100 mg of melatonin were 221...

  3. Population Pharmacokinetics of Tracers: A New Tool for Medical Imaging?

    Science.gov (United States)

    Gandia, Peggy; Jaudet, Cyril; Chatelut, Etienne; Concordet, Didier

    2017-02-01

    Positron emission tomography-computed tomography is a medical imaging method measuring the activity of a radiotracer chosen to accumulate in cancer cells. A recent trend of medical imaging analysis is to account for the radiotracer's pharmacokinetic properties at a voxel (three-dimensional-pixel) level to separate the different tissues. These analyses are closely linked to population pharmacokinetic-pharmacodynamic modelling. Kineticists possess the cultural background to improve medical imaging analysis. This article stresses the common points with population pharmacokinetics and highlights the methodological locks that need to be lifted.

  4. Hypericum perforatum: a 'modern' herbal antidepressant: pharmacokinetics of active ingredients.

    Science.gov (United States)

    Wurglics, Mario; Schubert-Zsilavecz, Manfred

    2006-01-01

    Hypericum perforatum (St John's Wort [SJW]) counts among the most favourite herbal drugs, and is the only herbal alternative to classic synthetic antidepressants in the therapy of mild to moderate depression. Several clinical studies have been conducted to verify the effectiveness of ethanolic or methanolic extracts of SJW. Alcoholic SJW extracts are a mixture of substances with widely varying physical and chemical properties and activities. Hyperforin, a phloroglucinol derivative, is the main source of pharmacological effects caused by the consumption of alcoholic extracts of SJW in the therapy of depression. However, several studies indicate that flavone derivatives, e.g. rutin, and also the naphthodianthrones hypericin and pseudohypericin, take part in the antidepressant efficacy. In contrast to the amount of documentation concerning clinical efficacy, oral bioavailability and pharmacokinetic data about the active components are rather scarce. The hyperforin plasma concentration in humans was investigated in a small number of studies. The results of these studies indicate a relevant plasma concentration, comparable with that used in in vitro tests. Furthermore, hyperforin is the only ingredient of H. perforatum that could be determined in the brain of rodents after oral administration of alcoholic extracts. The plasma concentrations of the hypericins were, compared with hyperforin, only one-tenth and, until now, the hypericins could not be found in the brain after oral administration of alcoholic H. perforatum extracts or pure hypericin. Until now, the pharmacokinetic profile of the flavonoids in humans after oral administration of an alcoholic H. perforatum extract has been investigated in only one study. More data are available for rutin and the aglycone quercetin after administration of pure substances or other flavonoid sources.

  5. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography.

    Science.gov (United States)

    Wicha, Sebastian G; Kloft, Charlotte

    2016-08-15

    For pharmacokinetic/pharmacodynamic (PK/PD) assessment of antibiotics combinations in in vitro infection models, accurate and precise quantification of drug concentrations in bacterial growth medium is crucial for derivation of valid PK/PD relationships. We aimed to (i) develop a high-performance liquid chromatography (HPLC) assay to simultaneously quantify linezolid (LZD), vancomycin (VAN) and meropenem (MER), as typical components of broad-spectrum antibiotic combination therapy, in bacterial growth medium cation-adjusted Mueller-Hinton broth (CaMHB) and (ii) determine the stability profiles of LZD, VAN and MER under conditions in in vitro infection models. To separate sample matrix components, the final method comprised the pretreatment of 100μL sample with 400μL methanol, the evaporation of supernatant and its reconstitution in water. A low sample volume of 2μL processed sample was injected onto an Accucore C-18 column (2.6μm, 100×2.1mm) coupled to a Dionex Ultimate 3000 HPLC+ system. UV detection at 251, 240 and 302nm allowed quantification limits of 0.5, 2 and 0.5μg/mL for LZD, VAN and MER, respectively. The assay was successfully validated according to the relevant EMA guideline. The rapid method (14min) was successfully applied to quantify significant degradation of LZD, VAN and MER in in vitro infection models: LZD was stable, VAN degraded to 90.6% and MER to 62.9% within 24h compared to t=0 in CaMHB at 37°C, which should be considered when deriving PK/PD relationships in in vitro infection models. Inclusion of further antibiotics into the flexible gradient-based HPLC assay seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pharmacodynamic and pharmacokinetic effects of the intravenous CB1 receptor agonist Org 26828 in healthy male volunteers.

    Science.gov (United States)

    Zuurman, Lineke; Passier, Paul C C M; de Kam, Marieke L; Kleijn, Huub J; Cohen, Adam F; van Gerven, Joop M A

    2010-11-01

    An ideal drug for outpatient treatments under conscious sedation would have both sedative and analgesic properties. CB1/CB2 agonists are expected to have sedative, amnestic, analgesic and anti-emetic properties. The main objective of this first study in humans was to assess the sedative properties of intravenous Org 26828. In addition, pharmacokinetics, amnestic properties, postural stability, and behavioural and cardiovascular effects were studied. Midazolam intravenous 0.1 mg/kg and placebo were used as controls. The pharmacokinetic parameters (Cmax and AUC0-inf) of the main metabolite Org 26761 were proportional to dose. No effects were observed after doses up to 0.3 μg/kg of Org 26828. Dose-related effects were observed at higher doses. Although subjects reported subjective sedation after administration of Org 26828 at 3 and 6 μg/kg, the observed sedation was considerably less than after midazolam. Doses higher than the maximum tolerated dose of 1 μg/kg of Org 26828 caused unpleasant central nervous system effects (anxiety, paranoia, hallucinations). Therefore, Org 26828 is not suitable for providing sedation for outpatient surgical procedures.

  7. A Review on Pharmacokinetic Modeling and the Effects of Environmental Stressors on Pharmacokinetics for Operational Medicine: Operational Pharmacokinetics

    Science.gov (United States)

    2009-09-01

    Manning et al. 1986), which may cause physiological changes. For example, emotional distress may lead to elevated heart rate, blood pressure and...related changes in renal functions were reported during a Stroop word color conflict test (Fauvel, Hadj-Aissa et al. 1991). Emotional stressors could...M. Skee, et al. (2001). "Pharmacokinetics of norelgestromin and ethinyl estradiol delivered by a contraceptive patch (Ortho Evra (TM)/Evra (TM

  8. Pharmacokinetic evaluation of pemetrexed

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn

    2011-01-01

    correlates with renal function and it may be safely used with vitamin supplementation in patients with creatinine clearance ≥ 45 ml/min. The pharmacokinetics of pemetrexed is also largely unchanged in third-space fluids and can be feasibly and safely administered in combination with several other cytotoxic...

  9. Pharmacokinetic evaluation of pemetrexed

    DEFF Research Database (Denmark)

    Sørensen, Jens Benn

    2011-01-01

    correlates with renal function and it may be safely used with vitamin supplementation in patients with creatinine clearance = 45 ml/min. The pharmacokinetics of pemetrexed is also largely unchanged in third-space fluids and can be feasibly and safely administered in combination with several other cytotoxic...

  10. Population pharmacokinetic model of transdermal nicotine delivered from a matrix-type patch.

    Science.gov (United States)

    Linakis, Matthew W; Rower, Joseph E; Roberts, Jessica K; Miller, Eleanor I; Wilkins, Diana G; Sherwin, Catherine M T

    2017-12-01

    Nicotine addiction is an issue faced by millions of individuals worldwide. As a result, nicotine replacement therapies, such as transdermal nicotine patches, have become widely distributed and used. While the pharmacokinetics of transdermal nicotine have been extensively described using noncompartmental methods, there are few data available describing the between-subject variability in transdermal nicotine pharmacokinetics. The aim of this investigation was to use population pharmacokinetic techniques to describe this variability, particularly as it pertains to the absorption of nicotine from the transdermal patch. A population pharmacokinetic parent-metabolite model was developed using plasma concentrations from 25 participants treated with transdermal nicotine. Covariates tested in this model included: body weight, body mass index, body surface area (calculated using the Mosteller equation) and sex. Nicotine pharmacokinetics were best described with a one-compartment model with absorption based on a Weibull distribution and first-order elimination and a single compartment for the major metabolite, cotinine. Body weight was a significant covariate on apparent volume of distribution of nicotine (exponential scaling factor 1.42). After the inclusion of body weight in the model, no other covariates were significant. This is the first population pharmacokinetic model to describe the absorption and disposition of transdermal nicotine and its metabolism to cotinine and the pharmacokinetic variability between individuals who were administered the patch. © 2017 The British Pharmacological Society.

  11. Integration of in vitro biorelevant dissolution and in silico PBPK model of carvedilol to predict bioequivalence of oral drug products.

    Science.gov (United States)

    Ibarra, Manuel; Valiante, Cristian; Sopeña, Patricia; Schiavo, Alejandra; Lorier, Marianela; Vázquez, Marta; Fagiolino, Pietro

    2018-06-15

    Bioequivalence implementation in developing countries where a high proportion of similar drug products are being marketed has found several obstacles, impeding regulatory agencies to move forward with this policy. Biopharmaceutical quality of these products, several of which are massively prescribed, remains unknown. In this context, an in vitro-in silico-in vivo approach is proposed as a mean to screen product performance and target specific formulations for bioequivalence assessment. By coupling in vitro biorelevant dissolution testing in USP-4 Apparatus (flow-through cell) with physiologically-based pharmacokinetic (PBPK) modeling in PK-Sim® software (Bayer, Germany), the performance of seven similar products of carvedilol tablets containing 25 mg available in the Uruguayan market were compared with the brand-name drug Dilatrend®. In silico simulations for Dilatrend® were compared with published results of bioequivalence studies performed in fasting conditions allowing model development through a learning and confirming process. Single-dose pharmacokinetic profiles were then simulated for the brand-name drug and two similar drug products selected according to in vitro observations, in a virtual Caucasian population of 1000 subjects (50% male, aged between 18 and 50 years with standard body-weights). Population bioequivalence ratios were estimated revealing that in vitro differences in drug release would have a major impact in carvedilol maximum plasma concentration, leading to a non-bioequivalence outcome. Predictions support the need to perform in vivo bioequivalence for these products of extensive use. Application of the in vitro-in silico-in vivo approach stands as an interesting alternative to tackle and reduce drug product variability in biopharmaceutical quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Lack of Exposure in a First-in-Man Study Due to Aldehyde Oxidase Metabolism: Investigated by Use of 14C-microdose, Humanized Mice, Monkey Pharmacokinetics, and In Vitro Methods.

    Science.gov (United States)

    Jensen, Klaus Gjervig; Jacobsen, Anne-Marie; Bundgaard, Christoffer; Nilausen, Dorrit Østergaard; Thale, Zia; Chandrasena, Gamini; Jørgensen, Martin

    2017-01-01

    Inclusion of a microdose of 14 C-labeled drug in the first-in-man study of new investigational drugs and subsequent analysis by accelerator mass spectrometry has become an integrated part of drug development at Lundbeck. It has been found to be highly informative with regard to investigations of the routes and rates of excretion of the drug and the human metabolite profiles according to metabolites in safety testing guidance and also when additional metabolism-related issues needed to be addressed. In the first-in-man study with the NCE Lu AF09535, contrary to anticipated, surprisingly low exposure was observed when measuring the parent compound using conventional bioanalysis. Parallel accelerator mass spectrometry analysis revealed that the low exposure was almost exclusively attributable to extensive metabolism. The metabolism observed in humans was mediated via a human specific metabolic pathway, whereas an equivalent extent of metabolism was not observed in preclinical species. In vitro, incubation studies in human liver cytosol revealed involvement of aldehyde oxidase (AO) in the biotransformation of Lu AF09535. In vivo, substantially lower plasma exposure of Lu AF09535 was observed in chimeric mice with humanized livers compared with control animals. In addition, Lu AF09535 exhibited very low oral bioavailability in monkeys despite relatively low clearance after intravenous administration in contrast to the pharmacokinetics in rats and dogs, both showing low clearance and high bioavailability. The in vitro and in vivo methods applied were proved useful for identifying and evaluating AO-dependent metabolism. Different strategies to integrate these methods for prediction of in vivo human clearance of AO substrates were evaluated. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans

    Science.gov (United States)

    Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K. M.; Gomez-Cabrera, M. C.; Vina, J.; Borras, C.

    2015-01-01

    Plants containing resveratrol have been used effectively in traditional medicine for over 2000 years. It can be found in some plants, fruits, and derivatives, such as red wine. Therefore, it can be administered by either consuming these natural products or intaking nutraceutical pills. Resveratrol exhibits a wide range of beneficial properties, and this may be due to its molecular structure, which endow resveratrol with the ability to bind to many biomolecules. Among these properties its activity as an anticancer agent, a platelet antiaggregation agent, and an antioxidant, as well as its antiaging, antifrailty, anti-inflammatory, antiallergenic, and so forth activities, is worth highlighting. These beneficial biological properties have been extensively studied in humans and animal models, both in vitro and in vivo. The issue of bioavailability of resveratrol is of paramount importance and is determined by its rapid elimination and the fact that its absorption is highly effective, but the first hepatic step leaves little free resveratrol. Clarifying aspects like stability and pharmacokinetics of resveratrol metabolites would be fundamental to understand and apply the therapeutic properties of resveratrol. PMID:26221416

  14. Steady-state pharmacokinetics of pravastatin in children with familial hypercholesterolaemia

    NARCIS (Netherlands)

    Wiersma, Heleen E.; Wiegman, Albert; Koopmans, Richard P.; Bakker, Henk D.; Kastelein, John J. P.; van Boxtel, Chris J.

    2004-01-01

    Objective: To determine pharmacokinetic data for pravastatin in children, since current data are insufficient in this age group. Subjects and methods: A 2-week, multiple-dose, steady-state pharmacokinetic study was carried out with pravastatin 20mg daily in 24 children with familial

  15. Atomoxetine pharmacogenetics: associations with pharmacokinetics, treatment response and tolerability.

    Science.gov (United States)

    Brown, Jacob T; Bishop, Jeffrey R

    2015-01-01

    Atomoxetine is indicated for the treatment of attention deficit hyperactivity disorder and is predominantly metabolized by the CYP2D6 enzyme. Differences in pharmacokinetic parameters as well as clinical treatment outcomes across CYP2D6 genotype groups have resulted in dosing recommendations within the product label, but clinical studies supporting the use of genotype guided dosing are currently lacking. Furthermore, pharmacokinetic and clinical studies have primarily focused on extensive as compared with poor metabolizers, with little information known about other metabolizer categories as well as genes involved in the pharmacodynamics of atomoxetine. This review describes the pharmacogenetic associations with atomoxetine pharmacokinetics, treatment response and tolerability with considerations for the clinical utility of this information.

  16. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468.

    Science.gov (United States)

    Treiber, Alexander; de Kanter, Ruben; Roch, Catherine; Gatfield, John; Boss, Christoph; von Raumer, Markus; Schindelholz, Benno; Muehlan, Clemens; van Gerven, Joop; Jenck, Francois

    2017-09-01

    The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX 1 and OX 2 ) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX 2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX 2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in-vitro activity.

    Science.gov (United States)

    Shaikh, Muhammad Vaseem; Kala, Manika; Nivsarkar, Manish

    2017-03-30

    Biodegradable nanoparticles (NPs) have gained tremendous interest for targeting chemotherapeutic drugs to the tumor environment. Inspite of several advances sufficient encapsulation along with the controlled release and desired size range have remained as considerable challenges. Hence, the present study examines the formulation optimization of doxorubicin loaded PLGA NPs (DOX-PLGA-NPs), prepared by single emulsion method for cancer targeting. Critical process parameters (CPP) were selected by initial screening. Later, Box-Behnken design (BBD) was used for analyzing the effect of the selected CPP on critical quality attributes (CQA) and to generate a design space. The optimized formulation was stabilized by lyophilization and was used for in-vitro drug release and in-vitro activity on A549 cell line. Moreover, colloidal stability of the NPs in the biological milieu was assessed. Amount of PLGA and PVA, oil:water ratio and sonication time were the selected independent factors for BBD. The statistical data showed that a quadratic model was fitted to the data obtained. Additionally, the lack of fit values for the models was not significant. The delivery system showed sustained release behavior over a period of 120h and was governed by Fickian diffusion. The multipoint analysis at 24, 48 and 72h showed gradual reduction in IC50 value of DOX-PLGA-NPs (p<0.05, Fig. 9). DOX-PLGA-NPs were found to be stable in the biological fluids indicating their in-vivo applicability. In conclusion, optimization of the DOX-PLGA-NPs by BBD yielded in a promising drug carrier for doxorubicin that could provide a novel treatment modality for cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  19. Development of long-circulating docetaxel loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles: Optimization, pharmacokinetic, cytotoxicity and in vivo assessments.

    Science.gov (United States)

    Vardhan, Harsh; Mittal, Pooja; Adena, Sandeep K Reddy; Upadhyay, Mansi; Mishra, Brahmeshwar

    2017-10-01

    Long-circulating nanoparticles (NPs) are promising drug delivery vehicles which target solid tumors via enhanced permeation and retention effect. Plackett-Burman (PBD) and Box-Behnken (BBD) designs were adopted to study the effects of factors viz. polymer concentration, surfactant concentration, homogenizer speed, homogenization time and ultrasonication time on responses. A graphical and numerical optimization technique was used to obtain predicted value of the response. The drug entrapment efficiency was approximately 39±0.85%. The particle size of the nanoparticles was found to be 260±2.85nm, while the zeta potential was -18±2.12mV, indicating more stable particles. SEM, TEM, and AFM were used for characterization of surface morphology and the physicochemical characters of NPs. A pharmacokinetic evaluation carried out intravenous administration in healthy Charles Foster rats displayed enhanced systemic bioavailability and plasma drug concentration. The in vivo-in silico assessment by GastroPlus™ showed good prediction accuracy and presented best-fit model. Nanoparticles were also studied for stability testing and were found to be stable concerning their drug content and physical characters. In vitro cytotoxicity was assessed using MCF-7 for percentage inhibition of human breast cancer cell line. Anticancer studies of optimized NPs showed a significant increase in efficacy as observed by relative tumor volume up to 30 days. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pharmacokinetics of thiamine derivatives especially of benfotiamine.

    Science.gov (United States)

    Loew, D

    1996-02-01

    Pharmacokinetic data of orally administered lipid-soluble thiamine analogues like benfotiamine are reviewed and assessed. It is quite clear that benfotiamine is absorbed much more better than water-soluble thiamine salts: maximum plasma levels of thiamine are about 5 times higher after benfotiamine, the bioavailability is at maximum about 3.6 times as high as that of thiamine hydrochloride and better than other lipophilic thiamine derivates. The physiological activity (alphaETK) increased only after benfotiamine was given. Due to its excellent pharmacokinetic profile benfotiamine should be preferred in treatment of relevant indications.

  1. Pharmacokinetic study of gallocatechin-7-gallate from Pithecellobium clypearia Benth. in rats

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-01-01

    Full Text Available The pharmacokinetic profile of gallocatechin-7-gallate (J10688 was studied in rats after intravenous administration. Male and female Sprague-Dawley (SD rats received 1, 3, and 10 mg/kg (i.v. of J10688 and plasma drug concentrations were determined by a high performance liquid chromatography-mass spectrometry (LC–MS method. The pharmacokinetic software Data Analysis System (Version 3.0 was used to calculate the pharmacokinetic parameters. For different i.v. doses of J10688, the mean peak plasma concentration (C0 values ranged from 11.26 to 50.82 mg/L, and mean area under the concentration-time curve (AUC0–t values ranged from 1.75 to 11.80 (mg·h/L. J10688 lacked dose-dependent pharmacokinetic properties within doses between 1 and 10 mg/kg, based on the power model. The method developed in this study was sensitive, precise, and stable. The pharmacokinetic properties of J10688 in SD rats were shown to have rapid distribution and clearance values. These pharmacokinetic results may contribute to an improved understanding of the pharmacological actions of J10688.

  2. Pharmacokinetic Variability of Drugs Used for Prophylactic Treatment of Migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Ågesen, Frederik Nybye; Pavbro, Agniezka

    2017-01-01

    In this review, we evaluate the variability in the pharmacokinetics of 11 drugs with established prophylactic effects in migraine to facilitate 'personalized medicine' with these drugs. PubMed was searched for 'single-dose' and 'steady-state' pharmacokinetic studies of these 11 drugs. The maximum...

  3. Absorption and pharmacokinetics of grapefruit flavanones in beagles

    OpenAIRE

    Mata Bilbao, María de Lourdes; Andrés Lacueva, Ma. Cristina; Roura Carvajal, Elena; Jáuregui Pallarés, Olga; Escribano Ferrer, Elvira; Torre, Celina; Lamuela Raventós, Rosa Ma.

    2007-01-01

    The present study evaluated the pharmacokinetics of three different grapefruit flavanone forms in dog plasma and demonstrated their absorption after an oral intake of a grapefruit extract; pharmacokinetic parameters of these forms were also determined. Ten healthy beagles were administered 70 mg citrus flavonoids as a grapefruit extract contained in capsules, while two additional dogs were used as controls and given an excipient. The grapefruit flavanone naringin, along with its metabolites n...

  4. Time-dependent pharmacokinetics of dexamethasone and its efficacy in human breast cancer xenograft mice: a semi-mechanism-based pharmacokinetic/pharmacodynamic model.

    Science.gov (United States)

    Li, Jian; Chen, Rong; Yao, Qing-Yu; Liu, Sheng-Jun; Tian, Xiu-Yun; Hao, Chun-Yi; Lu, Wei; Zhou, Tian-Yan

    2018-03-01

    Dexamethasone (DEX) is the substrate of CYP3A. However, the activity of CYP3A could be induced by DEX when DEX was persistently administered, resulting in auto-induction and time-dependent pharmacokinetics (pharmacokinetics with time-dependent clearance) of DEX. In this study we investigated the pharmacokinetic profiles of DEX after single or multiple doses in human breast cancer xenograft nude mice and established a semi-mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for characterizing the time-dependent PK of DEX as well as its anti-cancer effect. The mice were orally given a single or multiple doses (8 mg/kg) of DEX, and the plasma concentrations of DEX were assessed using LC-MS/MS. Tumor volumes were recorded daily. Based on the experimental data, a two-compartment model with first order absorption and time-dependent clearance was established, and the time-dependence of clearance was modeled by a sigmoid E max equation. Moreover, a semi-mechanism-based PK/PD model was developed, in which the auto-induction effect of DEX on its metabolizing enzyme CYP3A was integrated and drug potency was described using an E max equation. The PK/PD model was further used to predict the drug efficacy when the auto-induction effect was or was not considered, which further revealed the necessity of adding the auto-induction effect into the final PK/PD model. This study established a semi-mechanism-based PK/PD model for characterizing the time-dependent pharmacokinetics of DEX and its anti-cancer effect in breast cancer xenograft mice. The model may serve as a reference for DEX dose adjustments or optimization in future preclinical or clinical studies.

  5. Experimental study of the anti-tumour activity and pharmacokinetics of arctigenin and its valine ester derivative.

    Science.gov (United States)

    Cai, Enbo; Song, Xingzhuo; Han, Mei; Yang, Limin; Zhao, Yan; Li, Wei; Han, Jiahong; Tu, Shumei

    2018-02-19

    Arctigenin (ARG) is a functional active component that has important physiological and pharmacological activities. The anti-tumour and anti-inflammatory activities of ARG show good potential for application and development, but this material has the defect of low water solubility. In this experiment, the valine derivative of ARG (ARG-V) was designed and synthesized to overcome this disadvantage. The ARG amino acid, EDCI and DMAP were raw materials in the addition reaction, with a molar ratio of 1:2:2:0.5. The yield of ARG-V was up to 80%. ARG-V has strong anti-tumour activity in vivo and in vitro. The inhibitory rate of ARG-V was 69.2%, with less damage to the immune organs and different degrees of increased serum cytotoxicity. Moreover, the pharmacokinetics of ARG following oral administration and ARG-V following oral administration in rats were also studied. The C max and AUC values of ARG-V showed significant differences compared to ARG. The relative bioavailabilities of three doses of ARG-V compared to ARG were 664.7%, 741.5% and 812.9%. These pharmacokinetic results may be useful for further studies of the bioactive mechanism of ARG and provide a theoretical basic for clinical use.

  6. Color stability of different denture teeth materials: an in vitro study.

    Science.gov (United States)

    Mutlu-Sagesen, L; Ergün, G; Ozkan, Y; Bek, B

    2001-09-01

    The aim of this in vitro study was to compare the color stability of commercially available porcelain, reinforced acrylic, and conventional acrylic denture teeth materials used in removable prostheses. Two brands of porcelain (Unilux-Enta Lactona-Holland and Vivoperl-Ivoclar-Liechtenstein), 2 brands of reinforced acrylic (Optodent-Bayer-Germany and Ivolek-Ivoclar-Liechtenstein), and 2 brands of conventional acrylic (Isodent-Güney Diş Deposu-Turkey and Samed-Turkey), were made, for a total of 6 different denture teeth groups. Denture teeth were subjected to 3 staining solutions (filtered coffee, tea, and cola) and distilled water. From each group of denture teeth, 4 sets of maxillary anterior denture teeth were immersed in each of the 4 solutions. The color values of denture teeth were measured colorimetrically with the Gardner XL 20 Tristimulus Colorimeter (Gardner Lab. Inc., Bethesda, Maryland, USA). Color changes were characterized in the CIEL*a*b* color space. Color change values were determined after 1 day, 1 week, 2 weeks, and 4 weeks. The color difference values were calculated and then evaluated by two-way ANOVA statistically. The filtered coffee solution was found to be more chromogenic than the other 2 staining solutions, while porcelain denture teeth materials were more color stable. Assuming the color change of deltaE* < 1.0 as a discernible limit and deltaE* = 3.3 as an acceptable value, the filtered coffee, tea, and cola had slight staining effects on all 6 groups of denture teeth.

  7. Pharmacokinetics and pharmacodynamics of mivacurium in young adult and elderly patients

    DEFF Research Database (Denmark)

    Østergaard, Doris; Viby-Mogensen, Jørgen; Pedersen, N.A.

    2002-01-01

    age factors; butyrylcholinesterase; cholinesterase; dose-response curves; enzymes; metabolites; mivacurium; neuromuscular relaxants; pharmacodynamics; pharmacokinetics; pharmacology; pseudocholinesterase; stereoisomers......age factors; butyrylcholinesterase; cholinesterase; dose-response curves; enzymes; metabolites; mivacurium; neuromuscular relaxants; pharmacodynamics; pharmacokinetics; pharmacology; pseudocholinesterase; stereoisomers...

  8. Colon Targeted Guar Gum Compression Coated Tablets of Flurbiprofen: Formulation, Development, and Pharmacokinetics

    Science.gov (United States)

    Bontha, Vijaya Kumar

    2013-01-01

    The rationale of the present study is to formulate flurbiprofen colon targeted compression coated tablets using guar gum to improve the therapeutic efficacy by increasing drug levels in colon, and also to reduce the side effects in upper gastrointestinal tract. Direct compression method was used to prepare flurbiprofen core tablets, and they were compression coated with guar gum. Then the tablets were optimized with the support of in vitro dissolution studies, and further it was proved by pharmacokinetic studies. The optimized formulation (F4) showed almost complete drug release in the colon (99.86%) within 24 h without drug loss in the initial lag period of 5 h (only 6.84% drug release was observed during this period). The pharmacokinetic estimations proved the capability of guar gum compression coated tablets to achieve colon targeting. The C max of colon targeted tablets was 11956.15 ng/mL at T max of 10 h whereas it was 15677.52 ng/mL at 3 h in case of immediate release tablets. The area under the curve for the immediate release and compression coated tablets was 40385.78 and 78214.50 ng-h/mL and the mean resident time was 3.49 and 10.78 h, respectively. In conclusion, formulation of guar gum compression coated tablets was appropriate for colon targeting of flurbiprofen. PMID:24260738

  9. Pharmacokinetics of clomipramine during pregnancy

    NARCIS (Netherlands)

    Ter Horst, P G J; Proost, J H; Smit, J P; Vries, M T; de Jong-van den Berg, Lolkje; Wilffert, B

    2015-01-01

    Clomipramine is one of the drugs for depression during pregnancy; however, pharmacokinetic data of clomipramine and its active metabolite desmethylclomipramine in this vulnerable period are lacking. In this study, we describe clomipramine and desmethylclomipramine concentrations including their

  10. Population pharmacokinetics of artesunate and dihydroartemisinin in pregnant and non-pregnant women with malaria

    Directory of Open Access Journals (Sweden)

    Bose Carl

    2011-05-01

    Full Text Available Abstract Background The World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy. However, the effects of pregnancy on the pharmacokinetics of artemisinin derivatives, such as artesunate (AS, are poorly understood. In this analysis, the population pharmacokinetics of oral AS, and its active metabolite dihydroartemisinin (DHA, were studied in pregnant and non-pregnant women at the Kingasani Maternity Clinic in the DRC. Methods Data were obtained from 26 pregnant women in the second (22 - 26 weeks or the third (32 - 36 weeks trimester of pregnancy and from 25 non-pregnant female controls. All subjects received 200 mg AS. Plasma AS and DHA were measured using a validated LC-MS method. Estimates for pharmacokinetic and variability parameters were obtained through nonlinear mixed effects modelling. Results A simultaneous parent-metabolite model was developed consisting of mixed zero-order, lagged first-order absorption of AS, a one-compartment model for AS, and a one-compartment model for DHA. Complete conversion of AS to DHA was assumed. The model displayed satisfactory goodness-of-fit, stability, and predictive ability. Apparent clearance (CL/F and volume of distribution (V/F estimates, with 95% bootstrap confidence intervals, were as follows: 195 L (139-285 L for AS V/F, 895 L/h (788-1045 L/h for AS CL/F, 91.4 L (78.5-109 L for DHA V/F, and 64.0 L/h (55.1-75.2 L/h for DHA CL/F. The effect of pregnancy on DHA CL/F was determined to be significant, with a pregnancy-associated increase in DHA CL/F of 42.3% (19.7 - 72.3%. Conclusions In this analysis, pharmacokinetic modelling suggests that pregnant women have accelerated DHA clearance compared to non-pregnant women receiving orally administered AS. These findings, in conjunction with a previous non-compartmental analysis of the modelled data, provide further evidence that

  11. Rapidly disintegrating vagina retentive cream suppositories of progesterone: development, patient satisfaction and in vitro/in vivo studies.

    Science.gov (United States)

    Bendas, Ehab Rasmy; Basalious, Emad B

    2016-01-01

    Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.

  12. Availability of Acute and/or Subacute Toxicokinetic Data for Select Compounds for the Rat and Physiologically Based Pharmacokinetic (PBPK) Models for Rats and Humans for Those Compounds

    Science.gov (United States)

    2017-05-04

    DMA, and total As in urine Mouse: radioactivity in feces, liver, kidneys, lungs, and carcass (DMA), DMA in urine; after arsenate dose...radioactivity in urine, feces, liver, kidneys, lungs, skin, carcass and blood and AsV, AsIII, MMA and DMA excreted in urine; after arsenite dose, AsV, AsIII...Pharmacokinetic parameter values were taken from a variety of sources, including animal studies (e.g., oral absorption rate), in vitro kinetic

  13. Pharmacokinetic interaction between scutellarin and valsartan in rats.

    Science.gov (United States)

    Cui, Ming-Yu; Tian, Chong-Chong; Ju, Ai-Xia; Zhang, Chun-Ting; Li, Qiu-Hong

    2013-04-01

    Scutellarin is the main effective constituent of breviscapine, a flavonoid mixture isolated from the dried whole plant of Erigeron breviscapus (Vant.) Hand-Mazz, and valsartan is used as an antihypertensive drug. These two drugs have already been clinically used together to treat diabetic nephropathy (DN) in China, and the combined medications showed some enhanced protection against DN. The aim of this study is to investigate the potential pharmacokinetic interaction between scutellarin and valsartan in rats. Breviscapine injection (20 mg x kg(-1), i.v.) and valsartan (15 mg x kg-, i.g.), either alone or together were given to 18 male Sprague-Dawley rats. Concentrations of scutellarin and valsartan were quantified by HPLC, and pharmacokinetic parameters were calculated by non-compartmental methods. We found that the pharmacokinetic parameters of scutellarin altered significantly after co-administration of oral valsartan. The plasma clearance (CL(p)) and the bile clearance (CL(b)) of scutellarin were reduced significantly in the presence of valsartan. After oral administration of valsartan with or without intravenous scutellarin, however, the pharmacokinetic parameters of valsartan were comparable. In conclusion, our data suggests that the concurrent use of valsartan reduces the biliary excretion of scutellarin, and this may be due to the inhibitory effect of valsartan on the biliary excretion of scutellarin mediated by Mrp2 (Multidrug resistance-associated protein 2).

  14. Evaluation of protective effect of different dietary fibers on polyphenolic profile stability of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion.

    Science.gov (United States)

    Viuda-Martos, Manuel; Lucas-Gonzalez, Raquel; Ballester-Costa, Carmen; Pérez-Álvarez, José A; Muñoz, Loreto A; Fernández-López, Juana

    2018-01-24

    The aim of this work was to determine the protective effect of different dietary fibers on (i) the recovery and bioaccessibility indexes, and (ii) the stability of polyphenolic compounds (phenolic acids, flavonoids and anthocyanins) of maqui berry powder subjected to in vitro gastrointestinal digestion (GID). The extracts obtained in each phase (oral, gastric and intestinal) of GID were used to analyze the stability of polyphenolic compounds by HPLC, and the bioaccessibility of these compounds was also determined. At the end of the GID process, the mixture of maqui berry with the different fibers increased the bioaccessibility index of the phenolic and flavonoid compounds in all cases. The results obtained suggest that the anthocyanins and phenolic acids and flavonoid compounds present in maqui are stabilized through dietary fiber interactions, which might provide sufficient levels for absorption during gastrointestinal digestion. The gums sodium carboxymethyl cellulose, xanthan gum and guar gum provided the best protective effect.

  15. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability.

    Science.gov (United States)

    Zhu, Yuan; Zhang, Jiajia; Zheng, Qianfeng; Wang, Miaomiao; Deng, Wenwen; Li, Qiang; Firempong, Caleb Kesse; Wang, Shengli; Tong, Shanshan; Xu, Ximing; Yu, Jiangnan

    2015-10-01

    Capsaicin, as a food additive, has attracted worldwide concern owing to its pungency and multiple pharmacological effects. However, poor water solubility and low bioavailability have limited its application. This study aims to develop a capsaicin-loaded microemulsion to enhance the oral bioavailability of the anti-neuropathic-pain component, capsaicin, which is poorly water soluble. In this study, the microemulsion consisting of Cremophor EL, ethanol, medium-chain triglycerides (oil phase) and water (external phase) was prepared and characterized (particle size, morphology, stability and encapsulation efficiency). The gastric mucosa irritation test of formulated capsaicin was performed in rats to evaluate its oral feasibility, followed by the pharmacokinetic study in vivo. Under these conditions, the encapsulated capsaicin revealed a faster capsaicin release in vitro coupled with a greater absorption in vivo when compared to the free capsaicin. The oral bioavailability of the formulated capsaicin-loaded microemulsions was 2.64-fold faster than that of free capsaicin. No significant irritation was observed on the mucosa from the pathological section of capsaicin-loaded microemulsion treated stomach. These results indicate that the developed microemulsion represents a safe and orally effective carrier for poorly soluble substances. The formulation could be used for clinical trials and expand the application of capsaicin. © 2014 Society of Chemical Industry.

  16. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles

    International Nuclear Information System (INIS)

    Li, Su; Wang, Anxun; Jiang, Wenqi; Guan, Zhongzhen

    2008-01-01

    It is expected that prolonged circulation of anticancer drugs will increase their anticancer activity while decreasing their toxic side effects. The purpose of this study was to prepare 5-fluorouracil (5-FU) loaded block copolymers, with poly(γ-benzyl-L-glutamate) (PBLG) as the hydrophobic block and poly(ethylene glycol) (PEG) as the hydrophilic block, and then examine the 5-FU release characteristics, pharmacokinetics, and anticancer effects of this novel compound. 5-FU loaded PEG-PBLG (5-FU/PEG-PBLG) nanoparticles were prepared by dialysis and then scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the shape and size of the nanoparticles, and ultraviolet spectrophotometry was used to evaluate the 5-FU in vitro release characteristics. The pharmacokinetic parameters of 5-FU/PEG-PBLG nanoparticles in rabbit plasma were determined by measuring the 5-FUby high-performance liquid chromatography (HPLC). To study in vivo effects, LoVo cells (human colon cancer cell line) or Tca8113 cells (human oral squamous cell carcinoma cell line) were implanted in BALB/c nude mice that were subsequently treated with 5-FU or 5-FU/PEG-PBLG nanospheres. 5-FU/PEG-PBLG nanoparticles had a core-shell spherical structure with a diameter of 200 nm and a shell thickness of 30 nm. The drug loading capacity was 27.1% and the drug encapsulation was 61.5%. Compared with 5-FU, 5-FU/PEG-PBLG nanoparticles had a longer elimination half-life (t 1/2 , 33.3 h vs. 5 min), lower peak concentration (C, 4563.5 μg/L vs. 17047.3 μg/L), and greater distribution volume (V D , 0.114 L vs. 0.069 L). Compared with a blank control, LoVo cell xenografts and Tca8113 cell xenografts treated with 5-FU or 5-FU/PEG-PBLG nanoparticles grew slower and had prolonged tumor doubling times. 5-FU/PEG-PBLG nanoparticles showed greater inhibition of tumor growth than 5-FU (p < 0.01). In the PEG-PBLG nanoparticle control group, there was no tumor inhibition (p > 0.05). In our

  17. HPLC assay for ethiofos in plasma: Application to pharmacokinetics in the beagle dog

    International Nuclear Information System (INIS)

    Swynnerton, N.F.; Mangold, D.J.; Ludden, T.M.

    1985-01-01

    An HPLC assay for ethiofos [S-2-(3-amino-propylamino)ethyl phosphorothioate, WR 2727] in plasma is presented. Its application to the development of pharmacokinetic parameters following IV administration of the drug to beagle dogs is demonstrated and preliminary pharmacokinetics of four dosings will be presented. Following a dose of 150 mg kg -1 , the plasma concentration versus time profile was best described by a two-compartment pharmacokinetics model. Mean pharmacokinetic parameters were: terminal elimination half-life = 16.0 minutes, volume of central compartment = 129 mL kg -1 , and clearance = 11.0 mL min -1 kg -1

  18. A comprehensive review of recent studies on pharmacokinetics of traditional Chinese medicines (2014-2017) and perspectives.

    Science.gov (United States)

    Shi, Peiying; Lin, Xinhua; Yao, Hong

    2018-05-01

    Traditional Chinese medicines (TCMs) have a long history for safely treating human diseases. Unlike western medicine, TCMs usually contain multiple components synergistically and holistically acting on the diseases. It remains a big challenge to represent rationally the in vivo process of multiple components of TCMs for understanding the relationship between administration and therapeutic effects. For years, efforts were always made to face the challenge, and the achievements were obvious. Here, we give an comprehensive overview of the recent investigation progress (from 2015 to 2017, except the part of 'integrated pharmacokinetics of TCMs' from 2014 to 2017 and the part of 'reverse pharmacokinetics in drug discovery from natural medicines' in 2014) on pharmacokinetics of TCMs, mainly referring to the following six aspects: (1) classical pharmacokinetic studies on TCMs; (2) absorbed components and metabolites identification of TCMs; (3) pharmacokinetic herb-drug interactions and herb-herb interactions with TCMs; (4) integrated pharmacokinetics of TCMs; (5) pharmacokinetic and pharmacodynamic combination studies to dissect the action mechanisms of TCMs; and (6) reverse pharmacokinetics in drug discovery from natural medicines. Finally, based on the insights from the recent progress and our latest efforts, we propose new perspectives on the integrated pharmacokinetics of TCMs.

  19. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property.

    Science.gov (United States)

    Fu, Zhifei; Fan, Xiang; Wang, Xiaoying; Gao, Xiumei

    2018-06-12

    Cistanches Herba is an Orobanchaceae parasitic plant. As a commonly used Traditional Chinese Medicine (TCM), its traditional functions include treating kidney deficiency, impotence, female infertility and senile constipation. Chemical analysis of Cistanches Herba revealed that phenylethanoid glycosides, iridoids, lignans, oligosaccharides, and polysaccharides were the main constituents. Pharmacological studies demonstrated that Cistanches Herba exhibited neuroprotective, immunomodulatory, hormonal balancing, anti-fatigue, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, anti-viral, and anti-tumor effects, etc. The aim of this review is to provide updated, comprehensive and categorized information on the phytochemistry, pharmacological research and pharmacokinetics studies of the major constituents of Cistanches Herba. The literature search was conducted by systematic searching multiple electronic databases including SciFinder, ISI Web of Science, PubMed, Google Scholar and CNKI. Information was also collected from journals, local magazines, books, monographs. To date, more than 100 compounds have been isolated from this genus, include phenylethanoid glycosides, carbohydrates, lignans, iridoids, etc. The crude extracts and isolated compounds have exhibited a wide range of in vitro and in vivo pharmacologic effects, such as neuroprotective, immunomodulatory, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, and anti-tumor effects. The phenylethanoid glycosides, echinacoside and acteoside have attracted the most attention for their significantly neuropharmacology effects. Pharmacokinetic studies of echinacoside and acteoside also have also been summarized. Phenylethanoid glycosides have demonstrated wide pharmacological actions and have great clinical value if challenges such as poor bioavailability, fast and extensive metabolism are addressed. Apart from phenylethanoid glycosides, other constituents of Cistanches Herba, their

  20. Pharmacokinetic compatibility of ginsenosides and Schisandra Lignans in Shengmai-san: from the perspective of p-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Yan Liang

    Full Text Available Phytochemical-mediated alterations in P-glycoprotein (P-gp activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp.Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE.The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor. Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1 were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and Rb1 significantly.

  1. A simple and rapid approach to evaluate the in vitro in vivo role of release controlling agent ethyl cellulose ether derivative polymer.

    Science.gov (United States)

    Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy

    2014-11-01

    Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (prelease rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (prelease. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.

  2. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    Science.gov (United States)

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  3. Lu-177-PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution and Dosimetry

    Directory of Open Access Journals (Sweden)

    Levent Kabasakal

    2017-06-01

    Full Text Available Objective: The aim of the study was to estimate the radiation-absorbed doses and to study the in vivo and in vitro stability as well as pharmacokinetic characteristics of lutetium-177 (Lu-177 prostate-specific membrane antigen (PSMA-617. Methods: For this purpose, 7 patients who underwent Lu-177-PSMA therapy were included into the study. The injected Lu-177-PSMA-617 activity ranged from 3.6 to 7.4 GBq with a mean of 5.2±1.8 GBq. The stability of radiotracer in saline was calculated up to 48 h. The stability was also calculated in blood and urine samples. Post-therapeutic dosimetry was performed based on whole body and single photon emission computed tomography/computed tomography (SPECT/CT scans on dual-headed SPECT/CT system. Results: The radiochemical yield of Lu-177-PSMA-617 was >99%. It remained stable in saline up to 48 h. Analyses of the blood and urine samples showed a single radioactivity peak even at 24 hours after injection. Half-life of the distribution and elimination phases were calculated to be 0.16±0.09 and 10.8±2.5 hours, respectively. The mean excretion rate was 56.5±8.8% ranging from 41.5% to 65.4% at 24 h. Highest radiation estimated doses were calculated for parotid glands and kidneys (1.90±1.19 and 0.82±0.25 Gy/GBq respectively. Radiation dose given to the bone marrow was significantly lower than those of kidney and parotid glands (p<0.05 (0.030±0.008 Gy/GBq. Conclusion: Lu-177-PSMA-617 is a highly stable compound both in vitro and in vivo. Lu-177-PSMA-617 therapy seems to be a safe method for the treatment of castration-resistant prostate cancer patients. The fractionation regime that enables the longest duration of tumor control and/or survival will have to be developed in further studies.

  4. The Brain and Propranolol Pharmacokinetics in the Elderly

    Directory of Open Access Journals (Sweden)

    Andy R. Eugene

    2015-09-01

    Full Text Available Propranolol, a non-selective β-blocker, has been found to have a tremendous array of indications. Recent evidence has suggested that propranolol may be effective in patients suffering from post-traumatic stress disorder by suppressing activity in the amygdala and thereby inhibiting emotional memory formation. Dosage requirements have been well established in the pediatric and adult population, however, there has been no definitive geriatric dose recommended in the package inserts made available to the public. The aim of this paper is to use pharmacokinetic simulations in order to establish a pharmacokinetic profile dosage equivalent for the elderly as has been found in young patients. After completing the Monte-Carlo simulations for the elderly and young patients, a single 10mg dose in the elderly has shown comparable pharmacokinetic profiles as found in young patients administered a 40mg single dose.

  5. Pharmacokinetics, Dose Proportionality, and Bioavailability of Bazedoxifene in Healthy Postmenopausal Women.

    Science.gov (United States)

    McKeand, William

    2017-09-01

    Bazedoxifene is a selective estrogen receptor modulator that has estrogen agonist effects on bone and lipid metabolism while having neutral or estrogen antagonist effects on the breast and endometrium. The present report describes findings from 3 Phase I clinical studies that evaluated the single-dose pharmacokinetics (study 1; n = 84), multiple-dose pharmacokinetics (study 2; n = 23), and absolute bioavailability (study 3; n = 18) of bazedoxifene. All 3 studies enrolled healthy postmenopausal women who were either naturally postmenopausal or had undergone bilateral oophorectomy at least 6 months before the start of the study. Study 1 showed that unconjugated and total (unconjugated and conjugated) bazedoxifene levels increased proportionally with ascending oral doses of bazedoxifene (through the dose range of 5-120 mg). Evaluation with or without food intake was conducted at the 10-mg dose, with no clinically relevant effect on pharmacokinetic parameters. Study 2 showed that bazedoxifene achieved steady state in 1 week and exhibited linear pharmacokinetics in doses of 5 to 40 mg with no unexpected accumulation over the dose range. In accordance with a linear pharmacokinetic profile, mean maximum plasma concentration values increased with increasing dose, with values of 1.6, 6.2, and 12.5 ng/mL for the 5-, 20-, and 40-mg doses, respectively. In study 3, tablet and capsule formulations of bazedoxifene formulations had an estimated oral bioavailability of ~6%. The clearance of bazedoxifene was 0.4 (0.1) L/h/kg based on intravenous administration. The oral formulations had comparable exposure profiles with respect to AUC and AUC0-t, and the 90% CIs for these values were within the bioequivalence limits of 80% to 125%. Bazedoxifene was safe and well tolerated in all 3 studies. These pharmacokinetic evaluations in healthy postmenopausal women found that bazedoxifene displayed linear pharmacokinetics with doses ranging from 5 to 40 mg, with no unexpected accumulation

  6. Clinical Pharmacology and Pharmacokinetics of Levetiracetam

    Directory of Open Access Journals (Sweden)

    Chanin Clark Wright

    2013-12-01

    Full Text Available Status epilepticus and acute repetitive seizures still pose a management challenge despite the recent advances in the field of epilepsy. Parenteral formulations of old anticonvulsants are still a cornerstone in acute seizure management and are approved by the FDA. Intravenous levetiracetam, a second generation anticonvulsant, is approved by the FDA as an adjunctive treatment in patients 16 years or older when oral administration is not available. Data have shown that it has a unique mechanism of action, linear pharmacokinetics and no known drug interactions with other anticonvulsants. In this paper, we will review the current literature about the pharmacology and pharmacokinetics of intravenous levetiracetam and the safety profile of this new anticonvulsant in acute seizure management of both adults and children.

  7. The effect of Yoyo bitters on the pharmacokinetics of single oral ...

    African Journals Online (AJOL)

    Blood samples were collected and analyzed for paracetamol using spectrophotometric method. The values obtained for the pharmacokinetics parameters when paracetamol was administered alone falls within previously reported values. Yoyo bitters did not statistically (P>0.05) affect the pharmacokinetics of paracetamol ...

  8. Radiolabelled of c-DOTA-RGD and c-DOTA-RGDf with {sup 177}Lu and evaluation in vitro and in vivo stability; Radiomarcado del peptido c-DOTA-RGD y c-DOTA-RGDf con {sup 177}Lu y evaluacion de su estabilidad in vitro e in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis J, A.

    2010-07-01

    Integrin {alpha}v{beta}3 has a critical role in tumor angio genesis and metastasis. Radiolabelled peptides based on the Arg-Gly-Asp (RGD) sequence have been reported as radiopharmaceuticals with high affinity and selectivity for the {alpha}v{beta}3 integrin. The aim of this study was to label c-DOTA-RGD and c-DOTA-RGDf peptides with {sup 177}Lu and to evaluate their in vitro and in vivo stability as potential specific therapeutic radiopharmaceuticals. Labelled was carried out by direct reaction of {sup 177}LuCl{sub 3} with c-DOTA-RGD peptides in 1 M acetate buffer ph 5.5 at 90{sup o} C for 30 min. Radiochemical purity and stability studies were realized by reversed phase HPLC and I TLC-Sg analyses in human serum and saline solution. Biological recognition was performed using MCF7 tumor cells (positive {alpha}v{beta}3) and in athymic mice with induced MCF7 tumors. Molecular mechanics and quantum mechanics calculations were performed to explain experimental results associated with the molecular recognition. {sup 177}Lu-DOTA-RGD and {sup 177}Lu-DOTA-RGDf were obtained with radiochemical purities > 95%, showing adequate in vitro and in vivo stability and specific binding to {open_square}{sub v}{open_square}{sub 3} receptors. (Author)

  9. Population pharmacokinetics and relationship between demographic and clinical variables and pharmacokinetics of gentamicin in neonates

    NARCIS (Netherlands)

    Stolk, L M L; Degraeuwe, P L J; Nieman, F H M; de Wolf, M C; de Boer, A|info:eu-repo/dai/nl/075097346

    Population pharmacokinetic parameter estimates were calculated from 725 routine plasma gentamicin concentrations obtained in 177 neonates of 24 to 42 weeks' gestational age in their first week of life. Kel increases and V/W decreases with increasing gestational age. Almost identical results were

  10. Pharmacokinetics and Pharmacodynamics of Lysergic Acid Diethylamide in Healthy Subjects.

    Science.gov (United States)

    Dolder, Patrick C; Schmid, Yasmin; Steuer, Andrea E; Kraemer, Thomas; Rentsch, Katharina M; Hammann, Felix; Liechti, Matthias E

    2017-10-01

    Lysergic acid diethylamide (LSD) is used recreationally and in clinical research. The aim of the present study was to characterize the pharmacokinetics and exposure-response relationship of oral LSD. We analyzed pharmacokinetic data from two published placebo-controlled, double-blind, cross-over studies using oral administration of LSD 100 and 200 µg in 24 and 16 subjects, respectively. The pharmacokinetics of the 100-µg dose is shown for the first time and data for the 200-µg dose were reanalyzed and included. Plasma concentrations of LSD, subjective effects, and vital signs were repeatedly assessed. Pharmacokinetic parameters were determined using compartmental modeling. Concentration-effect relationships were described using pharmacokinetic-pharmacodynamic modeling. Geometric mean (95% confidence interval) maximum plasma concentration values of 1.3 (1.2-1.9) and 3.1 (2.6-4.0) ng/mL were reached 1.4 and 1.5 h after administration of 100 and 200 µg LSD, respectively. The plasma half-life was 2.6 h (2.2-3.4 h). The subjective effects lasted (mean ± standard deviation) 8.2 ± 2.1 and 11.6 ± 1.7 h for the 100- and 200-µg LSD doses, respectively. Subjective peak effects were reached 2.8 and 2.5 h after administration of LSD 100 and 200 µg, respectively. A close relationship was observed between the LSD concentration and subjective response within subjects, with moderate counterclockwise hysteresis. Half-maximal effective concentration values were in the range of 1 ng/mL. No correlations were found between plasma LSD concentrations and the effects of LSD across subjects at or near maximum plasma concentration and within dose groups. The present pharmacokinetic data are important for the evaluation of clinical study findings (e.g., functional magnetic resonance imaging studies) and the interpretation of LSD intoxication. Oral LSD presented dose-proportional pharmacokinetics and first-order elimination up to 12 h. The effects of LSD were related

  11. Effect of gemfibrozil on the pharmacokinetics and pharmacodynamics of racemic warfarin in healthy subjects

    Science.gov (United States)

    Lilja, Jari J; Backman, Janne T; Neuvonen, Pertti J

    2005-01-01

    Aims Case reports suggest that gemfobrozil can increase the anticoagulant effect of warfarin. Because gemfibrozil inhibits CYP2C9 in vitro, we studied its effects on the pharmacokinetics and pharmacodynamics of racemic warfarin. Methods In a randomized cross-over study, 10 healthy subjects ingested 600 mg gemfibrozil or placebo twice daily for 8 days. On day 3, they were administered a single dose of 10 mg racemic R-S-warfarin orally. The concentrations of R- and S-warfarin in plasma and thromboplastin time were monitored up to 168 h. Results Gemfibrozil decreased the mean (±SD) area under the plasma concentration-time curve [AUC(0–∞)] of S-warfarin by 11%, from 19.9 ± 5.2 mg l−1 h to 17.6 ± 4.7 mg l−1 h (95% CI on the difference −3.7, −0.78; P gemfibrozil phase to 29.5 ± 6.9 mg l−1 h during the placebo phase (95% CI −3.3, −0.33; P Gemfibrozil did not alter the anticoagulant effect of warfarin. Conclusion Unexpectedly, gemfibrozil slightly decreased the plasma concentrations of R- and S-warfarin. Displacement of warfarin from plasma albumin by gemfibrozil or its interference with the absorption of warfarin could explain the present findings. Usual therapeutic doses of gemfibrozil seem to have limited effects on the pharmacokinetics and pharmacodynamics of single dose warfarin in healthy subjects. PMID:15801938

  12. Plasma and cerebrospinal fluid pharmacokinetics of flurbiprofen in children

    Science.gov (United States)

    Kumpulainen, Elina; Välitalo, Pyry; Kokki, Merja; Lehtonen, Marko; Hooker, Andrew; Ranta, Veli-Pekka; Kokki, Hannu

    2010-01-01

    AIMS This study was designed to characterize paediatric pharmacokinetics and central nervous system exposure of flurbiprofen. METHODS The pharmacokinetics of flurbiprofen were studied in 64 healthy children aged 3 months to 13 years, undergoing surgery with spinal anaesthesia. Children were administered preoperatively a single dose of flurbiprofen intravenously as prodrug (n = 27) or by mouth as syrup (n = 37). A single cerebrospinal fluid (CSF) sample (n = 60) was collected at the induction of anaesthesia, and plasma samples (n = 304) before, during and after the operation (up to 20 h after administration). A population pharmacokinetic model was built using the NONMEM software package. RESULTS Flurbiprofen concentrations in plasma were well described by a three compartment model. The apparent bioavailability of oral flurbiprofen syrup was 81%. The estimated clearance (CL) was 0.96 l h−1 70 kg−1. Age did not affect the clearance after weight had been included as a covariate. The estimated volume of distribution at steady state (Vss) was 8.1 l 70 kg−1. Flurbiprofen permeated into the CSF, reaching concentrations that were seven-fold higher compared with unbound plasma concentrations. CONCLUSIONS Flurbiprofen pharmacokinetics can be described using only weight as a covariate in children above 6 months, while more research is needed in neonates and in younger infants. PMID:20840447

  13. Pharmacokinetics of oral and intravenous melatonin in healthy volunteers

    DEFF Research Database (Denmark)

    Andersen, Lars Peter Holst; Werner, Mads Utke; Rosenkilde, Mette Marie

    2016-01-01

    BACKGROUND: The aim was to investigate the pharmacokinetics of oral and iv melatonin in healthy volunteers. METHODS: The study was performed as a cohort crossover study. The volunteers received either 10 mg oral melatonin or 10 mg intravenous melatonin on two separate study days. Blood samples were...... collected at different time points following oral administration and short iv infusion, respectively. Plasma melatonin concentrations were determined by RIA technique. Pharmacokinetic analyses were performed by "the method of residuals" and compartmental analysis. The pharmacokinetic variables: k a, t 1....../2 absorption, t max, C max, t 1/2 elimination, AUC 0-∞, and bioavailability were determined for oral melatonin. C max, t 1/2 elimination, V d, CL and AUC 0-∞ were determined for intravenous melatonin. RESULTS: Twelve male volunteers completed the study. Baseline melatonin plasma levels did not differ...

  14. Isoniazid Pharmacokinetics-Pharmacodynamics in an Aerosol Infection Model of Tuberculosis

    Science.gov (United States)

    Jayaram, Ramesh; Shandil, Radha. K.; Gaonkar, Sheshagiri; Kaur, Parvinder; Suresh, B. L.; Mahesh, B. N.; Jayashree, R.; Nandi, Vrinda; Bharath, Sowmya; Kantharaj, E.; Balasubramanian, V.

    2004-01-01

    Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r2 = 0.73). PMID:15273105

  15. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  16. Personalized therapeutics for levofloxacin: a focus on pharmacokinetic concerns.

    Science.gov (United States)

    Gao, Chu-Han; Yu, Lu-Shan; Zeng, Su; Huang, Yu-Wen; Zhou, Quan

    2014-01-01

    Personalized medicine should be encouraged because patients are complex, and this complexity results from biological, medical (eg, demographics, genetics, polypharmacy, and multimorbidities), socioeconomic, and cultural factors. Levofloxacin (LVX) is a broad-spectrum fluoroquinolone antibiotic. Awareness of personalized therapeutics for LVX seems to be poor in clinical practice, and is reflected in prescribing patterns. Pharmacokinetic-pharmacodynamic studies have raised concerns about suboptimal patient outcomes with the use of LVX for some Gram-negative infections. Meanwhile, new findings in LVX therapeutics have only been sporadically reported in recent years. Therefore, an updated review on personalized LVX treatment with a focus on pharmacokinetic concerns is necessary. Relevant literature was identified by performing a PubMed search covering the period from January 1993 to December 2013. We included studies describing dosage adjustment and factors determining LVX pharmacokinetics, or pharmacokinetic-pharmacodynamic studies exploring how best to prevent the emergence of resistance to LVX. The full text of each included article was critically reviewed, and data interpretation was performed. In addition to limiting the use of fluoroquinolones, measures such as reducing the breakpoints for antimicrobial susceptibility testing, choice of high-dose short-course of once-daily LVX regimen, and tailoring LVX dose in special patient populations help to achieve the validated pharmacokinetic-pharmacodynamic target and combat the increasing LVX resistance. Obese individuals with normal renal function cleared LVX more efficiently than normal-weight individuals. Compared with the scenario in healthy subjects, standard 2-hour spacing of calcium formulations and oral LVX was insufficient to prevent a chelation interaction in cystic fibrosis patients. Inconsistent conclusions were derived from studies of the influence of sex on the pharmacokinetics of LVX, which might be

  17. The in vitro screening of aromatic amides as potential inhibitors of poly (ADP-ribose) polymerase

    International Nuclear Information System (INIS)

    Brown, D.M.; Horsman, M.R.; Lee, W.W.; Brown, J.M.

    1984-01-01

    It is now well established that the chromosomal enzyme poly (ADP-ribose) polymerase (ADPRP) is involved in the repair of DNA damage caused by ionizing radiation and alkylating agents, although the mechanisms involved are still not clear. ADPRP inhibitors include thymidine, nicotinamides, benzamides and methyl xanthines. The authors have demonstrated that these compounds are effective inhibitors of X-ray-induced potentially lethal damage repair (PLDR). More recently, they have shown that the cytotoxicity of the bifunctional alkylating L-phenylalanine mustard (L-PAM) was enhanced in vitro and in vivo by 3-aminobenzamide, nicotinamide and caffeine, although in the latter case pharmacokinetic changes could have contributed to the enhanced killing. The authors have examined a series of substituted carbocyclic and heterocyclic aromatic amides as potential inhibitors of ADPRP. The effect of these compounds on ADPRP activity in vitro as well as their effect on the repair of X-ray and alkylation damage in vitro are presented

  18. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis

    DEFF Research Database (Denmark)

    Kreilgaard, Mads

    2001-01-01

    To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data.......To investigate the potential of improving dermal drug delivery of hydrophilic and lipophilic substances by formulation in microemulsion vehicles and to establish a reliable pharmacokinetic model to analyze cutaneous microdialysis data....

  19. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    Science.gov (United States)

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American

  20. Development of lovastatin-loaded poly(lactic acid microspheres for sustained oral delivery: in vitro and ex vivo evaluation

    Directory of Open Access Journals (Sweden)

    Guan QG

    2015-02-01

    Full Text Available Qigang Guan,1 Wei Chen,2 Xianming Hu2 1Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China; 2Department of Pharmaceutical, Shenyang Institute of Pharmaceutical Industry, Shenyang, People’s Republic of China Background: A novel lovastatin (LVT-loaded poly(lactic acid microsphere suitable for oral administration was developed in this study, and in vitro and in vivo characteristics were evaluated. Methods: The designed microspheres were obtained by an improved emulsion-solvent evaporation method. The morphological examination, particle size, encapsulation ratio, drug loading, and in vitro release were characterized. Pharmacokinetics studies were used to show that microspheres possess more advantages than the conventional formulations. Results: By using the emulsion-solvent evaporation method, it was simple to prepare microspheres and easy to scale up production. The morphology of formed microspheres showed a spherical shape with a smooth surface, without any particle aggregation. Mean size of the microspheres was 2.65±0.69 µm; the encapsulation efficiency was 92.5%±3.6%, and drug loading was 16.7%±2.1%. In vitro release indicated that the LVT microspheres had a well-sustained release efficacy, and ex vivo studies showed that after LVT was loaded to microspheres, the area under the plasma concentration-time curve from zero to the last measurable plasma concentration point and the extrapolation to time infinity increased significantly, which represented 2.63-fold and 2.49-fold increases, respectively, compared to suspensions. The rate of ex vivo clearance was significantly reduced. Conclusion: This research proved that poly(lactic acid microspheres can significantly prolong the drug circulation time in vivo and can also significantly increase the relative bioavailability of the drug. Keywords: lovastatin, microspheres, PLA, in vitro release, pharmacokinetics 

  1. Aerosol particle size does not predict pharmacokinetic determined lung dose in children

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Chawes, Bo L K; Vindfeld, Signe

    2013-01-01

    In vitro measures of aerosol particles size, such as the fine particle mass, play a pivotal role for approval of inhaled anti-asthmatic drugs. However, the validity as a measure of dose to the lungs in children lacks evidence. In this study we investigated for the first time the association between...... an in vivo estimate of lung dose of inhaled drug in children and the corresponding particle size segments assessed ex vivo. Lung dose of fluticasone propionate after inhalation from a dry powder inhaler (Diskus®) was studied in 23 children aged 4-7 and 12-15 years with mild asthma. Six-hour pharmacokinetics...... was assessed after single inhalation. The corresponding emitted mass of drug in segments of aerosol particle size was assessed ex vivo by replicating the inhalation flows recorded by transducers built into the Diskus® inhaler and re-playing them in a breathing simulator. There was no correlation between any...

  2. An HPLC tandem mass spectrometry for quantification of ET-26-HCl and its major metabolite in plasma and application to a pharmacokinetic study in rats.

    Science.gov (United States)

    Chen, Xu; Zhang, Wensheng; Rios, Sandy; Morkos, Miriam B; Ye, Xiaoli; Li, Gen; Jiang, Xuehua; Wang, Zhijun; Wang, Ling

    2018-02-05

    ET-26-HCl is a new analog of etomidate, a short-acting anesthetic drug, with less adrenal cortex inhibition. The pharmacokinetics of ET-26-HCl in rats needs to be determined for future clinical trials in human subjects. In order to facilitate the pharmacokinetic study, a liquid chromatography based tandem mass spectrometric (HPLC-MS/MS) method was developed and validated for quantification of ET-26-HCl and its major metabolite, ET-26-acid. These two compounds and gabapentin (internal standard) were extracted using a protein precipitation method with methanol and detected by Multiple Reaction Monitoring of m/z transition of 275.6-170.9, 217.7-113.1, and 172.5-154.3 for ET-26-HCl, ET-26-acid, and gabapentin respectively. This method was validated in terms of sensitivity, linearity, reproducibility, and stability. The HPLC-MS/MS method was found linear over the concentration ranges of 21.76-4352ng/mL, and 18.62-3724ng/mL with LLOQ of 21.76 and 18.62ng/mL for ET-26-HCl and ET-26-acid respectively. The mean intra-day and inter-day accuracy was between 94.11-107.78%, while the precision was within the limit of 15.0% for all the quality control samples. A pharmacokinetic study was then conducted in rats following intravenous injection of 2.1, 4.2, and 8.4mg/kg. The linear pharmacokinetics of ET-26-HCl was observed over the dose range of 2.1-8.4mg/kg. The average terminal phase elimination half-lives were 0.87 and 1.03h for ET-26-HCl and ET-26-acid respectively. In summary, an HPLC-MS/MS method for quantification of ET-26-HCl in rat plasma has been developed and successfully applied to a pharmacokinetic study. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Spiridon V. Spirou

    2018-05-01

    Full Text Available Magnetic nanoparticle (MNP-mediated hyperthermia (MH coupled with radiation therapy (RT is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”. The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a in vitro evaluation of MNPs; (b in vitro evaluation of MNP-cell interactions; (c in vivo evaluation of the MNPs; (d MH combined with RT; and (e pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.

  4. Pharmacokinetics and Metabolism of (R,R)-Methoxyfenoterol in Rat

    OpenAIRE

    Siluk, Danuta; Mager, Donald E.; Kim, Hee Seung; Wang, Yan; Furimsky, Anna M.; Ta, Amy; Iyer, Lalitha V.; Green, Carol E.; Wainer, Irving W.

    2010-01-01

    (R,R)-Fenoterol (Fen), a β2-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results of the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-...

  5. Pharmacokinetics and pharmacokinetic-dynamic relationship between rapacuronium (Org 9487) and its 3-desacetyl metabolite (Org 9488)

    NARCIS (Netherlands)

    Schiere, S; Proost, Hans; Schuringa, M; Wierda, J.MKH

    Rapacuronium (Org 9487) is a rapid-onset and short- to intermediate-acting muscle relaxant. Its 3-desacetyl metabolite, Org 9488, also exerts neuromuscular-blocking activity that. may became apparent after prolonged maintenance of relaxation with rapacuronium. In this study, the pharmacokinetic

  6. Pharmacokinetics and metabolism of (R,R)-methoxyfenoterol in rat.

    Science.gov (United States)

    Siluk, D; Mager, D E; Kim, H S; Wang, Y; Furimsky, A M; Ta, A; Iyer, L V; Green, C E; Wainer, I W

    2010-03-01

    (R,R)-fenoterol (Fen), a beta(2)-adrenoceptor agonist, is under clinical investigation in the treatment of congestive heart disease. The pharmacokinetics and metabolism of the 4-methoxyphenyl derivative of (R,R)-Fen, (R,R)-MFen, have been determined following intravenous and oral administration to the rat and compared with corresponding results obtained with (R,R)-Fen. Results from the study suggest that (R,R)-MFen can offer pharmacokinetic and metabolic advantages in comparison to an earlier (R,R)-Fen. The oral administration revealed that the net exposure of (R,R)-MFen was about three-fold higher than that of (R,R)-Fen (7.2 versus 2.3 min x nmol ml(-1)), while intravenous administration proved that the clearance was significantly reduced, 48 versus 146 ml min(-1) kg(-1), the T(1/2) was significantly longer, 152.9 versus 108.9 min, and the area under the curve (AUC) was significantly increased, 300 versus 119 min x nmol ml(-1). (R,R)-MFen was primarily cleared by glucuronidation associated with significant presystemic glucuronidation of the compound. After intravenous and oral administration of (R,R)-MFen, (R,R)-Fen and (R,R)-Fen-G were detected in the urine samples indicating that (R,R)-MFen was O-demethylated and subsequently conjugated to (R,R)-Fen-G. The total (R,R)-Fen and (R,R)-Fen-G as a percentage of the dose after intravenous administration was 3.6%, while after oral administration was 0.3%, indicating that only a small fraction of the drug escaped presystemic glucuronidation and was available for O-demethylation. The glucuronidation pattern was confirmed by the results from in vitro studies where incubation of (R,R)-MFen with rat hepatocytes produced (R,R)-MFen-G, (R,R)-Fen and (R,R)-Fen-G, while incubation with rat intestinal microsomes only resulted in the formation of (R,R)-MFen-G.

  7. Effect of the menstrual cycle in ethanol pharmacokinetics.

    Science.gov (United States)

    Haddad, L; Milke, P; Zapata, L; de la Fuente, J R; Vargas-Vorácková, F; Lorenzana-Jiménez, M; Corte, G; Tamayo, J; Kaplan, M; Márquez, M; Kershenobich, D

    1998-01-01

    Differences in ethanol pharmacokinetics within the menstrual cycle have previously been reported and attributed to variations in body composition, hormonal influences and gastric emptying. To establish the role of the menstrual cycle in ethanol pharmacokinetics associated with changes in body composition, ethanol blood concentrations were measured in nine healthy women during the midfollicular (P1, days 8-10) and midluteal (P2, days 22-24) phases of the menstrual cycle after a postprandial oral ethanol dose (0.3 g kg(-1)). Total body water was assessed by dual-energy x-ray densitometry (DEXA) on both occasions. Median total body water did not vary during either phase of the menstrual cycle (P1 = 54.54%, P2 = 54.66%; P = 0.9296). Median area under the ethanol concentration-time curve (AUC) was lower during P1 (215.33 mg.h dl(-1)) than during P2 (231.33 mg.h dl(-1))(P = 0.8253). No significant differences were found on ethanol pharmacokinetics in either phase of the menstrual cycle.

  8. In vitro study of color stability of polycrystalline and monocrystalline ceramic brackets.

    Science.gov (United States)

    de Oliveira, Cibele Braga; Maia, Luiz Guilherme Martins; Santos-Pinto, Ary; Gandini Junior, Luiz Gonzaga

    2014-01-01

    The aim of this in vitro study was to analyze color stability of monocrystalline and polycrystalline ceramic brackets after immersion in dye solutions. Seven ceramic brackets of four commercial brands were tested: Two monocrystalline and two polycrystalline. The brackets were immersed in four dye solutions (coffee, red wine, Coke and black tea) and in artificial saliva for the following times: 24 hours, 7, 14 and 21 days, respectively. Color changes were measured by a spectrophotometer. Data were assessed by Multivariate Profile Analysis, Analysis of Variance (ANOVA) and Multiple Comparison Tests of means. There was a perceptible change of color in all ceramic brackets immersed in coffee (ΔE* Allure = 7.61, Inspire Ice = 6.09, Radiance = 6.69, Transcend = 7.44), black tea (ΔE* Allure = 6.24, Inspire Ice = 5.21, Radiance = 6.51, Transcend = 6.14) and red wine (ΔE* Allure = 6.49, Inspire Ice = 4.76, Radiance = 5.19, Transcend = 5.64), but no change was noticed in Coke and artificial saliva (ΔE brackets undergo color change when exposed to solutions of coffee, black tea and red wine. However, the same crystalline structure, either monocrystalline or polycrystalline, do not follow the same or a similar pattern in color change, varying according to the bracket fabrication, which shows a lack of standardization in the manufacturing process. Coffee dye produced the most marked color changes after 21 days of immersion for most ceramic brackets evaluated.

  9. Effect of mushroom diet on pharmacokinetics of gabapentin in healthy Chinese subjects.

    Science.gov (United States)

    Toh, Dorothy Su Lin; Limenta, Lie Michael George; Yee, Jie Yin; Wang, Ling-Zhi; Goh, Boon-Cher; Murray, Michael; Lee, Edmund Jon Deoon

    2014-07-01

    This study evaluated the pharmacokinetics of gabapentin in Chinese subjects who received a diet rich in shiitake mushrooms. Shiitake mushrooms have been shown to contain high amount of ergothioneine. In vitro studies have shown that OCTN1-mediated secretion of gabapentin is trans-stimulated by ergothioneine. This study also investigated the concentrations of ergothioneine in plasma at baseline and following mushroom consumption. Ten healthy male subjects were recruited and received a diet containing no mushrooms (treatment A) or a high mushroom diet (treatment B; after at least a 7 day washout period) 1 day prior to administration of a single oral dose of gabapentin 600 mg. Ingestion of shiitake mushrooms produced significant increases in plasma ergothioneine concentrations that were sustained for more than 48 h. A statistically significant but modest increase in the renal clearance (CLR ) of gabapentin occurred after intake of the mushroom diet (91.1 ± 25.1 vs. 76.9 ± 20.6 ml min(-1) , P = 0.031). No significant changes in AUC(0,tlast ) of gabapentin were observed (P = 0.726). Creatinine clearance did not correlate with CLR of gabapentin at baseline (treatment A). After ingestion of the mushroom diet, creatinine clearance accounted for 65.3% of the variance in CLR of gabapentin. These data suggest that diet-drug pharmacokinetic interactions may occur during co-exposure to gabapentin and mushroom constituents. However, as it does not affect the AUC(0,tlast ) of gabapentin, it may not have clinically important consequences. Shiitake mushrooms can also be used as a source of ergothioneine for future clinical studies. © 2013 The British Pharmacological Society.

  10. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette

    2012-01-01

    precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine......, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition...

  11. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    Directory of Open Access Journals (Sweden)

    Jamal A. Jilani

    2014-04-01

    Full Text Available The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1. Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1. The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.

  12. Transplacental pharmacokinetics of diclofenac in perfused human placenta.

    Science.gov (United States)

    Shintaku, Kyohei; Hori, Satoko; Tsujimoto, Masayuki; Nagata, Hideaki; Satoh, Shoji; Tsukimori, Kiyomi; Nakano, Hitoo; Fujii, Tomoyuki; Taketani, Yuji; Ohtani, Hisakazu; Sawada, Yasufumi

    2009-05-01

    The aims of this study were to evaluate the transplacental transfer properties of diclofenac and to determine the effect of L-lactic acid on the transplacental transfer of diclofenac. The maternal and fetal vessels of human placenta were perfused in a single-pass mode with a solution containing diclofenac and antipyrine. The transplacental pharmacokinetic model was fitted to the time profiles of the drug concentrations in the effluent and placenta to obtain transplacental pharmacokinetic parameters. In addition, chloride ion in the perfusate was partially replaced with L-lactic acid to see the change in the transplacental transfer properties of diclofenac. The TPT(ss) value (ratio of the rate of amount transferred across the placenta to that infused in the steady state) of diclofenac was 2.22%, which was approximately one-third that of antipyrine and was significantly reduced in the presence of L-lactic acid. The transplacental pharmacokinetic model could adequately explain the transplacental transfer of diclofenac with influx clearances from maternal and fetal perfusates to placental tissue of 0.276 and 0.0345 ml/min/g cotyledon and efflux rate constants from placental tissue to maternal and fetal perfusates of 0.406 and 0.0337 min(-1), respectively. By taking into account protein binding, the placental tissue/plasma concentration ratio in humans for diclofenac was estimated to be 0.108 ml/g of cotyledon and was smaller than that of antipyrine. In conclusion, human placental perfusion and transplacental pharmacokinetic modeling allowed us to determine the transplacental transfer properties of diclofenac quantitatively. Diclofenac may share transplacental transfer system(s) with L-lactic acid.

  13. Pharmacokinetics of linezolid in critically ill patients.

    Science.gov (United States)

    Sazdanovic, Predrag; Jankovic, Slobodan M; Kostic, Marina; Dimitrijevic, Aleksandra; Stefanovic, Srdjan

    2016-06-01

    Linezolid is an oxazolidinone antibiotic active against Gram-positive bacteria, and is most commonly used to treat life-threatening infections in critically ill patients. The pharmacokinetics of linezolid are profoundly altered in critically ill patients, partly due to decreased function of vital organs, and partly because life-sustaining drugs and devices may change the extent of its excretion. This article is summarizes key changes in the pharmacokinetics of linezolid in critically ill patients. The changes summarized are clinically relevant and may serve as rationale for dosing recommendations in this particular population. While absorption and penetration of linezolid to tissues are not significantly changed in critically ill patients, protein binding of linezolid is decreased, volume of distribution increased, and metabolism may be inhibited leading to non-linear kinetics of elimination; these changes are responsible for high inter-individual variability of linezolid plasma concentrations, which requires therapeutic plasma monitoring and choice of continuous venous infusion as the administration method. Acute renal or liver failure decrease clearance of linezolid, but renal replacement therapy is capable of restoring clearance back to normal, obviating the need for dosage adjustment. More population pharmacokinetic studies are necessary which will identify and quantify the influence of various factors on clearance and plasma concentrations of linezolid in critically ill patients.

  14. Preclinical pharmacokinetics, tissue distribution and plasma protein binding of sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP, an innovative potent anti-ischemic stroke agent

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2016-08-01

    Full Text Available Sodium (±-5-bromo-2-(α-hydroxypentyl benzoate (BZP is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H-isobenzofuranone (Br-NBP in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution and plasma protein binding of BZP and Br-NBP, a rapid, sensitive and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6 and 12 mg/kg; i.v. and beagle dogs (1, 2 and 4 mg/kg; i.v.gtt were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO rats was more than in normal rats (P<0.05. The plasma protein binding degree of BZP at three concentrations (8000, 20000 and 80000 ng/mL from rat, beagle dog and human plasma were 98.1~98.7%, 88.9~92.7% and 74.8%~83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  15. Modeling of corneal and retinal pharmacokinetics after periocular drug administration.

    Science.gov (United States)

    Amrite, Aniruddha C; Edelhauser, Henry F; Kompella, Uday B

    2008-01-01

    To develop pharmacokinetics models to describe the disposition of small lipophilic molecules in the cornea and retina after periocular (subconjunctival or posterior subconjunctival) administration. Compartmental pharmacokinetics analysis was performed on the corneal and retinal data obtained after periocular administration of 3 mg of celecoxib (a selective COX-2 inhibitor) to Brown Norway (BN) rats. Berkeley Madonna, a differential and difference equation-based modeling software, was used for the pharmacokinetics modeling. The data were fit to different compartment models with first-order input and disposition, and the best fit was selected on the basis of coefficient of regression and Akaike information criteria (AIC). The models were validated by using the celecoxib data from a prior study in Sprague-Dawley (SD) rats. The corneal model was also fit to the corneal data for prednisolone at a dose of 2.61 mg in albino rabbits, and the model was validated at two other doses of prednisolone (0.261 and 26.1 mg) in these rabbits. Model simulations were performed with the finalized model to understand the effect of formulation on corneal and retinal pharmacokinetics after periocular administration. Celecoxib kinetics in the BN rat cornea can be described by a two-compartment (periocular space and cornea, with a dissolution step for periocular formulation) model, with parallel elimination from the cornea and the periocular space. The inclusion of a distribution compartment or a dissolution step for celecoxib suspension did not lead to an overall improvement in the corneal data fit compared with the two-compartment model. The more important parameter for enhanced fit and explaining the apparent lack of an increase phase in the corneal levels is the inclusion of the initial leak-back of the dose from the periocular space into the precorneal area. The predicted celecoxib concentrations from this model also showed very good correlation (r = 0.99) with the observed values in

  16. Dose optimisation of antibiotics in children: application of pharmacokinetics/pharmacodynamics in paediatrics.

    Science.gov (United States)

    Downes, Kevin J; Hahn, Andrea; Wiles, Jason; Courter, Joshua D; Vinks, Alexander A

    2014-03-01

    The judicious use of antibiotics to combat infections in children relies upon appropriate selection of an agent, dose and duration to maximise efficacy and to minimise toxicity. Critical to dose optimisation is an understanding of the pharmacokinetics and pharmacodynamics of available drugs. Optimal dosing strategies may take advantage of pharmacokinetic/pharmacodynamic (PK/PD) principles so that antibiotic dosing can be individualised to assure effective bacterial killing in patients who have altered pharmacokinetics or who have infections with less susceptible or resistant organisms. This review will outline the fundamentals of antimicrobial pharmacokinetics/pharmacodynamics through discussion of antibacterial agents most often used in children. We aim to highlight the importance of dose optimisation in paediatrics and describe non-conventional dosing strategies that can take advantage of PK/PD principles at the bedside. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  17. Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Kwang; Poet, Torka S.; Smith, Jordan N.; Busby-Hjerpe, Andrea L.; Timchalk, Charles

    2010-03-30

    Chlorpyrifos (CPF) is one of the most studied and widely used broad spectrum organophosphorus (OP) insecticides. The neurotoxicity of CPF results from inhibition of cholinesterase (ChE) by its metabolite, chlorpyrifos-oxon (CPF-oxon), which subsequently leads to cholinergic hyperstimulation. The routine consumption of alcoholic beverages and tobacco products will modify a number of metabolic and physiological processes which may impact the metabolism and pharmacokinetics of other xenobiotics including pesticides. The objective of this study was to evaluate the influence of repeated ethanol and nicotine co-exposure on in vivo CPF pharmacokinetics and pharmacodynamics. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine along with changes in plasma and brain AChE activities were measured in male Sprague-Dawley (S-D) rats. Animals were repeatedly treated with either saline or ethanol (1 g/kg/day, po) and nicotine (1 mg/kg/day, sc) in addition to CPF (1 or 5 mg/kg/day, po) for 7 days. Rats were sacrificed at times from 1 to 24 hr post-last dosing of CPF. There were apparent differences in blood TCPy pharmacokinetics following ethanol and nicotine pretreatments in both CPF dose groups, which showed higher TCPy peak concentrations and increased blood TCPy AUC in ethanol and nicotine groups over CPF-only (~1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain acetylcholinesterase (AChE) activities from both ethanol and nicotine-treated groups showed substantially less inhibition following repeated 5 mg CPF/kg dosing compared to CPF-only controls (96 ± 13 and 66 ± 7% of naïve at 4 hr post-last CPF dosing, respectively). Inhibition of brain AChE activities was minimal in both 1 mg CPF/kg/day dosing groups, but a similar trend indicating less inhibition following ethanol/nicotine pretreatment was apparent. No differences were observed in plasma ChE activities due to the combined alcohol and nicotine treatments. In vitro, CPF

  18. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digetibility of alfalfa silage.

    Science.gov (United States)

    Turan, Aslı; Önenç, Sibel Soycan

    2018-03-02

    This study was carried out to determine the effects of cumin essential oil on the silage fermentation, aerobic stability and in vitro digestibility of alfalfa silages. Alfalfa was harvested at early bloom (5 th cutting) stage in October and wilted for about 3 hours. The research was carried out at three groups which were the control group where no additive control was done (CON), cumin essential oil (CMN3) with 300 mg/kg and CMN5 with 500 mg/kg cumin essential oil addition. Alfalfa was ensiled in plastic bags. The packages were stored at 8±2 °C under laboratory conditions. All groups were sampled for physical, chemical and microbiological analysis 120th day after ensiling. At the end of the ensiling period, all silages were subjected to an aerobic stability test for 7 days. In addition, enzimatic solubility of organic matter (ESOM), metabolizable energy (ME) and relative feed value (RFV) of these silages were determined. pH level decreased in the cumin groups compared to CON (P<0.05), thus inhibiting proteolytic enzymes from breaking down proteins into ammonia. In addition, it increased ESOM amount, and concordantly provided an increase of ME contents. Similarly, dry matter intake (DMI) and RFV ratio increased. After opening the silage, it kept its aerobic stability for three days. Cumin essential oil improved fermentation, and affected chemical and microbiological characteristics of silages. Especially the addition of 300 mg/kg cumin provided cell wall fractionation through stimulating the activities of enzymes responsible. It also increased the number and activity of lactic acid bacteri (LAB) through providing a development of LAB.

  19. Computational opioid prescribing: a novel application of clinical pharmacokinetics.

    Science.gov (United States)

    Linares, Oscar A; Linares, Annemarie L

    2011-01-01

    We implemented a pharmacokinetics-based mathematical modeling technique using algebra to assist prescribers with point-of-care opioid dosing. We call this technique computational opioid prescribing (COP). Because population pharmacokinetic parameter values are needed to estimate drug dosing regimen designs for individual patients using COP, and those values are not readily available to prescribers because they exist scattered in the vast pharmacology literature, we estimated the population pharmacokinetic parameter values for 12 commonly prescribed opioids from various sources using the bootstrap resampling technique. Our results show that opioid dosing regimen design, evaluation, and modification is feasible using COP. We conclude that COP is a new technique for the quantitative assessment of opioid dosing regimen design evaluation and adjustment, which may help prescribers to manage acute and chronic pain at the point-of-care. Potential benefits include opioid dose optimization and minimization of adverse opioid drug events, leading to potential improvement in patient treatment outcomes and safety.

  20. Stability of Anthocyanins from Commercial Black Currant Juice under Simulated Gastrointestinal Digestion

    Directory of Open Access Journals (Sweden)

    Alija Uzunović

    2008-08-01

    Full Text Available Anthocyanins are effective antioxidants but they have also been proposed to have other biological activities independent of their antioxidant capacities that produce health benefits. Examples range from inhibition of cancer cell growth in vitro, induction of insulin production in isolated pancreatic cells, reduction of starch digestion through inhibition of a-glucosidase activity, suppression of inflammatory responses as well as protection against age-related declines in cognitive behavior and neuronal dysfunction in the central nervous system. However, to achieve any biological effect in a specific tissue or organ, anthocyanins must be bioavailable; i.e. effectively absorbed from the gastrointestinal tract (GIT into the circulation and delivered to the appropriate location within the body. In this study, we assess the stability of anthocyanins from commercial Black currant (Ribes nigrum L. juice using an in vitro digestion procedure that mimics the physiochemical and biochemical conditions encountered in the gastrointestinal tract (GIT. The main objective of this work was the evaluation of stability of anthocyanins during in vitro digestion in gastric and intestinal fluid regarding whether appropriate enzyme (pepsin or pancreatin was added or not. Anthocyanins present in commercial black currant juice remain stable during in vitro digestion in gastric fluid regardless whether pepsin was added into the medium or not. Also, they remain stable during in vitro digestion in simulated intestinal fluid without pancreatin. The stability studies of anthocyanins in the intestinal fluid containing pancreatin indicated reduced stability, which also mainly contribute to slight reduction of total anthocyanins content (1,83%- in commercial black currant juice.

  1. Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.

    Science.gov (United States)

    Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B

    2005-06-01

    This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.

  2. A novel co-processed directly compressible release-retarding polymer: In vitro, solid state and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Prashant Kumar Choudhari

    2018-06-01

    Full Text Available Directly compressible (DC co-processed excipient capable of providing nearly zero order release with improved functionality was developed without any chemical modification by employed various techniques such as physical mixing, high shear mixer granulation and spray drying. Co-processed excipient was developed by using release retarding polymer Eudragit RSPO, separately, in combination with different concentration of hydroxyl propyl methyl cellulose 100 cps (Methocel K100 LV, HPMC, ethyl cellulose (Ethocel N50, EC and hydroxyl propyl cellulose (Klucel EF, HPC. All co-processed excipients were evaluated for their flow properties in terms of angle of repose, bulk density, tapped density, compressibility index and Hausner's ratio. Out of eighteen combinations, the nine co-processed excipients exhibited promising flow properties were found suitable for direct compression and formulated as tablets. Metoprolol succinate, a BCS Class I drug, was selected as a model drug and the formulation was developed employing direct compression approach. The developed tablets were evaluated for physical parameters like uniformity of weight, thickness, hardness, friability and assay. In vitro dissolution study confirms that formulation prepared using co-processed excipient showed sustained drug release. The optimized tablet formulation was characterized by DSC, FTIR and PXRD which confirms the absence of any chemical change during co-processing. The optimized formulation was kept for stability study for six months as per ICH guidelines and found to be stable. In vivo pharmacokinetic study of optimized formulation in rats showed similar pharmacokinetic behaviour as was observed with the marketed brand. Study revealed that co-processed excipient has advantage over polymers with single property and can be utilised for sustained release formulation. Keywords: Co-processed excipient, Metoprolol succinate, Extended-release, Direct compression, Zero-order release

  3. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models.

    Science.gov (United States)

    Moda, Tiago L; Torres, Leonardo G; Carrara, Alexandre E; Andricopulo, Adriano D

    2008-10-01

    The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, blood-brain barrier and water solubility). http://www.pkdb.ifsc.usp.br

  4. Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability.

    Science.gov (United States)

    Svenson, Johan; Vergote, Valentijn; Karstad, Rasmus; Burvenich, Christian; Svendsen, John S; De Spiegeleer, Bart

    2010-03-01

    A series of promising truncated antibacterial tripeptides derived from lactoferricin has been prepared, and their in vitro metabolic stability in the main metabolic compartments, plasma, liver, kidney, stomach, duodenum, and brain, has been investigated for the first time. The potential stabilizing effect of truncation, C-terminal capping, and introduction of the bulky synthetic amino acid biphenylalanine is also investigated. The drug-like peptides displayed large differences in half-lives in the different matrixes ranging from 4.2 min in stomach and duodenum to 355.9 min in liver. Kinetic analysis of the metabolites revealed that several different degrading enzymes simultaneously target the different peptide bonds and that the outcome of the tested strategies to increase the stability is clearly enzyme-specific. Some of the metabolic enzymes even prefer the synthetic modifications incorporated over the natural counterparts. Collectively, it is shown that the necessary antibacterial pharmacophore generates compounds that are not only potent antibacterial peptides, but excellent substrates for the main degrading enzymes. All the amide bonds are thus rapidly targeted by different enzymes despite the short peptidic sequences of the tested compounds. Hence, our results illustrate that several structural changes are needed before these compounds can be considered for oral administration. Strategies to overcome such metabolic challenges are discussed.

  5. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. Hydroxyethyl cellulose-based universal placebo gel.

    Science.gov (United States)

    Nel, Annalene M; Smythe, Shanique C; Habibi, Sepideh; Kaptur, Paulina E; Romano, Joseph W

    2010-10-01

    Dapivirine, a nonnucleoside reverse transcriptase inhibitor, is in development as a microbicide for the protection of women against HIV infection. A randomized, double-blind, phase 1 trial was conducted in 36 healthy HIV-negative women to compare the pharmacokinetics of 2 dapivirine vaginal gel formulations (0.05% each) and their safety with the hydroxyethyl cellulose-based universal placebo gel. Gel was self-administered once daily for a total of 11 days. Blood and vaginal fluid samples were collected sequentially over 24 days for pharmacokinetic analysis. Safety was evaluated by pelvic examination, colposcopy, adverse events, and clinical laboratory assessments. Adverse event profiles were similar for the 3 gels. Most events were mild and not related to study gel. Headache and vaginal hemorrhage (any vaginal bleeding) were most common. Plasma concentrations of dapivirine did not exceed 1.1 ng/mL. Steady-state conditions were reached within approximately 10 days. Dapivirine concentrations in vaginal fluids were slightly higher for Gel 4789, but Cmax values on days 1 and 14 were not significantly different. Terminal half-life was 72-73 hours in plasma and 15-17 hours in vaginal fluids. Both formulations of dapivirine gel were safe and well tolerated. Dapivirine was delivered to the lower genital tract at concentrations at least 5 logs greater than in vitro inhibitory concentrations.

  6. Compartmental analysis, imaging techniques and population pharmacokinetic. Experiences at CENTIS

    International Nuclear Information System (INIS)

    Hernández, Ignacio; León, Mariela; Leyva, Rene; Castro, Yusniel; Ayra, Fernando E.

    2016-01-01

    Introduction: In pharmacokinetic evaluation small rodents are used in a large extend. Traditional pharmacokinetic evaluations by the two steps approach can be replaced by the sparse data design which may also represent a complicated situation to evaluate satisfactorily from the statistical point of view. In this presentation different situations of sparse data sampling are analyzed based on practical consideration. Non linear mixed effect model was selected in order to estimate pharmacokinetic parameters in simulated data from real experimental results using blood sampling and imaging procedures. Materials and methods: Different scenarios representing several experimental designs of incomplete individual profiles were evaluated. Data sets were simulated based on real data from previous experiments. In all cases three to five blood samples were considered per time point. A combination of compartmental analysis with tumor uptake obtained by gammagraphy of radiolabeled drugs is also evaluated.All pharmacokinetic profiles were analyzed by means of MONOLIX software version 4.2.3. Results: All sampling schedules yield the same results when computed using the MONOLIX software and the SAEM algorithm. Population and individual pharmacokinetic parameters were accurately estimated with three or five determination per sampling point. According with the used methodology and software tool, it can be an expected result, but demonstrating the method performance in such situations, allow us to select a more flexible design using a very small number of animals in preclinical research. The combination with imaging procedures also allows us to construct a completely structured compartmental analysis. Results of real experiments are presented demonstrating the versatility of used methodology in different evaluations. The same sampling approach can be considered in phase I or II clinical trials. (author)

  7. Pharmacokinetics and Concentration-Effect Relationship of Oral LSD in Humans.

    Science.gov (United States)

    Dolder, Patrick C; Schmid, Yasmin; Haschke, Manuel; Rentsch, Katharina M; Liechti, Matthias E

    2015-06-24

    The pharmacokinetics of oral lysergic acid diethylamide are unknown despite its common recreational use and renewed interest in its use in psychiatric research and practice. We characterized the pharmacokinetic profile, pharmacokinetic-pharmacodynamic relationship, and urine recovery of lysergic acid diethylamide and its main metabolite after administration of a single oral dose of lysergic acid diethylamide (200 μg) in 8 male and 8 female healthy subjects. Plasma lysergic acid diethylamide concentrations were quantifiable (>0.1 ng/mL) in all the subjects up to 12 hours after administration. Maximal concentrations of lysergic acid diethylamide (mean±SD: 4.5±1.4 ng/mL) were reached (median, range) 1.5 (0.5-4) hours after administration. Concentrations then decreased following first-order kinetics with a half-life of 3.6±0.9 hours up to 12 hours and slower elimination thereafter with a terminal half-life of 8.9±5.9 hours. One percent of the orally administered lysergic acid diethylamide was eliminated in urine as lysergic acid diethylamide, and 13% was eliminated as 2-oxo-3-hydroxy-lysergic acid diethylamide within 24 hours. No sex differences were observed in the pharmacokinetic profiles of lysergic acid diethylamide. The acute subjective and sympathomimetic responses to lysergic acid diethylamide lasted up to 12 hours and were closely associated with the concentrations in plasma over time and exhibited no acute tolerance. These first data on the pharmacokinetics and concentration-effect relationship of oral lysergic acid diethylamide are relevant for further clinical studies and serve as a reference for the assessment of intoxication with lysergic acid diethylamide. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    Science.gov (United States)

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  9. Pharmacokinetics of Alternative Administration Routes of Melatonin

    DEFF Research Database (Denmark)

    Zetner, D.; Andersen, L. P.H.; Rosenberg, J.

    2016-01-01

    Background: Melatonin is traditionally administered orally but has a poor and variable bioavailability. This study aims to present an overview of studies investigating the pharmacokinetics of alternative administration routes of melatonin. Methods: A systematic literature search was performed...... and included experimental or clinical studies, investigating pharmacokinetics of alternative administration routes of melatonin in vivo. Alternative administration routes were defined as all administration routes except oral and intravenous. Results: 10 studies were included in the review. Intranasal....... Subcutaneous injection of melatonin displayed a rapid absorption rate compared to oral administration. Conclusion: Intranasal administration of melatonin has a large potential, and more research in humans is warranted. Transdermal application of melatonin has a possible use in a local application, due to slow...

  10. Pharmacokinetics and Biodistribution of the Illegal Food Colorant Rhodamine B in Rats.

    Science.gov (United States)

    Cheng, Yung-Yi; Tsai, Tung-Hu

    2017-02-08

    The International Agency for Research on Cancer (IARC) demonstrated rhodamine B as a potential carcinogen in 1978. Nevertheless, rhodamine B has been illegally used as a colorant in food in many countries. Few pharmacokinetic and toxicological investigations have been performed since the first pharmacokinetic study on rhodamine B in 1961. The aims of this study were to develop a simple and sensitive high-performance liquid chromatography method with fluorescence detection for the quantitative detection of rhodamine B in the plasma and organs of rats and to estimate its pharmacokinetics and biodistribution. The results demonstrated that the oral bioavailabilities of rhodamine B were 28.3 and 9.8% for the low-dose and high-dose exposures, respectively. Furthermore, rhodamine B was highly accumulated in the liver and, to a lesser extent, the kidney, but was undetectable in the brain. These results provide useful information for improving the pharmacokinetics and biodistribution of rhodamine B, supporting additional food safety evaluations.

  11. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer

    International Nuclear Information System (INIS)

    Franiel, Tobias; Hamm, Bernd; Hricak, Hedvig

    2011-01-01

    Dynamic contrast-enhanced MRI enables noninvasive analysis of prostate vascularization as well as tumour angiogenesis and capillary permeability characteristics in prostate cancers. Pharmacokinetic models summarizing the complex information provided by signal intensity-time curves for a few quantitative pharmacokinetic parameters are increasingly being used in the routine clinical setting. This review consists of two parts. The first part discusses the advantages and disadvantages of the MR pulse sequences that can be used for performing DCE-MRI and also of the most widely used pharmacokinetic parameters and models and the parameters they describe. The second part outlines the range of current and potential future clinical applications of DCE-MRI and pharmacokinetic parametric maps in patients with prostate cancer, with reference to the current scientific literature on the topic. The potential clinical applications of DCE-MRI for prostate cancer include detection, localization, and staging, differentiation of recurrent cancer and estimation of the patient's prognosis, as well as monitoring of treatment response. (orig.)

  12. Modeling in biopharmaceutics, pharmacokinetics and pharmacodynamics homogeneous and heterogeneous approaches

    CERN Document Server

    Macheras, Panos

    2016-01-01

    The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this new second edition book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with epirical, compartmental, and stochastic pharmacokinetic models, with two new chapters, one on fractional pharmacokinetics and one on bioequivalence; and the fourth mainly with classical and nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. This second edition has new information on reaction limited models of dissolution, non binary biopharmaceutic classification system, time varying models, and interf...

  13. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries.

    Science.gov (United States)

    Henry, Kevin A; Kim, Dae Young; Kandalaft, Hiba; Lowden, Michael J; Yang, Qingling; Schrag, Joseph D; Hussack, Greg; MacKenzie, C Roger; Tanha, Jamshid

    2017-01-01

    Human autonomous V H /V L single-domain antibodies (sdAbs) are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged V H /V L domains. Here, we describe the design and characterization of three novel human V H /V L sdAb libraries through a process of: (i) exhaustive biophysical characterization of 20 potential V H /V L sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR) substitutions; (ii) in vitro randomization of the CDRs of three V H /V L sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii) systematic benchmarking of the three V H /V L libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 V H s and 7 V L s in total); these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2-3 µM), but had highly variable expression yields (range: 0.1-19 mg/L). Despite our efforts to identify the most stable V H /V L scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53%) with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing V H /V L sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells), we found that some V H /V L sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues). Thus, CDR sequence

  14. Clinical Drug-Drug Pharmacokinetic Interaction Potential of Sucralfate with Other Drugs: Review and Perspectives.

    Science.gov (United States)

    Sulochana, Suresh P; Syed, Muzeeb; Chandrasekar, Devaraj V; Mullangi, Ramesh; Srinivas, Nuggehally R

    2016-10-01

    Sucralfate, a complex of aluminium hydroxide with sulfated sucrose, forms a strong gastrointestinal tract (GIT) mucosal barrier with excellent anti-ulcer property. Because sucralfate does not undergo any significant oral absorption, sucralfate resides in the GIT for a considerable length of time. The unabsorbed sucralfate may alter the pharmacokinetics of the oral drugs by impeding its absorption and reducing the oral bioavailability. Because of the increased use of sucralfate, it was important to provide a reappraisal of the published clinical drug-drug interaction studies of sucralfate with scores of drugs. This review covers several category of drugs such as non-steroidal anti-inflammatory drugs, fluoroquinolones, histamine H2-receptor blockers, macrolides, anti-fungals, anti-diabetics, salicylic acid derivatives, steroidal anti-inflammatory drugs and provides pharmacokinetic data summary along with study design, objectives and key remarks. While the loss of oral bioavailability was significant for the fluoroquinolone class, it generally varied for other classes of drugs, suggesting that impact of the co-administration of sucralfate is manageable in clinical situations. Given the technology advancement in formulation development, it may be in order feasible to develop appropriate formulation strategies to either avoid or minimize the absorption-related issues when co-administered with sucralfate. It is recommended that consideration of both in vitro and preclinical studies may be in order to gauge the level of interaction of a drug with sucralfate. Such data may aid in the development of appropriate strategies to navigate the co-administration of sucralfate with other drugs in this age of polypharmacy.

  15. Pharmacokinetics of Intravenous Posaconazole in Critically Ill Patients.

    Science.gov (United States)

    Sime, Fekade B; Stuart, Janine; Butler, Jenie; Starr, Therese; Wallis, Steven C; Pandey, Saurabh; Lipman, Jeffrey; Roberts, Jason A

    2018-06-01

    To date, there is no information on the intravenous (i.v.) posaconazole pharmacokinetics for intensive care unit (ICU) patients. This prospective observational study aimed to describe the pharmacokinetics of a single dose of i.v. posaconazole in critically ill patients. Patients with no history of allergy to triazole antifungals and requiring systemic antifungal therapy were enrolled if they were aged ≥18 years, central venous access was available, they were not pregnant, and they had not received prior posaconazole or drugs interacting with posaconazole. A single dose of 300 mg posaconazole was administered over 90 min. Total plasma concentrations were measured from serial plasma samples collected over 48 h, using a validated chromatographic method. The pharmacokinetic data set was analyzed by noncompartmental methods. Eight patients (7 male) were enrolled with the following characteristics: median age, 46 years (interquartile range [IQR], 40 to 51 years); median weight, 68 kg (IQR, 65 to 82 kg); and median albumin concentration, 20 g/liter (IQR, 18 to 24 g/liter). Median (IQR) pharmacokinetic parameter estimates were as follows: observed maximum concentration during sampling period ( C max ), 1,702 ng/ml (1,352 to 2,141 ng/ml); area under the concentration-time curve from zero to infinity (AUC 0-∞ ), 17,932 ng · h/ml (13,823 to 27,905 ng · h/ml); clearance (CL), 16.8 liters/h (11.1 to 21.7 liters/h); and volume of distribution ( V ), 529.1 liters (352.2 to 720.6 liters). The V and CL were greater than 2-fold and the AUC 0-∞ was 39% of the values reported for heathy volunteers. The AUC 0-∞ was only 52% of the steady-state AUC 0-24 reported for hematology patients. The median of estimated average steady-state concentrations was 747 ng/ml (IQR, 576 to 1,163 ng/ml), which is within but close to the lower end of the previously recommended therapeutic range of 500 to 2,500 ng/ml. In conclusion, we observed different pharmacokinetics of i.v. posaconazole in

  16. Pharmacokinetics and dosimetry, an introduction

    International Nuclear Information System (INIS)

    Notari, R.E.

    1981-01-01

    Classical pharmacokinetic techniques attempt to quantify the time course for drug in the body by assaying samples of blood or urine as a function of time. The mathematical descriptions that have emerged from this approach have proven extremely valuable to both drug research and drug therapy. Since the monitoring of patients' drug blood levels by obtaining a few small blood samples at key times is clinically practical, individualization of dosage regimens has become a reality. This has dramatically altered certain types of drug therapy. These improvements are limited to cases wherein biological response can be related to drug blood levels since the mathematics are capable only of describing the sampled fluids. Non-sampled fluids are considered as additional compartments or pools and described collectively using kinetic equations for mass balance. This limits progress in those areas of research which require assessment of the relationship of specific organ contents to that of the blood. The author suggests that radiopharmaceutical techniques which can provide the time course in specific organs might be coupled with classical pharmacokinetic approaches to provide insight not previously achieved

  17. A paradigm shift in pharmacokinetic-pharmacodynamic (PKPD) modeling: rule of thumb for estimating free drug level in tissue compared with plasma to guide drug design.

    Science.gov (United States)

    Poulin, Patrick

    2015-07-01

    A basic assumption in pharmacokinetics-pharmacodynamics research is that the free drug concentration is similar in plasma and tissue, and, hence, in vitro plasma data can be used to estimate the in vivo condition in tissue. However, in a companion manuscript, it has been demonstrated that this assumption is violated for the ionized drugs. Nonetheless, these observations focus on in vitro static environments and do not challenge data with an in vivo dynamic system. Therefore, an extension from an in vitro to an in vivo system becomes the necessary next step. The objective of this study was to perform theoretical simulations of the free drug concentration in tissue and plasma by using a physiologically based pharmacokinetics (PBPK) model reproducing the in vivo conditions in human. Therefore, the effects of drug ionization, lipophilicity, and clearance have been taken into account in a dynamic system. This modeling exercise was performed as a proof of concept to demonstrate that free drug concentration in tissue and plasma may also differ in a dynamic system for passively permeable drugs that are ionized at the physiological pH. The PBPK model simulations indicated that free drug concentrations in tissue cells and plasma significantly differ for the ionized drugs because of the pH gradient effect between cells and interstitial space. Hence, a rule of thumb for potentially performing more accurate PBPK/PD modeling is suggested, which states that the free drug concentration in tissue and plasma will differ for the ionizable drugs in contrast to the neutral drugs. In addition to the pH gradient effect for the ionizable drugs, lipophilicity and clearance effects will increase or decrease the free drug concentration in tissue and plasma for each class of drugs; thus, higher will be the drug lipophilicity and clearance, lower would be the free drug concentration in plasma, and, hence, in tissue, in a dynamic in vivo system. Therefore, only considering the value of free

  18. Altering ethanol pharmacokinetics to treat alcohol use disorder: Can you teach an old dog new tricks?

    Science.gov (United States)

    Haass-Koffler, Carolina L; Akhlaghi, Fatemeh; Swift, Robert M; Leggio, Lorenzo

    2017-07-01

    Disulfiram was the first pharmacotherapy approved to treat alcohol use disorder in the 1950s. Disulfiram alters ethanol pharmacokinetics and causes uncomfortable reactions (e.g. headache, tachycardia, nausea, flushing and hypotension) when alcohol is consumed. Subsequently, a better understanding of the neurobiological pathways involved in alcohol use disorder led to the development of other medications (e.g. naltrexone and acamprosate). These neurobiological-based medications act on alcohol use disorder-related phenotypes including craving, stress, and/or withdrawal. The original approach to treat alcohol use disorder, by altering ethanol pharmacokinetics has been much less investigated. Recent research on ethanol pharmacokinetics has shed light on the mechanisms of action underlying alcohol use disorder and how some medications that alter ethanol pharmacokinetics may be helpful in treating alcohol use disorder. This review summarizes and discusses the complex pharmacokinetics of ethanol, and proposes that altering ethanol pharmacokinetics via novel pharmacological approaches may be a viable approach to treat alcohol use disorder.

  19. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether.

    Science.gov (United States)

    Elhennawy, Mai Gamal; Lin, Hai-Shu

    2018-06-15

    Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT 0→last ), higher dose-normalized maximal plasma concentration (C max /Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Integrating Exposure, Pharmacokinetics, And Dosimetry With In Vitro Dose-Response Data To Evaluate Chemical Risk

    Science.gov (United States)

    High throughput in vitro toxicity testing of hundreds to thousands of chemicals across any number of biological endpoints allows for rapidly assessing human and ecosystem health impacts, thus reducing resources associated with traditional animal testing. In order to apply these i...

  1. Tubocurarine and pancuronium: a pharmacokinetic view.

    Science.gov (United States)

    Shanks, C A; Somogyi, A A; Ramzan, M I; Triggs, E J

    1980-02-01

    This review is an attempt to bring together the pharmacokinetic data on d-tubocurarine and pancuronium with clinical observations on relaxant dosage and effect. The modelling techniques used here represent an oversimplification of the relationships between relaxant plasma concentration and response as they do not predict either the time of onset of paralysis or its peak intensity. However, they do enable calculation of a bolus dose of relaxant required to achieve a particular intensity of paralysis for the average patient once pseudo-distribution equilibrium has been achieved. This has been further extended to predict the cumulation of the relaxants with subsequent dosage in average patients. Suggested regimens incorporating bolus and infusion doses of the relaxants to achieve continuous neuromuscular blockade have been calculated also. Averaged pharmacokinetic parameters derived from patients with renal or hepatic dysfunction have been used to predict the likely duration and intensities of paralysis for the relaxants.

  2. Selection of resistant Streptococcus pneumoniae during penicillin treatment in vitro and in three animal models

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga

    2003-01-01

    Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...

  3. Pharmacokinetics of Repeated Melatonin Drug Administrations Prior to and After Surgery

    DEFF Research Database (Denmark)

    Harpsøe, Nathja Groth; Andersen, Lars Peter Kloster; Mielke, Louise Vennegaard

    2016-01-01

    BACKGROUND: Recent clinical studies have documented the analgesic, anti-inflammatory, antioxidative and anxiolytic effects of exogenous melatonin. The pharmacokinetic properties of melatonin have primarily been investigated in experimental studies. OBJECTIVE: The aim of this study was to estimate...... the pharmacokinetics of melatonin in patients undergoing surgery and general anesthesia. METHODS: The study was designed as a prospective, two-phase cohort study. Patients were candidates for subpectoral breast augmentation surgery, and surgical procedures were performed by a single surgeon. The perioperative...... treatment protocol was standardized between patients. During the study, each patient received two separate oral administrations of melatonin 10 mg. Melatonin was administered 60 min before surgery, and at 9:00 p.m. the evening after surgery. The pharmacokinetic variables absorption half-life (t ½ absorption...

  4. Investigation of an alternative generic model for predicting pharmacokinetic changes during physiological stress.

    Science.gov (United States)

    Peng, Henry T; Edginton, Andrea N; Cheung, Bob

    2013-10-01

    Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma. © The Author(s) 2013.

  5. Mixed-effects modelling of the interspecies pharmacokinetic scaling of pegylated human erythropoietin.

    Science.gov (United States)

    Jolling, Koen; Perez Ruixo, Juan Jose; Hemeryck, Alex; Vermeulen, An; Greway, Tony

    2005-04-01

    The aim of this study was to develop a population pharmacokinetic model for interspecies allometric scaling of pegylated r-HuEPO (PEG-EPO) pharmacokinetics to man. A total of 927 serum concentrations from 193 rats, 6 rabbits, 34 monkeys, and 9 dogs obtained after a single dose of PEG-EPO, administered by the i.v. (dose range: 12.5-550 microg/kg) and s.c. (dose range: 12.5-500 microg/kg) routes, were pooled in this analysis. An open two-compartment model with first-order absorption and lag time (Tlag) and linear elimination from the central compartment was fitted to the data using the NONMEM V software. Body weight (WT) was used as a scaling factor and the effect of brain weight (BW), sex, and pregnancy status on the pharmacokinetic parameters was investigated. The final model was evaluated by means of a non-parametric bootstrap analysis and used to predict the PEG-EPO pharmacokinetic parameters in healthy male subjects. The systemic clearance (CL) in males was estimated to be 4.08WT1.030xBW-0.345 ml/h. In females, the CL was 90.7% of the CL in males. The volumes of the central (Vc) and the peripheral (Vp) compartment were characterized as 57.8WT0.959 ml, and 48.1WT1.150 ml, respectively. Intercompartmental flow was estimated at 2.32WT0.930 ml/h. Absorption rate constant (Ka) was estimated at 0.0538WT-0.149. The absolute s.c. bioavailability F was calculated at 52.5, 80.2, and 49.4% in rat, monkey, and dog, respectively. The interindividual variability in the population pharmacokinetic parameters was fairly low (parametric bootstrap confirmed the accuracy of the NONMEM estimates. The mean model predicted pharmacokinetic parameters in healthy male subjects of 70 kg were estimated at: CL: 26.2 ml/h; Vc: 3.6l; Q: 286 l/h; Vp: 6.9l, and Ka: 0.031 h-1. The population pharmacokinetic model developed was appropriate to describe the time course of PEG-EPO serum concentrations and their variability in different species. The model predicted pharmacokinetics of PEG-EPO in

  6. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  7. Pharmacokinetic evaluation of novel midazolam gel formulations following buccal administration to healthy dogs.

    Science.gov (United States)

    Aldawsari, Mohammed F; Lau, Vivian W; Babu, Ramapuram J; Arnold, Robert D; Platt, Simon R

    2018-01-01

    OBJECTIVE To determine the physiochemical properties and pharmacokinetics of 3 midazolam gel formulations following buccal administration to dogs. ANIMALS 5 healthy adult hounds. PROCEDURES In phase 1 of a 2-phase study, 2 gel formulations were developed that contained 1% midazolam in a poloxamer 407 (P1) or hydroxypropyl methylcellulose (H1) base and underwent rheological and in vitro release analyses. Each formulation was buccally administered to 5 dogs such that 0.3 mg of midazolam/kg was delivered. Each dog also received midazolam hydrochloride (0.3 mg/kg, IV). There was a 3-day interval between treatments. Blood samples were collected immediately before and at predetermined times for 8 hours after drug administration for determination of plasma midazolam concentration and pharmacokinetic analysis. During phase 2, a gel containing 2% midazolam in a hydroxypropyl methylcellulose base (H2) was developed on the basis of phase 1 results. That gel was buccally administered such that midazolam doses of 0.3 and 0.6 mg/kg were delivered. Each dog also received midazolam (0.3 mg/kg, IV). All posttreatment procedures were the same as those for phase 1. RESULTS The H1 and H2 formulations had lower viscosity, greater bioavailability, and peak plasma midazolam concentrations that were approximately 2-fold as high, compared with those for the P1 formulation. The mean peak plasma midazolam concentration for the H2 formulation was 187.0 and 106.3 ng/mL when the midazolam dose administered was 0.6 and 0.3 mg/kg, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that buccal administration of gel formulations might be a viable alternative for midazolam administration to dogs.

  8. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

    Directory of Open Access Journals (Sweden)

    Linhua Zhang

    2009-09-01

    Full Text Available Linhua Zhang1, Yue Li2, Chao Zhang1, Yusheng Wang2, Cunxian Song11Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China; 2Department of Ophthalmology, Institute of Ophthalmology of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an, ChinaAbstract: The aim of the study was to investigate the tolerance and pharmacokinetics of dexamethasone (DEX-loaded poly(lactic acid–co-glycolic acid nanoparticles (DEX-NPs in rabbits after intravitreal injection. The DEX-NPs were prepared and characterized in terms of morphology, particle size and size distribution, encapsulation efficiency, and in vitro release. Ophthalmic investigations were performed, including fundus observation and photography, intraocular pressure measurement, and B-scan ocular ultrasonography. There were no abnormalities up to 50 days after administration of DEX-NPs in rabbits. The DEX concentrations in plasma and the ocular tissues such as the cornea, aqueous humor, lens, iris, vitreous humor, and chorioretina were determined by high-pressure liquid chromatography. The DEX-NPs maintained a sustained release of DEX for about 50 days in vitreous and provided relatively constant DEX levels for more than 30 days with a mean concentration of 3.85 mg/L-1. Based on the areas under the curve, the bioavailability of DEX in the experimental group was significantly higher than that in the control group injected with regular DEX. These results suggest that intravitreal injection of DEX-NPs lead to a sustained release of DEX with a high bioavailability, providing a basis for a novel approach to the treatment of posterior segment diseases.Keywords: dexamethasone, nanoparticles, intravitreal injection, pharmacokinetics

  9. Hydrolytic Degradation and Mechanical Stability of Poly(ε-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration.

    Science.gov (United States)

    Sánchez-González, Sandra; Diban, Nazely; Urtiaga, Ane

    2018-03-05

    The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.

  10. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation.

    Science.gov (United States)

    Chen, Yang; Quan, Peng; Liu, Xiaochang; Guo, Wenjia; Song, Wenting; Cun, Dongmei; Wang, Zhongyan; Fang, Liang

    2015-09-01

    The study aimed to prepare a transdermal patch for flurbiprofen using isopulegol decanoate (ISO-C10) as a permeation enhancer, and to evaluate the in-vitro and in-vivo percutaneous permeation of the drug, as well as the pharmacodynamic efficacy of the formulation. The permeation experiments were conducted on rabbit skin, and the pharmacokinetic profiles and synovial fluid drug concentration were measured after in-vivo transdermal administration. A deconvolution approach was employed to analyse the correlation between the in-vitro and in-vivo drug permeation. The anti-inflammatory and analgesic effects were, respectively, assessed using the adjuvant arthritis model and the acetic acid induced pain model. ISO-C10 could increase the in-vitro permeation of flurbiprofen from 46.22 ± 5.65 μg/cm(2) to 101.07 ± 10.85 μg/cm(2) . The in-vivo absorption of the drug was also improved by the enhancer, and a good linear correlation was observed between the in-vitro and in-vivo drug permeation. Meanwhile, the ISO-C10 contained patches increased the drug disposition in synovial fluid and enhanced the pharmacodynamic efficacy of the formulation. ISO-C10 would be a promising permeation enhancer for improving the in-vitro and in-vivo delivery of flurbiprofen from its transdermal patches. © 2015 Royal Pharmaceutical Society.

  11. Disposition pathways and pharmacokinetics of herbal medicines in humans.

    Science.gov (United States)

    He, S-M; Li, C G; Liu, J-P; Chan, E; Duan, W; Zhou, S-F

    2010-01-01

    Pharmacokinetic studies have become an integral part of modern drug development, but these studies are not regulatory needs for herbal remedies. This paper updates our current knowledge on the disposition pathways and pharmacokinetic properties of commonly used herbal medicines in humans. To retrieve relevant data, the authors have searched through computer-based literatures by full text search in Medline (via Pubmed), ScienceDirect, Current Contents Connect (ISI), Cochrance Library, CINAHL (EBSCO), CrossRef Search and Embase (all from inception to May 2010). Many herbal compounds undergo Phase I and/or Phase II metabolism in vivo, with cytochrome P450s (CYPs) and uridine diphosphate glucuronosyltransferases (UGTs) playing a major role. Some herbal ingredients are substrates of P-glycoprotein (P-gp) which is highly expressed in the intestine, liver, brain and kidney. As such, the activities of these drug metabolizing enzymes and drug transporters are determining factors for the in vivo bioavailability, disposition and distribution of herbal remedies. There are increasing pharmacokinetic studies of herbal remedies, but these studies are mainly focused on a small number of herbal remedies including St John's wort, milk thistle, sculcap, curcumin, echinacea, ginseng, ginkgo, and ginger. The pharmacokinetic data of a small number of purified herbal ingredients, including anthocyanins, berberine, catechins, curcumin, lutein and quercetin, are available. For the majority of herbal remedies used in folk medicines, data on their disposition and biological fate in humans are lacking or in paucity. For a herbal medicine, the pharmacological effect is achieved when the bioactive agents or the metabolites reach and sustain proper levels at their sites of action. Both the dose levels and fates of active components in the body govern their target-site concentrations after administration of an herbal remedy. In this regard, a safe and optimal use of herbal medicines requires a

  12. Clinical pharmacokinetics of aminoglycosides in the neonate: a review.

    Science.gov (United States)

    Pacifici, Gian Maria

    2009-04-01

    Sepsis is common in neonates and is a major cause of morbidity and mortality. Sixty percent of preterm neonates receive at least one antibiotic, and 43% of the antibiotics administered to these neonates are aminoglycosides. The clearance (Cl), serum half-life (t(1/2)), and volume of distribution (Vd) of aminoglycosides change during the neonatal life, and the pharmacokinetics of aminoglycosides need to be studied in neonates in order to optimise therapy with these drugs. The aim of this work is to review the published data on the pharmacokinetics of aminoglycosides in order to provide a critical analysis of the literature that can be a useful tool in the hands of physicians. The bibliographic search was performed electronically using PubMed, as the search engine, through July 11th, 2008. Firstly, a Medline search was performed with the keywords "pharmacokinetics of aminoglycosides in neonates" with the limit of "human". Other Medline searches were performed with the keywords "pharmacokinetics of ... in neonates" followed by the name of the aminoglycosides: amikacin, gentamicin, netilmicin and tobramycin. In addition, the book Neofax: A Manual of Drugs Used in Neonatal Care by Young and Mangum (Thomson Healthcare, 2007) was consulted. The aminoglycosides are mainly eliminated by the kidney, and their elimination rates are reduced at birth. As a consequence Cl is reduced and t(1/2) is prolonged in the neonate as compared to more mature infants. The high body-water content of the neonate results in a large Vd of aminoglycosides as these drugs are fairly water soluble. Postnatal development is an important factor in the maturation of the neonate, and as postnatal age proceeds, Cl of aminoglycosides increases. The maturation of the kidney governs the pharmacokinetics of aminoglycosides in the infant. Cl and t(1/2) are influenced by development, and this must be taken into consideration when planning a dosage regimen with aminoglycosides in the neonate. Aminoglycosides

  13. Pharmacokinetic Study of Piracetam in Focal Cerebral Ischemic Rats.

    Science.gov (United States)

    Paliwal, Pankaj; Dash, Debabrata; Krishnamurthy, Sairam

    2018-04-01

    Cerebral ischemia affects hepatic enzymes and brain permeability extensively. Piracetam was investigated up to phase III of clinical trials and there is lack of data on brain penetration in cerebral ischemic condition. Thus, knowledge of the pharmacokinetics and brain penetration of piracetam during ischemic condition would aid to improve pharmacotherapeutics in ischemic stroke. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 2 h in male Wistar rats followed by reperfusion. After 24 h of middle cerebral artery occlusion or 22 h of reperfusion, piracetam was administered for pharmacokinetic, brain penetration, and pharmacological experiments. In pharmacokinetic study, blood samples were collected at different time points after 200-mg/kg (oral) and 75-mg/kg (intravenous) administration of piracetam through right external jugular vein cannulation. In brain penetration study, the cerebrospinal fluid, systemic blood, portal blood, and brain samples were collected at pre-designated time points after 200-mg/kg oral administration of piracetam. In a separate experiment, the pharmacological effect of the single oral dose of piracetam in middle cerebral artery occlusion was assessed at a dose of 200 mg/kg. All the pharmacokinetic parameters of piracetam including area under curve (AUC 0-24 ), maximum plasma concentration (C max ), time to reach the maximum plasma concentration (t max ), elimination half-life (t 1/2 ), volume of distribution (V z ), total body clearance, mean residence time, and bioavailability were found to be similar in ischemic stroke condition except for brain penetration. Piracetam exposure (AUC 0-2 ) in brain and CSF were found to be 2.4- and 3.1-fold higher, respectively, in ischemic stroke compared to control rats. Piracetam significantly reduced infarct volume by 35.77% caused by middle cerebral artery occlusion. There was no change in the pharmacokinetic parameters of piracetam in the ischemic stroke model except for

  14. Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit.

    Science.gov (United States)

    Cao, Xu-Ni; Lin, Li; Zhou, Yu-Yan; Shi, Guo-Yue; Zhang, Wen; Yamamoto, Katsunobu; Jin, Li-Tong

    2003-07-27

    In this paper, multi-wall carbon nanotubes functionalized with carboxylic groups modified electrode (MWNT-COOH CME) was fabricated. This chemically modified electrode (CME) can be used as the working electrode in the liquid chromatography for the determination of 6-mercaptopurine (6-MP). The results indicate that the CME exhibits efficiently electrocatalytic oxidation for 6-MP with relatively high sensitivity, stability and long-life. The peak currents of 6-MP are linear to its concentrations ranging from 4.0 x 10(-7) to 1.0 x 10(-4) mol l(-1) with the calculated detection limit (S/N=3) of 2.0 x 10(-7) mol l(-1). Coupled with microdialysis, the method has been successfully applied to the pharmacokinetic study of 6-MP in rabbit blood. This method provides a fast, sensible and simple technique for the pharmacokinetic study of 6-MP in vivo.

  15. Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs

    NARCIS (Netherlands)

    Kip, Anke E; Schellens, Jan H M; Beijnen, Jos H; Dorlo, Thomas P C

    This review describes the pharmacokinetic properties of the systemically administered antileishmanial drugs pentavalent antimony, paromomycin, pentamidine, miltefosine and amphotericin B (AMB), including their absorption, distribution, metabolism and excretion and potential drug-drug interactions.

  16. Clinical Pharmacokinetics and Pharmacodynamics of Albiglutide

    DEFF Research Database (Denmark)

    Brønden, Andreas; Knop, Filip K; Christensen, Mikkel B

    2017-01-01

    Albiglutide is a long-acting, glucagon-like peptide-1 receptor agonist for subcutaneous administration with a recommended dose of 30-50 mg once weekly. The aim of this article is to outline the pharmacokinetic and pharmacodynamic properties of albiglutide including the clinical efficacy and safet...

  17. Plasma paracetamol concentrations and pharmacokinetics following rectal administration in neonates and young infants

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing; O'Brien, K; Morton, N S

    1999-01-01

    Despite widespread use in children pharmacokinetic data about paracetamol are relatively scarce, not the least in the youngest age groups. This study aimed to describe plasma paracetamol concentrations and pharmacokinetics of a single rectal paracetamol dose in neonates and young infants....

  18. Nuclear techniques and in vitro culture for plant improvement

    International Nuclear Information System (INIS)

    1986-01-01

    The continuous series of food shortages in many parts of the world have led scientists to consider the possibilities of using the new techniques to develop better varieties of plants. The basis for plant breeding is suitable genetic variability and mutation induction as the means to create additional variation. In vitro techniques are a relatively new tool in practical plant breeding. These Proceedings contain 62 papers and posters presented at the symposium, as well as excerpts from the discussions. The Symposium presentations are divided into the following sessions: Genetic variation from in vitro culture; Genetic stability of in vitro cultures; In vitro culture with application of mutagens; Haploids; In vitro mutant selection; Use of genetic variation derived by in vitro culture; In vitro techniques as aids in mutation breeding and Genetic engineering. A separate abstract is prepared for each of these papers and posters

  19. Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    Directory of Open Access Journals (Sweden)

    Lucy Dorey

    Full Text Available Pharmacokinetic-pharmacodynamic (PK/PD integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1 bacteriostatic and bactericidal levels of kill; (2 for 50 and 90% target attainment rates (TAR; and (3 for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida and 44.7 and 86.6 mg/kg (A. pleuropneumoniae. For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida and 18.2 and 35.2 mg/kg (A. pleuropneumoniae were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points.

  20. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid

    Directory of Open Access Journals (Sweden)

    Lee SY

    2015-08-01

    Full Text Available Soo-Yun Lee,1 Wooseong Huh,2 Jin Ah Jung,3 Hye Min Yoo,2 Jae-Wook Ko,1,2 Jung-Ryul Kim2,4 1Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, 3Department of Clinical Pharmacology, Inje University, Busan Paik Hospital, Busan, 4Department of Clinical Research and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea Abstract: Valproic acid (VPA is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; Cmax, 52.1 mg/L vs 53.0 mg/L. There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI] of AUClast and Cmax (95.7 [85.9–106.5] and 98.3 [91.6–105.6], respectively. Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary. Keywords: drug–drug interaction, pharmacokinetics

  1. Pharmacokinetic considerations and recommendations in palliative care, with focus on morphine, midazolam and haloperidol.

    Science.gov (United States)

    Franken, L G; de Winter, B C M; van Esch, H J; van Zuylen, L; Baar, F P M; Tibboel, D; Mathôt, R A A; van Gelder, T; Koch, B C P

    2016-06-01

    A variety of medications are used for symptom control in palliative care, such as morphine, midazolam and haloperidol. The pharmacokinetics of these drugs may be altered in these patients as a result of physiological changes that occur at the end stage of life. This review gives an overview of how the pharmacokinetics in terminally ill patients may differ from the average population and discusses the effect of terminal illness on each of the four pharmacokinetic processes absorption, distribution, metabolism, and elimination. Specific considerations are also given for three commonly prescribed drugs in palliative care: morphine, midazolam and haloperidol). The pharmacokinetics of drugs in terminally ill patients can be complex and limited evidence exists on guided drug use in this population. To improve the quality of life of these patients, more knowledge and more pharmacokinetic/pharmacodynamics studies in terminally ill patients are needed to develop individualised dosing guidelines. Until then knowledge of pharmacokinetics and the physiological changes that occur in the final days of life can provide a base for dosing adjustments that will improve the quality of life of terminally ill patients. As the interaction of drugs with the physiology of dying is complex, pharmacological treatment is probably best assessed in a multi-disciplinary setting and the advice of a pharmacist, or clinical pharmacologist, is highly recommended.

  2. Evaluation of pharmacokinetics underlies the collaborated usage of lamivudine and oxymatrine in beagle dogs

    Directory of Open Access Journals (Sweden)

    Zhenbao Li

    2016-10-01

    Full Text Available Combinational therapy of lamivudine and oxymatrine has been employed in the battle against hepatitis B virus in clinical setting. However, the pharmacokinetic behavior of the drug or active metabolism in intravenous/oral co-administration regime is poorly investigated. Herein, we evaluated the pharmacokinetic characteristic through a tailor-designed 3 way crossover-Latin square experiment in adult male beagle dogs. Six dogs were randomly treated by intravenous administration of lamivudine (2.5 mg/kg, oxymatrine (15 mg/kg and combinational dosage, named as intravenous regime. Meanwhile the other six dogs were orally administrated with lamivudine (2.5 mg/kg, oxymatrine (15 mg/kg and combinational dosage, named as oral regime. The pharmacokinetic feature in simultaneous oral treatment appeared to have no significant difference when compared with individual administration, even including matrine, the active metabolite of oxymatrine. In intravenous regime, the main pharmacokinetic parameters of simultaneous administration were nearly consistent with intravenous regime remedy. The collaborated application of lamivudine and oxymatrine contributed to non-distinctive pharmacokinetic fluctuations of beagle dogs in intravenous/oral regime, compared with individual employment, which established a vital base for the clinical co-administration against hepatitis B. Furthermore, the present study demonstrated that the determination of pharmacokinetics between combinational and individual therapy might assist in the development of drug compatibility in clinical therapy.

  3. Pharmacokinetics and effects on serum cholinesterase activities of organophosphorus pesticides acephate and chlorpyrifos in chimeric mice transplanted with human hepatocytes.

    Science.gov (United States)

    Suemizu, Hiroshi; Sota, Shigeto; Kuronuma, Miyuki; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-11-01

    Organophosphorus pesticides acephate and chlorpyrifos in foods have potential to impact human health. The aim of the current study was to investigate the pharmacokinetics of acephate and chlorpyrifos orally administered at lowest-observed-adverse-effect-level doses in chimeric mice transplanted with human hepatocytes. Absorbed acephate and its metabolite methamidophos were detected in serum from wild type mice and chimeric mice orally administered 150mg/kg. Approximately 70% inhibition of cholinesterase was evident in plasma of chimeric mice with humanized liver (which have higher serum cholinesterase activities than wild type mice) 1day after oral administrations of acephate. Adjusted animal biomonitoring equivalents from chimeric mice studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and in vitro metabolic clearance data with a simple physiologically based pharmacokinetic (PBPK) model. Estimated plasma concentrations of acephate and chlorpyrifos in humans were consistent with reported concentrations. Acephate cleared similarly in humans and chimeric mice but accidental/incidental overdose levels of chlorpyrifos cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in mice. The data presented here illustrate how chimeric mice transplanted with human hepatocytes in combination with a simple PBPK model can assist evaluations of toxicological potential of organophosphorus pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Linking Suspension Nasal Spray Drug Deposition Patterns to Pharmacokinetic Profiles: A Proof-of-Concept Study Using Computational Fluid Dynamics.

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-06-01

    The objective of this study was to link regional nasal spray deposition patterns of suspension formulations, predicted with computational fluid dynamics, to in vivo human pharmacokinetic plasma concentration profiles. This is accomplished through the use of computational fluid dynamics simulations coupled with compartmental pharmacokinetic modeling. Results showed a rapid initial rise in plasma concentration that is due to the absorption of drug particles deposited in the nasal middle passages, followed by a slower increase in plasma concentration that is governed by the transport of drug particles from the nasal vestibule to the middle passages. Although drug deposition locations in the nasal cavity had a significant effect on the shape of the concentration profile, the absolute bioavailability remained constant provided that all the drug remained in the nose over the course of the simulation. Loss of drug through the nostrils even after long periods resulted in a significant decrease in bioavailability and increased variability. The results of this study quantify how differences in nasal drug deposition affect transient plasma concentrations and overall bioavailability. These findings are potentially useful for establishing bioequivalence for nasal spray devices and reducing the burden of in vitro testing, pharmacodynamics, and clinical studies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-12-01

    Full Text Available Guanjiekang (GJK that is formed by five medicinal herbs including Astragali Radix, Aconiti Lateralis Radix Praeparaia, Glycyrrhizae Radix et Rhizoma, Corydalis Rhizoma and Paeoniae Radix Alba was used for the treatment of rheumatoid arthritis (RA. However, the pharmacokinetic (PK profile of active components in GJK remains unclear. This study aims to evaluate the pharmacokinetic behavior of seven representative active constituents in GJK (i.e., benzoylhypaconine, benzoylmesaconine, paeoniflorin, tetrahydropalmatine, calycosin-7-glucoside, formononetin and isoliquiritigenin after oral administration of GJK in rats. A rapid, sensitive and reliable ultra-performance liquid chromatography-tandem mass spectrometer (UPLC–MS/MS method has been successfully developed for the simultaneous determination of these seven constituents in rat plasma. Chromatographic separation was achieved on a C18 column with a gradient elution program that consists of acetonitrile and water (containing 0.1% formic acid at a flow rate of 0.35 mL/min. Detection was performed under the multiple reaction monitoring (MRM in the positive electrospray ionization (ESI mode. The calibration curves exhibited good linearity (R2 > 0.99 over a wide concentration range for all constituents. The accuracies ranged from 92.9% to 107.8%, and the intra-day and inter-day precisions at three different levels were below 15%. Our PK results showed that these seven compounds were quickly absorbed after the administration of the GJK product, and Tmax ranged from 30 min to 189 min. The in vivo concentrations of paeoniflorin and isoliquiritigenin were significantly higher than the reported in vitro effective doses, indicating that they could partly contribute to the therapeutic effect of GJK. Therefore, we conclude that pharmacokinetic studies of representative bioactive chemicals after administration of complex herbal products are not only necessary but also feasible. Moreover, these seven

  6. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study.

    Science.gov (United States)

    Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J

    2016-01-01

    The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.

  7. Drug pharmacokinetics and pharmacodynamics: Technological considerations

    International Nuclear Information System (INIS)

    Fowler, J.S.; Volkow, N.D.; Wolf, A.P.

    1992-01-01

    Additionally, the use of PET to examine drug pharmacokinetics and pharmacadynamics and the relationship of these properties to the behavioral, therapeutic and toxic properties of drugs and substances of abuse is emerging as a powerful new scientific tool. The pharmacokinetic properties of a drug, which comprises all of the biological processes which determine the fraction of the drug available, can be measured using the labeled drug itself. For example, the labeled drug can be used to measure the absolute uptake, regional distribution and kinetics of a drug at its site of action in the body. Additionally the labeled drug and whole body its labeled metabolites and thus provide information an potential toxic effects as well as tissue half lives. On the other hand, different labeled tracers can be used to assess drug pharmacodynamics which include the biological Processes involved in the drug's effects. For example, with appropriate radiotracers, the effects of a drug on metabolism, neurotransmitter activity, blood flew, enzyme activity or other processes can be probed

  8. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  9. Population Pharmacokinetics of Fentanyl in the Critically Ill

    Science.gov (United States)

    Choi, Leena; Ferrell, Benjamin A; Vasilevskis, Eduard E; Pandharipande, Pratik P; Heltsley, Rebecca; Ely, E Wesley; Stein, C Michael; Girard, Timothy D

    2016-01-01

    Objective To characterize fentanyl population pharmacokinetics in patients with critical illness and identify patient characteristics associated with altered fentanyl concentrations. Design Prospective cohort study. Setting Medical and surgical ICUs in a large tertiary care hospital in the United States. Patients Patients with acute respiratory failure and/or shock who received fentanyl during the first five days of their ICU stay. Measurements and Main Results We collected clinical and hourly drug administration data and measured fentanyl concentrations in plasma collected once daily for up to five days after enrollment. Among 337 patients, the mean duration of infusion was 58 hours at a median rate of 100 µg/hr. Using a nonlinear mixed-effects model implemented by NONMEM, we found fentanyl pharmacokinetics were best described by a two-compartment model in which weight, severe liver disease, and congestive heart failure most affected fentanyl concentrations. For a patient population with a mean weight of 92 kg and no history of severe liver disease or congestive heart failure, the final model, which performed well in repeated 10-fold cross-validation, estimated total clearance (CL), intercompartmental clearance (Q), and volumes of distribution for the central (V1) and peripheral compartments (V2) to be 35 (95% confidence interval: 32 to 39) L/hr, 55 (42 to 68) L/hr, 203 (140 to 266) L, and 523 (428 to 618) L, respectively. Severity of illness was marginally associated with fentanyl pharmacokinetics but did not improve the model fit after liver and heart disease were included. Conclusions In this study, fentanyl pharmacokinetics during critical illness were strongly influenced by severe liver disease, congestive heart failure, and weight, factors that should be considered when dosing fentanyl in the ICU. Future studies are needed to determine if data-driven fentanyl dosing algorithms can improve outcomes for ICU patients. PMID:26491862

  10. Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.

    Science.gov (United States)

    Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L

    2018-06-01

    The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.

  11. Pharmacokinetic determination of ephedrine in Herba Ephedrae and Wu Tou Tang decoctions in rats using ultra performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Zheng, Zhijie; Yan, Tongmeng; Chen, Weiying; Ye, Ling; Tang, Lan; Liu, Zhongqiu

    2012-08-01

    A rapid and sensitive ultra performance liquid chromatography tandem mass spectrometry method was developed and validated for the determination and quantification of ephedrine in rat plasma samples. An Acquity UPLC BEH C18 column (1.7 μm, 2.1 mm × 50 mm) was used for chromatographic separation. Electrospray ionization in the positive mode was used, and the precursor-fragment ion pairs of m/z 166/148 and m/z 289/97 were adopted to characterize ephedrine and testosterone (internal standard), respectively. The method was validated using 10, 100 and 500 ng/mL of ephedrine. It demonstrated adequate levels of precision and accuracy, matrix effect, extraction recovery and stability. Linearity over the concentration range of 0.5-2000 ng/mL was acceptable with a correlation coefficient (r²) better than 0.990. To determine the pharmacokinetic behaviour of this sympathomimetic compound in the Sprague-Dawley rats, ephedrine hydrochloride, Herba Ephedrae single-herb and Wu Tou Tang decoctions were administered orally, and ephedrine hydrochloride was also administered by intravenous injection, and blood samples were collected over 24 h. Ephedrine was measured in plasma and pharmacokinetic parameters were determined by using the standard non-compartmental method and calculated by using Practical Pharmacokinetic Program-Version 87/97. The AUC(0-t) and T(max) values were significantly different (p Tang decoction compared to the other oral treatments, suggesting that some components in the decoction may reduce the bioavailability of ephedrine.

  12. Turbulent flow chromatography TFC-tandem mass spectrometry supporting in vitro/vivo studies of NCEs in high throughput fashion.

    Science.gov (United States)

    Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio

    2010-03-11

    Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Pharmacokinetics and pharmacodynamics of rhubarb anthraquinones extract in normal and disease rats.

    Science.gov (United States)

    Li, Peijin; Lu, Qianfeng; Jiang, Wenjiao; Pei, Xue; Sun, Yilin; Hao, Haiping; Hao, Kun

    2017-07-01

    Anthraquinones extract from Rheum palmatum L. (rhubarb) including rhein, emodin, aloe-emodin, chrysophanol, physcion and sennoside A, has been widely used in China to treat various diseases. This study was designed to explore the pharmacokinetic and pharmacodynamic properties of rhubarb anthraquinones extract in diabetic nephropathy and acute liver injury rats. The diabetic nephropathy and acute liver injury rats were induced by intraperitoneal injection with streptozotocin (STZ) and carbon tetrachloride (CCL 4 ), respectively. The rats were treated with different doses of rhubarb anthraquinones extract (37.5, 75 and 150mg/kg) as administration groups. For pharmacokinetics, the drug concentrations of rhubarb anthraquinones consisting of rhein, emodin, aloe-emodin, chrysophanol, physcion and sennoside A were determined. For pharmacodynamics, the anti-diabetic nephropathy and hepatoprotective effects were assessed under different dosage regimens. The rhein, emodin, aloe-emodin, chrysophanol were considered as pharmacokinetic markers at three doses of rhubarb anthraquinones extract. In diabetic nephropathy rats, no obvious pharmacokinetic change of the four ingredients was observed compared with control rats. However, the plasma exposures of the four ingredients increased in acute liver injury rats compared with control rats. The serum creatinine (SCr), blood urea nitrogen (BUN) and urine protein (UP) values in diabetic nephropathy rats decreased compared with those in the model group, which suggested that rhubarb anthraquinones extract displayed certain therapeutic and preventive effects against the diabetic nephropathy. However, rhubarb anthraquinones extract cannot ameliorate the CCL 4 -induced liver injury under the three different dosage regimens. There was no significant pharmacokinetic difference after a single oral administration of rhubarb anthraquinones extract between control and diabetic nephropathy rats. However, apparent pharmacokinetic differences were

  14. Impact of synthetic canine cerumen on in vitro penetration of auricular skin of dogs by florfenicol, terbinafine, and betamethasone acetate.

    Science.gov (United States)

    Ehling, Sarah; Baynes, Ronald E; Bäumer, Wolfgang

    2018-03-01

    OBJECTIVE To determine the pharmacokinetics of florfenicol, terbinafine, and betamethasone acetate after topical application to canine auricular skin and the influence of synthetic canine cerumen on pharmacokinetics. SAMPLE Auricular skin from 6 euthanized shelter dogs (3 females and 3 neutered males with no visible signs of otitis externa). PROCEDURES Skin adjacent to the external opening of the ear canal was collected and prepared for use in a 2-compartment flow-through diffusion cell system to evaluate penetration of an otic gel containing florfenicol, terbinafine, and betamethasone acetate over a 24-hour period. Radiolabeled 14 C-terbinafine hydrochloride and 3 H-betamethasone acetate were added to the gel to determine dermal penetration and distribution. Florfenicol absorption was determined by use of high-performance liquid chromatography-UV detection. Additionally, the effect of synthetic canine cerumen on the pharmacokinetics of all compounds was evaluated. RESULTS During the 24-hour experiment, mean ± SD percentage absorption without the presence of synthetic canine cerumen was 0.28 ± 0.09% for 3H-betamethasone acetate, 0.06 ± 0.06% for florfenicol, and 0.06 ± 0.02% for 14C-terbinafine hydrochloride. Absorption profiles revealed no impact of synthetic canine cerumen on skin absorption for all 3 active compounds in the gel or on skin distribution of 3 H-betamethasone acetate and 14 C-terbinafine hydrochloride. CONCLUSIONS AND CLINICAL RELEVANCE 3 H-betamethasone acetate, 14 C-terbinafine hydrochloride, and florfenicol were all absorbed in vitro through healthy auricular skin specimens within the first 24 hours after topical application. Synthetic canine cerumen had no impact on dermal absorption in vitro, but it may serve as a temporary reservoir that prolongs the release of topical drugs.

  15. Chiral Pesticide Pharmacokinetics: A Range of Values

    Science.gov (United States)

    Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...

  16. Glipizide Pharmacokinetics in Healthy and Diabetic Volunteers

    African Journals Online (AJOL)

    Erah

    Purpose: Disease state may contribute to alteration in drug pharmacokinetics. The purpose of .... dependency or drug abuse, known allergy to ... HPLC analysis of glipizide ... months when stored at 4 0C, protected from .... plasma and urine.

  17. Improvement of in vivo efficacy of recombinant human erythropoietin by encapsulation in PEG–PLA micelle

    Directory of Open Access Journals (Sweden)

    Shi YN

    2012-12-01

    Full Text Available Yanan Shi,1,2,* Wan Huang,1,* Rongcai Liang,1–3 Kaoxiang Sun,2,3 Fangxi Zhang,2,3 Wanhui Liu,2,3 Youxin Li1–31College of Life Science, Jilin University, Changchun, China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, China; 3School of Pharmacy, Yantai University, Yantai, China*These authors contributed equally to this workAbstract: To improve the pharmacokinetics and stability of recombinant human erythropoietin (rhEPO, rhEPO was successfully formulated into poly(ethylene glycol–poly(d,l-lactide (PEG–PLA di-block copolymeric micelles at diameters ranging from 60 to 200 nm with narrow polydispersity indices (PDIs; PDI < 0.3 and trace amount of protein aggregation. The zeta potential of the spherical micelles was in the range of −3.78 to 4.65 mV and the highest encapsulation efficiency of rhEPO in the PEG–PLA micelles was about 80%. In vitro release profiles indicated that the stability of rhEPO in the micelles was improved significantly and only a trace amount of aggregate was found. Pharmacokinetic studies in rats showed highly enhanced plasma retention time of the rhEPO-loaded PEG-PLA micelles in comparison with the native rhEPO group. Increased hemoglobin concentrations were also found in the rat study. Native polyacrylamide gel electrophoresis results demonstrated that rhEPO was successfully encapsulated into the micelles, which was stable in phosphate buffered saline with different pHs and concentrations of NaCl. Therefore, PEG–PLA micelles can be a potential protein drug delivery system.Keywords: rhEPO, PEG–PLA micelle, in vitro, pharmacokinetics, pharmacodynamics

  18. Development of domperidone bilayered matrix type transdermal patches: physicochemical, in vitro and ex vivo characterization

    Directory of Open Access Journals (Sweden)

    S.K Madishetti

    2010-09-01

    Full Text Available "nBackground and the purpose of the study: Domperidone (DOM is a dopamine- receptor (D2 antagonist, which is widely used in the treatment of motion-sickness. The pharmacokinetic parameters make DOM a suitable candidate for transdermal delivery. The purpose of the present investigation was to develop transdermal delivery systems for DOM and to evaluate their physicochemical characteristics, in vitro release an ex vivo permeation through rat abdominal skin and their mechanical properties. "nMethods: Bilayered matrix type transdermal drug delivery systems (TDDS of DOM were prepared by film casting technique using hydroxypropyl methyl cellulose as primary and Eudragit RL 100 as secondary layers. Brij-35 was incorporated as a solubilizer, d-limonene and propylene glycol were employed as permeation enhancer and plasticizer respectively. The prepared TDDS were extensively evaluated for in vitro release, moisture absorption, moisture content, water vapor transmission, ex vivo permeation through rat abdominal skin, mechanical properties and stability studies. The physicochemical interaction between DOM and polymers were investigated by Differential Scanning Calorimetry (DSC and Fourier Transform Infrared Spectroscopy (FTIR. "nResults: All the formulations exhibited satisfactory physicochemical and mechanical characteristics. The optimized formulation F6 showed maximum cumulative percentage of drug release (90.7%, permeation (6806.64 μg in 24 hrs, flux (86.02 μg /hr/cm2 and permeation coefficient of 0.86x10-2 cm/hr. Values of tensile strength (4.34 kg/mm2 and elastic modulus (5.89 kg/cm2 revealed that formulation F6 was strong but not brittle. DSC and FTIR studies showed no evidence of interaction between the drug and polymers. A shelf life of 2 years is predicted for the TDDS. Conclusions: Domperidone bilayered matrix type transdermal therapeutic systems could be prepared with the required flux and suitable mechanical properties.

  19. Novel carbapenem antibiotics for parenteral and oral applications: in vitro and in vivo activities of 2-aryl carbapenems and their pharmacokinetics in laboratory animals.

    Science.gov (United States)

    Fujimoto, Koichi; Takemoto, Koji; Hatano, Kazuo; Nakai, Toru; Terashita, Shigeyuki; Matsumoto, Masahiro; Eriguchi, Yoshiro; Eguchi, Ken; Shimizudani, Takeshi; Sato, Kimihiko; Kanazawa, Katsunori; Sunagawa, Makoto; Ueda, Yutaka

    2013-02-01

    SM-295291 and SM-369926 are new parenteral 2-aryl carbapenems with strong activity against major causative pathogens of community-acquired infections such as methicillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae (including penicillin-resistant strains), Streptococcus pyogenes, Enterococcus faecalis, Klebsiella pneumoniae, Moraxella catarrhalis, Haemophilus influenzae (including β-lactamase-negative ampicillin-resistant strains), and Neisseria gonorrhoeae (including ciprofloxacin-resistant strains), with MIC(90)s of ≤ 1 μg/ml. Unlike tebipenem (MIC(50), 8 μg/ml), SM-295291 and SM-369926 had no activity against hospital pathogens such as Pseudomonas aeruginosa (MIC(50), ≥ 128 μg/ml). The bactericidal activities of SM-295291 and SM-369926 against penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae were equal or superior to that of tebipenem and greater than that of cefditoren. The therapeutic efficacies of intravenous administrations of SM-295291 and SM-369926 against experimentally induced infections in mice caused by penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae were equal or superior to that of tebipenem and greater than that of cefditoren, respectively, reflecting their in vitro activities. SM-295291 and SM-369926 showed intravenous pharmacokinetics similar to those of meropenem in terms of half-life in monkeys (0.4 h) and were stable against human dehydropeptidase I. SM-368589 and SM-375769, which are medoxomil esters of SM-295291 and SM-369926, respectively, showed good oral bioavailability in rats, dogs, and monkeys (4.2 to 62.3%). Thus, 2-aryl carbapenems are promising candidates that show an ideal broad spectrum for the treatment of community-acquired infections, including infections caused by penicillin-resistant S. pneumoniae and β-lactamase-negative ampicillin-resistant H. influenzae, have low selective pressure on antipseudomonal

  20. A Study on Pharmacokinetics of Bosentan with Systems Modeling, Part 2: Prospectively Predicting Systemic and Liver Exposure in Healthy Subjects.

    Science.gov (United States)

    Li, Rui; Kimoto, Emi; Niosi, Mark; Tess, David A; Lin, Jian; Tremaine, Larry M; Di, Li

    2018-04-01

    Predicting human pharmacokinetics of novel compounds is a critical step in drug discovery and clinical study design but continues to be a challenging task for hepatic transporter substrates, particularly in predicting their liver exposures. In this study, using bosentan as an example, we prospectively predicted systemic exposure and the (pseudo) steady-state unbound liver-to-unbound plasma ratio ( K p uu ) in healthy subjects using 1) a mechanistic approach solely based on in vitro hepatocyte assays and 2) an approach based on hepatic process rates from monkey in vivo data but Michaelis-Menten constants from in vitro data. Both methods reasonably match the observed human systemic time course data, but the second method leads to better prediction accuracy. In addition, the second method can predict a human K p uu value that is close to the value deduced using clinical data. We also generated rat and monkey liver K p uu values in terminal studies. However, these directly measured animal values are different from the deduced human value. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Improved Safety, Bioavailability and Pharmacokinetics of Zidovudine through Lactoferrin Nanoparticles during Oral Administration in Rats.

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    Full Text Available Zidovudine (AZT is one of the most referred antiretroviral drug. In spite of its higher bioavailability (50-75% the most important reason of its cessation are bone marrow suppression, anemia, neutropenia and various organs related toxicities. This study aims at the improvement of oral delivery of AZT through its encapsulation in lactoferrin nanoparticles (AZT-lactonano. The nanoparticles (NPs are of 50-60 nm in size and exhibit 67% encapsulation of the AZT. They are stable in simulated gastric and intestinal fluids. Anti-HIV-1 activity of AZT remains unaltered in nanoformulation in acute infection. The bioavailability and tissue distribution of AZT is higher in blood followed by liver and kidney. AZT-lactonano causes the improvement of pharmacokinetic profile as compared to soluble AZT; a more than 4 fold increase in AUC and AUMC in male and female rats. The serum Cmax for AZT-lactonano was increased by 30%. Similarly there was nearly 2-fold increase in Tmax and t1/2. Our in vitro study confirms that, the endosomal pH is ideal for drug release from NPs and shows constant release from up to 96h. Bone marrow micronucleus assay show that nanoformulation exhibits approximately 2fold lower toxicity than soluble form. Histopathological and biochemical analysis further confirms that less or no significant organ toxicities when nanoparticles were used. AZT-lactonano has shown its higher efficacy, low organs related toxicities, improved pharmacokinetics parameter while keeping the antiviral activity intact. Thus, the nanoformulation are safe for the target specific drug delivery.

  2. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.

    Science.gov (United States)

    Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J

    2018-03-01

    Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.

  3. Effects of Flos carthami on CYP2D6 and on the Pharmacokinetics of Metoprolol in Rats

    Directory of Open Access Journals (Sweden)

    Gaofeng Liu

    2011-01-01

    Full Text Available Flos carthami is a traditional Chinese herbal medicine. Clinically, the Flos carthami Injection has been used concomitantly with other Western drugs and may be used concomitantly with β-blockers, such as metoprolol, to treat cerebrovascular and coronary heart diseases, in China. Metoprolol is a CYP2D6 substrate and is predominantly metabolized by this isozyme. However, we do not know whether there is an effect of Flos carthami on CYP2D6 and the consequences of such an effect. Concern is raised regarding the possible herb-drug interaction. In this report, the effects of Flos carthami on the activity of CYP2D6 in vivo and in vitro and on the pharmacokinetics of metoprolol, in rats, are investigated. To assess the inhibitory potency of Flos carthami, the concentration associated with 50% inhibition (IC50 of dextromethorphan metabolism was determined based on the concentration-inhibition curves. The inhibitory effect of Flos carthami on CYP2D6 was also compared with cimetidine in vitro. Flos carthami could significantly inhibit CYP2D6 in rats both in vitro and in vivo (P<.05 and could slow down the metabolic rate of metoprolol as suggested by prolonged t1/2 (67.45%, by increased Cmax (74.51% and AUC0−∞ (76.89%. These results suggest that CYP2D6 is a risk factor when Flos carthami is administered concomitantly with metoprolol or other CYP2D6 substrates.

  4. Pharmacokinetics of metformin during pregnancy.

    Science.gov (United States)

    Eyal, Sara; Easterling, Thomas R; Carr, Darcy; Umans, Jason G; Miodovnik, Menachem; Hankins, Gary D V; Clark, Shannon M; Risler, Linda; Wang, Joanne; Kelly, Edward J; Shen, Danny D; Hebert, Mary F

    2010-05-01

    Our objective was to evaluate the pharmacokinetics of metformin during pregnancy. Serial blood and urine samples were collected over one steady-state dosing interval in women treated with metformin during early to late pregnancy (n = 35) and postpartum (n = 16). Maternal and umbilical cord blood samples were obtained at delivery from 12 women. Metformin concentrations were also determined in breast milk samples obtained over one dosing interval in 6 women. Metformin renal clearance increased significantly in mid (723 +/- 243 ml/min, P pregnancy (625 +/- 130 ml/min, P metformin net secretion clearance (480 +/- 190 ml/min, P pregnancy versus postpartum, respectively. Metformin concentrations at the time of delivery in umbilical cord plasma ranged between nondetectable (metformin through breast milk was 0.13 to 0.28 mg, and the relative infant dose was metformin pharmacokinetics are affected by pregnancy-related changes in renal filtration and net tubular transport and can be roughly estimated by the use of creatinine clearance. At the time of delivery, the fetus is exposed to metformin concentrations from negligible to as high as maternal concentrations. In contrast, infant exposure to metformin through the breast milk is low.

  5. The effects of concurrent atorvastatin therapy on the pharmacokinetics of intravenous midazolam.

    LENUS (Irish Health Repository)

    Mc Donnell, C G

    2012-02-03

    Midazolam is a commonly used anaesthetic agent and is metabolised by the 3A4 isoform of the cytochrome P450 enzyme system. Atorvastatin is also metabolised by cytochrome P450 3A4 and, in vitro, atorvastatin inhibits the cytochrome P450 3A4-mediated metabolism of mexazolam. We hypothesised that concurrent administration of atorvastatin and midazolam would result in altered midazolam pharmacokinetics. Fourteen patients scheduled to undergo general anaesthesia for elective surgery were recruited in a matched pair design to receive intravenous midazolam (0.15 mg.kg-1). Of these patients, seven were taking long-term atorvastatin. Atorvastatin patients demonstrated a greater area under the curve (889.4 (standard deviation 388.6) ng-h.ml-1) vs. control patients (629.1 (standard deviation 197.2) ng-h.ml-1) (p < 0.05). Patients taking atorvastatin also demonstrated a decreased clearance (0.18 (standard deviation 0.08) l-kg. h-1) vs. control patients (0.27 (standard deviation 0.08) l-kg.h-1) (p < 0.05). This study suggests that chronically administered atorvastatin decreases the clearance of intravenously administered midazolam.

  6. Pharmacokinetics of oral terbinafine in adult horses.

    Science.gov (United States)

    Younkin, T J; Davis, E G; Kukanich, B

    2017-08-01

    The primary study objective was to compare the pharmacokinetics of p.o. terbinafine alone to p.o. terbinafine administered with p.o. cimetidine in healthy adult horses. The second objective was to assess the pharmacokinetics of terbinafine when administered per rectum in two different suspensions at 30 mg/kg to adult horses. Six healthy adult horses were included in this crossover study. Plasma terbinafine concentrations were quantified with liquid chromatography and mass spectrometry. The half-life (geometric mean) was 8.38 and 10.76 h, for p.o. alone and p.o. with cimetidine, respectively. The mean maximum plasma concentrations were 0.291 μg/mL at 1.54 h and 0.418 μg/mL at 1.28 h for p.o. alone and p.o. with cimetidine, respectively. Terbinafine with cimetidine had an average C MAX 44% higher and the relative F was 153% compared p.o. terbinafine alone, but was not statistically different (P > 0.05). Terbinafine was infrequently detected when administered per rectum in two different suspensions (water or olive oil). Minor adverse effects included oral irritation, fever, and colic. All resolved spontaneously. More pharmacokinetic studies are indicated assessing drug-drug interactions and using multiple dosing intervals to improve our knowledge of effective oral dosing, the potential for drug accumulation, and systemic adverse effect of terbinafine in horses. © 2016 John Wiley & Sons Ltd.

  7. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    Energy Technology Data Exchange (ETDEWEB)

    Takaku, Tomoyuki, E-mail: takakut@sc.sumitomo-chem.co.jp; Nagahori, Hirohisa; Sogame, Yoshihisa

    2014-06-15

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U-{sup 14}C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up {sup 14}C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K{sub m} (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments.

  8. Metabolism and physiologically based pharmacokinetic modeling of flumioxazin in pregnant animals

    International Nuclear Information System (INIS)

    Takaku, Tomoyuki; Nagahori, Hirohisa; Sogame, Yoshihisa

    2014-01-01

    A physiologically based pharmacokinetic (PBPK) model was developed to predict the concentration of flumioxazin, in the blood and fetus of pregnant humans during a theoretical accidental intake (1000 mg/kg). The data on flumioxazin concentration in pregnant rats (30 mg/kg po) was used to develop the PBPK model in pregnant rats using physiological parameters and chemical specific parameters. The rat PBPK model developed was extrapolated to a human model. Liver microsomes of female rats and a mixed gender of humans were used for the in vitro metabolism study. To determine the % of flumioxazin absorbed after administration at a dose of 1000 mg/kg assuming maximum accidental intake, the biliary excretion study of [phenyl-U- 14 C]flumioxazin was conducted in bile duct-cannulated female rats (Crl:CD (SD)) to collect and analyze the bile, urine, feces, gastrointestinal tract, and residual carcass. The % of flumioxazin absorbed at a dose of 1000 mg/kg in rats was low (12.3%) by summing up 14 C of the urine, bile, and residual carcass. The pregnant human model that was developed demonstrated that the maximum flumioxazin concentration in the blood and fetus of a pregnant human at a dose of 1000 mg/kg po was 0.86 μg/mL and 0.68 μg/mL, respectively, which is much lower than K m (202.4 μg/mL). Because the metabolism was not saturated and the absorption rate was low at a dose of 1000 mg/kg, the calculated flumioxazin concentration in pregnant humans was thought to be relatively low, considering the flumioxazin concentration in pregnant rats at a dose of 30 mg/kg. For the safety assessment of flumioxazin, these results would be useful for further in vitro toxicology experiments. - Highlights: • A PBPK model of flumioxazin in pregnant humans was developed. • Simulated flumioxazin concentration in pregnant humans was relatively low. • The results would be useful for further in vitro toxicology experiments

  9. Preclinical pharmacokinetics, interspecies scaling, and pharmacokinetics of a Phase I clinical trial of TTAC-0001, a fully human monoclonal antibody against vascular endothelial growth factor 2

    Directory of Open Access Journals (Sweden)

    Lee WS

    2018-03-01

    Full Text Available Weon Sup Lee,1 Sang Ryeol Shim,1 Seon Young Lee,1 Jin San Yoo,1 Sung Kweon Cho2 1PharmAbcine, Inc., Daejeon, Republic of Korea; 2Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea Background: VEGF is a highly selective mitogen that serves as the central regulator of tumor angiogenesis by mediating endothelial proliferation, permeability, and survival. Tanibirumab (TTAC-0001 is a fully human IgG1 monoclonal antibody derived from a fully human naïve single-chain variable fragment (ScFv phage library that was developed to inhibit the effects of VEGF in the treatment of solid tumors, especially those of the brain. Methods: In the present study, we conducted intravenous pharmacokinetic studies of TTAC-0001 in mice, rats, and cynomolgus monkeys. At the doses studied (3 mg/kg, 10 mg/kg, 30 mg/kg, TTAC-0001 exhibited dose proportionality in mice and monkeys. At a dose of ~10 mg/kg, the clearance of TTAC-0001 from serum was 0.017 mL/h in mice, 0.35 mL/h in rats, and 2.19 mL/h in cynomolgus monkeys, and the terminal half-life ranged from 20–30 h among the three species. Pharmacokinetic data in mice, rats, and cynomolgus monkeys were used to predict the pharmacokinetics of TTAC-0001 in humans using allometric scaling. The predicted serum clearance of TTAC-0001 in humans was 102.45 mL/h and the terminal half-life was 27.52 h. Results: The maximum life span-corrected clearance value was 72.92 mL/h. The observed clearance in humans was more similar to the predicted scaled clearance. Conclusion: We investigated the pharmacokinetics of TTAC-0001 in mice, rats, and cynomolgus monkeys after intravenous administration. At the doses studied, TTAC-0001 exhibited dose proportionality in mice and monkeys. The scaled pharmacokinetics of TTAC-0001 reported here was useful for designing first-in-human studies. Allometric scaling in the therapeutic antibody is feasible. Keywords: VEGF2, tanibirumab, pharmacokinetics

  10. Pharmacokinetics of labelled compounds with technetium-99m and samarium-153

    International Nuclear Information System (INIS)

    Borda O, L.B.; Torres L, M.N.

    1997-01-01

    The purpose of this investigation was to establish the different pharmacokinetics parameters of the main radiopharmaceuticals labeled with technetium-99m and samarium-153. These parameters could be subsequently used as reference to compare other products with the same use. Mathematical models and a computerized pharmacokinetic program were used to this purpose. A biodistribution study in quadruplicate and/or quintuplicate was conducted for each radiopharmaceutical, data was was obtained in injection dose percentages. The biodistribution study involved the injection of a predetermined dose of the radiopharmaceutical into animals (rats or mice), which were subsequently put away at different time intervals, removing the relevant organs. Activity in each organ was read by means of a well-type NaI scintillation counter, data obtained in activity counts was transformed into injection dose percentages. Based on these percentages, the mathematical model was constructed and the pharmacokinetic parameters were obtained using the computerized program Expo 2 v. 1, which is written in C language and works in windows. Analyzing the results obtained, we can conclude that the use of the Expo 2 v. 1 program for a bi compartmental analysis allowed us to obtain reliable pharmacokinetic parameters which describe what happens in the organism when the radiopharmaceutical passes from the central compartment to the peripheral one and vice versa

  11. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.

    Science.gov (United States)

    Hu, Yun; Hoerle, Reece; Ehrich, Marion; Zhang, Chenming

    2015-12-01

    Lipid-polymer hybrid nanoparticles (NPs), consisting of a polymeric core and a lipid shell, have been intensively examined as delivery systems for cancer drugs, imaging agents, and vaccines. For applications in vaccine particularly, the hybrid NPs need to be able to protect the enclosed antigens during circulation, easily be up-taken by dendritic cells, and possess good stability for prolonged storage. However, the influence of lipid composition on the performance of hybrid NPs has not been well studied. In this study, we demonstrate that higher concentrations of cholesterol in the lipid layer enable slower and more controlled antigen release from lipid-poly(lactide-co-glycolide) acid (lipid-PLGA) NPs in human serum and phosphate buffered saline (PBS). Higher concentrations of cholesterol also promoted in vitro cellular uptake of hybrid NPs, improved the stability of the lipid layer, and protected the integrity of the hybrid structure during long-term storage. However, stabilized hybrid structures of high cholesterol content tended to fuse with each other during storage, resulting in significant size increase and lowered cellular uptake. Additional experiments demonstrated that PEGylation of NPs could effectively minimize fusion-caused size increase after long term storage, leading to improved cellular uptake, although excessive PEGylation will not be beneficial and led to reduced improvement. This paper reports the engineering of the lipid layer that encloses a polymeric nanoparticle, which can be used as a carrier for drug and vaccine molecules for targeted delivery. We demonstrated that the concentration of cholesterol is critical for the stability and uptake of the hybrid nanoparticles by dendritic cells, a targeted cell for the delivery of immune effector molecules. However, we found that hybrid nanoparticles with high cholesterol concentration tend to fuse during storage resulting in larger particles with decreased cellular uptake. This problem is

  12. Novel CNS drug discovery and development approach: model-based integration to predict neuro-pharmacokinetics and pharmacodynamics.

    Science.gov (United States)

    de Lange, Elizabeth C M; van den Brink, Willem; Yamamoto, Yumi; de Witte, Wilhelmus E A; Wong, Yin Cheong

    2017-12-01

    CNS drug development has been hampered by inadequate consideration of CNS pharmacokinetic (PK), pharmacodynamics (PD) and disease complexity (reductionist approach). Improvement is required via integrative model-based approaches. Areas covered: The authors summarize factors that have played a role in the high attrition rate of CNS compounds. Recent advances in CNS research and drug discovery are presented, especially with regard to assessment of relevant neuro-PK parameters. Suggestions for further improvements are also discussed. Expert opinion: Understanding time- and condition dependent interrelationships between neuro-PK and neuro-PD processes is key to predictions in different conditions. As a first screen, it is suggested to use in silico/in vitro derived molecular properties of candidate compounds and predict concentration-time profiles of compounds in multiple compartments of the human CNS, using time-course based physiology-based (PB) PK models. Then, for selected compounds, one can include in vitro drug-target binding kinetics to predict target occupancy (TO)-time profiles in humans. This will improve neuro-PD prediction. Furthermore, a pharmaco-omics approach is suggested, providing multilevel and paralleled data on systems processes from individuals in a systems-wide manner. Thus, clinical trials will be better informed, using fewer animals, while also, needing fewer individuals and samples per individual for proof of concept in humans.

  13. Effect of gemfibrozil and rifampicin on the pharmacokinetics of selexipag and its active metabolite in healthy subjects.

    Science.gov (United States)

    Bruderer, Shirin; Petersen-Sylla, Marc; Boehler, Margaux; Remeňová, Tatiana; Halabi, Atef; Dingemanse, Jasper

    2017-12-01

    Based on in vitro data, there is evidence to suggest that cytochrome P450 (CYP) 2C8 is involved in the metabolism of selexipag and its active metabolite, ACT-333679. The present study evaluated the possible pharmacokinetic interactions of selexipag with gemfibrozil, a strong CYP2C8 inhibitor, and rifampicin, an inducer of CYP2C8. The study consisted of two independent parts, each conducted according to an open-label, randomized, crossover design. The pharmacokinetics and safety of selexipag and ACT-333679 were studied following single-dose administration either alone or in the presence of multiple-dose gemfibrozil (part I) or rifampicin (part II) in healthy male subjects. Gemfibrozil had comparatively small effects on selexipag (less than 2-fold difference in any pharmacokinetic variable) but, with respect to ACT-333679, increased the maximum plasma concentration (C max ) 3.6-fold [90% confidence interval (CI) 3.1, 4.3] and the area under the plasma concentration-time curve from zero to infinity (AUC 0-∞ ) 11.1-fold (90% CI 9.2, 13.4). The marked increased exposure to ACT-333679, which mediates the majority of the pharmacological activity of selexipag, was accompanied by significantly more adverse events such as headache, nausea and vomiting. Coadministration of rifampicin increased the C max of selexipag 1.8-fold (90% CI 1.4, 2.2) and its AUC0 -∞ 1.3-fold (90% CI 1.1, 1.4); its effects on ACT-333679 were to increase its C max 1.3-fold (90% CI 1.1, 1.6), shorten its half-life by 63% and reduce its AUC0 -∞ by half (90% CI 0.45, 0.59). Concomitant administration of selexipag and strong inhibitors of CYP2C8 must be avoided, whereas when coadministered with inducers of CYP2C8, dose adjustments of selexipag should be envisaged. © 2017 The British Pharmacological Society.

  14. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation.

    Science.gov (United States)

    Đorđević, Sanela M; Cekić, Nebojša D; Savić, Miroslav M; Isailović, Tanja M; Ranđelović, Danijela V; Marković, Bojan D; Savić, Saša R; Timić Stamenić, Tamara; Daniels, Rolf; Savić, Snežana D

    2015-09-30

    This paper describes design and evaluation of parenteral lecithin-based nanoemulsions intended for brain delivery of risperidone, a poorly water-soluble psychopharmacological drug. The nanoemulsions were prepared through cold/hot high pressure homogenization and characterized regarding droplet size, polydispersity, surface charge, morphology, drug-vehicle interactions, and physical stability. To estimate the simultaneous influence of nanoemulsion formulation and preparation parameters--co-emulsifier type, aqueous phase type, homogenization temperature--on the critical quality attributes of developed nanoemulsions, a general factorial experimental design was applied. From the established design space and stability data, promising risperidone-loaded nanoemulsions (mean size about 160 nm, size distribution Solutol(®) HS15 as co-emulsifier, were produced by hot homogenization and their ability to improve risperidone delivery to the brain was assessed in rats. Pharmacokinetic study demonstrated erratic brain profiles of risperidone following intraperitoneal administration in selected nanoemulsions, most probably due to their different droplet surface properties (different composition of the stabilizing layer). Namely, polysorbate 80-costabilized nanoemulsion showed increased (1.4-7.4-fold higher) risperidone brain availability compared to other nanoemulsions and drug solution, suggesting this nanoemulsion as a promising carrier worth exploring further for brain targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks.

    Science.gov (United States)

    Di Stefano, Danilo Alessio; Arosio, Paolo; Gastaldi, Giorgio; Gherlone, Enrico

    2017-07-08

    Recent research has shown that dynamic parameters correlate with insertion energy-that is, the total work needed to place an implant into its site-might convey more reliable information concerning immediate implant primary stability at insertion than the commonly used insertion torque (IT), the reverse torque (RT), or the implant stability quotient (ISQ). Yet knowledge on these dynamic parameters is still limited. The purpose of this in vitro study was to evaluate whether an energy-related parameter, the torque-depth curve integral (I), could be a reliable measure of primary stability. This was done by assessing if (I) measurement was operator-independent, by investigating its correlation with other known primary stability parameters (IT, RT, or ISQ) by quantifying the (I) average error and correlating (I), IT, RT, and ISQ variations with bone density. Five operators placed 200 implants in polyurethane foam blocks of different densities using a micromotor that calculated the (I) during implant placement. Primary implant stability was assessed by measuring the ISQ, IT, and RT. ANOVA tests were used to evaluate whether measurements were operator independent (P>.05 in all cases). A correlation analysis was performed between (I) and IT, ISQ, and RT. The (I) average error was calculated and compared with that of the other parameters by ANOVA. (I)-density, IT-density, ISQ-density, and RT-density plots were drawn, and their slopes were compared by ANCOVA. The (I) measurements were operator independent and correlated with IT, ISQ, and RT. The average error of these parameters was not significantly different (P>.05 in all cases). The (I)-density, IT-density, ISQ-density, and RT-density curves were linear in the 0.16 to 0.49 g/cm³ range, with the (I)-density curves having a significantly greater slope than those regarding the other parameters (P≤.001 in all cases). The torque-depth curve integral (I) provides a reliable assessment of primary stability and shows a greater

  16. Effect of feeding on the pharmacokinetics of oral minocycline in healthy research dogs.

    Science.gov (United States)

    Hnot, Melanie L; Cole, Lynette K; Lorch, Gwendolen; Rajala-Schultz, Paivi J; Papich, Mark G

    2015-12-01

    The effect of food on minocycline oral absorption in dogs is unknown. The objective was to determine the pharmacokinetics of minocycline after administration of a single oral dose in fed and fasted dogs. Ten research hounds were administered oral minocycline (approximately 5 mg/kg) with and without food, in a crossover study, with a one-week wash-out between treatments. Blood samples were collected immediately prior to minocycline administration and over 24 h. Minocycline plasma drug concentrations were measured using high-performance liquid chromatography using ultraviolet detection and were analysed with compartmental modelling to determine primary pharmacokinetic parameters. Each dog was analysed independently, followed by calculation of means and variation of the dogs. The Wilcoxon signed-rank test [analysing secondary pharmacokinetic parameters - peak concentration (CMAX ), area under the concentration versus time curve (AUC)] was used to compare the two groups. A population pharmacokinetic modelling approach was performed using nonlinear mixed effects modelling of primary parameters for the population as fixed effects and the difference between subjects as a random effect. Covariate analysis was used to identify the source of variability in the population. No significant difference was found between treatments for AUC (P = 0.0645), although AUC was higher in fasted dogs. A significant difference was found for CMAX (P = 0.0059), with fasted dogs attaining a higher CMAX . The covariate of fed versus fasted accounted for a significant variation in the pharmacokinetics. Because feeding was a significant source of variation for the population's primary pharmacokinetic parameters and fasted dogs had higher minocycline concentrations, we recommend administering minocycline without food. © 2015 ESVD and ACVD.

  17. Pharmacokinetics of a once-daily extended-release formulation of pramipexole in healthy male volunteers: three studies.

    Science.gov (United States)

    Jenner, Peter; Könen-Bergmann, Michael; Schepers, Cornelia; Haertter, Sebastian

    2009-11-01

    Pramipexole is a dopamine agonist used in the treatment of Parkinson's disease. The currently available immediate-release (IR) formulation is taken orally 3 times daily. These studies were conducted to evaluate the pharmacokinetic properties of a variety of prototypes for a once-daily extended-release (ER) formulation of pramipexole and to further characterize the prototype whose pharmacokinetics best matched those of the IR formulation. Three Phase I studies were conducted, all in healthy adult men aged food effect. In the third study, steady-state pharmacokinetics of the optimal ER formulation were assessed across a range of pramipexole doses (0.375-4.5 mg/d), including investigation of the food effect at steady state for the highest dose. Tolerability was assessed throughout all studies based on physical examinations, laboratory measurements, and adverse events (AEs). The 3 studies included 18, 15, and 39 subjects, respectively. Among the ER prototypes tested at 0.75 mg once daily in study 1, a matrix tablet had the optimal pharmacokinetic resemblance to IR pramipexole 0.25 mg TID, with a geometric mean AUC(0-24h,ss) of 17.4 ng.h/mL (vs 16.0 ng.h/mL for the IR formulation), C(max,ss) of 0.967 ng/mL (vs 1.09 ng/mL), and C(min,ss) of 0.455 ng/mL (vs 0.383 ng/mL). For single-dose ER 0.375 mg administered in the fasted state in study 2, in vivo bioavailability was predictable from in vitro dissolution data, with internal mean absolute percent prediction errors of 3.18% for AUC(0-30h) and 4.87% for C(max), and external mean absolute prediction errors of 6.61% and 3.34%, respectively, satisfying current guidelines for a level A IVIVC. For single-dose ER 0.375 mg administered in the fed state, the upper bound of the 90% CI for fed:fasted values was 119.8 for AUC(0-30h) (within the bioequivalence limits of 80%-125%) and 134.1 for C(max). At steady state in study 3 (subjects' 5th treatment day), dosing at 0.375 to 4.5 mg in the fasted state was associated with a linear

  18. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats.

    Science.gov (United States)

    Wang, Xin; Zheng, Mei; Liu, Jia; Huang, Zhifeng; Bai, Yidan; Ren, Zhuoying; Wang, Ziwen; Tian, Yangli; Qiao, Zhou; Liu, Wenyuan; Feng, Feng

    2017-09-14

    Uncaria rhynchophylla (Miq.) Miq. ex Havil., is a plant species used in traditional Chinese medicine to treat cardiovascular and central nervous system diseases. Rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of epimers, are major alkaloids isolated from U. rhynchophylla and exhibit diverse pharmacological effects. Our previous study demonstrated that the pharmacokinetics of these epimers existed stereoselectivity after oral administration; however, the specific mechanism remains unknown and merits investigation. In the present study, the aim was to elucidate the mechanism underlying stereoselective pharmacokinetic characteristics of RIN and IRN in rats. The total (F), hepatic (F h ) and intestinal (F a ·F g ) bioavailabilities of each epimer were measured using portal vein cannulated rats following different dosing routes (intravenous, intraportal and intraduodenal) to assess individual contributions of the liver and intestine in stereoselective pharmacokinetics. Then the differences of first-pass metabolism in the liver and intestine between two epimers were evaluated by in vitro incubation with rat liver microsomes, intestinal S9 and gastrointestinal (GI) content solutions, respectively. Meanwhile, the membrane permeability and efflux by P-glycoprotein (P-gp) were examined by in situ single-pass intestinal perfusion with and without P-gp inhibitor verapamil. The configurational interconversion at different pH values and the excretions via feces and urine were also examined. Pharmacokinetic data showed that the total bioavailability of RIN was 5.9 folds higher than that of IRN (23.4% vs. 4.0%). The hepatic availability of RIN was 4.6 folds higher than that of IRN (46.9% vs. 10.3%), whereas the intestinal availability of RIN (48.1%) was comparable to that of IRN (42.7%). In addition, intestinal perfusion showed that IRN possessed higher intestinal permeability than RIN and co-perfusion with verapamil could affect absorption process of RIN but not IRN

  19. Human pharmacokinetics of proguanil and its metabolites

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian; Ravn, P; Rønn, A

    1987-01-01

    The pharmacokinetics of proguanil and its metabolites cycloguanil and p-chlorophenylbiguanide were studied in five healthy volunteers taking 200 mg orally for 14 days. A highly sensitive and specific high-performance liquid chromatographic assay was applied, clearly identifying all three compounds...

  20. Sodium caseinate stabilized zein colloidal particles.

    Science.gov (United States)

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  1. Pharmacokinetics of lysine clonixinate in children in postoperative care.

    Science.gov (United States)

    González-Martin, G; Cattan, C; Zuñiga, S

    1996-09-01

    The pharmacokinetics of 2 doses of intravenous lysine clonixinate (4 and 6 mg x kg-1) were studied in 10 children (age 4-10 years) under postoperative care. A single dose of the drug was injected in a forearm vein. Blood samples were collected at regular intervals for 3 hours. Serum clonixin concentrations (expressed as clonixin) were analyzed using a high pressure liquid chromatography method. Pharmacokinetic values were estimated by a nonlinear computer program. The distribution volume was similar in both groups of children (1.288 +/- 0.829 1 and 1. 139 +/- 0.667 1, respectively). There were no differences between the values of total plasma clearance and the administered doses (0.026 +/- 0.017 ml x min-1 and 0.017 +/- 0.008 ml x min-1, t = 1.07, p = 0.76). The elimination half-life was longer in children who received 6 mg x kg-1 (44.26 +/- 6.34 min vs 38.63 +/- 10.93 min) but this difference was not statistically significant (t = 0.99, p < 0.34). The pharmacokinetic parameters calculated in these children were different from those found by other authors in adults and experimental animals.

  2. Population pharmacokinetics of phenobarbital in infants with neonatal encephalopathy treated with therapeutic hypothermia.

    Science.gov (United States)

    Shellhaas, Renée A; Ng, Chee M; Dillon, Christina H; Barks, John D E; Bhatt-Mehta, Varsha

    2013-02-01

    Phenobarbital is the first-line treatment for neonatal seizures. Many neonates with hypoxic ischemic encephalopathy are treated with therapeutic hypothermia, and about 40% have clinical seizures. Little is known about the pharmacokinetics of phenobarbital in infants with hypoxic ischemic encephalopathy who undergo therapeutic hypothermia. The objective of this study was to determine the effect of therapeutic hypothermia on phenobarbital pharmacokinetics, taking into account maturational changes. Level 3 neonatal ICU. Infants with hypoxic ischemic encephalopathy and suspected seizures, all treated with phenobarbital. Some of these infants also received treatment with therapeutic hypothermia. None. A retrospective cohort study of 39 infants with hypoxic ischemic encephalopathy treated with phenobarbital (20 were treated with therapeutic hypothermia and 19 were not). Data on phenobarbital plasma concentrations were collected in 39 subjects with hypoxic ischemic encephalopathy with or without therapeutic hypothermia. Using nonlinear mixed-effects modeling, population pharmacokinetics of phenobarbital were developed with a total of 164 plasma concentrations. A one-compartment model best described the pharmacokinetics. The clearance of phenobarbital was linearly related to body weight and matured with increasing age with a maturation half-life of 22.1 days. Therapeutic hypothermia did not influence the pharmacokinetic parameters of phenobarbital. Therapeutic hypothermia does not influence the clearance of phenobarbital after accounting for weight and age. Standard phenobarbital dosing is appropriate for the initial treatment of seizures in neonates with hypoxic ischemic encephalopathy treated with therapeutic hypothermia.

  3. Dosing antibiotics in neonates: review of the pharmacokinetic data.

    Science.gov (United States)

    Rivera-Chaparro, Nazario D; Cohen-Wolkowiez, Michael; Greenberg, Rachel G

    2017-09-01

    Antibiotics are often used in neonates despite the absence of relevant dosing information in drug labels. For neonatal dosing, clinicians must extrapolate data from studies for adults and older children, who have strikingly different physiologies. As a result, dosing extrapolation can lead to increased toxicity or efficacy failures in neonates. Driven by these differences and recent legislation mandating the study of drugs in children and neonates, an increasing number of pharmacokinetic studies of antibiotics are being performed in neonates. These studies have led to new dosing recommendations with particular consideration for neonate body size and maturation. Herein, we highlight the available pharmacokinetic data for commonly used systemic antibiotics in neonates.

  4. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Metabolism, excretion, and pharmacokinetics of S-allyl-L-cysteine in rats and dogs.

    Science.gov (United States)

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji; Kodera, Yukihiro

    2015-05-01

    The metabolism, excretion, and pharmacokinetics of S-allyl-l-cysteine (SAC), an active key component of garlic supplements, were examined in rats and dogs. A single dose of SAC was administered orally or i.v. to rats (5 mg/kg) and dogs (2 mg/kg). SAC was well absorbed (bioavailability >90%) and its four metabolites-N-acetyl-S-allyl-l-cysteine (NAc-SAC), N-acetyl-S-allyl-l-cysteine sulfoxide (NAc-SACS), S-allyl-l-cysteine sulfoxide (SACS), and l-γ-glutamyl-S-allyl-l-cysteine-were identified in the plasma and/or urine. Renal clearance values (l/h/kg) of SAC indicated its extensive renal reabsorption, which contributed to the long elimination half-life of SAC, especially in dogs (12 hours). The metabolism of SAC to NAc-SAC, principal metabolite of SAC, was studied in vitro and in vivo. Liver and kidney S9 fractions of rats and dogs catalyzed both N-acetylation of SAC and deacetylation of NAc-SAC. After i.v. administration of NAc-SAC, SAC appeared in the plasma and its concentration declined in parallel with that of NAc-SAC. These results suggest that the rate and extent of the formation of NAc-SAC are determined by the N-acetylation and deacetylation activities of liver and kidney. Also, NAc-SACS was detected in the plasma after i.v. administration of either NAc-SAC or SACS, suggesting that NAc-SACS could be formed via both N-acetylation of SACS and S-oxidation of NAc-SAC. In conclusion, this study demonstrated that the pharmacokinetics of SAC in rats and dogs is characterized by its high oral bioavailability, N-acetylation and S-oxidation metabolism, and extensive renal reabsorption, indicating the critical roles of liver and kidney in the elimination of SAC. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  7. Pharmacokinetics of Escalating Doses of Oral Psilocybin in Healthy Adults.

    Science.gov (United States)

    Brown, Randall T; Nicholas, Christopher R; Cozzi, Nicholas V; Gassman, Michele C; Cooper, Karen M; Muller, Daniel; Thomas, Chantelle D; Hetzel, Scott J; Henriquez, Kelsey M; Ribaudo, Alexandra S; Hutson, Paul R

    2017-12-01

    Psilocybin is a psychedelic tryptamine that has shown promise in recent clinical trials for the treatment of depression and substance use disorders. This open-label study of the pharmacokinetics of psilocybin was performed to describe the pharmacokinetics and safety profile of psilocybin in sequential, escalating oral doses of 0.3, 0.45, and 0.6 mg/kg in 12 healthy adults. Eligible healthy adults received 6-8 h of preparatory counseling in anticipation of the first dose of psilocybin. The escalating oral psilocybin doses were administered at approximately monthly intervals in a controlled setting and subjects were monitored for 24 h. Blood and urine samples were collected over 24 h and assayed by a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for psilocybin and psilocin, the active metabolite. The pharmacokinetics of psilocin were determined using both compartmental (NONMEM) and noncompartmental (WinNonlin) methods. No psilocybin was found in plasma or urine, and renal clearance of intact psilocin accounted for less than 2% of the total clearance. The pharmacokinetics of psilocin were linear within the twofold range of doses, and the elimination half-life of psilocin was 3 h (standard deviation 1.1). An extended elimination phase in some subjects suggests hydrolysis of the psilocin glucuronide metabolite. Variation in psilocin clearance was not predicted by body weight, and no serious adverse events occurred in the subjects studied. The small amount of psilocin renally excreted suggests that no dose reduction is needed for subjects with mild-moderate renal impairment. Simulation of fixed doses using the pharmacokinetic parameters suggest that an oral dose of 25 mg should approximate the drug exposure of a 0.3 mg/kg oral dose of psilocybin. Although doses of 0.6 mg/kg are in excess of likely therapeutic doses, no serious physical or psychological events occurred during or within 30 days of any dose. NCT02163707.

  8. A quick review of carbamazepine pharmacokinetics in epilepsy from 1953 to 2012.

    Science.gov (United States)

    Tolou-Ghamari, Zahra; Zare, Mohammad; Habibabadi, Jafar Mehvari; Najafi, Mohammad Reza

    2013-03-01

    Carbamazepine has been used as AEDs since 1965, and is most effective against partial seizures. Two basic mechanisms of action have been proposed: 1) enhancement of sodium channel inactivation by reducing high-frequency repetitive firing of action potentials, 2) and action on synaptic transmission. The aim of this study was to provide a review of carbamazepine pharmacokinetics and its management guidelines in Iranian epileptic population. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO), Web of Science were searched; 1600, 722 and 167 research and review articles relevant to the topics; carbamazepine pharmacokinetics, carbamazepine pharmacokinetics in epilepsy and review on carbamazepine pharmacokinetics in epilepsy were found, respectively. Carbamazepine is highly bound to plasma proteins. In patients the protein-bound fraction ranged from 75-80% of the total plasma concentration. Bioavailability ranges from 75-85%. The rate or extent of absorption was not be affected by food. It is completely metabolized and the main metabolite is carbamazepine-epoxide (CBZ-E). Carbamazepine induces its own metabolism, leading to increased clearance, shortened serum half-life, and progressive decrease in serum levels. Increases in daily dosage are necessary to maintain plasma concentration. Severe liver dysfunction may cause disordered pharmacokinetics. In cardiac failure, congestion of major vital organs, including kidneys, may result in abnormally slow absorption and metabolism. Carbamazepine shows variability due to its narrow therapeutic window. Therefore clinical management in a3n Iranian epileptic population should focus on results derived from therapeutic drug monitoring in order to reduce inter and intra- individual variability in plasma drug concentrations.

  9. Pharmacological activities and pharmacokinetic study of hyperoside ...

    African Journals Online (AJOL)

    Studies on its pharmacokinetic (PK) properties revealed that it is a stable compound ... attention in drug discovery and food supplement research ... neurotrophic factor (BDNF) and cAMP response element ... antidepressant effect of hyperoside is mediated through .... Saposhnikovia divaricata by high performance counter-.

  10. 40 CFR 795.231 - Pharmacokinetics of isopropanal.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Pharmacokinetics of isopropanal. 795.231 Section 795.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... radioactivity in blood and in various tissues, including bone, brain, fat, gastrointestinal tract, gonads, heart...

  11. Pharmacokinetic-pharmacodynamic guided trial design in oncology

    NARCIS (Netherlands)

    van Kesteren, Ch; Mathôt, R. A. A.; Beijnen, J. H.; Schellens, J. H. M.

    2003-01-01

    The application of pharmacokinetic (PK) and pharmacodynamic (PD) modeling in drug development has emerged during the past decades and it is has been suggested that the investigation of PK-PD relationships during drug development may facilitate and optimize the design of subsequent clinical

  12. Pharmacokinetics of 99m Tc-EDDA/HYNIC-Lys-D-Phe-RGD in athymic mice with induced malignant tumors for integrin imaging

    International Nuclear Information System (INIS)

    Lopez D, F.A.; Pedraza L, M.; Murphy, C.A. de; Ferro F, G.; Hernandez H, E.

    2007-01-01

    Full text: Nuclear medicine imaging techniques are non-invasive and monitor the spatiotemporal distribution of molecular events. Radiolabeled RGD-peptides are currently investigated to target integrin receptors for in vivo tumor imaging. The α v β 3 integrin is a target structure involved in the angio genesis process which mediates the binding to extracellular matrix via different proteins such as vitronectin, fibronectin and von Willebrand factor. The aim of this research was to prepare [ 99m Tc]-Lys-D-Phe-RGD and to evaluate its pharmacokinetics in athymic mice with three different induced malignant tumors. Tumor uptake values of 99m Tc-Lys-D-Phe-RGD labeled via HYNIC and EDDA showed good ability to target α v β 3 integrin receptors in the three different kinds of tumors (breast, prostate and neuroendocrine). A high in vivo stability and favorable pharmacokinetic properties such as fast blood clearance, rapid renal excretion, low liver and muscle uptake and low intestinal excretion were observed. This study demonstrated that 99m Tc-EDDA/HYNIC-Lys-D-Phe-RGD is a specific and potential radiopharmaceutical to image α v β 3 integrin receptors in a variety of tumors. (Author)

  13. Effect of Smoking on Pharmacokinetics of Clopidogrel, an ...

    African Journals Online (AJOL)

    ... in patients undergoing PCI. Keywords: Antiplatelet, Clopidogrel, Pharmacokinetics, Smoking, Cigarette ..... regimen of choice to prevent thrombotic complications. [2,16]. ... either the parent drug [19] or the carboxylic acid metabolite as an ...

  14. Population pharmacokinetics and dosing regimen design of milrinone in preterm infants

    Science.gov (United States)

    Paradisis, Mary; Jiang, Xuemin; McLachlan, Andrew J; Evans, Nick; Kluckow, Martin; Osborn, David

    2007-01-01

    Aims To define the pharmacokinetics of milrinone in very preterm infants and determine an optimal dose regimen to prevent low systemic blood flow in the first 12 h after birth. Methods A prospective open‐labelled, dose‐escalation pharmacokinetic study was undertaken in two stages. In stage one, infants received milrinone at 0.25 μg/kg/min (n = 8) and 0.5 μg/kg/min (n = 11) infused from 3 to 24 h of age. Infants contributed 4–5 blood samples for concentration–time data which were analysed using a population modelling approach. A simulation study was used to explore the optimal dosing regimen to achieve target milrinone concentrations (180–300 ng/ml). This milrinone regimen was evaluated in stage two (n = 10). Results Infants (n = 29) born before 29 weeks gestation were enrolled. Milrinone pharmacokinetics were described using a one‐compartment model with first‐order elimination rate, with a population mean clearance (CV%) of 35 ml/h (24%) and volume of distribution of 512 ml (21%) and estimated half‐life of 10 h. The 0.25 and 0.5 μg/kg/min dosage regimens did not achieve optimal milrinone concentration‐time profiles to prevent early low systemic blood flow. Simulation studies predicted a loading infusion (0.75 μg/kg/min for 3 h) followed by maintenance infusion (0.2 μg/kg/min until 18 h of age) would provide an optimal milrinone concentration profile. This was confirmed in stage two of the study. Conclusion Population pharmacokinetic modelling in the preterm infant has established an optimal dose regimen for milrinone that increases the likelihood of achieving therapeutic aims and highlights the importance of pharmacokinetic studies in neonatal clinical pharmacology. PMID:16690639

  15. PHARMACOKINETICS OF PIROXICAM IN CRANES (FAMILY GRUIDAE).

    Science.gov (United States)

    Keiper, Naomi L; Cox, Sherry K; Doss, Grayson A; Elsmo, Betsy; Franzen-Klein, Dana; Hartup, Barry K

    2017-09-01

    To investigate the pharmacokinetics of the nonsteroidal anti-inflammatory drug (NSAID) piroxicam in cranes, three brolgas (Antigone rubicunda) were administered piroxicam as a single oral dose at 0.5 mg/kg and 1.0 mg/kg during separate trials. Serial blood samples were collected for quantification of piroxicam in plasma. Piroxicam was readily absorbed at both dosages, and no adverse effects were observed. Plasma concentrations peaked at 3.67 hr with a concentration of 4.00 μg/ml for the lower dosage, and at 0.83 hr at 8.77 μg/ml for the higher dosage. Piroxicam may exhibit linear kinetics and dose proportionality in brolgas, but will require further study. Mean peak plasma concentrations in brolgas were comparable to concentrations demonstrated to be analgesic in humans. To the authors' knowledge, this study represents the first pharmacokinetic investigation of piroxicam in an avian species.

  16. Population pharmacokinetics of dihydroartemisinin and piperaquine in pregnant and nonpregnant women with uncomplicated malaria.

    Science.gov (United States)

    Tarning, Joel; Rijken, Marcus J; McGready, Rose; Phyo, Aung Pyae; Hanpithakpong, Warunee; Day, Nicholas P J; White, Nicholas J; Nosten, François; Lindegardh, Niklas

    2012-04-01

    Pregnant women are particularly vulnerable to malaria. The pharmacokinetic properties of antimalarial drugs are often affected by pregnancy, resulting in lower drug concentrations and a consequently higher risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of piperaquine and dihydroartemisinin in pregnant and nonpregnant women with uncomplicated malaria. Twenty-four pregnant and 24 matched nonpregnant women on the Thai-Myanmar boarder were treated with a standard fixed oral 3-day treatment, and venous plasma concentrations of both drugs were measured frequently for pharmacokinetic evaluation. Population pharmacokinetics were evaluated with nonlinear mixed-effects modeling. The main pharmacokinetic finding was an unaltered total exposure to piperaquine but reduced exposure to dihydroartemisinin in pregnant compared to nonpregnant women with uncomplicated malaria. Piperaquine was best described by a three-compartment disposition model with a 45% higher elimination clearance and a 47% increase in relative bioavailability in pregnant women compared with nonpregnant women. The resulting net effect of pregnancy was an unaltered total exposure to piperaquine but a shorter terminal elimination half-life. Dihydroartemisinin was best described by a one-compartment disposition model with a 38% lower relative bioavailability in pregnant women than nonpregnant women. The resulting net effect of pregnancy was a decreased total exposure to dihydroartemisinin. The shorter terminal elimination half-life of piperaquine and lower exposure to dihydroartemisinin will shorten the posttreatment prophylactic effect and might affect cure rates. The clinical impact of these pharmacokinetic findings in pregnant women with uncomplicated malaria needs to be evaluated in larger series.

  17. Effect of Moringa oleifera Lam. leaf powder on the pharmacokinetics of nevirapine in HIV-infected adults: a one sequence cross-over study.

    Science.gov (United States)

    Monera-Penduka, Tsitsi G; Maponga, Charles C; Wolfe, Alan R; Wiesner, Lubbe; Morse, Gene D; Nhachi, Charles F B

    2017-01-01

    Moringa oleifera Lam., an herb commonly consumed by HIV-infected people on antiretroviral therapy, inhibits cytochrome P450 3A4, 1A2 and 2D6 activity in vitro; and may alter the pharmacokinetics (PK) of antiretroviral drugs metabolized via the same pathways. However, in vitro drug interaction activity may not translate to a clinically significant effect. Therefore, the effect of moringa leaf powder on the PK of nevirapine in HIV-infected people was investigated. Adult patients at steady-state dosing with nevirapine were admitted for 12-h intensive PK sampling following a 21-day herbal medicine washout. Blood sampling was repeated after 14 days of nevirapine and moringa (1.85 g leaf powder/day) co-administration. Nevirapine plasma concentrations were determined by liquid chromatography-tandem mass spectrometry. To assess the effect of moringa on nevirapine PK, the change in nevirapine area under the plasma concentration-time curve (AUC) was determined. The mean difference in pre- and post-moringa nevirapine, maximum concentration (C max ) and concentration at 12 h (C 12h ) were also calculated. The PK parameters were compared by assessing the post/pre geometric mean ratios (GMRs) and associated 90% confidence intervals (CIs). Pharmacokinetics analyses were performed on the results from 11 participants for whom complete data were obtained. The post/pre GMRs and associated 90% CIs for nevirapine were 1.07 (1.00-1.14) for the AUC; 1.06 (0.98-1.16) for C max and 1.03 (0.92-1.16) for C 12h . Co-administration of Moringa oleifera Lam. leaf powder at the traditional dose did not significantly alter the steady-state PK of nevirapine. Trial registration number NCT01410058 (ClinicalTrials.gov).

  18. Physiologic and Pharmacokinetic Changes in Pregnancy

    Directory of Open Access Journals (Sweden)

    Maged eCostantine

    2014-04-01

    Full Text Available Physiologic changes in pregnancy induce profound alterations to the pharmacokinetic properties of many medications. These changes affect distribution, absorption, metabolism, and excretion of drugs, and thus may impact their pharmacodynamic properties during pregnancy. Pregnant women undergo several adaptations in many organ systems. Some adaptations are secondary to hormonal changes in pregnancy, while others occur to support the gravid woman and her developing fetus. Some of the changes in maternal physiology during pregnancy include, for example, increased maternal fat and total body water, decreased plasma protein concentrations, especially albumin, increased maternal blood volume, cardiac output and blood flow to the kidneys and uteroplacental unit, and decreased blood pressure. The maternal blood volume expansion occurs at a larger proportion than the increase in red blood cell mass, which results in physiologic anemia and hemodilution. Other physiologic changes include increased tidal volume, partially compensated respiratory alkalosis, delayed gastric emptying and gastrointestinal motility, and altered activity of hepatic drug metabolizing enzymes. Understating these changes and their profound impact on the pharmacokinetic properties of drugs in pregnancy is essential to optimize maternal and fetal health.

  19. Pharmacokinetic study of harmane and its 10 metabolites in rat after intravenous and oral administration by UPLC-ESI-MS/MS.

    Science.gov (United States)

    Li, Shuping; Teng, Liang; Liu, Wei; Cheng, Xuemei; Jiang, Bo; Wang, Zhengtao; Wang, Chang-Hong

    2016-09-01

    Context The β-carboline alkaloid harmane is widely distributed in common foods, beverages and hallucinogenic plants. Harmane exerts potential in therapies for Alzheimer's and depression diseases. However, little information on its dynamic metabolic profiles and pharmacokinetics in vivo is currently available. Objective This study investigates the dynamic metabolic profiles and pharmacokinetic properties of harmane and its metabolites in rats in vivo. Materials and methods A highly selective, sensitive and rapid ultra-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and well-validated for simultaneous quantitative determination of harmane and its uncertain endogenous metabolite harmine, as well as for semiquantitative determination of 10 harmane metabolites in rats after intravenous injection and oral administration of harmane at 1.0 and 30.0 mg/kg, respectively. Results The calibration curves of harmane and harmine showed excellent linearity within the concentration range of 1-2000 ng/mL with acceptable accuracy, precision, selectivity, recovery, matrix effect and stability. Ten metabolites, including harmane but not harmine, were detected and identified after intravenous and oral administration of harmane. The absolute bioavailability of harmane following an oral dose was 19.41 ± 3.97%. According to the AUC0-t values of all the metabolites, the metabolic levels of phase II metabolites were higher than those of phase I metabolites, and the sulphation pathways were the dominant metabolic routes for harmane in both routes of administration. Discussion and conclusion The pharmacokinetic properties of harmane and its 10 metabolites in rats were determined. Sulphate conjugation was the predominant metabolic process of harmane in rats.

  20. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    International Nuclear Information System (INIS)

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-01-01

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses

  1. Influence of Bariatric Surgery on the Use and Pharmacokinetics of Some Major Drug Classes

    NARCIS (Netherlands)

    Yska, Jan Peter; van der Linde, Susanne; Tapper, Veronique V.; Apers, Jan A.; Emous, Marloes; Totte, Erik R.; Wilffert, Bob; van Roon, Eric N.

    The purpose of this review is to evaluate the influence of bariatric surgery on the use and pharmacokinetics of some frequently used drugs. A PubMed literature search was conducted. Literature was included on influence of bariatric surgery on pharmacoepidemiology and pharmacokinetics. Drug classes

  2. Pharmacokinetic evaluation of Shenfu Injection in beagle dogs after intravenous drip administration

    Directory of Open Access Journals (Sweden)

    Yuqiao Zhang

    2016-10-01

    Full Text Available Shenfu Injection (SFI is a well-defined Chinese herbal formulation that is obtained from red ginseng and processed aconite root. The main active constituents in SFI are ginsenosides and aconitum alkaloids. In this work, ginsenosides (ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rc and aconitum alkaloids (benzoylmesaconine and fuziline were used as the index components to explore the pharmacokinetic behavior of SFI. A selective and sensitive HPLC–MS/MS method was developed for the quantification of ginsenosides and aconitum alkaloids in dog plasma and was used to characterize the pharmacokinetics of the five index components after intravenous drip of three different dosages of SFI in beagle dogs. The pharmacokinetic properties of the index components were linear over the dose range of 2–8 mL/kg.

  3. The in vivo disposition and in vitro transmembrane transport of two model radiometabolites of DOTA-conjugated receptor-specific peptides labelled with (177) Lu.

    Science.gov (United States)

    Volková, Marie; Mandíková, Jana; Bárta, Pavel; Navrátilová, Lucie; Lázníčková, Alice; Trejtnar, František

    2015-01-01

    In vivo metabolism of the radiolabelled receptor-specific peptides has been described; however, information regarding the pharmacokinetic behaviour of the degradation products within the body is very scarce. The present study was designed to obtain new knowledge on the disposition and elimination of low-molecular radiometabolites of receptor-specific peptides in the organism and to reveal the potential involvement of selected membrane transport mechanisms in the cellular uptake of radiometabolites, especially in the kidney. The study compared pharmacokinetics of two radiometabolites: a final metabolite of somatostatin analogues, (177)Lu-DOTA-DPhe, and a tripeptide metabolite of (177)Lu-DOTA-minigastrin 11, (177)Lu-DOTA-DGlu-Ala-Tyr. Their pharmacokinetics was compared with that of respective parent (177)Lu-radiopeptide. Both radiometabolites exhibited relative rapid clearing from most body tissues in rats in vivo along with predominant renal excretion. The long-term renal retention of the smaller radiometabolite (177)Lu-DOTA-DPhe was lower than that of (177)Lu-DOTA-DGlu-Ala-Tyr. An uptake of (177)Lu-DOTA-DPhe by human renal influx transporter organic cation transporter 2 was found in vitro in a cellular model. The study brings the first experimental data on the in vivo pharmacokinetics of radiometabolites of receptor-specific somatostatin and gastrin analogues. The found results may indicate a negative correlation between the degree of decomposition of the parent peptide chain and the renal retention of the metabolite. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Effects of pathological conditions on ocular pharmacokinetics of antimicrobial drugs.

    Science.gov (United States)

    Ueda, Kayoko; Ohtori, Akira; Tojo, Kakuji

    2010-10-01

    A diffusion model of ocular pharmacokinetics was used to estimate the effects of pathological conditions on ocular pharmacokinetics. In vivo rabbit data after topical instillation of ciprofloxacin and ofloxacin were compared with the simulated concentrations in the aqueous and vitreous humors. The barrier capacity of the surrounding membranes such as the retina/choroid/sclera (RCS) membrane and the cornea was characterized by dimensionless Sherwood number derived by the pseudo-steady state approach (PSSA). We assumed the barrier capacity decreased by inflammation; when the barrier capacity of the RCS membrane and the cornea was assumed to be one-tenth for the RCS membrane and a half for the cornea respectively, the in vivo data agreed with the simulated profile without contradiction. The drug concentration gradient simulated in the vitreous body near the RCS membrane was more significant in the inflamed eyes than in the normal eyes, suggesting that the elimination of the drugs from the RCS membrane was enhanced by inflammation. The present diffusion model can better describe the ocular pharmacokinetics in both normal and diseased conditions.

  5. Requirements for pharmacokinetic evaluation of antibiotics in phase I studies.

    Science.gov (United States)

    Bergan, T

    1986-01-01

    Initial pharmacokinetic studies usually include healthy volunteers to minimize variation generated by diseases. Ethical aspects of initial studies are paramount. The guidelines of the Helsinki Declaration should be followed or even extended. Thorough toxicologic screening in animals is a prerequisite. The use of radioisotopes for pharmacokinetic studies should be limited. The basic design of studies includes cross-over administration of intravenous and oral doses of several sizes. Bioavailability, total area under the serum concentration curve, serum half-life, amount eliminated in urine as active drug, and metabolism are the most important data. The fate of the parent compound and of its possible metabolites in both healthy persons and ill individuals (including those with renal or hepatic dysfunction) should be monitored. Diet may have consequences with regard to recommended dosage schedules. When possible, tissue penetration of antibiotics should be assessed, preferably through the analysis of peripheral human lymph and of suction-blister and peritoneal fluids. Theoretical dosage schedules based on pharmacokinetic assessments in healthy persons should be tested in patients with infectious disease, particularly in those with reduced renal and/or hepatic function.

  6. Moxifloxacin pharmacokinetics and pleural fluid penetration in patients with pleural effusion.

    Science.gov (United States)

    Chatzika, Kalliopi; Manika, Katerina; Kontou, Paschalina; Pitsiou, Georgia; Papakosta, Despina; Zarogoulidis, Konstantinos; Kioumis, Ioannis

    2014-01-01

    The aim of this study was to evaluate the pharmacokinetics and penetration of moxifloxacin (MXF) in patients with various types of pleural effusion. Twelve patients with empyema/parapneumonic effusion (PPE) and 12 patients with malignant pleural effusion were enrolled in the study. A single-dose pharmacokinetic study was performed after intravenous administration of 400 mg MXF. Serial plasma (PL) and pleural fluid (PF) samples were collected during a 24-h time interval after drug administration. The MXF concentration in PL and PF was determined by high-performance liquid chromatography, and main pharmacokinetic parameters were estimated. Penetration of MXF in PF was determined by the ratio of the area under the concentration-time curve from time zero to 24 h (AUC24) in PF (AUC24PF) to the AUC24 in PL. No statistically significant differences in the pharmacokinetics in PL were observed between the two groups, despite the large interindividual variability in the volume of distribution, clearance, and elimination half-life. The maximum concentration in PF (CmaxPF) in patients with empyema/PPE was 2.23±1.31 mg/liter, and it was detected 7.50±2.39 h after the initiation of the infusion. In patients with malignant effusion, CmaxPF was 2.96±1.45 mg/liter, but it was observed significantly earlier, at 3.58±1.38 h (Ppleural effusion.

  7. The effect of age on digoxin pharmacokinetics in Fischer-344 rats

    International Nuclear Information System (INIS)

    Evans, R.L.; Owens, S.M.; Ruch, S.; Kennedy, R.H.; Seifen, E.

    1990-01-01

    Digoxin protein binding and pharmacokinetics were studied in 4-, 14-, and 25-month-old male Fischer-344 rats to determine if there were age-dependent changes in digoxin disposition. Serum protein binding did not differ among age groups. The average percentage unbound digoxin for all animals was 61.3 ± 5.3% (means ± SD, n = 15). For pharmacokinetic studies, [ 3 H]digoxin and 1 mg/kg unlabeled digoxin were administered as an intravenous bolus dose to animals from each age group. The [ 3 H]digoxin terminal elimination half-life was 2.0, 2.3, and 2.5 hr, respectively. The steady-state volume of distribution in the three age groups was 1.51, 1.49, and 1.27 liters/kg, respectively. Total body clearance for the three age groups was 14.2, 12.1, and 7.5 ml/min/kg, respectively. Analysis of variance of these data followed by Duncan's multiple range test indicated a significant decrease in clearance in the aged rats (25-month-old, p less than 0.05). This age-dependent decrease in clearance suggested that digoxin pharmacokinetics could be a significant factor in age-related alterations in digoxin cardiotoxicity in the rat, as it is in humans, and that the Fischer-344 rat could be a useful model for studies of digoxin pharmacokinetic changes with age

  8. An efficient and reproducible method for in vitro clonal multiplication of Rauvolfia tetraphylla L. and evaluation of genetic stability using DNA-based markers.

    Science.gov (United States)

    Faisal, Mohammad; Alatar, Abdulrahman A; Ahmad, Naseem; Anis, Mohammad; Hegazy, Ahmad K

    2012-12-01

    An efficient protocol is described for the rapid in vitro clonal propagation of an endangered medicinal plant, Rauvolfia tetraphylla L., through high frequency shoot induction from nodal explants collected from young shoots of a field grown plant. Effects of growth regulators [6-benzyladenine (BA), kinetin (Kin) 2iP, or α-naphthalene acetic acid (NAA)], carbohydrates, different medium [Murashige and Skoog (MS), Woody Plant Medium (WPM), Gamborg medium (B5), Linsmier and Skoog medium (LS)], and various pH levels on in vitro morphogenesis were investigated. The highest frequency of shoot regeneration (90 %) and maximum number of shoot (35.4 ± 2.3) per explant were observed on WPM medium supplemented with 7.5 μM BA, 2.5 μM NAA, and 30 g/l sucrose at pH 5.8. Well-developed shoots, 4-5 cm in length, were successfully rooted ex vitro at 90 % by a 30-min pulse treatment with 150 μM IBA prior to their transfer in planting substrates. The survival rate of transplantation reached 90 % when transferred to field condition. Genetic stability of micropropagated plantlets was assessed and compared with mother plant using Random Amplified Polymorphic DNA and Inter Simple Sequence Repeats markers. No variation was observed in DNA fingerprinting patterns among the micropropagated plants, which were similar to that of the donor plant illustrating their genetic uniformity and clonal fidelity. This confirms that clonal propagation of this plant using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. The work contributed to a better in vitro regeneration and clonal mass multiplication of R. tetraphylla and to develop a strategy for the germplasm conservation of this endangered medicinal plant.

  9. A pharmacokinetic study of diclofenac sodium in rats.

    Science.gov (United States)

    Yuan, Jing; Ma, He; Cen, Nannan; Zhou, Ai; Tao, Hengxun

    2017-08-01

    The aim of the present study was to examine the pharmacokinetics of a single intravenous injection (i.v.) and oral administration (p.o.) of diclofenac sodium (DIC) in Sprague-Dawley (SD) rats. Twelve male SD rats were divided into 2 groups (n=6 per group); one group was injected intravenously with 2 mg/kg DIC, whereas the other group was lavaged with 2 mg/kg DIC. Blood samples were collected prior to DIC delivery (0 h) and 0.033, 0.083, 0.167, 0.25, 0.5, 1, 2, 4, 6, and 8 h post-administration. Blood plasma samples were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS) following pretreatment to induce protein precipitation. Pharmacokinetics software was applied to calculate relevant pharmacokinetic parameters using a non-compartmental model. Following i.v. administration of DIC, the terminal elimination rate constant (λ z ), apparent terminal elimination half-life (t ½ ), area under the concentration-time curve from time 0 extrapolated to infinity (AUC0 -∞ ), clearance (CL), apparent volume of distribution (V z ), mean residence time (MRT), and apparent volume of distribution at steady state (V ss ) were 0.57±0.05 l/h, 1.22±0.11 h, 3356±238 h × ng/ml, 0.60±0.04 l/h, 1.05±0.10 l, 1.05±0.07 h and 0.63±0.07 l, respectively. Following p.o. administration of DIC, the λ z , t ½ , C max , t max , AUC 0-∞ , CL, V z , MRT were: 0.63±0.12 l/h, 1.12±0.18 h, 1272±112 ng/ml, 0.19±0.04 h, 2501±303 h × ng/ml, 0.81±0.10 l/h, 1.29±0.12 l, and 2.70±0.18 h, respectively. The pharmacokinetic parameters of i.v. and p.o. DIC in rats show that the drug is rapidly absorbed, distributed, and eliminated.

  10. Characterization of Pharmacologic and Pharmacokinetic Properties of CCX168, a Potent and Selective Orally Administered Complement 5a Receptor Inhibitor, Based on Preclinical Evaluation and Randomized Phase 1 Clinical Study.

    Directory of Open Access Journals (Sweden)

    Pirow Bekker

    Full Text Available The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan, an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.

  11. Validation of Individual Non-Linear Predictive Pharmacokinetic ...

    African Journals Online (AJOL)

    3Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Republic of Serbia ... Purpose: To evaluate the predictive performance of phenytoin multiple dosing non-linear pharmacokinetic ... status epilepticus affects an estimated 152,000 ..... causal factors, i.e., infection, inflammation, tissue.

  12. Formulation and Pharmacokinetic Evaluation of Controlled-Release ...

    African Journals Online (AJOL)

    The effect of several formulation variables on in ... The in vivo pharmacokinetics of the optimized formulation was compared ... Results: The core tablets exhibited extended release consisting of drug release from the embedded ... important factor in medical treatment with respect ... The solvents for high-performance liquid.

  13. Grey-Box Modelling of Pharmacokinetic /Pharmacodynamic Systems

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Jacobsen, Judith L.; Pedersen, Oluf

    2004-01-01

    Grey-box pharmacokinetic/pharmacodynamic (PK/PD) modelling is presented as a promising way of modelling PK/PD systems. The concept behind grey-box modelling is based on combining physiological knowledge along with information from data in the estimation of model parameters. Grey-box modelling...

  14. Cytochrome P450-mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: In vitro assays in several birds and in vivo assays in chicken.

    Science.gov (United States)

    Watanabe, Kensuke P; Kawata, Minami; Ikenaka, Yoshinori; Nakayama, Shouta M M; Ishii, Chihiro; Darwish, Wageh Sobhi; Saengtienchai, Aksorn; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-10-01

    Coumarin-derivative anticoagulant rodenticides used for rodent control are posing a serious risk to wild bird populations. For warfarin, a classic coumarin derivative, chickens have a high median lethal dose (LD50), whereas mammalian species generally have much lower LD50. Large interspecies differences in sensitivity to warfarin are to be expected. The authors previously reported substantial differences in warfarin metabolism among avian species; however, the actual in vivo pharmacokinetics have yet to be elucidated, even in the chicken. In the present study, the authors sought to provide an in-depth characterization of warfarin metabolism in birds using in vivo and in vitro approaches. A kinetic analysis of warfarin metabolism was performed using liver microsomes of 4 avian species, and the metabolic abilities of the chicken and crow were much higher in comparison with those of the mallard and ostrich. Analysis of in vivo metabolites from chickens showed that excretions predominantly consisted of 4'-hydroxywarfarin, which was consistent with the in vitro results. Pharmacokinetic analysis suggested that chickens have an unexpectedly long half-life despite showing high metabolic ability in vitro. The results suggest that the half-life of warfarin in other bird species could be longer than that in the chicken and that warfarin metabolism may not be a critical determinant of species differences with respect to warfarin sensitivity. © 2015 SETAC.

  15. Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use

    Directory of Open Access Journals (Sweden)

    Denny Joseph Manual Kollareth

    2018-03-01

    Full Text Available Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [3H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [3H]cholesteryl oleoyl ether and [3H]cholesteryl hexadecyl ether from different suppliers, employing in vitro, in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro, in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments. Keywords: Cholesteryl ether, J774 A2 macrophages, Soy oil emulsion, Thin layer chromatography, triDHA emulsion

  16. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics.

    Science.gov (United States)

    Heuberger, Jules A A C; Guan, Zheng; Oyetayo, Olubukayo-Opeyemi; Klumpers, Linda; Morrison, Paul D; Beumer, Tim L; van Gerven, Joop M A; Cohen, Adam F; Freijer, Jan

    2015-02-01

    Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.

  17. The pharmacokinetics of L-tryptophan following its intravenous and oral administration.

    OpenAIRE

    Green, A R; Aronson, J K; Cowen, P J

    1985-01-01

    The pharmacokinetics of L-tryptophan (5 g and 7.5 g) have been studied after its intravenous administration to healthy subjects and the results compared with those obtained after oral administration (0.7 g-3.5 g). In order to do this, we have re-analysed previously published data relating to oral administration. The data obtained following the oral administration of L-tryptophan suggest that the total body clearance and apparent volume of distribution are saturable. The pharmacokinetics of tr...

  18. Evaluation of pharmacokinetic model designs for subcutaneous infusion of insulin aspart

    DEFF Research Database (Denmark)

    Mansell, Erin J.; Schmidt, Signe; Docherty, Paul D.

    2017-01-01

    Effective mathematical modelling of continuous subcutaneous infusion pharmacokinetics should aid understanding and control in insulin therapy. Thorough analysis of candidate model performance is important for selecting the appropriate models. Eight candidate models for insulin pharmacokinetics...... included a range of modelled behaviours, parameters and complexity. The models were compared using clinical data from subjects with type 1 diabetes with continuous subcutaneous insulin infusion. Performance of the models was compared through several analyses: R2 for goodness of fit; the Akaike Information...

  19. Research of pharmacokinetics of L-threonate calcium with 45Ca radiotrace

    International Nuclear Information System (INIS)

    Tong Jian; Niu Huisheng; Li Huaifen

    2001-01-01

    The pharmacokinetics of calcium in L-threonate calcium is studied by radiotrace method. The results show the relationship between drug-time curve, pharmacokinetics parameters and dosage are positive correlation, and calcium distributes in important tissues such as stomach, intestines, blood and bone. In 24 hours, about 40% calcium is drained in urine, 30% calcium is evacuated in feces, 10%-20% calcium deposit in blood or bone. The radiotrace method is a kind of special, sensitive, accurate method of testing calcium metabolism

  20. A comprehensive physiologically based pharmacokinetic ...

    Science.gov (United States)

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific parameters and in vivo pharmacokinetic data used to calibrate these published models can act as valuable starting points for model development of new chemicals with similar molecular structures. A knowledgebase for published PBPK-related articles was compiled to support PBPK model construction for new chemicals based on their close analogues within the knowledgebase, and a web-based interface was developed to allow users to query those close analogues. A list of 689 unique chemicals and their corresponding 1751 articles was created after analysis of 2,245 PBPK-related articles. For each model, the PMID, chemical name, major metabolites, species, gender, life stages and tissue compartments were extracted from the published articles. PaDEL-Descriptor, a Chemistry Development Kit based software, was used to calculate molecular fingerprints. Tanimoto index was implemented in the user interface as measurement of structural similarity. The utility of the PBPK knowledgebase and web-based user interface was demonstrated using two case studies with ethylbenzene and gefitinib. Our PBPK knowledgebase is a novel tool for ranking chemicals based on similarities to other chemicals associated with existi